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Abstract. The Schnorr-Lyubashevsky approach has been shown able
to produce secure and efficient signature schemes without trapdoors in
the lattice-based setting, exploiting small vectors in the Euclidean met-
ric and rejection sampling in the signature generation. Translating such
an approach to the code-based setting has revealed to be challenging,
especially for codes in the Hamming metric. In this paper, we propose
a novel adaptation of the Schnorr-Lyubashevsky framework to the code-
based setting, by relying on random non-binary linear codes and vectors
with restricted entries to produce signatures. We provide some prelimi-
nary arguments to assess the security of the new scheme and to compute
its parameters. We show that it achieves compact and competitive key
and signature sizes, even without resorting to structured random codes.

Keywords: Code-based cryptography · digital signatures · post-quantum cryp-
tography

1 Introduction

There are basically two approaches to code-based digital signatures. The first
one, derived from the “hash-and-sign” paradigm used for instance in RSA signa-
tures, encounters some obstacles when applied to the code-based setting. This
is due to the difficulty of randomly generating a decodable syndrome, yielding
code-based schemes that are inefficient or insecure (or both). Two historical pro-
posals along this line are CFS [13] and KKS [21], which however have important
limitations. In fact, it is very difficult to find secure though efficient instances
of the KKS scheme [24]. The CFS scheme is more consolidated, but requires
Goppa codes with extreme parameters (e.g., with very high rate) in order to be
efficient, and this exposes the scheme to Goppa code distinguishers [18]. Some
variants of CFS aimed at using non-algebraic codes for reducing the public key
size have been proposed [7], but changing the underlying family of codes yielded
to successful cryptanalysis [27].

Another important drawback of existing hash-and-sign code-based signa-
ture schemes is the large public key. A recent and relevant scheme in this line,
Wave [14], is based on the hardness of decoding vectors with very large Hamming
weight and has a public key size growing quadratically with the security level,



which is an important improvement over CFS. Nevertheless, it requires public
keys of more than 3 megabytes for 128-bit security, which are still significantly
larger than those required by competitor schemes relying on different trapdoors,
like lattice-based ones.

A different approach to code-based signatures, which has the advantage of not
relying on any trapdoor for key derivation, is that of applying the Fiat-Shamir
transform [19] to an identification scheme. In fact, consolidated zero-knowledge
code-based identification schemes exist since a long time [31], which however
exhibit significant soundness errors and thus require many repetitions to achieve
reasonable security levels. This results in large signature sizes when they are used
for digital signatures. Subsequent variants of these schemes aim at overcoming
such limitations [33, 12, 1, 17, 9, 10, 5], but their characteristics are still far from
being comparable with those of signature schemes relying on other mathematical
objects, such as lattices.

One of the main advantages of lattice-based schemes is that they can exploit
the approach introduced by Lyubashevsky in [23], achieving very compact keys
and short signatures, besides high algorithmic efficiency. Such an approach is at
the basis of Dilithium [16], one of the most promising digital signature schemes
participating to the ongoing NIST competition. This has motivated many at-
tempts to translate the Schnorr-Lyubashevsky approach into the domain of code-
based schemes, as done in [25, 30, 22]. In most cases, however, these attempts
have been shown to be unsecure [29, 15, 2, 6]. While there are adaptations of
the Schnorr-Lyubashevsky approach in the rank metric code-based setting that
are considered secure [3] and achieve competitive performance, no valid solution
has been found in the Hamming metric code-based setting to date. In many of
the aforementioned examples using codes in the Hamming metric, binary codes
and sparse signatures were used, obtained from a sparse secret key via linear
algebra: this feature is at the core of the corresponding attacks and definitely
represents a weak choice. The crucial difference between codes and lattices lies in
how a small vector can be defined. In the Hamming metric, smallness has often
been associated with sparsity, thus requiring the presence of a large number of
zero entries in noisy vectors: this unfortunately makes the noise ineffective in
masking the secret key. Lattices instead are defined in the Euclidean metric, for
which a small vector does not necessarily contain zero entries: this is the key to
dispose of small though secure noisy vectors.

Our contribution In this paper we propose a novel code-based adaptation of the
Lyubashevsky signature scheme. In particular, we rely on the hardness of the
recently introduced Restricted Syndrome Decoding Problem (R-SDP), proven
NP-complete in [5], which asks to decode vectors whose entries lie in a subset of
the underlying finite field. We employ a bunch of such vectors, which we call re-
stricted, as the secret key and use their syndromes through a public parity-check
matrix as the public key. We rely on dense, restricted noise vectors to hide the
secret key into signatures and, as in Schnorr-Lyubashevsky scheme, we exploit
rejection sampling to tune the signatures distribution and prevent information
leakage. We assess the security of our scheme by studying the hardness of solving

2



the associated R-SDP problems, and propose some preliminary sets of parame-
ters. Our results show that the proposed scheme achieves competitive public key
and signature sizes, with acceptable rejection rates in the signature generation.

