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Abstract. Fully homomorphic encryption (FHE) allows to compute any
function on encrypted values. However, in practice, there is no universal
FHE scheme that is efficient in all possible use cases. In this work, we
show that FHE schemes suitable for arithmetic circuits (e.g. BGV or
BFV) have a similar performance as FHE schemes for non-arithmetic
circuits (TFHE) in basic comparison tasks such as less-than, maximum
and minimum operations. Our implementation of the less-than function
in the HElib library is up to 3 times faster than the prior work based
on BGV/BFV. It allows to compare a pair of 64-bit integers in 11 mil-
liseconds, sort 64 32-bit integers in 19 seconds and find the minimum
of 64 32-bit integers in 9.5 seconds on an average laptop without multi-
threading.

1 Introduction

Fully Homomorphic Encryption (FHE) can perform any kind of computations
directly on encrypted data. It is therefore a natural candidate for privacy-
preserving outsourced storage and computation techniques. Since Gentry’s break-
through in 2009 [25], FHE has received a worldwide attention which has resulted
in numerous improvements. As a result, FHE can now be used in practice in
many practical scenarios, e.g. genome analysis [30], energy forecasting [7], image
recognition [9] and secure messaging [4]. In addition, FHE is currently going
through a standardization process [1].

In practice, homomorphic encryption (HE) schemes can be classified into
three main categories:

– The schemes encrypting their input bit-wise meaning that each bit of the
input is encrypted into a different ciphertext. From there, the operations are
carried over each bit separately. Examples of such schemes include FHEW
[22] and TFHE [18]. These schemes are believed to be the most efficient in
practice with relation to the total running time.



– The second category corresponds to word-wise encryption schemes that allow
to pack multiple data values into one ciphertext and perform computations
on these values in a Single Instruction Multiple Data (SIMD) fashion [36].
In particular, encrypted values are packed in different slots such that the
operations carried over a single ciphertext are automatically carried over
each slot independently. Schemes with these features include BGV [11] and
BFV [10,24]. Although homomorphic operations in these schemes are less
efficient than for bit-wise encryption schemes, their running time per SIMD
slot can be better than of the binary-friendly schemes above. We refer to
this performance metric as the amortized running time.

– The CKKS scheme [14], which allows to perform computations over approxi-
mated numbers, forms the third category. It is similar to the second category
in the sense that one can pack several numbers and compute on them in a
SIMD manner. The CKKS scheme does not have the algebraic constraints
that lower the packing capacity of BGV and BFV. Hence, it is usually possi-
ble to pack more elements in CKKS ciphertext, thus resulting with the best
amortized cost. Unlike previous schemes, CKKS encodes complex, and thus
real, numbers natively. However, homomorphic computations are not exact,
which means that decrypted results are only valid up to a certain precision.

Each category of schemes is more efficient for a certain application. Thus,
when comparing the efficiency of different homomorphic schemes, one must take
into account the given use case.

It is commonly admitted that schemes of the first category are the most
efficient ones for generic applications. Since they operate at the bit level, they
can compute every logical gate very efficiently. The total running time being in
this case the sum of the times needed to evaluate each gate of the circuit. As a
result, to optimize the computations for a given application, the only possibility
is to reduce the length of the critical computational path and parallelize the
related circuit as much as possible. However, as this becomes more and more
difficult as the size of the circuit grows, it is possible to optimize only some
parts of the circuit by identifying some patterns [5]. Another advantage of these
schemes is that they have very fast so-called ‘bootstrapping’ algorithms that
‘refresh’ ciphertexts for further computation. This is very convenient in practice
as one can set a standard set of encryption parameters without knowing what
function should be computed.

Schemes of the second category operate naturally on p-ary arithmetic circuits,
i.e. they are very efficient to evaluate polynomial functions over Fp, for a prime
p. However, these schemes become much less efficient when considering other
kinds of computations, e.g. comparison operations, step functions. To alleviate
this problem, one can use tools from number theory to evaluate specific functions
with relatively efficient p-ary circuits. Nonetheless, in general this techniques are
too weak to outperform schemes of the first category. Moreover, bootstrapping
algorithms of these schemes are quite heavy and usually avoided in practice.

CKKS, similarly to second category schemes, is very efficient when operating
on arithmetic circuits. However, unlike other schemes which perform modular



arithmetic, it allows to perform computations on complex (and thus real) num-
bers. Although this is an important advantage for many use cases, CKKS lacks
simplification tools for evaluation of certain functions due to number-theoretic
phenomena as for the second category. However, since CKKS usually supports
huge packing capacity, it usually presents the best amortized cost. The boot-
strapping algorithm of CKKS is fundamentally different from the above schemes
as it refreshes ciphertexts only partially and introduces additional loss of output
precision. Therefore, the CKKS bootstrapping is usually avoided in practice.

Although FHE now offers a relatively efficient alternative for secure com-
putation, some functions remain difficult to evaluate efficiently regardless the
considered scheme. Step functions, which are required in many practical appli-
cations, form a good example of such functions because of their discontinuous
nature. The difficulty to evaluate discontinuous functions comes from the hard-
ness to evaluate a quite basic and relatively simple function: the comparison
function. Although comparison is an elementary operation required in many
applications including the famous Millionaires problem of Yao [39] or advance
machine learning tasks of the iDASH competition†, it remains difficult to eval-
uate homomorphically.

By now, schemes of the first category look much more suitable for such non-
arithmetic tasks, but they are hopelessly inefficient for evaluating arithmetic
functions. Hence, one should resort to heavy conversion algorithms [8] to leverage
the properties of different schemes.

1.1 Contributions

In this work, we describe the structure of the circuits corresponding to compar-
ison functions for the BGV and BFV schemes. For theses schemes, there exists
two approaches: either compare two numbers x and y directly by evaluating a
bivariate polynomial in x and y, or study the sign of the difference z = x− y by
evaluating a univariate polynomial in z.

By exploiting the structure of these two polynomials, we show that it is
possible to evaluate them more efficiently than what was proposed in the state
of the art. In particular, we prove that these polynomials have multiple zero
coefficients that can be ignored during polynomial evaluation.

The benefit of our approach results in significant performance enhancement
for both methods. On the one hand, our bivariate circuit can compare two 64-bit
integers with an amortized cost of 21ms, which is a gain of 40% with relation
to the best previously reported results of Tan et al. [37] (See Table 1). On the
other hand, our univariate circuit shows even better results with an amortized
cost of 11ms for 64-bit numbers – which is, to the best of our knowledge, more
than 3 times faster than previously reported results for this kind of scheme [37].
Note that we can compare two 20-bit numbers with an amortized cost of 3ms,
which is better by a factor 1.9 than what can be achieved with CKKS-based
algorithms and is comparable to TFHE-based implementations (see Table 5).

† http://www.humangenomeprivacy.org/2020/index.html



We also apply our comparison methods to speed up popular computational
tasks such as sorting and computing minimum/maximum of an array with N
elements. For example, for N = 64, we obtain an amortized cost of 6.5 seconds
to sort 8-bit integers and 19.2 seconds for 32-bit integers, which is faster than
the prior work by a factor 9 and 2.5 respectively (see Table 3). For N = 64, we
can find the minimum of 8-bit integers with an amortized running time of 404
ms and of 32-bit integers with an amortized time of 9.57 seconds (see Table 4).

1.2 Related Art

Comparison is a common function required in many applications; as a conse-
quence, its homomorphic evaluation has been the object of several works. Since
inputs are encrypted, a comparison algorithm cannot terminate whenever it
finds the first difference between most significant bits. As a result, homomorphic
comparison has a complexity corresponding to the worst-case complexity in the
plain domain. The practical efficiency of homomorphic comparison depends on
the type of HE schemes considered.

For bit-wise HE schemes (FHEW, TFHE), Chillotti et al. [19,20] showed that
one could compare two n-bit integers by evaluating a deterministic weighted
automata made of 5n CMux gates. Using the TFHE scheme, evaluating a CMux

gate takes around 34 microseconds on a commodity laptop, meaning that one
can homomorphically compare two n-bit numbers in around 170n microseconds.
Note that these estimations correspond to the fastest (leveled) version of TFHE
which avoids bootstrapping. If one wants to use the bootstrapped version then
the best method requires to evaluate 7n Mux gates, where each gate takes around
26 millisecond to be evaluated, which makes a total of 182n millisecond.

