
Revisiting Fault Adversary Models

Hardware Faults in Theory and Practice

Jan Richter-Brockmann ID 1, Pascal Sasdrich ID 1, and Tim Güneysu ID 1,2

1 Ruhr-Universität Bochum, Horst-Görtz Institute for IT-Security, Germany
2 DFKI, Germany

firstname.lastname@rub.de

Abstract. Fault injection attacks are considered as powerful techniques
to successfully attack embedded cryptographic implementations since
various fault injection mechanisms from simple clock glitches to more
advanced techniques like laser fault injection can lead to devastating at-
tacks. Given these critical attack vectors, researchers came up with a
long list of dedicated countermeasures to thwart such attacks.
However, the security validation of proposed countermeasures is mostly
performed on custom adversary models that are often not tightly coupled
with the actual physical behavior of available fault injection mechanisms
and, hence, fail to model the reality accurately. Furthermore, using cus-
tom models complicates comparison between different designs and eval-
uation results. As a consequence, we aim to close this gap by proposing
a simple, generic, and consolidated fault injection adversary model that
can be perfectly tailored to existing fault injection mechanisms and their
physical behavior in hardware. To demonstrate the advantages, we apply
it to a cryptographic primitive and evaluate it based on different attack
vectors. We further show that our proposed adversary model can be in-
tegrated into the state-of-the-art fault verification tool VerFI. Finally,
we provide a discussion on the benefits and differences of our approach
compared to already existing evaluation methods.

Keywords: FIA · Fault Modeling · Adversary Model · LFI · EMFI · Clock
Glitch · Voltage Glitch.

1 Introduction

Although designing and constructing secure cryptographic primitives, such as
block ciphers, is a well-understood and matured problem [KR11], secure imple-
mentation of cryptographic primitives in the presence of physical adversaries is
still an open challenge, even after two decades of research. In particular, rather
than exploiting flaws in cryptographic primitives or schemes, physical adver-
saries commonly address and exploit vulnerabilities in physical instances of the
cryptographic algorithms and functions.

Among all physical and implementation attacks, Side-Channel Analysis
(SCA) and Fault-Injection Analysis (FIA) have shown a large potential to be

https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-3293-4989

2 J. Richter-Brockmann et al.

mounted successfully on various implementations of cryptographically strong
primitives and functions. In particular FIA, classified as a set of active at-
tacks, has gained increasing attention during recent years due to powerful ad-
vances in more cost-efficient equipment and more experienced adversaries. In
the wake of this progress, a plethora of different attack vectors has been pro-
posed, e.g., clock or voltage glitches [ADN+10,ZDCT13], electromagnetic pulses
[DDRT12, DLM20, OGSM15, OGSM17], or focused photon injection using laser
beams [SA02, RSDT13, CLMFT14, SBHS15]. Likewise, many different analysis
techniques ranging from Differential Fault Analysis (DFA) [BS97], over Ineffec-
tive Fault Attack (IFA) [Cla07] and Statistical Fault Attack (SFA) [FJLT13],
to Statistical Ineffective Fault Analysis (SIFA) [DEK+18, DEG+18] has been
presented to exploit injected faults. Naturally, different approaches to increase
protection against FIA have been proposed at similar pace, mainly following the
concepts of redundancy and (concurrent) error detection [SMG16, AMR+19],
error correction [SRM20,RBSBG20], or infective computation [GST12].

However, checking and verifying that an implementation is successfully pro-
tected against FIA is a manual, downstream, test-driven, and error-prone pro-
cess. Further, quality of analysis and verification results comprehensively de-
pends on the accuracy of underlying adversary models. If the adversary models
fail to reflect the practical realities and capabilities of an adversary, counter-
measures and protection mechanisms might be inappropriate, can fail to provide
the desired level of security, and ultimately the physical implementation is still
vulnerable to FIA.

Given these observations and challenges, security should be considered dur-
ing the entire development and life cycle of the implementation. More precisely,
continuous analysis, evaluation, and verification of the design, even before de-
ployment, can assist the designer to choose and implement countermeasures
correctly. In addition, accurate description and modeling of the capabilities and
limitations of the physical adversary and environment will ensure appropriate
protection of the implementation after deployment.

Currently, a wide range of custom adversary models is used for evaluation
and verification of protection mechanisms and often, with new countermeasures,
new adversary models are proposed at the same time. Unfortunately, most of
the adversary models are hardly compatible and do not allow fair and mean-
ingful comparison between different approaches and implementations. Ideally, a
standardized model that is simple, generic, but allows customization would help
to analyze, verify, and compare different implementations and countermeasures.
Ultimately, designers would be able to choose countermeasures and protection
mechanisms appropriately, and easily evaluate and verify the security level for
the targeted practical environment and circumstances with minimal effort using
the standardized adversary model tweaked for the given realities.

Contribution: In this work, we review existing approaches and methods to
inject faults into cryptographic implementations in order to consolidate exist-
ing adversary models and extract an unified adversary model for standardized
fault analysis and verification. In particular, we introduce a generic and abstract

Revisiting Fault Adversary Models 3

adversary model that can be parameterized and instantiated to model different
adversaries with varying capabilities and limitations. More precisely, we show
how the generic adversary model can be customized to reflect and model com-
mon fault injection approaches, including (but not limited to) clock or voltage
glitches, electromagnetic pulses, and focused laser beams, and apply each model
to a practical example emphasizing similarities and differences of the different
adversary model instances.

Eventually, our consolidated and unified adversary model can be used to
establish a standardized evaluation metric for FIA countermeasures that allows
fair comparison in adversary capabilities and limitations as well as vulnerabilities
of different protection mechanisms. In particular, our proposed adversary model
facilitates application for design and verification through a simple, adaptable,
and intuitive design. We demonstrate these features by integrating our fault
model into the fault verification tool VerFI [AWMN20] and providing a case
study on the lightweight block cipher LED.

Outline: While Section 2 reviews common fault injection mechanisms in detail,
Section 3 is dedicated to conception and discussion of our consolidated adver-
sary model. Besides, Section 3 introduces our considered circuit model, states
initial assumptions, and introduces the generic but parametric model. In Sec-
tion 4, we provide practical instantiations of our approach with respect to the
mechanisms presented in Section 2. Further, we demonstrate the integration to
the verification tool VerFI in Section 5. Before concluding our work in Section 7,
we compare our approach to existing fault models and briefly discuss limitations
in Section 6.

2 Background

Before we start to summarize and review common fault injection mechanisms in
detail, we introduce some notations.

2.1 Notation

We denote functions by using sans-serif fonts. A multi-bit variable x is denoted
in bold while single bit values and values from the vector x are indicated by xi.
Upper-case characters in calligraphic fonts denote sets, e.g., G.

2.2 Fault Injection Mechanisms

Over the last two decades, many different fault injection mechanisms were pro-
posed and successfully established to attack hardware implementations of cryp-
tographic algorithms. We survey the most common techniques and explain the
fundamental physical mechanisms.

4 J. Richter-Brockmann et al.

i0
i1

i2
i3

o0

o1

o2

o3

Tlogic,max

Tclk ≥ tlogic,max + tclkq + tsetup − δ

(a) Normal condition.

i0
i1

i2
i3

o0

o1

o2

o3

T ′
clk < tlogic,max + tclkq + tsetup − δ

unstable

(b) Clock glitch occurrence.
Fig. 1: Physical effects of clock glitches on digital circuits.

Clock Glitches. Faulting digital circuits through generation and injection of
clock glitches is considered as rather inexpensive technique for FIA. However,
before we examine the physical fundamentals and mechanisms of intentional fault
injection through clock glitches, we briefly review state-of-the-art literature with
respect to FIA based on clock glitch generation.

State of the Art. In an early work on the general principles of fault injection via
clock glitches, Agoyan et al. [ADN+10] demonstrated its effectiveness using the
example of an Advanced Encryption Standard (AES) hardware implementation.
Soon thereafter, Endo et al. [ESH+11] presented an on-chip clock glitch generator
composed of Delay Locked Loops (DLLs) to test and validate the effectiveness of
newly developed countermeasures addressing the threat of clock glitch insertion.
In 2014, Korak et al. [KHEB14] increased the success rates of clock glitches in
combination with heating of the device under attack. Although it was assumed
that internal application of Phase-Locked Loops (PLLs) can easily defeat the
threat of fault injection through clock glitches, Selmke et al. [SHO19] recently
presented successful fault injections using clock glitches on a microcontroller
internally equipped with a PLL. Note, however, that this attack is still limited
and only possible if an ongoing computation is not interrupted by the LOCKED

signal of the PLL, as also noted by the authors.

Physical Mechanism. At a first glance, clock glitches may have limited relevance
in real world scenarios (since they can be prevented by using the LOCKED signal
of PLLs as described above) when compared to other fault injection mechanisms
covered later in this section. However, since clock glitch generators can be instan-
tiated fairly easy in many common Field-Programmable Gate Arrays (FPGAs),
allowing to create cost-efficient test setups for countermeasure validation, we opt
to cover this mechanism in more detail in the following paragraph.

For this, Figure 1 schematically depicts the physical effects of clock glitches
on the behavior and operation of digital circuits. Under normal operation con-
ditions (Figure 1a), all signals can propagate through the combinational logic

Revisiting Fault Adversary Models 5

and settle to a stable state before the rising edge of the clock signal triggers the
sampling process of the subsequent register. As a consequence, the (maximum)
clock period Tclk of a digital circuit is usually determined under the following
conditions and assumptions:

Tclk + δ ≥ tlogic,max + tclkq + tsetup (1)

Here, δ denotes the clock skew, tlogic,max the maximum propagation delay of the
combinational logic, tclkq the delay of the register, and tsetup the setup time for
the input of the register.

