
i
i

“tradeoff” — 2021/1/23 — 4:49 — page 1 — #1 i
i

i
i

i
i

Chapter 1

Tradeoff Attacks on Symmetric
Ciphers
Orhun Kara

Abstract

Tradeoff attacks on symmetric ciphers can be considered as the general-
ization of the exhaustive search. Their main objective is reducing the time
complexity by exploiting the memory after preparing very large tables at a
cost of exhaustively searching all the space during the precomputation phase.
It is possible to utilize data (plaintext/ciphertext pairs) in some cases like
the internal state recovery attacks for stream ciphers to speed up further
both online and offline phases. However, how to take advantage of data in
a tradeoff attack against block ciphers for single key recovery cases is still
unknown. We briefly assess the state of art of tradeoff attacks on symmetric
ciphers, introduce some open problems and discuss the security criterion on
state sizes. We discuss the strict lower bound for the internal state size of
keystream generators and propose more practical and fair bound along with
our reasoning. The adoption of our new criterion can break a fresh ground in
boosting the security analysis of small keystream generators and in designing
ultra-lightweight stream ciphers with short internal states for their usage in
specially low source devices such as IoT devices, wireless sensors or RFID tags.

Keywords: symmetric cipher, block cipher, stream cipher, tradeoff attack,
keystream, keystream generator, Hellman table, rainbow table, one-way
function, preimage.

1. Introduction

In general, bulk encryption is performed through symmetric ciphers; that
is, block ciphers or stream ciphers. Hash functions, message authentication
codes and authenticated encryption schemes are also based on the quite
similar design and security principles. All these cryptographic primitives
are examples of one-way functions for which it must be computationally
infeasible to find a preimage. Indeed, the only generic method to invert a given
output is exhaustively searching for one of its inputs.1 This may be embodied
as brute force attacks on block ciphers and stream ciphers, internal state
recovery attacks on keystream generators, preimage attacks on hash functions
or constructing valid messages to given tag values for message authentication
codes.

1 Permutations as one-way functions are out of scope of this chapter.

1



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 2 — #2 i
i

i
i

i
i

Tradeoff Attacks on Symmetric Ciphers

The brute force attacks can be expedited significantly by utilizing very large
tables that have been already prepared during the offline phase. This phase is
called the precomputation phase also and is usually equivalent to exhaustive
search. Nevertheless, once it is executed, the prepared tables can be used
several times.

It may be possible to further improve a tradeoff attack by exploiting
large amount of data (plaintext/ciphertext pairs). Biryukov-Shamir attack on
keystream generators can be considered as a typical example of a tradeoff
among time, memory and data [1]. One of the internal states of a long
keystream sequence is recovered. However, it is still unknown how to use data
to improve the tradeoff attacks on block ciphers.

The state sizes of block ciphers are not of security concern against trade-
off attacks, enabling to design ultra-lightweight block ciphers. In fact, we
encounter several such block cipher designs in the literature during the last
decades [2–9]. However, it seems to be almost impossible to design ultra-
lightweight stream ciphers due to their strict security criterion on the lower
bound of their internal state sizes to resist tradeoff attacks.

The tradeoff attacks can be quite effective against some real world crypto-
graphic primitives. The tradeoff tables can be used in practical applications to
break real life ciphers such as A5/1 for the GSM encryption [10–12] or to crack
passwords by finding preimages to hash functions [13–17]. In this chapter,
we introduce briefly how to use tradeoff tables to invert small sized one-way
functions. Moreover, we evaluate the state of art of the applications, raise some
open problems and come up with a discussion on the countermeasures against
tradeoff attacks on keystream generators.

We argue that it is possible to loosen the lower bound for the state size
without sacrificing the security against tradeoff attacks and this can enable
designing ultra-lightweight stream ciphers. We claim that the lower bound
for the internal state size can be diminished to 4n/3 bits from 2n bits where
n is the key length. It is possible to design a keystream generator of size 4n/3
bits, which remains still secure against tradeoff attacks and which presents a
great advantage in low cost applications. Indeed, such ciphers are in real world
demand due to the confidentially issues of lightweight devices such as RFID
tags, wireless sensors or IoT devices.

It is straightforward that resistance against tradeoff attacks is not sufficient
for security. Unfortunately, the security of small stream ciphers has not been
studied sufficiently so far. We still do not know how to design secure and
small stream ciphers. This is due to fact that almost all the stream ciphers
in the literature have internal state sizes at least twice as large as their key
sizes. Hence, there is almost no example in the literature to analyze. The recent
small keystream generators such as Sprout [18] or Plantlet [19] are analyzed
intensively in a short while and several weaknesses are discovered [20–26].

The tradeoff attacks on block ciphers so far are limited to the tradeoff
between only time and memory. It is an open problem how to construct a
tradeoff curve between memory and data or among memory, data and time
for a single key recovery attack. We phrase the problem of inverting one-way
function with data, the problem of mutual inverting of multiple one-way functions
and the problem of inverting only one of the several independent one-way functions.
Moreover, we address these problems with block ciphers and raise a question
about the hierarchical relationships between any pair of them.

