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Abstract. We show the following generic result. Whenever a quantum query algorithm in
the quantum random-oracle model outputs a classical value t that is promised to be in some
tight relation with H(x) for some x, then x can be efficiently extracted with almost certainty.
The extraction is by means of a suitable simulation of the random oracle and works online,
meaning that it is straightline, i.e., without rewinding, and on-the-fly, i.e., during the protocol
execution and without disturbing it.
The technical core of our result is a new commutator bound that bounds the operator norm
of the commutator of the unitary operator that describes the evolution of the compressed
oracle (which is used to simulate the random oracle above) and of the measurement that
extracts x.
We show two applications of our generic online extractability result. We show tight online
extractability of commit-and-open Σ-protocols in the quantum setting, and we offer the first
complete post-quantum security proof of the textbook Fujisaki-Okamoto transformation, i.e,
without adjustments to facilitate the proof, including concrete security bounds.

1 Introduction

Background. Extractability plays an important role in cryptography. In an extractable protocol,
on a high level, an algorithm A sends messages that depend on some secret s, and while the
secret remains private in an honest run of the protocol, an extractor can learn s via some form of
enhanced access to A. The probably most prominent example is that of (zero-knowledge) proofs (or
arguments) of knowledge, for which, by definition, there must exist an extractor that manages to
extract a witness from any successful yet possibly dishonest prover. Another example are extractable
commitments, which have a wide range of applications. Hash-based extractable commitments are
extremely simple to construct and prove secure in the random-oracle model (ROM) [Pas03]. Indeed,
when the considered hash function H is modelled as a random oracle, the hash input x for the
commitment c = H(x), where x = s‖r consists of the actual secret s and randomness r, can be
extracted simply by finding a query x to the random oracle that yielded c as an output.

The general notion of extractability comes in different flavors. The most well-known example is
extraction by rewinding. Here, the extractor is allowed to run A several times, on the same private
input and using different randomness. This is the notion usually considered in the context of
proofs/arguments of knowledge. In some contexts, extraction via rewinding access is not possible.
For example, the UC security model prohibits the simulator to rewind the adversary. In other
occasions, rewinding may be possible but not desirable due to a loss of efficiency, which stems
from having to run A multiple times. In comparison, so-called straightline extraction works with a
single ordinary run of A, without rewinding. Instead, the extractor is then assumed to know some
trapdoor information, or it is given enhanced control over some part of the setting. For instance,
in the above construction of an extractable commitment, the extractor is given “read access” to
A’s random-oracle queries.

Another binary criterion is whether the extraction takes place on-the-fly, i.e., during the run
of the protocol, or after-the-fact, i.e., at the end of the execution. For instance, in the context of
proving CCA security for an encryption scheme, to simulate decryption queries without knowing
the secret key, it is necessary to extract the plaintext for a queried ciphertext on-the-fly; otherwise,
the attacker may abort and not produce the output for which the reduction is waiting.

The extractability of our running example of an extractable commitment in the ROM is both,
straightline and on-the-fly; we refer to this combination as online extraction. This is what we are



aiming for in this work: online extractability of (general) hash-based commitments, but now with
post-quantum security.

For post-quantum security, the ROM needs to be replaced by the quantum random-oracle model
(QROM) [BDF+11], to reflect the fact that attackers can implement hash functions on a quantum
computer. Here, adversaries have quantum superposition access to the random oracle. Many ROM
techniques fail in the QROM due to fundamental features of quantum information, such as the
so-called no-cloning principle. In particular, it is impossible to maintain a query transcript (a fact
sometimes referred to as the recording barrier), and so one cannot simply “search for a query x to
the random oracle”, as was exploited for the (classical) RO-security of the extractable-commitment
example.

A promising step in the right direction is the compressed-oracle technique, recently developed
by Zhandry [Zha19]. This technique enables to maintain some sort of a query transcript, but now
in the form of a quantum state. This state can be inspected via quantum measurements, offering
the possibility to learn some information about the interaction history of an algorithm A and the
random oracle. However, since quantum measurements disturb the state to which they are applied,
and this disturbance is often hard to control, this inspection of the query transcript can per-se,
i.e., without additional argumentation, only be done at the end of the execution (see the Related
Work paragraph for more on this).

Our Results. Our main contribution is the following generic extractability result in the QROM.
We consider an arbitrary quantum query algorithm A in the QROM, which announces during its
execution some classical value t that is supposed to be equal to f(x,H(x)) for some x. Here, f is
an arbitrary fixed function, subject to that it must tie t sufficiently to x and H(x), e.g., there must
not be too many y’s with f(x, y) = t; a canonical example is the function f(x, y) = y so that t is
supposed to be t = H(x). In general, it is helpful to think of t = f(x,H(x)) as a commitment to
x. We then show that x can be efficiently extracted with almost certainty. The extraction works
online and is by means of a simulator S that simulates the quantum random oracle, but which
additionally offers an extraction interface that produces a guess x̂ for x when queried with t. The
simulation is statistically indistiguishable from the real quantum random oracle, and x̂ is such
that whenever A outputs x with f(x,H(x)) = t at some later point, x̂ = x except with negligible
probability, while x̂ = ∅ (some special symbol) indicates that A will not be able to output such
an x.

The simulator S simulates the random oracle using Zhandry’s compressed-oracle technique,
and extraction is done via a suitable measurement of the compressed oracle’s internal register. The
technical core of our result is a new bound for the operator norm ‖[O,M ]‖ of the commutator
of O, the unitary operator that describes the evolution of the compressed oracle, and of M , the
measurement that is used to extract x. This commutator bound allows us to show that the extrac-
tion measurement disturbs the behavior of the compressed oracle only by a negligible amount, and
so can indeed be performed on-the-fly. At first glance, our technical result has some resemblance
with Lemma 39 in [Zha19], which also features an almost-commutativity property, and, indeed,
with Lemma 3.4 we use (a reformulated version of) Lemma 39 in [Zha19] as a first step in our
proof. However, the challenging part of the main proof consists of lifting the almost-commutativity
property of the “local” projectorsΠx from Lemma 3.4 to the “global” measurementM (Lemma 3.4).

We emphasize that even though the existence of the simulator with its extraction interface is
proven using the compressed-oracle technique, our presentation is in terms of a black-box simulator
S with certain interfaces and with certain promises on its behavior, abstracting away all the (mainly
internal) quantum workings. This makes our generic result applicable (e.g. for the applications
discussed below) without the need to understand the underlying quantum aspects.

A first concrete application of our generic result is in the context of so-called commit-and-open
Σ-protocols. These are (typically honest-verifier zero-knowledge) interactive proofs of a special
form, where the prover first announces a list of commitments and is then asked to open a subset
of them, chosen at random by the verifier. We show that, when implementing the commitments
with a typical hash-based commitment scheme (like committing to s by H(s‖r) with a random r),
such Σ-protocols allow for online extraction of a witness in the QROM, with a smaller security
loss than witness extraction via rewinding.

Equipped with our extractable RO-simulator S, the idea for the above online extraction is very
simple: we simulate the random oracle using S and use its extraction interface to extract the prover’s
commitments from the first message of the Σ-protocol. As we work out in detail, this procedure
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gives rise to an online witness extractor that has a polynomial additive overhead in running time
compared to the considered prover, and that outputs a valid witness with a probability that is
linear in the difference of the prover’s success probability and the trivial cheating probability,
up to an additive error. Using rewinding techniques, on the other hand, incurs a square-root loss
in success probability classically and a cube-root loss quantumly for special-sound Σ-protocols,
and typically an even worse loss in case of weaker soundness guarantees, like a k-th-root loss
classically and a (2k + 1)-th-root loss quantumly for k-sound protocols. Furthermore, we show
that the dominating additive loss of our reduction is necessary in general, due to attacks on the
computational binding property of the random-oracle-based commitments. Along the way, we set
up a definitional framework for generalized special soundness notions that might be of independent
interest.

A second application of our extractable RO-simulator is a security reduction for the Fujisaki-
Okamoto (FO) transformation. We offer the first complete post-quantum security proof of the
textbook FO transformation [FO99], with concrete security bounds. Most of the prior post-quantum
security proofs had to adjust the transformation to facilitate the proof (like [HHK17]); those security
proofs either consider a FO variant that employs an implicit-rejection routine, i.e., where the
decapsulation algorithm outputs a pseudo-random key upon an invalid ciphertext rather than
a rejection message, or have to resort to an additional “key confirmation” hash [TU16] that is
appended to the ciphertex, thus increasing the ciphertext size. The unmodified FO transformation
was analyzed in [Zha19] and [KKPP20]; however, as we explain in detail in the appendix (Sect. A),
the given post-quantum security proofs are incomplete, both having the same gap.

Beyond its theoretical relevance of showing that no adjustment is necessary to admit a post-
quantum security proof, the security of the original unmodified FO transformation with explicit
rejection in particular ensures that the conservative variant with implicit rejection remains secure
even when the decapsulation algorithm is not implemented carefully enough and admits a side-
channel attack that reveals information on whether the submitted ciphertext is valid or not.

The core idea of our proof for the textbook FO transformation is to use the extractability
of the RO-simulator to handle the decryption queries. Indeed, letting f(x, y) be the encryption
Encpk(x; y) of the message x under the randomness y, a “commitment” t = f(x,H(x)) is then the
encryption of x under the derandomized scheme, and so the extraction interface recovers x.

Related Work. The compressed-oracle technique has proven to be a powerful tool for lifting
classical ROM proofs to the QROM setting. Examples are [LZ19a, CFHL20] for quantum query
complexity lower bounds and [HM20] for space-time trade-off bounds, [CMS19] for the security of
succinct arguments, [AMRS20] for quantum-access security, and [BHH+19] for a new “double-sided”
O2H lemma in the context of the FO transformation. In these cases, the argument exploits the pos-
sibility to extract information on the interaction history of the algorithm A and the (compressed)
oracle after-the-fact, i.e., at the very end of the run.

In addition, some tools have been developed that allow measuring (the internal state of) the
compressed oracle on-the-fly, which then causes the state, and thus the behavior of the oracle,
to change. In some cases, the disturbance is significant yet asymptotically good enough for the
considered application, causing “only” a polynomial blow-up of a negligible error term, as, e.g., in
[LZ19b] for proving the security of the Fiat-Shamir transformation. In other cases [Zha19, CMSZ19],
it is shown for some limited settings that certain measurements do not render the simulation of
the random oracle distinguishable (except for negligible advantage). The indifferentiability result
in [CMSZ19], for example, only uses measurements that have an almost certain outcome.

In particular, [Zha19] contains a security reduction for the Fujisaki-Okamoto (FO) transforma-
tion that implicitly uses a measurement similar to the one we analyze in Section 3, but without
analyzing the disturbance it causes. We discuss this in more detail in the appendix (Sect. A). The
same gap exists in recent follow-up work by Katsumata, Kwiatkowski, Pintore and Prest [KKPP20],
who follow the FO proof outline from [Zha19].

2 Preliminaries

For Sect. 3 and 4 (only), we assume some familiarity with the mathematics of quantum information
as well as with the compressed-oracle technique of [Zha19]. Below, we summarize the concepts that
will be of particular importance. For a function or algorithm f , we write Time[f ] to denote the
time complexity of (an algorithm computing) f .
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2.1 Mathematical Preliminaries

Let H be a finite-dimensional complex Hilbert space. We use the standard bra-ket notation for
the vectors in H and its dual space. We write ‖|ϕ〉‖ for the (Euclidean) norm ‖|ϕ〉‖ =

√
〈ϕ|ϕ〉

of |ϕ〉 ∈ H. Furthermore, for an operator A ∈ L(H), we denote by ‖A‖ its operator norm, i.e.,
‖A‖ = max|ψ〉 ‖A|ψ〉‖, where the max is over all |ψ〉 ∈ H with norm 1. We assume the reader to
be familiar with basic properties of these norms, like triangle inequality, ‖|ϕ〉〈ψ|‖ = ‖|ϕ〉‖‖|ψ〉‖,
‖A|ϕ〉‖ ≤ ‖A‖‖|ϕ〉‖, ‖AB‖ ≤ ‖A‖‖B‖, etc. Less well known may be the inequality1

‖|ϕ〉〈ψ| − |ψ〉〈ϕ|‖ ≤ ‖|ϕ〉‖‖|ψ〉‖ . (1)

Another basic yet important property that we will exploit is the following.

Lemma 2.1. Let A and B be operators in L(H) with A†B = 0 (i.e., they have orthogonal im-
ages)and AB† = 0 (i.e., they have orthogonal supports). Then, ‖A+B‖ ≤ max{‖A‖, ‖B‖}.

Exploiting that ‖A⊗B‖ = ‖A‖‖B‖, the following is a direct consequence of Lemma 2.1.

Corollary 2.2. If A =
∑
x |x〉〈x| ⊗Ax, i.e., A is a controlled operator,hen ‖A‖ ≤ maxx ‖Ax‖.

Definition 2.3. For operators A,B ∈ L(H), the commutator is defined as [A,B] := AB −BA.