Given that an adversary now can generate a clock glitch for an effective
fault injection, the clock period T ′clk is instantaneously decreased such that the
inequality in Equation 1 is violated (but will hold again afterwards). Hence,
for some primary input combinations the clock period might be too short to
allow full propagation of the signals through the entire combinational logic and
a stabilization of the correct result at the input of the register is not guaranteed.
Figure 1b visualizes this behavior, eventually leading to the fact that the output
of the considered gate is still independent of the current primary inputs and
might lead to a faulty value sampled by the register at the arrival of the rising
edge of the clock glitch.

Underpowering and Voltage Glitches. Similar to fault injection through
clock glitches, underpowering and voltage glitches are also considered as rather
inexpensive but effective methods for FIA. While underpowering considers the
scenario of lowering the supply voltage of the target device throughout the entire
computation process, voltage glitches only lower the supply voltage for a very
limited period of time during the execution. Again, we briefly summarize state-
of-the-art literature, before we discuss the physical fundamentals and mechanics
of fault injection through underpowering and voltage glitching.

State of the Art. The first successful fault injection using the mechanisms of un-
derpowering was presented in 2008 by Selmane et al. [SGD08]. Using a 130 nm
Application-Specific Integrated Circuit (ASIC) embedding an AES engine on
a smart card target device, the authors report a successful recovery of the se-
cret key processed inside the AES encryption engine. Their evaluations further
demonstrate the dependency between voltage level and success rate of fault in-
jection through underpowering. However, since underpowering naturally effects
the entire execution of a cryptographic algorithm, precisely injecting faults, e.g.,
in a specific iteration of the algorithm, is very difficult and hardly achievable. As
a consequence, Zussa et al. [ZDCT13] focused their investigations on the fault
injection mechanism of temporary voltage glitches to disturb the execution of
cryptographic algorithms. More precisely, the authors prove that the physical
mechanisms of voltage glitches and underpowering can be traced back to timing
violations, as explained in the following paragraph.

6 J. Richter-Brockmann et al.

P0

N0

x0 x̄0

CL

Fig. 2: Transistor-level schematic of a CMOS inverter.

Physical Mechanism. Considering the example of simple Complementary Metal-
Oxide-Semiconductor (CMOS) inverter at transistor level, as given in Figure 2,
we briefly summarize the findings of [ZDCT13] with respect to timing viola-
tions caused through voltage glitches (and underpowering). Assuming that each
CMOS gate introduces some propagation delay upon signal switching, the prop-
agation delay in case of a simple CMOS inverter can be explained through the
switching process in the transistors. Exemplary, we assume a switching activ-
ity from low to high at the output of the P-type Metal-Oxide Semiconduc-
tor (PMOS) transistor P0 in Figure 2. In this case, the propagation delay tpLH,
as derived in [Raz08], is given by the following equation:

tpLH =
CL

[
2|Vth,p|

VDD−|Vth,p| + ln
(

3− 4
|Vth,p|
VDD

)]
Kp (VDD − |Vth,p|)

. (2)

Here, CL models the load of connected gates, Vth,p the threshold voltage of

the transistor, and Kp = µpCox
Wp

Lp
the gain of the PMOS transistor.

Obviously, under a lower supply voltage VDD, the propagation delay of the
inverter tpLH increases. Further, similar equations can be derived for the N-type
Metal-Oxide Semiconductor (NMOS) transistor and even for more complex gates
than a simple inverter, resulting in the same effect and impact. Eventually, as
the variation of the supply voltage affects all transistors and gates between two
register stages, lowering the supply voltage through voltage glitches or under-
powering will increase the maximum propagation delay of the combinational
logic. As a consequence, the inequality in Equation 1 might be violated. Hence,
as for clock glitches, the final result might not be stable at the input of the
register resulting in the sampling of a faulty value.

Electromagnetic Pulses. Another approach for fault injection into embedded
devices, having higher precision than clock or voltage glitches but still at rea-
sonable equipment and expertise requirement [BKH+19], uses electromagnetic
pulses. Again, we briefly summarize related state-of-the-art literature and dis-
cuss the physical mechanisms responsible for the manifestation of faults.

State of the Art. Over the last years, the understanding of the underlying mecha-
nism of faults caused by Electromagnetic Pulses (EMPs) changed. While in 2012,

Revisiting Fault Adversary Models 7

CLK

D Q

Q̄

(a) D Flip-Flop.

VDD

0V
S

VDD

0V
D

VDD

0V
CLK

VDD

0V

Q

(b) Simplified diagram.

Fig. 3: Physical effects due to faults caused by EMPs [DLM19,DLM20].

Dehbaoui et al. [DDRT12] performed some experiments on microcontrollers and
FPGAs leading to the conclusion that Electromagnetic Fault Injection (EMFI)
can be explained by timing violations of the critical path (as for clock glitches),
two years later, Ordas et al. [OGST+14] demonstrated that timing faults cannot
capture and describe the complete behavior of EMFI. In the following years,
they performed further experiments and eventually deduced a sampling fault
model [OGSM15,OGSM17]. Most recently, Dumont et al. [DLM19,DLM20] were
eventually able to explain the physical behavior for the sampling fault model and
confirmed its correctness by conducting several simulations and additional prac-
tical experiments. For this, we will summarize the latest findings and explain the
underlying physical mechanism responsible for fault injections caused by EMP
in the following paragraph.

Physical Mechanism. Any EMFI setup usually consists of a ferrite core, a coil,
and a voltage pulse generator to establish a magnetic field used to induce a cur-
rent in any wire loop based on the theory developed by M. Faraday. Particularly
in Integrated Circuits (ICs), those wire loops are the power and ground net-
works, where the induced current leads to a voltage swing S between the power
and ground grid (cf. Figure 3b for the effects of an undershoot).

However, in the following, we limit our explanations on D Flip-Flops (DFFs)
(see Figure 3a), as they are the main elements in digital ICs susceptible to
EMFI. The aforementioned voltage drop caused by the EMP consequently pulls
the potential of the clock signal and the input signal D down, as visualized in
a simplified diagram in Figure 3b. More precisely, this behavior is caused by
the falling edge of the swing S and can therefore be associated with the first
EMP generated by the rising edge of the voltage pulse generator supplying the
EM probe. With the rising edge of S – caused by the second EMP generated
through the falling edge of the pulse generator supplying the EM probe – the
circuit recovers the original state.

Here, the authors of [DLM20] describe the recovering phase as a race between
the clock signal and the input signal D. A successful fault injection is performed
only if the clock signal wins the race, meaning that the clock recovers faster
than the input signal D, and therefore the DFF stores a faulted value (cf. Fig-

8 J. Richter-Brockmann et al.

ure 3b). Note, however, that not only a negative swing can be induced, but also
a positive swing, then leading to an overshoot instead of undershoot. While the
negative polarity often leads to bit-resets, the positive overshoot induces bit-set
faults with higher probability. For more details, we refer the interested reader
to [DLM19,DLM20].

In summary, Dumont et al. showed that EMFI causes sampling faults which
can also be modeled as set or reset faults in memory elements such as DFFs.
Additionally, their most recent work in [DLM20] demonstrates a very fine spa-
cial resolution of EMFI, surprisingly independent of the electromagnetic probe
geometry.

Laser Fault Injection. Laser fault injection using focused laser beams was
initially presented in 2002, in the seminal work of Skorobogatov and Anderson
[SA02]. Since then, many follow-up works have been presented and improved
the potential of laser-assisted fault injection. Before we summarize and explain
the physical effects of laser-induced faults, we dedicate the next paragraph to
the current progress and state-of-the-art research with respect to optical fault
injection methods.

State of the Art. The first case study of laser fault injections, presented in the
seminal work [SA02] of Skorobogatov and Anderson, was designed for a target
platform built in a quite large 1 200 nm technology. However, in the following
years, several other works studied the influence of laser beams to the operation
of ICs and improved the application for lasers as a fault injection mechanism.
For instance, in 2013, Roscian et al. [RSDT13] already targeted a 250 nm tech-
nology and performed investigations on the underlying fault model. In the fol-
lowing year, Courbon et al. [CLMFT14] demonstrated the tremendous accuracy
of laser fault injection and used it to characterize registers instantiated in a
90 nm technology. Similarly, Selmke et al. [SBHS15] investigated the accuracy
of laser-induced faults for a 45 nm technology, but concluded that precise fault
injections into memory cells become more difficult for smaller technologies.

However, not only memory cells, but also any combinational gate of a digital
IC is susceptible to laser-induced faults, as was shown in 2016 by Schellenberg
et al. [SFG+16]. In this work, the authors used successful injections of faults to
perform a fault sensitivity analysis, also possible for smaller target technologies.
Most recently, Dutertre et al. [DBC+18] successfully performed fault injections
on an AES implemented on a very small 28 nm technology. However, although the
hardness of laser fault injection varies with the targeted geometry size, the basic
fundamentals and physical effects can be traced back to the same phenomena.

Physical Mechanism. Figure 4 exemplary shows the fundamental physical effect
when a focused laser beam hits and affects an NMOS transistor. More precisely,
the laser beam starts an ionizing process in a PN-junction while along the laser
injection path a dense distribution of electron-hole pairs is produced (cf. Fig-
ure 4a). Afterwards, the carriers are rapidly collected by the electric field and the

Revisiting Fault Adversary Models 9

p-Si

n+

+ +

+

+

+

+ +

+

+

-

-

-

-

-
-

-

-
-

+
+

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

-

--

-

+
+

-

-

-

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

- -

-

-

+

+
-

-

-

-

-

+
-

+
-

+
- +

-

+

-

(a) Ionizing.

p-Si

n+

+ +

+

+

+

+ +

+

+

-

-

-

-

-
-

-

-
-

+
+

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

-

--

-

+
+

-

-

-

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

- -

-

-

+

+
-

-

-

-

-

+
-

+
-

+
- +

-

+

-

(b) Idrift.

p-Si

n+

+ +

+

+

+

+ +

+

+

-

-

-

-

-
-

-

-
-

+
+

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

-

--

-

+
+

-

-

-

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

- -

-

-

+

+
-

-

-

-

-

+
-

+
-

+
- +

-

+

-

(c) Idiff.

