
SoCCAR: Detecting System-on-Chip Security Violations
Under Asynchronous Resets

Xingyu Meng1, Kshitij Raj2, Atul Prasad Deb Nath2, Kanad Basu1 and Sandip Ray2

1ECE Department, University of Texas at Dallas,Richardson, TX, USA
2ECE Department,University of Florida,Gainesville, FL, USA

Abstract—Modern SoC designs include several reset domains that
enable asynchronous partial resets while obviating complete system boot.
Unfortunately, asynchronous resets can introduce security vulnerabilities
that are difficult to detect through traditional validation. In this paper, we
address this problem through a new security validation framework, SoC-
CCAR, that accounts for asynchronous resets. The framework involves (1)
efficient extraction of reset-controlled events while avoiding combinatorial
explosion, and (2) concolic testing for systematic exploration of the
extracted design space. Our experiments demonstrate that SoCCAR can
achieve almost perfect detection accuracy and verification time of a few
seconds on realistic SoC designs.

I. Introduction

Most modern computing devices are typically designed via System-
on-Chip (SoC) architecture, through integration and composition
of pre-designed hardware intellectual property (IP) blocks procured
from a variety of globally distributed supply chain. IPs in a typical
industrial SoC can be diverse, including a variety of processor cores,
memory modules, cryptographic blocks, communication modules
(e.g., wireless and LTE modules), debug and peripheral driving
interfaces (e.g., JTAG, HDMI, USB, etc). SoC designs promise much
faster design turnaround time, robustness, and configurability than
custom hardware. However, an unfortunate effect of this integration
has been a steep increase in design complexity, together with a
corresponding increase in security vulnerabilities. Therefore, it is
imperative to develop techniques for systematic detection of security
violations in modern SoC designs.

A key source of complexity in modern SoC designs is the plethora
of asynchronous events, i.e., events triggered by a condition independ-
ent of the main execution flow of the system. Such triggers include
asynchronous resets, dynamic clock switching, software activities,
analog/mixed-signal (AMS) events, etc. Unfortunately, the unpre-
dictability in system behavior resulting from an asynchronous event
can result in subtle corner case vulnerabilities that can be exploited
by an adversary to compromise the integrity of the entire system.
On the other hand, given the plethora of potential asynchronous
triggers, it is impossible for a SoC security architect to anticipate the
behavior of the system in response to these events, formulate their
security implications a priori, and design mitigations. Consequently,
trustworthy SoC designs critically depend on security validation
to identify violations resulting from asynchronous events. Indeed,
asynchronous event corner cases represent some of the most hard-to-
detect bugs in industrial SoC security validation practice and account
for the majority of validation cost.

In this paper, we develop a framework, SoCCAR (“SoC Security
Checker Under Asynchronous Resets”), for detecting SoC security
violations that comprehends one of the most pervasive and fun-
damental asynchronous events, partial resets. Partial asynchronous
resets have been enabled in current industrial SoC designs with
multiple reset domains, and permit partial initialization of selected
IPs and design functionality in the middle of the execution while

obviating the need for a full system reboot. However, they can be
source of subtle security vulnerabilities resulting from inconsistencies
in microarchitectural states of different IPs, unanticipated effects on
finite state machines (FSMs) that govern the execution control flows,
etc. SoCCAR provides a systematic mechanism for detecting security
violations that comprehends asynchronous resets through (1) a new
technique for efficiently extracting the Control Flow Graph of reset-
controlled events from the RTL design, and (2) a concolic testing
framework for effective exploration of the extracted design space.

The paper makes several important contributions. First, while
there has been significant research in hardware and SoC security
validation techniques including mature commercial tools (see Section
VI), the analysis performed has implicitly assumed the absence
of asynchronous events e.g., formal techniques [1], [2] introduce
assumptions specifying absence of resets which are critical to their
scalability and precision. To the best of our knowledge, SoCCAR
represents the first security validation framework that comprehends
and accounts for the critical role of asynchronous events. Second,
SoCCAR shows how to apply concolic testing efficiently on com-
plex SoC designs while obviating manual design decomposition or
abstraction or losing verification accuracy: SoCCAR provides almost
perfect detection accuracy on realistic SoC designs with multiple reset
domains, with a verification latency of only a few seconds. Third, as
part of the evaluation of SoCCAR, we have developed a compre-
hensive experimental testbed that includes multiple SoC designs as
well as a systematic methodology for inserting security bugs. The
SoC designs include realistic features that reflect the complexity
of modern industrial systems, e.g., reset domain crossings, multiple
asynchronously controlled IPs, hierarchically organized subsystems
with heterogeneous communications, etc., and can act as authoritative
benchmarks for future security validation research.