Some obvious properties of the commutator are:

[B,A] = −[A,B] = [A,1−B] and [A⊗ 1, B ⊗ C] = [A,B]⊗ C , (2)

as well as

[AB,C] = A[B,C] + [A,C]B (3)

Combining the right equality in (2) with basic properties of the operator norm, if ‖C‖ ≤ 1, e.g., if
C is a unitary of a projection, we have

‖[A⊗ 1, B ⊗ C]‖ = ‖[A,B]‖‖C‖ ≤ ‖[A,B]‖ . (4)

It is common in quantum information science to write AX to emphasize that the operator
A acts on register X, i.e., on a Hilbert space HX that is labeled by the letter/symbol X. It is
then understood that when applied to registers X and Y , say, AX acts as A on register X and
as identity 1 on register Y , i.e., AX is identified with AX ⊗ 1Y . Property (4) would then e.g. be
written as ‖[AX , BX⊗CY ]‖ ≤ ‖[AX , BX ]‖. In this work, we will write or not write these subscripts
emphasizing the register(s) at our convenience; typically we write them when the argument crucially
depends on the registers, and we may omit them otherwise.

Another important matrix norm is the Schatten-1 or trace norm, ‖A‖1 = tr
[√
A†A

]
. For density

matrices ρ and σ, the trace distance is then defined as δ(ρ, σ) = 1
2‖ρ− σ‖1. By equation (9.110) in

[NC11] and a short calculation, any norm-1 vectors |ϕ〉 and |ψ〉 satsify

δ(|ϕ〉〈ϕ|, |ψ〉〈ψ|) ≤ ‖|ϕ〉 − |ψ〉‖ . (5)

For probability distributions p and q, we write δ(p, q) for the total variational distance; this is
justified as ‖ρ0 − ρ1‖1 = δ(p0, q1) for ρi =

∑
x pi(x)|x〉〈x|, i = 0, 1. In case of a hybrid classical-

quantum state, consisting of a randomized classical value x that follows a distribution p and of
a quantum register W with a state ρxW that depends on x, we write [x,W ] =

∑
x p(x)|x〉〈x| ⊗

ρxW .2 When the distribution p and the density operators ρxW are implicitly given by a game (or
experiment) G then we may write [x,W ]G , in particular when considering and comparing different
such games. For instance, we write δ

(
[x,W ]G , [x,W ]G′

)
for the trace distance of the respective

density matrices in game G and in game G′.
1 It is immediate for normalized |φ〉 and |ψ〉 when expanding both vectors in an orthonormal basis con-
taining |ϕ〉 and |ψ〉−〈ϕ|ψ〉|ϕ〉√

1−|〈ϕ|ψ〉|2
, and the general case then follows by homogeneity of the norms.

2 In this equality and at other occasions, we use the same letter, here x, for the considered random variable
as well as for a particular value.
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2.2 The (Compressed) Random Oracle

The (quantum) random-oracle model. In the random-oracle model, a cryptographic hash
function H : X → Y is treated as an external oracle RO that the adversary needs to query on
x ∈ X in order to learn H(x). The random oracle answers these queries by means of a uniformly
random function H : X → Y. For concreteness, we restrict here to Y = {0, 1}n; on the other hand,
we do not further specify the domain X except that we assume it to have an efficiently computable
order, so one may well think of X as X = {1, . . . ,M} for some positive M ∈ Z or as bit strings
of bounded size. We then often write RO(x) instead of H(x) in order to emphasize that H(x) is
obtained by querying the random oracle and/or to emphasize the randomized nature of H.

In the quantum random oracle model (QROM), a quantum algorithm Amay make superposition
queries to RO, meaning that the oracle acts as unitary |x〉|y〉 7→ |x〉|y ⊕H(x)〉. The QROM still
admits classical queries, which are queries with the query register set to |x〉|0〉 for some x, and the
second register is subsequently measured to obtain the classical output y.

The compressed oracle. We recall here (some version of) the compressed oracle, as introduced
in [Zha19], which offers a powerful tool for QROM proofs. For this purpose, we consider the multi-
register D = (Dx)x∈X , where the state space of Dx is given by HDx = C[{0, 1}n ∪ {⊥}], meaning
that it is spanned by an orthonormal set of vectors |y〉 labelled by y ∈ {0, 1}n ∪ {⊥}. The initial
state is set to be |⊥〉D :=

⊗
x |⊥〉Dx . Consider the unitary F defined by

F |⊥〉 = |φ0〉 , F |φ0〉 = |⊥〉 and F |φy〉 = |φy〉 ∀ y ∈ {0, 1}n \ {0n} ,

where |φy〉 := H|y〉 with H the Walsh-Hadamard transform on C[{0, 1}n] = (C2)⊗n. Exploiting
the relation |y〉 = 2−n/2

∑
η(−1)η·y|φη〉, we see that

F |y〉 = |y〉+ 2−n/2 (|⊥〉−|φ0〉) . (6)

When the oracle is queried, a unitary OXYD, acting on the query registers X and Y and the oracle
register D, is applied, given by

OXYD =
∑
x

|x〉〈x|X ⊗OxY Dx ,

with
OxY Dx = FDxCNOTY DxFDx (7)

where CNOTY Dx |y〉|yx〉 = |y ⊕ yx〉|yx〉 for y, yx ∈ {0, 1}n and acts as identity on |y〉|⊥〉
As long as no other operations are applied to the state of D, this compressed oracle is perfectly

indistinguishable from the quantum random oracle. Also, the support of the state of Dx then re-
mains orthogonal to |φ0〉 for any x. However, these properties may change when, e.g., measurements
are performed on D. The oracle may then behave differently than the quantum random oracle, and
the state of D may then have a non-trivial overlap with |φ0〉. We note that, by the convention on
CNOT to act trivially when the control register is in state |⊥〉, it holds that OxY Dx |y〉|φ0〉 = |y〉|φ0〉.

When considering a classical query, which is a query with the XY -register in state |x〉|0〉 for
some x, it is understood that the Y -register is then measured after the application of OXYD. If Dx

is in state ρ then a classical query on x will give response h with probability tr(|h〉〈h|FρF )—unless
ρ has nontrivial overlap with |φ0〉 and h = 0, in which a classical query on x will give response 0
with probability tr(|0〉〈0|FρF ) + tr(|⊥〉〈⊥|FρF ). We note that, for any h ∈ Y and ρ = |h〉〈h|,

tr(|h〉〈h|FρF ) = |〈h|F |h〉|2 =
∣∣∣〈h|(|h〉+ 2−n/2(|⊥〉 − |φ0〉)

)∣∣∣2
=
∣∣∣1− 2−n/2〈h|φ0〉

∣∣∣2 =
∣∣∣1− 2−n

∣∣∣2 ≥ 1− 2 · 2−n . (8)

Vice-versa, after a classical query on x with response h, the state of Dx is F |h〉—unless, the state
of Dx prior to the query had a nontrivial overlap with |φ0〉 and h = 0, in this case, the state after
the query is supported by F |0〉 and F |⊥〉 = |φ0〉.

5



Efficient representation of the compressed oracle. Following [Zha19], one can make the
(above variant of the) compressed oracle efficient. Indeed, by applying the standard classical sparse
encoding to quantum states with the right choice of basis, one can efficiently maintain the state
D, compute the unitary OXYD, and extract information from D. More details are given in the
appendix (Sect. B). For simplicity, we will express things in the remainder of the paper in terms of
the inefficient variant of the compressed oracle, but we stress that by the said means all relevant
unitaries and measurements can be efficiently computed.

3 Main Technical Result: A Commutator Bound

Our main technical result is a bound on the operator norm of the commutator [OXYD,MDP ]
of the unitary OXYD, which describes the evolution of the compressed oracle, and the (purified)
measurement MDP . Informally, this measurement checks if there is a pair (x, y) in the database
satisfying a given relation. If yes, it outputs (the smallest such) x, otherwise it outputs ∅. A small
bound on this commutator means that performing this measurement during the runtime of an
oracle algorithm A interacting with a (compressed) random oracle, has little effect.

3.1 Setup and the Technical Statement

Throughout this section, we consider an arbitrary but fixed relation R ⊂ X × {0, 1}n. A crucial
parameter of the relation R is the number of y’s that fulfill the relation together with x, maximized
over all possible x ∈ X :

ΓR := max
x∈X

∣∣{y ∈ {0, 1}n∣∣(x, y) ∈ R
}∣∣ . (9)

Given the relation R, we consider the following projectors:

Πx
Dx :=

∑
y s.t.

(x,y)∈R

|y〉〈y|Dx and Π∅D := 1D −
∑
x∈X

Πx
Dx =

⊗
x∈X

Π̄x
Dx (10)

with Π̄x
Dx

:= 1Dx −Πx
Dx

. Informally, Πx
Dx

checks whether register Dx contains a value y 6= ⊥ such
that (x, y) ∈ R. We then define the measurementM =MR to be given by the projectors

Σx :=
⊗
x′<x

Π̄x′

Dx′
⊗Πx

Dx and Σ∅ := 1−
∑
x′

Σx′ =
⊗
x′

Π̄x′

Dx′
= Π∅ (11)

where x ranges over all x ∈ X . Informally, a measurement outcome x means that register Dx is the
first that contains a value y such that (x, y) ∈ R; outcome ∅ means that no register contains such
a value. For technical reasons, we consider the purified measurement MDP = MR

DP ∈ L(HD⊗HR)
given by the unitary3

MDP :=
∑

x∈X∪{∅}

Σx ⊗ Xx : |ϕ〉D|w〉P 7→
∑

x∈X∪{∅}

Σx|ϕ〉D|w + x〉P . (12)

The following main technical result is a bound on the norm of the commutator [OXYD,MDP ].

Theorem 3.1. For any relation R ⊂ X × {0, 1}n and ΓR as defined in Eq. (9), the purified
measurement MDP defined in Eq. (12) almost commutes with the oracle unitary OXYD:∥∥ [OXYD,MDP ]

∥∥ ≤ 8 · 2−n/2
√

2ΓR .

We note that Lemma 8 in [CMS19] (with the subsequent discussion there) also provides a bound on
the norm of a commutator involving OXYD; however, there are various differences that make the
two bounds incomparable. E.g., we consider a specific measurement whereas Lemma 8 in [CMS19]
is for a rather general projector. See further down for a comparison with Lemma 39 in [Zha19].

3 Both in Xx and in w + x we understand x ∈ X ∪ {∅} to be encoded as an element in Z/(|X |+1)Z,
dim(HP ) = d := |X |+ 1, and X ∈ L(HP ) is the generalized Pauli of order d that maps |w〉 to |w + 1〉.
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Corollary 3.2. For any state vector |ψ〉 ∈ HWXYDP , with W an arbitrary additional register, the
state vectors |ψ′〉 := OXYDMDP |ψ〉 and |ψ′′〉 := MDPOXYD|ψ〉 satisfy

δ
(
|ψ′〉〈ψ′|, |ψ′′〉〈ψ′′|

)
≤ 8 · 2−n/2

√
2ΓR .

The same holds for mixed states ρ′ := OXYDMDP ρM
†
DPO

†
XYD and ρ′′ := MDPOXYDρO

†
XYDM

†
DP .

Proof. By elementary properties and applying Theorem 3.1, we have that∥∥|ψ′〉 − |ψ′′〉∥∥ =
∥∥(OXYDMDP −MDPOXYD)|ψ〉

∥∥ ≤ ∥∥[OXYD,MDP ]
∥∥ ≤ 8 · 2−n/2

√
2ΓR ,

and the claim on the trace distance then follows from (5). The claim for mixed states follows from
purification. ut

3.2 The Proof

We prove the Theorem 3.1 by means of the following two lemmas.

Lemma 3.3. Let F and OxY Dx be the unitaries introduced in Sect. 2.2, and let Πx
Dx

and Π∅D be
as in (10). Set Γx :=

∣∣{y ∈ {0, 1}n∣∣(x, y) ∈ R
}∣∣. Then∥∥[FDx , Πx

Dx

]∥∥ ≤ 2−n/2
√

2Γx , as well as∥∥[OxY Dx , Πx
Dx

]∥∥ ≤ 2 · 2−n/2
√

2Γx and
∥∥[OxY Dx , Π∅D]∥∥ ≤ 2 · 2−n/2

√
2Γx .

The bound on ‖[F,Πx]‖ can be considered a compact reformulation of (a variant of) Lemma 39
in [Zha19]. We state it here in this form, and (re-)prove it in the appendix (Sect. C), for convenience
and completeness. The conceptually new and technically challenging ingredient to the proof of
Theorem 3.1 is Lemma 3.4 below.4

Lemma 3.4. The purified measurement MDP defined in Equation (12) satisfies∥∥[FDx ,MDP ]
∥∥ ≤ 3

∥∥[FDx , Π
x
D]
∥∥+

∥∥[FDx , Π
∅
D]
∥∥ and∥∥[OxY Dx ,MDP ]

∥∥ ≤ 3
∥∥[OxY Dx , Π

x
D]
∥∥+

∥∥[OxY Dx , Π
∅
D]
∥∥ .