The outline of the chapter is as follows. We briefly overview the tradeoff
attacks on symmetric ciphers, give some recent applications of these attacks
and evaluate them in Section 2. Then, we assess the tradeoff attacks on stream

2



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 3 — #3 i
i

i
i

i
i

Inverting a One-Way Function through Tradeoff

ciphers and keystream generators in Section 3. We also introduce the tradeoff
attacks on block ciphers, discuss the differences from those on stream ciphers
and state some open problems in Section 4. We assess the internal state
recovery tradeoff attacks and make an argument about the internal state sizes
of keystream generators in Section 5. Finally, we introduce our concluding
remarks in Section 6.

2. Inverting a One-Way Function through Tradeoff

Let f : GF(2)m → GF(2)n be a one-way function of m−bit input and n−bit
output. That is, it is easy to compute the output, f (x) = y, of a given input x ∈
GF(2)m; but computationally infeasible to find a preimage x ∈ f−1(y) for a given
output y ∈ GF(2)n.

The phrase ”computationally infeasible” is not a formal or a precise
statement. Indeed, we mean that the fastest algorithm of finding a preimage
x ∈ f−1(y) must be exhaustively searching for x, either online or offline.
This definition is valid for random one-way functions which are generally
not permutations. The one-way functions deduced from symmetric ciphers
are examples and we consider them only throughout the chapter. The time
complexity of recovering one preimage of a given value y ∈ GF(2)n is about
T = 2n calls of the f−function (simply 2n) for a one-way function f . There is
almost no memory or data complexity. Hence this can be considered as one of
the extreme cases where only the time complexity dominates.

The time complexity may be substituted by the memory complexity if we
compute all the (x, f (x)) values in advance during the offline phase (which
we call precomputation phase) and save them in a sorted table with respect
to the second column, f (x). Then, the time complexity of the precomputation
phase is 2n and the memory complexity is M = 2n. On the other hand, the time
complexity of finding a preimage x ∈ f−1(y) for a given y during the online
phase is relatively negligible in comparison to the memory complexity. One
needs to search for y in the second column of the table and this search takes
roughly n steps since the table is sorted. This is also one of the extreme cases
where only the memory complexity dominates.

In general, we can regard the tradeoff attacks as the attacks searching for a
preimage of a one-way function by utilizing a significant memory prepared in
the precomputation phase to reduce the time complexity from 2n. A tradeoff
curve between memory and time is introduced with possibly some restrictions.
The time complexity is decreased by increasing the memory complexity or
vice versa. But the ratio of increase/decrease depends on the tradeoff curve.
In general, the optimum point on the curve is considered as the point where
T = M if the restrictions permit to choose this point. Let us remark that the
precomputation phases of these attacks must be the whole exhaustive search to
provide significantly high success rates. But, since this offline phase is run only
once, its complexity can be ignored in some applications where one uses the
tables several times to invert enormous number of outputs. The Hellman tables
or the rainbow tables for the GSM encryption algorithm A5/1 are typical real
world applications [10, 12].

It is possible to ease the problem of inverting a one-way function f by
introducing large number of data. Then the corresponding tradeoff attacks can
be further improved by constructing better tradeoff curves with the addition of
the amount of data used.

3



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 4 — #4 i
i

i
i

i
i

Tradeoff Attacks on Symmetric Ciphers

We can define the problem of inverting one-way function with data as follows.
Let y1, . . . , yD ∈ GF(2)n be given. Then, find a preimage for one of them. That
is, find xi such that f (xi) = yi. This problem is easier than finding a preimage
of only one given element y ∈ GF(2)n. Indeed, it is possible to prepare a sorted
list of y1, . . . , yD and then search for x such that f (x) is in this sorted list. It is
clear that the time complexity of the exhaustive search is 2n/D. Hence, the time
complexity of the default attack for inverting one-way function with data is
reduced by a factor of D.

It is possible to address the problem of inverting one-way function with
data in stream ciphers and mount some tradeoff attacks for single key setting.
We introduce these attacks in Section 3. However, it is not known in the
literature yet how to associate a single key recovery attack for a block cipher
as a problem of inverting one-way function with data (see Section 4 for details
of the tradeoff attacks in the case of block ciphers).

2.1 Hellman and Rainbow Tables

One very well known way of inverting a one-way function is using Hellman
tables [27]. Initially, Hellman introduced the tables only for recovering the
DES keys in his original work in [27] but it can be used to invert any one-way
function.

Let us assume that the input and the output sizes of a one-way function,
f , are equal. That is, f : GF(2)n → GF(2)n. The general cases may easily be
deduced by the reduction or enlargement techniques as Hellman applied for
the DES encryption by reducing its block size to 56 bits. Let x ∈ GF(2)n be an
input. Then, compute f (x), f 2(x), . . . , f t(x) and save the pair, (x, f t(x)).

If a given value y ∈ GF(2)n is equal to f i(x) for some i ∈ {1, . . . , t} then we
can find a preimage for y easily: f i−1(x) will be a preimage since f (f i−1(x)) = y.
We can check if y = f i(x) for some i by checking the equality f t−i(y) = f t(x).
Indeed we have

f t−i(f i(x)) = f t(x) = f t−i(y).