2 Notation and background

For two integers a and b, we denote as [a; b] the set of integers x such that
a ≤ x ≤ b; we use [[a; b]] to indicate the range defined by all reals x such that
a ≤ x ≤ b. As usual, Fq denotes the finite field with q elements; throughout the
paper, we always assume that q is prime. We denote matrices and vectors with
bold capital and small letters, respectively. Given a matrixA, we denote its entry
in the i-th row and j-th column as ai,j ; for a vector a, we refer to its i-th entry as
ai. The identity matrix of size r will be indicated as Ir. By support of a vector a,
we mean the set containing the indexes of non-zero coordinates. For two vectors
a and b with length n, we indicate their inner product as 〈a ; b〉 =

∑n−1
i=0 aibi.

If D is a probability distribution, with some abuse of notation, we write D(a) to
indicate the probability that D outputs a. For a set A, we write a $←− A if a is
uniformly picked at random among all the elements of A.

2.1 Coding theory preliminaries

Let C ⊆ Fnq be a linear code over Fq with length n, dimension k, redundancy
r = n − k and rate R = k/n. We represent codes through their parity-check
matrix, i.e., a full rank matrix H ∈ Fr×nq such that

{
Hc> = 0 | ∀c ∈C

}
. A

systematic parity-check matrix is a parity-check matrix in the form H = [Ir,P],
where P ∈ Fr×kq . For γ ≤ bq/2c, we denote with Sγ,t the set of length-n vectors
with entries over {0,±1, . . . ,±γ} ⊆ Fq and support size t. For the set of vectors
with support size not greater than t, we instead write Bγ,t =

⋃t
i=0 Sγ,i. The

Restricted-Syndrome Decoding Problem (R-SDP) is defined as follows [5].

Problem 1. R-SDPγ,≤t: R-SDP with bounded support size t
Let H ∈ Fr×nq , s ∈ Frq and t ∈ N. Find e ∈ Bγ,t such that He> = s.

As proven in [5] with a reduction from the decoding problem in the Hamming
metric, the decisional version of the above problem is NP-complete, regardless
of the value of γ. We will also consider a slightly modified version of Problem 1,
where we require the support of the searched vector to be exactly t (and hence,
require the solution vector to be in Sγ,t). We denote the associated problem
as R-SDPγ,=t. It is easily seen that the decisional version of R-SDPγ,=t is NP-
complete, as well: a polynomial time solver can be used to solve any R-SDPγ,≤t
instance (we invoke such a solver for no more than t times). Notice that the
difference between these two problems is mostly formal, since they can be solved
with the same techniques. More details are given in Section 5.
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3 New signature scheme

The scheme we propose is parameterized by the positive integers r, n, q, b, wE ,
wc, tE , γ, γ̄, with r, b, tE < n, wE , wc ≤ b and γ̄ < γ < q/2. It additionally
employs two probability distributions Dy,Dz defined over Fnq . Finally, we make
use of an hash function Hash that outputs vectors of size b with entries over
{0,±1} ⊆ Fq and support of size wc. The scheme we propose consists of the
following triplet of algorithms.

Key generation

1. Select at random P ∈ Fr×kq and set H = [Ir|P].
2. Select at random E ∈ {0,±1}b×n such that each column has support size
wE , and each row has support size not lower than tE ;

3. Compute S = EH> ∈ Fb×rq ;
4. Set sk = E, pk = {H,S}.

Signature generation On input a message m:

1. Sample y ∈ Fnq from Dy;
2. Compute sy = yH>;
3. Compute c = Hash(m, sy);
4. Compute z = cE + y;
5. Perform rejection sampling to tune the distribution of z to Dz;
6. Output σ = {z, c}.

Signature verification On input m and σ = {z, c}

1. Verify that Dz(z) 6= 0, reject otherwise;
2. compute sy = zH> − cS;
3. accept if c = Hash(m, sy), reject otherwise.

We choose Dy as the uniform distribution over {0,±1, . . . ,±γ} ⊆ Fq, and set
Dz as the uniform distribution over {0,±1, . . . ,±γ̄} ⊆ Fq. Through the rejection
sampling, we tune the distribution of each entry in z to be distributed according
to Dz, and thus make z indistinguishable from a uniform element of Sγ̄,n. To
achieve a low rejection rate, we set γ̄ to be slightly lower than γ. We aim at
rejecting each entry with a very low probability ε, so that the average number
of signatures that one computes before the signing algorithm outputs something
is given by (1− ε)−n. More details about this phase are given in Section 4.

In the verification process, to test whether Dz(z) is null or not, it is enough
to verify that each entry of z is not outside {0,±1, . . . ,±γ̄}. Finally, it is easily
seen that an honest signature always gets accepted, since

zH> − cS = (cE + y)H> − cEH> = yH> = sy.

The public key size corresponds to the number of bits one needs to repre-
sent H and S. Notice that, since H is random and systematic, it can be fully
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represented through the seed used to generate P. To represent S, exploiting an
efficient representation for arrays in Fq, we can use dbr log2(q)e bits. The signa-
ture size is given by the size of z plus that of c. Since each entry of z takes values
in {0,±1, . . . ,±γ̄}, for its representation we can use dn log2(1 + 2γ̄)e bits. For
c, it is enough to send its support, together with a single bit for each non-null
entry, representing whether it is 1 or −1: this requires wc + ndlog2(n)e bits.

4 Statistics and rejection sampling

In this section we study the statistical distribution of the entries of each pro-
duced signature. Due to lack of space, the proofs of this section are reported in
Appendix A. We start by deriving the probability distribution of the entries in
the product cE; to do this, we consider the inner product between a random
c ∈ {0,±1}b and a vector e ∈ {0,±1}b modeling a column of the secret E.

