
Oblivious TLS via Multi-Party Computation
Full Version

Damiano Abram1, Ivan Damg̊ard1, Peter Scholl1, and Sven Trieflinger2

1 Aarhus University
2 Robert Bosch GmbH

Abstract. In this paper, we describe Oblivious TLS: an MPC protocol
that we prove UC secure against a majority of actively corrupted parties.
The protocol securely implements TLS 1.3. Thus, any party P who runs
TLS can communicate securely with a set of servers running Oblivious
TLS; P does not need to modify anything, or even be aware that MPC
is used.
Applications of this include communication between servers who offer
MPC services and clients, to allow the clients to easily and securely pro-
vide inputs or receive outputs. Also, an organization could use Oblivious
TLS to improve in-house security while seamlessly connecting to external
parties.
Our protocol runs in the preprocessing model, and we did a preliminary
non-optimized implementation of the on-line phase. In this version, the
hand-shake completes in about 1 second. Performance of the record pro-
tocol depends, of course, on the encryption scheme used. We designed an
MPC friendly scheme which achieved a throughput of about 300 KB/sec.
Based on implementation results from other work, the standard AES-
GCM can be expected to be as fast, although our implementation did
not do as well.

1 Introduction

Secure multi-party computation (MPC) allows a group of parties to jointly eval-
uate a function on private inputs, ensuring that no party learns anything more
than what can be deduced from the output of the function. Developments in
recent years have shown that MPC can be practical for a range of use-cases, and
is starting to see real-world deployments. While the classic scenario for MPC
involves a set of parties who each have a private input, more recent applications
also focus on the setting where a set of MPC servers, called an MPC engine,
are distributively performing a computation on inputs uploaded by clients and
known to none of the servers. In this client-server setting, the computation may
be outsourced by external parties who initially provided the inputs, or the servers
may be part of a larger system which delegated a private computation to them.
As in the regular MPC setting, there must be some intrinsic motivation or incen-
tive for the parties operating the MPC servers not to collude. For instance, the
servers can be hosted by independent organisations which have interest in pro-
tecting the confidentiality of the clients’ data against the other parties, perhaps
because some form of representation is implemented.

The set of clients can be dynamic in such systems and clients should not need
to participate in the actual MPC protocol, instead they should be able to send
private input to the protocol using standardized algorithms, which is exactly the
issue we address. This creates a more flexible overall system that more closely
resembles the cloud-based IT system deployments that are common today. For
instance, in [9], Damg̊ard et al. describe a concrete instantiation of such a system.
They propose a credit rating system that enables banks to benchmark their
customers’ confidential performance data against a large representative set of
confidential performance data from a consultancy house. The authors anticipate
that the MPC servers would be run by the consultancy house and the Danish
Bankers Association in a commercial setting. Individual banks as clients learn
nothing but the computed benchmarking score.

Security is typically maintained as long as not too many of the servers are
corrupted; for instance, in the dishonest majority setting it is common to allow
up to n − 1 out of n servers to be corrupted, while the honest majority setting
relaxes this by assuming that more than half of the servers are honest.

The Transport Layer Security protocol (TLS) is the leading standard for
secure communication over the Internet. TLS allows two parties, or endpoints,
to first run a handshake protocol to establish a common key, and secondly, in the
record layer protocol, to securely and authentically transmit information using
the key. The latest version of the protocol is TLS 1.3, which has seen major
design changes to address vulnerabilities in previous versions.

Contributions. In this work, based on a master’s thesis [2], we study the
problem of obliviously running one or more endpoints of the TLS 1.3 protocol,
inside an MPC engine. We refer to this scheme as Oblivious TLS. The protocol
allows the engine to securely communicate with any endpoint of the Internet
that runs TLS, in a completely oblivious manner: the other endpoint does not
need to be modified, nor even be aware of the fact that it is interacting with
a multi-party computation (and likewise, the second endpoint may also be an
Oblivious TLS instance, unbeknownst to the first).

The possibilities created by Oblivious TLS are manifold and potentially
groundbreaking: Oblivious TLS facilitates the integration of MPC-based com-
ponents into today’s complex IT systems. For example, distributed key man-
agement systems based on MPC can be interfaced without time-consuming and
sometimes infeasible client-side modifications. Workloads that, despite the im-
pressive performance gains seen in recent years, are still outside the realm of
the possible using MPC today, could be securely outsourced to external ser-
vices protected by comparatively low overhead Trusted Execution Environments
by seamlessly integrating with TLS-based remote attestation mechanisms. An-
other fascinating possibility is the use of Oblivious TLS in conjunction with
Distributed Autonomous Organizations (DAO) that ensure the confidentiality of
data through the use of MPC. In the future, Oblivious TLS may enable DAOs
to obliviously use external services to, for example, autonomously manage cloud
resources required to conduct their business.

2

The MPC engine itself can be instantiated with a large class of standard,
modern MPC protocols based on secret-sharing with arithmetic operations.
We focus on instantiating this with actively secure MPC protocols based on
information-theoretic MACs with security against a dishonest majority, such
as SPDZ [11, 10] and related protocols [23], however, our techniques are also
applicable to other settings and honest majority protocols.

TLS 1.3 is notoriously complex, and running this inside MPC presents several
technical challenges. We first give an overview of some of these challenges below,
and then describe some further motivation for the problem of running TLS in
MPC.

Multi-Party Diffie-Hellman. For the handshake protocol, we chose to run
elliptic-curve Diffie-Hellman, currently the most popular key exchange method.
Doing this inside MPC requires an exponentiation between a known public key
and a secret exponent, where the output must remain secret. Moreover, the
shared key (an elliptic curve point) must be represented in a suitable manner
in the MPC engine to allow for further private computations. We present a new
method for doing this based on doubly-authenticated points, namely, a way of
reliably generating random elliptic curve points that are secret-shared both in
a standard finite field MPC representation, and simultaneously in a specialized
shared elliptic curve representation. This allows for efficient conversions between
the two representations, and may be of independent interest.

We also present a more efficient variant, which avoids the use of doubly-
authenticated points. This comes with the slight downside that we do not manage
to securely realise the same key exchange functionality, since a corrupted MPC
server in the oblivious endpoint can force the derived key to be shifted by an
arbitrary amount. In practice, however, we argue that this weaker version of
the functionality suffices to run TLS, since the shift to the key is completely
harmless, unless the adversary already happened to know the private key of the
other endpoint.

Threshold Signing. To authenticate the endpoints, we additionally need to
run a threshold signing protocol. Here, the message to be signed (based on the
TLS transcript) is public, so the only information secret-shared in the MPC
engine is the signing key and signature randomness. For this, we use EdDSA
Schnorr-based signatures, which allow a simple threshold protocol without any
expensive MPC operations.

Record Layer Protocol. For the record layer, we need to run authenticated
encryption inside MPC. For this, we present an approach based on the standard
AES-GCM construction, and a more specialized approach based on a custom
MPC-friendly AEAD scheme. AES-GCM is quite well-suited to MPC, because
of the linear structure of its Galois field MACs. The second approach is much
more efficient, however, since it avoids doing any AES operations inside MPC.

3

This comes at the cost of a small modification to the TLS specification, which
also requires the endpoint to know the number of MPC servers involved in the
computation.

Motivation and Related Work. As MPC becomes more widespread, it is
natural to think not only about designing new and improved MPC protocols, but
also about how these can be integrated into existing infrastructure. In particular,
an MPC engine will typically not be a standalone piece, but rather a secure
component of a larger system.

Whenever some private data passes in or out of the MPC component, this has
to be done in a secure manner. With typical MPC protocols based on some form
of secret sharing, the natural solution is to simply have the external process
secret-share inputs to the MPC servers, and receive shares of outputs to be
reconstructed. When active security is required, this is less straightforward since
shares can be tampered with, although there are known methods and protocols
that allow receiving inputs from, or sending outputs to, an external client in an
authentic manner [9].

A drawback of these solutions is that they tend to be tailored to specific MPC
protocols, meaning that all the clients and components of the system must be
aware of the fact that MPC is taking place. This firstly has the potential security
concern that it reveals that an MPC protocol is being carried out in the first
place, and secondly, requires highly specialized software to implement.

In [16], this motivated the study of symmetric primitives such as PRFs, which
are MPC-friendly (either by design, or by chance), meaning that they can be
evaluated inside an MPC engine relatively cheaply. This was later extended to
build MPC-friendly modes of operation for block ciphers [25].

While these works address the problem of encrypting data inside an MPC
engine, they do not immediately lead to solutions for securely communicating
with an external party, without either resorting to protocol-specific methods or
other assumptions like pre-shared keys. DISE [3] also studied distributed forms
of symmetric encryption including authenticated encryption. However, in their
setting the message is always known to one party, which is not the case for us.

Finally, the recent and independent work DECO [27] presents a protocol
that allows a TLS client to prove provenance of TLS data to a third party. Their
solution is essentially based on a 2-party execution of a TLS client, with a very
similar approach to the one described in this paper. Oblivious TLS is however
applicable to both client and server sides of the connection and generalises to the
multiparty case. Moreover, the multiparty Diffie-Hellman procedure presented
in this paper is completely actively secure, whereas the solution proposed in [27]
allows for influence of the adversary that may cause a Handshake failure.

Roadmap. We begin with some preliminaries in Section 2, where we explain
notation, give an overview of TLS 1.3, and the MPC building blocks we use. In
Section 3, we outline our solution, describing the general idea and presenting
the main steps of the protocol. Section 4 covers the handshake layer of Oblivious

4

TLS, where we focus on the method for generating doubly-authenticated points,
the elliptic-curve Diffie-Hellman protocol and the signature generation. In Sec-
tion 5, we describe the record layer. Then, in Section 6, we discuss security and
performance of Oblivious TLS.

2 Notation and Preliminaries

We denote the finite field with p elements by Fp, where p is a prime or prime
power. Its multiplicative group is F×p . Sometimes, when the cardinality is not
important for the discussion, we simply write F. When dealing with groups, we
represent the cyclic subgroup generated by an element g with 〈g〉.

For any string a, len(a) denotes the length of a, whereas Trunc(a, c) denotes
the substring of the first c elements of a.

When dealing with bit sequences, we identify the sets {0, 1}k, Fk2 and F2k

as different representations of the finite field with 2k elements. For this reason,
when multiplying two elements a, b ∈ {0, 1}k, we mean multiplication in F2k .
The set {0, 1}∗ instead represents

⋃∞
i=0{0, 1}i.

The symbol [m] indicates the set {1, 2, . . . ,m}. Whenever we write a← b to

assign the value of b to a, and similarly, write a
$← S, where S is a set, to mean

that a is randomly sampled from S. Finally, λ denotes the security parameter
and P represents a probability measure.

2.1 An Overview of TLS 1.3

TLS 1.3 [24] is the latest version of TLS, one of the most common protocols
for secure communications over the Internet. The procedure is composed of two
subprotocols: the Handshake and the Record layer. The goal of the first one is
to negotiate secure symmetric keys between the two endpoints. The second one
instead uses the bargained keys to protect the communications.

The Record Layer. Security is enforced by an AEAD (authenticated encryp-
tion with additional data), an encryption algorithm that guarantees privacy and
integrity of the plaintext as well as the integrity of the header of the Record
layer fragments. In order to encrypt and decrypt, an AEAD needs a different
nonce for every fragment. These are deterministically derived from an initial
vector (IV) and do not need to be kept secret. Indeed, security is guaranteed as
long as the key remains private. The Record layer of TLS 1.3 provides for three
types of fragments: Handshake messages, alerts and application data. The first
type consists of all the information concerning the standard management of the
TLS connection. Alerts are used to notify unexpected and potentially malicious
events, whereas application data refers to the actual communication between the
two endpoints (i.e. all the information for which they decided to use TLS 1.3).

5

The Handshake. We use the term “client” to denote the endpoint that initi-
ates the connection, whereas the term “server” indicates the other endpoint.
Furthermore, we define the transcript as the concatenation of all the messages
exchanged on the connection until the analysed moment. The Handshake can
be split into two phases: the key exchange phase, whose goal is to establish the
keys and negotiate the cryptographic algorithms used in the connection, and the
authentication phase, which has the objective of authenticating the endpoints
and provide key confirmation.

The key exchange phase. The protocol is started by the client sending a Client-
Hello to the server. This is a message containing a 32-byte nonce (protection
against replay attacks), information concerning the cryptographic algorithms
supported by the client (signatures, AEADs, Diffie-Hellman groups) and at least
one Diffie-Hellman public key. The server replies with a ServerHello, which con-
tains another 32-byte nonce, the cryptographic algorithms selected among those
offered by the client and one Diffie-Hellman public key. When the initial ex-
change is concluded, the two endpoints perform a Diffie-Hellman key exchange
using the keys specified in the Hello messages. A key derivation function is then
applied on the result. The operation takes as input also the transcript. At the
end, the parties obtain two AEAD keys (handshake keys), as well as the re-
lated IVs. From that moment, the Record layer protects the client-to-server flow
(resp. the serve-to-client flow) using the first key (resp. using the second key).
The endpoints obtain also two MAC keys. After that, the server could provide
further information concerning the management of the connection through the
EncryptedExtensions message.

The authentication phase. Starting from the server, the endpoints exchange their
certificates (ServerCertificate and ClientCertificate) and a signature on the tran-
script using the key specified on them (ServerCertificateVerify and ClientCer-
tificateVerify). Finally, they send an HMAC on the transcript using the MAC
keys obtained from the key derivation (ServerFinished and ClientFinished). In
particular, the client uses the first key, the server uses the second one. In general,
only the server is required to authenticate itself, the client is only required to
send the ClientFinished. Anyway, the server may impose the authentication of
the client through a CertificateRequest message. Clearly, the endpoints verify all
the signatures and the MAC supplied by the other endpoint. If any check fails,
the connection is closed.

Derivation of the keys. At the end of the Handshake, the endpoints feed the
new messages of the transcript into the key derivation function.3 At the end,
the parties obtain two new AEAD keys (application keys), as well as the related
new IVs. From that moment, the Record layer protects the client-to-server flow
(resp. the serve-to-client flow) with the first new key (resp. with the second new
key). The old keys are never used again.

3 The key derivation function maintains an internal state, therefore all its outputs
depend on the Diffie-Hellman secret and the Hello messages.

6

As it was proven in [12], all the values output by the Handshake are com-
putationally independent. Furthermore, slight modifications in the transcripts
input in the key derivation function would lead to completely different and un-
predictable outputs.

Additional features. Clearly, what we presented in this section is not an ex-
haustive description of TLS 1.3. The protocol features many procedures that we
did not mention, for instance, the key update mechanism, the use of pre-shared
keys, 0-RTT, post-Handshake authentication, Hello-Retry-Requests, new session
tickets and exporters. For further information on these topics, we refer to [24].

2.2 Multiparty Computation Protocols

Multiparty computation (MPC) deals with techniques that allow a set of parties
(sometimes called an MPC engine) to jointly perform computations with security
guarantees against external attackers as well as against dishonest parties.

Throughout the work we assume there is a fixed set of n parties, denoted
P1, . . . , Pn. We want to prove security against an active adversary that can cor-
rupt up to n−1 parties, in the static corruption model, so that the set of (indices
of) honest parties H := {i ∈ [n] | Pi is honest} is fixed and non-empty. We de-
note the set of corrupted parties [n]\H with C. Our security proofs are expressed
in the universal composability (UC) framework [7].

Authenticated secret sharing. We use protocols based on additive secret-sharing
schemes over finite fields, specifically, large prime fields, large binary fields and
F2. We say that x ∈ F is secret-shared if every party Pi holds a random share
xi ∈ F such that

∑
i∈[n] xi = x. As long as at least one party keeps its share

secret, nobody learns anything about the value of x. If all parties collaborate, x
can be reconstructed by revealing all the shares. This operation is called opening.
To prevent corrupted parties from opening incorrect values, protocols typically
augment the shares with information-theoretic MACs as in the SPDZ protocol [4,
11]. Then, whenever secret-shared values are opened, the MACs can be checked
and any tampering is detected with overwhelming probability.

Secret sharing over elliptic curve groups. Additive secret sharing, as presented
above, can be performed over any finite group. Suppose now that E is an el-
liptic curve. Let G be one of its points with prime order q. In [8], the authors
showed that the authenticated secret-sharing scheme of SPDZ over Fq induces
an authenticated secret-sharing scheme over 〈G〉 which uses the same MAC key.
Given a public value a ∈ Fq and a secret-shared point [[Q]] ∈ 〈G〉, this allows the
parties to obtain shares [[aQ]] (over E) without any communication between the
parties. Moreover, given a secret-shared [[a′]] ∈ Fq and a public point Q′ ∈ 〈G〉,
it is possible to non-interactively obtain [[a′Q′]] over E.