Therefore, it is highly probable that y = f i(x). It may be possible that y ≠ f i(x)
even though f t−i(y) = f t(x) since f is not a permutation. This case is considered
as a false alarm. The probability of the false alarms should be taken into
account for the success rate of the attack. Gildas et al. introduce an efficient
way of ruling out the false alarms, particularly in the perfect tables [28].

Choosing m different x points and preparing a table of m pairs (x, f t(x))
sorted with respect to f t(x) (which is called a Hellman table), it is possible to
find a preimage of a given output y ∈ GF(2)n if y = f i(x) for some x in these m
pairs by calling the f function and checking if the result is among the second
(sorted) values of the pairs (x, f t(x)) at most t times. Therefore, examining if
y is in the set {f i(x)} with m · t elements, costs t calls of f and the memory
amount we need is m since we save m pairs for one table of m · t elements.
These m pairs consist of the initial and the final columns of the table.

The most significant disadvantage of Hellman tables is the high propagation
of the collisions throughout the rows. If f i(x) = f j(x′) for some 1 ≤ i, j < t
and different starting points x ≠ x′, then the collision is going to merge to the
rest of the rows as f i+k (x) = f j+k (x′) ∀k = 1, . . . ,min{t − i, t − j}. This restricts
the capacity of a Hellman table. Indeed, we should choose the number of the
rows and the columns m and t such that mt2 ≤ 2n to optimize the probability of
collisions according to the birthday paradox [27]. Therefore, we need roughly

4



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 5 — #5 i
i

i
i

i
i

Tradeoff Attacks on Stream Ciphers

t tables since one table can contain at most mt different elements and each
Hellman table must be prepared by using a different function deduced from
a slight derivation of the f -function so as to ensure the independence of the
tables.

The time complexity is T = t2 since examining through one table costs t
calls of the f -function and we have t tables. Similarly, we need M = mt memory
to save t tables. As a corollary, the tradeoff curve M2T = 22n is deduced with
mt2 = 2n. The optimum point on the curve is T = M = 22n/3. The precomputation
phase for preparing the tables is equivalent to the exhaustive search and hence
its complexity is 2n.

Oechslin introduces another kind of tables to invert one-way functions,
which he calls rainbow tables [29]. He proposes to use a different function for
the computation of each column and hence each row is constituted as

f1(x), f2(f1(x)), . . . , ft(ft−1(· · · f1(x)))

instead of f (x), f 2(x), . . . , f t(x) for a chosen starting point x where fis are
derived from f by slight modifications. Only the initial point x and its final
evaluation ft(ft−1(· · · f1 (x))) are saved as in the case of Hellman tables.

Rainbow tables have a significant advantage over Hellman tables: The
collisions in different columns do not propagate in rainbow tables. So, it is
possible to use only one rainbow table for covering majority of the space
GF(2)n. The table contains t columns and mt rows. However, tracing through
a rainbow table costs much more. For a given output y, check if it is in the last
column. If not then check ft(y) and then ft(ft−1(y)) and then, ft(ft−1ft−2(y)) and
so on are in the last column one by one.

Both the Hellman tables and the rainbow tables have the same tradeoff
curve. But, the time complexity is t(t − 1)/2 for a rainbow table which is
roughly twice less than t2. This makes rainbow tables more popular in practical
applications.

Barkan et al. compares these two methods and combine them in a general
model based on stateful random graphs [30]. They also improve the time
complexity of the rainbow tables [30]. Lu et al. use the unified rainbow tables
to break GSM A5/1 algorithm and recover an A5/1 key in 9s with a success
rate of 81% by using general purpose GPUs with 3 NVIDIA GeForce GTX690
cards [12]. There are also FPGA implementation versions of tracing through
the rainbow tables of the A5/1 states [10, 11]. The success rates of the rainbow
tables for A5/1 are improved in [12]. Rainbow tables are commonly used to
invert hash functions and crack passwords [13–17]. Even though rainbow tables
are ubiquitously used in the real world applications, Biryukov et al. show that
Hellman tables are superior to rainbow tables in multiple data scenario [31].

3. Tradeoff Attacks on Stream Ciphers

The main building blocks of (synchronous) stream ciphers are keystream
generators. The most general design principle of keystream generators make
use of a state update function 𝜙 : GF(2)s → GF(2)s and an output function
g : GF(2)s → GF(2)r producing r-bit output from each s-bit internal state.
An internal state St is updated to the next internal state St+1 via 𝜙. The initial
internal state S0 is called the seed and produced from a key K and an initial

5



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 6 — #6 i
i

i
i

i
i

Tradeoff Attacks on Symmetric Ciphers

vector IV through an initialization algorithm InAlg:

InAlg : GF(2)n × GF(2)l −→ GF(2)s

(K, IV) ↦→ S0.

The objective of the attacks on stream ciphers is twofold in general. They
aim at either recovering the key or an internal state. The same approach
is adopted for tradeoff attacks. The state recovery attacks are conventional
examples of the problem of inverting one-way function with data in a single
key attack scenario. Indeed, it is enough to recover one of the internal states
occurred during the encryption process.

