
Non-Interactive Half-Aggregate Signatures

Based on Module Lattices

A First Attempt

Katharina Boudgoust1 and Adeline Roux-Langlois2

katharina.boudgoust@cs.au.dk, adeline.roux-langlois@irisa.fr

1 Aarhus University
2 Univ Rennes, CNRS, IRISA

Abstract. The Fiat-Shamir with Aborts paradigm of Lyubashevsky has
given rise to e�cient lattice-based signature schemes. One popular imple-
mentation is Dilithium which is a �nalist in an ongoing standardization
process run by the NIST. Informally, it can be seen as a lattice ana-
logue of the well-known discrete-logarithm-based Schnorr signature. An
interesting research question is whether it is possible to combine several
unrelated signatures, issued from di�erent signing parties on di�erent
messages, into one single aggregated signature. Of course, its size should
be signi�cantly smaller than the trivial concatenation of all signatures.
Ideally, the aggregation can be done o�ine by a third party, called pub-
lic aggregation. Previous works have shown that it is possible to half-
aggregate Schnorr signatures, but it was left unclear if the underlying
techniques can be adapted to the lattice setting.
In this work, we show that, indeed, we can use similar strategies to
obtain a signature scheme allowing for public aggregation whose hardness
is proven assuming the intractability of two well-studied problems on
module lattices: The Module Learning With Errors problem (M-LWE)
and the Module Short Integer Solution problem (M-SIS).
Unfortunately, our scheme produces aggregated signatures that are larger
than the trivial solution of concatenating. This is due to peculiarities
that seem inherent to lattice-based cryptography. Its motivation is thus
mainly pedagogical, as we explain the subtleties when designing lattice-
based aggregate signatures that are supported by a proper security proof.

Keywords. Lattice-Based Cryptography, Module Lattices, Signature
Aggregation

1 Introduction

For a long time, the main focus of cryptology was on secure encryption. With the
invention of public key cryptology in the 1970s and the spread of the internet, the
need of secure key exchange and authentication of data became more and more
important. This is why nowadays the focus of public key cryptology increasingly
shifts towards digital signatures. A digital signature scheme ΠS with message

mailto:katharina.boudgoust@cs.au.dk
mailto:adeline.roux-langlois@irisa.fr

spaceM is composed of three algorithms KGen,Sig and Vf. The algorithm KGen
generates a key pair (sk, vk) for a given user, who can then use their3 secret key sk
to generate a signature σ on a given message m ∈ M by running Sig(sk,m).
Afterwards, this signature can be veri�ed by anyone using the veri�cation key vk,
which is publicly available, by running {0, 1} ← Vf(vk,m, σ). If the veri�cation
procedure outputs 1, the signature passes validation.

An interesting research question is whether it is possible to de�ne an addi-
tional algorithm σagg ← AggSig(VK,M,Σ) which takes as input a vector of N ∈
Z veri�cation keys VK = (vkj)j∈[N], a vector of N messages M = (mj)j∈[N] and
a vector of N signatures Σ = (σj)j∈[N], that were generated by the N di�erent
signing parties with corresponding veri�cation keys vkj , and outputs a single
signature σagg. We further require a way for others to verify that σagg is indeed
an aggregation of valid signatures. Thus, we need to provide a second additional
algorithm {0, 1} ← AggVf(VK,M, σagg), that outputs 1 if σagg is a valid ag-
gregation of N valid signatures. All �ve algorithms de�ne a so-called aggregate
signature scheme ΠAS = (KGen,Sig,Vf,AggSig,AggVf), where we require that
it must satisfy correctness and unforgeability properties. A trivial solution is to
set σagg as the concatenation of all the N di�erent signatures and verify one
after the other. In the following we are searching for an aggregate scheme that
produces a σagg which is signi�cantly shorter than this trivial solution. Ideally,
the aggregation algorithm AggSig can be performed by a third, even untrusted
party without needing to communicate with the N signing parties. We call this
public aggregation. The concept and a �rst realization of aggregate signatures
with public aggregation were given by Boneh et al. [Bon+03] by using bilinear
maps constructed over elliptic curves in the generic group model. Aggregate sig-
natures are a useful tool to save communication costs in settings where di�erent
users have to authenticate their communication, for instance in consensus pro-
tocols or certi�cate chains. More recently, they attracted increased interest as
they help to reduce the size of blockchains such as the Bitcoin blockchain.

Constructing aggregate signature schemes based on the discrete logarithm
problem (without bilinear maps) turned out to be much more harder, and so
far, only solutions that partly aggregate the signatures are known. Chalkias et
al. [Cha+21] build a half-aggregate scheme for the well-known Schnorr signa-
ture [Sch91]. It produces aggregate signatures of half the size compared to the
trivial solution of concatenating. Its security is proven in the Random Oracle
Model (ROM) assuming the hardness of the discrete logarithm problem. It was
left unclear if the underlying techniques can be adapted to the lattice setting.

Contributions. We propose an aggregate signature allowing public aggregation,
whose security is proven assuming simultaneously the hardness of Module Learn-
ing With Errors (M-LWE) and Module Short Integer Solution (M-SIS) and thus
based on worst-case module lattice problems [LS15]. Earlier proposals either only

3 Throughout the paper, the neutral singular pronouns they/their are used in or-
der to keep the language as inclusive as possible. See also https://www.acm.org/

diversity-inclusion/words-matter

https://www.acm.org/diversity-inclusion/words-matter
https://www.acm.org/diversity-inclusion/words-matter

o�ered security based on (non-standard) average-case lattice problems, or didn't
allow for public aggregation (cf. Related Works). From a high level perspec-
tive, we take the practical signature from Güneysu et al. [GLP12] as a starting
point. It follows the Fiat-Shamir with Aborts (FSwA) paradigm for lattice-based
schemes [Lyu12], which is also used in the signature Dilithium [Duc+18], a �nalist
in the ongoing NIST standardization process4.

Due to peculiarities that seem inherent to lattice-based cryptography, our
scheme produces aggregated signatures whose sizes are larger than the size of
the trivial solution (that is concatenating all the single signatures together).
The motivation of our work thus is pedagogical in order to demonstrate the
subtleties when designing lattice-based aggregate signatures that are supported
by a proper security proof, in a security model we explain below. We would
like to remark that most issues we came across also apply to the MMSA(TK)
aggregate signature [Dor+20] (cf. Related Works).

Technical Details. Let us quickly recall the FSwA paradigm for lattice-based
signatures in the module setting. In the following, all computations are done
over the ring Rq = Zq[x]/〈xn + 1〉, where n is a power of two and q is some
prime modulus. A veri�cation key is given as t = [A|Ik] ·s ∈ Rkq , where s ∈ R`+kq

is a vector of small norm (de�ning sk), A ∈ Rk×`q is a public uniform matrix
and Ik the identity matrix of order k. A signature is provided by σ = (u, z) ∈
Rkq ×R`+kq , where u is a commitment that via some hash function Hc de�nes a
challenge c, and z is the answer to this challenge. The challenge c is a polynomial
with coe�cients in {−1, 0, 1}. For veri�cation, one checks that z is short and
that [A|Ik] · z = t · c+ u, where c = Hc(u, t,m) for the veri�cation key t and a
message m. Adding t to the input of Hc is a simple countermeasure to prevent
so-called rogue-attacks [Bon+03, Sec. 3.2].

