
A Geometric Approach to
Homomorphic Secret Sharing

Yuval Ishai1, Russell W. F. Lai2, and Giulio Malavolta3

1 Technion, Israel
2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

3 Max Planck Institute for Security and Privacy, Germany

Abstract. An (n,m, t)-homomorphic secret sharing (HSS) scheme allows
n clients to share their inputs across m servers, such that the inputs are
hidden from any t colluding servers, and moreover the servers can evaluate
functions over the inputs locally by mapping their input shares to compact
output shares. Such compactness makes HSS a useful building block for
communication-efficient secure multi-party computation (MPC).
In this work, we propose a simple compiler for HSS evaluating multivariate
polynomials based on two building blocks: (1) homomorphic encryption for
linear functions or low-degree polynomials, and (2) information-theoretic
HSS for low-degree polynomials. Our compiler leverages the power of the
first building block towards improving the parameters of the second.
We use our compiler to generalize and improve on the HSS scheme of Lai,
Malavolta, and Schröder [ASIACRYPT’18], which is only efficient when
the number of servers is at most logarithmic in the security parameter. In
contrast, we obtain efficient schemes for polynomials of higher degrees and
an arbitrary number of servers. This application of our general compiler
extends techniques that were developed in the context of information-
theoretic private information retrieval (Woodruff and Yekhanin [CCC’05]),
which use partial derivatives and Hermite interpolation to support the
computation of polynomials of higher degrees.
In addition to the above, we propose a new application of HSS to MPC
with preprocessing. By pushing the computation of some HSS servers to
a preprocessing phase, we obtain communication-efficient MPC protocols
for low-degree polynomials that use fewer parties than previous protocols
based on the same assumptions. The online communication of these
protocols is linear in the input size, independently of the description size
of the polynomial.

1 Introduction

In lightweight secure multi-party computation (MPC) protocols, communication
is usually the bottleneck for efficiency. For example, typical protocols based on
oblivious-transfer (OT) have a communication complexity linear in the circuit
size of the function being computed. A promising approach to bypass this barrier
is homomorphic secret sharing (HSS) for multivariate polynomials, which enables
low communication MPC protocols, while retaining practical efficiency. In this

work, we study this problem and present a set of new lightweight techniques to
maximize the degree of polynomials supported by HSS without increasing the
communication cost.

1.1 Homomorphic Secret Sharing

An (n,m, t)-HSS scheme allows n input clients to share their secret inputs
(x1, . . . , xn) to m non-communicating servers, such that the latter can homomor-
phically evaluate any admissible public function f over the shares, and produce the
output shares (y1, . . . , ym). Using these, an output client can recover f(x1, . . . , xn).
Shares of HSS should be much shorter, or ideally of size independent of the size
of the description of the function f being computed. This non-trivial feature
distinguishes HSS from OT-based MPC. As for ordinary threshold secret sharing
schemes, security requires that the servers cannot learn anything about the inputs
assuming at most t of them are corrupt.

HSS was conceived [10] as a lightweight alternative to fully-homomorphic
encryption (FHE) [23] and it leverages the non-collusion of the servers to achieve
better efficiency. Indeed, any homomorphic encryption for a function class F can
be seen as an (n, 1, 1)-HSS for the same class. Due to the distributed setting,
homomorphic secret sharing can be constructed from assumptions that do not
imply a fully homomorphic encryption scheme, such as the intractability of the
Diffie-Hellman (DDH) problem [20], or even information-theoretically.

Boyle et al. [10] proposed a DDH-based (n, 2, 1)-HSS scheme for branching
programs, where the reconstruction function is simply the addition of output
shares. This enables many important applications, such as low-communication
2-party computation, efficient round-optimal multiparty computation protocols,
and 2-server private-information retrieval. See [12] for a comprehensive discussion
on the matter. One drawback of the scheme is that its correctness holds only
for an inverse polynomial probability. Amplifications through parallel repetition
results in a loss of concrete efficiency.

Boyle, Kohl, and Scholl [13] proposed a counterpart of [10] based on the
learning with errors (LWE) assumption with negligible error. Similar to FHE,
their scheme is only concretely efficient in an amortized sense and only for
SIMD4-style computations. Boyle et al. [9] proposed an (n, 2, 1)-HSS scheme
for constant-degree polynomials based on the learning parity with noise (LPN)
assumption. The scheme does not apply to the multi-input setting, i.e., the entire
input must come from a single party, and the share size O(λd) (as opposed to
the trivial O(nd)) grows exponentially with the degree d.

In a different line of work originated by Catalano and Fiore [15], Lai, Mala-
volta, and Schröder (LMS) [31] considered a variant of the HSS model, where
the reconstruction function is not necessarily linear. While this notion is strictly
weaker than that considered by Boyle et al. [10], it is still useful in some context
to “amplify” the homomorphic capability of some encryption schemes, leveraging
the existence of multiple non-colluding servers. They proposed a construction of
4 Single-Instruction-Multiple-Data

2

(n,m, 1)-HSS for degree d < (k + 1)m polynomials using only a homomorphic
encryption scheme for degree k polynomials (k-HE), for any k ≥ 1. The LMS
construction [31] focused on the case t = 1. Their discussion of how the construc-
tion can be extended to t > 1 was non-constructive. A constructive version for
general t ≥ 1 was proposed in [35]. The main shortcoming of LMS [31,35] is that
it is only efficient for a small number of servers, i.e., m = O(log λ), where λ is
the security parameter. This is due to the difficulty of the combinatorial problem
of assigning monomials of the expanded form of

∏
`∈[d](

∑
i∈[n]Xi) to m servers

so that each monomial is computed by exactly one server.

1.2 Power of Low-Degree Polynomials

The homomorphic computation of low-degree polynomials enables several inter-
esting applications, that we discuss below.

1. Private Information Retrieval: An m-server private information retrieval
(PIR) protocol allows a client to retrieve the entry of a certain database
(stored by all servers) without revealing which entry he is interested in. HSS
offers a natural implementation of PIR by allowing the client to secret share
the index across all servers, who can homomorphically evaluate the index
selection function and return the corresponding entry of the database to
the client. It is a well-known fact that the index selection function can be
expressed as a low-degree polynomial (logarithmic in the size of the database).

2. Private Queries: In the context of private queries, even a few extra degrees of
computation turn out to be useful. Instead of the simple index selection, the
servers can answer more complex queries, such as conjunctive statements [6].
As a concrete example, a client can query how many database entries contain
a 1 at positions (i, j), without revealing the indices (i, j), by just adding a
single degree to the polynomial homomorphically evaluated by the servers.
See [3] for an elaborate discussion on the matter. Other examples of useful
queries computable with low-degree polynomials include pattern matching
over unsorted databases [1,2].