The remainder of the paper is organized as follows. Section
II provides the relevant background in SoC security validation,
asynchronous resets, and concolic testing. Section III explains the
challenges in security validation under asynchronous resets. We
discuss SoCCAR architecture and implementation in Section IV.
Section V presents our experimental setup and the experimental
evaluation of SoCCAR. We discuss related work in Section VI and
conclude in Section VII.

II. Background

A. Asynchronous Resets in SoC Designs

Reset sequences have been traditionally used in microelectronic
systems to enforce a system boot. As complexity of SoC designs
increased through the introduction of a variety of subsystems (e.g.,
compute, memory, crypto, communication, etc.), each consisting of
multiple IPs which execute relatively asynchronously, often using
different clocks; reseting an IP or module has become a com-
mon workaround for a variety of runtime issues, including hangs,

crashes, violations, interrupts, etc. On the other hand, enforcing a
full system boot has also become extremely expensive since it results
in significant computation loss and ultimately reduced throughput.
Furthermore, full system boot is often precluded in SoC designs
for safety-critical applications except under very rare situations. To
address this problem, most modern SoC designs include multiple reset
domains governed by independent reset signals. Current industrial
SoCs include tens to hundreds of reset domains; each reset domain
may be controlled by a combination of multiple asynchronous reset
signals. However, asynchronous resets in the middle of the execution
can result in unpredictable system behavior, resulting in hard-to-
detect bugs. While there has been some work on analysis of reset
domain crossing, as mentioned in Section VI, to the best of our
knowledge there is no formal tool that comprehensively comprehends
the role of resets in functional, performance, or security validation.

B. SoC Security Validation Practice

Security validation of hardware designs entails thorough explor-
ation, analysis, and evaluation of a diverse set of attack surfaces
originating from malicious third-party IPs, malicious software and
firmware, insecure on-chip communications, and many other potential
sources, that can compromise trusted system operation. The area is
extremely broad, with significant academic research as well as ma-
ture commercial tools [3], [1], [2]. Nevertheless, security validation
remains a vexing problem in current industrial practice. In particular,
most validation tools do not scale to the size and complexity of
current industrial microelectronics. Furthermore, we are aware of
no tool or framework that can handle asynchronous events, includ-
ing resets, analog/mixed-signal activities, etc. Consequently, security
validation critically relies on insights of human experts, to perform
white-box intrusion testing, or design manual abstractions to facilitate
application of analysis tools [4].

C. Concolic Testing

Concolic testing is a hybrid testing technique that integrates
concrete execution with symbolic execution. The name “concolic”
is a portmanteau of “concrete” and “symbolic”. The key idea is
to repeatedly execute a program on concrete inputs, but piggyback
symbolic execution on top of concrete execution. At the end of each
concrete run, a concolic testing tool heuristically selects another
execution path (e.g., by flipping some of the conditionals in the
concluded run). This new execution path is then encoded symbolically
and the resulting formula is solved by a constraint solver, to yield a
new concrete input. The concrete execution and the symbolic analysis
alternate until an intended level of structural coverage is reached.
Concolic testing has been applied successfully on both software and
hardware domains [5]. However, none of these methods indulge in
the security vulnerabilities caused due to asynchronous events in
hardware designs.

III. The Challenge of Asynchronous Resets

To motivate the role of asynchronous resets in SoC security,
consider the following example. Albeit highly simplistic, it actually
is a sanitized version of a real bug in an industrial SoC design that
escaped to production.