Fig. 4: Physical effect of LFI as introduced in [Bau04].

charge is compensated, resulting in a reduced voltage on that node while eventu-
ally, a temporary drift current arises as visualized in Figure 4b. However, shortly
afterwards (usually at a magnitude of a few picoseconds) the funnel collapses and
a small diffusion current dominates the collection process, which again is shown
in Figure 4c. For more details we refer the interested reader to [Bau04,WA08].

As a consequence, the effect of producing a temporary drift current Idrift in
a PN-junction of a transistor can be used to alter the state of a gate. For the
sake of simplicity, we consider the CMOS inverter given in Figure 5 as a minimal
example, where subsequent connected gates are simplified and modeled by a load
capacity CL. As a first step, we assume the input of the inverter to be zero and
output to be one, as visualized in Figure 5a. Once an adversary hits the drain
region of the NMOS transistor with the help of a focused laser beam, the output
state of the inverter may change. In particular, the high drift current through
the transistor forces a discharge process of the output node, i.e., the electrical
charge from CL is moved such that the output changes from one to zero. Note,
this effect can only occur if the temporary drift current is larger than the current
flowing through the PMOS transistor, which still conducts correctly. Hence, if
the drift current Idrift collapses, the output node will eventually switch back to
its former high level. This results in a temporary injected fault which is called
Single Event Transient (SET) (or transient Single Event Upset (SEU) [Pet11]).
A similar effect occurs when the input of the inverter is one and the output is
zero, but in this case the laser beam has to hit the drain region of the PMOS
transistor (instead of the NMOS transistor) in order to switch the output node
from zero to one, i.e., to load CL [RSDT13].

In summary, we can state that this fault injection mechanism either causes
bit-set or bit-reset faults considering the given inverter. Further, the bit-set or
bit-reset faults can occur as temporary faults in both, combinational logic (i.e.,
logic gates) or in memory gates (e.g., registers). However, in case the attacker
targets memory gates, the stored value will be altered, which is called a static
SEU [Pet11], as this transient fault cannot be recovered while transient faults

10 J. Richter-Brockmann et al.

P0

N0

0 1

CL

(a) NMOS.

P0

N0

0 1

CL

(b) PMOS.

Fig. 5: Sensitive drain regions for laser fault injection [RSDT13].

in combinational gates may be recovered by sufficient long clock periods (in
comparison to the duration of the fault).

Miscellaneous Mechanisms Besides the mechanisms introduced above, a few
more techniques can be found in the literature, such as body biasing [MTOL12,
O’F20], overpowering [CML+11], temperature [Sko09,HS13], and X-Ray beams
[ABC+17]. However, they only have a minor or auxiliary role in practice in
comparison to the mechanisms described above and therefore we decided to
exclude them from following considerations in our work, although our versatile
concept still allows modeling these mechanisms.

3 Concept

Given the broad range of physical fault injection mechanisms that we surveyed in
the previous section, our efforts in this section focus on a consolidated and unified
model for fault injection adversaries, ideally covering all previously introduced
concepts. For this, we start with formal definitions of fundamental concepts as
well as initial assumptions and limitations. Then, based on those definitions and
assumptions, we propose and describe our generalized fault injection adversary
model in more detail.

3.1 Circuit Model

As this work focuses on fault injection techniques and adversaries for physical
hardware and digital ICs, we first introduce our abstract model to describe the
underlying circuit targeted by the adversary. For this, we assume that a digital
circuit C is implemented to execute an arbitrary Boolean function f : Fi2 → Fo2
with i, o ≥ 1 where i defines the number of inputs and o the number of outputs of
C. Further, we can decompose the circuit C into atomic component blocks, called
gates, which further can be distinguished with respect to purely combinational
gates, as defined in Definition 1, and memory gates, as given in Definition 2.

Revisiting Fault Adversary Models 11

Table 1: Functions included in U and in B.

Inputs ui(x0) ∈ U bi(x0, x1) ∈ B

x0 x1 u0 u1 u2 u3 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

0 0 – 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0
0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 1 – 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0

Definition 1 (Combinational Gate). A combinational gate gc is a physical
component in a digital logic circuit that evaluates its output as a pure (Boolean)
function of the present input assignments only (without any dependency on the
history of input assignments).

In the context of this work, we further assume that the set of Boolean
functions implemented by combinational gates is limited and given as Gc =
{not, and, nand, or, nor, xor, xnor}. For the sake of simplicity, we further define
more granular subsets to distinguish functions with fan-in of size 1 and 2, i.e.,
Gu = {not} and Gb = {and, nand, or, nor, xor, xnor}, such that Gc = Gu ∪ Gb.

Definition 2 (Memory Gate). A memory gate gr ∈ Gm is a physical, clock-
synchronized component in a digital logic circuit for which the output depends
not only on the present input assignments but also on the history of previous
input assignments.

Hence, memory gates are used to store intermediate results and to establish
synchronization points in a digital circuit. In the context of this work, we model
memory gates (also called registers) as clock-dependent synchronization points
that store a single Boolean variable x ∈ F2 with Gm = {reg}. Additionally, given
the set of combinational gates Gc and the set of memory gates Gm, we define a
set G = Gc ∪ Gm to unite all valid gates of a digital circuit C in a single set.

Definition 3 (Circuit Representation). A digital circuit C is modeled by a
Direct Acyclic Graph (DAG) formally described by D = {V, E}, with V the set of
vertices and E the set of edges. A single vertex v ∈ V represents a combinational
gate, memory gate, or an input or output and a single edge e ∈ E represents a
wire carrying a digital signal, modeled as an element from the finite field F2.

Note that this work focuses on synchronous digital logic circuits only, hence,
we always assume that inputs, outputs, and memory gates are synchronized to
a common clock signal.

3.2 Fault Model

For the description of faults and fault propagation in digital logic circuits, we first
introduce the two sets of unary and binary Boolean functions. More precisely,
the set of unary functions is given as U = { u | u : F2 → F2 } while the set of
binary function is defined as B =

{
b | b : F2

2 → F2

}
.

12 J. Richter-Brockmann et al.

In general, for a Boolean function f : Fi2 → Fo2, we can construct 2o×2i

distinct
Boolean functions in i variables and o output bits, i.e., we have |U| = 4 unary
and |B| = 16 binary functions. Further, the specific assignments of all possible
functions for U and B are presented in Table 1.

As described before, we consider a limited set Gc of combinational gates.
More specifically, we consider a single unary gate {not} ∈ Gu that exe-
cutes the unary Boolean function u0 on its input. Further, the binary
gates {and, nand, or, nor, xor, xnor} ∈ Gb execute the Boolean functions bi with
0 ≤ i ≤ 5 on their inputs, respectively.

Then, given a DAG D modeling a digital circuit C, we can associate each
gate in the physical circuit, with a vertex v ∈ V of the graph, representing a
combinational or memory gate by a Boolean function from the sets U or B. For
this, we define the following golden mapping τgolden from gate to vertex and
associated Boolean function fg:

τgolden:

{not} 7→ {u0} {or} 7→ {b2}
{reg} 7→ {u1} {nor} 7→ {b3}
{and} 7→ {b0} {xor} 7→ {b4}
{nand} 7→ {b1} {xnor} 7→ {b5}

Given the gate-function mapping and the abstract representation of a digital
circuit in terms of a DAG, we can formally describe the effects and propagation
of an injected fault.

Definition 4 (Fault). A fault can occur in a digital circuit C if and only if a
gate g ∈ G within the circuit does not evaluate according to its associated Boolean
function fg.

Definition 5 (Error). In a digital circuit C an error occurs if a wrong value
is visible at the output of the circuit. An error is always caused by a fault.

Considering our limited set of combinational and memory gates, a fault in a
combinational gate occurs immediately if the considered g ∈ Gc evaluates to an
incorrect result z′ with z′ 6= fg(x). For registers gr ∈ Gm, faults will only manifest
in synchronization to the provided clock signal such that z′ 6= fr(x).

Moreover, if a fault occurs in a gate of a digital circuit, i.e., the faulted gate
evaluates incorrectly, this fault may also have an impact on subsequent gates.
More specifically, if a faulty signal z′ is input to further gates, these gates may
evaluate correctly according to their associated function but still provide wrong
results due to incorrect inputs. In general, this effect is called fault propagation.
Two different scenarios of fault propagation are given in Example 1.

Example 1. In this example we assume a gate g ∈ Gc producing a faulty output
z′ ∈ F2. The faulty output z′ = 1 is the first input x0 to a gate g2 = {or} while
the second input x1 = 1. In this case, fault propagation will stop immediately, as
the output of g2 will be 1 regardless of the first input. However, given that x1 = 0,
then, upon correct inputs, g2 would evaluate to 0, however, due to x0 = z′ = 1,
the fault will propagate through g2 and may affect further gates in the circuit.

Revisiting Fault Adversary Models 13

Definition 6 (Fault Scenario). We define a fault scenario as the occurrence
of a fault in a target gate g ∈ G under a given input x ∈ Fi2 to the circuit C.

Hence, each specific fault in a target gate g ∈ G creates a unique fault scenario
for each valid input x ∈ Fi2. Therefore, the input size i, the amount of considered
gates, and the number of valid faults for each gate (more details will be given in
Section 3.3) determine the total amount of fault scenarios Nscenario for a given
circuit C.

3.3 Consolidated Adversary Model

Introducing two abstraction levels for a digital logic circuit, we can explain and
introduce our generic and consolidated fault injection adversary model. As a
consequence, this allows us to create a dedicated fault injection adversary model
that can be adjusted by a set of parameters introduced afterwards.