An intuitive way to aggregate N di�erent signatures (σj)j∈[N] with σj =
(uj , zj) into one signature σagg would be to compute the sum of all compo-
nents (

∑
j uj ,

∑
j zj). However, we wouldn't be able to verify this aggregated

signature as we can't re-compute the di�erent challenges cj as we don't know
the inputs uj to Hc, originally used by the signing parties. Thus, we can only
sum up the zj parts and still have to transmit all the uj , which produces an
aggregate signature of the form σagg = ((uj)j ,

∑
j zj).

5 This is essentially how
our (half-)aggregate signature looks like. In order to prevent again rogue-type
attacks, we use a linear combination (instead of the simple sum), where the co-
e�cients come from some random oracle (which was queried on all signatures
that are aggregated). This technique is also used in the Schnorr-analogue by
Chalkias et al. [Cha+21]. We formally present our aggregate signature scheme
in Section 3.2 and the rogue-attack for the simple-sum solution in Section 4.3.

The size of a single signature can be signi�cantly reduced by replacing the
commitment u ∈ Rkq by the challenge c ∈ R. This does not only reduce the

4 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
5 Chalkias et al. [Cha+21, Sec. 6] provide evidence that it is necessary to transmit all
the commitments.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

dimension of the vector from k to 1, but also the total bit-length from nk log2 q
to n log2 3, as u can be any vector in Rkq but c is a polynomial with ternary
coe�cients. Unfortunately, this can't be done in the aggregate setting, as we only
have knowledge of the aggregated value of all zj 's. This is the main reason of our
failure in constructing aggregate signatures schemes on lattices that are shorter
than the trivial concatenation. Note that in the discrete-logarithm setting of the
Schnorr aggregate signature in [Cha+21], the challenge c and the commitment u
are elements of the same space. This explains why there is a real improvement
for Schnorr signatures, but not for FSwA signatures.

In our aggregate signature, we have to transmit all N vectors (uj)j (and the
smallish linear combination of all the zj), whereas in the trivial concatenation
we transmit all N challenges (cj)j (and the N small vectors zj). The size of
the uj is so large that it annihilates the compressing e�ect of combining all
the zj . More concretely, taking the level III parameters of Dilithium [Duc+18]
and N = 1000 signatures to aggregate, then (u1, . . . ,uN) ∈ (Rkq)

N is of size
ca. 4400 KB.6 However, simply concatenating N single Dilithium signatures
produces an aggregate signature of a smaller size of ca. 3300 KB. Note that both
earlier versions of this paper on e-print (3 Mar 2021 and 8 Apr 2021) we further
compressed the aggregated signature via some linear function T to obtain a
solution that was indeed smaller than the trivial concatenation. As we elaborate
in Section 3.3, this allowed for simple lattice attacks.

In Section 4.2, we provide a rigorous security proof (Theorem 1), where the
proof idea follows the one of Damgård et al. [Dam+21] for their inter-active
multi-signature (cf. Related Works). It is composed of a sequence of indistin-
guishable games (assuming the hardness of M-LWE), where the starting one is
the security game of our aggregate signature. The game is speci�ed by the ag-
gregate chosen key model, as introduced by Boneh et al. [Bon+03]. In the last
game, the signing procedure is simulated by some algorithm that doesn't depend
on the secret key and the veri�cation key is sampled uniformly at random. By
applying (twice) the General Forking Lemma from Bellare and Neven [BN06]
we can use four di�erent responses of a successful adversary against the scheme
in the last game to solve an instance of M-SIS. This "double forking technique"
has been used in the setting of multi-signatures, see Maxwell et al. [Max+19].
As we don't need trapdoor commitment schemes, the proof is less technical than
the one in [Dam+21].

Related Works. A �rst attempt to build lattice-based aggregate signatures with
public aggregation was made by Doröz et al. [Dor+20]. Their construction builds
upon the signature scheme PASS Sign, introduced by Ho�stein et al. [Hof+14].
As a warm-up, they introduce a simple linear (half-)aggregate signature, which
they call MMSA (multi-message, multi-user signature aggregation). However, in
this version, the aggregate signature is larger than the trivial concatenation of N
di�erent signatures. In order to improve the e�ciency, they �rst compress the sig-

6 This calculation does not even take into account the fact that in our aggregate
signature log2 q has to be increased by some factor log2

√
N .

nature, leading to MMSAT (the T stands for a linear compression function T),
and then compress the veri�cation keys, leading to MMSATK. Unfortunately,
their construction has several disadvantages: First, the linear compression used
in MMSAT(K) is prone to simple forgery attacks (similar to Section 3.3), mak-
ing those constructions insecure. Second, they only provide a security proof for
the �rst variant MMSA by showing that it inherits the security of the underly-
ing PASS Sign, and subsequently its security can be based on the hardness of the
Partial Fourier Recovery problem (PFR). The PFR asks to recover a polynomial
in the ring Z[x]/〈xn − 1〉 of small norm having access only to a partial list of its
Fourier transform. It can be formulated as a bounded distance decoding problem
over some ideal lattice. This may rise security concerns, as problems over ideal
lattices have been shown to be in speci�c parameter settings easier than their
counterparts over arbitrary lattices, e.g., [CDW21]. Furthermore, up to today,
there are no connections to worst-case lattice problems, which may be seen as
an additional security concern.

In a parallel line of research, aggregate signature schemes that only allow for
private aggregation have been proposed. In this setting, the di�erent signing par-
ties interact with each other to generate an aggregated signature on one message,
which can be the concatenation of di�erent messages. Those are also known as
multi-signature schemes and there have been several recent protocols following
the FSwA paradigm providing lattice-based inter-active aggregate signatures,
see for instance [Dam+21] and references therein.

Open Problems. We leave as an open problem the construction of an aggre-
gate signature scheme based on standard lattice-problems which allows public
aggregation, produces aggregate signatures that are smaller than the simple con-
catenation and at the same time is provably secure in the aggregate chosen-key
security model.

Change Log. This is the second revision of the paper originally submitted to
e-print in March 2021. The �rst revision (April 2021) took into account the
attack against the simple sum solution in the chosen key model (Section 4.3).
As, at the time of writing this version, we weren't aware of any other way to
�x the scheme, we proved its security in a more restricted security model, that
we called the aggregate independent-chosen-key model. The latest revision (May
2022) now uses a randomized linear combination of the single signatures (instead
of a simple sum), where the scalars come from a large enough space. The security
of the scheme can now be proven in the standard security model of aggregate
signatures. However, we had to remove the compressing function T that we
originally applied to the input to the hash function Hc as linear compressing is
prone to simple lattice attacks (cf. Section 3.3). To avoid misunderstanding, we
accordingly changed the title of the paper.