Proof. We do the proof for the second claim. The first is proven exactly the same way: the sole
property we exploit from OxY Dx is that it acts only on the Dx register within D, which holds for
FDx as well. Let

∆̄ξ :=
⊗
ξ′<ξ

Π̄ξ′

Dξ′

be the projection that accepts if no register Dξ′ with ξ′ < ξ contains a value y′ with (ξ′, y′) ∈ R,
and let ∆ξ be the complement. We then have, using that Πξ and ∆̄ξ act on disjoint registers,

Σξ = ∆̄ξ ⊗Πξ = Πξ∆̄ξ = ∆̄ξΠξ . (13)

We also observe that, with respect to the Loewner order, ∆̄ξ′ ≥ ∆̄ξ for ξ′ < ξ. Taking it as
understood that OxY Dx acts on registers Y and Dx, we can write

[Ox,MDP ] =
∑
ξ

[Ox, Σξ]⊗ Xξ + [Ox, Σ∅]⊗ X∅ . (14)

Exploiting basic properties of the operator norm and recalling that Σ∅ = Π∅D, we see that the
norm of the last term is bounded by ‖[Ox, Σ∅]‖ = ‖[Ox, Π∅]‖.
4 The challenging aspect of Lemma 3.4 is that MDP is made up of an exponential number of projectors
Πx, and thus the obvious approach of using triangle inequality leads to an exponential blow-up of the
error term. Naively, one might hope to avoid the exponential blow-up (at the cost of introducing a blow-
up linear in the number of prior queries) by using the efficient representation of the compressed oracle
(as discussed in Sect. B in the appendix.); however, the two representations are isometrically equivalent,
and so switching the representation has no effect in that respect.
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To deal with the sum in (14), we use 1 = ∆ξ + ∆̄ξ to further decompose

[Ox, Σξ] = ∆̄ξ[Ox, Σξ]∆̄ξ + ∆̄ξOx, Σξ]∆ξ +∆ξ[Ox, Σξ]∆̄ξ +∆ξ[Ox, Σξ]∆ξ . (15)

We now analyze the four different terms. For the first one, using (13) we see that

∆̄ξ[Ox, Σξ]∆̄ξ = ∆̄ξ
(
OxΣξ −ΣξOx

)
∆̄ξ = ∆̄ξOxΠξ∆̄ξ − ∆̄ξΠξOx∆̄ξ = ∆̄ξ[Ox, Πξ]∆̄ξ ,

which vanishes for ξ 6= x, since then Ox and Πξ act on different registers and thus commute. For
ξ = x, its norm is upper bounded by ‖[Ox, Πx]‖.

We now consider the second term; the third one can be treated the same way by symmetry, and
the fourth one vanishes, as will become clear immediately from below. Using (13) and ∆̄ξ∆ξ = 0,
so that ∆̄ξΣξ = 0, we have

∆̄ξ[Ox, Σξ]∆ξ = ∆̄ξ
(
OxΣξ −ΣξOx

)
∆ξ = ΣξOx∆ξ =: Nξ . (16)

Looking at (14), we want to control the norm of the sum N :=
∑
ξNξ ⊗Xξ. To this end, we show

that Nξ and Nξ′ have orthogonal images and orthogonal support, i.e., N†ξ′Nξ = 0 = Nξ′N
†
ξ , for all

ξ 6= ξ′. We first observe that if x ≥ ξ then Ox commutes with ∆ξ, since they act on different
registers then, and thus

Nξ = ΣξOx∆ξ = Σξ∆ξOx = Πξ∆̄ξ∆ξOx = 0 ,

exploiting once more that ∆̄ξ∆ξ = 0. Therefore, we only need to consider Nξ, Nξ′ for ξ, ξ′ > x (see
Fig. 1 top left), where we may assume ξ > ξ′. For the orthogonality of the images, we observe that

Πξ′∆̄ξ = 0 (17)

by definition of ∆̄ξ as a tensor product with Π̄ξ′ being one of the components. Therefore,

(Σξ′)†Σξ = Σξ′Σξ = ∆̄ξ′Πξ′∆̄ξΠξ = 0 ,

and N†ξ′Nξ = 0 follows directly (see also Fig. 1 top right). For the orthogonality of the supports,
we recall that ∆̄ξ′ ≥ ∆̄ξ, and thus ∆ξ′ ≤ ∆ξ, from which it follows that ∆ξ∆ξ′ = ∆ξ′ . Nξ′N

†
ξ = 0

then follows by exploiting (17) again (see Fig. 1 bottom).

Πξ

∆ξ ∆̄ξ

Ox

Σξ

Πξ

∆ξ ∆̄ξ

Πξ′

∆̄ξ′ ∆ξ′Ox Ox†

Πξ

∆̄ξ ∆ξ

Πξ′

∆ξ′ ∆̄ξ′Ox† Ox

=

Πξ

∆̄ξ

Πξ′

∆ξ′ ∆̄ξ′Ox† Ox

Fig. 1. The operators Nξ (top left), N†ξ′Nξ (top right), and Nξ′N
†
ξ (bottom), for x < ξ′ < ξ.

These orthogonality properties for the images and supports of the Nξ immediately extend to
Nξ ⊗Xξ, so we have

‖N‖ ≤ max
ξ>x
‖Nξ ⊗ Xξ‖ ≤ max

ξ>x
‖Nξ‖

by Lemma 2.1. Recall from (16) that Nξ = ∆̄ξ[Σξ, Ox]∆ξ. Furthermore, we exploit that, by
definition, Σξ is in tensor-product form and Ox acts trivially on all components in this tensor
product except for the component Π̄x, so that [Σξ, Ox] = [Π̄x, Ox] by property (4). Thus,

‖Nξ‖ ≤ ‖[Σξ, Ox]‖ = ‖[Π̄x, Ox]‖ = ‖[Πx, Ox]‖ .
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Using the triangle inequality with respect to the sum versus the last term in (14), and another
triangle inequality with respect to the decomposition (15), we obtain the claimed inequality. ut

The proof of Theorem 3.1 is now an easy consequence.

Proof (of Theorem 3.1). Since OXYD is a control unitary OXYD =
∑
x |x〉〈x| ⊗ OxY Dx , controlled

by |x〉, while MDP does not act on register X, it follows that∥∥[OXYD,MDP ]
∥∥ ≤ max

x

∥∥[OxY Dx ,MDP ]
∥∥ .

The claim of the theorem now follows by combining Lemma 3.4 with Lemma 3.3. ut

3.3 A First Immediate Application

As an immediate application of the commutator bound of Theorem 3.1, we can easily derive the
following generic query-complexity bound for finding x with (x,H(x)) ∈ R and ΓR as defined in
Eq. (9).

Proposition 3.5. For any algorithm A that makes q queries to the random oracle RO,

Pr
x←ARO

[(
x,RO(x)

)
∈ R

]
≤ 152(q + 1)2ΓR/2

n . (18)

Proof. Consider the modified algorithm A′ that runs A to obtain output x, makes a query to
obtain RO(x) and outputs (x,RO(x)). By Lemma 5 in [Zha19], we have that5√

Pr
x←A′H

[(x,RO(x)) ∈ R] ≤
√

Pr
x′←GR

[x′ 6= ∅ ] + 2−n/2, (19)

where GR is the following procedure/game: (1) run A′ using the compressed oracle, and (2) apply
the measurementMR to obtain x′ ∈ X ∪{∅}, which is the same as preparing a register P , applying
MDP = MR

DP , and measuring P .
In other words, writing |ψ〉WXY for the initial state of A′ and VWXY for the unitary applied

between any two queries of A′(which we may assume to be fixed without loss of generality), and
setting UWXYD := VWXYOXYD, ΠP := 1P − |∅〉〈∅|P and |Ψ〉 := |ψ〉WXY ⊗ |⊥〉⊗|X|D ⊗ |0〉P , we
have, omitting register subscripts,

√
Pr [x′ 6= ∅ ] =

∥∥ΠMUq+1|Ψ〉
∥∥ ≤ q+1∑

i=1

∥∥ΠU i−1[M,U ]Uq+1−i|Ψ〉
∥∥+

∥∥ΠUq+1M |Ψ〉
∥∥

≤ (q + 1)
∥∥[MDP , OXYD]

∥∥+
∥∥ΠPMDP |Ψ〉

∥∥ = (q + 1)
∥∥[MDP , OXYD]

∥∥ ≤ 8 · 2−n/2(q + 1)
√

2ΓR ,

where the last equation exploits that ΠPMDP applied to |⊥〉⊗|X|D ⊗ |0〉P vanishes, and the final
inequality is by Theorem 3.1. Observing (8

√
2 + 1)2 = 129 + 16

√
2 ≈ 151.6 finishes the proof. ut

Applied to R = X × {0n}, where ΓR = 1, we recover the famous lower bound for search in a
random function. In essence, our commutator bound replaces the “progress-measure” argument in
the search-lower-bound proof from [Zha19].

Corollary 3.6. For any algorithm A that makes q queries to the random oracle RO,

Pr
x←ARO

[RO(x) = 0n] ≤ 152(q + 1)2/2n. (20)

4 Extraction of Random-Oracle Based Commitments

Throughout this Sect. 4, let f : X × Y → T be an arbitrary fixed function with Y = {0, 1}n.
For a hash function H : X → Y, which will then be modelled as a random oracle RO, we will
think and sometimes speak of f(x,H(x)) as a commitment of x (though we do not require it to
be a commitment scheme in the strict sense). Typical examples are f(x, y) = y and f(x, y) =
Encpk(x; y), where the latter is the encryption of x under public key pk with randomness y.
5 Lemma 5 in [Zha19] applies to an algorithm A that outputs both x and what is supposed to be its hash
value; this is why we need to do this additional query.
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4.1 Informal Problem Description

Consider a query algorithm ARO in the random oracle model, which, during the course of its run,
announces some t ∈ T . This t is supposed to be t = f(x,RO(x)) for some x, and, indeed, ARO
may possibly reveal x later on, i.e., open the commitment Intuitively, in order for the required
relation between x and t to hold, we expect that ARO first has to query RO on x and only then
can output t; thus, one may hope to be able to extract x from RO early on, i.e., at the time ARO
announces t.

This is clearly true when A is restricted to classical queries, simply by checking all the queries
made so far. This observation was first made and utilized by Pass [Pas03] and only requires looking
at the query transcript (it can be done in the non-programmable ROM). As the extractor does
not change the course of the experiment, it is in particular also suitable in situations where it is
necessary to extract an opening on the fly, i.e., while guaranteeing that A still proceeds to produce
its output (e.g. for multiple-committer parallel extraction [ABG+20]).

In the setting considered here, ARO may query the random oracle in superposition over various
choices of x, making it impossible to maintain a classical query transcript. On the positive side, since
the output t is required to be classical, ARO has to perform a measurement before announcing t,
enforcing such a superposition to collapse.6 We show here that early extraction of x is indeed
possible in this quantum setting as well.

Note that if the goal is to extract the same x as A will (potentially) output, which is what we
aim for, then we must naturally assume that it is hard for A to find x 6= x′ that are both consistent
with the same t, i.e., we must assume the commitment to be binding. Formally, for the upcoming
discussion in this section to be meaningful,e will think of Γ (f) and Γ ′(f), defined as follows, to be
small compared to |Y| = 2n. When f is fixed, we simply write Γ and Γ ′.

Definition 4.1. For f : X × {0, 1}n → T , we define

Γ (f) := max
x,t
|{y | f(x, y) = t}| and Γ ′(f) := max

x6=x′,y′
|{y | f(x, y) = f(x′, y′)}| .

For the example f(x, y) = y, we have Γ (f) = 1 = Γ ′(f). For the example f(x, y) = Encpk(x; y),
they both depend on the choice of the encryption scheme but typically are small, e.g. Γ (f) = 1 if
Enc is injective as a function of the randomness y and Γ ′(f) = 0 if there are no decryption errors.

Remark 4.2. We note that the ratio Γ (f)/2n remains unaffected when n is increased, i.e., if ñ ≥ n
and f̃ : X × {0, 1}ñ → T is given by f̃(x, y‖y′) := f(x, y) for all x ∈ X , y ∈ {0, 1}n and
y′ ∈ {0, 1}ñ−n, then Γ (f̃)/2ñ = Γ (f)/2n, because the additional ñ− n bits of y′ do not affect the
conditions on f̃ in Definition 4.1, so both numerator and denominator of the fraction get multiplied
by 2ñ−n. The same holds for Γ ′(f)/2n.

4.2 The Extractable RO-Simulator S

Towards formalizing the above goal, we introduce a simulator S that replaces RO and tries to
extract x early on, right after A announces t. In more detail, S acts as a black-box oracle with
two interfaces, the RO-interface S.RO providing access to the simulated random oracle, and the
extraction interface S.E providing the functionality to extract x early on (see Fig. 3, left). In
principle, both interfaces can be accessed quantumly, i.e., in superposition over different classical
inputs, but in our applications we only use classical access to S.E. We stress that S is per-se
stateful and thus may change its behavior from query to query.

Formally, the considered simulator S is defined to work as follows. It simulates the random
oracle and answers queries to S.RO by means of the compressed oracle. For the S.E interface,
upon a classical input t ∈ T , S applies the measurement Mt := MRt from (11) for the relation
Rt := {(x, y) | f(x, y) = t} to obtain x̂ ∈ X ∪ {∅}, which it then outputs (see Fig. 2). In case of
a quantum query to S.E, the above is performed coherently: given the query registers TP , the
unitary

∑
t |t〉〈t|T ⊗M

Rt
DP is applied to TPD, and registers TP are then returned.