3. Machine Learning: HSS for low-degree polynomials can be used to securely
compute repeated linear operations, such as matrix multiplication (for small
amounts of matrices). These operations are recurrent for many interesting
tasks, such as the secure computation of the training phase (e.g., [26]) and
classification phase of (e.g., [8]) of machine learning.

4. Biometrics: In applications of biometrics it is often required to compare or
compute the distance of two data points. These tasks, such as the comparison
of two integers [33], Hamming distance [38], and edit distance [16], can be
represented as the computation of low-degree polynomials.

5. Statistical Analysis: Low-degree polynomials allow one to compute statis-
tics over private data, such as low-order moments, correlations, and linear
regressions. See, e.g. [15] and references therein.

3

1.3 Our Results

The starting point of this work is the observation that the LMS construction
can be viewed more abstractly as compiling an information-theoretic (IT) HSS
scheme into its computational counterpart using k-HE. In their case, the IT HSS
scheme consisted of the so called CNF secret sharing scheme [29], consequently,
the inefficiency of their scheme for m = Ω(log λ) servers is essentially due to
the difficulty of evaluating CNF shares, which in turn is related to the #P-hard
problem of computing the permanent of matrices [27]. With this view, it is natural
to ask if the CNF scheme can be replaced with another IT HSS scheme, so that
its (k-HE-compiled) computational variant is efficient for m = poly(λ) servers.

Generic Compiler from IT HSS to HSS using HE In this work, we answer
the above question positively. Specifically, we propose a generic compiler based
on homomorphic encryption that compiles a certain class of IT HSS for degree-d
polynomials into their computational counterpart with less client computation
(and hence shorter output shares). In other words, for a fixed client computation
cost, the computational variant supports higher degrees.

Theorem 1 (Informal). Let k, ` ∈ N be constants with k ≤ `, and d < (`+1)m
t .

Suppose there exists an IT (n,m, t)-HSS for degree-d polynomials satisfying
certain structural properties, and a CPA-secure k-HE scheme. Further suppose
that the IT HSS scheme has recovery information size ρ, input share size α, output
share size β, server computation σ, and client computation γ. Then there exists
an (n,m, t)-HSS for degree-d polynomials with the following efficiency measures:
– Recovery information size ρ′ = ρ
– Input share size α′ = ρ+ α
– Output share size β′ = ρ`−k

– Server computation σ′ = σ + βρ`

– Client computation γ′ = mρ`−k

All poly(λ) factors contributed by the ciphertext size and log |F| are omitted.

For k = `, when the base IT HSS scheme is instantiated with the CNF scheme5,
we recover the LMS schemes [31,35].

Theorem 1 might seem confusing at first glance – Our compiler turns a
degree-d IT HSS into another degree-d computational HSS. What is the gain?
We highlight that the output share size of the resulting HSS is independent of
that of the base HSS, which could be much larger. From another perspective,
for a fixed communication cost, the compiled (computational) HSS supports a
higher degree than the base (IT) HSS.

More concretely, as we will see later in Corollary 1 (setting ` = k + 1), with
O(n) · poly(λ) communication, the compiled HSS supports degree < (k + 2)m/t
withm servers, instead of< 2m/t by the base HSS. Note that the supported degree
is proportional to km, i.e., the expressiveness of k-HE is amplified multiplicatively
by the number of servers m.
5 More rigorously, the LMS construction can be seen as compiling the “first-order CNF
scheme” which we define in Section 4.

4

Generalizations of Existing Compatible IT HSS In search of a substitute of
the CNF scheme, we observe that implicit in the work of Woodruff and Yekhanin
[37] lies an IT HSS, which was implicitly used to construct information-theoretic
secure multi-party computation protocols [3]. This scheme, which we denote by
WY1 (first-order Woodruff-Yekhanin HSS), can be seen as a generalization of the
well-known Shamir secret sharing scheme [36], which we denote by WY0.

To recall, in the Shamir secret sharing scheme, a secret x ∈ Fn is shared into
(s1, . . . , sm) = (ϕ(1), . . . , ϕ(m)) for some degree-t polynomial ϕ with ϕ(0) = x. To
evaluate a degree-d polynomial f , where d < m

t , server j sends f(sj) = (f ◦ϕ)(j)
to the output client. Since f ◦ ϕ is a polynomial of degree at most dt < m, the
output client can recover f(x) = (f ◦ ϕ)(0) by Lagrange interpolation. Notice
that the Shamir secret sharing scheme is compact in the sense that, while an
input share is of length n, an output share is of constant length. The latter is in
some sense “wasteful”, since increasing the output share length to n (which we
refer to as balanced), does not increase the overall asymptotic communication
complexity. To utilize this “wasted” space, the idea of Woodruff and Yekhanin is
to let the servers further compute the n first-order derivatives of f evaluated at
sj . Since m additional data points are available, the degree of f can now be as
high as d < 2m

t , and f(x) = (f ◦ϕ)(0) can be recovered by Hermite interpolation.
Our idea to further increase the degree of the supported polynomials is

to let the servers compute even higher-order derivatives.6 With some routine
calculation one can show that the output share size is O(n`) if derivatives of up
to the `-th order are evaluated and sent to the output client. While this does not
necessarily help in a standalone use of the HSS scheme, since it increases the
overall communication complexity (and also client computation), it turns out
that the increased communication can be brought back down again using the
k-HE-based compiler, so that the resulting scheme is balanced or even compact.

Theorem 2 (Informal). For any constant ` ∈ N and d < (`+1)m
t , there exists

an IT (n,m, t)-HSS scheme WY` for degree-d polynomials with the following
efficiency measures:

– Recovery information size ρ = n

– Input share size α = n

– Output share size β = n`

– Server computation σ = |f |n`−1
– Client computation γ = mn`

Furthermore,WY` satisfies the structural requirements of the k-HE-based compiler.
All log |F| factors are omitted.

6 The idea of generalizing the approach of Woodroof and Yekhanin to higher order
derivatives was already explored in the context of locally decodable codes [30] although
in very different parameter settings. To the best of our knowledge, its application in
cryptography is new to this work.

5

Scheme CNF` CNF` + k-HE WY` WY` + k-HE
Security IT Comp. IT Comp.
Max Degree d (Exclusive) (`+ 1)m/t

Recovery Info. Size ρ mtn mtn `n `n

Input Share Size α mtn mtn n `n

Output Share Size β (mtn)` (mtn)`−k n` (`n)`−k

Server Computation σ (mtn)d (mtn)d |f |n`−1 |f |n`−1 + (`n2)`

Client Computation γ `m(mtn)` m(mtn)`−k `m(`n)` m(`n)`−k

Table 1. Comparison of HSS schemes. Computation complexities for CNF` and CNF`
+ k-HE are rough (over)estimations. The LMS scheme [31,35] achieves the efficiency
reported in the “CNF` + k-HE” column with ` = k. Factors of poly(λ) contributed by
log |F| and k-HE ciphertext size are omitted.