7

Arithmetic black box functionality. We work in the arithmetic black box model,
which abstracts away the underlying details of secret-sharing by an ideal func-
tionality. The functionality has separate commands for receiving inputs from
the parties, performing certain arithmetic operations, and delivering outputs.
We write [[x]] to denote that a value x ∈ F is stored by the functionality under
some public identifier known to all parties.

The specific functionality we use is FMPC, given in Fig. 16 in Appendix A.
It supports computations on different fields, as well as over an elliptic curve as
described above. It can also handle conversions between values stored in F2 and
Fp. These operations can be instantiated using protocols such as SPDZ [11] (for
computations over large fields), TinyOT [23] or multi-party garbled circuits [17]
(for computations over F2). Conversions between Fp and F2 can be done using so-
called preprocessed doubly-authenticated bits [26]. For complete details on how
the FMPC functionality can be instantiated, we refer the reader to Section 4.3.

3 Overview of the Solution

Oblivious TLS is a protocol that allows an n-party MPC engine to communicate
with a TLS 1.3 endpoint, preserving privacy and correctness of the transmissions
against up to n− 1 corrupted parties. Effectiveness and security are guaranteed
when either one or both TLS endpoints are replaced by such an MPC engine.
For concreteness, however, in this paper we assume Oblivious TLS is adopted at
the server side, which we expect to be the most common scenario.

The communicating party. We assume that only one of the parties manages the
communication with the client. Supposing this is party P1, then whenever the
MPC engine has to send a message, P1 is the entity that physically performs the
operation. Moreover, when the client sends a message to the engine, P1 receives
it and shares it with the other parties. Clearly, P1 can always perform a Denial-
of-Service attack, by simply dropping the incoming or outgoing communications.

Handshake modes. The goal of our work was to design the simplest protocol
that allowed a set of parties to communicate with a TLS 1.3 endpoint. For this
reason, we focused our attention on Diffie-Hellman-based Handshakes without
the use of pre-shared keys (see [24, Section 2]). We believe that Oblivious TLS
can be extended to other Handshake modes. However, it might be the case that
the use of pre-shared keys decreases the efficiency of the whole protocol as the
key derivation would become more complicated. Since this is an expensive part
of Oblivious TLS, opening a new connection might be preferable to resuming an
older session.

Privacy of metadata. Oblivious TLS does not preserve privacy of Handshake
messages and alerts against the corrupted parties of the MPC engine, but only
against external attackers. This is because the derived handshake keys are re-
vealed to the MPC engine, and the alerts are immediately opened upon receipt.

8

This choice allows a more efficient management of alerts and handshake mes-
sages, including verification of signatures and computation of transcripts. On
the other hand, if an attacker corrupts any party of the engine, it gains access
to the metadata of the connection. We do not believe this to be a huge concern,
however, since this type of targeted attack is not typically feasible for, say, a
mass surveillance adversary who aims to harvest metadata.

Handshake

The Handshake of Oblivious TLS is a multiparty execution of its original ver-
sion. In particular, the messages exchanged between the client and the MPC
engine are the same as in a traditional TLS 1.3 connection. However, additional
security properties are guaranteed, specifically, the protocol protects the privacy
of the application keys against up to n − 1 corrupted parties and ensures the
authenticity of the multiparty endpoint. Both objectives are achieved using mul-
tiparty public keys, i.e. key pairs where the private counterpart is secret-shared.
We now outline the main steps of the protocol.

Initialisation. To set up an Oblivious TLS server, the parties generate an EdDSA
key using ΠSign (see Section 4.4) and request a Certificate Authority to issue
a certificate that binds the public key to the identity of the MPC engine. The
private counterpart is secret-shared, therefore, its value remains secret as long as
at least one party is honest. The key will be used to guarantee the authenticity of
the communications. The MPC engine also generates a random seed s for a PRG
(this can be done using commitment schemes). Every random value inserted in
the Handshake messages must be generated using s and the selected PRG.

ClientHello and ServerHello. The two messages are generated following the
specification of TLS 1.3. However the 32-byte nonces must be generated using
the seed s and the selected PRG. Moreover, the messages must contain a not-
necessarily-fresh DH public key which was generated using ΠDH or ΠweakerDH

(see Sections 4.1 and 4.2). The private counterpart of such key is secret-shared,
therefore, its value is known to nobody as long as at least one party is honest.

Cryptographic computations - Part I. After sending the Hello messages, the par-
ties perform a multiparty Diffie-Hellman key exchange using ΠDH or ΠweakerDH,
obtaining a secret-shared output. Then, the key derivation function is applied
to the result using the MPC techniques described in Section 4. At the end, the
Handshake keys4 and IVs are opened. The MAC keys for ServerFinished and
ClientFinished as well as the internal state of the key derivation function are
instead kept in shared form.

4 Using the notation of [24, Section 7.1], client handshake traffic secret and ser-
ver handshake traffic secret must not be opened.

9

EncryptedExtensions, CertificateRequest and Certificates. These messages are
generated and checked as described in the specification of TLS 1.3. Observe that
their encryption and decryption can be computed locally by each party. Indeed,
the handshake keys and IVs have been opened in the previous step. Clearly, the
parties must send the certificate of the MPC engine.

ServerCertificateVerify and ClientCertificateVerify. Observe that the transcript
of the connection is known to all the parties of the engine. Therefore, the ver-
ification of ClientCertificateVerify can be performed locally. The signature in
ServerCertificateVerify is instead generated using the MPC protocol ΠSign (see
Section 4.4). Clearly, in order to do that, all the parties must agree on the tran-
script. In particular, they must check that P1 generated a fresh nonce using s
and the DH key was generated by the whole MPC engine. Since the EdDSA pri-
vate key is shared, only with the collaboration of the whole engine, it is possible
to generate a signature.

ServerFinished and ClientFinished. The generation of the HMAC in ServerFin-
ished is performed by applying MPC algorithms to the corresponding secret-
shared MAC key (see Section 4). The verification of the HMAC in ClientFin-
ished instead does not require the use of any multiparty protocol. Indeed, the
client MAC key can be opened just after the reception of the message. Each
party can then check the MAC locally. It is fundamental that the MAC key is
opened after the reception of ClientFinished. Otherwise, the protocol would not
guarantee explicit authentication. In any case, opening the MAC keys for the
verification does not affect security. Indeed, the opened MAC key is never used
afterwards and its value does not leak any information.

Cryptographic computations - Part II. The second part of the key derivation
is performed using the MPC techniques described in Section 4. The operation
takes as input the full transcript of the connection as well as the internal state of
the key derivation function, which is secret-shared. At the end, the new IVs are
opened. The remaining outputs must be kept in shared form. The only exception
to this rule occurs when our MPC-friendly AEAD is adopted (see Section 5.2).
In that case, the i-th PRF key is opened to the i-th party.

Key Update. TLS 1.3 describes a key update scheme based on the key derivation
function of the Handshake (see [24, Section 7.2]). Again, we can perform the
operation using the MPC techniques presented in Section 4. At the end, the new
IVs are opened. The remaining outputs must be kept in shared form (the only
exception occurs when our MPC-friendly AEAD is adopted, the case is managed
as described above).

Record Layer

The Record layer of Oblivious TLS is essentially an adaptation of the original
protocol to secret-shared keys. As a consequence, the changes do not affect the

10

Handshake messages. Indeed, in that case, the keys as well as the nonces are
known to every party. When we switch to the application keys, instead, only
the nonces are known. For compatibility, the fragment partition, the additional
data, the nonce generation and the padding are performed as in TLS 1.3. En-
cryptions and decryptions are instead executed using multiparty operations (see
Section 5). Specifically, the encryption outputs a non-shared ciphertext taking
as input a secret-shared plaintext, a secret-shared key and cleartext nonce and
additional data. The decryption outputs either ⊥ (in case of a tampered cipher-
text) or a secret-shared plaintext and takes as input a secret-shared key and
non-shared nonce, ciphertext and additional data. Upon decryption, the frag-
ment type (which is encoded in the padding) is checked. In case of Alerts and
Handshake messages, the plaintext is opened and handled according to TLS.

4 Handshake Operations

The Handshake of TLS 1.3 is based on Diffie-Hellman key exchange. Given the
public key of the client, the parties running Oblivious TLS should be able to
compute a secret-sharing of the exchanged secret. Notice that if any party Pi
learns the exchanged secret, Oblivious TLS would completely lose its purpose as
Pi could compute the symmetric keys and communicate with the client without
any restriction. In order to design a multiparty Diffie-Hellman protocol, it is
necessary for the parties to have a secret-shared private key. Clearly, the public
key does need to be kept secret.

We chose to focus on Diffie-Hellman over elliptic curves, as it is the most
popular version of the protocol and allows us to work over smaller finite fields
than traditional DH. Specifically, we use the curve Curve25519 of [5], although
with minor changes the protocol could also use other curves of TLS 1.3.

In this section, we will present an actively secure protocol for Diffie-Hellman
as well as a more efficient variant that allows some limited influence on the
computation to the adversary. The downside of this solution is that it does not
permit to directly reduce the security of Oblivious TLS to the security proof of
TLS 1.3 [12] without introducing new cryptographic assumptions.

Diffie-Hellman notation. For the whole section, we assume to work with an
elliptic curves E of equation

Y 2 = X3 +AX2 +BX + C

over a prime field of odd cardinality p. Furthermore, we assume the Diffie-
Hellman group to be 〈G〉 where G ∈ E has prime order q such that q2 - |E|. We
denote the identity element of the group with∞. Remember that this is the only
non-affine point of the group. In this section, we use the notation [[·]]q, [[·]]p
and [[·]]E to denote secret-sharings over Fq, Fp and 〈G〉 respectively (modelled
as values in FMPC).

For clarity, we assume the elliptic curve Diffie-Hellman key exchange to be the
algorithm that, on input a secret key s ∈ F×q and a point Q ∈ 〈G〉\{∞}, outputs

11

the x-coordinate of sQ. Actually, among all the elliptic curves supported by TLS
1.3, this description applies only to Curve25519 and Curve448. The output of
the other algorithms usually depends on both the coordinates of sQ.

Computations over elliptic curves. Recall that given two affine points (x0, y0)
and (x1, y1) of the curve E such that x0 6= x1, their sum (x3, y3) is computed as
follows

m←
y1 − y0
x1 − x0

, x3 ← m2 −A− x0 − x1, y3 ← m(x1 − x3)− y1 (1)

We also recall that given an affine point (x0, y0) of E, its opposite is (x0,−y0).
As a consequence, two points P and Q of the curve have the same x-coordinate
if and only if P = Q or P = −Q.

Actually, there exist multiple ways to compute the addition between elliptic
curve points. In traditional computation (i.e. non-multiparty computation), al-
ternative coordinate systems are usually preferred as they permit to perform
operations over elliptic curves without divisions. However, for secret-sharing
based protocols like SPDZ the cost of a division is roughly twice the cost of
a multiplication. All the division-free methods known so far need at least 10
multiplications to perform additions, so in our case, affine coordinates are still
the best solution.

Key derivation, HMAC and key updates. After having performed the Diffie-
Hellman key exchange, the obtained secret is input into a key derivation func-
tion which outputs multiple symmetric keys. In particular, TLS 1.3 uses the
HKDF scheme of [22] which is based on hash functions (concretely, SHA256 or
SHA384). Since both the exchanged secret and the derived symmetric keys must
remain private, the key derivation must be performed in MPC.

Before computing the hash function, we convert the secret from a [[·]]p sharing
into a [[·]]2 sharing, so we can compute the hash function as a binary circuit,
using e.g. a garbled circuit-based protocol [17]. Alternatively, we could use a
customized MPC-friendly hash function, however, this is non-standard and not
supported by endpoints on the Internet.

The same approach can be used also to compute the IVs and the actual
encryption keys of the AEAD (see [24, Section 7.3]), the HMAC keys and the
HMACs used in ClientFinished and ServerFinished (see [24, Section 4.4.4]) and
the key updates (see [24, Section 7.2]).

Signatures. The last cryptographic operation that the MPC engine needs to
perform in the Handshake is the generation and verification of signatures. Since
the transcript is known to all the parties of the engine, signatures can always
be verified locally. Signing instead is more complex, indeed, the signature must
be issued only with the approval of all the parties. We therefore use a threshold
Schnorr-style protocol based on EdDSA signatures, given in Section 4.4. Since
the message being signed is public, we can do this step without any expensive
MPC operations.

12

4.1 Diffie-Hellman

DaPoint. The proposed protocol needs a particular preprocessing phaseΠdaPoint,
which is described in Figures 1 and 2. The description uses FMPC and FRand as
resources. The latter is a simple functionality that outputs a random permuta-
tion to all the parties.

The protocol ΠdaPoint has the purpose of generating N doubly-authenticated-
point (daPoint) tuples, i.e. random triples of the form

(
[[R]]E , [[u]]p, [[v]]p

)
such

that R ∈ 〈G〉 \ {∞} and (u, v) are the affine coordinates of R. The algorithm is
based on a cut-and-choose style bucketing technique [23].

It is possible to prove that ΠdaPoint securely implements the functionality
FdaPoint described in Figure 3.

Theorem 1. Assuming that

ω := N

(
M +N · l

l

)−1
and ω′ :=

M +N · l
q

are negligible functions in the security parameter, ΠdaPoint securely implements
FdaPoint in the (FMPC,FRand)-hybrid model.

The proof of theorem 1 can be found in Appendix B.1. We point out that if the
order of the additions in step 7 of ΠdaPoint is changed, the protocol is probably
still secure but our proof does not apply anymore.

Complexity of daPoint. If we implement FMPC using SPDZ, the execution of
ΠdaPoint takes 10+4(n−1) rounds. Each of the generated tuples has the following
cost: 2nl − 1 multiplicative triples in Fp, nl − 1 division tuples in Fp, 3nl − 1
squaring couples in Fp, 2n(l+M/N) input masks in Fp, n(l+M/N) input masks
over Fq and the communication of(

3nM/N + 2M/N + 5l + 11nl − 9
)
· log(p) + nM/N + l − 1

bits for every party.

Multiparty Diffie-Hellman. Given the functionality FdaPoint, it is possible to
construct a multiparty protocol for elliptic curve Diffie-Hellman as described
in Figure 5. The following theorem shows that ΠDH securely implements the
functionality FDH presented in Figure 4.

Theorem 2. Assuming q−1 to be a negligible sequence in the security parameter,
the protocol ΠDH securely implements the functionality FDH in the FdaPoint-
hybrid model.

The proof of theorem 2 can be found in Appendix B.2.

Complexity of Diffie-Hellman. If we implement FMPC using SPDZ, the protocol
ΠDH takes 4 rounds, 1 division tuple over Fp, 1 squaring couple over Fp, 1
daPoint tuple and the communication of 5 log(p) + 1 bits for every party. The
key generation requires instead just 1 random shared element of Fq and the
communication of log(p) + 1 bits for every party.

13

ΠdaPoint

Let M,N, l ∈ N be three security-parameter-dependent values with M, l ≥ 2.
MPC
The parties can issue queries to FMPC but they cannot access the internal values
(i.e. everything except the output) of the procedure DaPoint.
DaPoint
On input (daPoint, (idi,1, idi,2, idi,3)i∈[N]) the parties compute the following steps:

1. For each i ∈ [n], the parties generate M + Nl random elements
[[zi,1]]q, [[zi,2]]q, . . . , [[zi,M+Nl]]q in Fq such that zi,j is known only to Pi for
each j ∈ [M +Nl]. This operation is performed using FMPC.

2. For each i ∈ [n] and j ∈ [M +Nl], the parties compute [[Zi,j]]E ← [[zi,j]]qG
using FMPC and Pi computes Zi,j locally.

3. For each i ∈ [n] and j ∈ [M + Nl], party Pi computes (xi,j , yi,j), the affine
coordinates of Zi,j . If this is not possible since Zi,j =∞, the protocol aborts.
Otherwise, Pi inputs xi,j and yi,j in FMPC with domain Fp.

