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Neural aided cryptanalysis is a challenging topic, in which the neural distinguisher
(ND) is a core module. In this paper, we propose a new ND considering multiple
ciphertext pairs simultaneously. Besides, multiple ciphertext pairs are constructed
from different keys. The motivation is that the distinguishing accuracy can
be improved by exploiting features derived from multiple ciphertext pairs. To
verify this motivation, we have applied this new ND to five different ciphers.
Experiments show that taking multiple ciphertext pairs as input indeed brings
accuracy improvement. Then, we prove that our new ND applies to two different
neural aided key recovery attacks. Moreover, the accuracy improvement is helpful
for reducing the data complexity of the neural aided statistic attack. The code is

available at https://github.com/AI-Lab-Y/ND_mc.
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1. INTRODUCTION

In CRYPTO’19, Gohr improved attacks on round
reduced Speck32/64 using deep learning [1], which
created a precedent for neural aided cryptanalysis. The
neural distinguisher (ND) proposed by Gohr plays
a core role in [1]. Its target is to distinguish real
ciphertext pairs (C0, C1) corresponding to plaintext
pairs with a specific difference from random ciphertext
pairs. ND takes a ciphertext pair (C0, C1) as input,
and gives the classification result.

The performance of ND is important for neural aided
cryptanalysis. For Gohr’s key recovery attack [1], the
most important step is identifying the right plaintext
structure that passes the differential placed before ND.
To attack 11-round Speck32/64, Gohr adopted a 6-
round ND and 7-round ND for identifying the right
plaintext structure. The identification result is given
by the 6-round ND instead of 7-round ND. Compared
with the 7-round ND, the 6-round ND achieves higher
distinguishing accuracy. This implies that a stronger
ND is more helpful for Gohr’s attacks. Recently, Chen
et al proposed a generic neural aided statistical attack
(NASA) for cryptanalysis [2]. The data complexity of
NASA is strongly related to the distinguishing accuracy
of ND.

To improve the performance of ND, researchers
have explored ND from different directions. The
most popular direction is adopting different neural

networks. In [3], Jain et al proposed a multi-layer
perceptron network (MLP) to build NDs against
PRESENT reduced to 3, 4 rounds. In [4], Yadav
et al also built an MLP-based 3-round ND against
Speck32/64. In [5], Bellini et al compared MLP-based
and Convolutional Neural Network-based distinguishers
with classic distinguishers. In [6], Pareek et al
proposed fully-connected network-based distinguisher
against the key scheduling algorithm of PRESENT.
Another popular direction is changing the input of ND.
In [7], Baksi et al used the ciphertext difference C0⊕C1

as the input. In [2], Chen et al suggested that the ND
can be built by flexibly taking some bits of a ciphertext
pair as input. In [8], Hou et al investigate the influence
of input difference pattern on the accuracy of NDs
against round reduced Simon32/64.

These above NDs can be viewed as the same type
since only features hidden in a single ciphertext pair
are exploited. Thus, another natural way is taking
more ciphertexts as the input. In [9], Benamira et
al initially tested this idea as follows. First, a group
of B ciphertexts is constructed from the same key.
Second, take a group of B ciphertexts as the input of
ND. Finally, based on a large B, the accuracy of NDs
against 5-round and 6-round Speck32/64 is increased to
100%, which is a huge improvement.

Previous findings especially the work in [9] inspired
us to think about the deeper motivation of taking
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more ciphertexts as input. We believe that the deeper
motivation stands for a generic method for improving
ND. The ND processing a group of B ciphertexts has
two important characteristics: (1) the input contains
more ciphertexts, (2) all the ciphertexts in a group
share the same key. Since Ankele and Kölbl [10], as
well as Gohr [1], reported significant key-dependency
in the output distribution in round reduced Speck, we
wonder whether the same key is a core factor that brings
significant improvement.

1.1. Our Contributions

In this paper, our work contains five contributions:

• By introducing a clear deep motivation, we propose
a new ND considering multiple ciphertext pairs
simultaneously. The motivation is as follows.
When ciphertext pairs corresponding to plaintext
pairs with a specific difference obey a non-uniform
distribution, there are some derived features
from multiple ciphertext pairs. Once neural
networks capture these features, ND would obtain
performance improvement.

• We prove that the same key is not the core factor
that brings significant improvement in [9]. We
made the conclusion by testing the accuracy of
NDs against round reduced Speck32/64 under two
different scenarios: one is that ciphertext pairs in
a group share the same key, one is that ciphertext
pairs in a group adopt different keys. In the first
scenario, the key for generating a ciphertext group
each time is randomly selected. Experiments show
that the same key has small or no influence on
NDs.

• We design a verification framework for further
directly checking that derived features from
multiple ciphertext pairs are learned. This
framework is composed of two tests: false-negative
test (FNT), false-positive test (FPT).

• We build two types of NDs for five round reduced
ciphers: Speck32/64, Chaskey, PRESENT, DES,
SHA3-256. The first one is the ND proposed by
Gohr, and the other one is our new ND. These
experiments further prove the advantage of taking
multiple ciphertext pairs as input and support the
presented deep motivation.

• We prove that the ND taking multiple ciphertext
pairs as input applies to key recovery, which is
not discussed in previous research. At the time of
writing, there are only two key recovery attacks [1,
2] based on the ND proposed by Gohr. We show
how to apply new ND to these two attacks. Due to
the performance improvement, the data complexity
of the attack [2] can be reduced by using the new
ND.

1.2. Outlines

This paper is organized as follows:

• Section 2 presents preliminaries, including some
important notations and five related ciphers.

• In section 3, the ND proposed by Gohr and two
key recovery attacks are briefly reviewed.

• Section 4 presents the new ND including
the motivation, model, the neural network for
implementing the new ND, and the training
pipeline.

• Section 5 presents the verification framework.
• In section 6, we build NDs for five ciphers and

perform an analysis.
• In section 7, we show how to perform key recovery

attacks using the new ND. A data reuse strategy
is also proposed in this section.

2. PRELIMINARIES

2.1. Notations

P,C Plaintext, Ciphertext
α Plaintext difference
N,M The number of plaintext or ciphertext pairs
NDk=? ND with k ciphertext pairs as input
Z The output of an ND
r The number of reduced rounds

2.2. Five Ciphers

We choose five different ciphers for supporting our work.

• Speck32/64 [11] is a lightweight block cipher whose
block size is 32 bits. Its non-linear component is
the modular addition.

• Chaskey [12] is a Message Authentication Code
(MAC) algorithm whose intermediate state size is
128 bits. Its non-linear component is the modular
addition.

• Present64/80 [13] is a block cipher whose block size
is 64 bits. Its non-linear component is a 4×4 Sbox.