Implications When WY` is compiled with the k-HE based compiler, we obtain
the following result.

Corollary 1 (Informal). Let k, ` ∈ N be constants with k ≤ `, and d < (`+1)m
t .

Suppose there exists a CPA-secure k-HE scheme. Then there exists an (n,m, t)-
HSS for degree-d polynomials with the following efficiency measures:

– Recovery information size ρ′ = n
– Input share size α′ = n
– Output share size β′ = n`−k

– Server computation σ′ = |f |n`−1 + n2`

– Client computation γ′ = mn`−k

All poly(λ) factors contributed by the ciphertext size and log |F| are omitted.

As shown in Table 1, if we treat ` as a constant, the k-HE-compiledWY` scheme
strictly outperforms the k-HE-compiled CNF` scheme (` = 1 in LMS [31,35]) in
all parameters. We are mostly interested in the setting where the communication
is balanced, in the sense that the input share size is comparable to the output
share size. From Corollary 1, this can be achieved by setting ` = k + 1.

In Table 2, we highlight some practically interesting parameters for the k-
HE-compiled WY` scheme. For a fixed communication cost n · poly(λ), we state
the relation between k, ` = k + 1 (so that the HSS is balanced), the corruption
threshold t, the number of servers m, and the degree d of supported polynomials.
The degree d reported for each setting of (t,m) is generally higher than that
supported by LMS [31] (t = 1) and [35] (t ≥ 1) by an additive factor of m/t,
since they did not consider balanced HSS schemes. We focus on small k = O(1)
since for such values of k it is not known how a k-HE can be bootstrapped [23]
into an FHE. For k ∈ {1, 2}, k-HE can be realized based on assumptions that
are not known to imply FHE: For polynomials whose outputs are contained
in a polynomial-size space, the ElGamal encryption [21] is a 1-HE based on
the decisional Diffie Hellman (DDH) assumption, and the BGN encryption [7]
is a 2-HE based on the subgroup decision assumption. For large outputs, the

6

Corruption t # Servers m Max Degree d (Inclusive)
1 2 5
1 3 8
1 4 11
2 3 4
2 4 5
3 4 3
1 2 7
1 3 11
1 4 15
2 3 5
2 4 7
3 4 5

Table 2. Some practically interesting parameters for our HSS schemes for polynomials
using k-HE for k = 1, 2 and linear communication. The first six rows are obtained by
setting k = 1 and ` = 2 in WY` + k-HE. The last six rows are obtained by setting
k = 2 and ` = 3.

Paillier encryption [34] and Damgård–Jurik encryption [19] are 1-HE based on
the decisional composite residuosity assumption. The additive variant of ElGamal
[14] is a 1-HE based on DDH in groups with a discrete-logarithm-easy subgroup.
For general k = O(1), k-HE can be construction from the learning with errors
assumption with smaller parameters than those which imply FHE, and therefore
are concretely efficient.

Application to MPC with Preprocessing In typical (n,m, t)-HSS schemes,
including ones constructed in this work, there exists p < m such that any p input
shares are distributed uniformly over an efficiently sampleable space. In other
words, the input shares of any, say the first, p parties contain no information
about the input (x1, . . . , xn), and can be generated in a preprocessing phase even
before the inputs (x1, . . . , xn) are known. We formalize this as the p-preprocessing
property, and show that the WY` scheme its k-HE-compiled counterpart support⌊

t
`+1

⌋
-preprocessing.

We then show that, given a general purpose MPC protocol (whose communica-
tion cost might be linear in the function description size), an HSS for polynomials
with p-preprocessing can be compiled into a communication-efficient MPC for
polynomials with preprocessing. Our technique generalizes the approach taken
in [5] for obtaining 2-party MPC with preprocessing from 3-server PIR.

Recall that an MPC protocol with preprocessing is split into two phases – a pre-
processing phase and an online phase. In the preprocessing phase, a trusted party
performs an input-independent preprocessing on the function f , and distributes
shares of the preprocessing result to the m participants. Alternatively, the trusted
party can be emulated by an MPC among the m parties. Then, in the online
phase, the m parties collectively receive their online inputs (x1, . . . , xn), where

7

Corruption t # Parties m Max Degree d (Inclusive) Base Scheme
3 4 4 WY2 + 1-HE
3 5 5 WY2 + 1-HE
3 6 6 WY2 + 1-HE
4 5 5 WY3 + 2-HE
4 6 6 WY3 + 2-HE
4 7 7 WY3 + 2-HE

Table 3. Some practically interesting parameters for our MPC protocols with prepro-
cessing with n · poly(λ) communication, based on HE for linear or quadratic functions.

each party either possesses a share or a disjoint subset of entries of (x1, . . . , xn),
and interact in an online MPC protocol to compute f(x1, . . . , xn). The hope is
that, by exploiting the offline preprocessing, the online communication cost can
be reduced such that it is independent of the description size of f .

Our idea is to push the work of the first p servers in an HSS scheme with
p-preprocessing to the preprocessing phase of the MPC protocol, and thereby
reduce the minimal necessary number of parties required to run the protocol. The
MPC preprocessing first generates the inputs shares of the first p HSS servers,
which can be done independently of the input. It then homomorphically evaluates
f on the p input shares to produce p output shares. The input and output shares
of the first p HSS servers are then secret shared among the m MPC participants.

In the online phase, the m MPC participants receive their respective inputs
(x1, . . . , xn) and engage in an MPC protocol to generate the remaining input
shares. Naturally, the j-th participant gets the (p+ j)-th HSS input share. Each
participant can then proceed to homomorphically evaluate f on their input shares,
and then engage in another MPC to recover the computation result from all
output shares.

Note that the two MPC sub-protocols run in the online phase are computing
functions whose circuit size is comparable to the input size, independently of |f |.
For degree d polynomials, |f | can be of size O(nd). Our MPC protocol therefore
potentially achieves an exponential improvement over general-purpose MPC,
without using heavy tools such as FHE.

In the case where t is a multiple of `+ 1, when instantiated with the k-HE-
compiled WY` scheme and, say, an OT-based MPC, we obtain an m party MPC
protocol with preprocessing for degree-d polynomials, where d < (`+1)m

t + 1, i.e.,
the degree grows by 1 compared to a direct use of HSS without increasing the
number of participants. The online communication is mn`−k · poly(λ). As long
as |f | = ω(mn`−k), which holds for the vast majority of n-variate polynomials
of degree d < (`+1)m

t + 1, our preprocessing MPC achieves a communication
complexity sublinear in |f |. Due to the requirement that t is a multiple of `+ 1,
the preprocessing technique seems to be more suited to the setting where t is large
(close to m). In Table 3, we highlight some practically interesting parameters for
the MPC protocols with preprocessing obtained via our transformation.