Schemes from the second category (BGV and BFV) can use SIMD techniques
to batch several plaintexts into a single ciphertext [36]. Therefore, a natural idea
would be to pack the input bits into a single ciphertext. Cheon et al. [17,13]
studied comparison functions in this context using the bivariate polynomial in-
terpolation. Some of the algorithmic tools they have used – e.g. computation
of running sums and products – are optimal in the homomorphic setting, i.e.
regarding the multiplicative depth and the number of multiplications, and have
laid the ground for future works in this direction.

Some works have tried to exploit other features of these schemes by encoding
integers modulo an odd prime p instead of bits. In [33], Narumanchi et al. com-
pare integer-wise comparison algorithms based on the univariate interpolation
with bit-wise counterparts. The SIMD packing was ignored in this study. They
concluded that bit-wise methods are more efficient because they have a smaller
multiplicative depth. In particular, n-bit numbers can be compared with a circuit
of depth O(log n) instead of O(n) in the case of integer-wise algorithms. This
comes from the fact that integer-wise comparison circuits require to evaluate a
Lagrange interpolation polynomial of degree p− 1 ≥ 2n.

In [29], Kim et al. noticed that SIMD packing techniques reduce the multi-
plicative complexity of homomorphic comparison circuits. In addition, they took
advantage of the nature of the finite field Fpd , which corresponds to the plaintext



space of a SIMD slot. Namely, any power xp
i

can be evaluated with the homomor-
phic Frobenius automorphism x 7→ xp, which does not consume any homomor-
phic multiplicative depth level. This allowed to reduce the depth of the equality

circuit EQ(x, y) = 1− (x− y)p
d−1 from dd log2(p)e to dlog2(d)e+ dlog2(p− 1)e.

Tan et al. [37] proposed a method to perform digit-wise comparison using
SIMD and the bivariate polynomial interpolation. Their idea consists in decom-
posing input integers into digits of size pr encoded into a subfield of Fpd , with
r|d, in order to reduce the degree of the Lagrange interpolation polynomial of a
comparison function. To compare input integers, one should extract digits, com-
pare them and combine the results of digit comparison using the lexicographical
order. Note that their evaluation of the lexicographical order intensively uses the
efficient equality circuit of Kim et al. [29]. Overall, they have used their method
to compare integers up to 64-bit while reporting, to the best of our knowledge,
the current best timings for performing homomorphic comparison with BGV
scheme.

Finally, in [35], Shaul et al. used the univariate approach to evaluate com-
parison functions in the context of top-k selection with integer-wise circuits.
However, they did not use the decomposition method of Tan et al. [37], thus
obtaining relatively poor performance of comparison.

Note that all these works did not exploit the structure of comparison inter-
polation polynomials neither in the bivariate nor in the univariate case. Kaji et
al. [28] described basic properties of the polynomial expressions of max, argmax
and other non-arithmetic functions over non-binary prime fields Fp. However,
their results do not allow to evaluate these functions very efficiently, as an ex-
ample their homomorphic circuit to evaluate max has a quadratic complexity in
p.

The situation for the CKKS scheme is quite different since its plaintext space
natively supports complex/real numbers. Therefore, circuit optimizations related
to data encoded into finite fields are not applicable for CKKS. Nonetheless, the
approximated nature of computations in CKKS makes it suitable to use iterative
methods from real analysis to compute close approximations of non-arithmetic
functions. Bajard et al. [6] used Newton iteration to evaluate the sign function,
while independently Cheon et al. [16,15] generalized this approach and studied
its efficiency in more details. Using the methods of [15], one can compare 20-bit
numbers with an amortized cost comparable, although slower, to TFHE. How-
ever, to obtain these timings one has to use quite large encryption parameters
(ring dimension 217 and ciphertext modulus up to 2200 bits). Since the running
time of homomorphic operations increases quasi-linearly with the ring dimen-
sion, while the number of slots only increases linearly, increasing the dimension
would affect significantly the timings. Therefore, it would be interesting to know
whether these methods can be used in practice to compare larger inputs – e.g.
64-bit integers – without degrading the performance.



2 Background

2.1 Notations

Vectors will be written in column form and denoted by boldface lower-case let-
ters. The set of integers {`, . . . , k} is denoted by [`, k]. For a non-negative integer
a, let wt(a) be the Hamming weight of its binary expansion. We denote the set
of residue classes modulo p by Zp and the class representatives of Zp are taken
from the half-open interval [−p/2, p/2).

2.2 Comparison of integers with finite fields operations

Let S be a totally ordered set with a binary relation <. For any x, y ∈ S, we
can define the less-than and the equality functions as follows.

LTS(x, y) =

{
1, if x < y;

0, if x ≥ y,

EQS(x, y) =

{
1, if x = y;

0, if x 6= y.

Functions over finite fields The map defined by χ : x 7→ xp
d−1 from Fpd to the

binary set {0, 1} is called the principal character. According to Euler’s theorem,
it returns 1 if x is non-zero and 0 otherwise. Using the principal character, every
function from Flpd to Fpd can be interpolated by a unique polynomial according
to the following well-know lemma.

Lemma 1. Every function f : Flpd → Fpd is a polynomial function represented

by a unique polynomial Pf (X1, . . . , Xl) of degree at most pd−1 in each variable.
In particular,

Pf (X1, . . . , Xl) =
∑

a∈Fl

pd

f(a)

l∏
i=1

(1− χ(Xi − ai)) .

where ai is the ith coordinate of vector a.

Comparison of integers Let Fpd = Fp[X]/ 〈f(X)〉 for some irreducible monic

polynomial f(X) of degree d. Let d′ ≤ d and S ⊆ [0, pd
′ − 1], we can map S into

Fpd by using the decomposition of integers in base p:

ιp : S → Fpd ,
d′−1∑
i=0

aip
i 7→

d′−1∑
i=0

aiX
i−1 .



Note that the map ιp is injective and gives a one-to-one correspondence between
S and Fpd when d′ = d and S = [0, pd − 1]. Therefore, we identify integers
belonging to S with their image by ιp and thus omit ιp when the situation is
clear from the context.

Let a, b ∈ S be two integers to be compared and
∑d′−1
i=0 aiX

i and
∑d′−1
i=0 biX

i

with ai, bi ∈ Fp are their respective encodings into Fpd . The order of the set S
induces a polynomial function in Fpd , which can be interpolated by Lemma 1.
However, since LTS(0, y) = 1 for any non-zero y ∈ Fpd and zero otherwise, we
obtain LTS(0, y) = χ(y). Hence, the total degree of the interpolation polynomial
is at least pd − 1, which might be prohibitive in practice.

Tan et al. [37] proposed an alternative approach where S = [0, p−1]. If input
integers a and b belong to S, the result of LTS(a,b) is computed with its interpo-
lation polynomial over Fp. If a, b are larger, e.g. a, b ∈ [0, pd

′−1], they are encoded
into Fpd as above, but their comparison is performed via the lexicographic order

defined on Fd′p . This method is based on the extraction of coefficients ai, bi ∈ Fp
thanks to the following result from the theory of finite fields (see [31, Theorem
2.24] for the proof).

Lemma 2. The linear transformations from Fpd to Fp are exactly the mappings
Lα(x) = TrF

pd
/Fp

(αx) for some α ∈ Fpd . Furthermore, Lα 6= Lβ if α 6= β.

This lemma implies that for any i ∈ [0, d′ − 1] there exist αi ∈ Fpd such that

Lαi
(a) = ai for any a from the vector subspace Fd′p of Fpd . Such αi’s can be

computed by solving the following system of equations over Fpd

XA = Id

where

X =


1 1 . . . 1

x xp . . . xp
d−1

...
...

. . .
...

xd−1 x(d−1)p . . . x(d−1)p
d−1

 ,

A =


α0 α1 . . . αd−1
αp0 αp1 . . . αpd−1
...

...
. . .

...

αp
d−1

0 αp
d−1

1 . . . αp
d−1

d−1


and Id ∈ Fd×d

pd
is the identity matrix. Hence, the ith column of X−1 contain the

powers αi, α
p
i , . . . , α

pd−1

i , which define the linear map Lαi
.

Given the input encodings
∑d′−1
i=0 aiX

i and
∑d′−1
i=0 biX

i, we can extract and
then compare their vectors of coefficients a = (a0, a1, . . . , ad′−1) and b = (b0, b1, . . . , bd′−1) ∈
Fd′p using the lexicographical order < on Fd′p defined by

a < b⇔ ∃i ∈ [0, d′ − 1] such that ai < bi and

aj = bj ∀j > i .