• DES [14] is a block cipher whose block size is 64
bits. Its non-linear component is given by eight
different 6× 4 Sboxes.

• SHA3-256 [15] is a hash function whose intermedi-
ate state size is 1600 bits. Its non-linear component
can be seen as the application of a 5-bit Sbox ap-
plied in parallel 320 times.

We refer readers to [11, 12, 13, 14, 15] for more details
of these ciphers.

2.3. Computing Resources

In this paper, the available computing resources are: an
Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz, a graphics
card (NVIDIA GeForce GTX 1060 6GB).
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3. RELATED WORK

3.1. Gohr’s Neural Distinguisher

In [1], Gohr built NDs against round reduced
Speck32/64. The ND proposed by Gohr is a generic
distinguisher since it only requires a plaintext difference
constraint.

Consider a cipher E and a plaintext difference
α. Gohr’s ND aims at distinguishing two classes of
ciphertext pairs

Y (C0, C1) =

{
1, if P0 ⊕ P1 = α
0, if P0 ⊕ P1 6= α

(1)

where (C0, C1) is the ciphertext pair corresponding
to the plaintext pair (P0, P1), and Y is the label of
(C0, C1).

We denote ciphertext pairs corresponding to plain-
text pairs with the target difference α as positive
samples, and denote ciphertext pairs corresponding to
plaintext pairs with a random difference as negative
samples.

If a neural network achieves a distinguishing accuracy
higher than 0.5 over randomly selected ciphertext pairs,
the neural network is a valid ND.

In [1], Gohr chose a residual network [16] with one
output neuron. Thus, the output Z of Gohr’s ND is
also used as the following posterior probability

Pr (Y = 1 |(C0, C1) ) = F1 (f (C0, C1))
0 6 Pr (Y = 1 |(C0, C1) ) 6 1

(2)

where f(C0, C1) stands for features learned by the
ND from (C0, C1), F1(·) is the posterior probability
estimation function learned by the ND. If Pr(Y =
1|(C0, C1)) > 0.5, the label of (C0, C1) predicted by the
ND is 1.

3.2. Gohr’s Key Recovery Attack

Given an ND, we denote the output of ND as
Z. Positive samples are expected to obtain a higher
posterior probability than negative samples, which is
the core idea of Gohr’s key recovery attack [1].

Consider an (r + 1)-round cipher E and an r-round
ND built over a plaintext difference α. Gohr’s attack
recovers the subkey of the (r+ 1)− th round as follows:

1. Generate m positive samples with α randomly.
2. For each possible subkey guess kg:

(a) Decrypt m positive samples with kg.
(b) Feed partially decrypted samples into the ND

and collect the outputs Zi, i ∈ [1,m].
(c) Compute the rank score Vkg of kg as:

Vkg =

m∑
i=1

log2

(
Zi

1− Zi

)
(3)

(d) If Vkg exceeds a threshold c1, save kg as a
subkey candidate.

3. Return kg with the highest key rank score as the
final subkey guess.

The value of c1 and m is set experimentally.

FIGURE 1. The key recovery process. The prepended
differential ∆P → α is satisfied with a probability p0. The
intermediate state pair is (S0, S1).

A differential ∆P → α can be placed before the ND
to extend the rounds covered by the attack (see Fig.1).
With the help of neutral bits [17], ciphertext structures
consisting of m positive samples or negative samples can
be generated. Then a high rank score occurs only when
the structure consisting of positive samples is decrypted
by the true subkey. More details can refer to [1].

3.3. Neural Aided Statistical Attack

The neural aided statistical attack proposed by Chen et
al [2] is performed as follows:

1. Randomly generate N plaintext pairs with a
difference ∆P .

2. Collect the ciphertext pairs.
3. For each possible subkey guess kg:

(a) Decrypt N ciphertext pairs with kg.
(b) Feed partially decrypted ciphertext pairs into

the ND and collect the outputs Zi, i ∈ [1, N ].
(c) Count the following statistic T :

T =

N∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

(4)
(d) If T exceeds a decision threshold t, save kg as

a subkey candidate.

4. Return all the surviving subkey candidates.

Chen et al proposed a theoretical framework to estimate
N and t. The value of c2 is set in advance, which doesn’t
influence the estimation of N, t.

According to Fig.1, Chen et al summarized three
types of probabilities:

Pr(Z > c2|S0 ⊕ S1 = α, kg = sk) = p1 (5)

Pr(Z > c2|S0 ⊕ S1 = α, kg 6= sk) = p2 (6)

Pr(Z > c2|S0 ⊕ S1 6= α) = p3 (7)
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where sk is the true subkey. These three probabilities
p1, p2, p3 are related to the ND.

NASA returns all the possible subkey candidates.
Besides, NASA allows us to set two ratios β0, β1 in
advance. The ratio β0 is the expected probability that
the true subkey sk survives the attack. The ratio β1
is the expected probability that wrong subkey guesses
survive the attack.

Based on p0, p1, p2, p3, β0, β1, the required N is:

√
N =

z1−β0
× v0 + z1−β1

× v1
(p1 − p2)× p0

(8)

where

v0 =
√
p0 × p1(1− p1) + (1− p0)p3(1− p3)

v1 =
√
p0 × p2(1− p2) + (1− p0)p3(1− p3),

and z1−β0 , z1−β1 are the quantiles of the standard
normal distribution.

The decision threshold t is:

t = µ0 − z1−β0
× σ0 (9)

where
µ0 = N × (p0p1 + (1− p0) p3)

σ0 =
√
N × p0 × p1(1− p1) +N(1− p0)p3(1− p3)

If c2 = 0.5, the distinguishing accuracy of the ND is
(p1 + 1− p3)× 0.5. Thus the data complexity of NASA
is strongly related to the ND. We refer readers to [2]
for more details of NASA.

4. NEW NEURAL DISTINGUISHER

4.1. Motivations

The motivations of our new neural distinguisher contain
two aspects.

First, in the machine learning community, providing
more features is a common method to improve the
accuracy of neural networks. For example, depth
map estimation [18] and action recognition [19] are
both tackled by feeding various features (eg. stereo
knowledge [20], depth maps [21]) into neural networks
simultaneously.

FIGURE 2. P1(x) : a Gaussian distribution. P2(x) : a
uniform distribution.

Second, there are some useful features among
multiple samples drawn from the same non-uniform
distribution. Fig.2 shows a simple example. If we

randomly draw two samples (x11, x
1
2)/(x21, x

2
2) from a

Gaussian distribution or a uniform distribution, the
average distance of two samples is d1/d2. Then it is
expected that d1 < d2, which is useful for distinguishing
the two distributions.

Based on the two common phenomena, we obtain
the idea of building a new neural distinguisher by
considering multiple ciphertext pairs.