2 Preliminaries

For k ∈ N, we represent the set {1, . . . , k} by [k]. Vectors are denoted in bold
lowercase and matrices in bold capital letters and the identity matrix of order k
is denoted by Ik. The concatenation of two matrices A and B with the same
number of rows is denoted by [A|B]. For any set S, we denote by U(S) the
uniform distribution over S. We write x← D to denote the process of sampling
an element x following the distributionD. Throughout the paper R = Z[x]/〈xn+
1〉 denotes the ring of integers of the 2n-th cyclotomic �eld, where n is a power of
two. Further, q is a prime such that q = 1 mod 2n de�ning the quotient ring Rq =
Zq[x]/〈xn+1〉. An element a =

∑n
j=1 ajx

j−1 of R is identi�ed with its coe�cient
vector a = (aj)j∈[n] ∈ Zn. For any ring element a ∈ R, we set ‖a‖∞, ‖a‖2
and ‖a‖1 as the in�nity, the Euclidean and the `1-norm of its coe�cient vector,
respectively. All norms can be generalized to vectors a ∈ Rk for k ∈ N, by
considering the coe�cient vector of dimension kn de�ned by a. We rely on the
key set Sβ = {a ∈ R : ‖a‖∞ ≤ β} with β ∈ N.

2.1 Module Lattice Problems

We also recall two lattice problems and refer to [LS15] for more details. We state
them in their discrete, primal and HNF form.

De�nition 1 (M-LWE). Let k, `, β ∈ N. The Module Learning With Errors
problem M-LWEk,`,β is de�ned as follows. Given A ← U(Rk×`q) and t ∈ Rkq .

Decide whether t← U(Rkq) or if t = [A|Ik] · s, where s← U(S`+kβ).

The M-LWE assumption states that no PPT distinguisher can distinguish the
two distributions with non-negligible advantage. Worst-case to average-case re-
ductions guarantee that M-LWE is quantumly [LS15] and classically [Bou+20]
at least as hard as the approximate shortest vector problem over module lattices.

De�nition 2 (M-SIS). Let k, `, b ∈ N. The Module Short Integer Solution prob-
lem M-SISk,`,b is as follows. Given a uniformly random matrix A ← U(Rk×`q).

Find a non-zero vector s ∈ Rk+`q such that ‖s‖2 ≤ b and [A|Ik] · s = 0 ∈ Rkq .

The M-SIS assumption states that no PPT adversary can solve this problem
with non-negligible probability. Worst-case to average-case reductions guarantee
that M-SIS is classically [LS15] at least as hard as the approximate shortest
independent vector problem over module lattices.

2.2 Aggregate Signature Schemes

We present the formal de�nition of aggregate signature schemes and their prop-
erty of correctness.

De�nition 3. An aggregate signature scheme ΠAS for a message spaceM con-
sists of a tuple of PPT algorithms ΠAS = (KGen,Sig,Vf,AggSig,AggVf), pro-
ceeding as speci�ed in the following protocol:

KGen(1λ)→ (sk, vk) : On input a security parameter λ, the key generation algo-
rithm returns a secret signing key sk and a public veri�cation key vk.

Sig(sk,m)→ σ : On input a signing key sk and a message m ∈ M, the signing
algorithm returns a signature σ.

Vf(vk,m, σ)→ {0, 1} : On input a veri�cation key vk, a message m ∈ M and
a signature σ, the veri�cation algorithm either accepts (i.e. outputs 1) or
rejects (i.e. outputs 0).

AggSig(VK,M,Σ)→ σagg : Given as input a vector of veri�cation keys VK =
(vkj)j∈[N], a vector of messages M = (mj)j∈[N] and a vector of signa-
tures Σ = (σj)j∈[N], the signature aggregation algorithm returns a aggregated
signature σagg.

AggVf(VK,M, σagg)→ {0, 1} : Given as input a vector of veri�cation keys VK =
(vkj)j∈[N], a vector of messages M = (mj)j∈[N] and an aggregated signa-
ture σagg, the aggregated veri�cation algorithm either accepts (i.e. outputs 1)
or rejects (i.e. outputs 0).

De�nition 4. Let ΠAS = (KGen,Sig,Vf,AggSig,AggVf) be an aggregate sig-
nature scheme for a message space M. It is called correct if for all security
parameters λ ∈ N and number of signers N ∈ N it yields

Pr[AggVf(VK,M,AggSig(VK,M,Σ)) = 1] = 1,

where mj ∈ M, (skj , vkj) ← KGen(1λ) and σj ← Sig(skj ,mj) for j ∈ [N]
and VK = (vkj)j∈[N], M = (mj)j∈[N] and Σ = (σj)j∈[N].

2.3 General Forking Lemma

For the sake of completeness and to �x notations, we restate the General Forking
Lemma from Bellare and Neven [BN06].

Lemma 1 (General Forking Lemma). Let Nq ≥ 1 be an integer and let C be
a set of size |C| ≥ 2. Let B be a randomized algorithm that on input x, h1, . . . , hNq
returns a pair (j, out), where j ∈ {0, . . . , Nq} and a side output out. Let IGen be a
randomized algorithm called the input generator, parametrized by some security
parameter λ. We de�ne the accepting probability of B as

acc = Pr[j 6= 0: x← IGen(1λ);h1, . . . , hNq ← U(H); (j, out)← B(x, h1, . . . , hNq)].

Let FB be a forking algorithm that works as in Figure 1, given x as input and
black-box access to B. We de�ne the forking probability of FB as

frk = Pr[(out, õut) 6= (⊥,⊥) : x← IGen(1λ); (out, õut)← FB(x)].

Then it yields acc ≤ Nq/ |C|+
√
Nq · frk.

Upon input x, the algorithm FB does the following:
1. Pick a random coin ρ for B
2. Generate h1, . . . , hNq ← U(C)
3. (j, out)← B(x, h1, . . . , hNq , ρ)
4. If j = 0, then return (⊥,⊥)
5. Regenerate h̃j , . . . , h̃Nq ← U(C)

6. (j̃, õut)← B(x, h1, . . . , hj−1, h̃j , . . . , h̃Nq , ρ)

7. If j = j̃ and hj 6= h̃j , then return (out, õut)
8. Else return (⊥,⊥).

Fig. 1. The forking algorithm FB.

3 Our Lattice-Based Aggregate Signature Scheme

In this section we �rst present the underlying single signature scheme (Sec-
tion 3.1) before introducing our aggregate signature scheme in Section 3.2.
From a high level perspective, we take the practical signature from Güneysu et
al. [GLP12] as a starting point. The linear aggregation follows the idea of Doröz
et. al [Dor+20], where the main di�erence is that we moved to theM-LWE/M-SIS
framework instead of the Partial Fourier Recovery framework of the original
scheme. We think that M-LWE and M-SIS are more standard lattice problems
and thus they increase our con�dence in the security of the proposed scheme.
Lastly, we explain in Section 3.3 why the linear compression idea that we used
in an earlier version and that we adapted from MMSA(TK) [Dor+20] leads to
e�cient lattice attacks.