8

Beyond the computation of degree-d polynomials, our preprocessing MPC can
be used as a building block in MPC for structured circuits whose “gates” compute
degree-d mappings, similar to the ideas of [10,17,11] for evaluating layered circuits
and circuits over low-degree gates. Some examples for useful circuits of this kind
were given in [17]. These include circuits for Fast Fourier Transform (FFT),
symmetric-key cryptography, and dynamic programming.

1.4 Related Work

In addition to the aforementioned related works, we point out that the task of
evaluating degree-d n-variate polynomials privately was also considered in the
context of maliciously-secure MPC, where the adversary is allowed to corrupt all
but one parties, i.e., t = m− 1, whereas we only consider HSS and MPC schemes
in the semi-honest setting. Below we discuss the semi-honest protocols implicitly
described in two maliciously-secure MPC, both of which are indirectly based on
the idea of compiling an IT HSS using a k-HE (for k = 1), which is made explicit
in this work. These schemes inherently require that the polynomial to be evaluated
is represented in expanded form, and consequently has only polynomially-many
monomials. In contrast, our WY-based schemes support polynomials represented
by polynomial-sized arithmetic circuits.

The semi-honest part of the 2-party protocol of Franklin and Mohassel [22] is
precisely the HSS obtained by compiling CNF1 with a 1-HE in the setting where
(t,m) = (1, 2). They also proposed an m-party (maliciously-secure) protocol for
degree-d polynomials which achieves computation and communication complexity
poly(m) · nbd/2c, which is comparable to the 1-HE compiled WY` scheme which
has communication complexity m(`n)`−1 and supports polynomials of degree at
least `+ 1 (c.f., Table 1).

Underneath the protocol of Dachman-Soled et al. [18] lies the following protocol
for evaluating a (publicly known) monomial µ(x1, . . . , xn) where (x1, . . . , xn) are
jointly contributed by m parties. First, the monomial is split into µ = µ1 · . . . ·µm,
where µi(x1, . . . , xn) is a monomial which depends only on the inputs of the
i-th party. Party 1 encrypts the evaluation of µ1 using a 1-HE and sends the
ciphertext c1 to Party 2. Then, for i ∈ {2, . . . ,m}, Party i homomorphically
multiplies µi to the ciphertext ci−1 encrypting µ1 · . . . · µi−1 received from Party
i − 1 to obtain a new ciphertext ci. Finally, Party i sends ci to Party i + 1 if
i 6= m, or to everyone if i = m. Based on the above incremental evaluation
protocol, the (maliciously-secure) protocol of Dachman-Soled et al. [18] requires
(roughly) O(n2 log2 d) communication and O(n log d) computation, where the
logarithmic dependency on d is achieved by having each party precompute the
powers-of-2 of their inputs7. Due to the logarithmic dependency on d and the
limit of the number of monomials, their scheme seems best suited for evaluating
sparse polynomials of a high degree d = poly(λ).

7 This degree reduction technique is generic and also applies to our HSS-based schemes.

9

2 Preliminaries

Let λ ∈ N denote the security parameter. The set of all polynomials and negligible
functions in λ are denoted by poly(λ) and negl(λ) respectively. An algorithm
with input length n is PPT if it can be computed by a probabilistic Turing
machine whose running time is bounded by some function poly(n). We use [n] to
denote the set {1, . . . , n}, and N0 to denote the set of all non-negative integers.
Given a finite set S, we denote by x← S the sampling of an element uniformly
at random in S.

For simplicity, throughout this work we fix a field F which is sufficiently large,
such that for any polynomial f ∈ F[X1, . . . , Xn] we will be considering, we have
deg(f) < |F| ≤ 2λ. An F element can therefore be represented by λ bits. Let
e = (e1, . . . , en) ∈ Nn0 and x = (x1, . . . , xn) ∈ Fn. We define the weight function
wt(e) := e1 + . . .+ en. We use xe to denote the expression xe := xe11 . . . xenn .

2.1 Homomorphic Encryption for Degree-k Polynomials (k-HE)

We recall the notion of homomorphic encryption for degree-k polynomials over F.

Definition 1 (Homomorphic Encryption). A homomorphic encryption
scheme HE = (KGen,Enc,Eval,Dec) for degree-k polynomials over F, k-HE for
short, consists of the following PPT algorithms:

– KGen(1λ) : The key generation algorithm takes as input the security parameter
λ and outputs the public key pk and the secret key sk.

– Enc(pk,x) : The encryption algorithm takes as input the public key pk and
a message x ∈ Fn for some n = poly(λ); it returns a ciphertext c ∈ Cn in
some ciphertext space C.

– Eval(pk, f, c) : The evaluation algorithm takes as input the public key pk, (the
description of) a polynomial f ∈ F[X1, . . . , Xn], and a ciphertext c ∈ Cn for
some n = poly(λ); it returns a ciphertext c′ ∈ C.

– Dec(sk, c) : The decryption algorithm takes as input the private key sk and a
ciphertext c ∈ Cn for some n = poly(λ); it returns a plaintext x ∈ Fn.

We focus only on compact HE schemes [23], where the size of the ciphertext
space |C| = poly(λ) is independent of the size of the supported polynomials.

Definition 2 (Correctness). A k-HE scheme is said to be correct if for any
λ ∈ N, any (pk, sk) ∈ KGen(1λ), any positive integer n ∈ poly(λ), any polynomial
f ∈ F[X1, . . . , Xn] of degree at most k, and message x ∈ Fn, we have

Pr[Dec(sk,Enc(pk,x)) = x] ≥ 1− negl(λ) , and

Pr

[
Dec(sk, c) = f(x) :

c← Enc(pk,x)
c′ ← Eval(pk, f, c)

]
≥ 1− negl(λ)

where the probability is taken over the random coins of Enc and Eval. The scheme
is perfectly correct if the above probabilities are exactly 1.

10

IND-CPAbA,HE(1
λ) :

(pk, sk)← KGen(1λ)

(x0, x1, state)← A1(pk)

c← Enc(pk, xb)

b′ ← A2(state, c)

return b′

Fig. 1. IND-CPA experiment for public-key encryption

Definition 3 (CPA-Security). A homomorphic encryption scheme HE is IND-
CPA-secure (has indistinguishable ciphertexts under chosen plaintext attack) if
for any PPT adversary A = (A1,A2)∣∣∣Pr [IND-CPA0

A,HE(1
λ) = 1

]
− Pr

[
IND-CPA1

A,HE(1
λ) = 1

] ∣∣∣ ≤ negl(λ)

where the experiment IND-CPAbA,HE is defined in Figure 1.