Initial Assumptions. For this, let us define and list some initial assumptions
in order to provide a reasonably complex fault injection model for digital logic
circuits. First, we assume that all primary inputs to a target circuit C are fault-
free, since inputs that are already faulted can never be recognized by any fault
model framework or by countermeasures that should be evaluated. Second, we
do not consider any routing information of the circuit in our fault model since
these undermine our attempt to create a generic model. We work on a netlist
level which can be perfectly mapped to DAGs as described in Section 3.1. Never-
theless, this abstraction level allows us to attach timing information, i.e., prop-
agation delays of the gates, to each node in the DAG representing the physical
logic gates. Third, we do not consider fault probabilities, hence, purely focusing
on a quantitative rather than qualitative analysis. Finally, we do not specifically
consider persistent faults in our fault adversary model. If persistent faults should
be modeled, it can still be accomplished within our assumption by triggering a
specific fault on each evaluation. This, however, is not part of a fault model but
rather part of the utilized framework integrating the fault adversary model.

Abstraction Levels. The description of a circuit C as a DAG D allows us to
separate the fault modeling into two abstraction levels – a structural level and
a functional level. On the structural level we consider the edges and vertices of
the DAG, i.e., the wires in C connecting the circuit gates. This gives us the
possibility to model, describe, and track the propagation of faults through the
entire circuit. Additionally, the structural level provides information about the
placement of synchronization points, i.e., the memory gates. This information
is important since faults ultimately will manifest in register stages which we
will demonstrate in Section 4. However, the actual faults are injected directly
in combinational gates gc ∈ Gc or in memory gates gr ∈ Gm where both types of
gates describe the functional level of C through the associated Boolean functions
given in τgolden (cf. Section 3.2).

14 J. Richter-Brockmann et al.

Modeling Faults. On a very abstract (and simplified) level, we model a sin-
gle fault by altering the associate function of the target gate to an arbitrary
function within the same domain, i.e., defined over the same number of inputs
and outputs. In particular, faults injected into a gate gu ∈ Gu or in a memory
gate gr ∈ Gm are modeled by exchanging the associated function with a function
u ∈ U . Similarly, faults injected into a gate gb ∈ Gb are modeled by exchanging
the associated function of gb with a function b ∈ B.

In this sense, for each fault scenario, the DAG of the circuit is re-evaluated
and updated, such that for each vertex v ∈ V of the graph, the associated func-
tions are selected from τgolden or a fault type is chosen from a fault model τfaulty,
depending on whether the fault event occurred in the corresponding gate or not,
such that:

vg =

{
τgolden(g) g is fault-free

τfaulty(g) g is faulted
,∀g ∈ C

Notably, this model provides a generic approach to map various fault types to
a circuit implemented in hardware. To this end, we further define a notation
which allows us to denote mappings where several gates are mapped to the
same Boolean function. For example, given a subset of gates Gsub ⊂ Gb and each
of the gates g ∈ Gsub should be mapped to the functions bi0 and bi1 in case
a corresponding gate in C is faulty, we denote the underlying mapping τj as
τj : Gsub 7→ {bi0 , bi1} for a specific fault model j. However, to meet realistic sce-
narios for an actual attacker, we further introduce a set of parameters which
allows us to constrain the generic model and customize it depending on given
circumstances.

Parametric Adversary Model. To this end, we introduce the following three
parameters to describe the limitations of an adversary: n, t, and l. While the
first parameter n defines the power of the attacker in terms of how many faults
can be injected at the same time, the second parameter t defines the type of the
faults. Finally, l limits the circuit locations where the faults can occur, i.e., the
gates of the circuit that can be targeted by the adversary. In the following we
present more details about the three parameters and their design rationals.

Number of Fault Events n: The parameter n sets the total number of faults that
can occur at the same time and therefore it constrains the power of an attacker
in terms of simultaneously injected faults. Hence, when modeling adversarial
fault injections in a digital circuit C, n can be selected from N = {1, 2, ..., N}
with N = |V|, i.e., N is equal to the total number of combinational and memory
gates that are available in C.

By selecting n ∈ N , we assume that an attacker is able to inject up to n
faults, meaning that we consider all possible fault scenarios with n′ ≤ n faults.
This assumption is well established in literature when evaluating countermeasure
against fault injection attacks [SMG16, RBSBG20]. However, even if we select
n as an upper bound, we still might observe more than n faults manifesting in

Revisiting Fault Adversary Models 15

E
i0
i1

i2
i3

Fig. 6: Influence of a single fault on subsequent gates.

a register stage or primary output due to fault propagation. We further explain
this phenomena in Example 2.

Example 2. For this example we assume that we model an attacker with n = 1
and that a fault is injected into the nand gate in Figure 6. Although n is con-
strained by 1, the fault can propagate through the and and xor gate such that
three errors would eventually manifest at the primary output register stage.
Hence, n only indicates the number of faults an attacker is able to inject but it
does not give any information about the total number of errors that will occur
at the output of the circuit. This behavior was also mentioned by Aghaie et al.
in [AMR+19].

Fault Type t: The fault type t can be selected from a set T = {τsr, τs, τr, τbf, τfm}
which contains different fault models τj . Each of these fault models describes how
a gate from a target circuit C is mapped to a function u ∈ U or b ∈ B in the
resulting DAG D. In this paragraph, we introduce common fault models used
to describe different fault injection mechanisms.

For this, we define τsr as a fault model where each gate from G is mapped
to the set or reset function. We decided to use the terms set and reset instead
of stuck-at-one and stuck-at-zero since the physical fault mechanisms of electro-
magnetic pulses and laser fault injections cause bit-sets or bit-resets by charging
or discharging nodes in the digital circuit. Even if in the presence of clock glitches
the fault mechanism could be described by a stuck-at behavior, we stay with the
terms set and reset in the remainder of this work to highlight that the faulty
behavior is caused by an active attacker. Note, however, that the choice of ter-
minology does not affect the underlying modeling procedure but both physical
mechanisms can be modeled similarly. Particularly, the faulty behavior of a gate
gu ∈ Gu or a memory gate gr ∈ Gm is modeled by the function u2(x) = 0 or by
u3(x) = 1 with x ∈ F2 (cf. Table 1). Hence, we apply a mapping that is described
by {not, reg} 7→ {u2, u3}. Similarly, a faulty gate gb ∈ Gb is modeled by one of the
functions b6(x) = 0 or b7(x) = 1 with x ∈ F2

2, describing a reset or set fault, re-
spectively. In this case, the mapping is formally described by {Gb} 7→ {b6, b7}.
In essence, the mapping τsr serves as a base line for most of the fault injection
mechanisms introduced in Section 2, however, more details about the connection
between the physical behavior and the proposed parameter selections are given
in Section 4.

16 J. Richter-Brockmann et al.

To allow more fine grained evaluations, we additionally define the mappings
τs and τr which describe only set or only reset fault, respectively. Hence, the
mapping τr defines {not, reg} 7→ {u2} for unary gates and Gb 7→ {b6} for binary
gates. Similarly, τs defines {not, reg} 7→ {u3} for unary gates and Gb 7→ {b7} for
binary gates. This distinction can be useful for specific primitives or technologies
where a fault injection can either cause set or reset faults only. Examples for such
primitives are NOR flash memories where only bit-set faults occur as shown and
explained in [CMD+19].

Another common fault model that can be found in the literature is based on
bit-flips which we describe by the mapping τbf. In this case we map each gate
from G to its inverse gate resulting in the following fault model:

τbf:

{not} 7→ {u1} {and} 7→ {b1}
{reg} 7→ {u0} {nand} 7→ {b0}
{or} 7→ {b3} {xor} 7→ {b5}
{nor} 7→ {b2} {xnor} 7→ {b4}

Each gate is modeled by a function returning the inverse of the values that would
be returned by the original gate.

Eventually, we intentionally leave space for custom definitions of fault models
τfm in T to provide an adversary model that is as generic as possible while at
the same time already covering common fault types and models. For this, we
introduce one custom mapping τnang15 in Section 4 and guide the reader through
the process of precisely defining and modeling an attacker that uses a laser to
inject fault events in a Nangate 15 nm technology.

Fault Location l: The fault location l is the third parameter which is necessary
to properly describe fault injections in our generic adversary model. We define
the set L = {ci,m,mci} in order to distinguish between different areas on the
structural level of a circuit C. The first choice covers and models fault injections
that solely affect combinational logic gates, i.e., gates from Gc. Here, c∞ considers
all combinational gates available in the circuit under test as targets for fault
injections. A more fine grained separation of combinational gates is also possible
and denoted by the index i while the separation is performed based on the
gates’ propagation delays. More precisely, we exploit that each gate has a specific
maximum propagation delay which can be extracted from a CMOS library or
for the sake of simplicity be assumed to be the same for each gate. Based on
the individual propagation delays of the single gates, we approximately compute
the Data Arrival Time (DAT) for each combinational gate g ∈ Gc and access
the corresponding value by t(g). Another approach could incorporate the notion
of slack (i.e., the difference of the DAT and the Data Required Time (DRT)).
However, we decided to rely our model just on the DAT since it is independent
of the used clock frequency and can be better applied to actual circuits under
test (see Example 3 and Section 4.1). In addition to the computation of the DAT
for each gate g ∈ Gc, we define a set Gregin that contains all combinational gates
driving registers. The DAT of gates g ∈ Gregin are used to create an ordered set

Revisiting Fault Adversary Models 17

g0

g1 g2 g3

g4
g5

g6

g7
g8 g9

tgate

tgate 2tgate 3tgate

tgate
3tgate

3tgate

2tgate
3tgate

4tgate

Fig. 7: Propagation delays of different data paths in an exemplary circuit.