Babbage [32] and Golić [33] independently introduce a natural way of
recovering one of the internal states by using data. They define a one-way
function by extending the output function which produces enough number of
output bits by calling 𝜙 and g certain number of times consecutively to identify
the input state from its keystream piece uniquely. One can compute M pairs of
the states and their outputs during the precomputation phase and save them
as sorted with respect to the outputs. Then, it is highly probable to recover one
of the states which produce D data when MD ≥ 2s during the online phase.
The optimum point on the tradeoff curve MD = 2s is M = D = 2s/2. So,
s/2 is supposed to be larger than the key length to ensure that the Babbage-
Golić attack is slower than the exhaustive search. This imposes a well known
and highly adopted security criterion on stream ciphers: The internal state size
must be at least twice as large as the key size. It was one of the main security
requirements for the stream ciphers in both the NESSIE project [34] and the
eSTREAM project [35, 36].

Another tradeoff attack on keystream generators using data is introduced by
Biryukov and Shamir [1]. They propose to use Hellman tables to recover one of
the internal states which produce D data. It is nothing but finding a preimage
for one of the data. The optimum online complexity is achieved when only one
Hellman table is constructed. So, mt2 = 2s and D = t with M = m,T = tD. Hence,
we have the tradeoff curve given as M2D2T = 22s with the restriction D ≤

√
T.

The optimum point on the curve is achieved when D2 = T = M and this gives
T = 2s/2. Again, if s ≥ 2n then the online phase of the Biryukov-Shamir attack
will be slower than the exhaustive search, confirming the security criterion that
the internal state size should be at least twice as large as the key size.

Both the Babbage-Golić attack and the Biryukov-Shamir attack aim at
recovering one of the internal states. The online phases of these attacks are
compared with the exhaustive search rather than the default tradeoff attacks.
The attacks use multiple data since the one-way function they would like to
invert has several outputs available. On the other hand, it is possible to define
the one-way function as the function taking the n-bit main key as input and
producing the keystream of n-bits for a chosen fixed IV. The internal state
size has no significance for inverting this one-way function. So, we have the
classical complexities T = M = 22n/3. However, we can not exploit the
multiple data for this function. Therefore the Babbage-Golić attack and the
Biryukov-Shamir attack are superior when the internal state size is too short.
The tradeoff attacks on the GSM encryption algorithm A5/1 with its 64 bit
internal state are mostly the applications of the Biryukov-Shamir attack [10–12].

Armknecht and Mikhalev examine the keyed update functions and show
that the keystream generators with keyed state update functions are secure
against conventional tradeoff attacks no matter how small the internal state

6



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 7 — #7 i
i

i
i

i
i

Tradeoff Attacks on Block Ciphers

sizes are [18]. They also introduce an example cipher they call Sprout [18]. A
keyed state update function takes the main key as the second parameter of the
input to produce the next internal state from the current internal state.

The cipher Sprout is analyzed intensively in a short while and some weak-
nesses are discovered [20, 22]. More interestingly, special tradeoff attacks are
mounted [21, 23]. Then, Armknecht and Mikhalev present another keystream
generator with keyed state update. They call it Plantlet [19]. This cipher also
attains significant interests of cyrptanalysts and several results are published
including correlation attacks [24–26, 37, 38], some of them are even faster than
exhaustive search [25]. It seems that it is indeed a challenging task for the
crypto community to design keystream generators of small state sizes even if
the tradeoff attacks are ignored in their security assessments.

4. Tradeoff Attacks on Block Ciphers

Let E : GF(2)n × GF(2)m → GF(2)m be a block cipher of n-bit key and m-
bit block size. E(K,P) = EK (P) and EK is a permutation for a fixed key K. We
can define a one-way function f (x) = E(x,P0) = Ex(P0) for a chosen fixed
plaintext P0. Finding a preimage for a given ciphertext is nothing but finding
a key candidate that encrypts the plaintext P0 to the given ciphertext.

It is possible to invert f (x) by using tradeoff tables. Hellman initially
mounted the tradeoff attack on the block cipher DES in his original work
[27]. The online time complexity is reduced to 22n/3. But preparing the tables
requires as many encryption calls as in the exhaustive search.

There is no known method of using multiple data to improve the tradeoff
curve M2T = 22n in the single key recovery setting for block ciphers yet.
Choosing another plaintext will result in another one-way function to convert.
So, using multiple data yields the following problem. Let f1, . . . , fD be D
independent one-way functions of n-bit inputs and n-bit outputs. We call the
problem of finding x as the problem of the mutual inverting of multiple one-way
functions where

f1(x) = y1, f2 (x) = y2, . . . , fD(x) = yD

and y1, . . . , yD are given.
Choosing D different plaintexts P1, . . . ,PD for a block cipher E is an

example of the problem of the mutual inverting of multiple one-way functions
given as: f1(x) = Ex(P1), f2(x) = Ex(P2), . . . , fD(x) = Ex(PD). Here x is the key
and we have D chosen plaintexts encrypted with x. Then, finding x becomes a
mutual inverting problem of multiple one-way functions.

The problem may further be generalized as inverting only one of the D
independent one-way functions. Let

f1(x1) = y1, f2(x2) = y2, . . . , fD(xD) = yD

be given for D independent one-way functions f1, . . . , fD. The goal is to find one
of xi for i = 1, . . . ,D.