An Example Bug: A secure firmware is left encrypted in DRAM
but decrypted after being loaded to secure SRAM during execution.
Access to the SRAM is gated during that execution. However, an
asynchronous reset during firmware execution unlocks the gating
logic but fails to clear the SRAM itself, leaving the firmware exposed
to unauthorized access.

Why is detecting such a violation difficult? Note that if a security
validator had knowledge of the exact scenario in which the bug
manifested, then exercising it would be straightforward. However, in
the absence of such knowledge, it is highly non-trivial to detect such
vulnerabilities using either dynamic (simulation-based) or formal
security validation methodologies. During dynamic validation, it is
clearly prohibitive to comprehensively exercise all possible reset
combinations at all points during the SoC execution. Correspondingly,
formal verification, i.e., the use of mathematical analysis to verify
desired system properties, typically requires identification of all reset
signals a priori. Moreover, the analysis proceeds under the constraint
that the system is not reset during at any point during the execution.
This obviously precludes identification of violations resulting from
asynchronous resets. In principle, it is possible to relax this restriction
on reset signals and treating them as non-deterministic free inputs.
However, doing so results in unmanageable explosion in the set
of reachable states of the design beyond the capacity of current
formal tools. Furthermore, the common approach to used to address
the scalability problems, viz.manual abstraction, typically eliminates
the very corner cases of the design that lead to such violations.
Consequently, it is imperative to develop a security validation
technique that detects violations resulting from asynchronous
resets while being able to handle the complexities and scalability
challenges of modern SoC designs without manual abstractions.

IV. SoCCAR Architecture and Implementation

Our proposed technique, SoCCAR addresses the above problem
by enabling systematic exploration of the impact of asynchronous
resets on SoC security using concolic testing. We introduce a few
notations and definitions before discussing the SoCCAR architecture.
For the purpose of this description, we assume that an SoC design S
includes a list of modules 〈M1, . . . ,Mk〉, where each Mi includes
a list of clock signals C[Mi] and reset signals R[Mi]1, together
with a (partially ordered) set of hardware events E[Mi]. We leave
the description of the events unspecified, but they will be assumed
to consist of standard RTL operations. For each event e ∈ E[Mi]
and a signal v in Mi we will say that v governs e if e is executed
only when v = 1. Obviously, each signal v defines a projection
Pv of the Control Flow Graph of E[Mi] that includes only the
events governed by v. We refer to Pv as the governing CFG of
Mi with v. The notion of governing CFG naturally extends to a
set of signals V , {v1, . . . , vn}, by defining PV ,

⋃n
i=1 Pvi . If

the set V is the set R[Mi], we refer to the governing CFG PV
as the Asynchronous Reset CFG (AR CFG for short) of Mi. We
use AR[Mi] to denote the AR CFG of Mi. The Asynchronous
Reset CFG of the SoC S is then naturally defined as the interactive
composition AR(S) , AR[M1] || AR[M2] || . . . || AR[Mk].

Fig. 1 shows the overall workflow of SoCCAR. Roughly, it
includes the following three components.

1) For each module Mi of S construct the AR CFG AR[Mi].
This is done by analyzing the CFG of E[Mi] to identify process
blocks governed by asynchronous resets.

2) Assemble and connect the individual AR CFGs to create the
AR CFG AR(S). This is done by computing and developing
connection profiles of all constituent modules.

3) Given the AR CFG AR(S), concolic testing is used to system-
atically explore the impact of asynchronous resets.

1Instead of manually specifying reset signals, it is possible to use automated
clock and reset analysis available in most EDA tools to automatically identify
these signals.