Lemma 1. Let wE , wc ∈ N such that wE is even and min{wc , wE} < q. Let
e ∈ {0,±1}b with support size wE. Let c be random over {0,±1}b, with support
size wc. Then, the probability that 〈c ; e〉 is equal to β ∈ Fq is given by

gq,wE ,wc,b(β) =

min{wE , wc}∑
v=βq

v and βq have the same parity

2−v

( v
v+βq

2

)(
wE
v

)(
b−wE
wc−v

)(
b
wc

) ,

where βq = min{β , q − β}.

Lemma 2. Let wE , wc ∈ N such that wE is even and min{wc , wE} < q. Let
e ∈ {0,±1}b with support size wE. Let c be random over {0,±1}b, with support
size wc, and y

$←− {0,±1, . . . ,±γ}. Then, Pr [〈c ; e〉+ y = β] is equal to

g̃q,wE ,wc,b,γ(β) =

∑γ
x=−γ gq,wE ,wc,b(β − x)

2γ + 1
.

In the signing algorithm, we employ a rejection sampling criterion to tune the
distribution of produced signatures to a desired target. In particular, we want
each entry of z to follow the uniform distribution over {0,±1, . . . ,±γ} ⊆ Fq. To
estimate the rejection rate, we rely on the following proposition, which in turn
is based on the well-known rejection sampling lemma.

Proposition 1 (Rejection sampling). Let wE , wc, γ, γ̄ ∈ N such that wE is
even, min{wc , wE} < q and γ̄ < γ < q. Let e ∈ {0,±1}b with support size
wE. Let F be the uniform distribution over {0,±1, . . . ,±γ̄}, with probability
distribution f : Fq 7→ [[0; 1]]. Let M = maxβ∈{0,±1,...,±γ̄}

{
f(β)

g̃wE,wc,q,b,γ(β)

}
, and G

be the distribution resulting from the following experiment:

1. sample c at random over {0,±1}b, with support size wc;
2. sample y $←− {0,±1, . . . ,±γ};
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3. compute z = 〈c ; e〉+ y;
4. output z with probability f(z)

Mg̃wE,wc,q,b,γ(z) .

Then, G outputs something with probability 1/M , and the samples obtained from
G are distributed according to F .

As a trivial application, we extend the above proposition to the case of multiple
samples obtained from G. In other words, we consider a vector z obtained by
repeating the experiment of G for n times, i.e.:

1. we choose E ∈ Fb×nq such that each column has support size wE ;
2. we pick c at random over {0,±1}b, with support size wc;

3. we pick y
$←− {0,±1, . . . ,±γ}n and compute z = cE + y;

4. we output z with probability 1
Mn

∏n−1
i=0

f(zi)
g̃wE,wc,q,b,γ(zi)

.

It is easily seen that the resulting distribution outputs something with probabil-
ity M−n, and that each entry of the sample is distributed according to F .

5 Solving the R-SDP

We consider the setting in which H is the parity-check matrix of a random code
C with length n and dimension k, and assume that at least one solution always
exists. For the fixed support size problem (i.e., R-SDPγ,=t), we assume that the

target syndrome is picked as s $←−
{
eH>, e ∈ Sγ,t

}
; in such a case, the number

of solutions can be estimated as

Nγ,=t = 1 +
|Sγ,t| − 1

qn−k
≈ 1 +

(
n

t

)
2t
(

1+log2(γ)
)
−(n−k) log2(q). (1)

Indeed for each e ∈ Sγ,t we have that eH> is random over Fq (since H is
random), hence it is equal to s with probability q−(n−k). Considering that Sγ,t
contains

(
n
t

)
(2γ)t vectors, and that at least one solution always exists by hypoth-

esis, we obtain the result in (1). For the maximum support size version of R-SDP
(i.e., R-SDPγ,≤t), we instead consider s $←−

{
eH>, e ∈ Bγ,t

}
, and consequently

estimate the number of solutions as

Nγ,≤t = 1 +
|Bγ,t| − 1

qn−k
≈ 1 +

t∑
i=0

(
n

i

)
2i
(

1+log2(γ)
)
−(n−k) log2(q). (2)

We will furthermore distinguish between two cases, depending on the relation
between t and n: in the so-called small support case we have t � n, while in
the large support case we have that t is close to n. For space reasons, the proofs
relevant to this section are reported in Appendix B.
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5.1 Solving the R-SDP with fixed and small support

When the support of the searched vector is small, one may solve the R-SDP
with Information Set Decoding (ISD), which are the best general solvers for
the SDP in the Hamming metric. Prange’s algorithm [28], which historically
dates as the first ever proposed ISD algorithm, can be used to decode both
binary and non-binary codes with essentially the same complexity (if we neglect
the cost of linear algebra), and requires an information set where the searched
vector does not contain non-null coordinates. During the years, many improved
ISD algorithms have been proposed, aimed at reducing the computational cost
(see [4] for an overview of algorithms for the binary field). Roughly, the main
idea is that of increasing the guessing probability by allowing the presence of
some non-null entries in the information set, and then proceed to identify them
through enumeration. Combining this idea with collision search techniques, the
complexity of ISD can be significantly reduced (see and [8], [26, 20] for the
state-of-the-art in the binary and non-binary cases, respectively).