4. The parties sample a random permutation ψ of [M +Nl] using FRand.
5. For each i ∈ [n] and j ∈ [M+Nl]\[Nl], the parties open [[Zi,ψ(j)]]E , [[xi,ψ(j)]]p

and [[yi,ψ(j)]]p. If the affine coordinates of the former do not coincide with
the latter, the protocol aborts.

6. For each (i, j) ∈ [n]× [Nl], the parties set [[si,ψ(j)]]p ← [[xi,ψ(j)]]
2
p and open

ti,ψ(j) ← [[yi,ψ(j)]]
2
p− [[xi,ψ(j)]]p · [[si,ψ(j)]]p−A · [[si,ψ(j)]]p−B · [[xi,ψ(j)]]p−C.

If any of the ti,ψ(j)’s is different from zero, the protocol aborts.
7. For each j ∈ [Nl], the parties set [[Rψ(j)]]E ←

∑
i∈[n][[Zi,ψ(j)]]E and

[[xψ(j)]]p ← [[x1,ψ(j)]]p, [[yψ(j)]]p ← [[y1,ψ(j)]]p. Then, for i ∈ [n] \ {1},

[[m]]p ←
[[yψ(j)]]p − [[yi,ψ(j)]]p

[[xψ(j)]]p − [[xi,ψ(j)]]p

[[xψ(j)]]p ← [[m]]2p −A− [[xψ(j)]]p − [[xi,ψ(j)]]p

[[yψ(j)]]p ← [[m]]p · ([[xi,ψ(j)]]p − [[xψ(j)]]p)− [[yi,ψ(j)]]p.

If for any i, m cannot be computed due to a zero denominator, the protocol
aborts.

8. For each (i, j) ∈ [N]× [l], let [[Ri,j]]E := [[Rψ((i−1)l+j)]]E and

[[ui,j]]p := [[xψ((i−1)l+j)]]p, [[vi,j]]p := [[yψ((i−1)l+j)]]p.

The sequence Bi := (ψ((i − 1)l + j − 1))j∈[l] is called the i-th bucket. This
is equivalent to splitting the first Nl elements of the permuted sequence into
blocks of l elements called buckets.

Fig. 1. The daPoint Protocol - Part 1

14

9. For each i ∈ [N] and j ∈ {2, 3, . . . , l}, the parties compute and open

Wi,j ← [[Ri,1]]E + [[Ri,j]]E

[[m]]p ←
[[vi,1]]p − [[vi,j]]p

[[ui,1]]p − [[ui,j]]p

wi,j ← [[m]]2p −A− [[ui,j]]p − [[u1,j]]p

w′i,j ← [[m]]p · ([[ui,j]]p − [[wi,j]]p)− [[vi,j]]p

If for any j, m cannot be computed due to a zero denominator or the affine
coordinates of Wi,j do not coincide with (wi,j , w

′
i,j), the protocol aborts.

Otherwise, for every i ∈ [N], the parties store [[Ri,1]]E , [[ui,1]]p and [[vi,1]]p
with identities idi,1, idi,2 and idi,3.

Fig. 2. The daPoint Protocol - Part 2

FdaPoint

MPC
FdaPoint replies to the queries as FMPC did.
daPoint
After receiving (daPoint, (idi,1, idi,2, idi,3)i∈[N]) from every honest party and the
adversary, FdaPoint samples a random point Ri in 〈G〉 \ {∞} for every i ∈ [N].
Let (ui, vi) be its affine coordinates. The functionality stores Ri, ui and vi with
labels idi,1, idi,2 and idi,3.

Fig. 3. The daPoint Functionality

4.2 Diffie-Hellman With Influence of the Adversary

We now present the second version of the Diffie-Hellman protocol. We called the
procedure “weaker Diffie-Hellman” in order to highlight the difference with the
protocol described in the previous section. Anyway, we will argue that weaker
Diffie-Hellman is sufficiently secure for Oblivious TLS.

ECSum. The general idea of the protocol is similar to the one presented in the
Section 4.1. We still need a preprocessing phase ΠECSum which is described in
Figure 6 using FMPC as a resource. The purpose ofΠECSum is to generate random
tuples of the form (R1, R2, . . . , Rn, [[x]]p, [[y]]p) such that, for each i ∈ [n], Ri is
an affine point of 〈G〉 known only to party Pi and ([[x]]p, [[y]]p) is a secret-sharing
of the affine coordinates of R :=

∑
i∈[n]Ri.

As formalised by the following theorem, it is possible to prove that ΠECSum

securely implements the functionality FECSum described in Figure 7.

Theorem 3. Assuming q−1 to be a negligible sequence in the security parameter,
the protocol ΠECSum securely implements the functionality FECSum in the FMPC-
hybrid model.

15

FDH

MPC
FDH replies to the queries as FdaPoint did.
Key Generation
After receiving (KeyGen, id) from every honest party and the adversary, FDH

samples a random value s
$← F×q and computes S ← sG. Then, it passes S to

the adversary and waits for a reply. If the answer is OK, FDH outputs S to every
honest party and stores s with label id. Otherwise, it aborts.
Diffie-Hellman
After receiving (DH, id1, Q, id2) from the adversary and every honest party, FDH

retrieves the private key s of label id1. If Q = ∞ or qQ 6= ∞, the functionality
does nothing. Otherwise, it computes e, the x coordinate of sQ, and stores it with
identity id2.

Fig. 4. The Diffie-Hellman Functionality

ΠDH

MPC
The parties can issue queries to FdaPoint but they cannot access the private keys
and the internal values of the key exchange procedure.
Key Generation
On input (KeyGen, id) the parties perform the following steps

1. Sample a random secret value [[s]]q ∈ Fq and set [[S]]E ← [[s]]qG.
2. Call FdaPoint to open [[S]]E . If S =∞, the protocol restarts.
3. Store the secret key [[s]]q with label id and output the public key S.

Diffie-Hellman
On input (DH, id1, Q, id2) the parties perform the following steps

1. They retrieve the private key [[s]]q with label id1. Such key is stored in
FdaPoint. If Q =∞ or qQ 6=∞, the protocol stops.

2. They compute [[Z]]E ← [[s]]qQ using FdaPoint.
3. They call FdaPoint to obtain a random daPoint tuple ([[R]]E , [[x]]p, [[y]]p) .
4. They compute and open W ← [[Z]]E − [[R]]E .
5. Let (u, v) be the affine coordinates of W . If W =∞, the final output is [[x]]p.

Otherwise, using FdaPoint, the parties compute the output

[[e]]p ←
(

[[y]]p − v
[[x]]p − u

)2

−A− [[x]]p − u.

In case of zero denominator, the protocol aborts. The value of [[e]]p is stored
with label id2.

Fig. 5. The Diffie-Hellman Protocol

16

ΠECSum

MPC
The parties can issue queries to FMPC but they cannot access the internal values
(i.e. everything except the output) of the procedure ECSum.
ECSum
On input (ECSum, id1, id2) the parties compute the following steps:

1. Each party Pi selects a random point Ri ∈ 〈G〉 \ {∞} and inputs the two
affine coordinates of the point (xi, yi) in FMPC.

2. For each i ∈ [n], the parties compute [[si]]p ← [[xi]]
2
p and they open

ti ← [[yi]]
2
p − [[xi]]p · [[si]]p −A · [[si]]p −B · [[xi]]p − C.

If any of the ti’s is different from zero, the protocol aborts.
3. The parties set [[x]]p ← [[x1]]p, [[y]]p ← [[y1]]p and later, for i ∈ [n] \ {1},

[[m]]p ←
[[y]]p − [[yi]]p

[[x]]p − [[xi]]p

[[x]]p ← [[m]]2p −A− [[x]]p − [[xi]]p

[[y]]p ← [[m]]p · ([[xi]]p − [[x]]p)− [[yi]]p.

If for any i, m cannot be computed due to a zero denominator, the protocol
aborts. Otherwise, the parties store [[x]]p and [[y]]p with labels id1 and id2.

4. Each party Pi outputs the point Ri.

Fig. 6. The EC-Sum Protocol

FECSum

MPC
FECSum replies to the queries as FMPC did.
ECSum
On input (ECSum, id1, id2) from each honest party and the adversary, FECSum

waits for a point U ∈ E from the adversary. Then, it keeps sampling random
points Ri in 〈G〉 for every i ∈ H until R := U +

∑
i∈HRi 6=∞. Finally, it stores

the coordinates of R with labels id1 and id2 and outputs Ri to Pi for each i ∈ H.

Fig. 7. The EC-Sum Functionality

17

The proof of theorem 3 can be found in Appendix C.1. We point out that
if the order of the additions in step 3 of ΠECSum is changed, the procedure is
probably still secure but the proof that we are going to present does not apply
anymore.

Complexity of ECSum. If we implement FMPC using SPDZ, the execution of
ΠECSum takes 4n − 2 rounds, 2n − 1 multiplicative triples in Fp, 3n − 1 squar-
ing couples in Fp, n − 1 division tuples in Fp, 2n input masks in Fp and the
communication of (10n− 4) log(p) bits for each party.

“Weaker” DH. Using ΠECSum as a subprotocol, we present a more efficient
version of the elliptic curve Diffie-Hellman, called ΠweakerDH, in Figure 9. It uses
FECSum, as well as a key set-up functionality FKey (see Figure 8), which can be
implemented by having each Pi broadcast Si, and run a zero-knowledge proof of
knowledge of the secret si.

FKey

Key

On input (Key) from each party, FKey samples si
$← Fq for each i ∈ H and

computes Si ← siG. When the adversary provides a pair (sj , Sj) for every j ∈ C,
the functionality answers with {Si}i∈H and waits for a reply. If the adversary
sends OK, FKey checks that Sj = sjG for each j ∈ C. In such case, it outputs
(si, S1, S2, . . . , Sn) to Pi ∀i ∈ H. Otherwise, it sends ⊥ to each honest party.

Fig. 8. The functionality FKey

As we already mentioned, ΠweakerDH does not securely implement the func-
tionality FDH from the previous section (Figure 4), but a slightly weaker func-
tionality FweakerDH (Figure 10). The difference is that now the adversary may
“shift” the exchanged secret by an error point Qε. Moreover, it permits to test
whether the exchanged secret sQ+Qε coincides with some point Qτ chosen by
the adversary. Note that when using the functionality for TLS, this does not
increase the capabilities of the attacker, since in TLS, it is always possible to
perform such a test by applying the key derivation on Qτ and trying to decrypt
a ciphertext transmitted by the endpoints.

Theorem 4. Assuming q−1 to be a negligible sequence in the security parameter
λ, the protocol ΠweakerDH securely implements the functionality FweakerDH in the
(FECSum,FKey)-hybrid model.

The proof of theorem 4 can be found in Appendix C.2.

Complexity of “weaker” DH. If we implement FMPC using SPDZ, the Diffie-
Hellman procedure in ΠweakerDH usually takes 4 rounds, 1 squaring couple in

18

ΠweakerDH

MPC
The parties can issue queries to FECSum but they cannot access the internal values
of the key exchange procedure.
Key Generation
On input (KeyGen, id), the parties send (Key) to FKey. If FKey replies with
(si, S1, S2, . . . , Sn), Pi outputs S ←

∑
j∈[n] Sj and stores si with label id. Other-

wise, it aborts.
Diffie-Hellman
On input (DH, id1, Q, id2), the parties perform the following steps

1. Each party Pi checks that qQ = ∞ and Q 6= ∞. If this is not the case, it
stops. Otherwise, it retrieves the share si of the private key with label id1.

2. Using ECSum, Pi obtains a random point Ri and shares of [[x]]p, [[y]]p.
3. Each party Pi broadcasts Wi ← aiQ − Ri. If there exists i ∈ [n] such that

Wi 6∈ E, the protocol aborts. Otherwise, the parties set W ←
∑
i∈[n]Wi.

4. Let (u, v) be the affine coordinates of W . If W =∞, the final output is [[x]]p.
Otherwise, using FECSum, the parties compute the output

[[e]]p ←
(

[[y]]p − v
[[x]]p − u

)2

−A− [[x]]p − u.

If the division fails due to a zero denominator, the protocol aborts. The value
of [[e]]p is stored with label id2.

Fig. 9. The weaker Diffie-Hellman Protocol

FweakerDH

MPC
FweakerDH replies to the queries as FECSum did.
Key Generation
After receiving (KeyGen, id) from each party, FweakerDH samples a random value

s
$← Fq and computes S ← sG. Then, it sends S to the adversary and waits for a

reply. If the answer is OK, FweakerDH outputs S to each honest party and stores
s with label id. Otherwise, it aborts.
Diffie-Hellman
After receiving (DH, id1, Q, id2) from every party, FweakerDH checks whether qQ =
∞ and Q 6=∞. If this is not the case, it stops. Otherwise, it retrieves the private
key s of label id1. Then, it waits for two point Qε and Qτ from the adversary
and computes Z ← Qε + sQ. If Z = ∞ or Z = Qτ , FweakerDH sends OK to the
adversary and aborts. Otherwise, it computes e, the x coordinate of Z, and stores
it with identity id2.

Fig. 10. The weaker Diffie-Hellman Functionality

19

Fp, 1 division tuple in Fp, 1 ECSum tuple and the communication of 5 log(p)+1
bits for each party.

Notice that from a complexity point of view, the improvement of ΠweakerDH

over ΠDH is due to the lower cost of ECSum tuples compared to daPoint tuples.

4.3 Instantiating FMPC on the Required Fields.

In concrete situations, we cannot choose the elliptic curve used by the Diffie-
Hellman algorithm. As a matter of fact, TLS 1.3 supports only 5 secure curves.
Although, it may be possible to find other secure curves, very few endpoints of
the Internet would support them. For this reason, the choice of the fields Fp
and Fq used by FMPC is very restricted. If FMPC is implemented using SPDZ,
the Offline phase (i.e. the expensive preprocessing phase which is necessary to
perform multiplications and inputs) must be instantiated on these fields.

HE-based Offline phase. There exist several protocols that can be used for the
Offline phase. Some of them (Overdrive [20] and the original Offline phase of
SPDZ [11]) are based on homomorphic encryption. Unfortunately, these solutions
come with strong constraints on the fields on which they can be instantiated. In
particular, F must be a prime field and there must exist a suitable m ∈ N such
that 2m | |F| − 1. None of the fields we are interested in satisfy this property.
Actually, these requirements can be relaxed a little bit. It is indeed possible to
instantiate these protocols also on fields F such that there exists a sufficiently
large prime p that divides |F| − 1. In concrete applications, p should be close to
214. In these cases, the parameters of the homomorphic encryption scheme must
be modified in order to meet the security and correctness requirements (see [11,
Appendix C], [15, Appendices A and B] and [20, Section 3]). In general, with
equal security guarantees, this leads to lower efficiency.

OT-based Offline phase. Another option is to use an Offline phase based on
Oblivious Transfer such as MASCOT [19]. This solution is not as efficient as
Overdrive, however, the only requirement on the field is that its cardinality is
sufficiently close to a power of 2. This condition is satisfied by both Fp and Fq
for most the elliptic curves proposed by TLS 1.3.

Ring-LPN-based Offline phase. The last option is to use the Ring-LPN-based
2-party Offline phase of [6]. This solution is the most efficient known so far,
especially from a communicational point of view. In general, the protocol has the
same requirement on the field as the homomorphic-encryption-based solutions.
This is due to a matter of efficiency, as the property in question permits to use
the Fast Fourier Transform to enhance the speed of the algorithm. However, it is
possible to relax the condition and use any field of cardinality sufficiently close
to a power of 2. Clearly, the Fast Fourier Transform cannot be used anymore in
these cases.

20

4.4 Signature Generation

The authentication of the TLS connection is essentially based on signatures.
Since the identity of the MPC engine consists in the union of all its parties, it
is necessary for the private key to be secret-shared, otherwise, an attacker may
issue new signatures without having control of all the parties.

In TLS 1.3, the endpoints sign the transcript of the Handshake. Since the
latter is known to all the members of the MPC engine, it is sufficient that
we design a multiparty protocol that on input a secret-shared key [[a]] and a
cleartext message m, outputs a cleartext signature s← Sign(a,m). Clearly, the
signing algorithm should be supported by TLS 1.3. We decided to base our
protocol on EdDSA. Indeed, Schnorr signatures have interesting homomorphic
properties that suit our context.