Security	Properties

CFGs	of	Modules

Violations

Extract	AR_CFGs

List	of	All	Module
Connection

Re-construct	AR_CFGs	with
Module	Connection	Info	

Concolic	Testing

Module	Connection	Profile

Asynchronous	Resets	CFG	Generation

AR_CFG	Validation

Target	SoC

Figure 1. SoCCAR Framework Workflow

Algorithm 1 Asynchronous Resets CFG Generation

Input: S, IPs
Output: AR CFG of Mi

1: Initialize AR[M]
2: for all IPs do
3: Initialize [Mi]
4: [Mi] append Mi

5: for all E[Mi]s do
6: E[Mi] ← e
7: [Mi] append Pvi

8: [Mi] append E[Mi]
9: end for

10: Initialize AR[Mi]
11: for all E[Mi]s in [Mi] do
12: if R[Mi] in E[Mi] then
13: AR[Mi] append Pvi , E[Mi]
14: end if
15: end for
16: AR[M] append AR[Mi]
17: end for

A. Asynchronous Resets CFG Generation

Algorithm 1 extracts the process flows from the IPs. We initialize
the procedure by searching forMi and add it into a list 〈M1, . . . ,Mk〉

to initialize its CFG. The algorithm then searches for all the hardware
events E[Mi]s and their procedural blocks in the IP designs. Each
E[Mi] is isolated to establish its condition v and execution e in
the CFG. A subCFG is defined as the connection between a v
and its e. Simultaneously, we define the trigger condition Pvi for
each E[Mi] by placing their procedural blocks (always @) between
each subCFG. Once a complete CFG [Mi] of its associated Mi is
generated, the algorithm starts extracting the asynchronous resets and
their procedural blocks from the [Mi]. We achieve this by searching
the E[Mi]s that contain reset signals R[Mi]. R[Mi] is usually defined
in a universal naming format with terms such as resetn or rst. The
algorithm will process all the generated [Mi] and reorganize all the
Mi and their associated asynchronous resets AR CFG in a new
AR[Mi] for the next task.

B. Module Connection Profile

To complete construction of AR(S) for each Mi, we also need
to generate inter-connection profiles of all the sub-modules in the
SoC. Algorithm 2 explores the design flow of each Mi to determine
the connection with the other Mxs. An connection profile is created
for each module to assemble its dedicated AR[Mx] from its inter-
connected Mxs. The algorithm performs a static traversal of the
module structure of each module Mi, collecting all sub-module

Algorithm 2 Module Connection Profile

Input: S, IPs
Output: C[M]

1: Initialize A[IP]
2: for all IPs in S do
3: A[IP] append IP
4: end for
5: Initialize A[M]
6: for All IP in A[IP] do
7: if Mx in IP then
8: A[M] append Mx

9: end if
10: end for
11: Initialize CN[M]
12: for all IPs in S do
13: Initialize CN[Mi]
14: if Mx in Mi then
15: CN[Mi] append Mx

16: end if
17: end for
18: CN[M] append CN[Mi]

invocations as well as logistic information required to compute the
connected CFG (e.g., clocks, resets, etc.). The result is the creation
of a list CN[Mi] that identifies each module Mx invoked by Mi.
The construction of AR(S) is then done by composing for each
Mx ∈ CN[Mi] the CFG AR[Mx] into the top module for Mi.

C. Concolic Testing on AR CFGs

Algorithm 3 describes the concolic testing framework on
AR CFG. It starts with each AR[Mi] in constructed CFGs, and
the (concrete) simulation path consists of all the events e in the
AR[Mi]. Note that the algorithm can randomly assign the reset and
clock signals to start the first round of simulation. To address this, we
assign all the registers with ones instead of zeros; consequently, we
can validate the major functionalities of asynchronous resets such as
register clearance and value reset. After the first round of simulation,
if e is not in the execution path, the simulator computes the condition
v that governs the e in the path, and solves the constraints on clock
edge and reset signal. Note that clock edge can be transformed into
a equivalence condition,e.g., (posedge clk) can be translated into (clk
== 1). Correspondingly, reset signal can also be transformed into
equivalence conditions, e.g., a condition if (∼reset) is translated into
if (reset == 0). These equivalences are used to solve the v of the
asynchronous resets.

Algorithm 3 can account for additional security constraints to
enable effective path exploration. For instance, a representative con-
straint can be “after a reset the data memory must be cleared”. Such
constraints are generally available as part of the security regression
in industrial practice. The simulation checks each such available
constraint at each round; if any of the constraints is violated, the
simulation will return an invalidation message and mention the
module that violates the restriction.