4.2. New Distinguisher Model

Our new ND needs to distinguish two types of
ciphertext groups (C1,1, C1,2, · · · , Ck,1, Ck,2):

Y =

{
1, if Pj,1 ⊕ Pj,2 = α, j ∈ [1, k]
0, if Pj,1 ⊕ Pj,2 6= α, j ∈ [1, k]

(10)

where Y is the label of ciphertext groups, and
(Cj,1, Cj,2) is the ciphertext pair corresponding to the
plaintext pair (Pj,1, Pj,2), j ∈ [1, k].

According to the introduced motivation, the require-
ment is that ciphertext pairs in a group are randomly
sampled from the same distribution. To minimize in-
fluencing factors, we ask that a ciphertext group is con-
structed from k random keys if the cipher needs a key.
This ensures that k ciphertext pairs do not have any
same properties except for the same plaintext difference
constraint.

Our new ND can be described as

Pr (Y = 1 |X1, · · · , Xk ) =
F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk)))

Xi = (Ci,1, Ci,2) , i ∈ [1, k]
(11)

where f (Xi) represents the basic features extracted
from the ciphertext pair Xi, ϕ (·) is the derived features,
and F2 (·) is the new posterior probability estimation
function.

The motivation also puts forward some design
guidelines for the neural network to be used. Since we
hope more features ϕ(f(X1), · · · , f(Xk)) are extracted
from the distribution of basic features f(Xi), i ∈
[1, k], ND should learn basic features from each
ciphertext pair firstly. From the perspective of
neural networks, this requirement can be satisfied
by placing one-dimensional convolutional layers before
two-dimensional convolutional layers.

4.3. Residual Network

4.3.1. Network Architecture
The network architecture adopted by Gohr [1] is also
applied in this article. According to the requirement
of the motivation, except for the first one-dimensional
convolutional layer, the remaining one-dimensional
convolutional layers are replaced by two-dimensional
convolutional layers.

Figure 3 shows the neural network architecture. The
input consisting of k ciphertext pairs is arranged in a
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FIGURE 3. The network architecture of our new ND. Conv stands for a convolution layer with Nf filters. The size of each
filter is Ks×Ks. Module 2 also adopts the skip connection [16]. FC is a fully connected layer that has d1 or d2 neurons. BN
is batch normalization. Relu and Sigmoid are two different activation functions. The output of Sigmoid ranges from 0 to 1.

k×w× 2L
w array. L represents the block size of the target

cipher and w is the size of a basic unit. For example, L
is 32 and w is 16 for Speck32/64.

The network architecture contains two core modules.
The first one (Module 1) is a bit slice layer that contains
convolution kernels with a size of 1× 1. This layer can
learn basic features from each input ciphertext pair that
is arranged in a 1 × w × 2L

w array. The second one
(Module 2) is a residual block that is built over a two-
dimensional convolutional layer. The two-dimensional
filters with a size of Ks×Ks can learn derived features
from k ciphertext pairs. In this article, we use one
residual block for building our new NDs.

4.3.2. Training Pipeline
New NDs are obtained by following three processes:

1. Data Generation: Consider a plaintext
difference ∆P and a cipher E. Randomly generate
k plaintext pairs with ∆P . If E needs a key,
randomly generate k keys. Collect the k ciphertext
pairs with E and k keys. Regard these k ciphertext
pairs as a ciphertext group with a size of k, and
the label is Y = 1. We denote a ciphertext group
with Y = 1 as a positive sample. If the plaintext
differences of k plaintext pairs are random, the
label of the resulting ciphertext group is Y = 0.
And we denote it as a negative sample. A training
set is composed of N

2k positive samples and N
2k

negative samples. A testing set is composed of M
2k

positive samples and M
2k negative samples. We need

to generate a training set and a testing set.
2. Training: Train the neural network (Figure 3) on

the training dataset.

3. Testing: Test the distinguishing accuracy of the
trained neural network on the testing dataset. If
the test accuracy exceeds 0.5, return the neural
network as a valid ND. Or choose a different α
and start from the data generation process again.

In the training phase, the neural network is trained
for Es epochs with a batch size of Bs. The cyclic
learning rate scheme in [1] is adopted. Optimization
is performed against the following loss function:

loss =

N
k∑
i=1

(Zi,p − Yi)2 + λ× ‖W‖ (12)

where Zi,p is the output of the ND, Yi is the true label,
W is the parameters of the neural network, and λ is the
penalty factor. The Adam algorithm [22] with default
parameters in Keras [23] is applied to the optimization.

5. THE VERIFICATION FRAMEWORK

Although the distinguishing accuracy of new NDk is
the best evidence for supporting the motivation of
taking k ciphertext pairs as input, we propose an
auxiliary verification framework to further show that
new NDk captures features derived from multiple
ciphertext pairs. This framework is composed of two
tests: False Negative Test (FNT), False Positive Test
(FPT).

The idea of FPT and FNT is as follows. When
features f(Xi), i ∈ [1, k] hidden in a single ciphertext
pair do not lead to the right classification, only derived
features ϕ (f (X1) , · · · , f (Xk)) can provide useful clues
for classification.
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It is hard to directly select k ciphertext pairs that
satisfy the above requirement based on the NDk itself.
Thus, An ND that takes a single ciphertext pair as
input is used to select k wrongly classified ciphertext
pairs. This is an approximate but reasonable method
that is based on the following reasons

• When we build NDk, all the ciphertext pairs
are constructed from different keys. This ensures
that only two types of features are available: one
is features hidden in a single ciphertext pair,
the other one is features derived from multiple
ciphertext pairs.

• When the ND that takes one ciphertext pair as
input has high accuracy, it means that features
hidden in the ciphertext pair provide strong clues
leading to wrong classifications. If new NDk still
correctly classifies such k ciphertext pairs with a
high probability, we can believe that this is due to
features derived from multiple ciphertext pairs.

5.1. False Negative Test (FNT)

If k ciphertext pairs with label 1 are all wrongly
classified by the ND that takes a single ciphertext pair
as input

p (Y = 1 |X1 ) = F1 (f (X1)) < 0.5
...

p (Y = 1 |Xk ) = F1 (f (Xk)) < 0.5,

(13)

such ciphertext pairs are false negative samples. These
k samples are combined into a ciphertext group and fed
into NDk.

Generate a large number of such ciphertext groups
and feed them to NDk. What we care about is the
following pass ratio

F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk))) > 0.5
(14)

Now, the classification is determined by
ϕ (f (X1) , · · · , f (Xk)). The final pass ratio under
such a setting can show whether derived features have
been learned and their effects. If NDk can obtain a
non-negligible pass ratio, then ϕ (f (X1) , · · · , f (Xk))
can offset the negative influence of f (Xi) , i ∈ [1, k]. If
the pass ratio is high, derived features from k cipher-
text pairs play a vital role in classification for this kind
of ciphertext pair.