Let us now consider the R-SDP with solution having support size t� n. In
this case a solution for the R-SDP is also a solution for the corresponding SDP
instance, so we can use any non-binary ISD algorithms without any modification.
Yet, we can probably do better by taking into account some observations:

1. in the enumeration phase, one should take into account that the vector takes
values in a subset of the underlying finite field. This leads to a polynomial
reduction in the ISD complexity, with respect to the Hamming metric case;

2. when the set entries of a candidate vector are not equally distributed over
{±1, . . . ,±γ}, then we can further speed-up the enumeration phase. Indeed,
if we know that some values are very unlikely to appear, then we can remove
them from the search, achieving another advantage in the cost.

Based on the above considerations, the complexity of solving R-SDPγ,=t with
small support can be bounded between the cost of binary ISD algorithms (as
lower bound) and that of non-binary ISD algorithms (as upper bound) for the
same support size. Indeed, the easiest R-SDP instance is the one in which the set
entries of the solution have all the same value (say, are all equal to 1). In such a
case, the problem is identical to the binary SDP, with the only exception that the
considered code lives in a non-binary finite field. Notice that the presence of a
non-binary finite field is supposed to somehow increase the cost, with respect to
the binary case: for instance, the cost of linear algebra becomes larger. Employing
the well-known approximation for the cost of a binary ISD from [32], we can then
conservatively assume that solving R-SDP with small support costs at least

CISD(n, k, t) = 2−t log2(1−k/n)−log2(Nγ,=t), (3)

where the term log2(Nγ,=t) takes into account the existence of multiple solutions.
Notice that, if t � n, then Nγ,=t ≈ 1, so that the reduction in the complexity
does not take place.
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5.2 Solving the R-SDP with large support

When the support size of the solution is rather large (say, close to n), ISD
algorithms become ineffective, since the searched vector does not contain a large
number of null entries. We here generalize the approach of [5], which solves the
R-SDP with fixed and maximum support, for the sole case of γ = 1.

To this end, we propose to use Algorithm 1. Basically, the algorithm first

Input: H ∈ F(n−k)×n
q , s ∈ Fn−kq , ` ∈ [0;n− k]

Output: e ∈ Bγ,t such that eH> = s

1 Pick a random permutation π.

2 Find A such that Aπ(H) =

[
In−k−` H′ ∈ F(n−k−`)×(k+`)

q

0`×(n−k−`) H′′ ∈ F`×(k+`)
q

]
; if it is not

possible, restart from line 1.
3 Compute [s′, s′′] = As, with s′ ∈ Fn−k−`q and s′′ ∈ F`q.
4 Produce a set Eγ,` ∈ Sγ,k+` of solutions to the R-SDPγ,k+` instance

represented by {s′′,H′′}.
5 for e′′ ∈ Eγ,` do
6 Compute e′ = s′ − e′′H′′>

7 if e′ ∈ Sγ,t−k−` then
8 return π−1

(
[e′, e′′]

)
9 Restart from line 1.

Algorithm 1: PGE+SS approach to solve R-SDPγ,t

brings the given parity-check matrix into partially row-reduced echelon form, via
a column permutation π and row operations described by the full-rank matrixA.
The same transformation is applied to the syndrome s (line 3 of the Algorithm),
in order to obtain a length-` sub-syndrome s′′ which, together with H′′, is given
as input to a R-SDPγ,k+` solver (line 4 of the Algorithm). Finally, the found
solutions, which are grouped in a set Eγ,`, are tested aiming to produce a solution
to the initial R-SDPγ,=t instance (lines 5–8 in the Algorithm).

Proposition 2. Let {H, s} ∈ F(n−k)×n
q ×Fn−kq be an R-SDPγ,≤t instance, with

H being a parity-check matrix of a random code C ⊆ Fnq with dimension k, and

s
$←−
{
eH> | e ∈ Bγ,t

}
. Then, Algorithm 1 solves R-SDPγ,=t with an average

cost of

O

 T (t, γ, `) + M(t,γ,`)

1+M̃(t,γ,`)

η(t, γ, `)

(
1−

∏t
i=k+`

(
1−

(
i

k+`

)
/
(
n
k+`

))Nγ,=i)
 ,

where Nγ,=i and Nγ,≤t are as in (1), and (2), T (t, γ, `) is the average cost of
an algorithm that produces M(t, γ, `) solutions to an instance of R-SDPγ,=k+`,
and M̃(t, γ, `) out of these solutions lead to a success of Algorithm 1. Finally,
η(t, γ, `) denotes the probability that M̃(t, γ, `) is not null.
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To conclude the analysis, we have to consider the cost of solving the small R-
SDPγ,k+` instance represented by {H′′, s′′}. As in [5], we consider the application
of Wagner’s algorithm [34], originally proposed as a solver for the subset sum
problem. Among the solutions to the problem, we assume that

1. the number of good solutions, i.e., vectors leading to a success for Algorithm
1, is given by

Uγ,t,` =

t∑
i=k+`

(
i

k+`

)(
n
k+`

)Nγ,=i; (4)

2. the number of bad solutions, i.e. vectors that do not lead to a success of
Algorithm 1, is given by

U ′γ,y,` = max
{

0 , q−`
(
(2γ)k+` − Uγ,t,`

)}
. (5)

Wagner’s algorithm on a levels to solve the R-SDP with maximum weight as-
sociated to {H′′, s′′} is detailed in Algorithm 2. For the sake of simplicity, we
assume that k + ` is a multiple of 2a; H′′i , for i ∈ [0; 2a − 1], denotes the ma-
trix formed by the columns of H′′ in the positions {ik+`

2a , . . . , (i + 1)k+`
2a − 1}.