The corresponding less-than function is equal to

LTSd′ (a, b) =

d′−1∑
i=0

LTS(ai, bi)

d′−1∏
j=i+1

EQS(aj , bj) ,

whereas the equality function is defined by

EQSd′ (a, b) =

d′−1∏
i=0

EQS(ai, bi) ,

Notice that the above construction is generic for any set S embedded into Fp.
For example, if S = [0, s− 1] for some s < p, then one can encode input integers
via decomposition in base s and compare them using LTSd′ .

Comparison of large integers When the size of input integers exceeds |S|d,
we can decompose integers in base |S|d′ and then compare their vectors of digits

using the lexicographical order < on
(
Fd′p
)l

, for some d′ ≤ d. In fact, we compute

two lexicographical orders on top of each other.
Let a, b ∈ [0, |S|ld′ − 1] be input integers. We represent an integer a =∑l
i=0 ai|S|id

′
by the vector a = (a0,a1, . . . ,al−1) ∈

(
Fd′p
)l

of its digits of length

l. The comparison of two integers a and b is thus equivalent to the comparison
of their vector of digits a = (a0,a1, . . . ,al−1) and b = (b0, b1, . . . , bl−1) using

the lexicographical order < on
(
Fd′p
)l

defined as follows

a < b⇔ ∃i ∈ [0, l − 1] such that ai < bi and

aj = bj ∀j > i .

As done in [37], we can employ EQSd′ and LTSd′ to compute the corresponding
less-than function LT(a,b) as follows

LT(a,b) =

l−1∑
i=0

LTSd′ (ai, bi)

l−1∏
j=i+1

EQSd′ (aj , bj). (1)

2.3 Homomorphic Encryption

We are interested in homomorphic encryption schemes that support SIMD oper-
ations on their plaintexts. This section aims at giving the necessary background
regarding these schemes.

Cyclotomic fields and Chinese Remainder Theorem Let m be a positive
integer and n = ϕ(m) where ϕ is Euler’s totient function. Let K = Q(ζm) be the
cyclotomic number field constructed by adjoining a primitive m-th root of unity



ζm ∈ C to the field of rational numbers. The ring of integers of K, denoted by R,
is isomorphic to Z[X]/ 〈Φm(X)〉 where Φm(X) is the m-th cyclotomic polyno-
mial. Let p > 1 be a prime number coprime to m, then Φm(X) splits modulo p
into ` irreducible factors of same degree d, i.e. Φm(X) = F1(X) · · ·F`(X) mod p.
The degree d is actually the order of p modulo m, and ` = n/d. The Chinese Re-
mainder Theorem (CRT) states that in this case the following ring isomorphism
holds:

Rp = Zp[X]/ 〈Φm(X)〉
∼= Zp[X]/ 〈F1(X)〉 × . . .× Zp[X]/ 〈F`(X)〉

For each i ∈ [1, `] the quotient ring Zp[X]/ 〈Fi(X)〉 is isomorphic to the finite
field Fpd . Hence, the above isomorphism can be rewritten as Rp ∼= F`pd . We call
every copy of Fpd in this direct product a slot. Therefore, every element of Rp
contains ` slots, which implies that an array of ` independent Fpd -elements can
be encoded as a unique element of Rp. The slot isomorphic to Zp[X]/ 〈Fi(X)〉
is referred to as the ith slot.

Additions and multiplications of Rp-elements results in the corresponding
coefficient-wise operations of their respective slots. In other words, each ring
operation on Rp is applied to every slot in parallel, which resembles the Single-
Instruction Multiple-Data (SIMD) instructions used in parallel computing. There-
fore, the above encoding method from F`pd toRp is often called the SIMD packing.

The HE schemes that support SIMD packing and exact computations over
encrypted data include BGV [11] and FV [24]. These schemes have a common
framework described below.

Basic setup Let λ be the security level of an HE scheme. Let L be the maximal
multiplicative depth of homomorphic circuits we want to evaluate. Let d be the
order of the plaintext modulus p modulo the order m of R. Assume that the
plaintext space Rp has ` SIMD slots, i.e. Rp ∼= F`pd . The basic part of any HE
schemes consists of key generation, encryption and decryption algorithms.

KeyGen(1λ, 1L) → (sk, pk). Given λ and L, this function outputs the secret
key sk and the public key pk.

Encrypt(pt ∈ Rp, pk) → ct. The encryption algorithm takes a plaintext pt

and the public key pk and outputs a ciphertext ct.
Decrypt(ct, sk) → pt. The decryption algorithm takes a ciphertext ct and

the secret key sk and returns a plaintext pt. For freshly encrypted ciphertexts,
the decryption correctness means that Decrypt(Encrypt(pt, pk), sk) = pt.

Homomorphic operations The homomorphic addition (multiplication) algo-
rithm takes two input ciphertexts ct1 and ct2 encrypting plaintexts pt1 and pt2
respectively. It outputs a ciphertext ct that encrypts the sum (product) of these
plaintexts in the ring Rp. It implies that homomorphic addition (multiplica-
tion) sums (multiplies) respective SIMD slots of pt1 and pt2. Similar operations
between ciphertexts and plaintexts are defined as well.



Every homomorphic ciphertext contains a special component called noise
that is removed during decryption. However, the decryption function can deal
only with noise of small enough magnitude; otherwise, this function fails. This
noise bound is defined by encryption parameters in a way that larger parameters
result in a larger bound. The ciphertext noise increases after every homomorphic
operation and, therefore, approaches its maximal possible bound. It implies that
to reduce encryption parameters one needs to avoid homomorphic operations
that significantly increase the noise. Therefore, while designing homomorphic
circuits, we need to take into account not only the running time of homomorphic
operations but also their effect on the noise.

The most expensive homomorphic operation with relation to both noise and
running time is ciphertext-ciphertext multiplication (Mul). This operations takes
place when two expressions containing input values are multiplied. Such mul-
tiplication is called non-scalar. In contrast, ciphertext-plaintext multiplication
(MulPlain) is used when an expression with input values is multiplied by an
unencrypted or publicly known value. This is a scalar multiplication. Since Mul

is much more expensive than MulPlain, the multiplicative depth and complexity
of a homomorphic circuit is usually calculated with relation to the number of
Mul’s, or non-scalar multiplications. Thus, in the following sections we focus on
the non-scalar complexity of comparison circuits.

3 Optimising the comparison circuits over Fp

In this section, we study the structure of basic comparison circuits over Fp used
in Section 2 to compare integers, namely LTS and EQS for some S ⊆ [0, p− 1].

For any choice of S, the corresponding equality function over Fp is equal to

EQS(x, y) = 1− (x− y)p−1.

Unfortunately, LTS is not that simple and universal and we have to rely on
Lagrange interpolation (Lemma 1) to compute it. Yet, there are two different
ways to evaluate it. The first method (as done in [37]) uses S = [0, p − 1] and
directly interpolates LTFp

(x, y) as a bivariate polynomial over Fp. The second
approach (as done in [33] and [35]) has S = [0, (p − 1)/2] and interpolates a
univariate polynomial of LTS(z, 0) with z = x− y. In this section, we show how
to exploit the structure of these polynomials to speed-up their evaluation.

3.1 Bivariate interpolation of LTS .

Let S = [0, p − 1]. The less-than function can be interpolated using Lemma 1
and the following truth table.



< 0 1 2 · · · p− 1

0 0 1 1 · · · 1
1 0 0 1 · · · 1
2 0 0 0 · · · 1
...

...
...

...
. . .

...
p− 1 0 0 0 · · · 0

In particular, the interpolation polynomial of LTS over Fp is equal to

PLTS (X,Y ) =

p−2∑
a=0

EQS(X, a)

p−1∑
b=a+1

EQS(Y, b)

=

p−2∑
a=0

(
1− (X − a)

p−1
) p−1∑
b=a+1

(
1− (Y − b)p−1

)
.

Surprisingly, the total degree of PLTS (X,Y ) is only p and its coefficients can be
described by the following theorem.

Theorem 1. Let p > 2 be a prime number and S = [0, p− 1], then the interpo-
lation polynomial of LTS over Fp has the following form

PLTS (X,Y ) = Y p−1 − p− 1

2
(XY )

p−1
2 +

∑
i,j>0,
i 6=j,
i+j≤p

aijX
iY j

where aij =
∑p−2
a=0

∑p−1
b=a+1 a

p−1−ibp−1−j ∈ Fp. The total degree of PLTS (X,Y ) is
p.