5.2. False Positive Test (FPT)

Similarly, if k ciphertext pairs with label 0 are wrongly
classified

p (Y = 1 |X1 ) = F1 (f (X1)) > 0.5
...

p (Y = 1 |Xk ) = F1 (f (Xk)) > 0.5,

(15)

TABLE 1. Parameters for constructing our new ND
Nf d1 d2 Ks Bs

32 64 64 3 1000

λ Lr Es N M

10−5 0.002→ 0.0001 10 107 106

TABLE 2. Distinguishing accuracy of NDs against
Speck32/64.

r NDk=1 NDk=2 NDk=4 NDk=8 NDk=16

5 0.926 0.9739 0.9914 0.9991 0.9999

6 0.784 0.8667 0.9358 0.9528 0.9786

7 0.607 0.6396 0.6847 0.7009 0.6493

such ciphertext pairs are false positive samples. These
k samples are combined into a ciphertext group and fed
into NDk. Now what we care about is the following
pass ratio

F2 (f (X1) , · · · , f (Xk) , ϕ (f (X1) , · · · , f (Xk))) < 0.5
(16)

6. APPLICATIONS TO FIVE CIPHERS

We apply our new ND as well as Gohr’s ND to five
ciphers introduced in section 2.2. The training pipeline
of Gohr’s ND is presented in [1]. Table 1 summarizes
the parameters that are related to the residual network
and training pipeline that are introduced in section 4.3.

Since Gohr provided NDs against round reduced
Speck32/64 in CRYPTO’19, we perform in-depth
analysis by taking the application to Speck32/64 as an
example. Applications to the remaining four ciphers
are listed as supporting materials. For convenience, we
denote Gohr’s ND as NDk=1.

6.1. Experiments on Speck32/64

6.1.1. Neural Distinguishers
The plaintext difference is α = (0x0040, 0) introduced
in [24]. We built NDk, k ∈ {2, 4, 8, 16} against
Speck32/64 reduced to 5, 6, and 7 rounds respectively.

Table 2 lists the accuracy of NDs. Compared
with NDk=1, all the NDk, k > 1 achieve accuracy
improvement. Besides, we find that the overfitting
phenomenon [25] always appears in the training process
ofNDk=16 against 7-round Speck32/64. If this problem
could be solved, it is possible to further improve the
accuracy.

In the above setting, our distinguishers take k
ciphertext pairs as input while Gohr’s distinguishers
take one ciphertext pair as input. To prove the positive
influence of features derived from multiple ciphertext
pairs, we compare the distinguishing accuracy under a
fair setting.

The concrete process is as follows:

1. Generate n ciphertext pairs with the same sample
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TABLE 3. Distinguishing accuracy of NDs against
Speck32/64 under the fair setting.

r / n NDk=1 NDk=2,m = n
k
NDk=4,m = n

k

6 / 8 0.9573 0.9767 0.9823

7 / 8 0.7333 0.7421 0.7506

7 / 16 0.7859 0.8020 0.8090

7 / 32 0.8352 0.8682 0.8751

7 / 64 0.8757 0.9282 0.9387

label. It is worth noticing that n random keys are
used.

2. For Gohr’s distinguishers NDk=1, feed n cipher-
text pairs into NDk=1, and use the median value
of n outputs to give the prediction label of the n
ciphertext pairs.

3. For our new distinguishers NDk>1, collect m
ciphertext groups by uniformly sampling from the
n ciphertext pairs, feed m ciphertext groups into
NDk>1, and use the median value of n outputs to
give the prediction label.

4. Repeat the above steps 106 times and count the
distinguishing accuracy.

Such a setting ensures that our distinguishers do not
use more prior knowledge. Taking NDk=2,NDk=4 as
examples, we have performed several experiments under
the setting.

Table 3 summarizes our experiment results. Under
the fair setting, our distinguishers achieve higher
accuracy. This proves that some features derived
from multiple ciphertext pairs have been captured by
our distinguishers, and these features bring accuracy
improvement.

Besides, we find that the distinguishing accuracy can
be further improved, if we increase m by adopting
the data reuse strategy that will be introduced in
Section 7.1.

6.1.2. The Impact of the Same Key Setting
As introduced in section 1, Benamira et al also tested
the idea of taking multiple ciphertext pairs as input [9].
The difference with our NDs is that ciphertext pairs
belonging to a group are constructed from the same
key in [9].

To prove that the same key setting is not the core
factor that brings huge accuracy improvement in [9], we
build NDs by adopting the same key setting as follows

• we randomly generate a key for each ciphertext
group.

• k ciphertext pairs belonging to a group are
constructed from the same key.

Then we test the distinguishing accuracy of these
NDs over two kinds of testing sets

• testing set 1: k ciphertext pairs of a group are
constructed from k different keys.

TABLE 4. Distinguishing accuracy of NDs over two kinds
of testing sets. These NDs are built under the same key
setting.

r
testing set 1

NDk=2 NDk=4 NDk=8 NDk=16

5 0.9744 0.9906 0.9989 0.9999

6 0.8663 0.9317 0.9561 0.9762

r
testing set 2

NDk=2 NDk=4 NDk=8 NDk=16

5 0.9745 0.9903 0.9990 0.9999

6 0.8662 0.9309 0.9557 0.9770

TABLE 5. The comparison of neural network parameters
as well as the accuracy of NDk, k ∈ {1, 2}.

r
NDk=1, 1 residual blocks

parameter accuracy

5 44321 0.926

6 44321 0.784

r
NDk=1, 10 residual blocks

parameter accuracy

5 102497 0.929

6 102497 0.788

r
NDk=2

parameter accuracy

5 89377 0.9738

6 89377 0.8613

• testing set 2: k ciphertext pairs of a group are
constructed from the same key.

Table 4 summarizes the accuracy of NDs over two
kinds of testing sets. Based on the comparision with
results as shown in Table 2, we find that the same key
setting has small or no influence on the accuracy.

6.1.3. The comparison of Neural Network parameters
Since the neural network adopted in this paper is
different from the neural network adopted by Gohr
in [1], we also focus on the comparison of neural network
parameters.