The merging operation between two lists, which we denote as L(i)
2j uui L

(i)
2j+1, is

defined as follows

{(z2j + z2j+1, [p2j ,p2j+1]) | (zb,pb) ∈ L(i)
b , z2j + z2j+1 = 0 in the last ui entries}.

Similarly to [5, Proposition 16], in the following proposition we assess the com-

Input: H′′0, · · · ,H′′2a−1 ∈ F`×
k+`
2a

q , s′′ ∈ F`q
Output: A list L(a)

0 =
{(

pH′′> , p
)}

such that p ∈ {±1, . . . ,±γ}k+` and
pH′′> = s′′

Data: v, a ∈ N, with a ≥ 1 and v ≤ k+`
2a

, and positive integers
0 < u1 < · · · < ua−1 < `.

1 Set u0 = −1, ua = `.
2 Choose random subsets R0, · · · ,R2a−1 ⊆ {±1, . . . ,±γ}(k+`)/2

a

, each of size
(2γ)v.

3 Build the lists L(0)
j =

{
(z = pH′′>j ,p) | p ∈ Rj

}
for j ∈ [0; 2a − 2].

4 Build the list L(0)
2a−1 =

{(
z = pH′′>2a−1 − s′′ , p

)∣∣p ∈ R2a−1

}
.

5 for i = 1 to a do
6 for j = 0 to 2a−i − 2 do
7 L(i+1)

j = L(i)
2j uui L

(i)
2j+1

8 return L(a)
0

Algorithm 2: Wagner’s algorithm structured on a levels

plexity of using Wagner’s algorithm to find one of the desired solutions.
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Proposition 3. Let {H′′, s′′} ∈ F`×(k+`)
q ×F`q be an R-SDPγ,=k+` instance with

Uγ,t,` good solutions and U ′γ,t,` bad solutions. Assume to run Algorithm 2 on a
levels, with options 0 < u1 < · · · < ua−1 < `.

Let ρ = 2

(
2av−k−`

)(
1+log2(γ)

)
−log2(q)

∑a−1
i=1 ui2

a−1−i
. Then, the computational com-

plexity used by Wagner’s algorithm is given by

T (k, `, γ) = max
i∈[0;a−1]

{
2a−iLi

}
,

where Li =

2v
(

1+log2(γ)
)

if i = 0,

22iv
(

1+log2(γ)
)
−log2(q)

(
ui+

∑i−1
j=1 uj2

i−1−j
)

otherwise.
The algorithm finds good solutions with probability η(t, γ, `) = 1−(1−ρ)Uγ,t,` , and
on average outputs M(t, γ, `) = ρ

(
Uγ,t,` + U ′γ,t,`

)
solutions, with M̃(t, γ, `) =

ρUγ,t,` of them being good.

Remark 1. In principles, one may also rely on representations to solve R-SDP.
Namely, we still express a solution e to R-SDP as e =

∑
i ei and seek for the

terms ei, but we allow for some overlapping among the supports of each ei. In the
most simple application of this criterion, we can express e as e0+e1, where e0, e1

are generic vectors over Fk+`
q . This way, we have qk+` representations for e. When

there are Nγ,=k+` solutions to R-SDP, we are satisfied as soon as we find one
of the Nγ,=k+`q

k+` representations. To search for one of them, we can produce
two lists L0 =

{(
e0,H

> − s
)
, e0 ∈ R0

}
, L1 =

{(
e1,H

>), e1 ∈ R1

}
, where

R0,R1 ⊆ Fk+`
q and have size qv

′
. The computational cost to perform this search

can be estimated as qv
′
. Notice that we hit a representation with probability that

can be roughly estimated as 1−
(

1− Nγ,=k+`q
v

q2k+`

)q2v′
. We would like to keep v′ as

low as possible, otherwise the complexity of this approach becomes intractable:
hence, the previous probability can be approximated by η′ = Nγ,=k+`q

3v′−2(k+`).
To have a fair comparison with Algorithm 2, we consider just one level and lists of
the same size, thus choose v = v′ log2(q)/

(
1+log2(γ)

)
. The corresponding success

probability of Wagner’s algorithm is given by η = Nγ,=k+`2
(2v−k−`)

(
1+log2(γ)

)
.

With simple computations, we find that η′ > η when

v′ > (k + `)

(
2− 1 + log2(γ)

logq

)
> k + `,

where the last inequality comes from the consideration that 2γ < q. Clearly,
v′ > k + ` is an absurd: this proves that Wagner’s algorithm with one level
always outperforms the simple representations technique, on one level. It is clear
that there may be improved ways to use representations and, as in [11], one
can use hybrid approaches where some layers of Wagner’s algorithm actually use
some kind of representations. Yet, as we have briefly explained here, at a first
glance it appears that this choice does not lead to significant improvements in
the complexity to solve R-SDP.
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6 Security and practical instances

Due to lack of space, we do not provide a formal proof of security, but only some
hints at how such a proof should work, by highlighting possible attack strategies.
This also allows us to show how secure system parameters can be designed.