The problem of mutual inverting multiple one-way functions can be applied
to stream ciphers also. Several one-way functions may be defined by choosing
several IVs. Each IV determines a one-way function taking the key as the input
and producing n-bit keystream. That is, each one-way function fIV : GF(2)n →

7



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 8 — #8 i
i

i
i

i
i

Tradeoff Attacks on Symmetric Ciphers

GF(2)n is defined as

fIV (K) = (z1, . . . , zn)

where K is an n-bit key and (z1, . . . , zn) is the first n-bit keystream segment
produced by the pair (K, IV). The function fIV can be inverted by the conven-
tional Hellman tables or rainbow tables. Finding preimage for one specific
fIV can be considered as the default tradeoff attack on stream ciphers and its
online complexity is given as 22n/3.

It may be still possible to use any number of IVs. For the single key attack
scenario, the keystream generator is initialized by several different IVs and the
corresponding n-bit keystream segments are produced. Then, the unknown
inputs of the one-way functions will be mutual, namely the main key.

It seems that inverting only one specific one-way function once is not easier
than the other two problems. One can use the algorithm of inverting a one-
way function to invert one of D one-way functions. So, an algorithm inverting
a one-way function can be used to solve the problem of inverting at least one
function among D one-way functions. Similarly, any algorithm inverting one
of D one-way functions can straightforwardly be used to solve the mutual
inverting problem.

It is not known yet if these three problems are of equal difficulty. It is
an open problem if the mutual inverting problem is strictly easier than the
problem of inverting one of the several one-way functions. It is also an open
problem that inverting one of the several one-way functions is strictly easier
than inverting only one one-way function. If there is an algorithm solving
problem of mutual inverting problem but not solving the problem of inverting
one-way function then the security levels and the key lengths for both block
ciphers and stream ciphers must be assessed again. Because, the algorithms
solving mutual inverting problems efficiently can be very powerful and serious
attacks on symmetric ciphers.

5. Assessment of Security Criterion on State Size

The online complexities of both the Babbage-Golić and the Biryukov-
Shamir attacks are compared to the complexity of the exhaustive search and
the security criterion on the state size of a stream cipher is imposed thereof.
However, there is still a faster tradeoff attack even though the internal state
size is larger than twice of the key size. It is possible to define a one-way
function from a main key to its keystream piece of a stream cipher by choosing
and fixing an IV. Then, one of the preimages of the keystream segment will be
the main key. The attack complexity is derived from the key size rather than
the internal state size. At the optimum point of the tradeoff curve, the online
complexity is 22n/3 where n is the key length. This is the default Hellman
or Oechslin tradeoff attacks and valid for block ciphers also. Note that the
complexity is much smaller than 2n, the complexity of the exhaustive search.

Any tradeoff attack on symmetric ciphers should be compared with the
default tradeoff attack with its complexity 22n/3, instead of the exhaustive
search. In this case, the strict criterion on the internal state size can be light-
ened, enabling to design ultra-lightweight stream ciphers. Indeed, a stream
cipher of 128 bit key is required at least 256 bit internal state according to the
conventional security criterion. If we assume one bit register is implemented
by a flip flop of 6 GE (Gate Equivalent) area, we must allocate roughly 1.5K

8



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 9 — #9 i
i

i
i

i
i

Conclusions

GE only for the registers. This is why there is almost no stream cipher in the
literature having a hardware implementation less than 1K GE. However, there
are several block cipher designs with hardware implementations less than 1K
GE such as Ktantan [9], PRINTCipher [39], SLIM [2] and LBlock [7].

Recall that we have the tradeoff curve MD = 2s for the Babbage-Golić
attack with the optimum point M = N = 2s/2 where s is the internal state
size of a given stream cipher. The online time complexity is also equal to the
data complexity. Then, we simply should consider the attack to be successful
if 2s/2 < 22n/3. Therefore, the internal state size must be at least 4n/3. An
attacker may prefer to choose much larger M on the curve MD = 2s. For
example, preparing a memory of M = 2n, we have D = 2n/3 for the case s =

4n/3. However, it is possible to restrict the total number of the keystream bits
produced per one key and force the users to change the key before completing
encrypting the amount of 2n/3 data.

Similarly, the optimum point of the tradeoff curve for the Biryukov-Shamir
attack is D2 = M = T = 2s/2 where M2D2T = 22s. Then, the attack will be slower
than the default key recovery tradeoff attack if again 2s/2 ≥ 22n/3. Once more,
we achieve the same security bound that the minimum size for the internal
state must be 4n/3. If the precomputation phase is required to be not faster
than the exhaustive search, then the amount of data encrypted per one key can
be bounded above by 2n/3.

As a result, the tradeoff attacks aiming at the internal state recovery should
be compared to the default tradeoff key recovery attack. Then, it is possible to
loosen the the restriction on the state size from 2n to 4n/3. This new criterion
can enable novel designs of ultra-lightweight stream ciphers. However, stream
ciphers with short internal states may prone to several other attacks. The
attacks on Plantlet and Sprout are the examples [20–26, 37, 38]. Therefore, it
seems to be a fruitful challenge for the cryptography community to design
secure stream ciphers having quite short internal states. On the other hand,
the real world applications such as IoT devices, RFID tags or wireless sensors
require ultra-lightweight stream ciphers for confidentially.