3 Definition of Homomorphic Secret Sharing

We recall the notion of homomorphic secret sharing [12]. The definitions presented
here are for the variant in the public-key setup model [31]. For the definitions in
the plain model, we refer to [12,31].

Definition 4 (Homomorphic Secret Sharing (HSS)). An n-input m-server
homomorphic secret sharing scheme HSS = (KGen,Share,Eval,Dec) for degree-d
polynomials over F consists of the following PPT algorithms:

– (pk, sk)← KGen(1λ) : On input the security parameter 1λ, the key generation
algorithm outputs a public key pk and a secret key sk.

–
(

in1, . . . , inm
rec1, . . . , recm

)
← Share(pk,x) : Given a public key pk, and an input x ∈ Fn,

the sharing algorithm outputs a a set of input shares (in1, . . . , inm) where inj ∈
{0, 1}α·poly(λ) and their corresponding recovery information (rec1, . . . , recm)
where recj ∈ {0, 1}ρ·poly(λ).

– outj ← Eval(pk, j, f, inj) : The evaluation algorithm is executed by a server
Sj on inputs the public key pk, an index j, (the description of) a degree-d
polynomial f , and a share inj. Upon termination, the server Sj outputs the
corresponding output share outj ∈ {0, 1}β·poly(λ).

– y ← Dec

(
sk,

out1, . . . , outm,
rec1, . . . , recm

)
: On input a secret key sk, a tuple of output

shares (out1, . . . , outm), and a tuple of recovery information (rec1, . . . , recm),
the decoding algorithm outputs the result y of the evaluation.

11

The efficiency measures ρ = ρ(n), α = α(n) and β = β(n) are the lengths
of the recovery information, input shares, and output shares respectively (omit-
ting poly (λ) factors). An HSS scheme is said to be compact if β = poly (λ)
(independent of n), and balanced if β = O(α).

Remark 1. In the syntax, we decide to split the recovery information into m
chunks (rec1, . . . , recm), so that it is more convenient to describe the compiler in
Section 5, and so that we can omit a factor of m from the measure ρ to reduce
clutter. In general, the recovery information can be grouped into a single object
rec and the definition ρ can be changed accordingly.

Remark 2. In the literature, an HSS scheme is usually defined without the recovery
information (rec1, . . . , recm), i.e., ρ = 0. We remark that given an HSS scheme
with efficiency measures (ρ, α, β), we can construct another scheme (with the same
security under the same assumptions) with efficiency measures (0, α+mρ, β+mρ),
by having the input client secret-share r to the servers and the servers relaying
those shares to the output client. We use the present definition for convenience.

Remark 3. Our syntax describes a setting where a single party provides all n
inputs to the Share algorithm for simplicity. In the case where the input xi
is provided by party i, we can consider an alternative syntax of Share which
inputs (pk, xi) and outputs (ini,j , reci,j). The Share algorithm of all HSS schemes
considered in this work can be “split” to suit the multi-input syntax.

Definition 5 (Correctness). An n-input m-server HSS scheme for degree-d
polynomials is correct if for any λ,m, n ∈ N, any (pk, sk) ∈ KGen(1λ), any
f ∈ F[X1, . . . , Xn] with deg(f) ≤ d, any n-tuple of inputs x = (x1, . . . , xn) ∈ Fn,
it holds that

Pr

Dec(sk, out1, . . . , outm,
rec1, . . . , recm

)
= f(x) :

(
in1, . . . , inm
rec1, . . . , recm

)
∈ Share(pk,x)

∀j ∈ [m], outj ∈ Eval(pk, j, f, inj)


≥1− negl(λ) ,

where the probability is taken over the random coins of Share and Eval. The
scheme is perfectly correct if the above probability is exactly 1.

The security of an HSS scheme is analogous to the CPA-security of HE, and
guarantees that no information about the message is disclosed to any t servers.

Definition 6 (Security). An n-input m-server HSS scheme is t-secure if
for any λ ∈ N there exists a negligible function negl(λ) such that for any PPT
algorithm A = (A0,A1),∣∣Pr [Security0A,HSS = 1

]
− Pr

[
Security1A,HSS = 1

]∣∣ < negl(λ)

where SecuritybA,HSS is defined in Figure 2 for b ∈ {0, 1}.

12

SecuritybA,HSS(1
λ) :

(pk, sk)← KGen(1λ)

(x0,x1, j1, . . . , jt, state)← A0(pk)(
in1, . . . , inm,
rec1, . . . , recm

)
← Share(pk, xb)

b′ ← A1(state, inj1 , . . . , injt)

return b′

Fig. 2. Security experiments for (∗,m, t)-HSS

We use the short hand (n,m, t)-HSS to refer to n-input, m-server, t-secure
homomorphic secret sharing.

Definition 7 (p-Preprocessing). We say that an (n,m, t)-HSS scheme HSS.
(KGen,Share,Eval,Dec) supports p-preprocessing if there exists PPT algorithms
(PreProc,ShareComp) such that, for any λ ∈ N, any (pk, sk) ∈ KGen(1λ) and any
x ∈ Fn, the following distributions are identical:

(
in1, . . . , inm
rec1, . . . , recm

)
:

(
in1, . . . , inp
rec1, . . . , recp

)
← PreProc(pk, 1n)(

inp+1, . . . , inm
recp+1, . . . , recm

)
← ShareComp

(
pk,

in1, . . . , inp,
rec1, . . . , recp,

,x

)


≡
{(

in1, . . . , inm
rec1, . . . , recm

)
:

(
in1, . . . , inm
rec1, . . . , recm

)
← Share(pk,x)

}
If an HSS scheme supports p-preprocessing, it means that the shares of the

first p servers are independent of the input x, and can thus be computed in a
preprocessing phase when the input x is yet unknown.

Definition 8 (Information-Theoretic HSS). We say that HSS.(KGen,Share,
Eval,Dec) is information-theoretic (IT) if KGen outputs empty strings, and
HSS is secure against unbounded adversaries. In such case we simply write
HSS.(Share,Eval,Dec) to denote the HSS scheme and omit the public and se-
cret key inputs to the algorithms Share, Eval, and Dec. In case HSS supports
p-preprocessing, we also omit the public key input to PreProc and ShareComp.

4 Information-Theoretic Homomorphic Secret Sharing

Information-theoretic HSS exists implicitly in the literature of secret sharing
and private information retrieval (PIR). The simplest examples are the additive
secret sharing scheme and Shamir’s secret sharing scheme [36]. The former is an
(n,m,m− 1)-HSS for degree-1 polynomials, i.e., linear functions, with efficiency
measures while the latter is an (n,m, t)-HSS for degree-

⌊
m−1
t

⌋
polynomials. Both

schemes are compact as an output share consists of a single F element.