We note that, as described here, the simulator S is inefficient, having to maintain an exponential
number of qubits; however, using the sparse representation of the internal state D, as discussed
in the appendix, Sect. B, S can well be made efficient without affecting its query-behavior (see
Theorem 4.3 for details).
6 We can also think of this measurement being done by the interface that receives t.
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The extractable RO-oracle S:
Initialization: S prepares its internal register D to be in state |⊥〉D :=

⊗
x |⊥〉Dx .

S.RO-query: Upon a (quantum) RO-query, with query registers XY , S applies OXYD to registers XYD.
S.E-query: Upon a classical extraction-query with input t, S appliesMt to D and returns the outcome x̂.

Fig. 2. The (inefficient version of the) simulator S, restricted to classical extraction queries.

The following statement captures the core properties of S. We refer to two subsequent queries
as being independent if they can in principle be performed in either order, i.e., if the input to
one query does not depend on the output of the other. More formally, e.g., two S.RO queries
are independent if they can be captured by first preparing the two in-/output registers XY and
X ′Y ′, and then doing the two respective queries with XY and X ′Y ′. The commutativity claim
then means that the order does not matter. Furthermore, whenever we speak of a classical query
(to S.RO or to S.E), we consider the obvious classical variant of the considered query, with a
classical input and a classical response. Finally, the almost commutativity claims are in terms of
the trace distance of the (possibly quantum) output of any algorithm interacting with S arbitrarily
and doing the two considered independent queries in one or the other order.

Theorem 4.3. The extractable RO-simulator S constructed above, with interfaces S.RO and S.E,
satisfies the following properties.

1. If S.E is unused, S is perfectly indistinguishable from the random oracle RO.

2.a Any two subsequent independent queries to S.RO commute. In particular, two subsequent clas-
sical S.RO-queries with the same input x give identical responses.

2.b Any two subsequent independent queries to S.E commute. In particular, two subsequent clas-
sical S.E-queries with the same input t give identical responses.

2.c Any two subsequent independent queries to S.E and S.RO 8
√

2Γ (f)/2n-almost-commute.

3.a Any classical query S.RO(x) is idempotent.7

3.b Any classical query S.E(t) is idempotent.

4.a If x̂ = S.E(t) and ĥ = S.RO(x̂) are two subsequent classical queries then

Pr[f(x̂, ĥ) 6= t ∧ x̂ 6= ∅] ≤ Pr[f(x̂, ĥ) 6= t | x̂ 6= ∅] ≤ 2 · 2−nΓ (f) (21)

4.b If h = S.RO(x) and x̂ = S.E(f(x, h)) are two subsequent classical queries such that no prior
query to S.E has been made, then

Pr[x̂ = ∅] ≤ 2 · 2−n. (22)

Furthermore, the total runtime of S, when implemented using the sparse representation of the
compressed oracle described in Sect. B, is bounded as

TS = O
(
qRO · qE · Time[f ] + q2RO

)
,

where qE and qRO are the number of queries to S.E and S.RO, respectively.

Proof. All the properties follow rather directly by construction of S. Indeed, without S.E-queries,
S is simply the compressed oracle, known to be perfectly indistinguishable from the random oracle,
confirming 1. Property 2.a follows from the fact that the unitaries OXYD and OX′Y ′D, acting on
the same register D but on distinct query registers, are both controlled unitaries with control
register D, conjugated by a fixed unitary (F⊗|X|). They thus commute. For 2.b, the claim follows
from the fact that the unitaries M t

DP and M t′

DP ′ commute, as they are both controlled unitaries
with control register D. 2.c is a direct consequence of our main technical result Theorem 3.1 (in
the form of Cor. 3.2). 3.a follows from the fact that a classical S.RO query with input x acts as
a projective measurement on register Dx, which is, as any projective measurement, idempotent.
Thus, so is the measurementMt, confirming 3.b.
7 I.e., applying it twice in a row has the same effect on the state of S as applying it once.
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To prove 4.a, consider the state ρDx̂ of register Dx̂ after the measurementMt that is performed
by the extraction query x̂ = S.E(t), assuming x̂ 6= ∅. Let |ψ〉 be a purification of ρDx̂ . By definition
ofMt, it holds that Π x̂

Dx̂
|ψ〉 = |ψ〉. Then, understanding that all operators act on register Dx̂, by

definition of Π̄ x̂ the probability of interest is bounded as8

Pr[f(x̂, ĥ) 6= t | x̂ 6= ∅] ≤
∥∥Π̄ x̂F |ψ〉

∥∥2 =
∥∥Π̄ x̂FΠ x̂|ψ〉

∥∥2 ≤ ∥∥Π̄ x̂FΠ x̂
∥∥2 ≤ ∥∥[F,Π x̂]

∥∥2 ,
where the last inequality exploits that Π̄ x̂Π x̂ = 0. The claim now follows from Lemma 3.3.

For 4.b, we first observe that, given that there were no prior extraction queries, the state
of Dx before the h = S.RO(x) query has no overlap with |φ0〉, and thus the state after the
query is F |h〉 (see the discussion above Equation (8)). For the purpose of the argument, instead
of applying the measurement Mf(x,h) to answer the S.E(f(x, h)) query, we may equivalently
consider a measurement in the basis {|y〉}, and then set x̂ to be the smallest element X so that
f(x̂, yx̂) = t := f(x, h), with x̂ = ∅ if no such element exists. Then,

Pr[x̂ 6= ∅] = Pr[∃ ξ : f(ξ, yξ) = t] ≥ Pr[f(x, yx) = t] ≥ Pr[yx = h] = |〈h|F |h〉|2 ≥ 1− 2 · 2−n

where the last two (in)equalities are by Equation (8).
ut

4.3 Two More Properties of S

On top of the above basic features of our extractable RO-simulator S, we show the following two
additional, more technical, properties, which in essence capture that the extraction interface cannot
be used to bypass query hardness results.

S
RO E

... ...

A
...

t

S
RO E

t

x̂

A
...

t, x

S
RO E

x

h
t

x̂

Fig. 3. The extractable RO-simulator S, with its S.RO and S.E interfaces, distinguished here by queries
from the left and right (left), and the games considered in Prop. 4.4 (middle) and 4.5 (right) for ` = 1.
Waved arrows denote quantum queries, straight arrows denote classical queries.

The first property is easiest to understand in the context of the example f(x, y) = y, where
S.E(t) tries to extract a hash-preimage of t, and where the relations R and R′ in Prop. 4.4 below
then coincide. In this case, recall from Prop. 3.5 that, informally, if ΓR is small then it is hard to
find x ∈ X so that t := RO(x) satisfies (x, t) ∈ R. The statement below ensures that this hardness
cannot be bypassed by first selecting a “good” hash value t and then trying to extract a preimage
by means of S.E (Fig. 3, middle). For instance, setting t := t◦ for a given target t◦ and extracting
x̂ := S.E(t), we cannot hope for x̂ to satisfy S.RO(x̂) = t; unless there was a prior query to S.RO
with response t◦, the extraction will provide x̂ = ∅ most likely.

Proposition 4.4. Let R′ ⊆ X × T be a relation. Consider a query algorithm A that makes q
queries to the S.RO interface of S but no query to S.E, outputting some t ∈ T `. For each i, let
x̂i then be obtained by making an additional query to S.E on input ti (see Fig. 3, middle). Then

Pr
t←AS.RO
x̂i←S.E(ti)

[∃ i : (x̂i, ti) ∈ R′] ≤ 128 · q2ΓR/2n ,

where R ⊆ X × Y is the relation (x, y) ∈ R ⇔ (x, f(x, y)) ∈ R′ and ΓR as in (9).
8 The first inequality is an artefact of the |⊥〉〈⊥|-term in Π̄ x̂ contributing to the probability of ĥ = 0, as
discussed in Sect. 2.2.
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Proof. The considered experiment is like the experiment GR in the proof of Prop. 3.5, the only
difference being that in GR the measurementMR is applied to register D to obtain x′ (see Fig. 4,
middle), while here we have ` measurements Mti that are applied to obtain x̂i (see Fig. 4, left).
Since all measurements are defined by means of projections that are diagonal in the same basis
{|y〉} with |y〉 ranging over y ∈ (Y ∪ {⊥})X , we may equivalently measure D in that basis to
obtain y (see Fig. 4, right), and let x̂i be minimal so that f(x̂i, yx̂i) = ti (and x̂i = ∅ if no such
value exists), and let x′ be minimal so that (x′, yx′) ∈ R (and x′ = ∅ if no such value exists). By
the respective definitions of Mt

i and MR, both pairs of random variables (x̂, t) and (x′, t) then
have the same distributions as in the respective original two games. But now, we can consider their
joint distribution and argue that

Pr[∃ i : (x̂i, ti) ∈ R′] = Pr[ ∃ i : (x̂i, f(x̂i, yx̂i)) ∈ R′]
= Pr[∃ i : (x̂i, yx̂i) ∈ R] ≤ Pr[∃x : (x, yx) ∈ R] = Pr[x′ 6= ∅] .

The bound on Pr[x′ 6= ∅] from the proof of Prop. 3.5 concludes the proof. ut

D

O

... Mt x̂

X

A0

...

AqY ...

... t • t

... MR x′

...

Aq...

... t

... y ; x̂, x′

...

Aq...

... t

Fig. 4. Quantum circuit diagrams for the experiments in the proof of Prop. 4.4 for the case ` = 1.

In a somewhat similar spirit, the following ensures that if it is hard in the QROM to find x and
x′ with f(x,RO(x)) = f(x′, RO(x′)) then this hardness cannot be bypassed by, say, first choosing
x, querying h = S.RO(x), computing t := f(x, h), and then extracting x̂ := S.E(t). The latter will
most likely give x̂ = x, except, intuitively, if S.RO has additionally been queried on a colliding x′.

Proposition 4.5. Consider a query algorithm A that makes q queries to S.RO but no query to
S.E, outputting some t ∈ T and x ∈ X . Let h then be obtained by making an additional query to
S.RO on input x, and x̂ by making an additional query to S.E on input t (see Fig. 3, right). Then

Pr
t, x ← AS.RO
h ← S.RO(x)
x̂ ← S.E(t)

[x̂ 6= x ∧ f(x, h) = t] ≤ 40e2(q + 2)3Γ ′(f) + 2

2n
.

More generally, if A outputs `-tuples t ∈ T ` and x ∈ X `, and h ∈ Y` is obtained by querying
S.RO component-wise on x, and x̂ ∈ (X ∪ {∅})` by querying S.E component-wise on t, then

Pr
t, x ← AS.RO
h ← S.RO(x)
x̂ ← S.E(t)

[∃ i : x̂i 6= xi ∧ f(xi, hi) = t] ≤ 40e2(q + `+ 1)3Γ ′(f) + 2

2n
.

The proof is similar in spirit to the proof of Prop. 4.4, but relying on the hardness of collision
finding (Lemma D.1) rather than on (the proof of) Prop. 3.5, and so is moved to the appendix
(Sect. C).

Remark 4.6. The claim of Prop. 4.5 stays true when the queries S.RO(xi) are not performed as
additional queries after the run of A but are explicitly among the q queries that are performed by
A during its run. One way to see this is to use 2.a and 3.a of Theorem 4.3 to re-do these queries
once more after the run of A, which does not affect the subsequent S.E-queries. Alternatively,
we observe that the proof does not exploit that these queries are performed at the end, which
additionally shows that in this case the `-term on the right hand side of the bound vanishes, i.e.,
scales as (q + 1)3 rather than as (q + `+ 1)3 .
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4.4 Early Extraction

We consider here the following concrete setting. Let A be a two-round query algorithm, interacting
with the random oracle RO and behaving as follows. At the end of the first round, ARO outputs
some t ∈ T , and at the end of the second round, it outputs some x ∈ X that is supposed to
satisfy f(x,RO(x)) = t; on top, ARO may have some additional (possibly quantum) output W
(see Fig. 5, left).

We now show how the extractable RO-simulator S provides the means to extract x early on,
i.e., right after A has announced t. To formalize this claim, we consider the following experiment,
which we denote by GAS . The RO-interface S.RO of S is used to answer all the oracle queries made
by A. In addition, as soon as A outputs t, the interface S.E is queried on t to obtain x̂ ∈ X ∪ {∅},
and after A has finished, S.RO is queried on A’s final output x to generate h; see Fig. 5 (right).

A ···

···

t

x,W

RO A ···

···

t

x,W

S
RO E

t

x̂

x

h

Fig. 5. The original execution of ARO (left), and the experiment GAS with RO simulated by S (right).

Informally, we want that A does not notice any difference when RO is replaced by S.RO, and
that x̂ = x whenever f

(
x, h

)
= t, while x̂ = ∅ implies that A will fail to output x with f

(
x, h

)
= t.

This situation is captured by the following statement.

Corollary 4.7. The extractable RO-simulator S is such that the following holds. For any A that
outputs t after q1 queries and x ∈ X and W after an additional q2 queries, it holds that

δ
(
[t, x,RO(x),W ]ARO , [t, x, h,W ]GAS

)
≤ 8(q2 + 1)

√
2Γ/2n and

Pr
GAS

[
x 6= x̂ ∧ f(x, h) = t

]
≤ 8(q2 + 1)

√
2Γ/2n +

40e2(q + 2)3Γ ′(f) + 2

2n
,

where q = q1 + q2.