V. SoCCAR Evaluation

A. SoC Platforms

A critical challenge with evaluation of any research on SoC valida-
tion is the lack of open-source SoC designs of realistic complexities.
For instance, SoCCAR requires SoC designs with multiple reset
domains and IPs and subsystems with complex functionality governed
by various asynchronous reset signals. Furthermore, a thorough

Algorithm 3 Asynchronous Events Validation
Input:AR[M1]||AR[M2]|| . . . ||AR[Mk], Security Properties
Output: Invalid Messages

1: Restricts ← Security Properties
2: for AR[Mi] in AR[M1]||AR[M2]|| . . . ||AR[Mk] do
3: Initialize Input ← randombits()
4: Initialize Registers ← ones
5: Path, Invalid ← Simulate(Input,Restricts)
6: if e ∈ path then
7: return Input
8: end if
9: while e < path do

10: Input solve v
11: Testcase append(Input)
12: Execute Path,Invalid← Simulate(Input,Restricts)
13: if e ∈ Path then
14: return Testcase
15: end if
16: if Invaild not empty then
17: return Invalid
18: end if
19: end while
20: end for
Simulate(Input, Restricts)

1: Initialize Invalid
2: for all CFG in AR[Mi] do
3: Variables ← Input
4: values ← execute flows
5: Input append values
6: check invalid(Restricts, Input)
7: end for

evaluation requires different variants of SoC designs with a variety of
security violations. To address these challenges, we have developed a
number of realistic SoC benchmarks, and a systematic methodology
for inserting security violations. For evaluating SoCCAR we use
two SoC benchmarks ClusterSoC and AutoSoC shown in Fig. 2,
that include multiple reset domains with asynchronous resets. While
simplified, these SoCs are inspired from commercial SoC designs.

ClusterSoC is a representative mobile/IoT SoC with an area efficient
implementation of RISC-V cores and peripherals. It is a sanitized and
simplified version of an industrial SoC used for low-power mobile
systems. The RISC-V cores implement two different 32-bit ISAs, i.e.,
the baseline integer (RV32I) and the embedded extension (RV32E)
with reduced number of registers. This SoC model has a Wishbone
(B3) cross-bar as the shared system bus and two SRAM modules
(dual port and single port) are integrated as memory modules. Three
crypto engines i.e., SHA, DES3, and AES, are incorporated for
various cryptographic operations. It also features three high-speed
DSP cores i.e., FIR, DFT, and IDFT for signal processing. ClusterSoC
supports three external communication mediums including an UART
module, an SPI controller, and an Ethernet controller for off-chip
communication as well as connectivity to cloud services.

AutoSoC is a sanitized and simplified version of SoCs used for
automotive infotainment applications. It is significantly more complex
than ClusterSoC and features hierarchical and heterogeneous shared
buses and application-specific subsystems. Each subsystem its own
communication fabric and represents a tiled architecture. The shared
buses of individual subsystems are connected to the system bus with
a bus-bridge. The system bus implements a variation of AMBA bus

Table I
Area Statistics of ClusterSoC and AutoSoC. Results are based on

synthesized designs using Xilinx Vivado.

SoC Models Variants
Area

LUT LUTRAM BRAM

ClusterSoC Variants

Variant #1 16906 2698 124

Variant #2 17047 2618 126

Variant #3 15891 2298 126

AutoSoC Variants
Variant #1 33861 2971 128

Variant #2 32972 2874 128

protocol i.e., AXI4-Lite, and the subsystems incorporate their own
Wishbone (B3) bus. In comparison to ClusterSoC, each subsystem of
AutoSoC incorporates additional IP cores and a variety of advanced
architectural features. For instance, the CPU subsystem is scaled
up from two area-optimized cores to three cores hat implement
compressed/variable size (RV32IC) ISA, and multiply-and-divide ISA
(RV32IM) in addition to the baseline integer ISA. The memory sub-
system includes a DMA controller. The number of crypto cores and
DSP blocks in AutoSoC are augmented for additional functionality
such as implementation of cryptographic hash algorithms and IIR
filter for signal processing.