P = {t0, t1, ...tT−1} where t0 > t1 > ... > tT−1 and T ≤ |Gregin|. This allows us
to create clusters of gates defined by

Gcluster,i = { g ∈ Gregin | t(g) ≥ ti, ti ∈ P } . (3)

Finally, setting the location parameter l = ci corresponds to fault injections that
are performed in the subset Gcluster,i with i < T . The following example describes
the process of generating Gcluster,i based on the circuit given in Figure 7.

Example 3. First, for the sake of simplicity, we assume that each gate in Fig-
ure 7 has the same propagation delay tgate. Second, we determine the set
of gates whose outputs are connected to registers which is in our example
Gregin = {g0, g3, g5, g6, g9}. The corresponding propagation delays are given by
P = {t0, t1, t2} with t0 = 4tgate, t1 = 3tgate, and t2 = tgate. Given this informa-
tion, we construct the different subsets of Gregin representing the clusters and
containing the following gates

Gcluster,0 = {g9} Gcluster,1 = {g3, g5, g6} ∪ {g9}
Gcluster,2 = {g0} ∪ {g3, g5, g6} ∪ {g9}.

Besides, setting l = m, specifies fault injections where an attacker targets
memory gates gr ∈ Gm only. The location parameter l = mci models faults
that can occur in both types of gates where combinational gates can still be
separated into subgroups.

For reasons of clarity, Table 2 summarizes the available parameters with
the corresponding options which are shortly described in the last column.

Instantiating Adversary Models. To bring together and connect the three
introduced parameters n, t, and l, we define the function ζ(n, t, l). This allows
us to instantiate different types of attackers and model the behavior of fault

18 J. Richter-Brockmann et al.

Table 2: Parameters to accurately model fault injections.

Param. Options Description

n N = {1, 2, ..., N} Maximum number of fault
events, N depends on the
application

t T = {τsr, τs, τr, τbf , τfm} τsr: Fault model for set/reset fault
τs: Fault model for set faults
τr: Fault model for reset faults
τbf : Fault model for bit-flips faults
τfm: User-specified fault model

l L = {ci,m,mci} ci: Faults in comb. gates only
m: Faults in memory gates only

mci: Faults in all gates

injections based on the committed parameter list. For example, we can regulate
the strength by changing the fault type t, or determine the accuracy of the fault
injections setting n as a powerful attacker may be able to precisely inject single
bit faults. However, one of the main advantages of introducing ζ is that we
create a basis to allow comparability between different designs which should be
evaluated regarding their protection against fault injection attacks (under a given
adversary model). In Section 4, we evaluate a cryptographic circuit using our
generic adversary model to transfer our definitions to a practical instantiation.

4 Practical Instantiation

After we introduced our generic adversary model expressed through the corre-
sponding function ζ to model adversaries with different capabilities, we show
in this section how to map our theoretical considerations to real world fault
injection mechanisms and how to model associated adversaries. Therefore, we
establish a connection between available fault injection mechanisms introduced
in Section 2.2 and our findings from Section 3.

Further, to demonstrate the practical application of ζ, we consider the AS-
CON S-box [DEMS16] as an example for a cryptographic primitive and potential
target of FIA. The corresponding S-box circuit is depicted in Figure 8, exhibiting
some interesting properties that provide a good starting point for the application
and discussion of our concept. First, this circuit already consists of both gate
types, i.e., combinational gates from Gc and memory gates from Gm. Second,
although the circuit is constructed on an almost regular pattern, fault propaga-
tion can be observed. More specifically, at the deepest logic level, the primary
output y4 is an input to the xor-gate which determines the output y0. Hence, the
structure of the ASCON S-box is perfectly suited to demonstrate and discuss
different practical instantiations of our generic adversary model.

Revisiting Fault Adversary Models 19

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

g0

g1

g2

g3

g4

Fig. 8: ASCON S-box [DEMS16].

However, to facilitate comparison of different fault injection mechanisms and
associated adversary models, we first define the total number of effective faults
Neffective as (single-bit) faults that eventually manifest in a primary output stage
of a circuit C. In our example, Neffective can be at maximum five for each given
fault scenario since the number of output registers is o = 5. Given that, the
maximum number of possible faults Nmax is limited by

Nmax = o ·Nscenario = o · 2i ·
∑
g∈C

|τj(g)| (4)

under a considered fault model j.
As indicated in Equation 4, we consider each input combination to determine

the maximum number of possible faults Nmax because each valid input creates
an independent fault scenario. We explicitly decided to follow this approach3 for
the considered example to allow a fairer comparison between the different in-
stantiations of ζ at the end of this section. Note that for real-world applications
(e.g., analyzing entire protected block-ciphers) with inputs i ≥ 64 such an anal-
ysis is currently not possibly. However, this is not a limitation of our adversary
model (since our model targets the description of fault occurrences in hardware
gates) but a limitation of exhaustively simulating fault injections in all available
gates for all valid inputs which is not part of this work and still an open research
question.

Please be aware, that the following analysis results only hold for an instantia-
tion of the ASCON S-box as shown in Figure 8. Hence, in case the registers of the
S-box are removed or any combinational logic is added to the circuit, the analysis
has to be re-performed. Consequently, the following examples only demonstrate
the functionality of our proposed fault model and the mapping between theory
and practice without any claims for generality.

3 The corresponding source-code can be accessed at https://nextcloud.seceng.rub.
de/index.php/s/7ZmqynqYNnfPLw8

https://nextcloud.seceng.rub.de/index.php/s/7ZmqynqYNnfPLw8
https://nextcloud.seceng.rub.de/index.php/s/7ZmqynqYNnfPLw8

20 J. Richter-Brockmann et al.

4.1 Clock Glitches

As first step, in order to model clock glitches and the underlying fault mecha-
nism explained in Section 2.2, we instantiate our adversary model as ζ(n, τsr, ci)
with n ∈ N = {1, 2, ..., |Gcluster,i|}. By setting t = τsr and l = ci, we consider set
and reset faults occurring in combinational gates g of the cluster Gcluster,i with
0 ≤ i ≤ T − 1.

This choice can be justified when looking closer at the origin of faults injected
by clock glitches. Particularly, if the attacker manages to decrease the clock
period of a clock cycle, this makes registers sample their input signals early.
Then, a fault occurs if the internal logic cannot propagate the correct signals
timely (negative slack) and the current input to a register differs from the correct
input. As a consequence, there are several possibilities how false inputs can occur,
depending on the duration of the clock glitch. For short clock glitches4 with
Tclk + δ < tT−1 the propagation of the data could be stopped before it stabilizes
at any of the outputs of the gate g ∈ Gregin such that in a worst case scenario all
registers connected to these gates sample wrong results. This corresponds to a
fault model instantiated as ζ(n, τsr, cT−1) with n ∈ N = {1, 2, ..., |Gcluster,T−1|}.
We decided to allow n to be an element from N and not to fix n = |Gcluster,T−1|
in order to provide more fine grained analysis possibilities. Note, however, that
the number of faults occurring in one cluster cannot be controlled by an attacker
using clock glitches since they solely depend on the previous data processed by
the circuit. Due to this behavior, the faults can be modeled best by set and reset
faults and assuming that the previous state of each bit was either one or zero.
However, the attacker can precisely control the clusters where the faults should
occur by adjusting the duration of the clock glitch. This capability is modeled
by selecting different ci which corresponds to fault injections in combinational
gates that are included in Gcluster,i with 0 ≤ i ≤ T − 1. The least number of
combinational gates is affected by setting l = c0 while the maximum number of
affected combinational gates is given by l = c∞.

For clarification of these decisions, we transfer this model to the ASCON
S-box depicted in Figure 8. Instead of assuming the same propagation delay
for each gate, we now extract the propagation delays from the Open-Cell Li-
brary5. Here, we use the slowest propagation delays for an input transition
of 0.198 5 ns and a load capacity of 26.016 2 fF for the gates with a driving
strength of one. In our example, we need the propagation delays of xor-gates,
not-gates, and and-gates which are 0.24 ns, 0.26 ns, and 0.20 ns, respectively. Ap-
plying these propagation delays to the ASCON S-box, results in three subsets
G0 = {g1, g3, g4}, G1 = {g1, g2, g3, g4}, and G2 = {g0, g1, g2, g3, g4} = Gregin with
corresponding DATs of t0 = 0.118 ns, t1 = 0.96 ns, and t2 = 0.94 ns that can be
considered as targets for fault injections. Hence, considering l = c0 could lead to

4 By short clock glitches we refer to a clock cycle with a drastically decreased duration
(i.e., the time between two rising edges) compared to the cycle duration of the
undisturbed clock.

5 https://www.cs.upc.edu/~jpetit/CellRouting/nangate/Front_End/Doc/

Databook/CornerList.html

https://www.cs.upc.edu/~jpetit/CellRouting/nangate/Front_End/Doc/Databook/CornerList.html
https://www.cs.upc.edu/~jpetit/CellRouting/nangate/Front_End/Doc/Databook/CornerList.html

Revisiting Fault Adversary Models 21

wrongly sampled bits in the registers y0, y1, and y3 while l = c2 could lead to
a total of five effective faults manifesting in the registers. Note, however, that
any designer should use these values with caution since t1 and t2 are very close
to each other. Due to process variations in chip manufacturing processes, these
values could easily change such that faults in all corresponding gates could occur
with the same likelihood. Hence, our model just considers an abstraction of the
circuit under test.

Applying the specific adversary model ζ(1, τsr, c0) to the ASCON S-box, we
consider 25 input combinations, three available gates to inject a set or reset fault,
and five output registers to observe an error, resulting in a maximum number
of Nmax = 960 faults. For each fault, we compare the resulting output y′i to the
correct S-box output yi and for each output bit that is different to the correct one,
we increase a fault counter which eventually results in Neffective = 96 effective
faults appearing at the output. Additionally, we instantiate our adversary model
as ζ(5, sr, c2) modeling a worst case scenario where the clock glitch prevents data
propagation in all gates g ∈ Gregin. In this case, there are Nmax = 38 720 faults
where Neffective = 13 824 are effective.