3.1 The Single Signature Scheme

In the following we describe the underlying single signature scheme, which is
essentially the signature scheme from Güneysu et al. [GLP12] with minor mod-
i�cations. Let Rq = Zq[x]/〈xn + 1〉, with n a power of two and q a prime such
that q = 1 mod 2n. For k, ` ∈ N, let A ∈ Rk×`q follow the uniform distribution
and be a public shared parameter of the system. The number of columns ` and
the number of rows k should be adapted to the required security level, but usually
they are small constants. Let Hc : {0, 1}∗ → C = {c ∈ R : ‖c‖1 = d, ‖c‖∞ = 1}
be a random oracle with d such that |C| > 22λ, where λ denotes the required
security level. Let s, β,M ∈ Z and the message spaceM = {0, 1}∗. Finally, let D
denote a distribution over R`+k providing (with overwhelming probability) vec-
tors of norm at most B and to which we associate a rejection probability Prrej .

The signature scheme ΠS = (KGen,Sig,Vf) from [GLP12] with minor modi-
�cations is illustrated in Figure 2.

Description. The algorithm KGen samples a secret key vector s, composed of
elements of R with coe�cients of size at most β, and sets the veri�cation key
to t = [A|Ik] · s ∈ Rkq . At the beginning of the signing procedure, a masking

KGen(1λ) : sample s← U(S`+kβ)

set sk = s and vk = t = [A|Ik] · s ∈ Rkq
return (sk, vk)

Sig(sk,m) : set z = ⊥
while z = ⊥ do:
sample y← D

set u = [A|Ik] · y ∈ Rkq
compute c = Hc(u, t,m) ∈ C
set z = s · c+ y
with probability 1− Prrej
set z = ⊥

return σ = (u, z)
Vf(vk, σ,m) : re-construct c = Hc(u, t,m)

if ‖z‖2 < B and [A|Ik] · z = t · c+ u,
then return 1

else return 0

Fig. 2. The signature scheme from [GLP12] with minor modi�cations.

vector y following the distribution D is sampled. The signing party then com-
putes u = [A|Ik] · y ∈ Rkq , which serves together with the veri�cation key t and
the messagem as input to the random oracle Hc. The output c of Hc is a polyno-
mial in R with exactly d coe�cients that are ±1 and the remaining coe�cients
are 0. The second part of a potential signature is de�ned as z = s · c + y. In
order to make the distribution of the signature independent of the secret key, the
algorithm only outputs the potential signature with probability Prrej . This step
is called rejection sampling. In order to verify σ, the veri�er �rst re-constructs
the hash value c = Hc(u, t,m) and then checks if the norm of z is smaller than B
and that [A|Ik] · z = t · c+ u. The parameters β, d,B and Prrej have to be set
strategically such that the scheme is correct, e�cient and secure, see [Lyu12;
Duc+18].

Distribution D. For simplicity, we leave the concrete implementation of the dis-
tribution D open. In the literature, mainly two instantiations have been studied:
the discrete Gaussian distribution over R and the uniform distribution over the
set of elements of small norms [Lyu09; Lyu12]. The literature provides concrete
formulas for the rejection probability Prrej and the bound B. For example,
for D = Dk+`

s the discrete Gaussian distribution of width s, the bound B comes
from the Gaussian tail bound and the rejection probability can be computed as
min(1, D`+k

s (z)/M · D`+k
c·s,s(z)), where M is a constant that depends on β (the

Euclidean norm of the secret s) and d (the `1-norm of the challenge c).

Modi�cations. A �rst di�erence to the signature scheme in [GLP12] is that
instead of transmitting c in the signature, we send u. For a single signature, both
cases are equivalent, as u de�nes c via the hash function Hc (and the veri�cation
key t and the message m) and c de�nes u via the equation u = [A|Ik] · z− t · c

over Rq. In Section 3.2 we see that this is not the case for an aggregate signature
scheme and we thus need to transmit the information u.

Another modi�cation is that we add the veri�cation key t to the input of
the hash function Hc to compute the challenge c. As proposed by Boneh et
al. [Bon+03, Sec. 3.2] and implemented for MMSA(TK) in [Dor+20, Sec. 8.2],
adding t to the input ofHc ties the hash value to the (sk, vk)-pair, which prevents
so-called rogue key attacks (also called key swap attacks) on aggregate signatures.

Security. Overall, the security of the scheme ΠS = (KGen,Sig,Vf) as speci�ed
in Figure 2 is based on the hardness of M-LWE and M-SIS. For the reason of
space limits, we don't go into detail here, but refer the interested reader to the
original security proofs in [Lyu12] and [GLP12] in the ROM.

3.2 Non-Interactive Half-Aggregation of Signatures

In the following we describe how to aggregate signatures from the scheme above.
Assume that we have N di�erent users with corresponding secret keys s1, . . . , sN
and veri�cation keys VK = (vkj)j∈[N], where vkj = tj = [A|Ik] · sj using the
same public matrix A. The N users signed N di�erent messagesM = (mj)j∈[N],
producing N independent signatures Σ = (σj)j∈[N] = (uj , zj)j . For the aggre-
gation, we need another random oracle He : {0, 1}∗ → C, where C is the same
challenge space as in the single signature scheme, characterized by some positive
integer d. Further, we let B′ denote the bound on the norm of an aggregated
signature. It's concrete value depends on the distribution D (and its bound B)
used for the single signature. Informally speaking, if D is a discrete Gaussian,
so is B′ = O(

√
NB). If D is the uniform distribution over vectors of bounded

norm, so is B′ = O(NB). For simplicity, we set B′ = N
√
dB in the following.

The non-interactive half-aggregation of signatures is illustrated in Figure 3. The
aggregate signature scheme is given by ΠAS = (KGen,Sig,Vf,AggSig,AggVf).

AggSig(VK,M,Σ) : For j ∈ [N] compute cj = Hc(uj , tj ,mj)
Then query ej ← He(c1, . . . , cN , j) for all j ∈ [N]

Set z =
∑
j ejzj ∈ R

`+k
q

if ‖z‖2 ≤ B
′,

then return σagg = ((uj)j , z);
else
return ⊥;

AggVf(VK,M, σagg) : Re-construct cj = Hc(uj , tj ,mj) for all j ∈ [N]
And ej ← He(c1, . . . , cN , j) for all j ∈ [N]
If ‖z‖2 < B′

and if [A|Ik] · z =
∑
j ej(tj · cj + uj)

return 1; else return 0;

Fig. 3. Non-Interactive Half-Aggregation of Signatures.

In order to aggregate N signatures (σj)j∈[N] the algorithm AggSig �rst recon-
structs the challenges cj = Hc(uj , tj ,mj) for every j ∈ [N] and queries He to
obtain (ej = He(c1, . . . , cN , j) for every index j ∈ [N]. It then computes the
sum z =

∑
j ejzj and outputs the aggregated signature σagg = ((uj)j , z), if the

Euclidean norm of z is bounded above by B′. Else the algorithm outputs ⊥. Note
that ‖z‖2 =

∥∥∥∑j ejzj

∥∥∥
2
≤
∑
j ‖ejzj‖2 ≤

∑
j ‖ej‖2 · ‖zj‖2 ≤ N ·

√
d · B = B′

(at least with overwhelming probability). Thus, the probability that AggSig out-
puts ⊥ is negligible. The aggregation can be done by anyone, even by untrusted
parties, as long as they have access to the random oracle Hc. Thus, public ag-
gregation is enabled.