FSign

Let G be the base point of the curve and let q be its order.
Initialization. Upon receiving (Init) from every party, FSign generates a random
pair (a,A) such that A = aG. Then, it sends A to the adversary and waits for a
reply. If the answer is OK, the functionality outputs A to every honest party and
stores (a,A). Otherwise, it aborts.
Sign: Upon receiving (Sign,m) from every party, where m is in {0, 1}∗, FSign

generates a signature (r,R) of m using the stored key. Then, it sends (s,R,m) to
the adversary. If the answer is OK, FSign outputs (s,R) to every honest party.
Abort: On input (Abort) from the adversary, the functionality aborts.

Fig. 11. The functionality FSign

Schnorr signatures. We briefly recall how Schnorr signatures are generated. Let
(〈G〉,+) be an elliptic curve group of prime order q and suppose that the discrete
logarithm problem is hard over 〈G〉. Let H : {0, 1}∗ −→ Fq be a hash function.
A private key is a random element a ∈ Fq, whereas its public counterpart is
defined to be A := aG. A signature (R, s) of a message m ∈ {0, 1}∗ is generated
as follows

r
$← Fq, R← rG, s← (r +H(R,A,m) · a) mod q

The signature can be verified by checking whether sG = R+H(R,A,m)A.

Multiparty signature. Using the functionality FKey as a resource (see Figure 8),
the parties can generate EdDSA signatures using the protocol ΠSign described
in Figure 12. The proof of the following theorem can be found in Appendix D.

Theorem 5. The protocol ΠSign securely implements FSign in the FKey-hybrid
model.

21

ΠSign

Let G be the base point of the curve and let q be its order.
Initialization. Party Pi sends (Key) to FKEY. If FKEY replies with
(ai, A1, A2, . . . , An), Pi outputs A ←

∑
j∈[n]Aj and stores (A, ai). Otherwise,

it aborts.
Sign. Let m be in {0, 1}∗, every party Pi performs the following operations.

1. It sends (Key) to FKEY. If FKEY replies with (ri, R1, R2, . . . , Rn), Pi computes
R←

∑
j∈[n]Rj . Otherwise, it aborts.

2. Pi computes and broadcasts si ← (ri +H(R,A,m) · ai) mod q.
3. Pi waits for sj from every other party Pj and computes s←

∑
i∈[n] si mod q.

Then, it checks that sG = R + H(R,A,m) · A. If this is not true, it aborts.
Otherwise, it outputs (R, s).

Fig. 12. The protocol ΠSign

5 Record Layer Operations

In the Record layer for Oblivious TLS, we need secure protocols that given an
AEAD scheme (E ,D) and a secret-shared symmetric key [[K]], allow performing
the following operations

– Encrypt. On input a cleartext nonce N , cleartext associated data A and a
secret-shared plaintext [[X]], output a cleartext string C = E(K,N,A,X).

– Decrypt. On input a cleartext nonce N , cleartext associated data A and
a non-shared ciphertext C, output ⊥ if and only if ⊥ = D(K,N,A,C).
Otherwise, output a secret-shared value [[X]] where X = D(K,N,A,C).

The secret-sharing scheme used in this high-level description strongly depends
on the AEAD. Observe that in practical situations, there might be a mismatch
between the secret-sharing scheme used by the application on top of TLS and
the secret-sharing scheme used by the AEAD. In such cases, we assume that
suitable conversions were already performed.

Padding. In TLS 1.3, the plaintexts always have a padding. Whereas its appli-
cation is a simple operation, the removal can be a bit complex. Indeed, using
multiparty computation, we need to discover the position of the last non-zero
byte and open it. Its value encodes the fragment type (see [24, Section 5.1]). In
the case of an alert or Handshake data (key update requests, post Handshake
authentication or new session tickets), the plaintext is simply opened and handle
according TLS 1.3. In the case of application data, the first part of the plaintext
(up to the second last non-zero value) is kept in shared form and is handled
following the instructions of the application on top of TLS.

Supported AEADs. Oblivious TLS supports two different AEAD schemes. The
first one is AES-GCM, one of the most popular encryption algorithms. The sec-
ond one is instead a novel AEAD specifically designed by us for Oblivious TLS,

22

and avoids all evaluation of block ciphers inside MPC. The efficiency of the MPC
friendly AEAD is considerably better than AES-GCM, however, the downside is
that a custom algorithm is generally not supported by TLS clients. Both solu-
tions rely on MACs to guarantee integrity. For this reason, the associated MAC
keys must always be kept in shared form, otherwise a corrupted party would be
able to tamper with the communications.

5.1 AES-GCM

We decided to adopt AES-GCM as it seemed to allow the most efficient MPC
execution among all the AEADs suggested by TLS 1.3 (see [24, Section B.4]).

Overview of AES-GCM. We briefly recall how the cipher works (for details, see
[13]). Let k be the key and let N be a nonce. Let AES(k, x) denote the encryption
of x under the key k using the AES block cipher. The algorithm defines the MAC
key H := AES(k,O) where O is the 128-bit string entirely made of zeros. Figure
13 describes the encryption procedure. The value C0 is usually called the MAC
of the AEAD. Decryptions are performed in a similar way: at the beginning
the MAC is regenerated from the ciphertext and the result is compared with
the MAC received from the client. If the check fails, the algorithm outputs ⊥,
otherwise the plaintext is retrieved by reversing the operations of the encryption.

1. The plaintext is split into 128-bit blocks X1, X2, . . . , XL. Do the same on the
associated data to get A1, A2, . . . , AL′ .

2. From N , L+ 1 128-bit nonces N0, N1, N2, . . . , NL are derived.
3. Set Ci ← Xi ⊕AES(k,Ni) for every i ∈ [L].
4. Let S be an encoding of L and L′ as a 128-bit string.

5. Set M ←
⊕L′

i=1Ai ·H
i ⊕
⊕L

i=1 Ci ·H
i+L′ ⊕ S ·HL+L′+1.

6. Set C0 ←M ⊕AES(k,N0) and output C0, C1, . . . , CL.

Fig. 13. AES-GCM encryption

Multiparty AES Evaluation. To run AES-GCM inside MPC, we need many eval-
uations of AES on cleartext inputs derived from the nonce, under a secret-shared
key and with secret-shared output. We consider two methods for evaluating AES:

– The secret-sharing based AES evaluation of [18]. This solution might be
preferable when the parties can communicate over fast networks.

– A multi-party garbled circuit protocol such as [17]. This involves evaluating
AES as a binary circuit, but obtains a constant round complexity so may be
preferable over slow networks.

23

After the AES evaluations, the parties get [[Ci]] from [[Xi]] (in the encryp-
tion) or [[Xi]] from Ci (in the decryption) for every i ∈ [L]. In encryption, [[Ci]]
is opened for every i ∈ [L].

The MAC generation. It remains to explain how C0 is generated (or checked in
the case of a decryption). Suppose now that we have a secret-sharing of [[Hi]]
over F2128 for every i ∈ [L+L′+1]. It is possible to obtain a secret-sharing of the
MAC [[C0]] without communication between the parties. Indeed, the additional
data as well as C1, C2, . . . , CL and S are cleartext information, therefore

[[C0]] = [[AES(k,N0)]]⊕
L′⊕
i=1

Ai · [[Hi]]⊕
L⊕
i=1

Ci · [[HL′+i]]⊕ S · [[HL+L′+1]].

The MAC must be opened only in the case of an encryption, otherwise H
might be leaked. When decrypting, the parties must check [[C0]] for equality with
the first 128-bit block of the ciphertext received from the client. The operation
must leak no information besides the output bit.

Once and for all operations. Observe that some operations do not have to be
repeated for every encryption or decryption. Specifically, for every symmetric
key, the AES key scheduling, the computation of the secret-shared MAC key [[H]]
and its powers can be performed only once. Clearly, it is sufficient to compute
the first T powers where T is an upper bound on L+L′+1. In TLS 1.3, L+L′+1
is at most 1026, but depending on the application, it may be smaller.

5.2 An MPC-friendly AEAD

To improve efficiency, we designed a distributed AEAD scheme that avoids eval-
uations of PRFs or block ciphers inside MPC, removing the most expensive part
of AES-GCM. Note that distributed AEAD was also considered in [3], however,
in their setting the message being encrypted was known to a single party, which
is not the case here.

Some disadvantages. Clearly, our MPC-friendly AEAD is not included in the
cipher suites supported by TLS 1.3 by default, hindering the usability of the
scheme. However, the specification permits the adoption of new cipher suites
for private use (see [24, Section 11]). The efficiency of the construction in MPC
comes with another drawback. Specifically, the number of keys used in the AEAD
depends on the number of parties in the MPC engine. That means that such in-
formation has to be somehow communicated to the client (e.g. in the Hello
messages). Since, the MPC execution is secure if and only if the keys are inde-
pendent, a high number of parties also means a complicated and expensive key
derivation.

24

The basic idea. Let λ be a security parameter and suppose that our plaintexts
are shared over a field Fp. Let

F : {0, 1}λ × {0, 1}l1 −→ Fl2p

be a PRF. We define a second PRF

Fn :
(
{0, 1}λ

)n × {0, 1}l1 −→ Fl2p
Fn(k1, k2, . . . , kn, x) :=

∑
i∈[n]

F (ki, x).

Suppose now that the key derivation distributes a random ki to party Pi for
each i ∈ [n]. Given l2 secret-shared elements [[y1]], [[y2]], . . . , [[yl2]], the parties
can compute y + Fn(k1, k2, . . . , kn, x) where y = (y1, y2, . . . , yl2) as follows:

1. Every Pi sets zi ← (y1,i, y2,i, . . . , yl2,i) where yj,i is the i-th share of [[yj]].

2. Every party Pi broadcasts ci ← zi + F (ki, x).

3. The parties compute c← c1 + c2 + · · ·+ cn.

In this way, we obtain an encryption of y without leaking any information,
however, a dishonest party is able to insert an additive error in the computation.
Actually, that is not a problem. Indeed, the adversary can always intercept
a ciphertext travelling through the network and add an arbitrary error. The
security of the communication is still guaranteed as long as the MAC of the
AEAD is correctly computed.

MAC-then-Encrypt and the PolyMAC function. Since there is no assurance that
the ciphertext is correctly generated, any Encrypt-then-MAC AEAD cannot be
used. For this reason, we decided to design an OTP-based MAC-then-Encrypt
scheme (MtE) using the following MAC function. We denote the resulting AEAD
with MtE(Fn,PolyMAC).

Definition 1 (PolyMAC). Let L1 and L2 be two security-parameter-dependent
values. Let Ecd be an injective function from {0, 1, . . . , L2} to F×p . Let k :=
(y, z) ∈ F2

p be a key and suppose the message to authenticate is

m := ((a1, a2, . . . , ar), (x1, x2, . . . , xl)) ∈ Frp × Flp

with r ≤ L1 and l ≤ L2. We define PolyMAC as

PolyMAC(k,m) := Ecd(l) · yl+r+1 +

r∑
i=1

ai · yl+r+1−i +

l∑
i=1

xi · yl+1−i + z.

Clearly, when PolyMAC is plugged in the AEAD, (a1, a2, . . . , ar) becomes
the additional data, whereas (x1, x2, . . . , xl) is the plaintext.

25

Theorem 6. If
L1 + L2 + 1

p

is negligible in the security parameter, MtE(Fn,PolyMAC) is a secure AEAD
for every n ∈ N>0.

The proof of theorem 6 can be found in Appendix E. Observe that in many
multiparty computation protocols, p is O(2λ). Therefore, if we choose L1 and
L2 to be linear in the security parameter, we obtain a secure AEAD.

MPC execution of the AEAD. Performing encryptions and decryptions on
secret-shared data with the new AEAD is very easy and cheap. First of all,
notice that a secret-sharing of the MAC [[M]] can be computed with active
security. Indeed, given a secret-shared MAC key ([[y]], [[z]]), cleartext additional
data (ai)i∈[r] and secret-shared plaintext

(
[[xi]]

)
i∈[l],

[[M]] := Ecd(l) · [[yl+r+1]] +

r∑
i=1

ai · [[yl+r+1−i]] +

l∑
i=1

[[xi]] · [[yl+1−i]] + [[z]].

Encryptions can then be performed as explained at the beginning of this section.
Decryptions are instead a little trickier. Indeed, in order to obtain an authenti-
cated secret-shared plaintext, each party Pi has to input F (ki, x) in FMPC. The
rest of the operations are rather straightforward. In any case, we stress that [[M]]
must be checked without opening it. Clearly, in both encryption and decryption,
the adversary can insert an additive error. Anyway, even an usual attacker con-
trolling the network had this possibility, therefore, security is guaranteed by the
MAC. The protocol is thoroughly described in Figure 14.

Complexity of the MPC-friendly AEAD. Observe that just as for AES-GCM,
we do not need to compute the powers of [[y]] every time that an encryption or
a decryption is performed. We can just perform the operation once, for instance,
immediately after the keys are derived.

The total complexity of encryption is l multiplicative triples and the com-
munication of n(3l + 1) elements in Fp. The complexity of a decryption instead
is l multiplicative triples, the communication of n(3l+ 1) elements in Fp, a com-
parison and n(l + 1) input masks. Considering that this is the cost of the com-
munication of l elements in F, the protocol is significantly cheap. We highlight
that if some elements of the plaintext are public (e.g. because of the padding)
we could spare some multiplicative triples in the generation of the MAC.

Secure communication between MPC clusters. The new AEAD permits to com-
municate between two MPC engines too. Security is guaranteed as long as the
adversary does not know at least one of the PRF keys. Therefore, the parame-
ter n and the key distribution must be properly studied to suit the adversarial
model. In particular, if the adversary can corrupt parties of both engines and

26

Context. Each party Pi owns a random key ki ∈ {0, 1}λ. Moreover, the parties
hold two authenticated secret-shared elements [[y]] and [[z]] which are uniformly
distributed in Fp. Finally, we assume that the parties have secret-sharings of the
first L1 + L2 + 1 powers of [[y]].
Encryption
Input. Cleartext additional data (a1, a2, . . . , al′) ∈ Fl

′
p , secret-shared plaintext

([[x1]], [[x2]], . . . , [[xl]]) ∈ Flp and a cleartext nonce r ∈ {0, 1}l1 .

1. The parties compute

[[t]]← Ecd(l) · [[yl+r+1]] +

r∑
i=1

ai · [[yl+r+1−i]] +

l∑
i=1

[[xi]] · [[yl+1−i]] + [[z]]

2. Each party Pi sets vi ← (x1,i, x2,i, . . . , xl,i, ti) where xj,i denotes Pi’s share
of [[xj]] for every j ∈ [l].

3. Each party Pi computes wi ← Trunc(F (ki, r), l + 1).
4. Each party Pi broadcasts ci ← wi + vi.
5. The parties output c← c1 + c2 + · · ·+ cn.

Decryption
Input. Cleartext additional data (a1, a2, . . . , al′) ∈ Fl

′
p , non-shared ciphertext

(c1, c2, . . . , cl+1) ∈ Fl+1
p and a cleartext nonce r ∈ {0, 1}l1 .

1. Each party Pi computes wi ← F (ki, r).
2. Each party Pi inputs the first l+ 1 elements of wi in FMPC. Let [[wi,j]] be a

secret sharing of the j-th element of wi.
3. The parties compute [[xj]]← cj −

∑
i∈[n][[wi,j]] for every j ∈ [l]. Then, they

set [[t′]]← cl+1 −
∑
i∈[n][[wi,l+1]].

4. The parties compute

[[t]]← Ecd(l) · [[yl+r+1]] +

r∑
i=1

ai · [[yl+r+1−i]] +

l∑
i=1

[[xi]] · [[yl+1−i]] + [[z]]

5. The parties compute b ← Compare([[t]], [[t′]]). If b = 0, they output ⊥, oth-
erwise they output the identities of [[x1]], [[x2]], . . . , [[xl]].

Fig. 14. Multiparty protocol for MtE(Fn,PolyMAC).

27

security has to be guaranteed as long as none of the endpoints is completely
corrupt, n can become as big as n1 · n2 where n1 and n2 are the cardinalities of
the two MPC engines.5

6 Oblivious TLS

In this section, we analyse the security of Oblivious TLS. At the end, we present
some general results on performance.

6.1 Security

The Multi-Stage Key Exchange Model. We want to prove the security of Obliv-
ious TLS in the Multi-Stage Key Exchange Security Model [12]. The adversary
interacts with several endpoints running the protocol and has complete con-
trol over the network. In particular, it is allowed to intercept, drop and inject
communications. Moreover, it has the ability to corrupt endpoints and request
the leakage of established keys. The adversary wins when it succeeds in breaking
particular authentication properties (Match Security) or can distinguish a tested
key from a random string of the same length (Multi-Stage Security). Since the
model was used to prove the security of TLS 1.3 [12], our intention is to reduce
the security of Oblivious TLS to the proof of TLS 1.3.