Table 5 summarizes the comparison of neural network
parameters as well as the accuracy of some NDs.
Gohr reported the best accuracy of 5-round and 6-
round NDk=1 by using 10 residual blocks. Besides,
Gohr also provided NDk=1 by using 1 residual block.
These two kinds of distinguishers almost achieve the
same accuracy. Compared with NDk=1 with 10
residual blocks, our new distinguishers NDk=2 achieve
significant accuracy improvement but contains fewer
parameters. This comparison proves that taking more
ciphertext pairs as input is the reason that brings
accuracy improvement.
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TABLE 6. Pass ratios of FPT and FNT of NDk against
Speck32/64.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.0112 0.0013 0.0001 0

6 0.0331 0.0143 0.0081 0.0048

7 0.0511 0.0212 0.0283 0.0917

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.3068 0.6268 0.6748 0.7228

6 0.1519 0.1432 0.3723 0.4375

7 0.0659 0.0233 0.0157 0.0691

TABLE 7. Distinguishing accuracy of NDs against
Chaskey

r NDk=1 NDk=2 NDk=4 NDk=8 NDk=16

3 0.8608 0.8958 0.9583 0.9887 0.9986

4 0.6161 0.6589 0.6981 0.7603 0.7712

6.1.4. The Results of FPT and FNT
We further perform the FPT and FNT. Corresponding
pass ratios are presented in Table 6. For each NDk,
there is at least one type of pass ratio higher than 0.
This further proves that NDk captures derived features
from k ciphertext pairs.

6.2. Experiments on Chaskey

Based on the plaintext difference α =
(0x8400, 0x0400, 0, 0) [12], we build NDs against
Chaskey reduced to 3, 4 rounds. The accuracies are
presented in Table 7. Table 8 summarizes the results
of the FPT and FNT.

6.3. Experiments on Present64/80

Based on the plaintext difference α = (0, 0, 0, 0x9)
provided in [26], we build NDs against Present64/80

TABLE 8. Pass ratios of FPT and FNT of NDs against
Chaskey.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.1156 0.0635 0.0373 0.0087

4 0.1412 0.1749 0.1481 0.1675

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.4027 0.4032 0.3976 0.4705

4 0.8369 0.7439 0.7298 0.5591

TABLE 9. Distinguishing accuracy of NDs against
Present64/80

r NDk=1 NDk=2 NDk=4 NDk=8 NDk=16

6 0.6584 0.7198 0.7953 0.8308 0.8259

7 0.5486 0.5503 0.5853 0.5786 0.5818

TABLE 10. Pass ratios of FNT and FPT of NDs against
Present64/80.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

6 0.0277 0.0097 0.0258 0.0751

7 0.1796 0.0587 0.1214 0.1488

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

6 0.0147 0.0046 0.0068 0.0183

7 0.0533 0.0126 0.0324 0.0302

reduced up to 6, 7 rounds respectively. The penalty
factor is 10−4 and other related parameters are the same
as Table 1. The distinguishing accuracies are presented
in Table 9. Table 10 summarizes the results of FPT and
FNT.

6.4. Experiments on DES

Based on the analysis of DES in [27], the plaintext
difference α = (0x40080000, 0x04000000) is adopted.
We build NDs against DES reduced to 5, 6 rounds.

The batch size is adjusted to 5000. The penalty factor
is increased to 8× 10−4. Other related parameters are
the same as Table 1. The distinguishing accuracies are
presented in Table 11. The pass ratios of the FPT and
FNT of NDs are presented in Table 12.

6.5. Experiments on SHA3-256

SHA3-256 is a hash function. When one message block
is fed into reduced SHA3-256, we collect the first 32
bytes of the output process after r-rounds permutation
is applied to this message block. Given a message
difference α = 1, we build NDs against SHA3-256
reduced up to 3 rounds.

The number of ciphertext pairs is N = 2× 106. The
batch size is 500, and the penalty factor is 10−5. The
accuracies are presented in Table 13. The pass ratios of
the FPT and FNT of NDs are presented in Table 14.

TABLE 11. Distinguishing accuracy of NDs against DES.

r NDk=1 NDk=2 NDk=4 NDk=8 NDk=16

5 0.6261 0.7209 0.8382 0.9318 0.9585

6 0.5493 0.5653 0.5568 0.5507 0.5532
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TABLE 12. Pass ratios of FNT and FPT of NDs against
DES.

R
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.0046 0.0034 0.0132 0.0131

6 0.0802 0.2348 0.2526 0.3207

R
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

5 0.0594 0.0627 0.0566 0.0518

6 0.0462 0.0598 0.0921 0.0809

TABLE 13. Distinguishing accuracy of NDs against
SHA3-256.

r NDk=1 NDk=2 NDk=4 NDk=8 NDk=16

3 0.7228 0.8149 0.9241 0.971 0.9904

7. KEY RECOVERY ATTACKS

In this section, we propose a data reuse strategy for
reducing data complexity. Then we prove that our
ND can be applied to the two key recovery attacks
introduced in section 3. Since the data complexity
of NASA is directly related to the performance of
NDs, NASA is first performed to highlight the extra
superiority of our NDs.

7.1. Data Reuse Strategy for Reducing Data
Complexity

There is a potential problem when we directly apply
our new ND to key recovery attacks.

Assuming Gohr’s distinguisher and our new NDk
have the same performance, and a certain attack
requires M random inputs. If we directly reshape M×k
ciphertext pairs into M ciphertext groups, the data
complexity of our NDk is k times as much as the data
complexity of Gohr’s distinguisher.

Given M ciphertext pairs Xi = (Ci,0, Ci,1), i ∈
[1,M ], there are a total of

(
M
k

)
options for composing

a ciphertext group, which is much larger than M
k .

Thus we can randomly select M ciphertext groups from(
M
k

)
options. Such a strategy can help reduce data

complexity. In fact, it is equivalent to attach more
importance to derived features from k ciphertexts.

However, the subsequent key recovery attacks using

TABLE 14. Pass ratios of FNT and FPT of NDs against
SHA3-256.

r
False Negative Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.2249 0.2347 0.3336 0.2711

r
False Positive Test

NDk=2 NDk=4 NDk=8 NDk=16

3 0.1045 0.0961 0.0171 0.0088

this naive strategy do not obtain good results. The
main reason is that the sampling randomness of M
ciphertext groups is destroyed. Two new concepts are
proposed for overcoming this problem.

Maximum Reuse Frequency: During the
generation of M ciphertext groups, a ciphertext pair is
likely to be reused several times. We denote the reuse
frequency of the ith ciphertext pair as RFi, i ∈ [1,M ].
Maximum Reuse Frequency (MRF ) is defined as the
maximum value of RFi:

MRF = maxRFi, i ∈ [1,M ] (17)

Sample Similarity Degree: For any two
ciphertext groups Gi, Gj , the similarity of these two
ciphertext groups is defined as the number of the same
ciphertext pairs. As for M ciphertext groups, Sample
Similarity Degree (SSD) is defined as the maximum of
any two ciphertext groups’ similarity:

SSD = max |Gi
⋂
Gj | , i, j ∈ [1,M ]

Gi = {Xi1, · · · , Xik}
Gj = {Xj1, · · · , Xjk}

i1, · · · , ik, j1, · · · , jk ∈ [1,M ]

(18)

MRF can ensure that the contribution of each
ciphertext pair is similar. SSD can increase the
distribution uniformity of M ciphertext groups as much
as possible. Based on the above two concepts, we
propose the following Data Reuse Strategy (see
Algorithm 1) that can reduce data complexity and
maintain sampling randomness.