To verify an aggregated signature σagg, AggVf �rst re-constructs the chal-
lenges cj for j ∈ [N] by using the commitment uj provided in σagg, the ver-
i�cation key tj and the message mj . Then it re-constructs the scalars ej =
He(c1, . . . , cN , j) for every j. The algorithm then checks if the norm of z lies
within the correct bound. Finally it veri�es the equations [A, Ik] · z =

∑
j(tj ·

cj + uj). If all checks go through, it outputs 1, else 0.

Remark 1. It now becomes clear that transmitting cj wouldn't be su�cient to
verify the aggregated signature: as the veri�er only knows the term z, but not
all the zj , they cannot reconstruct uj from cj . Without knowing uj , however,
the veri�er would not be able to verify the aggregated signature. Inter-active
multi-signatures circumvent this issue by generating inter-actively one common
input u to the random oracle that depends on all the uj , before sending the
multi-signature, see for instance [BS16] or [Dam+21]. As a public aggregation is
our main objective, we accept a larger aggregated signature size.

The correctness of our protocol ΠAS simply follows from the linearity of
matrix-vector multiplication over Rq.

Lemma 2 (Correctness). Let ΠAS = (KGen,Sig,Vf,AggSig,AggVf) be the ag-
gregate signature scheme for a message space M with the algorithms as in Fig-
ures 2 and 3. Assuming the correctness of the corresponding single signature
scheme ΠS = (KGen,Sig,Vf), the aggregate signature is correct, i.e.,

Pr[AggVf(VK,M,AggSig(VK,M,Σ)) = 1|AggSig(VK,M,Σ) 6= ⊥] = 1,

where mj ∈ M, (skj , vkj) ← KGen(1λ) and σj ← Sig(skj ,mj) for j ∈ [N]
and VK = (vkj)j∈[N], M = (mj)j∈[N] and Σ = (σj)j∈[N].

Proof. Let σagg 6= ⊥ be the aggregate signature produced by AggSig(VK,M,Σ).
The �rst check if ‖z‖2 ≤ B′ succeeds by the construction of AggSig. For the last
check, we compute

[A|Ik] · z = [A|Ik] ·

 N∑
j=1

ejzj

 =

N∑
j=1

ej [A|Ik] · zj =
N∑
j=1

ej(tj · cj + uj),

where we used the linearity over Rq and the correctness of ΠS . ut

Remark 2. In order to guarantee the correctness of the scheme, it is important
that all key pairs (sk, vk) share the same public matrix A. It can be computed
interactively by all, or by a reasonable large subset of all parties together during
a setup-phase as in [Dam+21]. In order to gain in e�ciency, it can instead also
be computed by some compact random seed.

3.3 Why Linear Compression Is A Bad Idea

In earlier versions of this work we followed the idea of MMSA(TK) [Dor+20]
to further compress the aggregated signature. For the compression we used
a linear function T : Rkq → Zn0

q and applied it to the commitment uj be-
fore inputting it to the random oracle Hc. An aggregate signature was given
by σagg = (

∑
j uj , T (uj)j ,

∑
j zj).

7 The key idea behind the compression was
that (

∑
j uj , T (uj)j∈[N]) is much smaller than the complete vector (uj)j∈[N]. At

the same time, n0 is chosen large enough to guarantee combinatorial security
(that is 2λ ≤ qn0) as we set n0 such that it is hard to �nd a collision of Hc for
�xed veri�cation key t and message m.

In order to make aggregation compatible with the single signatures, the sign-
ing procedure (for a single signature) has to be modi�ed. Instead of inputting uj
to Hc, only the compressed vector T (uj) serves as input, see Figure 4. As we
elaborate in the following, this de�nes an insecure signature scheme.8

Sig(sk,m) : set z = ⊥
while z = ⊥ do:
sample y← D

set u = [A|Ik] · y ∈ Rkq
compute c = Hc(T (u), t,m) ∈ C
set z = s · c+ y
with probability 1− Prrej
set z = ⊥

return σ = (u, z)
Vf(vk, σ,m) : re-construct c = Hc(T (u), t,m)

if ‖z‖2 < B and [A|Ik] · z = t · c+ u,
then return 1

else return 0

Fig. 4. The signature scheme from [GLP12] with linear compression.

More precisely, we de�ne an attacker who is able to forge signatures on arbi-
trary messages for any given public key t without knowing the corresponding se-
cret key s. First, the attacker initiates the signing procedure by sampling y′ ← D

7 For the sake of simplicity we omit here the scalars coming from the hash function He,
as they are irrelevant for the attack. Further, it makes the presentation closer to the
previous version.

8 This attack has been described to us by Thomas Prest.

and computes u′ = [A|Ik]·y′. They then query c = Hc(T (u
′), t,m) to obtain the

challenge for an arbitrary message m. Now, they exploit the fact that T reduces
the lattice dimension from nk to n0. More precisely, they use standard lattice
reduction to �nd a short solution z to the equation T [A|Ik]z = T (u′+ t · c) and
set u := [A|Ik]z−t ·c. That is, they solve inhomogeneous SIS for the integer ma-

trix A′ = T [A|Ik] ∈ Zn0×(n(`+k))
q (ignoring the structure of A′). By the linearity

of T , it yields T (u) = T (u′) and thus σ = (u, z) de�nes a valid forgery for the
public key t. Note that there may not exist a short y such that [A, Ik]·y = u, but
assuming the hardness of decisional M-LWE, both u and u′ are computationally
close to uniform random vectors.

4 Security of Our Aggregate Signature Scheme

We recall in Sec. 4.1 the security model for aggregate signatures from Boneh et
al. [Bon+03], before proving in Sec. 4.2 the security of our scheme from Sec. 3.

4.1 The Aggregate Chosen-Key Security Model

Informally speaking, the security notion we use within this paper of an aggregate
signature scheme captures that there exists no e�cient adversary who is able to
existentially forge an aggregate signature, within a speci�ed game. We use the
aggregate chosen-key security model as introduced by Boneh et al. [Bon+03].
Let ΠAS = (KGen,Sig,Vf,AggSig,AggVf) be an aggregate signature scheme with
message space M as in De�nition 3 and let N be the number of aggregated
signatures. An adversary A attacking ΠAS is given a single veri�cation key vkN ,
the challenge key. Their goal is the existential forgery of an aggregate signature
involving N signatures, where we oblige A to include a signature that can be
veri�ed using the challenge key. The remaining N − 1 veri�cation keys can be
chosen freely by A. The adversary is also given access to a signing oracle on the
challenge key vkN . Their advantage, denoted by Adv AggSigA, is de�ned to be
their probability of success in the following game.

Setup. The aggregate forgerA is provided with a challenge veri�cation key vkN .
Queries. Proceeding adaptively,A queries signatures on messages of their choice

that can be veri�ed using the challenge key vkN .
Response. Finally, A outputs an aggregate signature σagg, together with a

message vector M = (mj)j∈[N] and veri�cation key vector VK = (vkj)j∈[N].
Result. The forger A wins the game if the aggregate signature σagg is a valid

aggregate on the veri�cation key-message pairs (vkj ,mj)j∈[N], i.e., if 1 ←
AggVf(VK,M, σagg). In order to avoid trivial solutions, A is not allowed to
hand in a pair (vkN ,mN), which was queried on the signing oracle before.