Adaptations to Oblivious TLS. The main difference between our protocol and
the traditional version of TLS 1.3 is the use of MPC, therefore, every endpoint of
our multi-stage model is actually an MPC engine. We regard them as atomic en-
tities. Observe that we can model the actual MPC protocols for Diffie-Hellman,
key derivation, signature generation and encryption and decryption with the
corresponding functionalities. We allow the multi-stage adversary the same in-
fluence on the multiparty procedures as if it controlled the corrupted parties
of the engine. The corruption of an MPC engine in the model corresponds in
practice to the corruption of all the associated parties.

We obtain a model that is almost identical to the security model of TLS 1.3.
The only differences are the following:

– The Handshake keys are leaked to the multi-stage adversary whenever there
exists at least one corrupted party.

– The MAC keys used in ClientFinished and ServerFinished are leaked to the
multi-stage adversary upon reception of the corresponding messages.

– The IVs are leaked to the adversary.
– If ΠweakerDH is adopted, the adversary is able to shift the Diffie-Hellman

secret by an arbitrary elliptic curve point Qε.
– The adversary has the ability to make the engines abort.

5 Each party of the first engine knows exactly n2 keys, which must be distributed
among all the n2 parties of the second engine, and vice versa.

28

Actually, in this model, it would be trivial for the adversary to win. Indeed,
it would be sufficient to test a handshake key of an engine with a corrupted
party (distinguishing it from random is straightforward as the key is leaked).
To fix this problem, we allow the adversary to test handshake keys only if both
the endpoints of the connection are completely honest (i.e. the corresponding
engines have no corrupted parties).

Security of ΠDH-based Oblivious TLS. In [12], the authors proved that in TLS
1.3, the application keys remain secure and authenticated even if the encryption
keys are leaked. Moreover, they proved that the MAC keys used in ClientFinished
and ServerFinished are computationally independent of all the other keys of the
protocol. Since they are used for the last time in the verification of the MACs,
the Handshake remains secure as long as they are leaked after the reception of
ClientFinished and ServerFinished. Even the IVs are independent of the keys
(see [24, Section 7.3]). Therefore, their knowledge does not leak any additional
information. Moreover, the security of an AEAD is guaranteed as long as the keys
are kept secret. As a consequence, the security proof of [12] applies to Oblivious
TLS too, after minor modifications. That is enough to infer the security of our
protocol.

Security of ΠweakerDH-based Oblivious TLS. When ΠweakerDH is used, the ad-
versary is able to “shift” the Diffie-Hellman exchanged secret by an arbitrary
elliptic curve point Qε. Usually, this results in a failure of the Handshake. In-
deed, the MPC engine and client derive different keys, not being able to decrypt
the incoming messages nor checking the MACs in ClientFinished and ServerFin-
ished. The only exception occurs when the client is another MPC engine using
Oblivious TLS and the corrupted parties insert the same error Qε.

It is possible to prove the security of the protocol following the guideline 6

of the original security proof of TLS 1.3 [12] and substituting the PRF-Oracle-
Diffie-Hellman assumption (PRF-ODH) (see [12, Section 2.4]) with a new cryp-
tographic assumption, which we are going to describe in the following paragraph.

The Shifted PRF Oracle DH assumption. The PRF-Oracle-Diffie-Hellman as-
sumption (PRF-ODH), on which the security of TLS 1.3 is based, does not
allow us to model the influence of the corrupted parties in FweakerDH. Therefore,
when ΠweakerDH is adopted, the security proof of Oblivious TLS has to rely on
the following.

Definition 2 (Shifted ODH assumption). Let G := {(Gλ, gλ)}λ∈N be a se-
quence of security-parameter-dependent groups and let gλ ∈ Gλ for every λ ∈ N.
Moreover, let F := {Fλ : Gλ×{0, 1}∗ −→ {0, 1}λ}λ∈N be a sequence of functions.

Let A be a PPT adversary and consider the game GShifted-ODH
F,G,A (λ) described

in Figure 15. We define the Shifted-ODH advantage of A against (F ,G) as

AdvShifted-ODH
F,G,A (λ) :=

∣∣∣P(GShifted-ODH
F,G,A (λ) = 1

)
− 1

2

∣∣∣
6 Observe that to achieve Match security, it is necessary to add Qε to sidi for every

stage i.

29

GShifted-ODH
F,G,A (λ)

Setup: The PPT adversary A is activated with a sequence of λ bits set to 1.
Afterwards, the challenger samples a random bit b and two random elements

u, v
$← [qλ − 1] where qλ is the order of gλ. Then, it sends guλ and gvλ to A.

Challenge: The adversary replies with a challenge (x∗, h) ∈ {0, 1}∗ × Gλ. The
challenger computes y1 ← Fλ(guvλ · h, x∗) and samples y0 uniformly in {0, 1}λ.
Then, it replies to the adversary with yb.
Query: The adversary may issue queries of the form (z, x, w) ∈ Gλ×{0, 1}∗×Gλ
such that (z, x, w) 6= (guλ , x

∗, h), which the challenger answers with Fλ(zv · w, x).
Guess: The adversary outputs a bit b′. The final output is 1 if and only if b′ = b.

Fig. 15. The Shifted Oracle Diffie-Hellman game

We say that the Shifted-ODH assumption holds for (F ,G) if for every PPT

adversary A the advantage AdvShifted-ODH
F,G,A (λ) is negligible in λ.

Essentially the Shifted ODH assumption models a Diffie-Hellman key exchange
in which the adversary shifts the exchanged secret by and arbitrary element
of the group and an entropy extractor is applied to the result. The assump-
tion holds if the adversary is not able to distinguish between the real output
and a random sequence of the same length even if it has access to results of
other key exchanges. In our opinion, the assumption is reasonable as long as the
Diffie-Hellman problem is “hard” over G and F “hides” the correlation between
different inputs. Indeed, if the adversary cannot distinguish between guv and a
random element of the group, then, it cannot distinguish between guv · h and a
random element of the coset 〈g〉 · h, which has the same entropy. The condition
on F is usually satisfied when F is based on hash functions. This property holds
in Oblivious TLS (see [24, Section 7.1]).

6.2 Performance

To estimate the performance of Oblivious TLS, we carried out some bench-
marks using the SCALE-MAMBA library7, based on implementation of the
main components in the handshake and record layers, which we believe to be
the bottleneck. This does not give a full, standards-compliant implementation of
Oblivious TLS, but rather, is intended to obtain some estimates of its expected
performance.

We tested the online phase of the resulting MPC protocol, assuming the
necessary input-independent preprocessing (multiplication triples etc.) has been
generated. Based on the results, we can expect a Handshake to take around 1
or 2 seconds. We also tested the throughput of the different multiparty AEADs
we considered. The MPC-friendly AEAD showed interesting outcomes with a

7 https://github.com/KULeuven-COSIC/SCALE-MAMBA

30

throughput of around 300 KB/s. The Garbled-Circuit-based version of AES-
GCM, instead, proved itself to be rather inefficient (around 1 KB/s). We expect
that with the alternative AES evaluation method based on [18] (which is not
available in SCALE-MAMBA), we could achieve throughputs up to 3 MB/s for
AES-GCM, even exceeding our MPC-friendly AEAD. The drawback of this is
that the preprocessing material is much more expensive to generate, and also
the round complexity is higher. For further information on performance, see
Appendix F.

Acknowledgements

We would like to thank Douglas Stebila and the anonymous reviewers for valu-
able feedback which helped to improve the paper, as well as Roberto Zunino
for suggestions and comments on Damiano Abram’s master’s thesis. The work
of Sven Trieflinger and Damiano Abram was funded by Robert Bosch GmbH.
Ivan Damg̊ard was supported by the European Research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme un-
der grant agreement No 669255 (MPCPRO). Peter Scholl was supported by a
starting grant from the Aarhus University Research Foundation.

References

1. Scale-mamba software, https://homes.esat.kuleuven.be/ nsmart/SCALE
2. Abram, D.: Oblivious TLS. Master’s thesis, Università degli Studi di Trento (March

2020)
3. Agrawal, S., Mohassel, P., Mukherjee, P., Rindal, P.: DiSE: Distributed symmetric-

key encryption. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS
2018. pp. 1993–2010. ACM Press (Oct 2018)

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (May 2011)

5. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (Apr 2006)

6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Heidelberg
(Aug 2020)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)

8. Dalskov, A.P.K., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing
DNSSEC keys via threshold ECDSA from generic MPC. In: Chen, L., Li, N.,
Liang, K., Schneider, S.A. (eds.) ESORICS 2020, Part II. LNCS, vol. 12309, pp.
654–673. Springer, Heidelberg (Sep 2020)

9. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (Feb 2016)

31

10. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (Sep 2013)

11. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

12. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A Cryptographic Analysis of
the TLS 1.3 Handshake Protocol. Cryptology ePrint Archive, Report 2020/1044
(2020)

13. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. Tech. rep. (2007)

14. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225–
255. Springer, Heidelberg (Apr / May 2017)

15. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (Aug 2012)

16. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 430–443. ACM Press (Oct 2016)

17. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598–628. Springer, Heidelberg (Dec 2017)

18. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17. LNCS, vol. 10355, pp. 229–249.
Springer, Heidelberg (Jul 2017)

19. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 830–842. ACM Press (Oct
2016)

20. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Heidelberg (Apr / May 2018)

21. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 310–331. Springer, Heidelberg (Aug 2001)

22. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (Aug 2010)

23. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (Aug 2012)

24. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(2018)

25. Rotaru, D., Smart, N.P., Stam, M.: Modes of operation suitable for computing on
encrypted data. IACR Trans. Symm. Cryptol. 2017(3), 294–324 (2017)

32

26. Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively se-
cure setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300 (2019),
https://eprint.iacr.org/2019/1300

27. Zhang, F., Maram, D., Malvai, H., Goldfeder, S., Juels, A.: DECO: Liberating
Web Data Using Decentralized Oracles for TLS. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security (2020)

A Security Model and Resources

We are going to prove the security of our protocols in the UC model of Canetti [7].
We assume to deal with an active secure adversary that can corrupt up to n− 1
parties. The set of dishonest parties is decided by the adversary at the beginning
and it can never be changed afterwards. We also assume that the parties are
connected by point to point secure channels and they have access to a broadcast
medium. When any functionality aborts, we assume that it communicated the
abortion to every honest party as well as to the adversary before halting.

Let S be a security parameter dependent set of finite fields with the following
properties

– F2 ∈ S.
– There exists a unique k ∈ N such that F2k ∈ S.
– S \ {F2,F2k} contains only prime fields of characteristic sufficiently close to

a power of 2.
– The value of χ := max

{
|F|−1 | F ∈ S \ {F2}

}
is negligible in the security

parameter.

Moreover, let (E,G) be a security parameter dependent pair with the following
properties

– E is an elliptic curve defined over a prime field in S \ {F2}.
– G is an affine point of E of prime order q 6= 2 such that q2 - |E|.
– Fq ∈ S.

Observe that if q2 - |E|, it is easy to verify if a point Q ∈ E belongs to 〈G〉.
As a matter of fact, it is sufficient to check whether qQ = ∞ (∞ denotes the
identity element of the group). Notice indeed that 〈G〉 is the only subgroup of
order q in E.

We can assume that the parties have access to the functionality FMPC de-
scribed in Figure 16. Observe that we abused the notation and in FMPC we used
[[x]] to denote the identity of x. We also assume that the identities are generated
deterministically and the parties can derive the identity of the output of every
procedure without any interaction.

B Security Proofs of ΠDH

In this appendix, we will denote the number of honest parties by H. Moreover,
we will assume H to be {hi | i ∈ [H]} with h1 < h2 < · · · < hH . For every

33

FMPC

Input. On input (Input,F, i, x) from Pi and (Input,F, i) from all the other parties,
the functionality checks that F ∈ S and x ∈ F. If this is the case, it stores x with
identity [[x]] and domain F.
Polynomial. On input (Poly,F, f,m, [[x1]], [[x2]], . . . , [[xm]]) from every party,
the functionality checks that F ∈ S, f ∈ F[X1, X2, . . . , Xm] and the domain of
[[xi]] is F for every i ∈ [m]. If this is the case, it stores y ← f(x1, x2, . . . , xm) with
domain F and identity [[y]].
Division. On input (Div,F, [[x1]], [[x2]]) from every party, the functionality checks
that F ∈ S and the domain of [[xi]] is F for every i ∈ [2]. If this is the case and
x2 6= 0, it stores y ← x1/x2 with domain F and identity [[y]]. Then, it outputs
OK to the adversary. If instead x2 = 0, it outputs ZD to every party.
Random Input. On input (RandInput,F, i) from every party, the functionality

checks that F ∈ S. If this is the case, it stores y
$← F with domain F and identity

[[y]] and outputs y to party Pi.
Random. On input (Rand,F) from every party, the functionality checks that

F ∈ S. If this is the case, it stores y
$← F with domain F and identity [[y]].

EC Addition. On input (ECAdd, [[Q1]], [[Q2]]) from every party, the function-
ality checks that the domain of [[Q1]] and [[Q2]] is E. If this is the case, it stores
Q3 ← Q1 +Q2 with domain E and identity [[Q3]].
EC Multiplication. On input (ECMult, [[Q1]], a) from every party, the func-
tionality checks that the domain of [[Q1]] is E and a ∈ Fq where q is the order of
G. If this is the case, it stores Q2 ← a ·Q1 with domain E and identity [[Q2]].
EC Embedding. On input (ECEmbed, [[a]], Q) from every party, the function-
ality checks that Q ∈ 〈G〉 and the domain of [[a]] is Fq where q is the order of G.
If this is the case, it stores Q2 ← a ·Q with domain E and identity [[Q2]].
ToBits. On input (ToBits, [[x]]) from every party, the functionality computes
b0, b1, . . . , bl such that x =

∑l
i=0 bi · 2

i (or x =
⊕l

i=0 bi · α
i if the domain of [[x]]

is F2k
∼= F2[α]). Then, it stores bi with domain F2 and identity [[bi]] for every

i ∈ {0, 1, . . . , l}.
ToField. On input (ToField, [[x]],F) from every party, the functionality checks
that F ∈ S and the domain of [[x]] is F2. If this is the case, it stores y ← x with
domain F and identity [[y]].
Output. On input (Output, [[x]]) from every party, the functionality sends x to
the adversary and waits for a reply. If the answer is OK, the functionality outputs
x to every honest party. Otherwise, it aborts.
Abort. On input (Abort) from the adversary, the functionality aborts.

Fig. 16. The multiparty computation functionality

34

i ∈ H, we also denote the number of corrupted parties between the i-th and the
i + 1-th honest party by ci. Specifically, ci := hi+1 − hi for every i ∈ [H − 1],
whereas cH := n− hH .

We indicate the complement of a set S as S{, whereas P(S) denotes the
power set. Moreover, given a finite set U , a probability distribution µ over the
measurable space (U,P(U)) and a function F : U → V , we represent with µF
the distribution induced by µ and F over V .

We assume to deal with an elliptic curve E : Y 2 = X3 +AX2 +BX+C over
the field Fp. Moreover, we suppose that the base point point of the Diffie-Hellman
algorithm is an affine point G of E and we assume that its order is an odd prime
number q. Before proving the security of the multiparty Diffie-Hellman protocols,
we define the following operation.

Definition 3. Let � be the operation defined as follows

� : E ∪ {⊥} × E −→ E ∪ {⊥}

Q1 �Q2 :=


⊥ if Q1 =∞ or Q2 =∞
⊥ if Q1 = ⊥
⊥ if Q1 are affine points with the same x coordinate

Q1 +Q2 otherwise

Observe that � represents the result of formula (1) (see Section 4). As a
matter of fact, the operation succeeds if and only if the two addends are affine
points with different x coordinates. Notice that the associative property does
not hold for �.

B.1 Security of ΠdaPoint

We start with a lemma that is used in the security proofs of both ΠdaPoint and
ΠECSum.

Lemma 1. Let Ci ∈ E \ {∞} for every i ∈ C and let T ∈ E. Assume that

B := (((C1 � C2) � C3) � . . .) � Ch1−1 6= ⊥.