Proof. The first claim follows from the fact that the trace distance vanishes when S.E(t) is per-
formed at the very end, after the S.RO(x)-query, in combination with the (almost-)commutativity
of the two interfaces (Theorem 4.3, 2.a to 2.c). Similarly, the second claim follows from Prop. 4.5
when considering the S.E(t) query to be performed at the very end, in combination with the
(almost-)commutativity of the interfaces again. ut

The statements above extend easily to multi-round algorithms ARO that output t1, . . . , t` in
(possibly) different rounds, and x1, . . . , x` ∈ X and some (possibly quantum) output W at the end
of the run. We then extend the definition of GAS in the obvious way: S.E is queried on each output
ti to produce x̂i, and at the end of the run S.RO is queried on each of the final outputs x1, . . . , x`
of A to obtain h = (h1, . . . , h`) ∈ Y`. As a minor extension, we allow some of the xi to be ⊥, i.e.,
ARO may decide to not output certain xi’s; the S.RO query on xi is then not done and hi is set
to ⊥ instead, and we declare that RO(⊥) = ⊥ and f(⊥, hi) 6= ti. To allow for a compact notation,
we write RO(x) = (RO(x1), . . . , RO(x`)) for x = (x1, . . . , x`).

Corollary 4.8. The extractable RO-simulator S is such that the following holds. For any A that
makes q queries in total, it holds that

δ
(
[t,x, RO(x),W ]ARO , [t,x,h,W ]GAS

)
≤ 8`(q + `)

√
2Γ/2n and

Pr
GAS

[
∃ i : xi 6= x̂i ∧ f(xi, hi) = ti

]
≤ 8`(q + 1)

√
2Γ/2n +

40e2(q + `+ 1)3Γ ′(f) + 2

2n
.

14



Proof. The first claim follows from the fact that the trace distance vanishes when the S.E(ti)-
queries are performed at the very end, after all S.RO(xi)-queries, in combination with the (almost-)
commutativity of the interfaces. Similarly, the second claim follows from (the more general second
part of) Prop. 4.5 when considering the S.E(ti)-queries to be performed at the very end, in com-
bination with the (almost-)commutativity of the interfaces again. ut

5 Application I: Extractability of Commit-And-Open Σ-protocols

5.1 Commit-and-Open Σ-protocols

We assume the reader to be familiar with the concept of an interactive proof system for a language
L or a relation R, and specifically with the notion of a Σ-protocol. We briefly discuss here the
following special class of Σ-protocols.

Here, we consider the notion of a commit-and-open Σ-protocol, which is as follows. The prover
begins by sending commitments a1, ..., a` to the prover, computed as ai = H(xi) for x1, ..., x` ∈ X ,
where H : X → {0, 1}n is a hash function, and where we assume for concreteness that X consists
of bitstrings of bounded size. Here, xi can either be the actual message mi to be committed, or mi

concatenated with randomness. The verifier answers by sending a challenge c, which is a subset
c ⊆ [`] = {1, ..., `}, picked uniformly at random from a challenge set C ⊆ 2[`], upon which the prover
sends the response z = (xi)i∈c. Finally, the verifier checks whether H(xi) = ai for every i ∈ c,
computes an additional verification predicate V (c, z) and outputs 1 if both check out, 0 otherwise.
Such (usually zero-knowledge) protocols have been known since the concept of zero-knowledge
proofs was developed [BCC88, GMW91].

Commit-and-open Σ-protocols are (classically) extractable in a straight-forward manner as
soon as a witness can be computed from sufficiently many of the xi’s: rewind the prover a few
times until it has opened every commitment ai at least once.9 There is, however, an alternative
(classical) online extractor if the hash function H is modelled as a random oracle: simply look at
the query transcript of the prover to find preimages of the commitments a1, ..., a`. As the challenge
is chosen independently, the extractability and collision resistance of the commitments implies that
for a prover with a high success probability, the ` extractions succeed simultaneously with good
probability. This is roughly how the proof of online extractability of the ZK proof system for graph
3-coloring by Goldreich, Micali and Wigderson [GMW91], instantiated with random-oracle based
commitments, works that was announced in [Pas03] and shown in [Pas04] (Prop. 5).

Equipped with our extractable RO-simulator S, we can mimmic the above in the quantum set-
ting. Indeed, the only change is that the look-ups in the transcript are replaced with the additional
interface of the simulator S. Cor. 4.8 can then be used to prove the success of extraction using
essentially the same extractor as in the classical case.

5.2 Notions of Special Soundness

The property that allows such an extraction is most conveniently expressed in terms of special
soundness and its variants. Because there are, next to special and k-soundness, a number of
additional variants in the literature (e.g. in the context of Picnic2/Picnic3 [KZ20] or MQDSS
[CHR+16]), we begin by formulating a generalized notion of special soundness that captures in a
broad sense that a witness can be computed from correct responses to “sufficiently many ” chal-
lenges.10 While the notions introduced below can be formulated for arbitrary public-coin interactive
proof systems, we present them here tailored to commit-and-open Σ-protocols.

In the remainder, Π is thus assumed to be an arbitrary commit-and-open Σ-protocol for a
relation R with associated language L, and C is the challenge space of Π. Furthermore, we consider
a non-empty, monotone increasing setS of subsets S ⊆ C, i.e., such that S ∈ S∧S ⊆ S′ ⇒ S′ ∈ S,
and we let Smin := {S ∈ S |S◦ ( S ⇒ S◦ 6∈ S} consist of the minimal sets in S.

9 Naturally, we can assume [`] =
⋃
c∈C c

10 Using the language from secret sharing, we consider an arbitrary access structure S, while the k-
soundness case corresponds to a threshold access structure.
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Definition 5.1. Π is called S-sound if there exists an efficient algorithm ES(I, x1, . . . , x`, S) that
takes as input an instance I ∈ L, strings x1, . . . , x` ∈ X and a set S ∈ Smin, and outputs a witness
for I whenever V (c, (xi)i∈c) = 1 for all c ∈ S, and outputs ⊥ otherwise.11

Note that there is no correctness requirement on the xi’s with i 6∈
⋃
c∈S c; thus, those xi’s may

just as well be set to be empty strings.
This property generalizes k-soundness, which is recovered for S = Tk := {S ⊆ C | |S| ≥ k},

but it also captures more general notions. For instance, the r-fold parallel repetition of a k-sound
protocol is not k-sound anymore, but it is T∨rk -sound with T∨rk consisting of those subsets of
challenge-sequences (c1, . . . , cr) ∈ Cr for which the restriction to at least one of the positions is a
set in Tk. This obviously generalizes to the parallel repetition of an arbitrary S-sound protocol,
with the parallel repetition then being S∨r-sound with

S∨r := {S ⊆ Cr | ∃ i : Si ∈ S} ,

where Si := {c ∈ C | ∃ (c1, ..., cr) ∈ S : ci = c} is the i-th marginal of S.
For our result to apply, we need a strengthening of the above soundness condition where ES has

to find the set S himself. This is clearly the case for S-sound protocols that have a constant sized
challenge space C, but also for the parallel repetition of S-sound protocols with a constant sized
challenge space. Formally, we require the following strengthened notion of S-sound protocols.

Definition 5.2. Π is called S-sound∗ if there exists an efficient algorithm E∗S(I, x1, . . . , x`) that
takes as input an instance I ∈ L and strings x1, . . . , x` ∈ X , and outputs a witness for I whenever
there exists S ∈ S with V (c, (xi)i∈c) = 1 for all c ∈ S, and outputs ⊥ otherwise.

S-sound Σ-protocols may—and often do—have the property that a dishonest prover can pick
any set Ŝ = {ĉ1, . . . , ĉm} 6∈ S of challenges ĉi ∈ C and then prepare x̂1, . . . , x̂` in such a way that
V (c, (x̂i)i∈c) = 1 if c ∈ Ŝ, i.e., after having committed to x̂1, . . . , x̂` the prover can successfully
answer challenge c if c ∈ Ŝ. We call this a trivial attack. The following captures the largest success
probability of such a trivial attack, maximized over the choice of Ŝ:

pStriv :=
1

|C|
max
Ŝ 6∈S
|Ŝ| . (23)

When there is no danger of confusion, we omit the superscript S. Looking ahead, our result will
show that for any prover that does better than the trivial attack by a non-negligible amount, online
extraction is possible. For special sound Σ-protocols, ptriv = 1/|C|, and for k-sound Σ-protocols,
ptriv = (k − 1)/|C|. Furthermore, our definition of S-soundness allows a straightforward parallel
repetition lemma on the combinatorial level providing an expression for ptriv of parallel-repeated
Σ-protocols.

Lemma 5.3. Let Π be an S-sound Σ-protocol. Then pS
∨r

triv =
(
pStriv

)r.
Proof. To prove the lemma, we simplify

pS
∨r

triv =
1

|C|r
max
Ŝ 6∈S∨r

|Ŝ| = 1

|C|r
max
Ŝ⊂Cr:
∀i:Ŝi 6∈S

|Ŝ| = 1

|C|r

(
max
Ŝ 6∈S
|Ŝ|
)r

=
(
pStriv

)r
.

ut

5.3 Online Extractability in the QROM

We are now ready to define our extractor and prove that it succeeds. Equipped with the results
from the previous section, the intuition is very simple. Given a (possibly dishonest) prover P,
running the considered Σ-protocol in the QROM, we use the simulator S to answer P’s queries to
the random oracle but also to extract the commitments a1, . . . , a`, and if the extracted x̂1, . . . , x̂`
satisfy the verification predicate V for sufficiently many challenges, we can compute a witness by
applying E∗S.

The following relates the success probability of this extraction procedure to the success proba-
bility of the (possibly dishonest) prover.
11 The restriction for S to be in Smin, rather than in S, is only to avoid an exponentially sized input while

asking ES to be efficient. When C is constant in size, we may admit any S ∈ S.
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Theorem 5.4. Let Π be an S-sound∗ commit-and-open Σ-protocol where the first message consists
of ` commitments. Then it admits an online extractor E in the QROM that succeeds with probability

Pr[E succeeds] ≥ 1

1− ptriv
(
Pr[PRO succeeds]− ptriv − ε

)
where

ε = 8
√

2 `(2q + `+ 1)/
√

2n +
40e2(q + `+ 1)3Γ ′(f) + 2

2n

and ptriv is defined in Eq. (23). For q ≥ `+ 1, the bound simplifies to

ε ≤ 34`q/
√

2n + 2365q3/2n .

Furthermore, the running time of E is bounded as TE = TP1
+ TE∗S + O(q21), where TP1

and TE∗S
are the respective runtimes of P1 and E∗S.

Recall that ptriv = (k − 1)/|C| for k-soundness, giving a corresponding bound.

Proof. We begin by describing the extractor E . In a first step, using S.RO to answer P’s queries, E
runs the prover P until it announces a1, . . . , a`, and then it uses S.E to extract x̂1, ..., x̂`. I.e., E acts
as S in Cor. 4.8 for the function f(x, h) = h and runs the game GPS to the point where S.E outputs
x̂1, ..., x̂` on input a1, . . . , a`. As a matter of fact, for the purpose of the analysis, we assume that GPS
is run until the end, with the challenge c chosen uniformly at random, and where P then outputs
xi for all i ∈ c (and ⊥ for i 6∈ c) at the end of GPS ; we also declare that P additionally outputs c and
a1, . . . , a` at the end. Then, upon having obtained x̂1, ..., x̂`, the extractor E runs E∗S on x̂1, ..., x̂`
to try to compute a witness. By definition, this succeeds if Ŝ := {ĉ ∈ C |V (ĉ, (x̂i)i∈ĉ) = 1} is in S.

It remains to relate the success probability of E to that of the prover PRO. By the first statement
of Cor. 4.8, writing xc = (xi)i∈c, RO(xc) = (RO(xi))i∈c, ac = (ai)i∈c, etc., we have

Pr[PRO succeeds] = Pr
PRO

[V (c,xc) = 1 ∧RO(xc) = ac]

≤ Pr
GPS

[V (c,xc) = 1 ∧ hc = ac] + δ1
(24)

with δ1 = 8
√

2 `(q + `)/
√

2n. Omitting the subscript GPS now,

Pr[V (c,xc) = 1 ∧ hc = ac]

≤Pr[V (c,xc) = 1 ∧ hc = ac ∧ xc = x̂c] + Pr[hc = ac ∧ xc 6= x̂c]

≤Pr[V (c, x̂c) = 1] + Pr[∃ j ∈ c : xj 6= x̂j ∧ hj = aj ]

≤Pr[V (c, x̂c) = 1] + δ2

(25)

with δ2 = 8
√

2 `(q + 1)/
√

2n + 40e2(q+`+1)3Γ ′(f)+2
2n , where the last inequality is by the second

statement of Cor. 4.8, noting that, by choice of f , the event hj = aj is equal to f(xj , hj) = aj .
Recalling the definition of Ŝ,

Pr[V (c, x̂c) = 1] = Pr[c ∈ Ŝ] ≤ Pr[Ŝ ∈ S] + Pr[c ∈ Ŝ | Ŝ 6∈ S] Pr[Ŝ 6∈ S] (26)
≤ Pr[E succeeds] + ptriv(1− Pr[E succeeds])

where the final inequality exploits that c is chosen at random and independent of x̂1, . . . , x̂`, and
thus is independent of the event Ŝ 6∈ S. Combining (24), (25) and (26), we obtain

Pr[PRO succeeds] ≤ Pr[E succeeds] + ptriv(1− Pr[E succeeds]) + δ1 + δ2

and solving for Pr[E succeeds] gives the claimed bound. ut

5.4 Tightness

The bound given by Theorem 5.4 is tight in the sense that the extraction success probability is
proportional to the advantage of a malicious prover over the trivial success probability, up to a
negligible additive error term. On top, the additive error term is asymptotically tight: ε remains
negligible in n for q = 2αn with any α < 1

3 , while with q = 2n/3 queries a collision in the hash

17



function can be found with constant success probability [BHT98, Zha15], breaking the binding
property of the commitment scheme upon which typical soundness proofs for commit-and-open
Σ-protocols rely.