6. Conclusions

We briefly introduce the tradeoff attacks on symmetric ciphers and initiate
hopefully a fruitful discussion about how to assess the degree of precautions or
countermeasure to be taken against these attacks.

The tradeoff attacks targeting at recovering one of the internal states
producing a given keystream sequence are compared to the exhaustive search
attack on the corresponding key used. However, a stream cipher key can be
recovered much faster thorough the default tradeoff attack. Therefore, the
internal state recovery tradeoff attacks should be compared to the default key
recovery tradeoff attack. In this case, it is possible to loosen the bound for the
countermeasure taken against state recovery tradeoff attacks.

The internal state size is supposed to be at least twice as large as the key
size if the security threshold for tradeoff attacks is taken as the complexity of
the exhaustive search. This is indeed a well known and worldwide adopted
security criterion. We argue that it is indeed not necessary to allocate such
large internal state just for the resistance against tradeoff attacks. The internal
state size is enough to be at least 4n/3-bits particularly for the lightweight
applications where n is the key length. Besides, there are several other
cyrptanalytic techniques for internal state recovery that must be taken into

9



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 10 — #10 i
i

i
i

i
i

Tradeoff Attacks on Symmetric Ciphers

account. It is an open problem how to design secure stream ciphers with short
internal states. Such ciphers must be secure against other types of attacks such
as divide-and-conquer attacks, guess and determine attacks or correlation
attacks. It is interesting to study this generic problem.

We believe that it is a challenging task to design small stream ciphers and
the industry requires such ciphers to use in lightweight applications such as
IoT devices, wireless sensors or RFID tags.

Acknowledgments

We would like to thank Mehmet Sabır Kiraz, Ali Aydın Selçuk and Sırrı
Erdem Ulusoy for their helpful comments. We also would like to thank
IntechOpen LIMITED for the grant.

Conflict of interest

The authors declare no conflict of interest.

10



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 11 — #11 i
i

i
i

i
i

Conclusions

Author details

Orhun Kara ∗

IZTECH Izmir Institute of Technology, Faculty of Science, Department of
Mathematics, 35430, Urla, Izmir Turkey

*Address all correspondence to: orhunkara@iyte.edu.tr

IntechOpen

© 2021 The Author(s). License IntechOpen. This chapter is distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly
cited.

11



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 12 — #12 i
i

i
i

i
i

Tradeoff Attacks on Symmetric Ciphers

References

[1] A. Biryukov and A. Shamir,
“Cryptanalytic time/memory/data
tradeoffs for stream ciphers,” in
Advances in Cryptology - ASIACRYPT
2000, vol. 1976 of LNCS, pp. 1–13,
Springer, 2000.

[2] B. Aboushosha, R. A. Ramadan,
A. D. Dwivedi, A. El-Sayed, and M. M.
Dessouky, “SLIM: A lightweight block
cipher for internet of health things,”
IEEE Access, vol. 8, pp. 203747–203757,
2020.

[3] K. Shibutani, T. Isobe, H. Hiwatari,
A. Mitsuda, T. Akishita, and T. Shirai,
“Piccolo: An ultra-lightweight
blockcipher,” in Cryptographic Hardware
and Embedded Systems - CHES 2011 -
13th International Workshop, Nara, Japan,
September 28 - October 1, 2011.
Proceedings (B. Preneel and T. Takagi,
eds.), vol. 6917 of Lecture Notes in
Computer Science, pp. 342–357, Springer,
2011.

[4] L. Li, B. Liu, and H. Wang, “QTL: A
new ultra-lightweight block cipher,”
Microprocess. Microsystems, vol. 45,
pp. 45–55, 2016.

[5] Z. Gong, S. Nikova, and Y. W. Law,
“KLEIN: A new family of lightweight
block ciphers,” in RFID. Security and
Privacy - 7th International Workshop,
RFIDSec 2011, Amherst, USA, June
26-28, 2011, Revised Selected Papers
(A. Juels and C. Paar, eds.), vol. 7055 of
Lecture Notes in Computer Science,
pp. 1–18, Springer, 2011.

[6] H. AlKhzaimi and M. M. Lauridsen,
“Cryptanalysis of the SIMON family of
block ciphers,” IACR Cryptol. ePrint
Arch., vol. 2013, p. 543, 2013.

[7] W. Wu and L. Zhang, “Lblock: A
lightweight block cipher,” in Applied
Cryptography and Network Security - 9th
International Conference, ACNS 2011,
Nerja, Spain, June 7-10, 2011. Proceedings

(J. López and G. Tsudik, eds.), vol. 6715
of Lecture Notes in Computer Science,
pp. 327–344, 2011.

[8] J. Guo, T. Peyrin, A. Poschmann,
and M. J. B. Robshaw, “The LED block
cipher,” in Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan,
September 28 - October 1, 2011.
Proceedings (B. Preneel and T. Takagi,
eds.), vol. 6917 of Lecture Notes in
Computer Science, pp. 326–341, Springer,
2011.