Supposing q sufficiently big, there exists a sequence of points (Ri)i∈[n] such
that 

(((R1 �R2) �R3) � . . .) �Rn = T,

Ri ∈ 〈G〉 ∀i ∈ H
Ri = Ci ∀i ∈ C

(2)

if only if one of the following holds

– H > 1, T ∈
∑
i∈C Ci + 〈G〉 and

T 6∈ Ω :=

{ cH∑
i=ι

ChH+i | ι ∈ [cH]

}
∪
{ cH∑
i=ι

ChH+i +ChH+ι | ι ∈ [cH]

}
∪
{
∞
}

35

– H = 1, T ∈
∑
i∈C Ci + 〈G〉 and

T 6∈ Ω′ := Ω ∪
{∑
i∈C

Ci,
∑
i∈C

Ci +B

}
Moreover, if the above condition is satisfied,

– if H > 1, there exist at least

H−1∏
i=1

(q − 3− 2ci)− 2(q − 1)H−2

different sequences (Ri)i∈[n] for which (2) holds.
– if H = 1, there exists exactly one sequence (Ri)i∈[n] for which (2) holds.

Proof. We start by observing that Q1 � Q2 6= ∞ for every Q1, Q2 ∈ 〈G〉. As a
matter of fact, Q1 + Q2 = ∞ if and only if Q1 = −Q2 and therefore the two
points would have the same x coordinate. In such case, Q1 �Q2 = ⊥.

For each sequence (Ri)i∈[n], we define T0 :=∞ and Ti := Ti−1 +Ri for every
i ∈ [n]. Observe that the following relation holds

(((R1 �R2) �R3) � . . .) �Rn 6= ⊥ (3)

if and only if Ri 6= ∞ and Ri 6= ±Ti−1 for every i ∈ [n]. Moreover, if Ri = Ci
for every i ∈ C, it is necessary and sufficient that, for every i ∈ [H],

B1. Rhi 6=∞
B2. Rhi 6= ±Thi−1
B3. Rhi 6= ±Chi+ι − Thi−1 −

∑ι−1
j=1 Chi+j for every ι ∈ [ci].

Indeed, if the last inequality was not satisfied for any ι ∈ [ci], we would have
Rhi+ι = Chi+ι = ±Thi+ι−1. We can conclude that we have at least q − 3 − 2ci
possible ways to choose Rhi

in order for (3) to hold.
Observe that if inequality (3) is satisfied,

(((R1 �R2) �R3) � . . .) �Rn =
∑
i∈[n]

Ri.

Therefore, if we want to satisfy (2),

RhH
= T − ThH−1 −

cH∑
i=1

ChH+i =: W − ThH−1. (4)

If T 6∈
∑
i∈C Ci + 〈G〉, W − ThH−1 would not belong to 〈G〉 and therefore (4)

as well as (2) would not hold. Furthermore, (4) might be incompatible with
the other conditions that RhH

must satisfy in order for inequality (3) to hold.
Namely:

36

C1. From B1, RhH
= W − ThH−1 6=∞.

This condition does not hold if and only if ThH−1 = W .

C2. From B2, RhH
= W − ThH−1 6= ThH−1.

This condition does not hold if and only if 2ThH−1 = W .

C3. From B2, RhH
= W − ThH−1 6= −ThH−1.

This conditions does not hold if and only if T =
∑cH
i=1 ChH+i.

C4. From B3, RhH
= W − ThH−1 6= ±ChH+ι − ThH−1 −

∑ι−1
i=1 ChH+i for every

ι ∈ [cH]. This condition does not hold if and only if

T =

cH∑
i=1

ChH+i −
ι−1∑
i=1

ChH+i ± ChH+ι for any ι ∈ [cH].

Observe that T ∈ Ω if and only if either C3 or C4 does not hold. Moreover,
if H = 1, T ∈ Ω′ \Ω if and only if either C1 or C2 is not satisfied (observe that
in this case, ThH−1 = B). If H = 1 and T 6∈ Ω′, we know that C1, C2, C3, C4
are satisfied, and therefore RhH

= W −B is the only choice that make equality
(2) hold.

If instead H > 1, we can try to generate the sequence (Ri)i∈[n] by choosing
for j = 1, 2, . . . ,H − 1, a random Rhj

that satisfies B1, B2 and B3. Then, we
set RhH

←W − ThH−1. Clearly, Ri = Ci for every i ∈ C. In this way, we obtain∏H−1
i=1 (q − 3 − 2ci) different sequences. Observe anyway, that not all of them

satisfy (2). As a matter of fact, C1 and C2 might not hold for some of them.

Let W ′ be the only point of ∑
i∈C
i<hH

Ci + 〈G〉

such that 2W ′ = W (observe that W ′ is unique since the order of 〈G〉 is an odd
prime). It may be possible that W ′ does not exist. We now count the problematic
sequences. Notice that all of them are contained in the set{

(Ri)i∈[n] | Ri = Ci ∀i ∈ C,

Rhi
∈ 〈G〉 \ {∞} ∀i ∈ [H − 2],

RhH−1
+

cH−1∑
i=1

ChH−1+i + ThH−1−1 ∈ {W,W ′},

RhH
= W − ThH−1

}
This set has at most 2(q − 1)H−2 elements. Therefore, we have proven that if

T 6∈ Ω, there exist at least
∏H−1
i=1 (q − 3 − 2ci) − 2(q − 1)H−2 sequences that

satisfy equation (2). ut

We start by proving the following lemma.

37

Lemma 2. Assume that

ω′ :=
M +N · l

q

is a negligible function in the security parameter λ ∈ N. If all the parties behave
honestly in ΠdaPoint, the probability that the protocol aborts is negligible.

Proof. Since all the parties behave honestly, an abortion occurs if and only if a
zero denominator is found or if there exist i ∈ [n] and j ∈ [M + Nl] such that
Zi,j =∞. Let E1 be the event in which there exist no i ∈ [n] and j ∈ [M +Nl]
such that Zi,j =∞. The probability of E1 is(

q − 1

q

)n(M+Nl)

We now work conditioned on E1. Fix a k ∈ [Nl] and let j := ψ(k). Let
T0 =∞ and for every i ∈ [n] set Ti := Ti−1 + Zi,j . The computation of Rj fails
due to a zero denominator if and only if Zi,j = ±Ti−1 for some i ∈ [n] \ {1}.

Claim. Assuming that no zero denominator occurs, Ti ∈ 〈G〉 \ {∞} for every
i ∈ [n]. Therefore, Ti 6= −Ti for each i ∈ [n].

This is trivially true for i = 1. For i > 1, observe that Ti is the sum of elements of
〈G〉 and therefore it belongs to 〈G〉 too. Moreover, if Ti =∞, then Zi,j = −Ti−1
which would cause a zero denominator in the previous step of the computation.
If Ti = −Ti, 2Ti =∞. Since all the elements of 〈G〉 \ {∞} have order q 6= 2, this
condition cannot hold.

We now try to count the sequences (Zi,j)i∈[n] that do not cause zero denomi-
nators. If we start from i = 1 and we gradually select Zi,j ∈ 〈G〉\{∞, Ti−1,−Ti−1},
we understand that there exist (q − 1)(q − 3)n−1 sequences that do not cause
zero denominators.

Let E2 be the event in which no zero denominator is found computing Rψ(k)
for k ∈ [Nl]. Conditioned on E1, the probability of E2 is

P(E2 | E1) =

(
(q − 1)(q − 3)n−1

)Nl
(q − 1)nNl

=

(
q − 3

q − 1

)(n−1)Nl

Conditioned on E1 ∩ E2, the protocol aborts only if there exist i ∈ [N] and
j ∈ [l] \ {1} such that Ri,1 = ±Ri,j . Let E3 be the event in which such situation
never occurs.

Claim. Conditioned on E1 ∩ E2, Ri,j is uniformly distributed in 〈G〉 \ {∞} for
every i ∈ [N] and j ∈ [l].

That means that the probability of E3 conditioned on E1 ∩ E2 is(
q − 3

q − 1

)N(l−1)

38

We now prove the claim. Fix i ∈ [N] and j ∈ [l]. Let ι := ψ((i−1) · l+ j) and
notice that Ri,j = Rι. As we did before, define T0 :=∞ and Tk := Tk−1 + Zk,ι.
We start observing that Rι ∈ 〈G〉 \ {∞}. This follows from the first claim of this
proof and the fact that Rι = Tn.

We prove the claim by induction on n. Let T be an element of 〈G〉 \ {∞}.
We count the number of sequences (Zk,ι)k∈[n] that satisfy E1 and E2 and such
that

∑
k∈[n] Zk,ι = T . Let this number be Nn,T .

For n = 1, the claim is trivial. Observe that N1,T = 1 for every T , indeed,
Z1,ι = T is the only option.

Suppose the claim is true for n = h − 1, we prove it for n = h. Let T
be in 〈G〉 \ {∞}. Starting from k = 1 until n − 1, we gradually select Zk,ι in
〈G〉 \ {∞, Tk−1,−Tk−1}. For k = 1, we have q − 1 possible choices as T0 =
−T0 =∞. For k > 1, we have instead q− 3 choices (this is a consequence of the
first claim of this proof). For Zn,ι there is at most one possibility i.e. T − Tn−1.
Observe that sometimes there is no way to choose Zn,ι, indeed T−Tn−1 might be
in {∞, Tn−1,−Tn−1}. Actually, T −Tn−1 6= −Tn−1 otherwise T =∞. Therefore,
the problematic cases are Tn−1 = T and Tn−1 = T/2 (the division by 2 is well
defined in 〈G〉 since q is coprime with 2). Observe that T 6= ∞ implies that T
and T/2 are distinct.

Therefore, the number of sequences of (Zk,ι)k∈[h] such that E1 ∩ E2 holds
and

∑
k∈[h] Zk,ι = T is

Nh,T = (q − 1) · (q − 3)h−2 −Nh−1,T −Nh−1,T/2

As a matter of fact, we just have to count all the possible sequences of the first
n−1 points and subtract those whose sum is T or T/2. By inductive hypothesis,
Nh−1,T and Nh−1,T/2 are independent of T , therefore, Nh,T is independent of T
too. This is sufficient to prove the claim.

In conclusion, the probability of aborting is

P(E{
1) +

(
P(E{

2 | E1) + P(E{
3 | E1 ∩ E2) · P(E2 | E1)

)
· P(E1) ≤

≤P(E{
1) + P(E{

2 | E1) + P(E{
3 | E1 ∩ E2) =

=1−
(
q − 1

q

)n(M+Nl)

+ 1−
(
q − 3

q − 1

)(n−1)Nl

+ 1−
(
q − 3

q − 1

)N(l−1)

≤

≤
n(M +Nl)

q
+

2(n− 1)Nl

q − 1
+

2N(l − 1)

q − 1

Observe that the last term is negligible if ω′ is negligible. ut

We present here the proof of theorem 1.

Proof. Consider the simulator SdaPoint described in Figure 17.
Observe that the protocol aborts with the same distribution of the simulation.

In particular, if a zero denominator occurs or any party Pi (even a corrupted
one) claims that there exists j ∈ [M + Nl] such that Zi,j = ∞, the protocol
always aborts and the simulation is perfect. The same reasoning applies when

39

SdaPoint

MPC
The simulator checks that the identities specified in the queries correspond to a
stored value. If this is the case, it simply forwards the communications between
the adversary and the functionality.
daPoint
The simulator runs the protocol with the adversary. If an abortion oc-
curs, the simulator sends (Abort) to the functionality. Otherwise, it sends
(daPoint, (idi,1, idi,2, idi,3)i∈[N]) to the functionality.

Fig. 17. The daPoint Simulator

there exist i ∈ [n] and j ∈ [M + Nl] such that (xi,j , yi,j) 6∈ E. Indeed, if the
incorrect point is opened in step 5, the protocol aborts. Moreover, in the lucky
case in which the point passes the check, the protocol aborts in the following
step when the equation of the curve Y 2 = X3 + AX2 + BX + C is checked on
all the non-opened points. Therefore, consider the event E1 in which none of the
previous cases occurs. Let Y be the event in which the protocol succeeds and
observe that P(Y | E{

1) = 0.
Now consider the protocol execution and define

Rj :=
∑
i∈[n]

Zi,j for j ∈ [M +Nl]

Z ′i,j := (xi,j , yi,j) for i ∈ [n] and j ∈ [M +Nl]

R′j :=
∑
i∈[n]

Z ′i,j for j ∈ [M +Nl].

We start by showing that if there exists any j ∈ [M +Nl] such that R′j 6= Rj
conditioned on E1, then the protocol aborts with overwhelming probability (i.e.
the probability of not aborting is negligible). Let S := {j ∈ [M+Nl] | R′j 6= Rj}.

The first observation is that if R′j 6= Rj , there exists at least one i ∈ [n]
such that Z ′i,j 6= Zi,j . Therefore, if there exist more than Nl elements in S, the
protocol aborts with probability 1 at step 5.

For each i ∈ [N] and j ∈ [l], let f(i, j) := ψ((i− 1)l + j).
The second observation is that, conditioned on E1, the protocol does not

abort only if every bucket is either contained in S or in S{. Indeed, if there exist
j, k ∈ Bi such that R′j = Rj and R′k 6= Rk, then, there exists ι ∈ Bi such that
Rf(i,1) +Rι 6= R′f(i,1) +R′ι. In particular,

ι =

{
k if Rf(i,1) = R′f(i,1)
j if Rf(i,1) 6= R′f(i,1)

We have shown that if |S| > Nl or l - |S|, the probability of an abortion is 1.
We now analyse what is the probability of aborting in the other cases, i.e. when
|S| = rl with 0 < r ≤ N .

40

We consider the possible permutations ψ that would make the protocol suc-
ceed conditioned on E1. Let their set be Σ. We can represent each permutation
as a sequence of M +Nl non-repeated numbers in [M +Nl]. The j-th number
of the sequence represents the image of j. The i-th bucket is the sequence of el-
ements from position (i− 1)l+ 1 to il. The permutations that cause no abortion
have to send all the elements of S in r out of the first N buckets. There are(
N
r

)
ways of choosing these buckets, (rl)! ways of permuting the elements in S

and (M + Nl − rl)! ways of permuting the remaining elements. Therefore, the
probability of picking any of the permutations that cause no abortion is

P(ψ ∈ Σ | |S| = rl, E1) ≤
(
N
r

)
· (rl)! · (M +Nl − rl)!

(M +Nl)!
=

(
N

r

)(
M +Nl

rl

)−1
As it was proven in [14, Section 5], for every r ∈ [N]

(
N

r

)(
M +Nl

rl

)−1
≤ N ·

(
M +Nl

l

)−1
= ω

As a consequence, P(Y | S 6= ∅, E1) ≤ ω(λ) and therefore, the protocol succeeds
with negligible probability when S 6= ∞. In conclusion, if we prove that no
adversary can distinguish the output of the protocol from the output of the
functionality when S = ∅ and E1 holds, the theorem is proven.

Recall lemma 1, and observe that the points of the adversary all belong to
〈G〉, therefore, we do not need to care about cosets. For every j ∈ [M+Nl], define
Ωj to be the set of values T ∈ 〈G〉 that Rj cannot assume without causing a zero
denominator in step 7. In general, we have a different Ωj for every j ∈ [M +Nl].
Observe that |Ωj | ≤ 2cH + 3.

Consider now a bucket Bi. Conditioned on the knowledge of the values {Wi,j |
j = 2, 3, . . . , l}, the adversary knows that

– Rf(i,1) 6∈ Ωf(i,1)
– Wi,j −Rf(i,1) = Rf(i,j) 6∈ Ωf(i,j) for j = 2, 3, . . . , l.

– Rf(i,1) 6= Wi,j/2 for j = 2, 3, . . . , l (observe that the division by 2 is well
defined since the order of 〈G〉 is an odd prime). If this condition was not
satisfied, a zero denominator would occur when Rf(i,1) and Rf(i,j) are added.

In other words, Rf(i,1) can assume at least Λ := q − l(2cH + 4) + 1 different
values. By lemma 1, given any of such values T for Rf(i,1), we have at least

ρ :=

{(∏H−1
j=1 (q − 3− 2cj)− 2(q − 1)H−2

)l
if H > 1

1 otherwise

ways to choose (Zk,f(i,j))k∈H,j∈[l] that respect the view of the adversary and
such that Rf(i,1) = T .