It is even not too hard to find relevant examples of commit-and-open Σ-protocols where a
collision-finding attack not only invalidates the soundness proof but leads to an actual attack
against extractability. Consider e.g. the Σ-protocol ZKBoo that underlies the signature scheme
Picnic. Here, the prover commits to three messages m1,m2,m3 as ai = H(mi, ri) for random
strings r1, r2, r3, and where themi’s are the respective views of the three parties in an “in-the-head”
execution of a 3-party-computation protocol. The challenge space is C = {{1, 2}, {1, 3}, {2, 3}},
which means that the prover is then asked to open two out of the three commitments. Now
consider the following attack. The attacker can easily find pairs (m1,m2), (m′1,m3) and (m′2,m

′
3),

so that each pair consists of two mutually consistent views of the considered 3-party-computation
protocol. Now the only thing the attacker has to do is to find three collisions in the hash function
of the form ai = H(mi, ri) = H(m′i, r

′
i), i = 1, 2, 3. This can be done using e.g. the BHT algorithm

[BHT98] if ri are sufficiently long. The attacker now sends (a1, a2, a3), receives a challenge and
responds with the appropriate preimages of the two commitments indicated by the challenge.

5.5 Application to Fiat Shamir Signatures

In the appendix (Sect. E) we discuss the impact on Fiat Shamir signatures, in particular on
the round-3 signature candidate Picnic [CDG+17] in the NIST standardization process for post-
quantum cryptographic schemes. In short, one crucial part in the chain of arguments to prove
security of Fiat Shamir signatures is to prove that the underlying Σ-protocol is a proof of knowledge.
For post-quantum security, so far this step relied on Unruh’s rewinding lemma, which leads (after
suitable generalization), to a (2k+1)-th root loss for a k-sound protocols. For commit-and-open Σ-
protocols, Theorem 5.4 can replace Unruhs rewinding lemma when working in the QROM, making
this step in the chain of arguments tight up to unavoidable additive errors.

As an example, Theorem 5.4 implies a sizeable improvement over the current best QROM
security proof of Picnic2 [CDG+17, KZ20, CDG+19]. Indeed, Unruh’s rewinding lemma implies a
6-th root loss for the variant of special soundness the underlying Σ-protocol possesses [DFMS19],
while Theorem 5.4 is tight.

6 Application II: QROM-Security of Textbook Fujisaki-Okamoto

6.1 The Fujisaki-Okamoto Transformation

The Fujisaki-Okamoto (FO) transform [FO99] is a general method to turn any public-key encryp-
tion scheme secure against chosen-plaintext attacks (CPA) into a key-encapsulation mechanism
(KEM) that is secure against chosen-ciphertext attacks (CCA). We can start either from a scheme
with one-way security against CPA attacks (OW-CPA) or from one with indistinguishability against
CPA attacks (IND-CPA), and in both cases obtain an IND-CCA secure KEM. We recall that a
KEM establishes a shared key, which can then be used for symmetric encryption.

We include the (standard) formal definitions of a public-key encryption scheme and of a KEM
in the appendix, Section F, and we recall the notions of δ-correctness and γ-spreadness there.
In addition, we define a relaxed version of the latter property, weak γ-spreadness (see Definition
F.4), where the ciphertexts are only required to have high min-entropy when averaged over key
generation.12. The security games for OW-CPA security of a public-key encryption scheme and for
IND-CCA security of a KEM are given in Fig. 6.

The formal specification of the FO transformation, mapping a public-key encryption scheme
PKE = (Gen,Enc,Dec) and two suitable hash functions H and G (which will then be modeled as
random oracles) into a key encapsulation mechanism FO[PKE, H,G] = (Gen,Encaps,Decaps), is
given in Fig. 7.

12 This seems relevant e.g. for lattice-based schemes, where the ciphertext has little (or even no) entropy
for certain very unlikely choices of the key (like being all 0)
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GAME OW-CPA
1: (pk, sk)← Gen

2: m∗ $←M
3: c∗ ← Encpk(m∗)
4: m′ ← A(pk, c∗)
5: return m′ == m∗

GAME IND-CCA-KEM
6: (pk, sk)← Gen

7: b $← {0, 1}
8: (K∗0 , c

∗)← Encaps(pk)

9: K∗1
$← K

10: b′ ← ADecaps(c∗,K∗b )
11: return b′ == b

Decaps(c 6= c∗)
12: K := Decapssk(c)
13: return K

Fig. 6. Games for OW-CPA security of a PKE and IND-CCA security of a KEM. In the latter, A is not
allowed to query c∗ to Decaps.

Gen
1: (sk, pk)← Gen
2: return (sk, pk)

Encaps(pk)

3: m $←M
4: c← Encpk(m;H(m))
5: K := G(m)
6: return (K, c)

Decapssk(c)
7: m := Decsk(c)
8: if m = ⊥ or Encpk(m;H(m)) 6= c

return ⊥
9: else return K := G(m)

Fig. 7. The KEM FO[PKE, H,G], obtained by applying the FO transformation [FO99] to PKE.

6.2 Post-Quantum Security of FO in the QROM

Our main contribution here is the following security result for the FO transformation in the QROM.
In contrast to most of the previous works on the topic, our result applies to the standard FO
transformation, without any adjustments. Next to being CPA secure, we require the underlying
public-key encryption scheme to be so that ciphertexts have a lower-bounded amount of min-
entropy (resulting from the encryption randomness), captured by the aforementioned spreadness
property. This seems unavoidable for the FO transformation with explicit rejection and without
any adjustment, like an additional key confirmation hash (as e.g. in [TU16]).

Theorem 6.1. Let PKE be a δ-correct public-key encryption scheme satisfying weak γ-spreadness.
Let A be any IND-CCA adversary against FO[PKE, H,G], making qD ≥ 1 queries to the decapsula-
tion oracle Decaps and qH and qG queries to H : M→ R and G : M→ K, respectively, where
H and G are modeled as random oracles. Let q := qH + qG + 2qD. Then, there exists a OW-CPA
adversary B against PKE with

ADV[A]IND-CCA
kem ≤ 2q

√
ADVOW-CPA

pke [B] + 24q2
√
δ + 24q

√
qqD · 2−γ/4 .

Furthermore, B has a running time TB ≤ TA +O
(
qH · qD · Time[Enc] + q2

)
.

We start with a proof outline, which is somewhat simplified in that it treats FO[PKE, H,G]
as an encryption scheme rather than as a KEM. We will transform the adversary A of the IND-
CCA game into a OW-CPA adversary against the PKE in a number of steps. There are two main
challenges to overcome. (1) We need to switch from the deterministic challenge ciphertext c∗ =
Encpk(m∗;H(m∗)) that A attacks to a randomized challenge ciphertext c∗ = Encpk(m∗; r∗) that
B is then supposed to attack. We do this switch by re-programming H(m∗) to a random value
right after the computation of c∗, which is equivalent to keeping H but choosing a random r∗ for
computing c∗. For reasons that we explain later, we do this switch from H to its re-programmed
variant, denoted H�, in two steps, where the first step (from Game 0 to 1) will be “for free”,
and the second step (from Game 1 to 2) is argued using the O2H lemma ([Unr14], we use the
version given in [AHU19], Theorem 3). (2) We need to answer decryption queries without knowing
the secret key. At this point our extractable RO-simulator steps in. We replace H�, modelled as a
random oracle, by S, and we use its extraction interface to extract m from any correctly formed
encryption c = Encpk(m;H�(m)) and to identify incorrect ciphertexts.

One subtle issue in the argument above is the following. The O2H lemma ensures that we
can find m∗ by measuring one of the queries to the random oracle. However, given that also the
decryption oracle makes queries to the random oracle (for performing the re-encryption check), it
could be the case that one of those decryption queries is the one selected by the O2H extractor.
This situation is problematic since, once we switch to S to deal with the decryption queries, some
of these queries will be dropped (namely when S.E(c) = ∅). This is problematic because, per-se,
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we cannot exclude that this is the one query that will give us m∗. We avoid this problem by our
two-step approach for switching from H to H�, which ensures that the only ciphertext c that
would bring us in the above unfortunate situation is the actual (randomized) challenge ciphertext
c∗ = Encpk(m∗; r∗), which is not submitted by the specification of the security game.

Game Setup G0-G8

1: (pk, sk)← Gen �G0-G7

2: (b,m∗)
$← {0, 1} ×M �G0-G7

3: c∗ := Encpk(m∗;H(m∗)) �G0-G7

4: input(pk, c∗ = Encpk(m∗)) �G8

5: c� := Encpk(m∗;H�(m∗)) �G0-G6

6: K∗0 := G(m∗) �G0-G2

7: K∗1
$← K

8: j $← JA ∪ JD(c�) �G3-G6

9: j $← J �G7-G8

Main Phase G0-G2

10: b′ ← ADecaps,H,G(c∗,K∗b ) �G0-G1

11: b′ ← ADecaps,H�,G�(c∗,K∗b ) �G2

12: return b′ == b

Main Phase G3-G8

13: m′ ←MADecaps,H�,G�
j (c∗,K∗1 ) �G3

14: m′ ←MADecaps,S.RO,G�
j (c∗,K∗1 ) �G4-G5

15: m′ ← EADecaps,S.RO,G�
j (c∗,K∗1 ) �G6-G8

16: while i ∈ I do �G4

17: m̂i ← S.E(ci) �G4

18: return m′

Decaps(c 6= c∗) G0-G5

19: m := Decsk(c) �G0-G5

20: if m = ⊥ return ⊥ �G0-G5

21: h := H(m), g := G(m) �G0

22: if c = c� �G1

23: h := H(m), g := G(m) �G1

24: else �G1

25: h := H�(m), g := G�(m) �G1

26: h := H�(m), g := G�(m) �G2-G3

27: h := S.RO(m), g := G�(m) �G3-G5

28: if Encpk(m;h) 6= c �G0-G5

29: return ⊥ �G0-G5

30: else return K := g �G0-G5

31: m̂← S.E(c) �G5

Decaps(c 6= c∗) G6-G8

32: m := Decsk(c) �G6-G7

33: query S.RO(m) �G6-G7

34: m̂← S.E(c) �G6-G8

35: if m̂ = ⊥ return ⊥ �G6-G8

36: else return K := G�(m̂) �G6-G8

Fig. 8. Games 0 to 8. H and G are independent random oracles; H� and G� coincide with H and G,
respectively, except that H�(m∗) and G�(m∗) are freshly chosen. We consider the oracle queries to H�

(respectively to S.RO later on) and to G� to be labeled by indices j ∈ J , where J = JA ∪ JD decomposes
this set into those queries made by A and those made by Decaps, respectively, and JD(c�) ⊆ JD consists
of Decaps’ queries upon input c�. Similarly, we consider the queries to Decaps to be indexed by i ∈ I,
with ci then being the corresponding ciphertext. Since A is not allowed to query c∗ to Decaps, we have
ci 6= c∗ ∀ i ∈ I. For j ∈ J ,MADecaps

j denotes the execution of ADecaps up to the query indexed by j, and
followed by measuring this query and outputting the result. EADecaps

j coincides with MADecaps
j , except

that if j ∈ JD then it outputs the corresponding m̂i instead. The colors are meant to help the reader track
(the use of) some variables and concepts that occur in different places across the code.

Proof (of Theorem 6.1). Games 0 to 8 below show how to turn A into B (see also Figure 8). We
first analyze the sequence of hybrids for a fixed key pair (sk, pk). Let therefore ADVsk[A]

IND-CCA
kem be

A’s advantage for key pair (sk, pk). In addition, for a fixed pair (sk, pk), let δsk be the maximum
probability of a decryption error and gsk be the maximum probability of any ciphertext, so that
E
[
δsk
]
≤ δ and E

[
gsk
]
≤ 2−γ , with the expectation over (sk, pk)← Gen (we can assume without

loss of generality that pk is included in sk).
Game 0 is the IND-CCA game for KEMs, except that we replace the random oracles G and

H with a single random oracle F , by setting H(x) := F (0||x) and G(x) := F (1||x).13 When
convenient, we still refer to F (0‖·) as H and F (1‖·) as G. This change does not affect the view of
the adversary nor the outcome of the game; therefore,

Pr[b = b′ in Game 0] =
1

2
+ ADVsk[A]

IND-CCA
kem .