[9] C. D. Cannière, O. Dunkelman, and
M. Knezevic, “KATAN and KTANTAN
- A family of small and efficient
hardware-oriented block ciphers,” in
Cryptographic Hardware and Embedded
Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings
(C. Clavier and K. Gaj, eds.), vol. 5747
of Lecture Notes in Computer Science,
pp. 272–288, Springer, 2009.

[10] M. Kalenderi, D. N. Pnevmatikatos,
I. Papaefstathiou, and C. Manifavas,
“Breaking the GSM A5/1
cryptography algorithm with rainbow
tables and high-end FPGAS,” in 22nd
International Conference on Field
Programmable Logic and Applications
(FPL), Oslo, Norway, August 29-31, 2012
(D. Koch, S. Singh, and J. Tørresen,
eds.), pp. 747–753, IEEE, 2012.

[11] P. Papantonakis, D. N.
Pnevmatikatos, I. Papaefstathiou, and
C. Manifavas, “Fast, fpga-based
rainbow table creation for attacking
encrypted mobile communications,” in
23rd International Conference on Field
programmable Logic and Applications,
FPL 2013, Porto, Portugal, September 2-4,
2013, pp. 1–6, IEEE, 2013.

[12] Z. Li, “Optimization of rainbow
tables for practically cracking GSM
A5/1 based on validated success rate

12



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 13 — #13 i
i

i
i

i
i

Conclusions

modeling,” in Topics in Cryptology -
CT-RSA 2016 - The Cryptographers’ Track
at the RSA Conference 2016, San
Francisco, CA, USA, February 29 - March
4, 2016, Proceedings (K. Sako, ed.),
vol. 9610 of Lecture Notes in Computer
Science, pp. 359–377, Springer, 2016.

[13] J. Bieniasz, K. Skowron,
M. Trzepinski, M. Rawski, P. Sapiecha,
and P. Tomaszewicz, “Hardware
implementation of rainbow tables
generation for hash function
cryptanalysis,” in Information Systems
Architecture and Technology: Proceedings
of 36th International Conference on
Information Systems Architecture and
Technology - ISAT 2015 - Part II, Karpacz,
Poland, September 20-22, 2015
(A. Grzech, L. Borzemski, J. Swiatek,
and Z. Wilimowska, eds.), vol. 430 of
Advances in Intelligent Systems and
Computing, pp. 189–200, Springer, 2015.

[14] G. Avoine, A. Bourgeois, and
X. Carpent, “Analysis of rainbow tables
with fingerprints,” in Information
Security and Privacy - 20th Australasian
Conference, ACISP 2015, Brisbane, QLD,
Australia, June 29 - July 1, 2015,
Proceedings (E. Foo and D. Stebila, eds.),
vol. 9144 of Lecture Notes in Computer
Science, pp. 356–374, Springer, 2015.

[15] J. Horalek, F. Holı́k, O. Horák,
L. Petr, and V. Sobeslav, “Analysis of
the use of rainbow tables to break
hash,” J. Intell. Fuzzy Syst., vol. 32,
no. 2, pp. 1523–1534, 2017.

[16] H. Ying and N. Kunihiro,
“Decryption of frequent password
hashes in rainbow tables,” in Fourth
International Symposium on Computing
and Networking, CANDAR 2016,
Hiroshima, Japan, November 22-25, 2016,
pp. 655–661, IEEE Computer Society,
2016.

[17] G. Avoine, X. Carpent, and
C. Lauradoux, “Interleaving
cryptanalytic time-memory trade-offs
on non-uniform distributions,” in

Computer Security - ESORICS 2015 -
20th European Symposium on Research in
Computer Security, Vienna, Austria,
September 21-25, 2015, Proceedings, Part I
(G. Pernul, P. Y. A. Ryan, and E. R.
Weippl, eds.), vol. 9326 of Lecture Notes
in Computer Science, pp. 165–184,
Springer, 2015.

[18] F. Armknecht and V. Mikhalev,
“On lightweight stream ciphers with
shorter internal states,” in Fast Software
Encryption - 22nd International
Workshop, FSE 2015, Istanbul, Turkey,
March 8-11, 2015, Revised Selected Papers
(G. Leander, ed.), vol. 9054 of Lecture
Notes in Computer Science, pp. 451–470,
Springer, 2015.

[19] V. Mikhalev, F. Armknecht, and
C. Müller, “On ciphers that
continuously access the non-volatile
key,” IACR Trans. Symmetric Cryptol.,
vol. 2016, no. 2, pp. 52–79, 2016.

[20] V. Lallemand and
M. Naya-Plasencia, “Cryptanalysis of
full sprout,” in Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I
(R. Gennaro and M. Robshaw, eds.),
vol. 9215 of Lecture Notes in Computer
Science, pp. 663–682, Springer, 2015.

[21] B. Zhang and X. Gong, “Another
tradeoff attack on sprout-like stream
ciphers,” in Advances in Cryptology -
ASIACRYPT 2015 - 21st International
Conference on the Theory and Application
of Cryptology and Information Security,
Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II
(T. Iwata and J. H. Cheon, eds.),
vol. 9453 of Lecture Notes in Computer
Science, pp. 561–585, Springer, 2015.

[22] S. Maitra, S. Sarkar, A. Baksi, and
P. Dey, “Key recovery from state
information of sprout: Application to
cryptanalysis and fault attack,” IACR
Cryptol. ePrint Arch., vol. 2015, p. 236,
2015.