Proof. See Appendix A.

From the definition of LTS , one can easily prove the following facts about PLTS :

– PLTS (X, 0) = 0, thus Y divides PLTS (X,Y );
– PLTS (X,X) = PLTS (Y, Y ) = 0, thus (X − Y ) divides PLTS (X,Y );
– PLTS (p− 1, Y ) = 0 thus X + 1 divides PLTS (X,Y ).

Hence, there exists a bivariate polynomial f(X,Y ) of total degree p− 3 over Fp
such that:

PLTS (X,Y ) = Y (X − Y )(X + 1)f(X,Y ). (2)

The following theorem describes the structure of f(X,Y ).

Theorem 2. Let p be an odd prime and S = [0, p − 1]. Let PLTS (X,Y ) be
the interpolation polynomial of LTS over Fp and PLTS (X,Y ) = Y (X − Y )(X +
1)f(X,Y ). Then, for any z ∈ Fp we have

f(z, z) = f(z, 0) = f(p− 1, z). (3)



As a consequence, there exists (p − 1)/2 polynomials fi(X) over Fp, 0 ≤ i ≤
(p− 3)/2, such that:

f(X,Y ) =

(p−3)/2∑
i=0

fi(X)Zi, (4)

with Z = Y (X − Y ) and deg(fi(X)) = p− 3− 2i.

Since our proof of Theorem 2 is quite long and with no real interest for the
purpose of this work, we defer it to an extended version of this paper. In our ex-
periments, we used the decompositions (4) of f(X,Y ) only for small p (between
3 and 7), which you can find in Appendix B.

Complexity analysis. In [37], the authors proposed to evaluate PLTS (X,Y )
by evaluating each monomials separately before summing them up. Given x, y ∈
Fp, they precompute the powers of x and y up to p − 1 for a total of 2p − 4
non-scalar multiplications. Then, another p − 1 non-scalar multiplications are
needed to evaluate each monomial ((

∑
i ciX

i)Y j)j where ci’s are scalars in Fp,
before summing them together to get the final result. Overall their evaluation of
PLTS (X,Y ) requires 3p− 5 non-scalar multiplications.

Following this idea and using the decomposition of f(X,Y ) given in Eq. (4)
one needs:

– 2 multiplications to compute (X + 1)Z if p ≥ 3 or 1 multiplication when
p = 2;

and then for p ≥ 5:

– p − 4 multiplications to compute the Xi’s for 2 ≤ i ≤ p − 3 required to
compute the terms fi(X);

– (p− 5)/2 multiplications to compute the Zi for 2 ≤ i ≤ (p− 3)/2;
– (p− 5)/2 multiplications to compute the products fi(X) · Zi;
– 1 final multiplication (X + 1)Z · f(X,Y ).

Overall, at most 2p − 6 non-scalar multiplications are needed to homomorphi-
cally evaluate PLTS (X,Y ) for p ≥ 5. This number can be slightly reduced by
optimizing the way of computing fi’s. For instance, it can be done with only 6
multiplications for p = 7, (see Appendix B), which is smaller than 2p− 6 = 8.

Overall, for p ≥ 5, our method saves p + 1 multiplications over the method
of Tan et al. [37]. However, the complexity of the bivariate circuit remains linear
in p which is unpractical for performing homomorphic comparisons using large
digits (i.e. a large p).

3.2 Univariate interpolation of LTS

Unlike bivariate polynomials, it is possible to evaluate univariate polynomials of
degree p−1 in O(

√
p) non-scalar multiplications using the Paterson-Stockmeyer



algorithm [34]. The Paterson-Stockmeyer algorithm has been used in various
works related to homomorphic encryption in order to speed-up polynomial eval-
uation. As a recent example, it was applied by Shaul et al [35] in the context of
top-k selection, which uses small-number comparison as a subroutine. However,
in our case the study of the structure of LTS as a univariate polynomial will
allow us to speed-up its evaluation for large p beyond what could be achieved
using only the Paterson-Stockmeyer algorithm.

To evaluate LTS as a univariate polynomial, we compute the difference x− y
of the two input values and check its sign. To compute the sign function using
finite field arithmetic, we need to split finite field elements into two classes:
negative (F−p ) and non-negative (F+

p ). In addition, for any x, y ∈ S the following
property should hold:

x− y ∈

{
F+
p if LTS(x, y) = 0,

F−p if LTS(x, y) = 1.

It is easy to see that these constraints are satisfied by S = [0, (p− 1)/2]. Let us
split Fp into F+

p = [0, (p− 1)/2] and F−p = [−(p− 1)/2,−1]. Notice that for any
x, y ∈ S, their difference x− y belongs to F−p if and only if x < y.

Let χF−p (z) be a function that outputs 1 if z is negative and 0 otherwise.

According to Lemma 1, χF−p (z) is equal to

χF−p (z) =

−1∑
a=− p−1

2

1− (z − a)p−1.

Combining the above facts, the LTS function can be interpolated by the following
polynomial over Fp

QLTS (X,Y ) =

−1∑
a=− p−1

2

1− (X − Y − a)p−1 .

The following theorem describes all the coefficients of this interpolation polyno-
mial.

Theorem 3. For an odd prime p and S = [0, (p − 1)/2], the LTS function can
be interpolated by the following polynomial over Fp

QLTS (X,Y ) =
p+ 1

2
(X − Y )p−1 +

p−2∑
i=1,odd

ci(X − Y )i. (5)

where ci =
∑ p−1

2
a=1 a

p−1−i.

Proof. See Appendix C



Remark 1. The polynomial QLTS (X,Y ) yields the interpolation polynomial of
the sign function sgnS′ defined on S ′ = [−(p − 1)/2, (p − 1)/2] as sgnS′(x) = 1
if x < 0 and sgnS′(x) = 1 if x ≥ 0. In particular, we have

QsgnS′ (X) = QLTS (X, 0) . (6)

Complexity analysis. The above theorem implies that the less-than function
can be expressed by a univariate polynomial of degree p − 1. In general, such
polynomials are evaluated in p−1 multiplications according to Horner’s method.

To reduce the number of non-scalar multiplications, we can resort to the
Paterson-Stockmeyer algorithm [34] that requires

√
2(p− 1)+log2(p−1)+O(1)

such multiplications. However, we can improve this complexity by exploiting the
fact that the polynomial in (5) has only one coefficient with an even index, the
leading one. Thus, if Z = X − Y , we can rewrite (5) as follows

αp−1Z
p−1 + Z

p−3∑
i=0,even

αi+1Z
i = αp−1Z

p−1 + Zg(Z2)

where αi =
∑ p−1

2
a=1 a

p−1−i and g(X) is a polynomial of degree (p−3)/2. To evalu-
ate g(X), the Paterson-Stockmeyer algorithm requires

√
p− 3+log2

(
p−3
2

)
+O(1)

non-scalar multiplications. Furthermore, the preprocessing phase of this algo-
rithm computes the powers Z2, Z4, . . . , Z2k and Z4k, Z8k, . . . , Z2rk with 2k(2r−
1) = p−3. We can use these powers to compute the leading term in r non-scalar
multiplications, namely

Z2Z2kZ4k · · ·Z2rk = Z2+2k(2r−1) = Z2+p−3 = Zp−1.

Since the optimal k is about
√

(p− 3)/2, we obtain that r must be about
log2

√
p− 3. Hence, the total non-scalar complexity of evaluating (5) is equal

to

√
p− 3 +

3 log2 (p− 3)

2
+O(1).

Remark 2. A careful reader can notice that the leading term of (5) is equal to
(X−Y )p−1, which is the heaviest part of the equality circuit EQS(X,Y ). Thus, we
can get EQS(X,Y ) almost for free (at the cost of one homomorphic subtraction)
after evaluating LTS(X,Y ), which saves O(log(p−1)) non-scalar multiplications.

This feature of the univariate circuit allows to compute all the equality op-
erations while comparing large integers using the less-than function LT from (1).
This saves O((d′−1)(k−1) log(p−1)) homomorphic multiplications, thus leading
to a better running time than for the bivariate circuit.

The downside of the univariate circuit is that only (1/2)d of the plaintext
space is used to encode input integers in comparison to the bivariate method.