13

In the following, we extract two IT HSS schemes – the “CNF” scheme CNF0

[29] and the scheme WY1 from Woodruff and Yekhanin [37] – from the literature
of private information retrieval (PIR) which are generalizations of the additive
and Shamir secret sharing schemes respectively. We then present the “`-th order”
generalizations of the two schemes – CNF` and WY` – which aim to support
higher-degree polynomials at the cost of, among other parameters, larger recovery
information size and higher degree client computation. The generalizations are
done in a way compatible with the compiler to be presented in Section 5, so that
the higher degree client computation can be delegated back to the servers in the
compiled schemes. While the CNF` scheme is strictly inferior to the WY` for all
`, we include it since compiling CNF1 with our compiler in Section 5 captures
the LMS scheme [31,35].

4.1 CNF Secret Sharing

A generalization of the additive secret sharing scheme is the so called CNF secret
sharing scheme [29], where CNF stands for conjunctive normal form. The scheme
was first used in the context of PIR by Ishai and Kushilevitz [28].

Original Scheme CNF0 The idea of the CNF scheme is to write x ∈ Fn as a
sum of random elements so that x =

∑
u cu, where u = (u1, . . . , um) ∈ {0, 1}m

runs through all possible choices of choosing t out of m objects. The j-th share
is then defined as sj := (cu)u:uj=0, i.e., all cu where the j-th bit of u is 0. The
scheme is t-secure because, given any t-subset {j1, . . . , jt} ⊆ [m], there exists cu∗ ,
where u∗j = 1 for all j ∈ {j1, . . . , jt}, which is not known to this subset of servers.

The CNF scheme is clearly linearly homomorphic. Thus, for evaluating a
polynomial of degree d, it suffices to show how a monomial xe where wt(e) = d
can be evaluated. Without loss of generality, we consider the monomial

x1 · · ·xd =
d∏
i=1

∑
u∈{0,1}m:
wt(u)=t

ci,u =
∑

u1,...,ud∈{0,1}m:
wt(ui)=t

d∏
i=1

ci,ui .

To let the output client recover x1 · · ·xd, one way is to have (at least) one
server being able to compute for each (u1, . . . ,ud) the term

∏d
i=1 ci,ui . If so, we

distribute the terms so that each term is computed by exactly one server. Each
server can compute the partial sum of all the terms that it is assigned, and send
this sum to the output client. The latter can then sum over all partial sums and
recover x1 · · ·xd.

We now examine the term
∏d
i=1 ci,ui for any fixed u1, . . . ,ud ∈ {0, 1}m with

wt(ui) = t. Consider the string u = u1 ∨ . . . ∨ ud obtained by bit-wise OR
operations. Note that if d ≤ m−1

t , we have

wt(u) ≤
d∑
i=1

wt(ui) ≤
m− 1

t
· t < m.

14

Therefore there must exist j∗ ∈ [m] such that ui,j∗ = 0 for all i ∈ [d]. That is,
server j∗ possesses c1,u1

, . . . , cd,ud and can thus compute the term.
Although it is information theoretically possible for the parties to compute

x1 · · ·xd, there seems to be no natural way to distribute the terms among the
servers. In particular, as noted in [27], when t = 1, m = d+ 1, and the terms are
distributed greedily to the servers, then the last server would need to compute the
permanent of a d-by-d matrix, which is #P-hard. The difficulty of distributing
the terms limits the number of servers in [31,35] to be logarithmic in λ.

For the case t = 1, [27, Section 5.2] showed an alternative method of computing
x1 · · ·xd efficiently. The idea is essentially to first locally convert a CNF share into
a Shamir share of the same secret, and then perform homomorphic evaluation on
the Shamir share. We present here a generalization of the method for any t < m.
Fix an arbitrary m-subset {ζ1, . . . , ζm} ⊆ Zq. Define the degree-dt polynomial

p(Z) :=

d∏
i=1

∑
u∈{0,1}m:
wt(u)=t

ci,u
∏

j:uj=1

(1− Z/ζj)

such that p(0) =
∏d
i=1

∑
u∈{0,1}m:
wt(u)=t

ci,u = x1 · · ·xd. Note that p(ζj) does not

depend on the values of ci,u where the j-th bit of u is 1, and can therefore be
computed by the j-th server. Since the degree of p is dt ≤ m − 1, p(0) can be
recovered by interpolating p(ζ1), . . . , p(ζm).

In general, given an n-variate degree-d polynomial f , we can define

pf (Z) := f

 ∑
u∈{0,1}m:
wt(u)=t

c1,u
∏

j:uj=1

(1− Z/ζj), . . . ,
∑

u∈{0,1}m:
wt(u)=t

cn,u
∏

j:uj=1

(1− Z/ζj)

 .

The value f(x) can be recovered by f(x) = pf (0).

Generalized Scheme CNF` In the above, the client is required to perform
only a simple linear computation for recovery. We show that the computation of
higher degree polynomials is possible, if the client is willing to perform a degree-`
computation for ` > 1.

We first consider the naive strategy of distributing terms to servers, and
discuss the interpolation-based approach later. In the former setting, it suffices
to have that, for any fixed u1, . . . ,ud ∈ {0, 1}m with wt(ui) = t, there exists a
server j∗ ∈ [m] and an index set I of size |I| ≥ d− ` such that ui,j∗ = 0 for all
i ∈ I. Server j∗ can therefore compute

∏
i∈I ci,ui , and leave the computation of∏

i∈[d]\I ci,ui to the output client. To compute the latter, the client would need
to store locally a copy of all shares – the recovery information is the same as the
input shares.

We argue that if dt < (`+1)m, then the above condition is satisfied. Suppose
not, then for all j ∈ [m], we have |{i ∈ [d] : ui,j = 0}| ≤ d− `− 1. In other words,

15

for all j ∈ [m], we have |{i ∈ [d] : ui,j = 1}| ≥ `+ 1. Summing up the weights of
all ui, we have

∑d
i=1 wt(ui) ≥ (`+ 1)m. By the pigeonhole principle, there must

exist i∗ such that

wt(ui∗) ≥
(`+ 1)m

d
>

(`+ 1)mt

(`+ 1)m
= t

which is a contradiction as wt(ui) = t for all i ∈ [d].
The CNF scheme suffers from many drawbacks. First, each input share

consists of
(
m
t

)
n F elements. It also suffers from inefficient evaluation, unless the

interpolation-based evaluation is used, which makes it equivalent to the scheme
presented in Section 4.2, except with larger input shares. Finally, the output
share size is upper bounded by the number of monomials of degree at most `
over the variables (ci,u)i∈[n],u∈{0,1}m:wt(u)=t, i.e.,

((mt)n+`
`

)
= O((mtn)`).