One-wayness of key generation Each row of the public S is the syndrome
of the corresponding row of the secret E. Notice that, in the key generation
algorithm, we guarantee that the rows have minimum support size tE , with
tE � n. Since the entries of E are either null or equal to ±1, we have that
finding each row of E can be seen as facing an R-SDP1,≤t∗ instance, for some
t∗ ≥ tE . As we have highlighted in Section 5, the computational complexity to
solve R-SDP in case of a small support size t∗, for a code C , is not lower than
that of solving the Hamming SDP for a code with same length and dimension of
C , but defined over the binary finite field, searching for a vector with Hamming
weight t∗. As (3) shows, the complexity grows exponentially with the weight of
the searched vector. Hence, conservatively, we assess the complexity of attacks
aimed at recovering the secret key as 2−tE log2(r/n)−log2(N1,tE

).

Unforgeability To forge a signature, an attacker may proceed as follows. First,
he picks a random y with the desired distribution and computes sy = yH>.
Then, he sets c = Hash(m, sy) and computes sz = sy + cS. If he is able to
produce a vector z ∈ Bγ,n such that zH> = sz, then the pair {c, z} can be
used as a valid signature. Notice that, to do this, he must solve an R-SDPγ̄,≤n
instance. To assess the hardness of this attack, we rely on Proposition 2.

Unfeasibility of noise recovery Assume that the adversary is able to retrieve
y from sy. If he succeeds, he can then compute z−y = cE and, since c is known,
retrieve information on E. Exploiting the sparsity of both c and E, the rows of
E can be trivially recovered. Then, we have to guarantee that recovering y is
unfeasible. Again, this reduces to the problem of solving an R-SDPγ,≤n instance
(hence, we use Proposition 2 to estimate the complexity of attacks of this kind).

Statistical indistinguishability Finally, we consider the possibility for an
attacker to retrieve some information about the secret key by performing a sta-
tistical analysis on a bunch of collected honest signatures. This is motivated
by the fact that the same private key is used to construct many signatures. To
describe how such a dependence can be exploited, consider a collection of signa-
tures for which the digests c have a common set entry. To analyze this situation,
we assume for simplicity that such an entry is the first one, and that γ̄ = γ. In
such a case, the first row of E contributes to all the collected signatures, and its
entries can be recovered through a statistical analysis. Indeed, in the positions
i ∈ [0;n − 1] such that e0,i = ±1, we have that the i-th entry of the signa-
tures takes a value equal to ±γ̄ with a probability that is slightly smaller than
(2γ̄+1)−1. If e0,i = 0, on the contrary, this statistical bias is not present. Hence,
collecting a sufficient number of signatures with such digests would be enough
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to recover the first row of E. Thanks to the rejection sampling in the signing
algorithm, it is enough to choose γ̄ ≤ γ − 1 to prevent this type of weakness.
Yet, the attack can be generalized by considering the occurrence, in the digests,
of specific tuples of size larger than γ − γ̄. Indeed, a pattern of this size may be
such that its product with a column of E yields a value larger than γ − γ̄ (or
lower than −(γ − γ̄)): in such a case, a statistical bias in the signatures appears
again, and can somehow be exploited to recover information about the secret E.
To completely prevent from this kind of attacks, it is enough to choose the values
of γ and γ̄ so that all the values of cE are outside {0,±1, . . . ,±(γ − γ̄)} with
probability less than 2−λ, where λ is the desired security level in bits. Notice
that such a probability equals 1−

(∑γ−γ̄
i=−(γ−γ̄) g̃wE ,wc,q,b,γ(i)

)n
.

6.1 System parameters

In order to design secure parameters for the new scheme, we must first guarantee
that the number of possible digests is sufficiently large, that is,

(
b
wc

)
2wc > 22λ. To

set tE , we consider (3) and derive the minimum value of tE guaranteeing that the
complexity of ISD is larger than 2λ. The average number of times the key gener-
ation algorithm has to be repeated, before obtaining a matrix E where each row

has support size at least tE , is given by
(

1−
∑tE−1
i=0

(
n
i

) (
wE
b

)i (
1− wE

b

)n−i)−1

.
We choose wE so that the previous quantity is sufficiently small. Taking all of
this into account, in Table 1 we provide some parameters sets achieving λ = 128
bits of classical security. As we see from the table, the scheme achieves very
compact signatures and public keys, and also enables flexible trade-offs between
different parameter choices.

(n, k, q) b wE wc tE γ γ̄ Avg rejections |σ| in kB |pk| in kB
(400, 300, 16381) 218 46 67 64 3420 3375 199.80 0.72 38.15
(500, 375, 16381) 250 42 61 64 3890 3849 199.78 0.88 54.69
(400, 320, 16381) 240 45 63 56 3460 3417 148.64 0.72 33.60
(500, 375, 32749) 260 44 60 64 4600 4559 87.88 0.90 65.99
(600, 400, 32749) 240 42 63 81 5370 5329 99.30 1.09 89.95

Table 1. Instances achieving 128 bits of classical security. For all the considered pa-
rameter sets, the rejection rate in the key generation algorithm is lower than 0.1.