Both ClusterSoC and AutoSoC are fully functional SoC designs.
Our experiments use three variants of ClusterSoC and two variants
of AutoSoC. The different variants are developed by introducing
different security bugs on the base SoCs (see Section V-B). To
demonstrate the realistic complexity of the SoC designs, we synthes-
ized FPGA implementations using Xilinx Vivado. Table I shows the
area statistics of these implementations. Note that different variants
of ClusterSoC consume between 15891 and 17047 LUTs, while
AutoSoC variants go to 32972 and 33861 LUTs. Perhaps more
importantly, both SoCs can run standard RISC-V applications and
Linux-based benchmarks. The use of these SoCs in our experi-
ments help demonstrate the scalability and precision of SoCCAR
for practical systems. Furthermore, we believe, the creation of such
SoCs will facilitate future research on SoC validation by providing
representative benchmarks that are manageable yet reflect various
complex features of commercial SoC implementations.

B. Bug Insertion

Evaluating a validation technique requires not only realistic SoC
designs but also a methodology for introducing realistic bugs in those
SoCs. Furthermore, it is important to be able to demonstrate that
the technique can identify (1) different classes of violations, and (2)
rarely excitable violations. Note that these requirements are somewhat
at odds. In particular, it is not realistic to evaluate a validation tool
on a single SoC design with all the different classes of violations
introduced: if a tool can detect violations in such an SoC, there
would be no a priori reason to believe that the tool can also be used
to validate an SoC which includes only a few of the violations (and
consequently, the violations in the SoC are rarer). To address these
two requirements, we developed a methodology for systematically
developing different variants of the two SoCs, with each variant
including a subset of security bugs.

Our overall bug insertion methodology works in three stages. First,
we divide the IPs in the SoC into different classes as shown in
Table II. The idea is to account for the fact that certain bugs are
relevant to certain IP types, e.g., an information flow violation that
compromises a key or plaintext is relevant to a crypto core while a

(a) (b)

Figure 2. Two SoC Designs Used for Evaluation of SoCCAR. (a) ClusterSoC: A Simplified SoC targeted for Mobile Applications. (b) AutoSoC: A Simplified
Automotive SoC.

Table II
Classification of ip class and violation types

IP Class Example IPs Violation Type

Memory IP SRAM(SP), SRAM(DP), DMA
Engine

Loss of Data Integrity.

Processor Core RV32I, RV32E, RV32IC,
RV32IM, RV32IMC

Unavailability of Priv-
ilege Modes.

Cryptographic IP AES192, SHA256, RSA, MD5,
DES3

Information Leakage.

DoS attack making some privilege modes unavailable would make
sense in a processor IP. Second, given these classifications, we define
a number of bug types for SoCCAR evaluation, as shown in Table III.
These bugs get triggered at asynchronous reset events and deliver
specific payloads leading to eventual violation of the basic security
properties of the SoC designs in terms of integrity, confidentiality,
and availability. Following are representative instances of these bugs:
• Information Leakage: When asynchronous reset occurs, the

module fails to erase the value of registers containing plaintext
and keys during cryptographic computation, making these values
accessible to unauthorized processes.

• Data Integrity: This bug leads to failure of correct address
range check for read/write requests after an asynchronous reset.
As memory address registers are not cleared properly, the
attacker can exploit such events to get unauthorized access to
the protected region of the memory and perform illegal read and
write operations.

• Privilege Mode: The goal is for the state machine controlling
the privilege specifications of the RISC-V cores to fail to switch
between the default modes i.e., User, Supervisor, and Machine
modes. We insert incorrect privilege switches during asynchron-
ous resets in the RISC-V cores resulting in the privilege level
register to be assigned with an undefined value, which leads to
a fatal functionality error caused by no available privilege level.

All the inserted bug instances are culled from real security vulner-
abilities in commercial SoCs, but sanitized and reconfigured to be
applicable to ClusterSoC and AutoSoC. Finally, we create different
SoC variants by randomly injecting a subset of bugs. The result is
three variants of ClusterSoC and two variants of AutoSoC as shown
in Table IV.