41

We now show that the distribution µ of (Zk,f(i,j))k∈[n],j∈[l] in the protocol is
indistinguishable from the uniform distribution ν over the set

Ξ1 :=
{

(Qk,f(i,j))k∈[n],j∈[l] | Qk,f(i,j) = Rk,f(i,j) ∀(k, j) ∈ C × [l],

Qk,f(i,j) ∈ 〈G〉 ∀(k, j) ∈ H × [l],
n∑
k=1

Qk,f(i,1) +

n∑
k=1

Qk,f(i,j) = Wi,j ∀j ∈ [l]
}
.

Define Ξ2 to be set of sequences (Zk,f(i,j))k∈[n],j∈[l] that respect the view
of the adversary and observe that µ is the uniform distribution over Ξ2. Since
Ξ2 ⊆ Ξ1, the statistical distance between µ and ν is

d(µ, ν) =
|Ξ1| − |Ξ2|
|Ξ1|

=
ql(H−1)+1 − |Ξ2|

ql(H−1)+1

Suppose that H > 1. In such case,

d(µ, ν) =
ql(H−1)+1 − |Ξ2|

ql(H−1)+1
≤
ql(H−1)+1 − Λ · ρ

ql(H−1)+1
=

=
ql(H−1)+1 − (q − l(2cH + 4) + 1)

(∏H−1
j=1 (q − 3− 2cj)− 2(q − 1)H−2

)l
ql(H−1)+1

Observe that the numerator of the expression has degree l(H − 1) in q, whereas
the denominator has degree l(H − 1) + 1 in q. The leading coefficient of the
numerator is

l(2cH + 4)− 1 + l
(H−1∑
j=1

(3 + 2cj) + 2
)

= l(

H∑
j=1

2cj + 3H + 3)− 1

≤ l(2n+H + 3) ≤ 3l(n+ 1).

Therefore, if ω′(λ) is a negligible sequence in the security parameter, no PPT
adversary can distinguish between µ and ν.

If H = 1 instead, observe that |Ξ2| ≥ Λ = q − l(2cH + 4) + 1. Therefore,

d(µ, ν) =
q − |Ξ2|

q
≤
q − q + l(2cH + 4)− 1

q
≤
l(2n+ 4)− 1

q

Again, if ω′(λ) is a negligible sequence in the security parameter, no PPT ad-
versary can distinguish between µ and ν.

Now, let F be the function that given a sequence (Uk,f(i,j))k∈[n],j∈[l] of points
in E, outputs

∑
k∈[n] Uk,f(i,1). By well known results,

d(µF , νF) ≤ d(µ, ν).

42

Observe that µF is the distribution of the output of the i-th bucket of the
protocol conditioned on the view of the adversary. On the other hand, νF is the
uniform distribution over 〈G〉.

Let ν′ be the uniform distribution over 〈G〉 \ {∞}. Observe that for every
i ∈ [N], this is the distribution of the i-th output of the functionality. The
statistical distance between ν′ and νF is 1/q which is negligible. Since we have

d(µF , ν
′) ≤ d(µF , νF) + d(νF , ν

′)

and the right-hand side is the sum of two negligible functions, we have proven
that the statistical distance between µF and ν′ is negligible and therefore, for
every i ∈ [N], no PPT adversary is able to distinguish the i-th output of the
functionality from the i-th output of the protocol. The theorem follows from
lemma 2 and from the fact that the N outputs are i.i.d. in both the protocol
and the functionality. ut

B.2 Security of ΠDH

Proof. Consider the simulator in Figure 18. We show that no adversary is able
to distinguish between ΠDH and the composition of FDH and SDH.

SDH

MPC
The simulator checks that the identities specified in the queries correspond to a
stored value. If this is the case, it simply forwards the communications between
the adversary and the functionality.
Key Generation
The simulator sends (KeyGen, id) to the functionality and runs the protocol with
the adversary. When the simulation obtains a non-∞ public key, SDH forwards
the point received from the functionality to the adversary. The simulator sends
the reply of the adversary to FDH.
Diffie-Hellman
The simulator sends (DH, id1, Q, id2) to the functionality. When W is opened, the
SDH sends a random element in 〈G〉 to the adversary and waits for an answer. If
the reply is not OK, the simulator sends (Abort) to the functionality. SDH never
sends ZD to the adversary.

Fig. 18. The Diffie-Hellman Simulator

First of all observe that all the queries available also in FdaPoint are per-
fectly simulated. Therefore, we focus our analysis on the key generation and key
exchange procedures.

The key generation procedure is perfectly simulated. As a matter of fact, the
simulation restarts the procedure with the same probability as the original pro-
tocol. Observe that no information is leaked and the adversary has no influence

43

on the protocol apart from the ability of making it abort when the opening is
performed. Furthermore, the simulation aborts if and only if the functionality
does. The output distribution is exactly the same. Indeed, the protocol outputs
([[s]]q, sG) where sG 6=∞. Such event occurs if and only if s ∈ {1, 2, . . . , q − 1}.
Now, it is straightforward to see that this is the same distribution as the output
of the functionality.

In the key exchange procedure, both protocol and functionality check that
the client’s public key Q belongs to the proper set i.e. 〈G〉 \ {∞}. This is done
by checking that qQ = ∞. In such case, the order of Q divides q. Since q is a
prime, the only possibilities are that the order is either q or 1. The first case is
excluded by the fact that we checked that Q 6= ∞. Now, at the beginning, we
explicitly required that q2 - |E|. That means that there exists only one subgroup
of E of order q which must coincide with 〈G〉. This is sufficient to conclude that
qQ = ∞ implies Q ∈ 〈G〉. We have just proven that the operation in step 2 is
well defined.

The distributions of the element W communicated to the adversary in the
protocol and the simulation are slightly different. The first one is indeed

µ(W) =

{
1
q−1 if sQ−W 6=∞
0 otherwise

The second one is instead the uniform distribution ν over 〈G〉.
The statistical distance between µ and ν is negligible. Indeed

d(µ, ν) =
1

2
·
(

(q − 1) ·
(

1

q − 1
− 1

q

)
+

1

q

)
=

1

q

Therefore, no PPT adversary is able to distinguish between µ and ν.
The only remaining possibility for the adversary to distinguish between pro-

tocol and simulation is the distribution of the zero denominator event. Indeed,
that never happens in the simulation. We obtain a zero denominator if and only
if W = Z − R and R have the same x coordinate (i.e. x=u). That happens if
and only if Z −R = R or Z −R = −R.

The second case occurs if and only if Z = sQ = ∞. Since we know that Q
has order exactly q and s ∈ {1, 2, . . . , q − 1}, this event cannot arise.

The relation Z −R = R holds instead if and only if Z = sQ = 2R. We know
that sQ is an element of 〈G〉\{∞}. Since 〈G〉 has no element of order 2, the point
(s/2)Q ∈ 〈G〉 \ {∞} is well defined. Remember that R is sampled uniformly in
the same domain by FdaPoint, therefore the probability that the collision occurs
is 1/(q − 1).

When ΠDH succeeds, the distribution of its output is exactly the same as in
the simulation. This is sufficient to prove the security of ΠDH. ut

C Security Proofs of ΠweakerDH

In this appendix, we present the security proofs of the protocols described in
Section 4.2.

44

C.1 Security of ΠECSum

Proof. We start by analysing the probability of an abortion when all the parties
are honest. This can occur if and only if a zero denominator is found. Consider the
execution of the protocol ΠECSum and remember that Ri is sampled uniformly
in 〈G〉 \ {∞} for each i ∈ [n].

We define T0 := ∞. Then, for i = 1, 2, . . . , n, we define Ti := Ti−1 + Ri.
A zero denominator occurs if and only if Ri = ±Ti−1 for some i ∈ [n]. For
i = 1, this condition cannot be satisfied. For i > 1 instead, the event arises with
probability at most 2/(q−1). In conclusion, the protocol aborts with probability
smaller than 2(n− 1)/(q − 1). If q−1 is negligible in the security parameter, the
probability of an abortion is negligible.

Consider now the simulator SECSum described in Figure 19.

SECSum

MPC
The simulator checks that the identities specified in the queries correspond to a
stored value. If this is the case, it simply forwards the communications between
the adversary and the functionality.
ECSum
The simulator runs the protocol with the adversary. Let {Ri | i ∈ C} be the points
input by the corrupted parties. If an abortion occurs, the simulator sends (Abort)
to the functionality. Otherwise, it sends (ECSum, id1, id2) to FECSum as well as∑
i∈C Ri.

Fig. 19. The EC-Sum Simulator

Observe that the procedures of FMPC are perfectly simulated, whereas EC-
Sum aborts with the same distribution as the protocol. What we need to check is
that the distribution of the output of the functionality is indistinguishable from
the distribution of the output of ΠECSum.

First of all, observe that if the adversary inserts a point that does not belong
to the curve, the protocol aborts in step 2. In this case, the indistinguishability
is trivial, we therefore assume that this event does not happen. For the same
reason, we can also suppose that no zero denominator occurs.

Recall lemma 1 (see Appendix B.1). There exist at least Λ := q − 2cH − 3
different values R := (x, y) that the output can assume without causing any zero
denominator. Moreover, if H > 1, there are at least

ρ :=

H−1∏
i=1

(q − 3− 2ci)− 2(q − 1)H−2

different choices for (Ri)i∈H that satisfy the view of the adversary and such that∑n
i=1Ri = R. If instead H = 1, there exists exactly one choice for (Ri)i∈H in

order to satisfy the view of the adversary and have
∑n
i=1Ri = R.

45

Let µ be the distribution of the output of the protocol conditioned on the
view of the adversary. Let ν be the uniform distribution over the set

Ξ1 :=
{

(Qi)i∈[n] | Qi = Ri ∀i ∈ C, Qi ∈ 〈G〉 ∀i ∈ H
}
.

We show that µ and ν are indistinguishable distributions.
Observe that µ is the uniform distribution over the set Ξ2 of all possible

sequences (Ri)i∈H that satisfy the view of the adversary. Since Ξ2 ⊆ Ξ1, the
statistical distance between µ and ν is

d(µ, ν) =
|Ξ1| − |Ξ2|
|Ξ1|

=
qH − |Ξ2|

qH

When H > 1, we have

d(µ, ν) ≤
qH − Λ · ρ

qH
=
qH − (q − 2cH − 3) ·

(∏H−1
i=1 (q − 3− 2ci)− 2(q − 1)H−2

)
qH

Observe that the numerator of the last expression has degree H−1 in q, whereas
the denominator has degree H in q. Moreover, the leading coefficient of the
numerator is

2cH + 3 +

H−1∑
i=1

(3 + 2ci) + 2 =

H∑
i=1

2ci + 3H + 2 ≤ 3n+ 2

Therefore, if q−1 is negligible in the security parameter λ, no PPT adversary
can distinguish between µ and ν when H > 1.

If instead H = 1, |Ξ2| ≥ Λ = q − 2cH − 3, therefore,

d(µ, ν) =
q − |Ξ2|

q
≤
q − q + 2cH + 3

q
=

2cH + 3

q
≤

2n+ 3

q

Again, if q−1 is negligible in the security parameter λ, no PPT adversary can
distinguish between µ and ν when H = 1.

Now, let F be the function that given a sequence (Ui)i∈[n] of points in E,
outputs (Uh1

, Uh2
, . . . , UhH

). By well known results,

d(µF , νF) ≤ d(µ, ν).

Observe that µF is the distribution of the output of ΠECSum conditioned on the
view of the adversary. On the other hand, νF is the uniform distribution over
〈G〉H .

If
∑
i∈C Ri 6∈ 〈G〉, νF coincides with the distribution of the output of the

functionality (it is impossible for the functionality to obtain R =∞). Therefore,
in such case, the security of ΠECSum is proven. If instead

∑
i∈C Ri ∈ 〈G〉, the

output of the functionality is uniformly distributed over{
(Rh1 , Rh2 , . . . , RhH

) ∈ 〈G〉H |
∑
i∈[n]

Ri 6=∞
}
.

46

Let ν′ be its distribution. The statistical distance between ν′ and νF is

d(ν′, νF) =
qH − qH−1(q − 1)

qH
=

1

q

which is negligible. Since we have

d(µF , ν
′) ≤ d(µF , νF) + d(νF , ν

′)

and the right-hand side is the sum of two negligible functions, we have proven
that the statistical distance between µF and ν′ is negligible. We conclude that
no PPT adversary is able to distinguish the output of the functionality from the
output of the protocol. Since the stored point is

∑
i∈[n]Ri in both the protocol

and the simulation, this terminates the proof. ut

C.2 Security of ΠweakerDH

Proof. Consider the simulator SweakerDH described in Figure 20. Observe that
the MPC procedures are perfectly simulated.

We start by analysing the key generation procedure. The distribution of the
points {Si}i∈H received by the adversary is the same in both protocol and simu-
lation. Indeed, in both cases, the points {Si}i∈H are independent and uniformly
distributed in 〈G〉. The fact is trivially true for the protocol. In the case of the
simulation, we have to consider two possibilities. If there exists j ∈ C such that
Sj 6= sjG, the fact is again trivial. In the other case, the points {Si}i∈H\{ι} are
independent and uniformly distributed in 〈G〉. Moreover,

∑
i∈[n]\{ι} Si is a point

of 〈G〉. Since S is independent of everything else and it is uniformly distributed
in 〈G〉, the point Sι = S −

∑
i∈[n]\{ι} Si is independent of {Si}i∈H\{ι} and it is

uniformly distributed in 〈G〉.
The distribution of the output of the key generation is the same in both

protocol and simulation. As a matter of fact, if the adversary does not provide
the correct private keys to FKEY, both the situations abort. When no abortion
occurs, the output of the honest parties is the sum of the points S1, S2, . . . , Sn
in both the protocol and the simulation.

Consider now the execution of Diffie-Hellman. The distribution of the points
broadcast by the honest parties may be slightly different in the simulation.
Specifically, if we denote with U the point supplied by the adversary to FECSum,
in the protocol the points (Wi)i∈H are uniformly distribute over the set{

(Wh1 ,Wh2 , . . . ,WhH
) ∈ 〈G〉H | U +

∑
i∈H

(siQ−Wi) 6=∞
}
,

whereas in the simulation they are uniform in 〈G〉H . Anyway, the statistical dis-
tance between the two distributions is at most 1/q, which is negligible. Therefore,
no PPT adversary can distinguish the protocol from the simulation by simply
looking at them.

47

SweakerDH

Let ι ∈ H.
MPC
The simulator checks that the identities specified in the queries correspond to a
stored value. If this is the case, it simply forwards the communications between
the adversary and the functionality.
Key Generation

1. The simulator sends (KeyGen, id) to FweakerDH on behalf of every corrupted
party Pj .

2. Let S be the point communicated by the functionality. The simulator samples

a random integer si
$← Fq and sets Si ← siG for each i ∈ H \ {ι}.

3. When the adversary sends {(sj , Sj)}j∈C , the simulator checks whether Sj =
sjG for every j ∈ C. In such case, it sets Sι ← S −

∑
i∈[n]\{ι} Si. Otherwise,

it samples sι
$← Fq and sets Sι ← sιG.

4. The simulator sends {Si}i∈H to the adversary. If the answer is OK, the sim-
ulator forwards the message to the functionality if and only if Sj = sjG for
every j ∈ C. Otherwise, it sends (Abort).

Diffie-Hellman The simulator checks whether qQ =∞ and Q 6=∞. If this is not
the case, it stops. Otherwise, it runs the protocol with the adversary simulating
FECSum with an internal copy of the resource. Let U be the point communicated
by the adversary in this occasion. The simulator models the points broadcast by
the honest parties with random points (Wi)i∈H in 〈G〉.
When every corrupted party Pj has broadcast a point W ′j , the simulator checks
that W ′j ∈ E for each j ∈ C. It this is not the case, it sends (Abort) to the
functionality. Otherwise, it sends to the functionality

Qε ←
∑
j∈C

(W ′j − sjQ) + U and Qτ ← 2
∑
i∈H

Wi + 2
∑
j∈C

W ′j .

If FweakerDH aborts, the simulator sends ZD to the adversary.

Fig. 20. The simulator SweakerDH

48

In both protocol and simulation, let W ′j be the point broadcast by the cor-
rupted party Pj and let s be the private key (i.e. the discrete logarithm of S).
Furthermore, we set Qε :=

∑
j∈C(W

′
j − sjQ) + U . Let R := (x, y) be the point

stored by FECSum. The Diffie-Hellman procedure in ΠweakerDH fails due to e zero
denominator if and only if

R = ±W = ±
(∑
i∈C

W ′i +
∑
i∈H

Wi

)
=

= ±
(∑
i∈C

(W ′i − siQ) + U +
∑
i∈[n]

siQ− U −
∑
i∈H

Ri

)
= ±

(
Qε + sQ−R

)
.