13



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 14 — #14 i
i

i
i

i
i

Tradeoff Attacks on Symmetric Ciphers

[23] M. F. Esgin and O. Kara, “Practical
cryptanalysis of full sprout with TMD
tradeoff attacks,” in Selected Areas in
Cryptography - SAC 2015 - 22nd
International Conference, Sackville, NB,
Canada, August 12-14, 2015, Revised
Selected Papers (O. Dunkelman and
L. Keliher, eds.), vol. 9566 of Lecture
Notes in Computer Science, pp. 67–85,
Springer, 2015.

[24] O. Kara and M. F. Esgin, “On
analysis of lightweight stream ciphers
with keyed update,” IEEE Trans.
Computers, vol. 68, no. 1, pp. 99–110,
2019.

[25] S. Banik, K. Barooti, and T. Isobe,
“Cryptanalysis of plantlet,” IACR
Trans. Symmetric Cryptol., vol. 2019,
no. 3, pp. 103–120, 2019.

[26] Y. Todo, W. Meier, and K. Aoki,
“On the data limitation of small-state
stream ciphers: Correlation attacks on
fruit-80 and plantlet,” in Selected Areas
in Cryptography - SAC 2019 - 26th
International Conference, Waterloo, ON,
Canada, August 12-16, 2019, Revised
Selected Papers (K. G. Paterson and
D. Stebila, eds.), vol. 11959 of Lecture
Notes in Computer Science, pp. 365–392,
Springer, 2019.

[27] M. E. Hellman, “A cryptanalytic
time-memory trade-off,” IEEE
Transactions on Information Theory,
vol. 26, no. 4, pp. 401–406, 1980.

[28] G. Avoine, P. Junod, and
P. Oechslin, “Characterization and
improvement of time-memory
trade-off based on perfect tables,”
ACM Trans. Inf. Syst. Secur., vol. 11,
no. 4, pp. 17:1–17:22, 2008.

[29] P. Oechslin, “Making a faster
cryptanalytic time-memory trade-off,”
in Advances in Cryptology - CRYPTO
2003, 23rd Annual International
Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003,
Proceedings (D. Boneh, ed.), vol. 2729 of

Lecture Notes in Computer Science,
pp. 617–630, Springer, 2003.

[30] E. Barkan, E. Biham, and
A. Shamir, “Rigorous bounds on
cryptanalytic time/memory tradeoffs,”
in Advances in Cryptology - CRYPTO
2006, 26th Annual International
Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2006,
Proceedings (C. Dwork, ed.), vol. 4117 of
Lecture Notes in Computer Science,
pp. 1–21, Springer, 2006.

[31] A. Biryukov, S. Mukhopadhyay,
and P. Sarkar, “Improved time-memory
trade-offs with multiple data,” in
Selected Areas in Cryptography, 12th
International Workshop, SAC 2005,
Kingston, ON, Canada, August 11-12,
2005, Revised Selected Papers (B. Preneel
and S. E. Tavares, eds.), vol. 3897 of
Lecture Notes in Computer Science,
pp. 110–127, Springer, 2005.

[32] S. Babbage, “Improved exhaustive
search attacks on stream ciphers.”
Security and Detection 1995, European
Convention IET, 1995.

[33] J. D. Golić, “Cryptanalysis of
alleged A5 stream cipher,” in
EUROCRYPT ’97, vol. 1233 of LNCS,
pp. 239–255, Springer, 1997.

[34] B. Preneel, NESSIE Project,
pp. 408–413. Boston, MA: Springer US,
2005.

[35] M. Robshaw, “The estream
project,” in New Stream Cipher Designs -
The eSTREAM Finalists (M. J. B.
Robshaw and O. Billet, eds.), vol. 4986
of Lecture Notes in Computer Science,
pp. 1–6, Springer, 2008.

[36] V. Rijmen, “Stream ciphers and the
estream project,” ISC Int. J. Inf. Secur.,
vol. 2, no. 1, pp. 3–11, 2010.

[37] J. Copeland and L. Simpson,
“Finding slid pairs for the plantlet
stream cipher,” in Proceedings of the

14



i
i

“tradeoff” — 2021/1/23 — 4:49 — page 15 — #15 i
i

i
i

i
i

Conclusions

Australasian Computer Science Week,
ACSW 2020, Melbourne, VIC, Australia,
February 3-7, 2020 (P. P. Jayaraman,
D. Georgakopoulos, T. K. Sellis, and
A. Forkan, eds.), pp. 7:1–7:7, ACM,
2020.

[38] S. Wang, M. Liu, D. Lin, and L. Ma,
“Fast correlation attacks on grain-like
small state stream ciphers and
cryptanalysis of plantlet, fruit-v2 and

fruit-80,” IACR Cryptol. ePrint Arch.,
vol. 2019, p. 763, 2019.

[39] M. J. Mihaljević, S. Gangopadhyay,
G. Paul, and H. Imai, “Generic
cryptographic weakness of k-normal
boolean functions in certain stream
ciphers and cryptanalysis of
Grain-128,” Periodica Mathematica
Hungarica, vol. 65, no. 2, pp. 205–227,
2012.

15