7 Conclusion

We have proposed a novel adaptation of the Schnorr-Lyubashevsky approach to
the design of digital signature schemes based on codes. By relying on vectors
with restricted entries, the proposed scheme is able to withstand known crypt-
analysis approaches, while achieving very compact signatures and keys. In this
first proposal, we have considered random, non-structured codes, which allow
relying on the general formulation of the corresponding decoding problems for
the security of the scheme. A formal security proof, along with the study of
variants adopting structured codes, is left for future works.
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Appendix A - Proofs of Section 4

Proof of Lemma 1

Proof. The probability is the same for β and q−β, so we only consider the case
of β ∈ [0; bq/2c], for which βq = β. Let u1 denote the number of indexes i for
which ciei = 1, and u−1 denote that of indexes for which ciei = −1. To have
〈c ; e〉 = β, it must u1 − u−1 = β. Let v = u1 + u−1, that is, the number of
intersections between the support of c and that of e. To have 〈c ; e〉 = β, the
following two conditions must be verified:

– we have max{0 , wc + wE − `} ≤ v ≤ min{wE , wc};
– since u−1 = v − u1, it must be u1 = v+β

2 .

Hence, we obtain the following probability:

Pr [〈a ; b〉 = β] =

min{wE , wc}∑
v=β

v and β have the same parity

2−v

(
v
v+β
2

)(
wE
v

)(
`−wE
wc−v

)(
`
wc

) .

ut

Proof of Lemma 2

Proof. The proof is straightforward. Indeed, assume that y = x, which happens
with probability 1/(2α+ 1). To have 〈c ; e〉+x = β, it must be 〈c ; e〉 = β−x.
Summing over all possible values of x, we obtain the formula in the thesis. ut

Appendix B - Proofs of Section 5

Proof of Proposition 2

For a vector e ∈ Sγ,i for which eH> = s, the probability that π is such that
the vector e′′ formed by the last k + ` entries of π(e) are all non null is given
by εi =

(
i

k+`

)
/
(
n
k+`

)
. Notice that, if e′′ has a different support size, then it will

never be in the set Eγ,` produced in Line 4 and, hence, we have that e is never
returned as output from Algorithm 1. The number of solutions with support
equal to i can be estimated as Nγ,=i, so that the probability that π is not valid
for all of them is obtained as (1− εi)Nγ,=i . Multiplying over the values of i from
k + ` to t, and taking the complementary, we derive the probability that π is
valid for at least one out of the Nγ,≤t solutions. We multiply this probability by
η(t, γ, `) and obtain the success probability of one iteration of Algorithm 1.
Let T (t, γ, `) denote the cost of an R-SDPγ,=k+` solver (i.e., for the instance rep-
resented by {H′′, s′′}), producing a set of solutions Eγ,` that on average contains
M(t, γ, `) elements. Since there are M̃(t, γ, `) actually valid solutions (i.e., lead-
ing to the success of Algorithm 1), on average we testM(t, γ, `)/

(
1 + M̃(t, γ, `)

)
vectors from Eγ,`, before Algorithm 1 successfully halts. Thus, we estimate the
cost of executing lines 4–8 as T (t, γ, `) +M(t, γ, `)/

(
1 + M̃(t, γ, `)

)
.
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Proof of Proposition 3

Let x ∈ {±1, . . . ,±γ}k+` be a solution, i.e., such that xH′′> = s′′. Wagner’s
algorithm will output x among the vectors in the final list iff

a) x ∈ R0 ×R1 × · · · × R2a−1;
b) at each merge, the vector x is not filtered.

Condition a) is verified with probability
(

(2γ)v

(2γ)
k+`
2a

)2a

= 2(2av−k−`)
(

1+log2(γ)
)
.

We now proceed by computing the probability that also condition b) happens,
assuming condition a) holds. If a = 1, then we have no filtering, while in the
other cases it may happen in the levels from the first to the (a − 1)-th one.
To this end, we consider the i-th level (for i ∈ [1; a]), and divide x into 2a−i+1

chunks, each formed by k+`
2a−i+1 consecutive entries, which we denote as xj , for

j ∈ [0; 2a−i − 1]. In the i-th level, x will not be filtered if and only if

1. for j ∈ [0; 2a−i − 2], x2jH
′′>
2j + x2j+1H

′′>
2j+1 is null in the last ui − ui−1

positions;
2. x2a−i+1−2H

′′>
2a−i+1−2 + x2a−i+1−1H

′′>
2a−i+1−1 − s′′ is null in the last ui − ui−1

positions.

Note that if condition 1 is met, then condition 2 is met as well, so we just have
to consider the probability with which condition 1 happens. Given that both
H′′ and x are random, in each merge, chunks x2j and x2j+1 will not be filtered
out with probability q−(ui−ui−1). Given that, for j ∈ [0; 2a−i − 2], we perform
2a−i − 1 merges, condition 1 is verified with probability(

q−(ui−ui−1)
)2a−i−1

= 2−(2a−i−1)(ui−ui−1) log2(q).

Thus, the probability of x surviving till the last level is obtained as

a−1∏
i=1

(
q−(ui−ui−1)

)2a−i−1

= 2− log2(q)
∑a−1
i=1 ui2

a−1−i
.