3.3 Min/max function

Given the less-than function LT defined on some set, one can compute the min-
imum of two elements x, y of this set in the following generic way

min(x, y) = x · LT(x, y) + y · (1− LT(x, y))

= y + (x− y) · LT(x, y) . (7)

Notice that the input difference x− y naturally emerges in this expression, thus
hinting that the univariate circuit from (5) might be useful here. Indeed, by
replacing X − Y with a variable Z we obtain the univariate polynomial repre-
sentation of the minimum function on the set S = [0, (p− 1)/2]

QminS (X,Y ) = Y + Z ·QLTS (X,Y )

= Y +
p+ 1

2
Z +

p−1
2∑
i=1

Z2i

p−1
2∑

a=1

ap−2i

=
p+ 1

2
(X + Y ) +

p−1
2∑
i=1

Z2i

p−1
2∑

a=1

ap−2i

=
p+ 1

2
(X + Y ) + g(Z2) ,

where g(X) is a polynomial of degree (p − 1)/2. As a result, minS(x, y) can be
computed withO(

√
p− 1) non-scalar multiplications via the Paterson-Stockmeyer

algorithm.

Following the above reasoning, the maximum function can be computed with
the following polynomial

QmaxS (X,Y ) =
p+ 1

2
(X + Y )−

p−1
2∑
i=1

Z2i

p−1
2∑

a=1

ap−2i.

Remark 3. Maximum and minimum functions are basic building blocks in the
design of neural networks. For example, one of the most popular activation
functions in neural networks is the rectifier, or ReLU, which is equal to max(x, 0).
By analogy with (7), we have max(x, 0) = x · (1− sgnS′(x)) where S ′ = [−(p−
1)/2, (p− 1)/2] (see Remark 1). Thus, Eq. (6) yields the following interpolation
polynomial of the ReLU function on S ′

QReLUS′ (X) = X · (1−QsgnS′ (X))

=
p+ 1

2
X −

p−1
2∑
i=1

X2i

p−1
2∑

a=1

ap−2i.



3.4 Impact on the overall complexity

In this section, we summarize the complexities of our method as compared to
the work of Tan et al. for the evaluation of the less-than function using the
lexicographical order method described in Section 2.

For fixed p and d, Tan et al. [37, Section 4.4] determined that the depth of
the circuit evaluating the less-than function of two b-bits integers is equal to

blog2 dc+ blog2(p− 1)c+ blog2(logp 2b)/d)c+ 4. (8)

Note that our algorithms do not decrease the depth of the circuit. Similarly, Tan
et al. showed that the number of homomorphic multiplications required to eval-
uate the less-than function of two b-bit integers with the bivariate interpolation
is

d · (T + dlog2(p− 1)e+ dlog2 de) + blog2(logp 2b)/d)c+ 2.

where T is the number of homomorphic multiplications required to evaluate the
comparison circuit over Fp. In the work of Tan et al. T = 3p − 5, while in our
case it is T = 2p− 6.

The univariate method saves even more multiplications since one can extract
1− EQS(x, y) while computing LTS(x, y). Hence, we obtain EQS(x, y) almost for
free when evaluating the lexicographical order (Remark 2). Thus, in this case
the comparison of two b-bits integers requires

d · (T + dlog2 de) + blog2(logp 2b)/d)c+ 2.

with T ≈
√

2p− 4 + 3(log2(2p − 4))/2 by using the Paterson-Stockmeyer algo-
rithm.

4 Applications

The previous results can help improving the performance of any task involving
comparisons performed homomorphically such as private database queries, k-
nearest neighbour search, top-k selection or step function evaluation in neural
nets. In this section we choose to demonstrate the gain brought by our approach
for sorting and min/max search which are subroutines needed for the aforemen-
tioned tasks.

4.1 Sorting

To demonstrate the efficiency of our comparison algorithms, we applied them
to a popular computational task that demands multiple comparisons, sorting.
The best homomorphic sorting algorithm in terms of running time is the direct
sorting algorithm due to Çetin et al. [12]. For a given array A = [a0, . . . , aN−1],
this algorithm computes a comparison matrix L defined by

Lij =


LT(ai, aj) if i < j,

0 if i = j,

1− LT(aj , ai) if i > j.



Example : for A = [5, 1, 7, 2, 3], the matrix L ∈ {0, 1}5×5 is given by:

L =


0 0 1 0 0
1 0 1 1 1
0 0 0 0 0
1 0 1 0 1
1 0 1 0 0


It is easy to see that the Hamming weight of the ith row of L is unique and

equal to the array index of ai after sorting the array A in the descending order.
For example, the zero weight indicates that there are no elements of A bigger
than ai. Thus, ai has a zero index in A after sorting; in other words, ai is the
maximum element of A.

Let A′ be a sorted version of A in the descending order. To compute A′[i] for
any i ∈ [0, N−1], we homomorphically select an element aj such that wt(L[j]) =
i. This can be done with the following sum

A′[i] =

N−1∑
j=0

EQ[0,N−1](i, wt (L[j])) · aj . (9)

Note that the equality function should be defined on the set [0, N − 1], which
implies that N must be smaller than the plaintext modulus p.

Remark 4. Since the matrix L is defined by N(N − 1)/2 elements, it can be
costly to keep it in memory for large N . Instead, we can compute the Hamming
weights of its rows by iteratively computing one comparison LT(ai, aj) with i < j
at a time. To achieve this, we create an array of size N initialized with zeros
that eventually will store the Hamming weights. Then, we add the outcome of
LT(ai, aj) to the ith element of this array and the result of 1− LT(ai, aj) to the
jth element. In this approach, only N elements of the Hamming weight array
are being kept in RAM.

The direct sorting algorithm requires N(N − 1)/2 less-than operations to
compute the matrix L and N2 equality operations to compute sorted elements
of A′. While computing equalities, we can reduce the total number of non-scalar
multiplications if N is large enough. Recall EQS needs M = log2(p− 1) + wt(p−
1) − 1 non-scalar multiplications for any S ⊆ [0, p − 1]. Hence, to compute
EQ[0,N−1](i, wt (L[j])) for all i ∈ [0, N − 1], we should perform NM multiplica-
tions. Using Lemma 3 (see Appendix A), we can rewrite:

EQ[0,N−1] (i, wt (L[j])) = 1−
p−1∑
k=0

ik · wt (L[j])
p−1−k

.

If we precompute the powers wt (L[j])
p−1−k

, then we need only p− 2 non-scalar
multiplications to compute all the equalities EQ(i, wt (L[j])) as the index i is
not encrypted. Hence, if N > (p − 2)/M , this approach results in a smaller



number of non-scalar multiplications. Yet, this method introduces p − 1 scalar
multiplications (by powers ik) and p − 2 additions. However, these operations
are much faster in HE schemes than non-scalar multiplication such that the gain
from reducing non-scalar multiplications becomes dominant.

The main advantage of direct sorting is that its multiplicative depth is inde-
pendent of the array length, namely d = d (LT) + dlog2(p− 1)e + 1 with d (LT)
given in Equation (8).

This allows to avoid large encryption parameters and costly bootstrapping
operations.

4.2 Minimum and maximum of an array

Another application of our comparison algorithms is concerned with finding a
minimum (or maximum) element of an array. To find the minimum of an array
with N elements, at least N − 1 calls of the pairwise minimum function are
required [21, Chapter 9], which can be achieved, for instance, by the tournament
method.

The tournament method consists of dlogNe iterations. In each iteration,
the input array is divided into pairs. If the array length is odd, one element is
stashed for the next iteration. Then, the maximum of each pair is removed from
the array. The algorithm stops when only one element is left; this is the minimum
of the input array, see Figure 1. Unfortunately, the tournament method has a

a0

a1

a2

a3

min

min

min min(a0, a1, a2, a3)

Fig. 1: The tournament method of finding the minimum of an array. In each
stage, the array elements are divided into pairs. Only minimum of a pair go to
the next stage.

big multiplicative complexity, namely dlogNe · d(min(x, y)). In the HE world,
this enforces us to use either impractical encryption parameters [38] or a slow
bootstrapping function.



To reduce the depth of the array minimum algorithm, we can combine the
tournament method and direct sorting. Let A = [a0, . . . , aN−1] be an input
array. First, we perform T iterations of the tournament algorithm, which leaves
us with an array A′ = [a′0, . . . , a

′
N ′−1] of length N ′ =

⌈
N/2T

⌉
containing minimal

elements of A. Then, we can find the minimum by computing the comparison
table L as in direct sorting and extracting one of the minimal elements. If M(f)
is the non-scalar multiplicative complexity of a function f , then the total number
of non-scalar multiplications to find the minimum of an array is approximately
equal to

(N −N ′) ·M (min(x, y)) +
N ′(N ′ − 1)

2
·M (LT)

+M(Extraction).