4.2 Voltage Glitches

As mentioned in Section 2.2, the fundamental physical behavior of voltage
glitches (or underpowering) is very similar to clock glitches and is caused
through the violation of Equation 1. By lowering the voltage, the right side
of this inequality is increased such that the memory gates are triggered before
all signals can propagate through the logic. As a result, this phenomena can
be modeled by the same adversary model as clock glitches. Hence, we model
fault injections caused by voltage glitches also by a ζ(n, τsr, ci) adversary with
n ∈ N = {1, 2, ..., |Gcluster,i|}.

Obviously, applying the voltage glitch adversary model to our example gen-
erates the same results as described in Section 4.1.

4.3 Electromagnetic Pulses

The modeling of fault injections caused by EMPs can be conducted by instan-
tiating the adversary model function as ζ(n, τsr,m) with n ∈ N . In Section 2.2,
we explained that EMPs induce a positive or negative voltage pulse in the tar-
get circuit. These pulses produce a set or reset fault respectively. Hence, setting
t = τsr perfectly models the physical mechanism of EMFI since the target gate
function are mapped to the set or reset function. Additionally, the choice for
selecting memory gates as fault location l, matches the recently published re-
sults by Dumont et al. [DLM19, DLM20] who refined and confirmed the model
of sampling faults caused by EMFI.

Applying the fault model function to the considered example depicted in
Figure 8, leaves us with 25 input combinations, 5 gates for the set and reset
faults (ignoring primary inputs as we assume inputs to be correct), and five
output registers, which eventually results in Nmax = 1 600 possible faults at the

22 J. Richter-Brockmann et al.

N0

N1

P0 P1 P2

N2

x0 x1

x0

x1

bi

Fig. 9: AND gate from the 15 nm Open-Cell Library. Blue areas mark drain regions of
PMOS transistors, red areas mark drain regions of NMOS transistors.

primary output. All together, there are Neffective = 160 effective faults resulting
in a fault rate of rfault = 10 % for the ASCON S-box under the given ζ(1, τsr,m)
adversary model.

4.4 Laser Fault Injection

At last, considering the mechanism of optical fault injections, an appropriate
modeling is possible by defining the adversary model function as ζ(n, τfm,mc∞).
This selection covers fault injections into combinational and memory gates like-
wise. As described in Section 2.2, a focused laser beam on a digital circuit charges
or discharges specific nodes on transistor level. Hence, targeting memory gates,
the value of a register can either be set or reset which needs to be covered in the
custom fault mapping τfm defining {reg} 7→ {u2, u3}.

Additionally, the instantiation of the adversary function covers faults that
directly occur in the combinational logic. Here, we define specified mappings for
τfm between the instantiated gates g ∈ Gc and the defined functions in U and
B. The simplest example – faults occurring in a CMOS inverter – was already
discussed in Section 2.2 where the mapping {not} 7→ {u2, u3} is applied. For
the remaining gates from Gb, we now exemplary derive the mapping of an and
gate designed in the 15 nm Open-Cell Library6 which is depicted in Figure 9.
Therefore, we will call the custom defined mapping τfm in the following τnang15

as it is tailored to the given example.
The and gate consists of six transistors where three transistors are NMOS

and three are PMOS transistors. In our model, we assume that an adversary can
affect any number of transistors available in a target gate. Hence, our parameter
n only describes the number of faults on gate level but does not distinguish the
number of charged or discharged nodes. However, in case of the considered and
gate, the attacker can easily change the function to a set or reset behavior by
affecting the inverter stage. Additionally, it is possible to simultaneously inject a
drift current Idrift into the transistors N0 and N1 to force the gate to behave as
an or gate. This is possible if Idrift is larger than the current delivered by one of

6 https://si2.org/open-cell-library/

https://si2.org/open-cell-library/

Revisiting Fault Adversary Models 23

the PMOS transistors P0 and P1 such that the input node to the inverter can be
discharged if either P0 or P1 conducts. In case both PMOS transistors conduct,
the injected drift current would be too small to discharge the input node to the
inverter so that the output of the gate would be zero. These observations lead
us to the mapping {and} 7→ {b2, b6, b7} which is added to τnang15.

Fault mappings for all remaining gates from G can be derived in a very
similar way. As we require a specific mapping for a xor gate in order to evaluate
the example from Figure 8, the corresponding schematic is shown in Figure 10 in
the appendix. Again, the attacker can easily generate set and reset fault events
by charging or discharging the output node. However, there are other possible
modifications which allow the attacker to force the gate to behave as a nand gate
or as an or gate. The former change can be achieved by discharge the input node
to the second stage, i.e., by shooting on N0 or N1. To force the gate to behave
as an or gate, the attacker has to hit one of the PMOS transistors P3 or P4. All
together, we end up with the mapping {xor} 7→ {b1, b2, b6, b7}.

For the sake of completeness, we listed the corresponding mappings for all
remaining gates from Gc, describing all fault types in presence of LFI for the
Nangate 15 nm technology, in the appendix in Table 4.

Evaluating the ASCON S-box, given the described adversary model instanti-
ation ζ(1, τnang15,mc∞), can be accomplished by distinguishing between faults
that are injected into registers and combinational gates. The former case reveals
the same fault rate as the evaluation under faults caused by EMPs (Nmax = 1 600
and Neffective = 160). The evaluation considering faults in combinational gates
results in Nmax = 11 360 possible faults while there are Neffective = 1 480 effective
faults. Thus, adding these numbers, results in Neffective = 1 640 effective faults
and Nmax = 12 960 possible faults under the given ζ(1, τnang15,mc∞) adversary
model.

4.5 Comparison of Fault Injection Mechanisms

The previous sections illustrate that the introduced adversary models can de-
scribe the different fault injection mechanisms in a finer grained fashion. A
distinct differentiation between the available fault injection mechanisms based
on the instantiated ζ is easily possible. It further demonstrates that the laser
fault model ζ(n, τnang15,mc∞) is the most precise but also the most complex
instantiation. Assuming that the same n is selected, a design which is eval-
uated in ζ(n, τnang15,mc∞) and reports no effective faults, will also report
no effective faults in the remaining adversary models. The adversary model
ζ(n, τnang15,mc∞) covers all set and reset fault in combinational and memory
gates which automatically includes all faults modeled by the adversary mod-
els for clock glitches, voltage glitches, and EMPs (again assuming the same n).
However, this does not hold vice versa so that a design, which for example is
evaluated and secure under the EM fault model ζ(n, τsr,m), is not necessarily
secure against attackers using optical based fault injection mechanisms.

24 J. Richter-Brockmann et al.

5 Case Study: Integration into VerFI

In this section we demonstrate the practical application of our new adversary
model while integrating it to the state-of-the-art verification tool for fault injec-
tions VerFI [AWMN20].

VerFI. VerFI is an open-source tool to verify hardware countermeasures against
fault injection attacks presented at HOST in 2019 [AWMN20]. The tool works
on netlist-level and can be configured via a simulation file. This file contains
information about the plaintext and key, which should be used for the analysis,
different parameters that are cipher related (e.g., duration in clock cycles, port
names, end condition), and parameters to define the fault injection. Given that,
one can precisely specify the submodules which should be faulted, how many
faults should be injected, and which fault injection type should be considered
(toggle, stuck-at). Based on this information, VerFI analyzes the given circuit
and reports the number of non-detected faults, detected faults, ineffective faults,
and the total number of evaluated faults.

Adjustments to VerFI. In order to demonstrate the application of our proposed
adversary model, we adapted VerFI such that it was able to work with user
defined fault mappings7. Therefore, we modified the library-file and extended
the parameter list for each gate by fault mappings which are specified in form of
Boolean expressions. Consequently, we adapted the parsing function which reads
in the gates from the library-file and stores the corresponding parameters. The
required expressions describing the fault mappings are evaluated and stored in
Look-Up Tables (LUTs) which are used in the fault simulation step to generate
the outputs of the faulty gates. Within this fault simulation step each valid
combination of fault mappings for a set of target gates (gates in which faults are
currently injected) is analyzed before the next set is determined.

Analyzing a protected LED implementation. To demonstrate the evaluation of a
protected block cipher, we selected an implementation of the lightweight block ci-
pher LED64 [GPPR11] taken from Impeccable Circuits [AMR+19]. The authors
published a list of hardware implementations of common block ciphers where
each cipher is implemented with different levels of protection8. We decided to
use the LED implementation where each state nibble is protected by four bits of
redundancy. We constrained the allowed area for fault injections to the xor-gates
adding the multiplication results in MixColumns for one resulting nibble and to
the following 4-bit state register in the data path as well as in the redundancy.
All together, the total number of target gates consists of 32 xor-gates and eight
registers. The target circuit was analyzed for n = 4 while injecting faults in clock
cycle 31 only. The plaintext and key were fixed to the values

7 The adapted version of VerFI can be found at https://nextcloud.seceng.rub.de/
index.php/s/7ZmqynqYNnfPLw8.

8 https://github.com/emsec/ImpeccableCircuits

https://nextcloud.seceng.rub.de/index.php/s/7ZmqynqYNnfPLw8
https://nextcloud.seceng.rub.de/index.php/s/7ZmqynqYNnfPLw8
https://github.com/emsec/ImpeccableCircuits

Revisiting Fault Adversary Models 25

Table 3: Fault analysis of LED64 using VerFI. The top three rows are results produced
by using the proposed fault models in VerFI. The lower three rows report results
obtained from an adapted version of VerFI reflecting our generic adversary model.