We next state the formal theorem about the CNF` scheme. Its proof is already
written inline in the above discussion.

Theorem 3. Let d < (`+1)m
t . The `-th order CNF secret sharing scheme CNF` is

an IT (n,m, t)-HSS for degree-d polynomials, with efficiency measures (ρ, α, β) =(
mtn,mtn, (mtn)`

)
.

Similar to the ` = 0 case, the above approach suffers in evaluation efficiency
since there is no natural way to distribute the terms. Naturally, one would hope
to use a generalization of the interpolation-based approach to achieve the same
parameter (d =

⌊
(`+1)m−1

t

⌋
). Indeed, in Section 4.2 we recall and generalize

a technique by Woodruff and Yekhanin [37] of using partial derivatives and
Hermite interpolation to support higher degree polynomials, which would also be
applicable in CNF`. Since the resulting schemes, which we denote by WY`, are
superior to CNF` in all parameters, we do not discuss applying the technique to
CNF` in detail.

4.2 `-th Order Woodruff-Yekhanin HSS

In an insightful work of Woodruff and Yekhanin [37], they constructed a PIR
scheme which can be viewed as an (n,m, t)-HSS for degree-

⌊
2m−1
t

⌋
polynomials,

which we call the first-order Woodruff-Yekhanin HSS WY1. The idea of the
scheme is as follows.

First Order Scheme by Woodruff and Yekhanin We begin with the sharing
procedures of Shamir’s scheme. To secret-share x ∈ Fn, the input client sample
a random (vector valued) degree-t polynomial ϕ(Z) so that ϕ(0) = x. The j-th
share is defined as sj := ϕ(j). What differs from Shamir’s scheme is that the
input client also computes, as recovery information, the derivatives of ϕ evaluated
at j ∈ [m], denoted by ϕ(1)(j), ϕ′(j), or dϕ

dZ (j).
To evaluate a polynomial f of degree

⌊
2m−1
t

⌋
over a share sj , server j computes

as in Shamir’s scheme f(sj) = f(ϕ(j)). Additionally, it computes all partial

16

derivatives of f evaluated at sj , denoted by
(
∂f
∂Xi

(sj)
)
i∈[n]

. The j-th output

share is defined as yj :=
(
f(sj),

∂f
∂X1

(sj), . . . ,
∂f
∂Xn

(sj)
)
.

Finally, to decode the output shares, the output client first recover (f◦ϕ)′(sj) =
df◦ϕ
dZ (sj) by using the chain rule of derivatives. Then, since f ◦ ϕ is a univariate
polynomial of degree at most 2m − 1, it is possible to recover f(ϕ(0)) = f(x)
from m points on f ◦ ϕ and m points on (f ◦ ϕ)′ using Hermite interpolation.

The scheme of Woodruff and Yekhanin is balanced, meaning that both input
and output shares consist of O(n) F elements. The result can be seen as a trade-off
between m

t degrees and compactness, when compared to Shamir’s scheme. If we
view the sharing, evaluation, and decoding procedures of an HSS as one MPC
protocol, then for a fixed input share size, a balanced HSS and a compact HSS
would give MPC protocols with the same asymptotic communication complexity.
In this sense, the extra m

t degrees are gained for free.

Generalization to Higher Orders Intuitively, a way to support polynomials of
even higher degrees is to further sacrifice the output share size. The idea is to let
the servers compute all partial derivatives of order at most `, so that a polynomial
of degree at most d < (`+1)m

t can be supported. In a standalone application of
the HSS, this would not make sense as it is “wasteful” to have a smaller input
share size than the output share size. However, with the observation that, in our
compiler constructed in Section 5, the output share size of the resulting HSS
scheme is independent of that of the base scheme, sacrificing the output share
size even more for the support of more degrees might be worth it. We therefore
formalize this intuition in Figure 3 and call the resulting scheme the `-th order
Woodruff-Yekhanin HSS, denoted by WY`.(Share,Eval,Dec).

For e ∈ Nn0 , we use the notation f (e)(x) to denote the high-order partial
derivative ∂wt(e)f

∂X
e1
1 ...∂Xenn

evaluated at x. For u ∈ [`], we make use of a generalization

of the Faa di Bruno formula [32] which expresses (f ◦ϕ)(u)(j) as a linear function
of (f (e)(sj))e∈Nn0 :wt(e)≤u with coefficients determined by degree-u polynomials of
(ϕ(h)(j))h∈[u]. We denote this formula by

Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f
(e)(sj))e∈N0:wt(e)≤u).

Finally, we use the notation

Hermite((f(sj), (f ◦ ϕ)(u)(sj))j∈[m],u∈[`])

to denote the value f(ϕ(0)) recovered using Hermite interpolation.

Theorem 4. Let d < (`+1)m
t . The `-th order Woodruff-Yekhanin HSS WY` is

an IT (n,m, t)-HSS for degree-d polynomials with efficiency measures (ρ, α, β) =(
`n, n, n`

)
.

Proof. Input shares of WY` are just shares of the Shamir secret sharing scheme.
Security thus follows immediately. More seriously, for any fixed t-subset of input

17

WY`.Share(x)

ϕ← (F[Z])
n

s.t.

{
deg(ϕ) = t

ϕ(0) = x

inj := ϕ(j), ∀j ∈ [m]

recj :=
(
ϕ

(u)
(j)
)
u∈[`]

return

(
in1, . . . , inm,
rec1, . . . , recm

)

WY`.Eval(j, f, inj)

outj :=
(
f(sj), f

(e)
(sj)

)
e∈Nn0 :wt(e)≤`

return outj

WY`.Dec

(
out1, . . . , outm,
rec1, . . . , recm

)
foreach j ∈ [m], u ∈ [`] do

(f ◦ ϕ)(u)(sj)

= Faa-di-Bruno[(ϕ(h)
(j))h∈[u]]((f

(e)
(sj))e∈N0:wt(e)≤u)

y := Hermite((f(sj), (f ◦ ϕ)(u)(sj))j∈[m],u∈[`])

Fig. 3. The `-th order Woodruff-Yekhanin HSS.

shares {inj1 , . . . , injt } and any input x ∈ Fn, there exists a unique degree-t
polynomial ϕ such that ϕ(0) = x and ϕ(j) = inj for all j ∈ {j1, . . . , jt}. The set
{inj1 , . . . , injt } therefore contain no information about the true input.

The support of degree-d polynomials follows immediately from Hermite in-
terpolation. Specifically, we note that the output client obtains the following
(`+ 1)m data points:

(1, (f ◦ ϕ)(1)) . . . (m, (f ◦ ϕ)(m))
(1, (f ◦ ϕ)′(1)) . . . (m, (f ◦ ϕ)′(m))

...
. . .