The extraction of a minimum element can be done with two methods. In the
first approach, we use the fact that the Hamming weight of the comparison table
row corresponding to the minimum is equal to N ′ − 1. Hence, we can retrieve
the minimum as in (9)

min(A′) =

N ′−1∑
i=0

EQ[0,N ′−1](N
′ − 1, wt (L[i])) · a′i. (10)

Here, the multiplicative depth is equal to

T · d(min(x, y)) + d(LT) + dlog2(p− 1)e+ 1

which is independent of the input array length N . Since EQ[0,N ′−1] need log2(p−
1) + wt(p − 1) − 1 non-scalar multiplications, then the number of non-scalar
multiplications needed to extract the array minimum is equal to

M(Extraction) = N ′(log2(p− 1) + wt(p− 1)− 1).

Shaul et al. [35] proposed another circuit to extract the array minimum that
exploits the fact that the comparison table row related to the minimum con-
tains only 1 except for the main diagonal entry. In other words, the product of∏N ′

j=1,j 6=i Lij = 1 if and only if a′i = min(A′). Hence, the minimal element is
equal to

min(A′) =

N ′−1∑
i=0

a′i ·
N ′∏

j=1,j 6=i

Lij . (11)

The resulting depth of this circuit amounts to

T · d (min(x, y)) + d(LT) + dlog(N ′ − 1)e+ 1.

This extraction circuit requires the following number of multiplications

M(Extraction) = N ′(N ′ − 2).



This implies that for small enough N ′, Shaul’s circuit (11) has a smaller depth
or/and a smaller multiplication complexity than the circuit in (10). Furthermore,
Shaul’s circuit supports any length N ′ > p, whereas (10) requires N ′ ≤ p such
that wt(L[i]) do not overflow modulo p.

In the experiments conducted in Section 5, we use the best of these ap-
proaches for given N , T and p.

5 Implementation Results

We implemented the lexicographic order algorithm (LT, Eq. 1) using the BGV
scheme [11]. The code is written in the HElib library [27]. For a fair com-
parison with the prior work, we also implemented the algorithm of Tan et
al. [37]. The code is publicly available via https://github.com/iliailia/

comparison-circuit-over-fq. In all the experiments, we used an average com-
modity laptop equipped with an Intel Dual-Core i5-7267U CPU (running at 3.1
GHz) and 8 GB of RAM. Multi-threading was turned off.

In the results presented below, the following notation is used:

p : the plaintext modulus of the BGV scheme;
q : the initial ciphertext modulus of the BGV scheme;
m : the cyclotomic order of the ring R;
n : the degree of the ring R (n = φ(m));
` : the number of SIMD slots;
d : the dimension of a slot subspace used for digit encoding (d′ in Eq. 1);
l : the dimension of digit vectors encoding input integers over Fdp;
k : the number of input integers encoded in one ciphertext (k = b`/lc).

In all the experiments, the encryption parameters of BGV are chosen accord-
ing to the following strategy. The plaintext modulus p is a prime number such
that SIMD slots are isomorphic to a finite field. Next, we choose the order m
of R with large enough n to support our homomorphic algorithms (n > 12000).
The order of p modulo m should be as small as possible, which maximizes the
number of SIMD slots, thus reducing the amortized running time of our algo-
rithms. In addition, m is chosen to be a prime number or a product of a few
primes. This constraint makes sure that the slot permutation group is cyclic or
a product of a few cyclic groups, which results in a better performance (for more
details, see [26, Appendix C.3]).

Every input integer is encoded into exactly one ciphertext. First, it is de-
composed into a vector of l digits over Fdp (see Section 2.2). Then each digit
embedded into one SIMD slot. Thus, each ciphertext encrypts exactly k = `/l
integers.

Note that although our algorithms save some homomorphic multiplications
as compared to [37], the depth of the circuits remains unchanged. Since the
ciphertext size depends mainly on the depth of the circuit one wants to evaluate
and the desired level of security, we obtain similar bandwidth requirements than
previous works.

https://github.com/iliailia/comparison-circuit-over-fq
https://github.com/iliailia/comparison-circuit-over-fq


To compare our algorithms with the state of the art, we ran the lexicographic
order algorithm (LT) to compute the less-than function on 64-bit integers. The
results of these experiments are presented in Table 1. In addition, we ran the
direct sorting and the array minimum algorithms from Section 4; see Tables 3
and 4, respectively.

We ran our algorithms with p ∈ [3, 659]. However, Table 1 contains the best
results for small p’s, where the bivariate and the univariate comparison circuits
have a comparable running time. Table 2 contains the results with the best
observed amortized running time. For the sorting and the array minimum appli-
cations (Tables 3 and 4), we showed only the results with p and m supporting
reasonable security levels and giving the best running time for arrays of length
N = 64.
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Fig. 2: Less-than function via different methods. The running time speedup
factor of our lexicographic order algorithms over the algorithm of Tan et al. [37].
These factors are computed using the data from Table 1.

As shown in Table 1 and Figure 2, our lexicographic order circuits have a
better running time than the prior work of Tan et al. [37] even for small plain-
text moduli. In particular, using our bivariate circuit, the less-than function is
1.71 times faster than with the circuit of Tan et al. on their fastest set of pa-
rameters ((p, d, l) = (5, 7, 4)). The best running time per integer was achieved
by our univariate circuit, which outperforms any bivariate circuit for any p > 5
at the cost of larger encryption parameters. As shown in Figure 2, the speedup



(p,m, n) Type (d, l) log2 q λ k Total
time, s

Amortized time
per integer, ms

(3, 34511, 34510)
[37] (6, 7) 324 298 290 26.24 90
B (6, 7) 324 298 290 20.17 70
U (16, 4) 472 189 507 28.45 56

(5, 19531, 19530)
[37] (7, 4) 324 155 697 24.97 36
B (7, 4) 324 155 697 14.50 21
U (7, 6) 354 141 465 9.89 21

(7, 20197, 19116)
[37] (6, 4) 354 137 531 37.50 71
B (6, 4) 354 137 531 21.35 40
U (8, 4) 406 110 531 16.53 31

(11, 15797, 15796)
[37] (5, 4) 342 162 359 35.20 99
B (5, 4) 342 162 359 22.76 64
U (5, 5) 378 145 287 9.79 35

(13, 30941, 30940)
[37] (5, 4) 354 338 1547 82.02 54
B (5, 4) 354 338 1547 54.05 35
U (4, 6) 378 313 1031 15.56 16

(17, 41761, 41760)
[37] (4, 4) 413 402 1305 130.81 101
B (4, 4) 413 402 1305 91.14 70
U (7, 3) 472 344 1740 45.29 27

(19, 29989, 29988)
[37] (4, 4) 378 302 833 101.75 123
B (4, 4) 378 302 833 69.92 84
U (5, 4) 385 296 833 20.76 25

(23, 37745, 30192)
[37] (5, 3) 413 275 838 194.41 232
B (5, 3) 413 275 838 135.40 162
U (9, 2) 456 245 1258 56.49 45

(29, 18157, 17820)
[37] (5, 3) 360 175 990 103.28 105
B (5, 3) 360 175 990 70.82 72
U (6, 3) 413 150 990 19.98 21

(31, 52053, 34700)
[37] (5, 3) 512 252 2313 437.11 189
B (5, 3) 512 252 2313 293.27 127
U (4, 4) 512 252 1735 46.58 27

Table 1: Less-than function via different methods. The running time of our
lexicographic order algorithms and the algorithm of Tan et al. [37] to compare
64-bit integers with encryption parameters supporting λ bits of security. The
second column (Type) indicates which comparison circuit is used: the univariate
(U), bivariate from this work (B) or bivariate one from [37]. The total time is
averaged over 50 trials.

factor of the lexicographic order with the univariate circuit over [37] is increasing
with the plaintext modulus. This trend is perturbed when p = 23 and 29 be-
cause the structure of the related slot permutation groups introduces additional



(p,m, n) (d, l) log2 q λ k Total time, s Amortized time
per integer, ms

(131, 17293, 17292) (3, 4) 431 96 1441 16.07 11
(167, 28057, 28056) (3, 4) 494 146 2338 30.69 13
(173, 30103, 30102) (2, 5) 521 148 2006 24.57 12

Table 2: Less-than function via the univariate circuit. The best empirical
running time of our lexicographic order algorithm to compare 64-bit integers with
encryption parameters supporting λ bits of security. The algorithm is based on
the univariate circuit. The total time is averaged over 50 trials.

computational overhead and ciphertext noise, thus leading to larger encryption
parameters.