If we show the security in the Random Oracle Model (ROM), we also have to
give A the possibility to query the used random oracles.

De�nition 5. Let H denote hash function that is modeled as a random ora-
cle. An aggregate signature scheme ΠAS is called (NH , NSig, N)-secure against
existential forgery in the aggregate chosen-key model in the ROM, if there ex-
ists no PPT algorithm A that existentially forges an aggregate signature on N
veri�cation keys in the aggregate chosen-key model, where A has non-negligible
advantage, makes at most NH queries to the random oracle H and at most NSig

queries to the signing oracle on the challenge key.

4.2 Proof of Security

We now prove that our scheme is secure against existential forgery in the inde-
pendent-chosen-key model. Let ΠAS = (KGen,Sig,Vf,AggSig,AggVf) be the ag-
gregate signature from Section 3.

Theorem 1. Let Hc, He be two hash function providing the challenges and
scalars in our aggregate signature, modeled as random oracles both with image
space C. Assume the hardness of M-LWEk,`,β and of M-SISk,`+1,b, where b =
16d·B′+8d3/2. Then, the aggregate signature ΠAS with parameters (`, k, β,B′, d)
is secure against existential forgery in the aggregate chosen-key model in the ROM.
The advantage of some PPT adversary A against ΠAS is bounded above by

Adv AggSigA ≤
Nq
|C|

+

√
Nq ·

(
Nq
|C|

+
√
Nq · AdvM-SISk,`+1,b

)
+ AdvM-LWEk,`,β + negl(λ) ,

where λ denotes the security parameter and A makes at most NHc queries
to Hc, NHe queries to He and NSig queries to the signing oracle and we set Nq =
NHc +NHe +NSig.

Proof Sketch. Let us �rst describe the high level idea of the proof, which fol-
lows the "double forking technique" of [Max+19]. To begin, note that, assuming
the hardness of M-LWEk,`,β , the honestly generated challenge key vkN = t =
[A, Ik] ·sN is computationally indistinguishable from a uniformly random vector
over Rq. Thus, one can replace the input (A, t) by a real uniform element, which
itself de�nes an instance of M-SISk,`+1,b. Now, we construct a so-called wrap-
per B around the adversary A, that internally invokes A to obtain a signature
forgery. The wrapper has the important role to simulate the random oracles Hc

and He and the signing queries with respect to the challenge key. They output
the received forgery, together with some extra information about the forger ex-
ecution. We then apply twice the General Forking Lemma (Lemma 1). First,
we construct an algorithm C that runs the forking algorithm FB on B, where
the fork is with respect to the answer of He to the forgery and the challenge
index N . Second, we construct another algorithm D that runs now the forking
algorithm FC on C, where the fork happens regarding the answer of Hc to the

forgery and the challenge index N . At the end, the wrapper B has been run a
total of 4 times, leading to four forgeries. The way how D, C and B are de�ned
allows to derive a solution to M-SIS.

Proof. Let A be an adversary against ΠAS with advantage Adv AggSigA. Our
high level goal is to show that their advantage is negligible in the security param-
eter λ by providing a sequence of games G0, G1 and G2, where G0 is the original
chosen-key security game as in Section 4.1. Assuming the hardness of M-LWE,
the adversary A can distinguish between those games only with negligible advan-
tage. In the last game G2 we then apply twice the General Forking Lemma, lead-
ing to four di�erent forgeries. Those then allow to construct a solution to M-SIS.

G0: Set Nq = NHc+NHe+NSig, where A makes at most NHc queries to Hc, NHe
queries to He and NSig queries to the signing oracle on vkN . Recall that C
denotes the challenge space from Sig (and the scalar space from AggSig).
Let B be a second algorithm that is provided with some randomly cho-
sen hj , h

′
j ← U(C) for j ∈ [Nq]. For the random oracle Hc, the algorithm B

maintains a table HTc which is empty at the beginning. Similarly, for the
random oracle He, a table HTe is maintained. Further B stores two coun-
ters ctrc and ctre, both initially set to 0.

Setup. B generates (skN , vkN)← KGen(1λ) and sends vkN to A.
Queries on Hc. On input x = (u, t,m), if HTc[x] is already set, B re-

turns HTc[x]. Else, if t = tN , they increment ctrc and set HTc[x] = hctrc .
Else they sample HTc[x]← U(C). Finally, they output c = HTc[x].

Queries on He. On input x = (c1, . . . , cN , j) for some j ∈ [N], if HTe[x]
is already set, B returns HTc[x]. Else, B does the following. First, for
all i ∈ [N−1], they sample HTe[xi]← U(C) for xi = (c1, . . . , cN , i) (inde-
pendently of j). Only then, they increment ctre and set HTe[xN] = h′ctre
for xN = (c1, . . . , cN , N). Finally, they output c = HTc[x] (where x = xj
for some j). The order is important here, as we use later that ei has been
�xed before eN for all i ∈ [N − 1] for a �xed tuple (c1, . . . , cN).

Signing queries. B follows the honest signing procedure Sig from ΠAS
for skN on input message m.

Forgery. Suppose that A outputs a forgery σagg = ((uj)j , z,) on the mes-
sage vectorM = (mj)j∈[N] and the veri�cation key vector VK = (vkj)j∈[N].
Without loss of generality we assume that HTc was programmed on x =
(uN , tN ,mN) and thus cN = hjf for some counter index jf . If not, A
would only have a probability of 1 − 1/ |C| to guess the correct cN .
With the same argumentation, we assume that HTe was programmed
on x = (c1, . . . , cN , N) and thus eN = h′j′f

for some counter index j′f .

If AggVf(VK,M, σagg) = 1, then B outputs (j′f , jf , (VK,M, σagg,C,E)),
with C = (cj)j∈[N] such that cj = Hc(uj , tj ,mj) and E = (ej)j such
that ej = He(c1, . . . , cN , j). Else, B outputs (0, 0,⊥).

For j = 0, 1, 2, let Pr[Gj] denote the probability that B doesn't output (0, 0,⊥)
in game Gj . It yields Pr[G0] = Adv AggSigA .

G1: The game G1 is identical to the previous game G0 except that B doesn't
generate the signature honestly, but instead simulates the transcript without
using the secret key skN .
Signing queries. On input message m, B samples c ← U(C) and z ←

D`+k
s . They compute u = [A|Ik] · z − tN · c and program c = HTc[x]

with x = (u, tN ,m) afterwards. Finally, B outputs σ = (u, z) with prob-
ability 1/M .

Due to the rejection sampling, the distribution of z is identical in both sign-
ing variants (see [Dam+21, Lem. 4] for more details). The only di�erence
between the actual and the original signing algorithm is that now the output
of Hc is programmed at the end, without checking whether it has already
been set for x. Following the same argument as in [Lyu12, Lem. 5.3] this hap-
pens only with negligible probability and thus |Pr[G1]− Pr[G0]| ≤ negl(λ).