Fault Model Detected Non-detected Ineffective Scenarios (sum)

ζ(4, τbf ,mc∞) 97 428 3 598 1 064 102 090
ζ(4, τs,mc∞) 96 660 497 4 933 102 090
ζ(4, τr,mc∞) 87 372 49 14 669 102 090

ζ(4, τsr, c7) 1 520 14 162 1 696
ζ(4, τsr,m) 1 520 14 162 1 696

ζ(4, τnang15,mc∞) 14 383 842 72 462 1 245 232 15 701 536

p = 0x0123456789ABCDEF k = 0xDEADBEEFDEADBEEF

for all following analyses. Hence, compared to the previous examples, we per-
formed a non-exhaustive evaluation with respect to the inputs.

Table 3 summarizes the evaluation results provided by the adjusted version of
VerFI9. The upper three rows report the results for the fault models which where
originally provided with VerFI (toggle, stuck-at-1, stuck-at-0) instantiated with
our adversary model. The number of fault scenarios is the same for all three cases
and is given by

∑4
k=1

(
32+8
k

)
since setting n = 4 also includes fault injections with

n < 4.

The lower three rows summarize the VerFI report for adversary models in-
stantiated for clock and voltage glitches, for electromagnetic pulses, and for laser
fault injections, respectively. The number of fault scenarios for the clock glitch
model results in

∑4
k=1

(
8
k

)
· 2k because we selected for the location parameter

l = c7 which includes all combinational gates with connected outputs to the
considered registers. For each combination of k target gates there are 2k possi-
bilities to combine set and reset faults. Switching to ζ(4, τsr,m) (i.e., modeling

faults caused by electromagnetic pulses), results in
∑4
k=1

(
8
k

)
· 2k fault scenarios

while only 14 scenarios are not-detected. This number depends on the underlying
linear code which in this case has 14 valid codewords with a Hamming weight of
four. Evaluating the countermeasure based on the adversary model describing
laser fault injections, leads to the largest number of fault scenarios. The number
is given by

4∑
k=1

k∑
j=0

(
32

j

)
·
(

8

k − j

)
· 2(k+j).

The first binomial coefficient describes the number of faults occurring in the
combinational gates while the second binomial coefficient determines the number
of registers that are faulted. The last term determines the combinations of fault
mappings that exists for one combination of k target gates. However, evaluating
the target countermeasure, results in the largest number of non-detected faults
which mainly is caused by the increased number of fault scenarios.

9 Detailed results (for n < 4) can be found in Table 5.

26 J. Richter-Brockmann et al.

We showed that our approach provides the possibility of instantiating a more
fine-grained fault models. A target design can be analyzed under different adver-
sary models which are tailored to the most common fault injection mechanisms.
Additionally, using these results to compare the security to other protection
schemes, is much more consistent and straightforward to accomplish.

6 Discussion

After all, we briefly summarize and discuss the benefits of a unified adversary
model to describe fault injection attacks. First, using a unified fault adversary
model allows a distinct evaluation of developed countermeasures and protection
mechanisms under the same assumptions. Second, while our adversary model
considers the physical behavior of actual fault injection mechanisms, it is also
designed to work as generic and simple as possible. This makes an application
easy to use and allows a straightforward instantiation in practice. Third, the
application of a consolidated fault adversary model enables the possibility to
compare proposed countermeasures based on the same assumptions and limi-
tations with respect to the attacker. In this sense, our model strives to fulfill
these criteria since only a limited number of parameters is necessary to describe
and model the adversary in a very compact way. In essence, the user directly
conceives the properties of the instantiated adversary model and can compare
it to evaluations of protection schemes under a similar adversary model what
makes it highly expressiveness. Fourth, due to the generic form, the adversary
model can naturally be adapted to other technologies and hardware primitives
(e.g., different memory technologies). With this property the model achieves a
high transferability being able to customize it to the given circumstances.

Expansion to more advanced logic gates. Even given that we limited our fault
model in Section 3 to unary and binary logic gates, it could be easily and without
any restrictions expanded to more advanced logic gates. This includes standard
logic gates (e.g., and, or) with more than two inputs and optimized gates like
and-or-invert. To expand our adversary model, the user defines additional sets
containing all functions with i-bit inputs with i > 2. The corresponding set would

then contain 2(2i) different functions that would transform the i-bit input to a
1-bit output. Given the additional sets of functions, the used mappings in τ need
to be adapted in order to accurately describe the occurring faults.

Limitations of VerFI. Despite the fact that we were able to integrate our ad-
versary model to the fault verification tool VerFI, we see some limitations with
respect to the evaluation results. In VerFI, the user can just evaluate the given
design by fixing the plaintext and key to a constant value. This covers not all
fault scenarios and could lead to false positives when evaluating a countermea-
sure against fault injection attacks. Additionally, beyond the practical evaluation
using VerFI of this work we see further potential for performance improvements
in order to evaluate larger parts of the target design within the same run.

Revisiting Fault Adversary Models 27

Comparison to existing models. The most common and already existing fault
models are restricted to toggle, stuck-at-1, and stuck-at-0 faults (in our model
we call them bit-flip, set, and reset faults, respectively). Compared to these
approaches our model can analyze fault injections in digital circuit more precisely
and in more detail incorporating the physical behavior of the different fault
injection mechanisms. However, an argument against our model could be that
a user of a fault verification tool would still cover all worst-case fault scenarios
by applying a bit-flip model resulting in a lower number combinations of fault
mappings that need to be tested. The bit-flip model comes with the disadvantage
of insufficient precision regarding the description of fault injections. First, it is
not possible to distinguish between different fault injection mechanisms. Second,
faults in some hardware primitives cannot be accurately modeled like the NOR
flash memory mentioned in Section 3.3. Third, besides these arguments, our
proposed fault adversary model enables the user to precisely reconstruct the
cause of failures in a developed countermeasure.

Limitations of our proposed model. Despite these clear advantages, our adversary
model is not reflecting parameters of the technology node and the physical layout
of integrated circuits. Since the model considers hardware designs on netlist level,
a detailed integration of technology related parameters is not (yet) possible.
Additionally, place-and-route information cannot be used in the evaluation phase
resulting in simplified assumptions for e.g., critical paths.

Practical Application Eventually, we discuss the practical application of the
proposed adversary model. Particularly, our model is applicable for robustness
evaluation, i.e., evaluating the correctness and effectiveness of countermeasures
against FIA. Additionally, our approach enables analysis of circuits in a setting
with precise adversarial control over the fault injection, i.e., we do not consider
random faults and hazards due to environmental effects and conditions (usually
considered during safety evaluation in contrast to security analysis). Hence, our
presented fault model first and foremost supports the constructive development
of robust FIA countermeasures. In particular, the integration into verification
tools can assist in correctly, effectively, and efficiently designing protected designs
(e.g., [RSS+21]).

The benefits of this approach are manifold. First, analyzing a design requires
no setup or expensive equipment (see for example the fault injection setups from
Riscure [Ris21] or NewAE [Inc]). Second, no prototyping is required since the
circuit under test can be evaluated on a gate level netlist. Third, the development
process is faster, cheaper and less error-prone. Fourth, the designer does not
need deep expertise in fault injection setups. All together, the application of our
proposed adversary model can assist designers in early stages when implementing
hardware countermeasures against fault injection attacks.

28 J. Richter-Brockmann et al.

7 Conclusion

By reviewing and summarizing existing fault injection mechanisms developed
over the last two decades, we created a basic understanding of the physical
behavior appearing on the actual hardware when attacking cryptographic im-
plementations. Subsequently, we introduced a generic and abstract (but simple)
fault adversary model which can freely be parametrized by selecting three pa-
rameters describing the number of faults, the fault types, and the fault locations.
Given that, we connected the practical fault injection mechanisms with the the-
oretical introduced fault adversary model and accurately described how it has
to be instantiated to provide a perfect mapping between theory and practice.
This connection gave us the opportunity to demonstrate the application of the
adversary models – instantiated to model different attack mechanisms – to a
practical case study of a protected design of the lightweight cipher LED. This
case study was accomplished by extending the fault verification tool VerFI by
our proposed adversary model. Eventually, we discussed the advantages and ben-
efits of using our consolidated fault adversary model and limitations in existing
state-of-the-art verification tools.

Acknowledgments

The work described in this paper has been supported in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys
Excellence Strategy - EXC 2092 CASA - 390781972.

References

ABC+17. Stéphanie Anceau, Pierre Bleuet, Jessy Clédière, Laurent Maingault, Jean-
Luc Rainard, and Rémi Tucoulou. Nanofocused X-Ray Beam to Repro-
gram Secure Circuits. In CHES, volume 10529 of Lecture Notes in Com-
puter Science, pages 175–188. Springer, 2017.

ADN+10. Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and
Assia Tria. When Clocks Fail: On Critical Paths and Clock Faults. In
CARDIS, pages 182–193. Springer, 2010.

AMR+19. Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shah-
mirzadi, Falk Schellenberg, and Tobias Schneider. Impeccable Circuits.
IEEE Trans. Computers, 69(3):361–376, 2019.

AWMN20. Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Cryp-
tographic Fault Diagnosis using VerFi. In HOST, pages 229–240. IEEE,
2020.

Bau04. Robert C Baumann. Soft Errors in Commercial Integrated Circuits. Inter-
national Journal of High Speed Electronics and Systems, 14(02):299–309,
2004.

BKH+19. Arthur Beckers, Masahiro Kinugawa, Yuichi Hayashi, Daisuke Fujimoto,
Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. Design Con-
siderations for EM Pulse Fault Injection. In CARDIS, pages 176–192.
Springer, 2019.

Revisiting Fault Adversary Models 29

BS97. Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key
Cryptosystems. In CRYPTO, pages 513–525, 1997.