Table 2 shows that for p = 131, the univariate circuit takes only 11 millisec-
onds to compare two 64-bit integers, which is more than 3 times faster than the
best running time achieved by the circuit of Tan et al.

N log2 q #Trials Average total
time, s

Amortized time
per integer, ms

Amortized time
per integer,
ms [12]

8-bit integers (d = 2, l = 1, k = 9352)

4 589 32 186.28 20 140
8 599 20 867.46 93 690
16 599 20 3652.23 391 3140
32 599 20 14769.23 1579 13900
64 604 10 60351.02 6453 60000

32-bit integers (d = 3, l = 2, k = 4676)

4 659 20 299.17 64 200
8 671 20 1356.19 290 944
16 671 20 5700.12 1219 4280
32 684 20 23017.03 4922 18600
64 684 10 89972.27 19241 49700

Table 3: Sorting. The running time needed to sort N 8-bit or 32-bit integers
with p = 167, m = 28057 and n = 28056. The minimal security level is 92 bits
according to the LWE estimator [3]. Note that the amortized timing per integer
from [12] is obtained with the LTV scheme [32], which was attacked by Albrecht
et al. [2].

Table 3 illustrates that our homomorphic sorting implementation achieves
the best running time in the existing literature. Note that the best result [12] in



this area is based on an SHE scheme that was successfully attacked by Albrecht
et al. [2]. Hence, this result is hard to compare directly to our work.

N T log2 q #Trials Average total
time, s

Amortized time
per integer, ms

8-bit integers (d = 3, l = 1, k = 5220)

2 1 232 20 12.35 2.37
4 2 406 20 50.55 9.68
8 3 579 20 151.75 29.07
16 4 766 20 386.87 74.11
32 3 825 20 883.68 169.29
64 3 854 20 2111.56 404.51

32-bit integers (d = 6, l = 2, k = 2610)

2 1 406 20 37.71 14.54
4 2 753 20 157.80 60.46
8 1 825 20 506.24 193.96
16 1 839 20 1694.15 649.10
32 1 854 20 6440.27 2467.54
64 1 884 20 24986.04 9573.20

Table 4: Array minimum. The running time needed to find the minimum of N
8-bit or 32-bit integers with p = 17, m = 41761 and n = 41760. The parameter
T denotes the number of the tournament method stages. The minimal security
level is 121 bits according to the LWE estimator [3].

The existing literature on homomorphic array minimum/maximum algo-
rithms [38,35] is based on the techniques described in Section 4.2. Hence, our im-
provement of comparison circuits automatically results in a better performance
over these works. For example, Togan et al. [38] needed 346.9 seconds to find
maximal elements of 960 arrays of 16 8-bit integers, which is 361 milliseconds
per array. Our work can perform this task in 74 milliseconds, see Table 4. To
find the minimum of 64 32-bit integers, our array minimum algorithm requires
about 9.5 seconds.

5.1 Comparison to other HE schemes

As mentioned in the introduction, there are three types of HE schemes suitable
in different use cases including TFHE, CKKS and BGV/BFV. Our algorithms
are designed for BGV/BFV, which support SIMD packing and are the most ef-
ficient FHE schemes for exact computation in arithmetic circuits. However, the
amortized running time per data value of our comparison algorithms is compa-
rable to efficient FHE schemes for binary circuits (TFHE) and HE supporting
approximate arithmetic over complex numbers (CKKS).



In Table 5, our implementation of the less-than function is compared to the
implementations of this function in TFHE [19,20] and CKKS [15].

Chilloti et al. [19,20] constructed a deterministic weighted automata that can
compute the maximum function using the TFHE scheme. The same automata
can compute the less-than function without any performance loss. In this case,
the running time of the less-than function of two b-bit integers takes 170b mi-
croseconds on a hardware similar to ours and with the encryption parameters
supporting at least 152 bits of security. This security level might be lowered by
a recent attack of Espitau et al. [23]. Note that this running time is achieved in
the leveled mode of TFHE, i.e. without bootstrapping. Unfortunately, we could
not manage to run the code of this implementation on our machine.

Cheon et al. [15] designed a polynomial approximation of the less-than func-
tion over real numbers. Since the precision of this approximation depends on
the ciphertext noise which cannot be reduced in CKKS, only a few consecutive
comparisons are possible to perform correctly unlike in TFHE and BGV/BFV.
Nevertheless, the number of SIMD slots in CKKS is always half of the ring
dimension (n/2), which significantly reduces the amortized running time per
value.

We ran the comparison method of Cheon et al. on our machine with multi-
threading turned off. Since the implementation in [15] uses parallelization with
8 cores, our running time of this method presented in Table 5 is significantly
larger than in [15]. The encryption parameters of the CKKS scheme are set to
support a security level of at least 128 bits.

Our implementation runs with p = 131, m = 17293 (n = 17292), which
corresponds to 5764 integers of 8-16 bits or 2882 20-bit integers encoded into
one ciphertext. The encryption parameters corresponds to a security level of at
least 126 bits.

As shown in Table 5, our algorithm for the less-than function demonstrates
a similar performance as the TFHE-based implementation and is up to 2 times
faster than the CKKS-based work. This means that in use cases that involve
arithmetic and non-arithmetic functions (e.g. artificial neural networks) one
might resort to only an HE scheme supporting exact arithmetic circuits (i.e.
BGV/BFV) instead of combining it with an HE scheme efficient for a non-
arithmetic part of the computation (i.e. TFHE).

6 Conclusion

In this work, we constucted more efficient homomorphic circuits of compari-
son operations for the BGV and BFV FHE schemes. Our results are based on
structural properties of comparison functions over finite fields. We proved that
less-than functions of two input variables x and y can be represented either by
bivariate polynomials or univariate polynomials (in variable z = x−y) with mul-
tiple zero coefficients, which simplifies computation. Moreover, our computation
of the univariate less-than functions yields the output of the equality function



Bit length FHE scheme Total time, s Amortized time
per integer, ms

8
TFHE 0.001* 1.36*
CKKS 89.61 1.37
BGV(this paper) 7.09 1.23

12
TFHE 0.002* 2.04*
CKKS 127.54 1.95
BGV(this paper) 7.09 1.23

16
TFHE 0.003* 2.72*
CKKS 296.96 4.53
BGV(this paper) 12.11 2.10

20
TFHE 0.003* 3.4*
CKKS 373.76 5.70
BGV(this paper) 8.66 3.01

Table 5: Comparison with other HE schemes. Total and amortized running
time of the less-than function implemented with different HE schemes including
TFHE, CKKS and BGV. Note that TFHE does not support SIMD packing,
which implies that the total and amortized running time of this scheme are the
same. The encryption parameters of each scheme are set to support the following
security levels: 152 bits for TFHE (might be smaller due to [23]), 128 bits for
CKKS and 126 bits for BGV.
*TFHE timings are estimated from [20].

almost for free, which allowed us to speed up the lexicographic order of vectors
over finite fields and thus comparison of large integers encoded by these vectors.

The implementation of our circuits in HElib is faster than the state-of-the-
art work [37] by more than a factor of 3. Furthermore, the running time of our
circuits is comparable to implementations of comparison algorithms in TFHE,
which is believed to be the most efficient FHE scheme for non-arithmetic ho-
momorphic computations. As a side contribution, we applied our comparison
algorithms to the tasks of sorting and array minimum search. In both cases
we achieved the best running time present in the literature. For instance, our
sorting algorithm can sort 4676 batches of 64 32-bit integers in about 25 hours,
which results in an amortized time equal to about 19 seconds per batch. Our
minimum circuit can find minimal elements of 2610 batches of 64 32-bit integers
in approximately 7 hours; the amortized time is 9.5 seconds per batch.

We hope that this work will draw attention to the study of arithmetic circuits
over finite fields representing non-arithmetic functions over integers, thus leading
to practically efficient homomorphic implementations of useful algorithms.
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12. Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas. Depth optimized
efficient homomorphic sorting. In Kristin E. Lauter and Francisco Rodŕıguez-
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22. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic Encryp-
tion in Less Than a Second. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, pages 617–640, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

23. Thomas Espitau, Antoine Joux, and Natalia Kharchenko. On a hybrid approach
to solve small secret LWE. Cryptology ePrint Archive, Report 2020/512, 2020.
http://eprint.iacr.org/2020/512.

24. Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic
Encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.
iacr.org/2012/144.

25. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June
2009.

26. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic Encryption
with Polylog Overhead. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, pages 465–482, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

27. HElib: An implementation of homomorphic encryption (2.0.0). https://github.

com/homenc/HElib, January 2021. IBM.
28. Shizuo Kaji, Toshiaki Maeno, Koji Nuida, and Yasuhide Numata. Polynomial ex-

pressions of p-ary auction functions. Journal of Mathematical Cryptology, 13(2):69–
80, 2019.

https://eprint.iacr.org/2019/1234
http://eprint.iacr.org/2020/512
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://github.com/homenc/HElib
https://github.com/homenc/HElib


29. M. Kim, H. T. Lee, S. Ling, and H. Wang. On the Efficiency of FHE-Based Private
Queries. IEEE Transactions on Dependable and Secure Computing, 15(2):357–363,
2018.

30. Miran Kim and Kristin Lauter. Private Genome Analysis Through Homomorphic
Encryption. BMC medical informatics and decision making, 15, December 2015.

31. Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their appli-
cations. Cambridge University Press, 1986.
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A Proof of Theorem 1

To prove Theorem 1 we need the following lemmas.

Lemma 3. For all (a, b) ∈ Z2 we have:

(a− b)p−1 =

p−1∑
i=0

aibp−1−i mod p.

Proof. Using the binomial theorem we obtain

(a− b)p−1 =

p−1∑
i=0

(
p− 1

i

)
ai(−b)p−1−i.



Computing the binomial coefficient modulo p(
p− 1

i

)
=

(p− 1)!

i!(p− 1− i)!

=
(p− 1)(p− 2) . . . (i+ 1)

1 · 2 . . . (p− (1 + i))

= (−1)p−1−i mod p ,

we prove the lemma.

Lemma 4. Let P (X) be a polynomial of degree d less than p−1. For any prime
number p > 2, it holds

p−1∑
a=0

P (a) = 0 mod p.

Proof. Since
∑p−1
a=0 b = 0 mod p for any b ∈ Fp, it is enough to prove that

the sum
∑p−1
a=0 a

n = 0 mod p for any 0 ≤ n < p − 1. Since the case n = 0 is
straightforward, let us assume n > 0. Let g be a primitive element of Fp. Since
p > 2, we have g 6= 1. Thus, we can rewrite the above sum as follows.

p−1∑
i=1

gin =
gpn − gn

gn − 1
.

Since gpn ≡ gn mod p, the sum turns into zero modulo p.

Now, we have all the ingredients to prove Theorem 1.

Proof (Proof of Theorem 1). Assume that all computations are done modulo p.
Using Lemma 3, we obtain that PLTS (X,Y ) is equal to

p−2∑
a=0

(
1−

p−1∑
i=0

Xiap−1−i

)
p−1∑
b=a+1

1−
p−1∑
j=0

Y jbp−1−j


Let us expand this expression distributively.

p−2∑
a=0

p−1∑
b=a+1

1−
p−1∑
i=0

Xiap−1−i −
p−1∑
i=0

Y ibp−1−i

+

p−1∑
i=0

p−1∑
j=0

XiY jap−1−ibp−1−j .

Let us compute individual polynomial coefficients. The constant term is equal
to

p−2∑
a=0

p−1∑
b=a+1

1− ap−1 − bp−1 + ap−1bp−1

=

p−2∑
a=0

p−1∑
b=a+1

1− ap−1 − 1 + ap−1 = 0 .



Coefficients by Xi with i > 0 can be computed as follows

p−2∑
a=0

p−1∑
b=a+1

(
−ap−1−i

)
+ ap−1−ibp−1 = 0 .

Next, we compute coefficients by Y i with i > 0.

−
p−2∑
a=0

p−1∑
b=a+1

bp−1−i − ap−1bp−1−i

= −
p−1∑
b=1

bp−1−i −
p−2∑
a=1

p−1∑
b=a+1

bp−1−i − bp−1−i

= −
p−1∑
b=1

bp−1−i.

If i = p− 1, this sum is equal to 1. According to Lemma 4, it is 0 if i < p− 1.
To compute coefficients by XiY j with i, j > 0, we will use Faulhaber’s for-

mula below

n∑
k=1

ke =
1

e+ 1

e+1∑
i=1

(−1)δie
(
e+ 1

i

)
Be+1−i · ni ,

where δie is the Kronecker delta and Bi is the ith Bernoulli number. This implies
that there exist a polynomial P (X) ∈ Fp[X] of degree e+ 1 such that

n∑
k=1

ke = P (n). (12)

Note that P (0) = 0. The coefficient by XiY j for some positive i and j is equal
to

p−2∑
a=0

p−1∑
b=a+1

ap−1−ibp−1−j =

p−1∑
b=1

bp−1−j
b−1∑
a=0

ap−1−i .

According to (12), there exist a polynomial Pi(X) of degree p − i such that∑b−1
a=0 a

p−1−i = Pi(b). Since Qij(X) = Xp−1−jPi(X) has degree 2p − 1 − i − j,
Lemma 4 implies that if i+ j > p, then

p−1∑
b=1

bp−1−j
b−1∑
a=0

ap−1−i =

p−1∑
b=1

bp−1−jPi(b)

=

p−1∑
b=1

Qij(b) =

p−1∑
b=0

Qij(b)−Qij(0) = 0.



Thus, all the coefficient XiY j with i + j > p are zero, which means that the
total degree of PLTS (X,Y ) is at most p.

In addition, we consider the case when i = j and i, j ≤ (p − 1)/2. Let us
consider the following sum

p−1∑
a=0

ap−1−i
p−1∑
b=0

bp−1−i = 0 .

We can rewrite it as follows

p−1∑
a=0

ap−1−i
p−1∑
b=0

bp−1−i

= 2

p−2∑
a=0

ap−1−i
p−1∑
b=a+1

bp−1−i +

p−1∑
a=0

a2(p−1−i) .

This implies that

p−2∑
a=0

ap−1−i
p−1∑
b=a+1

bp−1−i = −1

2

p−1∑
a=0

a2(p−1−i) .

Note that the inverse of 2 is well defined modulo p since p is an odd prime. If
i < (p − 1)/2, then Lemma 4 says the sum on the right side is zero. Thus, the
coefficient by XiY i, which is exactly the sum on the left side, is equal to zero.
If i = (p− 1)/2, the above equality yields that the coefficient by (XY )(p−1)/2 is
equal to −(p− 1)/2.

B Decomposition of f(X,Y ) for 3 ≤ p ≤ 7

Let Z = Y (X − Y ). One non-scalar multiplication is needed to compute Z.
p=3.

f(X,Y ) = 2 .

Since the polynomial f(X,Y ) is constant, it can be computed without any
homomorphic multiplication.

p=5.
f(X,Y ) = 4X2 + 4X + Z .

Two non-scalar multiplications are needed to compute X2 and Z.
p=7.

f(X,Y ) = 1 + 4X(X + 1) + 6[X(X + 1)]2 + (X2 + 3X)Z + 6Z2

In this case, four non-scalar multiplications are needed (indicated in bold)
when rewritten as follows

f(X,Y ) = 1 + 2(X2 +X) · [2 + 3(X2 +X)] + Z · [(X2 + 3X) + 6Z] .



C Proof of Theorem 3

Let Z = X−Y . Thus we can rewrite QLTS (X,Y ) as the univariate function χF−p ,

namely

QLTS (X,Y ) = χF−p (Z) =

−1∑
a=− p−1

2

1− (Z − a)p−1.

Thanks to Lemma 3, we can expand (Z − a)p−1 and obtain

−1∑
a=− p−1

2

1−
p−1∑
i=0

Ziap−1−i =

p−1∑
i=1

Zi
−1∑

a=− p−1
2

(−ap−1−i).

If i is even and i < p− 1, then the ith coefficient is equal to

−
−1∑

a=− p−1
2

ap−1−i = −

p−1
2∑

a=1

ap−1−i = −1

2

p−1
2∑

a=− p−1
2

ap−1−i.

This coefficient is equal to 0 for any even 0 < i < p− 1 thanks to Lemma 4. The
(p− 1)-th coefficient is equal to −(p− 1)/2 = (p+ 1)/2 mod p. If i is odd, then
we can rewrite the ith coefficient in the following way

−
−1∑

a=− p−1
2

ap−1−i =

p−1
2∑

a=1

ap−1−i,

which finishes the proof.
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