Algorithm 1 Data Reuse Strategy

Require: MRF ; SSD; k; M .
Ensure: M ciphertext groups with a size of k.
1: Randomly select k ciphertext pairs from M

ciphertext pairs to form a ciphertext group.
2: Repeat step 2 for M times to obtain M ciphertext

groups.
3: Compute MRF and SSD. If two values are both

smaller than the threshold we set, return the M
ciphertext groups. Or start from step 1 again.

7.2. Application to NASA

When we replace Gohr’s distinguisher with our new
ND, the process of NASA does not change. The only
difference is the data collection.

7.2.1. Data Collection
Consider the attack process as shown in Fig.1.
Assuming that our new ND is built with α. Now, we
need to generate ciphertext groups.

Generate k plaintext pairs (P i0, P
i
1), i ∈ [1, k] with

the difference ∆P . Collect corresponding ciphertexts
(Ci0, C

i
1), i ∈ [1, k]. The intermediate states are

(Si0, S
i
1), i ∈ [1, k].
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According to the introduction in section 4.2, these k
ciphertext pairs should satisfy

Si0 ⊕ Si1 = α, or Si0 ⊕ Si1 6= α, i ∈ [1, k]

simultaneously. We use neutral bits [17] to generate
such k ciphertext pairs.

Here we briefly review the definition of neutral bits.
Let E denote the encryption function. We focus on the
following conforming pairs

P0 ⊕ P1 = ∆P, E(P0)⊕ E(P1) = α.

If the condition E(P0 ⊕ ej) ⊕ E(P1 ⊕ ej) = α always
holds where ej = 1 << j, the j-th bit is a neutral bit.

Thus, we can generate 2m > k ciphertext pairs
using m neutral bits. The probability that these k
ciphertext pairs satisfy the difference transition ∆P →
α simultaneously is still p0. Then N ciphertext groups
with a size of k can be generated as

1. Randomly generate N plaintext pairs with ∆P .
2. Generate N plaintext structures using m neutral

bits.
3. Randomly pick k plaintext pairs from a structure

and collect the ciphertext pairs.

The total data complexity is N × k.
It is worth noticing that the data reuse strategy is

still applicable here. More precisely, the data collection
is performed as

1. Randomly generate N
M plaintext pairs with ∆P .

2. Generate N
M plaintext structures using m neutral

bits.
3. Randomly pick M plaintext pairs from a structure,

and generate M ciphertext groups using the data
reuse strategy (Algorithm 1).

The total data complexity is N now.

7.2.2. Experiments on Speck32/64
To prove that our ND applies to NASA, we perform
experiments on Speck32/64.

Our new ND achieves higher accuracy than the ND
proposed by Gohr. Since the data complexity of NASA
is related to the accuracy of ND, it is possible to reduce
the data complexity of NASA by adopting our newND.

Experiment settings. We adopt a 2-round

differential ∆P = 0x211/0xa04
p0=2−6

−−−−−→ α = 0x40/0x0
as the prepended differential. Let β0 = 0.005, β1 =
2−16, c2 = 0.5. The meaning of these parameters is
defined in section 3.3. Since c2 is set, the values of
p1, p3 are experimentally estimated based on NDs.

The estimation of p2 is complex. Let p2|d denote
the estimated value of p2 where d is the Hamming
distance between the correct key tk and wrong keys kg.
According to the introduction in [2], when d increases,
p2|d will decrease. Moreover, when p2 increases, the
data complexity of NASA also increases. Thus, if we

TABLE 15. Data complexity comparisons when p0 =
2−6, d = 2, β0 = 0.005, β1 = 2−16, c2 = 0.5. The prepended
differential is a 3-round differential that is extended from
0x211/0xa04

p0−→ 0x40/0x0 without loss of transition
probability.

Distinguisher
Data Complexity (log2N)

r = 5 r = 6 r = 7

NDk=1 14.212 16.911 20.509

NDk=2 13.165 15.821 19.761

NDk=4 12.901 14.764 18.886

NDk=8 12.19 14.681 18.744

NDk=16 13.107 14.720 20.215

TABLE 16. Data complexity comparisons when p0 =
2−6,d = 1, β0 = 0.005, β1 = 2−16, c2 = 0.5. The prepended
differential is a 3-round differential that is extended from
0x211/0xa04

p0−→ 0x40/0x0 without loss of transition
probability.

Distinguisher
Data Complexity (log2N)

r = 5 r = 6 r = 7

NDk=1 14.72 17.456 21.081

NDk=2 13.979 16.484 20.349

NDk=4 14.187 15.606 19.49

NDk=8 14.085 15.750 19.38

NDk=16 15.399 16.361 20.949

hope the Hamming distance between tk and surviving
kg does not exceed d, the value of p2 is

p2 = max{p2|i|i ∈ [d+ 1, 16]}. (19)

In this paper, we choose two different settings: d = 2,
d = 1.

Comparison of data complexity. Table 15 and
Table 16 show the comparison of data complexity under
two experiment settings respectively.

The second row corresponds to the data complexity
when Gohr’sND is adopted. These results are also used
as the baseline. When an r-round ND with a group size
of k is adopted, the corresponding data complexity is
displayed in bold if it is smaller than the baseline.

We test 12 new NDs in total. Table 15 and Table 16
show that the data complexity is reduced in most cases.
There is only one case in which the data complexity is
not reduced.

Analysis of the data complexity. There are two
questions to be explained: (1) why does the accuracy
improvement of NDs bring the reduction of the data
complexity? (2) why does the data complexity is not
reduced in the only failed case shown in Table 16?

To answer the first question, we need to analyze
how the data complexity is influenced by p1, p3. Based
on Equation 8 in section 3.3, we get two following
conclusions:
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TABLE 17. The value of p1, p2, p3 related to the 5-round
NDs when c2 = 0.5,d = 1, r = 5. p0 = 2−6.

Distinguisher p1 p2 p3 log2N

NDk=1 0.8977 0.3335 0.0462 14.72

NDk=2 0.9665 0.4802 0.0185 13.979

NDk=4 0.9894 0.6927 0.0069 14.187

NDk=8 0.9988 0.8604 0.0007 14.085

NDk=16 0.9999 0.9672 1.92× 10−5 15.399

• when p1|p1 > 0.5 increases, the data complexity N
decreases.

• when p3|p3 6 0.5 decreases, the data complexity N
decreases.