In Game 1, we introduce a new oracle F � by setting F �(0‖m∗) := r� and F �(1‖m∗) := k�

for uniformly random r� ∈ R and k� ∈ K, while letting F �(b‖m) := F (b‖m) for m 6= m∗ and
13 These assignments seem to suggest that R = K, which may not be the case. Indeed, we understand here

that F :M→ {0, 1}n with n large enough, and F (0||x) and F (1||x) are then cut down to the right size.
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b ∈ {0, 1}. We note that while the joint behavior of F � and F depends on the choice of the
challenge message m∗, each one individually is a purely random function, i.e., a random oracle. In
line with F , we write H� for F �(0‖·) and G� for F �(1‖·) when convenient.

Using these definitions, Game 1 is obtained from Game 0 via the following modifications.
After m∗ and c∗ have been produced and before A is executed, we compute c� := Encpk(m∗; r�) =
Encpk(m∗;H�(m∗)), making a query to H� to obtain r�. Furthermore, for every decapsulation
query by A, we let Decaps use H� and G� instead of H and G for checking correctness of the
queried ciphertexts ci and for computing the key Ki, except when ci = c� (which we may assume
to happen at most once), in which case Decaps still uses H and G. We claim that

Pr[b = b′ in Game 1] = Pr[b = b′ in Game 0] =
1

2
+ ADVsk[A]

IND-CCA
kem .

Indeed, for any decryption query ci, we either have Decsk(ci) =: mi 6= m∗ and thus F �(b‖mi) =
F (b‖mi), or else mi = m∗; in the latter case we then either have ci = c�, where nothing changes by
definition of the game, or else Encpk(m∗;H(m∗)) = c∗ 6= ci 6= c� = Encpk(m∗;H�(m∗)), and hence
the re-encryption check fails and Ki := ⊥ in either case, without querying G or G�. Therefore, the
input-output behavior of Decaps is not affected.

In Game 2, all oracle calls by Decaps (also for ci = c�) and all calls by A are now to F �.
Only the challenge ciphertext c∗ = Encpk(m∗;H(m∗)) is still computed using H, and thus with
randomness r∗ = H(m∗) that is random and independent of m∗ and F �. Hence, looking ahead,
we can think of c∗ as the input to the OW-CPA game that the to-be-constructed attacker B will
attack. Similarly, K∗0 = G(m∗) is random and independent of m∗ and F �, exactly as K∗1 is, which
means that A can only win with probability 1

2 .
By the O2H lemma ([AHU19], Theorem 3), the difference between the respective probabilities

of A in guessing b in Game 1 and 2 gives a lower bound on the success probability of a particular
procedure to find an input on which F and F � differ, and thus to find m∗. Formally,

2(qH + qG + 2)
√

Pr[m′ = m∗ in Game 3]

≥ |Pr[b′ = b in Game 1]− Pr[b′ = b in Game 2]|

=
1

2
+ ADVsk[A]

IND-CCA
kem − 1

2

= ADVsk[A]
IND-CCA
kem

where Game 3 is identical to Game 2 above, except that we introduce and consider a new
variable m′ (with the goal that m′ = m∗), obtained as follows. Either one of the qH + qG queries
from A to H� and G� is measured, or one of the two respective queries from Decaps to H�

and G� upon a possible decryption query c� is measured, and, in either case, m′ is set to be the
corresponding measurement outcome. The choice of which of these qH + qG + 2 queries to measure
is done uniformly at random.14

We note that, since we are concerned with the measurement outcome m′ only, it is irrelevant
whether the game stops right after the measurement, or it continues until A outputs b′. Also, rather
than actually measuring Decaps’ classical query to H� or G� upon decryption query ci = c� (if
instructed to do so), we can equivalently set m′ := mi = Decsk(c�).

For Game 4, we consider the function f :M×R → C, (m, r) 7→ Encpk(m; r), and we replace
the random oracle H� with the extractable RO-simulator S from Theorem 4.3. Furthermore, at
the very end of the game, we invoke the extractor interface S.E to compute m̂i := S.E(ci) for each
ci that A queried to Decaps in the course of its run. By the first statement of Theorem 4.3, given
that the S.E queries take place only after the run of A,

Pr[m′ = m∗ in Game 4] = Pr[m′ = m∗ in Game 3] .

Furthermore, applying Prop. 4.4 for R′ := {(m, c) : Decsk(c) 6= m}, we get that the event

P † :=
[
∀i : m̂i = mi ∨ m̂i = ∅

]
14 If this choice instructs to measure Decaps’s query to H� or to G� for the decryption query c�, but there

is no decryption query ci = c�, m′ := ⊥ is output instead.
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holds except with probability ε1 := 128(qH + qD)2ΓR/|R| for ΓR as in Prop. 4.4, which here means
that ΓR/|R| = δsk. Thus

Pr[m′ = m∗ ∧ P † in Game 4] ≥ Pr[m′ = m∗ in Game 4]− ε1 .

In Game 5, we query S.E(ci) at runtime, that is, as part of the Decaps procedure upon
input ci, right after S.RO(m) has been invoked as part of the re-encryption check (line 27 of
Figure 8). Since S.RO(m) and S.E(ci) now constitute two subsequent classical queries, it follows
from the contraposition of 4.b of Theorem 4.3 that except with probability 2 · 2−n, m̂i = ∅ implies
Encpk(mi;S.RO(mi)) 6= ci. Applying the union bound, we find that P † implies

P :=
[
∀i : m̂i = mi ∨ (m̂i = ∅ ∧ Encpk(mi;S.RO(mi)) 6= ci)

]
except with probability qD · 2 · 2−n. Furthermore, By 2.c of that same Theorem 4.3, each swap of
a S.RO with a S.E query affects the final probability by at most 8

√
2Γ (f)/|R| = 8

√
2gsk. Thus

Pr[m′ = m∗ ∧ P in Game 5] ≥ Pr[m′ = m∗ ∧ P † in Game 4]− ε2
with ε2 := 2qD ·

(
(qH + qD) · 4

√
2gsk + 2−n

)
.

In Game 6, Decaps uses m̂i instead of mi to compute Ki. That is, it sets Ki := ⊥ if m̂i = ∅
and Ki := G�(m̂i) otherwise. Also, if instructed to output m′ := mi where ci = c�, then the output
is set to m′ := m̂i instead. In all cases, Decaps still queries S.RO(mi), so that the interaction
pattern between Decaps and S.RO remains as in Game 5.

Here, we note that if the event

Pi :=
[
m̂i = mi ∨ (m̂i = ∅ ∧ Encpk(mi;S.RO(mi)) 6= ci)

]
holds for a given i then the above change will not affect Decaps’ response Ki, and thus also not the
probability for Pi+1 to hold as well. Therefore, by induction, Pr[P in Game 6] = Pr[P in Game 5],
and since conditioned on the event P the two games are identical, we have

Pr[m′ = m∗ ∧ P in Game 6] = Pr[m′ = m∗ ∧ P in Game 5].

In Game 7, instead of obtaining m′ by measuring a random query of A to either S.RO or
G, or outputting m̂i with ci = c�, here m′ is obtained by measuring a random query of A to
either S.RO or G, or outputting m̂i for a random i ∈ {1, . . . , qD}, where the former case is chosen
with probability (qH + qG)/(qH + qG + 2qD) and the latter with probability 2qD/(qH + qG + 2qD).
Since conditioned on the first case being chosen or the latter with i = i�, Game 7 coincides with
Game 6, we have

Pr[m′ = m∗ in Game 7] ≥ qH + qG + 2

qH + qG + 2qD
· Pr[m′ = m∗ in Game 6] .

In Game 8, we observe that the response to the query S.RO(m∗), introduced in Game 1 in
order to compute c�, and the responses to the queries that Decaps makes to S.RO on input mi do
not affect the game anymore, and thus we can drop all these queries, or, equivalently, move them
to the very end of the execution of the game. Invoking once again 2.c of Theorem 4.3, we then get

Pr[m′ = m∗ in Game 8] ≥ Pr[m′ = m∗ in Game 7]− ε3 ,

for ε3 = (qD + 1) · qH · 8
√

2gsk.
With these queries now dropped, we observe that Game 8 works without knowledge of the

secret key sk, and thus constitutes a OW-CPA attacker B against PKE, which takes as input a
public key pk and an encryption c∗ of a random message m∗ ∈M, and outputs m∗ with the given
probability, i.e, ADVsk[B]

OW-CPA
pke ≥ Pr[m′ = m∗ in Game 8]. We note that the oracle G� can be

simulated using standard techniques.
Backtracking all the above (in)equalities and setting ε23 := ε2 + ε3, qHG := qH + qG etc. and

q := qH + qG + 2qD, we get the following bound:

ADVsk[A]IND-CCA
kem ≤ 2(qHG + 2)

√
qHG + 2qD
qHG + 2

(
ADVsk[B]

OW-CPA
pke + ε3

)
+ ε1 + ε2

≤ 2(qHG + 2qD)

√
ADVsk[B]

OW-CPA
pke + ε23 + 2(qHG + 2)

√
ε1

≤ 2q
(√

ADVsk[B]
OW-CPA
pke +

√
ε23 +

√
ε1

)
.
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Additionally,

√
ε23 =

√
2qD ·

(
4
(
(qH + qD) + (qD + 1)qH

)√
2gsk + 2−n

)
≤6
√
qHqD ·

(
g
1/4
sk + 2−n/2

)
≤12
√
qqD · g1/4sk ,

where we have used the fact that 2−n ≤ gsk ≤ 1 in the last line. Taking the expectation over
(sk, pk)← Gen, applying Jensen’s inequality and using qH + qD ≤ q once more, we get the claimed
bound. Finally, we note that the runtime of B is given by TB = TA + TDecaps + TG + TS , where
apart from its oracle queries Decaps runs in time linear in qD, and S can be simulated in time

TS = O
(
qRO · qE · Time[f ] + q2RO

)
= O

(
qH · qD · Time[Enc] + q2

)
by Theorem 4.3, and similarly for G. ut
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Appendix

A A gap in the security proof from [Zha19] for the FO transformation

In his seminal paper [Zha19], Zhandry introduced the so-called compressed-oracle technique, a
ground-breaking method that led to many new results in post-quantum cryptography, quan-
tum query complexity and beyond. One of the most important features of the compressed-oracle
methodology is that it allows the approximate recovery of several features of the classical ROM,
that were previously believed lost when moving to the QROM.

The new, “virtually classical” ways of reasoning about quantum access to a random oracle are
very intuitive. This fact bears a certain risk that the reach of classical intuition in the compressed-
oracle framework is overestimated. In the following, we describe a gap in the security proof for the
Fujisaki-Okamoto (FO) transformation given in [Zha19], which was likely caused by following the
classical intuition too closely.

One step in security reductions for the FO transformation is the simulation of the decryption
or decapsulation oracle without making use of the secret key. This simulation is done by accessing
(either actively by programming, or passively by preimage awareness) the adversary’s random-
oracle interface. For proofs in the QROM, the adversary’s queries cannot be compiled into a list
in a straight-forward manner (due to the no-cloning principle, if you will). If a reduction collects
information about an adversary’s QROM queries during runtime, be it by directly accessing the
adversary’s query input or output, or by acting on the compressed-oracle register, it needs to be
analyzed to which degree the information-collection operation can be noticed by the adversary.

In the security proof for the FO transformation in [Zha19], the replacement of the decryption
oracle by a simulated version happens gradually in Hybrids 2 to 4 (Lemma 43 and 44 in the
full version of [Zha19]). In more detail, in Hybrid 2 a (purified) “test” is performed on the state
of the compressed oracle before the reply to the decryption query is prepared and sent, and then
uncomputed again right afterwards; since (due to Lemma 39 of [Zha19]) the uncomputation almost
commutes with the re-encryption check performed as part of the preparation of the reply, this “test”
and its uncomputation have negligibe effect. In Hybrid 3, the result of the “test” is then used in
the derivation of the reply to the decryption query by setting the reply to ⊥ in case the “test” fails.
Finally, in Hybrid 4, it is declared that the (simulated) decryption oracle “scans over the inputs of
the [compressed oracle] database for G, looking for inputs [of a certain form]. For each one, we will
check if [it encrypts to the queried ciphertext]”; the first database entry where the check succeeds
is then used to answer the query.

Using a more formal language, in each of these hybrids the reply to the decryption query is
obtained by means of applying a measurement to the state of the compressed oracle (where the
measurement depends on the queried ciphertext c, and on the secret key in Hybrids 2 and 3). In
Hybrid 2, the measurement consists of the “test”, the (ordinary) derivation of the oracle response,
and the uncomputation of the “test”. At the other end, in Hybrid 4, it consists of all the “scanning”
and “checking” etc. By the nature of quantum measurements, in both steps, from Hybrid 2 to 3 and
from Hybrid 3 to 4, both the reply of the (simulated) decryption oracle and the post-measurement
state of the compressed oracle (and thus the future behavior of the compressed oracle) may change.
While in the proof in [Zha19] it is argued for both steps, from Hybrid 2 to 3 and from Hybrid 3
to 4, that the reply of the (simulated) decryption oracle does (almost) not change, for neither of
the two steps is it argued that the post-measurement state is not (much) affected. As a matter of
fact, Hybrids 3 and 4 are described in such a “virtually classical” way that there is ambiguity to
translate them into proper descriptions of quantum measurements, necessary to analyze the effect
on the post-measurement state.
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It seems to us that completing the proof in [Zha19], which requires to rigorously specify the
respective quantum measurements in Hybrids 3 and 4 and to analyze the resulting disturbance of
the state of the compressed oracle, is non-trivial. Given the informal description of the hybrids, we
find it hard to judge whether it is “only” a question of filling in the gaps, or whether the claimed
indistinguishability of the hybrids is actually false (our proof uses a different sequence of hybrids).