C. Evaluation Methodology and Results

We evaluated SoCCAR following a red-team/blue-team approach.
The red team was responsible for determining the bugs, develop-

ing the bug insertion methodology, and creating the different SoC
variants. The blue team was responsible for designing the SoCCAR
infrastructure. To ensure fairness in evaluation, no communication
was made between the red to blue team regarding the description of
bugs, IP classes, or the number and types of bugs inserted at different
IPs. Correspondingly, no communication was made from blue to red
team on the architecture and implementation of SoCCAR.

SoCCAR was run on the three variants of ClusterSoC and two
variants of AutoSoC. Note that each variant has multiple bugs
inserted at different IPs. SoCCAR detected the bugs in all variants of
ClusterSoC; for AutoSoC, SoCCAR detected all bugs other than one,
an information leakage bug in the SHA256 crypto core in Variant#2.
Verification time for all instances lasted only a few seconds.

It is illustrative to explain the reason for the failure of SoCCAR on
the SHA256 bug in AutoSoC Variant#2. Roughly, the bug is caused
by an incorrect procedure block declaration: instead of the cipher
assignment operations being executed during regular operation, the
buggy IP would cause them to be executed only under an asynchron-
ous reset that was composed with a specific clock edge. This resulted
in an RTL construct where the asynchronous reset could not be
detected as an explicit governor for the operations in the block during
RTL analysis for construction of the AR CFG. The lesson from the
experience is that SoCCAR CFG extraction implementation needs
to be extended to provide more refined comprehension of the RTL
constructs and in particular the interplay of clock and asynchronous
resets to create implicit governors. However, we view this as a
weakness of the current tool implementation rather than a conceptual
weakness of SoCCAR. Interestingly, given that the procedure block
becomes inactive under normal (non-reset) execution, this violation
can be detected by standard functional validation.

VI. RelatedWork

Hardware security validation is a broad area of research with
several different branches [3]. One line of research closely related
to our work is detection of information flow violations. Research in
this area has included the use of formalisms, annotations, and type
systems to develop provably secure designs [6], [7], the use of formal
methods to verify correctness of information flow policies as well as
certify integrity of RTL designs against such policies [8], [9].

There has also been significant research re-purposing techniques
from formal methods for directed test generation for RTL verification
[10], [11]. However, with increase in design size and complexity,
these techniques suffer from state space explosion [12]. Recently,
concolic testing has provided a promising path for generating directed

Table III
Summary of Security Bugs

Violation Type Trigger Condition Payload Impact

Information
Leakage

Async. reset at
crypto engine

Uncleared values of plain text and
crypto keys at internal registers.

Leakage of secret asset i.e., unencrypted plain text can be retrieved by
an attacker via cipher text port. This violates the confidentiality property
of secure assets of the SoC design.

Loss of Data
Integrity

Async. reset at
memory module

Failure of address range check for
subsequent read/write requests.

Unauthorized access of read and write operations to secure memory
regions. This violates the integrity as well as confidentiality property of
on-chip assets.

Unavailability of
Privilege Modes

Async. reset at
processor core

Processor privilege mode stuck at
current state of operation.

Failure to switch between privilege modes. This violates the availability
property of critical system functionality.

Table IV
Security bugs inserted in various variants of both SoCs

Violation Type
ClusterSoC Bug IP Location AutoSoC Bug IP Location

Variant #1 Variant #2 Variant #3 Variant #1 Variant #2

Bug #1 Information Leakage MD5, AES192 - AES192, SHA256 MD5, SHA256 AES192

Bug #2 Data Integrity SRAM SRAM Wishbone Bus SRAM -

Bug #3 Privilege Mode - RV32I RV32E RV32IC, RV32IM RV32IM

tests through symbolic exploration. Concolic testing has been suc-
cessfully employed in both software and hardware domains [5], [13].
Automatic concolic test generation approaches have also been studied
to improve the coverage on large-scale designs [14], [15]. Recently, a
concolic testing-based approach was developed for security validation
of an IP core [16].

With increasing adoption of SoC designs including multiple clock
and reset domains, there has been effort on verification of clock-
domain crossing (CDC) and reset-domain crossing (RDC) primarily
targeted towards design sign-off [17]. There has also been work
on fault detection and mitigation approaches of CDC [18], [19].
However, to our knowledge there has been no previous research on
systematic analysis of security impacts of these features.