During the training of NDs, the accuracy can be
formulated as

acc = 0.5× (TPR+ TNR)

where TPR is the true positive rate and TNR is the
true negative rate.

If we set c2 = 0.5, the following conclusions hold

TPR = p1, TNR = 1− p3
acc = 0.5× (p1 + 1− p3).

(20)

Thus, when the accuracy acc of NDs increases, there
are three phenomena: p1 increases, or p3 decreases, or
the former two phenomena both occur.

No matter which phenomenon occurs, it is helpful
for reducing the data complexity. This is why the data
complexity is reduced in most cases shown in Table 15
and Table 16.

To answer the second question, we need to consider
the impact of p2. For convenience, we summarized
the values of p1, p2, p3 related to the 5-round NDs in
Table 17.

The value of p2 also increases as shown in Table 17.
Chen et al presented that the impact of p1, p2 on N
is O((p1 − p2)−2) [2]. Therefore, the increase of p2
has a negative impact on the data complexity. If p2 is
very close to p1, the positive impact of the accuracy
improvement may be offset. This is why the data
complexity is not reduced when the 5-round NDk=16

is adopted. Actually, when p0 becomes smaller,
the reduction of data complexity is more significant.
Table 18 shows an example.

Practical experiments. Based on the attack
settings shown in Table 15, we perform NASA against
10-round Speck32/64 based on the NDk=1 and NDk=2

(r = 6) respectively. The target is to recover sk10. Since
d = 2, the number of surviving subkey guesses should
not exceed 137× (1− β0) + (216 − 137)× β1 = 137.31.

Since the data complexity presented in Table 15 is not
low, the attack may take too much time. We adopt an
optimization method proposed in [2] to accelerate this

TABLE 18. The value of p1, p2, p3 related to the 5-round
NDs when c2 = 0.5, d = 1, r = 5. p0 = 2−12.

Distinguisher p1 p2 p3 log2N

NDk=1 0.8977 0.3335 0.0462 26.657

NDk=2 0.9665 0.4802 0.0185 25.811

NDk=4 0.9894 0.6927 0.0069 25.834

NDk=8 0.9988 0.8604 0.0007 24.888

NDk=16 0.9999 0.9672 1.92× 10−5 24.021

attack. This method is building a student distinguisher
to reduce the key space to be searched. The student
distinguisher is built over 14 ciphertext bits {30 ∼
23, 14 ∼ 7}. Then in the first stage, we guess 8 subkey
bits sk10[8 ∼ 0]. In the second stage, we guess the
complete sk10 based on surviving guesses of sk10[8 ∼ 0].

To filter sk10[8 ∼ 0], the student distinguisher with
k = 1 requires 218.888 plaintext pairs. In the second
stage, we select N = 216.911 plaintext pairs from 218.888

plaintext pairs. When we perform NASA with Gohr’s
6-round distinguishers 100 times, the results are

1. the true subkey sk10 survives in 97 trails.
2. the average numbers of surviving subkey guesses in

two stages are 14.98, 15.16 respectively.
3. in all the 100 trails, the number of surviving subkey

guesses is lower than 137.31.

To filter sk10[8 ∼ 0], the student distinguisher with
k = 2 requires 217.785 plaintext pairs. In the second
stage, we select N = 215.821 plaintext pairs from 217.785

plaintext pairs. When we perform NASA with our 6-
round NDk=2 100 times, the results are

1. the true subkey sk10 survives in 90 trails.
2. the average numbers of surviving subkey guesses in

two stages are 11.82, 25.07 respectively.
3. In all the 100 trails, the number of surviving subkey

guesses is lower than 137.31.

Figure 4 shows the runtime comparison of the 200
experiments. The practical experiments further prove
that our new NDs can be applied to NASA. Besides,
with smaller data complexity, the NASA based on our
ND achieves a competitive result.

7.3. Application to Gohr’s Attack

Gohr’s attack is not directly related to the distinguish-
ing accuracy of NDs. Thus, we mainly verify whether
our new ND applies to Gohr’s attack.

In [1], Gohr performed a key recovery attack on 11-
round Speck32/64. In this section, we first perform the
same attack using our new NDk=2. Then we present a
deeper discussion.
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FIGURE 4. The runtime of 100 experiments. When
Gohr’s 6-round distinguisher NDk=1 is used, the average
runtime of NASA is 612 seconds. When our 6-round
distinguisher NDk=2 is used, the average runtime of NASA
is 492 seconds.

7.3.1. Key Recovery Attack on 11-round Speck32/64
The target of this attack is to recover the last two
subkeys (sk11, sk10). This attack returns a pair of
subkey guesses (kg11, kg10). If kg11 = sk11 and kg10 is
different from sk10 at most 2 bits, this attack is viewed
as a success [1].

Experiment settings. A 6-round and 7-round
NDk=2 are built over α = (0x40, 0x0). A prepended 3-
round differential is extended from a 2-round differential

∆P = (0x211, 0xa04)
p0=2−6

−−−−−→ α = (0x40, 0x0). Six
neutral bits {14, 15, 20, 21, 22, 23} are used to generate
plaintext structures consisting of 64 plaintext pairs.
The data reuse strategy is also adopted by letting
MRF = 2 and SSD = 1.

The whole attack is performed as

1. Randomly generate 100 plaintext pairs with a
difference ∆P .

2. Generate 100 plaintext structures using 6 neutral
bits above, and collect corresponding ciphertext
structures.

3. For each ciphertext structure:

(a) collect possible kg11 using the method
introduced in section 3.2.

(b) For each possible kg11:

i. Decrypt the current ciphertext structure
with kg11.

ii. Collect possible subkey guess pairs
(kg11, kg10) using the method introduced
in section 3.2.

4. Return surviving (kg11, kg10) with the highest rank
score as the final subkey guess.

In section 3.2, we have reviewed how Gohr’s attack
recovers the subkey skr+1 with an r-round ND. This
method needs a rank score threshold. In steps 3a
and 3(b)ii, we need a threshold c3, c4 respectively. In
this paper, let c3 = 18 and c4 = 150.

TABLE 19. Success rates of performing 1000 experiments
(Gohr’s attack). Repeat 5 times. The first row represents
the success rate when Gohr’s distinguishers are used. The
second row represents the success rate when our new
distinguishers with k = 2 are used.

1 2 3 4 5

NDk=1 0.533 0.52 0.501 0.557 0.523

NDk=2 0.536 0.534 0.512 0.552 0.529

Experiment results. Run 1000 experiments each
time, and repeat 5 times. These experiments based on
Gohr’s distinguishers NDk=1 were also performed using
the same ciphertexts. Table 19 summarizes the success
rates.