In other words, W = −R if and only if sQ+Qε =∞. Moreover, R = W if and
only if 2R = sQ+Qε and therefore, if and only if 2W = sQ+Qε. Observe that
the Diffie-Hellman procedure of the simulation fails in the same way when any
of these conditions holds.

The only thing that we have to check in order to finish is that the results
stored with identity id2 in the protocol and in the simulation coincide. This is
trivially true. Indeed, in the protocol the output is the x coordinate of

W +R =
∑
i∈H

Wi +
∑
j∈C

W ′j +R =
∑
i∈H

(Wi +Ri) +
∑
j∈C

W ′j + U =

=
∑
i∈H

siQ+
∑
j∈C

W ′j + U = sQ+
∑
j∈C

(W ′j − sjQ) + U =

= sQ+Qε.

ut

D Security Proof of ΠSign

We now prove the security of the protocol ΠSign described in Section 4.4.

Proof. Consider the simulator SSign described in Figure 21 and let the symbol
q
≡ denote the congruence relation modulo q.

The initialization is perfectly simulated. The fact has been already proven in
Appendix 4.2. Indeed, observe that the initialization of ΠSign coincides with the
initialization in ΠweakerDH.

Consider now the simulation of the signature generation. Observe that the
distribution of the points (Ri)i∈H received by the adversary is the same in both
the protocol and the simulation. As a matter of fact, in both cases, the points
(Ri)i∈H are independent and uniformly distributed in 〈G〉. The fact is trivially
true for the protocol, in the simulation instead, there are two possibilities. If
there exists j ∈ C such that Rj 6= rjG, the fact is again obvious. Otherwise, the
points (Ri)i∈H\{ι} are independent and uniformly distributed in 〈G〉. Moreover,∑
i∈[n]\{ι}Ri is a point of 〈G〉. Since R is independent of everything else and it

49

SSign
Let G be the base point of the curve and let q be its order. Let Pι be an honest
party.
Initialization:

1. When the simulator receives (Key) from a corrupted party Pj , the simulator
sends (Init) to FSign on behalf of Pj .

2. Let A be the point communicated by the functionality. The simulator samples

a random integer ai
$← 〈q〉 and sets Ai ← aiG for each i ∈ H \ {ι}.

3. When the adversary sends (aj , Aj)j∈C , the simulator checks whether Aj =
ajG for every j ∈ C. In such case, it sets Aι ← A−

∑
i∈[n]\{ι}Ai. Otherwise,

it samples aι
$← 〈qλ〉 and sets Aι ← aιG.

4. The simulator sends (Ai)i∈H to the adversary. If the answer is OK, the sim-
ulator forwards the message to the functionality if and only if Aj = ajG for
every j ∈ C. Otherwise, it sends (Abort).

Sign: The simulator performs the following steps.

1. It stores the triple (s,R,m) received from the functionality.

2. It samples a random ri
$← 〈q〉 for each i ∈ H \ {ι}.

3. It computes Ri ← riG for each i ∈ H \ {ι}.
4. When the adversary sends (rj , Rj)j∈C , the simulator checks whetherRj = rjG

for every j ∈ C. In such case, it sets Rι ← R −
∑
i∈[n]\{ι}Ri. Otherwise, it

samples rι
$← 〈q〉 and sets Rι ← rιG.

5. The simulator sends (Ri)i∈H to the adversary.
6. If the answer is not OK or there exists j ∈ C such that Rj 6= rjG, the

simulator sends (Abort) to the functionality.
7. The simulator computes si ← (ri+H(R,A,m)·ai) mod q for each i ∈ [n]\{ι}.
8. The simulator computes sι ←

(
s−

∑
i∈[n]\{ι} si

)
mod q.

9. The simulator sends si to every corrupted party for each i ∈ H.
10. When every party Pj sent a value s′j , the simulator checks whether

∑
j∈C s

′
j =∑

j∈C sj mod q. In such case, it sends OK to the functionality, otherwise, it
sends (Abort).

Fig. 21. The simulator SSign

50

is uniformly distributed in 〈G〉, the point Rι = R−
∑
i∈[n]\{ι}Ri is independent

of (Ri)i∈H\{ι} and it is uniformly distributed in 〈G〉.
Observe that if the adversary does not provide the correct private keys or

it does not give the final OK to FKEY, both the situations abort. Further-
more, notice that if no abortion occurs in the simulation, the sum of the points
R1, R2, . . . , Rn is exactly R.

The values (si)i∈H\{ι} are perfectly simulated. This is something easy to
verify. Actually, even sι is perfectly simulated. As a matter of fact, denoting the
discrete logarithm of R with r, we have

sι
q
≡ s−

n∑
i=1
i6=ι

si
q
≡ r +H(R,A,m) · a−

n∑
i=1
i6=ι

(ri +H(R,A,m) · ai)
q
≡

q
≡
∑
i∈[n]

(ri +H(R,A,m) · ai)−
n∑
i=1
i 6=ι

(ri +H(R,A,m) · ai)
q
≡

q
≡ rι +H(R,A,m) · aι.

The last thing that we have to check in order to finish the proof is that
the output distribution is the same. For both the protocol and the simulation,
let s′j be the element broadcast by the corrupted party Pj . Furthermore, let

s′ :=
(∑

i∈H si +
∑
j∈C s

′
j

)
mod q. The following equalities hold.

s′G =
(∑
i∈H

si +
∑
j∈C

s′j
)
G =

∑
i∈H

siG+
∑
j∈C

s′jG =

=
∑
i∈H

(ri +H(R,A,m)ai)G+
∑
j∈C

s′jG =

=
∑
i∈H

(Ri +H(R,A,m)Ai) +
∑
j∈C

s′jG =

= R+H(R,A,m)A−
∑
j∈C

(Rj +H(R,A,m)Aj) +
∑
j∈C

s′jG.

In other words, s′G = R+H(R,A,m)A if and only if∑
j∈C

s′jG =
∑
j∈C

(Rj +H(R,A,m)Aj).

If we perform the discrete logarithm on both sides of the equation, we obtain
that the condition holds if and only if∑

j∈C
s′j

q
≡
∑
j∈C

(rj +H(R,A,m)aj)
q
≡
∑
i∈C

sj .

This is sufficient to understand that the simulation aborts if and only if the
protocol aborts. Moreover, if the protocol does not abort, the outputs coincide.

51

As a matter of fact, when R is fixed, there exists a unique s ∈ 〈q〉 that satisfies
the equation sG = R+H(R,A,m)A. In other words, the distributions of s and
s′ coincide. ut

E Security of the MPC-friendly AEAD

We introduce some notation. Given two strings a and b, we denote their con-
catenation by a ‖ b. Notice that the latter is different from (a, b). Indeed, it is
possible to find (a′, b′) 6= (a, b) such that a ‖ b = a′ ‖ b′.

In order to be formal, we start by giving a definition of OTP-based MAC-
then-Encrypt AEAD.

Definition 4 (OTP-based MAC-then-Encrypt). Let

F : K × {0, 1}l1 −→ Fl2p

be a PRF and let MAC be a function

MAC : K′ ×
(s1⋃
i=0

Fip ×
s2⋃
i=0

Fip
)
−→ Fs3p .

Assume that s2+s3 ≤ l2. We define the MAC-then-Encrypt AEAD MtE(F,MAC)
as follows.

Encryption: On input

– a key (k, k′) ∈ K ×K′,
– a nonce r ∈ {0, 1}l1 ,
– additional data a ∈ Fl′p with l′ ≤ s1,

– plaintext x ∈ Flp with l ≤ s2,

compute t← MAC(k′, (a, x)) and z ← F (k, r). Then, output

c← (x ‖ t) + Trunc
(
z, len(x) + len(t)

)
.

Decryption: On input

– a key (k, k′) ∈ K ×K′,
– a nonce r ∈ {0, 1}l1 ,
– additional data a ∈ Fl′p with l′ ≤ s1,

– ciphertext c ∈ Flp with s3 ≤ l ≤ s2 + s3,

compute z ← F (k, r). Let (x ‖ t) ← c − Trunc(z, l) where t ∈ Fs3p . Afterwards,
compute t′ ← MAC(k′, (a, x)). If t = t′, output x, in the remaining cases, output
⊥.

In [21], Krawczyk proved that an OTP-based MAC-then-Encrypt scheme is
secure as long as the MAC is one-query resistant.

52

GFORG
M,A (λ)

Setup: The challenger randomly samples k
$← Kλ. Afterwards, the PPT adver-

sary A is activated with a sequence of λ bits set to 1.
Query: Only once, the adversary queries a value x ∈ Dλ which the challenger
answers with t← MACλ(k, x).
Guess: The adversary sends a couple (y, z) ∈ Dλ × Sλ. The challenger answers
with a bit b that is set if and only if z = MACλ(k, y) and y 6= x. The bit b is the
final output of the game.

Fig. 22. The one-query forgery resistance game

Definition 5 (One-query forgery resistant MAC). Let

M := {MACλ : Kλ ×Dλ −→ Sλ}λ∈N

be a family of functions, where Kλ, Dλ and Sλ are generic sets. Assume that A
is a PPT adversary.

For every λ ∈ N, consider the game GFORG
M,A (λ) described in Figure 22. We

define the one-query forgery resistance advantage of A against M as

AdvFORG
M,A (λ) := P

(
GFORG
M,A (λ) = 1

)
.

We say that M is one-query forgery resistant if, for every PPT adversary
A, the advantage AdvFORG

M,A (λ) is a negligible function in λ.

The result of Krawczyk (see [21]) can be formalised as follows

Theorem 7. Let F : K× {0, 1}l1 −→ Fl2p be a PRF and let MAC be a function

MAC : K′ ×
(s1⋃
i=0

Fip ×
s2⋃
i=0

Fip
)
−→ Fs3p .

Assume that s2+s3 ≤ l2. If MAC is one-query forgery resistant, then MtE(F,MAC)
is a secure AEAD.

It is possible to prove that PolyMAC is a one-query forgery resistant MAC
function. This is sufficient to conclude the security of our AEAD. The result is
formalised by the following theorem.

Theorem 8. For every PPT adversary A, we have

AdvFORG
PolyMAC,A(λ) ≤

L1 + L2 + 1

p

Proof. Consider the game GFORG
PolyMAC,A(λ) and let (y, z) be the MAC key selected

by the challenger.

53

Suppose that the adversary queried the pair

u := ((u1, u2, . . . , ur), (ur+1, ur+2, . . . , ur+r′)) ∈ Frp × Fr
′

p

with r ≤ L1 and r′ ≤ L2. Moreover, assume that t := PolyMAC
(
(y, z), u

)
was

the reply of the challenger.
Let (w, v) be the forgery attempt issued by the adversary. In particular, w =

((w1, w2, . . . , ws), (ws+1, ws+2, . . . , ws+s′)) with s ≤ L1 and s′ ≤ L2, whereas
v ∈ Fp. We assume that w is different from u.

We define the polynomials

w(X) = Ecd(s′) ·Xs+s′+1 + w1 ·Xs+s′ + w2 ·Xs+s′−1 + · · ·+ ws+s′ ·X,

u(X) = Ecd(r′) ·Xr+r′+1 + u1 ·Xr+r′ + u2 ·Xr+r′−1 + · · ·+ ur+r′ ·X.

We have that

AdvFORG
PolyMAC,A(λ) = P

(
PolyMAC

(
(y, z), w

)
= v |PolyMAC

(
(y, z), u

)
= t
)

=

= P(w(y) + z = v |u(y) + z = t) = P((w − u)(y) + (v − t) = 0) =

= P(y is a root of the polynomial (w − u)(X) + (v − t)).

Notice that if s+ s′ 6= r+ r′, the polynomial (w−u)(X) + (v− t) has degree
max{s + s′ + 1, r + r′ + 1}, indeed the leading coefficient of u(X) and w(X) is
always different from 0.

If s+ s′ = r+ r′ but s′ 6= r′, the degree of (w− u)(X) + (v− t) is s+ s′ + 1.
Otherwise, the degree is s + s′ + 1 − e > 0 where e is the smallest index such
that we 6= ue. We know that such index exists.

We conclude that the polynomial (w − u)(X) + (v − t) is always different
from 0. Furthermore, its degree is less or equal to L := L1 +L2 + 1, therefore it
has at most L distinct roots. That means that

AdvFORG
PolyMAC,A(λ) = P(y is a root of the polynomial (w − u)(X) + (v − t)) ≤ L

p

ut

F Performance

In this section, we present details of the benchmarks we used to estimate the
performance of Oblivious TLS. Due to its complexity, we have not implemented a
fully working, standards-compliant system, but instead separately benchmarked
the key subroutines in the protocol.

We modified the code of SCALE-MAMBA [1], which implements the SPDZ [11]
protocol for dishonest-majority MPC of arithmetic circuits, as well as BMR gar-
bled circuits for binary operations [17]. One limitation is that, at the time of our
implementation, SCALE-MAMBA did not support arithmetic modulo arbitrary

54

primes, which is needed for our Diffie-Hellman protocol using Curve25519 over
F2255−19. We therefore performed the same computations over a different prime
field of similar size, to emulate this stage of the protocol. We focused our exper-
iments on the performance of the “online phase”, assuming that the necessary
preprocessing material has been generated in advance.

Handshake protocol. We analysed the latency of the main components of
the handshake, using a single machine with an Intel Xeon E5-1650 CPU (6
physical cores, HyperThreading, 3.20 GHz) and 32 GB RAM. The tests were
run with a 2-party MPC engine on localhost, and the results are presented in
Table 1. Note that we only benchmarked ΠweakerDH rather than ΠDH, and also
did not implement signature generation. We expect ΠDH to give similar results
to ΠweakerDH, although, the preprocessing costs would be higher due to its use of
daPoints. If authentication with signatures is needed, we expect the overhead to
be minimal, since the signing protocol uses no MPC operations and has very little
computation on top of plaintext signing. We also point out that we tested the key
derivation without using pre-shared keys and without computing the resumption
secret and the exporter secret. If these features were used, the procedure would
become more complex and the computational cost might significantly increase. In
conclusion, since the remaining operations are performed locally, we can expect
a handshake to be performed in around 1 or 2 seconds.

Protocol Instantiation Latency

ΠweakerDH Curve25519 ∼ 10−2 s
Key derivation SHA-256 ∼ 1 s
Key update SHA-256 ∼ 0.5 s
AEAD MAC powers F2128 ∼ 10−1 s
HMAC SHA-256 ∼ 10−1 s

Table 1. Latency of the main operations in the Oblivious TLS handshake protocol

Algorithm Instantiation Throughput

AES-GCM (Garbled Circuits) AES-128 ∼ 1 KB/s
MPC-friendly AEAD 128-bit prime field ∼ 300 KB/s

AES-based PRF

Table 2. Throughput of AEAD schemes in Oblivious TLS

55

Record layer. For the record layer, we compared the performance of the two
AEAD schemes we considered, namely AES-GCM and the custom, multi-party
variant. These tests were run on two identical machines running on a 1Gbit
Ethernet LAN with a measured throughput of 935 Mbits/s. The average latency
of the network was 0.43 ms. The two machines had an Intel Core i7-8700 CPU
(6 physical cores, HyperThreading, 3.20 GHz) and 32 GB RAM. The results
are described in Table 2. For AES-GCM, we tested the protocol based on gar-
bled circuits, since the lookup table-based approach of [18] is not supported in
SCALE-MAMBA. The results show that our MPC-friendly AEAD is around
300x faster than using garbled circuits, which reflects the fact that the for-
mer approach avoids all evaluation of AES inside MPC. Based on the results
from [18], we expect that switching to their alternative AES evaluation method,
we could achieve throughputs up to 3 MB/s for AES-GCM, even exceeding the
MPC-friendly AEAD. This is because [18] evaluates AES with a very lightweight
online phase, which contrasts with the intensive computations and bandwidth
required by garbled circuits. However, when the preprocessing phases are taken
into consideration, we expect our new AEAD to behave significantly better than
the AES-GCM version based on [18], which comes with a very expensive pre-
processing in order to achieve the fast online phase.

We point out that in a real application, there may also be additional costs
in the record layer, when accounting for the removal of padding, or convert-
ing between secret-sharing schemes, depending on the data format used by the
application running on top of TLS.

56