VII. Conclusion

With increasing use of complex SoCs having multiple reset do-
mains, security validation must account for violations arising from
unpredictable system behavior caused by asynchronous resets. These
violations can occur on very rare corner cases and represent some
of the most hard-to-detect bugs in current industrial practice. To the
best of our knowledge, our framework SoCCAR represents the first
systematic approaches for detecting such violations; it uses CFG
extraction together with concolic testing to systematically explore
violations caused by asynchronous resets. We have designed a
comprehensive experimental testbed to evaluate the scalability and
effectiveness of SoCCAR on realistic SoCs. Our results indicate that
SoCCAR provides almost perfect detection accuracy with verification
time of a few seconds. Furthermore, SoCCAR works directly on
the RTL implementation of complex SoCs without requiring any
manual abstraction. Finally, the testbed developed as part of the
evaluation can serve as representative testbed for future research on
SoC validation.

In future work, we will extend SoCCAR on other asynchronous
events, including violations due to analog/mixed-signal inputs, mal-
formed sensory or cyber-physical data, etc. We will also evaluate
SoCCAR on commercial SoC designs.

References

[1] Cadence, “JasperGold Formal Security App,” www.cadence.com.
[2] Synopsys Inc., “VCFormal Formal Security App,” www.synopsys.com.
[3] F. Farahmandi, Y. Huang, and P. Mishra, System-on-Chip Security

Verification and Validation. Springer, 2019.
[4] S. Ray et al., “System-on-Chip Platform Security Assurance: Architec-

ture and Validation,” Proceedings of the IEEE, vol. 106, no. 1, pp. 21–37,
2018.

[5] K. Sen et al., “Cute: a concolic unit testing engine for c,” ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 5, pp. 263–272, 2005.

[6] D. Zhang, “A hardware design language for timing-sensitive information-
flow security,” ACM SIGARCH Computer Architecture News, vol. 43,
no. 1, pp. 503–516, 2015.

[7] X. Li et al., “Caisson: a hardware description language for secure
information flow,” in ACM Sigplan Notices, vol. 46, no. 6, 2011, pp.
109–120.

[8] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in VLSI Test Symposium
(VTS), 2012, pp. 252–257.

[9] M.-M. Bidmeshki et al., “Information flow tracking in analog/mixed-
signal designs through proof-carrying hardware ip,” in DATE, 2017, pp.
1707–1712.

[10] M. Chen and P. Mishra, “Property learning techniques for efficient
generation of directed tests,” IEEE Transactions on Computers, vol. 60,
no. 6, pp. 852–864, 2011.

[11] A. Gargantini and C. Heitmeyer, “Using model checking to generate tests
from requirements specifications,” ACM SIGSOFT Software Engineering
Notes, vol. 24, no. 6, pp. 146–162, 1999.

[12] M. Chen et al., System-level validation: high-level modeling and directed
test generation techniques. Springer Science & Business Media, 2012.

[13] A. Ahmed et al., “Directed test generation using concolic testing on rtl
models,” in DATE, 2018, pp. 1538–1543.

[14] G. Li et al., “Gklee: concolic verification and test generation for gpus,”
in ACM SIGPLAN Notices, vol. 47, no. 8, 2012, pp. 215–224.

[15] K. Cong et al., “Automatic concolic test generation with virtual proto-
types for post-silicon validation,” in IEEE ICCAD, 2013, pp. 303–310.

[16] R. Zhang et al., “End-to-end automated exploit generation for validating
the security of processor designs,” in IEEE MICRO, 2018, pp. 815–827.

[17] P. Ashar, “Static Verification Based Signoff: A Key Enabler for Man-
aging Verification Complexity in the Modern SoC,” in FMCAD, 2013.

[18] N. Karimi and K. Chakrabarty, “Detection, diagnosis, and recovery from
clock-domain crossing failures in multiclock socs,” IEEE TCAD, vol. 32,
no. 9, pp. 1395–1408, 2013.

[19] P. Yeung et al., “Multi-domain verification: When clock, power and reset
domains collide,” in DVCon, 2015.