7.3.2. Posterior Probability Analysis
We have proved that our ND applies to Gohr’s attack.
Moreover, the attack based on our NDs shows a
minor advantage in terms of the success rate. This
minor advantage is interesting since the success rate
of Gohr’s attack is not directly determined by the
distinguishing accuracy. To better understand the
influence of accuracy improvement on Gohr’s attack,
we perform a deeper analysis from the perspective of
the key rank score.

Consider an (r+ 1)-round cipher E. We first build a
r-round ND based on a difference α. Then we collect
numerous ciphertext pairs corresponding to plaintext
pairs with a difference α. We decrypt these ciphertext
pairs with a subkey guess kg and feed the partially
decrypted ciphertext pairs into the ND.

Let tk denote the true subkey of the (r + 1)-round.
Besides, the Hamming distance between tk and kg is d.
We focus on the expectation of the following conditional
posterior probability

Z = Pr (Y = 1 |X, d ) = F (X) (21)

where X is the input of the ND, and F is ND. If the
ND is Gohr’s distinguisher, X is a decrypted ciphertext
pair. If the ND is our distinguisher NDk, X is a
ciphertext group consisting of k decrypted ciphertext
pairs.

Taking NDk=2 against Speck32/64 reduced to 6, 7
rounds as examples, we estimate the expectations of
the above conditional posterior probability. As a
comparison, we also estimate the expectations based
on NDk=1. The final estimation results are shown in
Figure 5, Figure 6.

There are two important phenomena. First, com-
pared with Gohr’s distinguishers NDk=1, our distin-
guishers NDk=2 bring higher expectations Pr(Y =
1|X, d = 0). Second, the value of Pr(Y = 1|X, d =
0)− Pr(Y = 1|X, d = i), i ∈ [1, 16] increases.

The first phenomenon makes that a large key rank
score threshold (eg. c3 = 18, c4 = 150) is applicable.

The Computer Journal, Vol. ??, No. ??, ????



A New Neural Distinguisher Considering Features Derived from Multiple Ciphertext Pairs 13

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gohr's 6-round ND New 6-round ND with k=2

FIGURE 5. The expectations of the conditional
posterior probability (Equation 21) of 6-round NDs against
Speck32/64.
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FIGURE 6. The expectations of the conditional
posterior probability (Equation 21) of 7-round NDs against
Speck32/64.

The second phenomenon makes the gap between the
rank score of the true key and that of wrong keys
increase. By setting a high key rank score threshold,
wrong keys are less likely to obtain a key rank score
higher than the threshold. Thus, a higher success rate
is more likely to be obtained by replacing Gohr’s NDs
with our NDs.

8. OPEN PROBLEMS

Our work in this paper raises some open problems:

• What features derived from multiple ciphertext
pairs are learned by our distinguishers?

• The influence of features derived from multiple
ciphertext pairs is rather complex. More exactly,
except for its positive influence, we find that
these features also have a negative influence. For
example, when we compare the distinguishing
accuracy of NDs under a fair setting (see
Section 6.1.1), if we give the prediction label based
on the following metric:

v = log(
Z1

1− Z1
) + · · ·+ log(

Zm
1− Zm

), (22)

where Zi, i ∈ [1,m] is the output of NDs, our
distinguishers have tiny or no advantage in terms

TABLE 20. Distinguishing accuracy of NDs against
Speck32/64 under the fair setting. If v > 0 (see Formula 22),
the prediction label is 1.

r / n NDk=1 NDk=2,m = n
2
NDk=4,m = n

2

6 / 8 0.987 0.9853 0.9873

6 / 10 0.9947 0.9934 0.9942

7 / 8 0.778 0.7579 0.7636

of the distinguishing accuracy. Table 20 shows
our experiment results based on the above metric.
Thus, an important problem is how to make full use
of these features and bring more significant positive
influence?

These problems are out of scope of this paper. We will
explore in future research.

9. CONCLUSIONS

In this paper, we focus on the neural distinguisher which
is the core module in neural aided cryptanalysis. By
considering multiple ciphertext pairs simultaneously, we
propose a new neural distinguisher and have performed
a deep exploration of it. Compared with the neural
distinguisher considering a single ciphertext pair, this
new neural distinguisher achieves higher distinguishing
accuracy, which is verified by applications to five
different ciphers. Moreover, we prove that the
accuracy improvement results from features derived
from multiple ciphertext pairs.

Our new neural distinguisher also applies to key
recovery attacks. We show how to perform two
different key recovery attacks based on our new neural
distinguishers. The first one is the neural aided
statistical attack. Due to the accuracy improvement,
the data complexity of neural aided statistical attack
is reduced by adopting our new neural distinguisher.
A data reuse strategy is proposed to strengthen this
advantage. The second one is the key recovery attack
proposed by Gohr at CRYPTO’19. Our new neural
distinguisher applies to this attack but does not bring
a significant positive influence, since this attack is not
related to the distinguishing accuracy.

Our new neural distinguisher is full of potential. In
the future, as long as neural aided key recovery attacks
are related to the performance of neural distinguishers,
our new neural distinguisher could be a priority choice.
Besides, our neural distinguisher also introduces a
novel cryptanalysis direction by considering multiple
ciphertext pairs simultaneously.
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[19] Schüldt, C., Laptev, I., and Caputo, B. (2004)
Recognizing human actions: A local SVM approach.
17th International Conference on Pattern Recognition,
ICPR 2004, Cambridge, UK, August 23-26, 2004, pp.
32–36. IEEE Computer Society.

[20] Tosi, F., Aleotti, F., Poggi, M., and Mattoccia, S.
(2019) Learning monocular depth estimation infusing
traditional stereo knowledge. IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pp.
9799–9809. Computer Vision Foundation / IEEE.

[21] Chen, Y., Yu, L., Ota, K., and Dong, M. (2019)
Hierarchical posture representation for robust action

The Computer Journal, Vol. ??, No. ??, ????



A New Neural Distinguisher Considering Features Derived from Multiple Ciphertext Pairs 15

recognition. IEEE Trans. Comput. Soc. Syst., 6, 1115–
1125.

[22] Kingma, D. P. and Ba, J. (2015) Adam: A method
for stochastic optimization. In Bengio, Y. and LeCun,
Y. (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

[23] Chollet, F. et al. (2015). Keras. https://github.com/

fchollet/keras.

[24] Abed, F., List, E., Lucks, S., and Wenzel, J. (2014)
Differential cryptanalysis of round-reduced simon and
speck. In Cid, C. and Rechberger, C. (eds.), Fast
Software Encryption - 21st International Workshop,
FSE 2014, London, UK, March 3-5, 2014. Revised
Selected Papers, Lecture Notes in Computer Science,
8540, pp. 525–545. Springer.

[25] Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S.,
Hardt, M., Miller, J., and Schmidt, L. (2019) A meta-
analysis of overfitting in machine learning. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
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