Cla07. Christophe Clavier. Secret External Encodings do not Prevent Transient
Fault Analysis. In CHES, pages 181–194. Springer, 2007.

CLMFT14. Franck Courbon, Philippe Loubet-Moundi, Jacques JA Fournier, and As-
sia Tria. Adjusting Laser Injections for Fully Controlled Faults. In
COSADE, pages 229–242. Springer, 2014.

CMD+19. Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain
Moëllic, Jean-Baptiste Rigaud, and Jean-Luc Danger. Laser-induced
Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit
Microcontroller. In HOST, pages 1–10. IEEE, 2019.

CML+11. Gaetan Canivet, Paolo Maistri, Régis Leveugle, Jessy Clédière, Florent
Valette, and Marc Renaudin. Glitch and Laser Fault Attacks onto a Secure
AES Implementation on a SRAM-Based FPGA. J. Cryptol., 24(2):247–
268, 2011.

DBC+18. Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan
De Castro, Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gen-
drier, David Hely, Régis Leveugle, Paolo Maistri, et al. Laser Fault In-
jection at the CMOS 28 nm Technology Node: an Analysis of the Fault
Model. In FDTC, pages 1–6. IEEE, 2018.

DDRT12. Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria.
Electromagnetic Transient Faults Injection on a Hardware and a Software
Implementations of AEs. In FDTC, pages 7–15. IEEE, 2012.

DEG+18. Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical Ineffective Fault Attacks
on Masked AES with Fault Countermeasures. In ASIACRYPT, pages
315–342. Springer, 2018.

DEK+18. Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting Ineffective Fault
Inductions on Symmetric Cryptography. CHES, pages 547–572, 2018.

DEMS16. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. ASCON v1. 2, 2016. https://competitions.cr.yp.to/round3/
asconv12.pdf.

DLM19. Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Electromagnetic
Fault Injection: How Faults Occur. In FDTC, pages 9–16. IEEE, 2019.

DLM20. M Dumont, M Lisart, and P Maurine. Modeling and Simulating Elec-
tromagnetic Fault Injection. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

ESH+11. Sho Endo, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and
Akashi Satoh. An on-chip glitchy-clock generator for testing fault injection
attacks. Journal of Cryptographic Engineering, 1(4):265, 2011.

FJLT13. Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In FDTC, pages 108–118.
IEEE, 2013.

GPPR11. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In CHES, volume 6917 of Lecture Notes in Com-
puter Science, pages 326–341. Springer, 2011.

GST12. Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective
Computation and Dummy Rounds: Fault Protection for Block Ciphers
without Check-before-Output. In LATINCRYPT, pages 305–321, 2012.

https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf

30 J. Richter-Brockmann et al.

HS13. Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel
and Heating Fault Attacks. In CARDIS, pages 219–235. Springer, 2013.

Inc. NewAE Technology Inc. ChipSHOUTER Kit.
KHEB14. Thomas Korak, Michael Hutter, Baris Ege, and Lejla Batina. Clock Glitch

Attacks in the Presence of Heating. In FDTC, pages 104–114. IEEE, 2014.
KR11. Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion.

Information Security and Cryptography. Springer, 2011.
MTOL12. Philippe Maurine, Karim Tobich, Thomas Ordas, and Pierre Yvan Liardet.

Yet another fault injection technique: by forward body biasing injection.
In YACC’2012: Yet Another Conference on Cryptography, 2012.

O’F20. Colin O’Flynn. Low-Cost Body Biasing Injection (BBI) Attacks on
WLCSP Devices. In CARDIS, volume 12609 of Lecture Notes in Com-
puter Science, pages 166–180. Springer, 2020.

OGSM15. Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. EM
Injection: Fault Model and Locality. In FDTC, pages 3–13. IEEE, 2015.

OGSM17. Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. Electro-
magnetic Fault Injection: the Curse of Flip-flops. Journal of Cryptographic
Engineering, 7(3):183–197, 2017.

OGST+14. Sébastien Ordas, Ludovic Guillaume-Sage, Karim Tobich, J-M Dutertre,
and Philippe Maurine. Evidence of a Larger EM-induced Fault Model. In
CARDIS, pages 245–259. Springer, 2014.

Pet11. Edward Petersen. Single Event Effects in Aerospace. John Wiley & Sons,
2011.

Raz08. Behzad Razavi. Fundamentals of Microelectronics. Wiley, 2008.
RBSBG20. Jan Richter-Brockmann, Pascal Sasdrich, Florian Bache, and Tim

Güneysu. Concurrent Error Detection Revisited: Hardware Protection
against Fault and Side-Channel Attacks. In ARES, pages 1–11, 2020.

Ris21. Riscure. Inspector Fault Injection, Oct 2021.
RSDT13. Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.

Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells. In
FDTC, pages 89–98. IEEE, 2013.

RSS+21. Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu. FIVER - Robust Verification of Countermea-
sures against Fault Injections. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(4):447–473, 2021.

SA02. Sergei P Skorobogatov and Ross J Anderson. Optical Fault Induction
Attacks. In CHES, pages 2–12. Springer, 2002.

SBHS15. Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl. Precise
Laser Fault Injections into 90 nm and 45 nm SRAM-Cells. In CARDIS,
pages 193–205. Springer, 2015.

SFG+16. Falk Schellenberg, Markus Finkeldey, Nils Gerhardt, Martin Hofmann,
Amir Moradi, and Christof Paar. Large Laser Spots and Fault Sensitivity
Analysis. In HOST, pages 203–208. IEEE, 2016.

SGD08. Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical Setup
Time Violation Attacks on AEs. In 7th European Dependable Computing
Conference, pages 91–96. IEEE, 2008.

SHO19. Bodo Selmke, Florian Hauschild, and Johannes Obermaier. Peak Clock:
Fault Injection into PLL-Based Systems via Clock Manipulation. In Work-
shop on Attacks and Solutions in Hardware Security Workshop, pages 85–
94, 2019.

Revisiting Fault Adversary Models 31

Sko09. Sergei Skorobogatov. Local Heating Attacks on Flash Memory Devices.
In HOST, pages 1–6. IEEE, 2009.

SMG16. Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards
Combined Hardware Countermeasures Against Side-Channel and Fault-
Injection Attacks. In CRYPTO, volume 9815 of Lecture Notes in Computer
Science, pages 302–332. Springer, 2016.

SRM20. Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Im-
peccable Circuits II. DAC, 2020, 2020.

WA08. Fan Wang and Vishwani D Agrawal. Single Event Upset: An Embedded
Tutorial. In 21st International Conference on VLSI Design, pages 429–
434. IEEE, 2008.

ZDCT13. Loic Zussa, Jean-Max Dutertre, Jessy Clediere, and Assia Tria. Power
Supply Glitch Induced Faults on FPGA: An In-Depth Analysis of the
Injection Mechanism. In On-Line Testing Symposium (IOLTS), 2013.

32 J. Richter-Brockmann et al.

A Additional Schematic

Figure 10 shows the schematic of a xor gate designed in the 15 nm Open-Cell
Library. The gate consists of four NMOS transistors and four PMOS transistors
where the drain regions are marked by red and blue ellipses, respectively.

P0

P1

N0 N1

P2

P3 P4

N2 N3

N4

bi

x0

x1

x0 x1

x0 x1

x0

x1

Fig. 10: XOR gate from the Open Nangate 15 technology.

B Mappings for Nangate 15 Technology

Table 4 states the fault types for the 15 nm Open-Cell Library for an attacker
that uses LFI. The first column shows the available gates of the technology. The
second column indicates the mappings to the functions from U and B while the
last column states the corresponding Boolean functions.

Table 4: Fault types for LFI on a Nangate 15 technology.

Mapped Functions

Gate Functions from U and B Description

not {u2, u3} {set, reset}
and {b2, b6, b7} {or, set, reset}

nand {b3, b6, b7} {nor, set, reset}
or {b0, b6, b7} {and, set, reset}

nor {b1, b6, b7} {nand, set, reset}
xor {b1, b2, b6, b7} {nand, or, set, reset}

xnor {b1, b2, b6, b7} {nand, or, set, reset}

C Detailed Reports from VerFI Case Study

Revisiting Fault Adversary Models 33

Table 5: Detailed results of the VerFI case study.

Fault Model Detected Non-detected Ineffective Scenarios (sum)

ζ(1, τbf ,mc∞) 40 0 0 40

ζ(2, τbf ,mc∞) 772 0 48 820

ζ(3, τbf ,mc∞) 10 652 0 48 10 700

ζ(4, τbf ,mc∞) 97 428 3 598 1 064 102 090

ζ(1, τs,mc∞) 24 0 16 40

ζ(2, τs,mc∞) 666 0 154 820

ζ(3, τs,mc∞) 9 710 0 990 10 700

ζ(4, τs,mc∞) 96 660 497 4 933 102 090

ζ(1, τr,mc∞) 16 0 24 40

ζ(2, τr,mc∞) 514 0 306 820

ζ(3, τr,mc∞) 8 230 0 2 470 10 700

ζ(4, τr,mc∞) 87 372 49 14 669 102 090

ζ(1, τsr, c7) 8 0 8 16

ζ(2, τsr, c7) 92 0 36 128

ζ(3, τsr, c7) 484 0 92 576

ζ(4, τsr, c7) 1 520 14 162 1 696

ζ(1, τsr,m) 8 0 8 16

ζ(2, τsr,m) 92 0 36 128

ζ(3, τsr,m) 484 0 92 576

ζ(4, τsr,m) 1 520 14 162 1 696

ζ(1, τnang15,mc∞) 76 0 68 144

ζ(2, τnang15,mc∞) 7 720 0 2 520 10 240

ζ(3, τnang15,mc∞) 405 616 0 63 824 469 440

ζ(4, τnang15,mc∞) 14 383 842 72 462 1 245 232 15 701 536

	Revisiting Fault Adversary Models