G2: The game G2 is identical to the previous game G1 except how B generates
the vkN during the setup phase.
Setup. B samples tN ← U(Rkq), sets vkN = tN and outputs vkN to A.
As the signing queries are answered without using the corresponding secret
key skN , B can replace vkN by a random vector without A noticing, assuming
the hardness of M-LWEk,`,β . Thus |Pr[G2]− Pr[G1]| ≤ AdvM-LWE.

Using the above, we obtain Adv AggSigA ≤ Pr[G2] + AdvM-LWEk,`,β + negl(λ).
Our aim for the reminder of the proof is to bound Pr[G2]. To do so, we apply
twice the General Forking Lemma. Note that in game G2 the matrixA′ = [A|tN]

follows the uniform distribution over R
k×(`+1)
q .

First Fork. We construct an algorithm C around B who invokes the General Fork-
ing Lemma (Lemma 1), where the input generator IGen is de�ned to output A′.
Let accB denote the accepting probability of B and frkB the forking probability
of FB as de�ned in Lemma 1. Further, set out = (jf ,VK,M, σagg,C,E) and
feed B with the input coins h′1, . . . , h

′
Nq
. The fork happens with respect to the

counter index from ctre. Thus, the forking algorithm FB outputs with prob-
ability frkB two di�erent outputs out, õut 6= (⊥,⊥), where accB ≤ Nq/ |C| +√
Nq · frkB. Let out = (jf ,VK,M, σagg,C,E) and õut = (j̃f , ṼK, M̃ , σ̃agg, C̃, Ẽ).

During the forking, neither B nor A is aware of being rewound. In particu-
lar, before arriving at the fork, they behave exactly the same in both execu-
tions. As the random coins of B are the same in both executions and as the
simulation of He is for j 6= N independent of the input (h′j)j∈[Nq] to B, we
have tj = t̃j , uj = ũj and cj = c̃j for all j ∈ [N] and ej = ẽj for all j ∈ [N − 1].

Further it yields M = M̃ . As in both cases, the forgery passes validation,
it yields ‖z‖2 , ‖z̃‖2 < B′. Additionally, [A|Ik] · z =

∑
j∈[N] ej(tj · cj + uj)

and [A|Ik] · z̃ =
∑
j∈[N] ẽj(t̃j · c̃j + ũj). Hence, we can deduce that

[A|Ik] · (z− z̃) = (eN − ẽN)(tNcN + uN). (1)

Note that Equation 1 is not yet su�cient to extract a solution to M-SIS and we
thus fork a second time.

Second Fork. We now construct another algorithm D around C who invokes
the General Forking Lemma, where the input generator IGen is again de�ned to
output A′. Let accC denote the accepting probability of C and frkC the forking
probability of FC as de�ned in Lemma 1. We observe that accC = frkB. Further,
set out = (VK,M, σagg,C,E) and feed C with the input coins h1, . . . , hNq . This
time, the fork is on the counter ctrc. Thus, the forking algorithm FC outputs
with probability frkC two di�erent outputs out, õut 6= (⊥,⊥), where accC ≤
Nq/ |C| +

√
Nq · frkC . More precisely, let out = (VK,M, σagg,C,E) and õut =

(ṼK, M̃ , σ̃agg, C̃, Ẽ). With the same argumentation as above, we have mj = m′j ,
uj = u′j and tj = t′j for all j ∈ [N] and cj = c′j for all j ∈ [N − 1]. Furthermore,
we have cN 6= c′N . We hence obtain

[A|Ik] · (z′ − z̃′) = (e′N − ẽ′N)(tNc
′
N + uN) (2)

Multiplying Equation 1 by ε′ := (e′N − ẽ′N) and Equation 2 by ε := (eN − ẽN)
and then combining both, we obtain

[A|Ik] · (ε′(z− z̃)− ε(z′ − z̃′)) = εε′(tN (cN − c′N)). (3)

In other words,D can compute the vector x = (ε′(z−z̃)−ε(z′−z̃′), εε′(c′N−cN))T

which is a solution to the M-SIS problem for the matrix A′ = [A|tN]. The
Euclidean norm of the vector x is bounded above by

‖x‖2 ≤ 4 · ‖εz‖2 + 2 ·
∥∥ε2c∥∥

2
≤ 4 · 4d ·B′ + 2 · 4d3/2 = b,

where B′ is the bound on z. This implies that frkC ≤ AdvM-SIS. Overall, we get

Pr[G2] = accB ≤
Nq
|C|

+

√
Nq ·

(
Nq
|C|

+
√
Nq · AdvM-SISk,`+1,b

)
,

completing the proof. ut

Remark 3. Using twice the General Forking Lemma introduces two disadvan-
tages: On the one hand, it causes an important loss in the reduction. On the
other hand, we currently don't know how to extend it to the so-called quantum
ROM, where an adversary has quantum access to the random oracle (and classi-
cal access to the signing oracle). Abdalla et al. [Abd+16] proposed a much tighter
reduction for lattice-based signature schemes following the FSwA paradigm by
introducing lossy identi�cation schemes. Kiltz et al. [KLS18] used their tech-
niques to construct a generic framework for tightly secure signatures in the
quantum ROM. The key idea behind lossy identi�cation schemes is that veri�-
cation keys can be replaced by random, so-called lossy, keys. Then, using a lossy
key, for a �xed commitment (in our scheme this is the vector u) with overwhelm-
ing probability there exists at most one transcript that veri�es. We leave it as
an open problem to further investigate if those techniques can be applied to our
aggregate signature scheme.

4.3 Rogue-Attack Against the Simple Sum

We just showed that the aggregate signature scheme ΠAS as presented in Sec-
tion 3 is proven secure in the aggregate chosen-key model as introduced by Boneh
et al. [Bon+03]. When aggregating, it is important to use random scalars for the
sum. Instead of the simple (deterministic) sum, we hence obtain a (randomized)
linear combination of the single signature parts zj .

9

As we think this is important to understand this motivation, we now describe
a simple attack if one uses only the simple sum (or a linear combination where
the challenge space is too small, as done in the current version of MMSA(TK)),
which was �rst observed by Zhao [Zha19] in the context of a Schnorr-based
aggregate signature scheme on elliptic curves.

1. Let tN be the challenge key given tot he adversary A.
2. A generates the remaining key pairs (sj , tj) ← KGen for j ∈ [N − 1] and

selects arbitrary messages mj for j ∈ [N].

3. They sample yN ← D, set uN = [A|Ik] · yN and query the random oracle
to obtain cN = Hc(uN , tN ,mN).

4. Now, A can prepare a rogue-commitment uN−1 by sampling yN−1 ← D and
setting uN−1 = −tN · cN + [A|Ik] ·yN−1, depending on the challenge cN for
the challenge key tN .

5. They compute cN−1 = Hc(uN−1, tN−1,mN−1).

6. They set zN−1 = yN−1 + sN−1 · cN−1 and apply the rejection sampling in
order to make the distribution of zN−1 independent of sN−1.

7. For the remaining j ∈ [N − 2], they follow the honest signature procedure:
they sample yj ← D, set uj = [A|Ik] · yj , compute cj = Hc(uj , tj ,mj) and
set zj = sj ·cj+yj . Then they apply the rejection sampling in order to make
the distribution of zj independent of sj .