Putting everything together, we get that each solution x is found with probability

ρ = 2(2av−k−`)
(

1+log2(γ)
)
−log 2(q)

∑a−1
i=1 ui2

a−1−i
.

The total number of produced solutions is then estimated as

M(k, `, γ) = ρ(Uγ,t,` + U ′γ,t,`),

while the success probability is simply obtained by considering the probability
that at least one good solution survives till the end, that is

η(γ, t, `) = 1− (1− ρ)Uγ,t,` .
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We finally derive the computation complexity to execute Wagner’s algorithm.
To this end, we assume that the cost of each merge is equal to size of the lists
that are merged. We consider the i-th level, for i ∈ [1; a − 1], and denote with
Li−1 the average size of the input lists, and as Li that of the produced ones. For

the initial level (i.e., i = 1), we use lists of size L0 = (2γ)v = 2v
(

1+log2(γ)
)
, and

obtain lists with average size given by L1 = L2
0/q

u1 = 22v
(

1+log2(γ)
)
−u1 log2(q).

In the subsequent level (i.e., i = 2) the average size of the produced lists is given

by L2 = L2
1/(q

u2−u1) = 24v
(

1+log2(γ)
)
−(u1+u2) log2(q). If we iterate this reasoning,

we get that for the i-th level, with i ≥ 2, we have an average size of the input
lists given by

Li = 2v2i
(

1+log2(γ)
)
−log2(q)

(
ui+

∑i−1
j=1 uj2

i−1−j
)
.

Finally, we consider that the in the i-th level we perform 2a−i merges, and hence
assess the complexity of the algorithm as maxi∈[0;a−1]

{
2a−1−iLi

}
.

Appendix C - Numerical validation of the PGE+SS
framework analysis

To have a confirmation of the analysis we provide in Section 5, we have run nu-
merical experiments on some codes with small parameters. In Figure 1 we com-
pare the empirical values of Nγ,=t with the theoretical ones, estimated through
(1), for the case of restricted vectors with maximum support size. As we see from
the figure, the theoretical values of Nγ,=t closely match the empirical ones.

We have also verified the performances of Wagner’s algorithm, as described
in Algorithm 2 and theoretically analyzed in Proposition 3. In our experiments,
we have generated random parity-check matrices H ∈ F`×(k+`)

q in systematic
form, and have picked syndromes as s

$←− {eH>, e ∈ {±1, . . . ,±γ}k+`}. We
have given {H, s} as input to Wagner’s algorithm, and have measured algorithm
features such as the success probability, the number of produced outputs and
the lists sizes through the levels. For each considered setting (that is, the values
`, k, q and γ and the options for Wagner’s algorithm), we have repeated the
experiments for a sufficiently large number of times; the obtained results have
been averaged over all considered experiments, and have been compared with
the theoretical analysis of Proposition 3. The obtained results are reported in
Table 2.
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Emp., q = 5, γ = 1

Th., q = 5, γ = 1

Emp., q = 5, γ = 2

Th., q = 5, γ = 2

Emp., q = 13, γ = 1

Th., q = 13, γ = 1

Emp., q = 13, γ = 2

Th., q = 13, γ = 2

Fig. 1. Comparison between the numerical values of Nγ,=t and the theoretical ones,
estimated through (1). We have considered codes with redundancy ` = 3, dimension k
and length k+ `, and have analyzed error vectors with support size t = k+ `. For each
setting and each value of k, we have considered 100 random codes.

(`, k, q, γ) v a [u1, . . . , ua−1] η(k, `, γ) M(k, `, γ) [L0, . . . , La−1] # tests

(16, 48, 13, 4) 3 4 [4 , 8 , 12]
0 0 [512 , 35.04 , 9.2 , 2.9 · 10−3 , 0] 80,000

3.2 · 10−24 3.2 · 10−24 [512 , 35.06 , 9.2 , 2.9 · 10−3 , 3.0 · 10−10] -

(10, 14, 11, 3) 3 3 [3 , 6]
6.8 · 10−1 6.8 · 10−1 [216 , 35.04 , 9.2 · 10−1] 300,000
5.8 · 10−1 5.8 · 10−1 [216 , 35.05 , 9.2 · 10−1] -

(6, 10, 11, 2) 4 2 3
0.82253 1.8313 [256 , 49.24053] 100,000
0.83845 1.8313 [256 , 49.23817] -

(6, 10, 11, 1) 4 2 3
7.7 · 10−4 7.7 · 10−4 [16 , 1.9 · 10−1] 1,500,000
7.8 · 10−4 7.8 · 10−4 [16 , 1.9 · 10−1] -

(7, 9, 11, 2) 5 1 - 5.4 · 10−2 5.6 · 10−2 [1024] 9,000
5.3 · 10−2 5.5 · 10−2 [1024] -

(13, 13, 11, 1) 10 1 - 1.5 · 10−2 1.5 · 10−2 [1024] 9,000
1.5 · 10−2 1.6 · 10−2 [1024] -

Table 2. Performances of Wagner’s algorithm. For each considered setting (i.e., values
`, k, q, γ, v, a and [u1, . . . , ua−1]) we have measured the performances through numerical
experiments, and we have compared the obtained results with the theoretical analysis
of Proposition 3. The results obtained via numerical simulations are marked by report-
ing (in the last column) the number of performed tests; for the theoretical estimates,
instead, in the last column we have used the symbol -.
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