Exactly the same problem exists in recent follow-up work by Katsumata, Kwiatkowski, Pintore
and Prest [KKPP20], who follow the FO proof outline from [Zha19].

B Efficient representation of the compressed oracle.

By the techniques of [Zha19], it is possible to make the (considered variant of the) compressed
oracle efficient. Concretely, by means of a suitable encoding, it is possible to efficiently maintain
the quantum state of the register D of the compressed oracle, compute the unitary OXYD, and
extract information from the state of D. We briefly describe this procedure below.

Writing Ȳ = {0, 1}n ∪ {⊥}, consider the following standard sparse encoding scheme

SparseEncq : ȲX → D = (X × Ȳ)q ,

which maps any “database” y = (yx)x∈X with at most q non-⊥ entries to the “compressed database”

SparseEncq(y) =
(
(x1, yx1

), . . . , (xs, yxs), (0,⊥), . . . , (0,⊥)
)

of pairs (x, yx) with yx 6= ⊥, sorted as x1 < · · · < xs, and padded with (0,⊥)s. Naturally, we then
set ∣∣SparseEncq(y)

〉
= |x1〉|yx1〉 · · · |xs〉|yxs〉|0〉|⊥〉 · · · |0〉|⊥〉 ∈

(
C[X ]⊗ C[Ȳ]

)⊗q
for any such y. The crucial observations now are:

1. Using the representation H⊗|X||y〉 7→ |SparseEncq(y)〉 for the state of register D after q queries,
the evolution of the compressed oracle, given by OXYD, is an efficiently quantum computable
isometry (this was shown by Zhandry, but is also easy to see from scratch). Here and below, H
is the Walsh-Hadamard transform on C[{0, 1}n] = (C2)⊗n, extended to act as identity on |⊥〉.

2. Using the representation |y〉 7→ |SparseEncq(y)〉 instead, it follows from basic theory of quantum
computation that for any classical function f with domain ȲX and that is classically efficiently
computable using the representation y 7→ SparseEncq(y), the unitary U : |y〉|z〉 7→ |y〉|z+f(y)〉
is efficiently quantum computable.

3. |y〉 7→ |SparseEncq(y)〉 commutes with applying Walsh-Hadamards to the C[Ȳ]-components.
Therefore, one can efficiently switch between the two representations above, simply by applying
H⊗q to the corresponding registers of |SparseEncq(y)〉.

Thus, using either of the two representations for representing the internal state of the oracle, both
the evolution of the oracle and the typical unitaries or measurements used to “read out” information
are efficiently quantum computable. For example, checking if yx = ⊥ for a given x ∈ X , or if there
exists x ∈ X for which x and yx satisfy some given (efficiently computable) relation, etc. Formally:

Lemma B.1. Let f : ({0, 1}n ∪ {⊥})|X | → T be a function such that f̃ = f ◦ SparseDecq can be
computed in polynomial time in q. Then the measurement {Π̃t}t∈T given by the projections

Π̃t =
∑

y:f̃(y)=t

|y〉〈y|

can be implemented in time linear in Time[f̃ ] and thus in quantum polynomial time in q.

C Supplementary proofs

C.1 Proof of Lemma 3.3

Recalling from (6) that F |y〉 = |y〉+ 2−n/2|δ〉 with |δ〉 := |⊥〉 − |φ0〉, we have

[F, |y〉〈y|] = F |y〉〈y| − |y〉〈y|F = 2−n/2|δ〉〈y| − 2−n/2|y〉〈δ| .
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From this, it follows that

[F,Πx] =
∑

y∈{0,1}n
(x,y)∈R

[F, |y〉〈y|] ≤ 2−n/2 |δ〉
∑

y∈{0,1}n
(x,y)∈R

〈y| − 2−n/2
∑

y∈{0,1}n
(x,y)∈R

|y〉〈δ|

and thus, using (1), that

‖[F,Πx]‖ ≤ 2−n/2 ‖|δ〉‖
∥∥∥∥ ∑
y∈{0,1}n
(x,y)∈R

〈y|
∥∥∥∥ ≤ 2−n/2

√
2
√
Γx .

For the second bound, let CY Dx = CNOT with CNOT as in (7), with the understanding that
Dx is the control register and Y the target. Recall from (7) that OxY Dx = FDxCY DxFDx . Thus,
using (3) twice and omitting the registers, we obtain

[Ox, Πx] = F [CF,Πx] + [F,Πx]CF = FC[F,Πx] + F [C,Πx]F + [F,Πx]CF .

Finally, we notice that [CY Dx , Π
x
Dx

] = 0, since projections on the control register of a CNOT
commute with the CNOT. The claimed bound now follows from the derived bound on [F,Πx]
together with Equation (4).

The third bound follows by recalling that Π∅D =
⊗

x′ Π̄
x′

Dx′
is a tensor-product for which OxY Dx

acts trivially on all the components except for the component Π̄x
Dx

, so with Equation (4) we obtain,

‖[OxY Dx , Π
∅
D]‖ ≤ ‖[OxY Dx , Π̄

x
Dx ]‖ = ‖[OxY Dx , Π

x
Dx ]‖ ,

which completes the proof. ut

C.2 Proof of Proposition 4.5

The left circuit in Fig. 9 defines (the distribution of) the considered variables x, x̂, h, t. We also
consider the circuit that applies the measurement {Πcol, Π¬col} instead of Mt, where Πcol is
as in Lemma D.1 and Π¬col = 1 − Πcol (Fig. 9, middle). Since the projections defining either
measurement are all diagonal in the basis {|y〉}, we may equivalently measure register D in that
basis (Fig. 9, right), and then set x̂ to be the smallest element X so that f(x̂, yx̂) = t (with x̂ = ∅ if
no such element exists) and consider the event col given by ∃x′ 6= x′′ : f(x′, yx′) = f(x′′, yx′′). By
the respective definitions ofMt and Πcol, both, the variables x̂, x, h, t and the event and variable
col and x, h, t then have the same distributions as in the respective original two games. But now,
we can consider their joint distribution and argue that

Pr[x̂ 6= x ∧ f(x, h) = t] ≤ Pr[x̂ 6= x | f(x, h) = t ∧ ¬col] + Pr[col] .

We now observe that right before the considered measurement, by definition of O, the state of D
is supported by vectors F |y〉 with yx = h (here we use the assumption that no previous extraction
queries have been made, see Preliminaries for further detail), and so the measurement outcome y
satisfies yx = h with probability 1−2 ·2−n by Equation (8). Therefore, the first term is bounded by
2 · 2−n by definition of col and x̂, while Pr[col] is bounded by 40e2(q+2)3Γ ′(f)+2

2n , using Lemma D.1.
ut

D

O

...

O

Mt x̂

X

A0

...

Aq

x x

Y ... 0 h

... t • t

...

O

Πcol

... x

... h

... t

...

O

y ; x̂

... x

... h

... t

Fig. 9. Quantum circuit diagrams for the experiments in the proof of Prop. 4.5.
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D Hardness of collision finding

The following can be easily extracted from the derivation of the general collision-finding bound
Theorem 5.29 from [CFHL20]. It expresses that, for any algorithm with bounded query complexity,
it is unlikely that one encounters a collision within the superposition oracle.

Lemma D.1. Let f : X × {0, 1}n → T , and let Πcol be the projection into the space spanned
by |y〉 ∈ HD for y = (yx)x∈X ∈ (Y ∪ {⊥})X such that there exist x 6= x′ with yx, yx′ 6= ⊥ and
f(x, yx) = f(x′, yx′). Then, for any oracle algorithm A with query complexity q, at the end of the
execution the state ρ of the compressed oracle is such that

tr(Πcolρ) ≤ 40e2q2(q + 1)Γ ′(f)/2n ,

where Γ ′(f) = max
x 6=x′,y′

|{y | f(x, y) = f(x′, y′)}| and e ≈ 2.718 is Euler’s number.

E Application to Fiat Shamir Signatures

Σ-protocols are commonly used to obtain non-interactive zero-knowledge proofs and digital sig-
natures via the Fiat Shamir (FS) transform. Here, the random challenges are (possibly after a
suitable number of parallel repetitions) replaced by the hash of the first message in the 3-round
protocol, thus making the protocol non-interactive. To construct a digital signature scheme (DSS),
the message to be signed is included in the hash argument.15

The post-quantum security of FS signatures has recently drawn additional attention. This is
mainly because FS signatures are some of the most promising candidates for replacing RSA and
elliptic curve signatures which can be broken by quantum adversaries. Indeed, two out of the
6 round-3 candidate DSSs in the NIST standardization process for post-quantum cryptographic
schemes, CRYSTALS Dilithium [DKL+18] and Picnic [CDG+17], are FS signature schemes. In the
QROM,16 the chain of arguments for reducing the UF-CMA security of a FS signature scheme
Sig[Σ] to the i) honest-verifier zero-knowledge, and ii) (some variant of the) special soundness,
properties of the underlying Σ-protocol Σ as follows (also depicted in Fig. 10).

– First, the UF-CMA security of Sig[Σ] is reduced to plain unforgeability (UF-NMA), using the
HVZK property of Σ [KLS18, GHHM20].

– The UF-NMA property of Sig[Σ] follows from the extractability of the Fiat Shamir transfor-
mation FS[Σ] of Σ.

– The extractability of FS[Σ] is then reduced to the extractability of Σ [DFMS19, LZ19b,
DFM20].

– Finally, the extractability of Σ is reduced to the (variant of) special soundness of Σ [Unr12].

UF-CMA
of Sig[Σ]

⇐=
UF-NMA
of Sig[Σ]

⇐=
Extractability

of FS[Σ]
⇐=

Extractability
of Σ ⇐=

Spec. soundness
of Σ

Fig. 10. Chain of arguments for proving security of FS signatures.

Prior to this work, the last step (arguing extractability from special soundness) has relied on
Unruh’s rewinding lemma [Unr12], which after suitable generalization leads, e.g., to a 2k + 1-th
root loss for a k-sound Σ. For commit-and-open Σ-protocols, Theorem 5.4 can replace Unruhs
rewinding lemma when working in the QROM, making the last step above tight up to unavoidable
additive errors.

As an example, Theorem 5.4 implies a sizeable improvement over the current best QROM
security proof of Picnic2 [CDG+17, KZ20, CDG+19]. Indeed, Unruh’s rewinding lemma implies a
6-th root loss for the variant of special soundness the underlying Σ-protocol possesses [DFMS19],
while Theorem 5.4 is tight.
15 For FS DSS, the relation R needs to admit an efficient generator of hard instances.
16 The typical ROM reductions proceed similarly
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We note that for commit-and-open Σ-protocols, there is hope for further improvements by
means of combining the last two steps and doing a direct analysis of FS[Σ]. Indeed, [Cha19] suggests
such an approach, but the analysis provided there there still relies on some unproven assumption.

F Public-Key Encryption and Key Encapsulation

Following the presentation of [HHK17] in general lines, we recall the formal definition of a public-
key encryption scheme.

Definition F.1 (Public-Key Encryption). A public-key encryption scheme PKE consists of
algorithms (Gen,Enc,Dec), a message spaceM, a ciphertext space C and a set of random coins R,
such that for any m ∈M, r ∈ R

(sk, pk)← Gen , C 3 c← Encpk(m; r) and Decsk(c) ∈M∪ {⊥} .

For a given public-key encryption scheme, it may be useful to consider the probability of
encountering decryption failures.

Definition F.2 (δ-correctness). A public-key encryption scheme is δ-correct if

E
(sk,pk)←Gen

[
max
m∈M

Pr
[
Decsk(c) 6= m : c← Encpk(m)

]]
≤ δ

where the probability is over the randomness of the encryption.

Another important property of encryption schemes is the min-entropy of a ciphertext given the
plaintext, measured by their γ-spreadness.

Definition F.3 (γ-spreadness). A public-key encryption scheme is γ-spread if

min
m∈M
(sk,pk)

(
− log max

c∈C
Pr
[
c = Encpk(m)

])
≥ γ ,

where the probability is over the randomness of the encryption, and the minimum is over all key
pairs that have positive probability of being produced by Gen.

The above definition can be relaxed to an expectation over the choice of pk, when the expectation
is done inside the negative logarithm.

Definition F.4 (weak γ-spreadness). A public-key encryption scheme is weakly γ-spread if

− log E
(sk,pk)←Gen

[
max
m∈M
c∈C

Pr
[
c = Encpk(m)

]]
≥ γ ,

where again the probability is over the randomness of the encryption.

A key-encapsulation mechanism (KEM) is defined as follows:

Definition F.5 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM con-
sists of algorithms (Gen,Encaps,Decaps) and a key space K, where

(sk, pk)← Gen , (K, c)← Encaps(pk) and Decapssk(c) ∈ K ∪ {⊥} .
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