8. Finally, they output the forgery σagg = (û, (uj)j , z), where û =
∑N
j=1 uj

and z = yN +
∑N−1
j=1 zj .

We claim that the forgery passes veri�cation. As all zj ∼ D and y ∼ D, the norm
of the sum z is (with overwhelming probability) bounded above by N ·B =: B′.
Further, it yields û =

∑
j uj , as the uj are computed by honestly compressing

9 For the deterministic sum, one can only show security in a much more restricted
security model where the adversary has to commit themselves to the signatures they
will use in the aggregate signature scheme before receiving the challenge key. More
details can be found in an older version of this e-print (8 Apr 2021).

the corresponding uj . It remains to show that [A|Ik] · z =
∑N
j=1(tj · cj) + û.

[A|Ik] · z = [A|Ik] · yN +

N−1∑
j=1

[A|Ik] · zj

= uN + [A|Ik] · yN−1 + tN−1 · cN−1 +
N−2∑
j=1

tj · cj + uj

= uN + uN−1 + tN · cN + tN−1 · cN−1 +
N−2∑
j=1

tj · cj + uj

=

N∑
j=1

tj · cj + û,

where we used that [A|Ik] ·yN−1 = uN−1+ tN · cN . In this attack the adversary
exploits the fact that they can de�ne a rogue-commitment with respect to the
challenge cN . In our security model, this is prevented as the adversary has to �x
the signatures they are going to use in the forgery before receiving the challenge
key tN .

Acknowledgments

This work was supported by the European Union PROMETHEUS project (Hori-
zon 2020 Research and Innovation Program, grant 780701). It has also received
a French government support managed by the National Research Agency in the
�Investing for the Future� program, under the national project RISQ P141580-
2660001 / DOS0044216. Katharina Boudgoust was funded by the Direction
Générale de l'Armement (Pôle de Recherche CYBER). We warmly thank Akira
Takahashi for making us aware of the attacks against Schnorr-based aggregate
signatures in the chosen-key model and discussions with him and Claudio Or-
landi. We also would like to thank Olivier Sanders for an interesting exchange
regarding the security proof. Lastly, we also would like to thank Thomas Prest
who explained us his attack on the linear compression function used in an earlier
version of this paper.

References

[Abd+16] Michel Abdalla et al. �Tightly Secure Signatures From Lossy Iden-
ti�cation Schemes�. In: J. Cryptol. 29.3 (2016), pp. 597�631.

[BN06] Mihir Bellare and Gregory Neven. �Multi-signatures in the plain
public-Key model and a general forking lemma�. In: CCS. ACM,
2006, pp. 390�399.

[Bon+03] Dan Boneh et al. �Aggregate and Veri�ably Encrypted Signatures
from Bilinear Maps�. In: EUROCRYPT. Vol. 2656. Lecture Notes
in Computer Science. Springer, 2003, pp. 416�432.

[Bou+20] Katharina Boudgoust et al. �Towards Classical Hardness of Module-
LWE: The Linear Rank Case�. In: ASIACRYPT (2). Vol. 12492.
Lecture Notes in Computer Science. Springer, 2020, pp. 289�317.

[BS16] Rachid El Bansarkhani and Jan Sturm. �An E�cient Lattice-Based
Multisignature Scheme with Applications to Bitcoins�. In: CANS.
Vol. 10052. Lecture Notes in Computer Science. 2016, pp. 140�155.

[CDW21] Ronald Cramer, Léo Ducas, and BenjaminWesolowski. �Mildly Short
Vectors in Cyclotomic Ideal Lattices in Quantum Polynomial Time�.
In: J. ACM 68.2 (2021), 8:1�8:26.

[Cha+21] Konstantinos Chalkias et al. �Non-interactive Half-Aggregation of
EdDSA and Variants of Schnorr Signatures�. In: CT-RSA. Vol. 12704.
Lecture Notes in Computer Science. Springer, 2021, pp. 577�608.

[Dam+21] Ivan Damgård et al. �Two-Round n-out-of-n and Multi-signatures
and Trapdoor Commitment from Lattices�. In: Public Key Cryptog-
raphy (1). Vol. 12710. Lecture Notes in Computer Science. Springer,
2021, pp. 99�130.

[Dor+20] Yarkin Doröz et al. �MMSAT: A Scheme for Multimessage Multiuser
Signature Aggregation�. In: IACR Cryptol. ePrint Arch. (2020),
p. 520.

[Duc+18] Léo Ducas et al. �CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme�. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018.1 (2018), pp. 238�268.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. �Prac-
tical Lattice-Based Cryptography: A Signature Scheme for Embed-
ded Systems�. In: CHES. Vol. 7428. Lecture Notes in Computer
Science. Springer, 2012, pp. 530�547.

[Hof+14] Je�rey Ho�stein et al. �Practical Signatures from the Partial Fourier
Recovery Problem�. In: ACNS. Vol. 8479. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 476�493.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Scha�ner. �A Con-
crete Treatment of Fiat-Shamir Signatures in the Quantum Random-
Oracle Model�. In: EUROCRYPT (3). Vol. 10822. Lecture Notes in
Computer Science. Springer, 2018, pp. 552�586.

[LS15] Adeline Langlois and Damien Stehlé. �Worst-case to average-case re-
ductions for module lattices�. In: Des. Codes Cryptogr. 75.3 (2015),
pp. 565�599.

[Lyu09] Vadim Lyubashevsky. �Fiat-Shamir with Aborts: Applications to
Lattice and Factoring-Based Signatures�. In:ASIACRYPT. Vol. 5912.
Lecture Notes in Computer Science. Springer, 2009, pp. 598�616.

[Lyu12] Vadim Lyubashevsky. �Lattice Signatures without Trapdoors�. In:
EUROCRYPT. Vol. 7237. Lecture Notes in Computer Science. Springer,
2012, pp. 738�755.

[Max+19] Gregory Maxwell et al. �Simple Schnorr multi-signatures with appli-
cations to Bitcoin�. In: Des. Codes Cryptogr. 87.9 (2019), pp. 2139�
2164.

[Sch91] Claus-Peter Schnorr. �E�cient Signature Generation by Smart Cards�.
In: J. Cryptol. 4.3 (1991), pp. 161�174.

[Zha19] Yunlei Zhao. �Practical Aggregate Signature from General Elliptic
Curves, and Applications to Blockchain�. In: AsiaCCS. ACM, 2019,
pp. 529�538.

	Non-Interactive Half-Aggregate Signatures Based on Module Lattices
	1 Introduction
	2 Preliminaries
	2.1 Module Lattice Problems
	2.2 Aggregate Signature Schemes
	2.3 General Forking Lemma

	3 Our Lattice-Based Aggregate Signature Scheme
	3.1 The Single Signature Scheme
	3.2 Non-Interactive Half-Aggregation of Signatures
	3.3 Why Linear Compression Is A Bad Idea

	4 Security of Our Aggregate Signature Scheme
	4.1 The Aggregate Chosen-Key Security Model
	4.2 Proof of Security
	4.3 Rogue-Attack Against the Simple Sum