...
(1, (f ◦ ϕ)(`)(1)) . . . (m, (f ◦ ϕ)(`)(m))

for a univariate degree-dt polynomial f ◦ ϕ and its derivatives. Since dt ≤
(`+1)m−1 the client is able to recover f(x) = f(ϕ(0)) using Hermite interpolation.

The size of a recovery information ρ = `n and that of an input share α = n
can be easily observed. For the size of an output share, observe that an output
share consists of

(
f(sj), f

(e)(sj)
)
e∈Nn0 :wt(e)≤`

. The set{e ∈ Nn0 : wt(e) ≤ `} counts
the number of n-variate monomials of degree at most `, and thus is of size(
n+`
`

)
= O(n`). We thus have β = n`.

Note that WY0 is simply the Shamir secret sharing scheme.

Computational Complexity We remark about the computational complexity
of the servers and the output client. It is well-known, e.g., by the Baur-Strassen
theorem [4] or in the field of auto-differentiation, that if a multivariate polynomial
f can be computed by an arithmetic circuit of size denoted by |f |, then there exists
a circuit of size O(|f |) which computes f and all n first-order partial derivatives of
f simultaneously. Applying this recursively to the n first-order partial derivatives
suggests that the server computation is bounded by O(|f |n`−1).

18

WY`.PreProc(1
n)

p :=

⌊
t

`+ 1

⌋
s0,j ← Fn, ∀j ∈ [p]

su,j ← Fn, ∀j ∈ [p], ∀u ∈ [`]

inj := s0,j , ∀j ∈ [p]

recj := (su,j)j∈[p],u∈[`]

return

(
in1, . . . , inp,
rec1, . . . , recp

)

WY`.ShareComp

(
in1, . . . , inp,
rec1, . . . , recp,

,x

)
// Sample ϕ by Hermite interpolation.

ϕ← (F[Z])
n

s.t.


deg(ϕ) = t

ϕ(0) = x

ϕ(j) = s0,j ∀j ∈ [p]

ϕ(u)(j) = su,j ∀j ∈ [p] ∀u ∈ [`]

inj := ϕ(j), ∀j ∈ [m] \ [p]

recj :=
(
ϕ

(u)
(j)
)
j∈[p],u∈[`]

return

(
inp+1, . . . , inm,
recp+1, . . . , recm

)

Fig. 4.
⌊

t
`+1

⌋
-Preprocessing of the `-th order Woodruff-Yekhanin HSS.

On the output client side, we note that

Faa-di-Bruno[(ϕ(h)(j))h∈[u]]((f
(e)(sj))e∈N0:wt(e)≤u)

is a linear function with
(
n+u
u

)
≤
(
n+`
`

)
terms, where each coefficient is a degree-u

polynomial with at most
(
2u
u

)
≤
(
2`
`

)
terms. The output client needs to evaluate `m

of these. Lastly, the Hermite interpolation is a linear function with (`+1)m terms.
Therefore, the output client computation is bounded by O

(
`m ·

(
n+`
`

)
·
(
2`
`

))
=

O
(
`m(`n)`

)
. For the cases of ` = 1 or ` = 2, the output client computation is

O(mn) and O(mn2) respectively.

Preprocessing In the Share algorithm of WY`, a degree-t polynomial ϕ is sam-
pled such that the input x is encoded as ϕ(0) = x. Note that ϕ is not determined
until t + 1 points on it or its derivatives are fixed. We can therefore exploit
this property and push the sampling of p ≤ t

`+1 shares and their corresponding
recovery information, which in total consist of p(`+ 1) ≤ t < t+ 1 points, to a
preprocessing phase.

Theorem 5. Let p ≤ t
`+1 . The `-th order Woodruff-Yekhanin HSS WY` supports

p-preprocessing.

Proof. We show that WY` supports p-preprocessing by constructing the algo-
rithms WY`.(PreProc,ShareComp) in Figure 4.

5 Compiler from IT HSS to HSS using HE

For d < (k+1)m and m = O(log λ), Lai, Malavolta, and Schröder [31] proposed
an (n,m, 1)-HSS scheme for degree-d polynomials based on any k-HE scheme.
Generalizing their approach, we present a compiler based on homomorphic encryp-
tion from IT HSS to HSS. Our compiler makes use of the following elementary

19

observation. Let f(X) be a ρ-variate degree-` polynomial. For any 0 ≤ k ≤ `,
note that f(X) can be written as

f(X) =
∑
e∈Nρ0 :

wt(e)≤`−k

Xefe(X)

where fe(X) is a ρ-variate degree-k polynomial. Note that |{e ∈ Nρ0 : wt(e) ≤
`− k}| is the number of ρ-variate monomials of degree at most `− k, and can be
computed by

(
ρ+`−k
`−k

)
= O(ρ`−k).

5.1 The Compiler

Let IT-HSS.(Share,Eval,Dec) be a an IT (n,m, t)-HSS for degree-d polynomials
with the following properties:

– The recovery information recj is a vector rj ∈ Fρ for all j ∈ [m].
– The output share inj is a vector yj ∈ Fβ for all j ∈ [m].
– The decoding algorithm IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm) is a linear func-

tion of (y1, . . . ,ym), where the coefficient of yj is computed by a degree-`
polynomial of rj , where ` ≥ k. More concretely,

IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm)

=

m∑
j=1

β∑
b=1

yj,b · Decj,b(rj)

where Decj,b is a degree-` polynomial of rj

=
∑
e∈Nρ0 :

wt(e)≤`−k

m∑
j=1

rej

β∑
b=1

yj,b · Dece,j,b(rj)

where Dece,j,b is a degree-k polynomial of rj .

The idea of the compiler is to delegate the computation of
∑β
b=1 yj,b ·

Dece,j,b(rj) to server j by encrypting rj with a homomorphic encryption scheme
HE which supports the evaluation of degree-k polynomials. Formally, we construct
an (n,m, t)-HSS for degree-d polynomials, denoted HSS.(KGen,Share,Eval,Dec),
in Figure 5.

Note that when k = ` the decoding function is simply

IT-HSS.Dec(y1, . . . ,ym, r1, . . . , rm) =

m∑
j=1

β∑
b=1

yj,b · Dece,j,b(rj).

In this case the input client does not need to store a local copy of the recovery
information.

20

HSS.KGen(1λ)

(pk, sk)← HE.KGen(1λ)

return (pk, sk)

HSS.Share(pk,x)(
in1, . . . , inm,
r1, . . . , rm

)
← IT-HSS.Share(x)

r̃j ← HE.Enc(pk, rj), ∀j ∈ [m]

in′j := (r̃j , inj), ∀j ∈ [m]

if h > 0 then

recj := rj , ∀j ∈ [m]

return

(
in′1, . . . , in

′
m

rec1, . . . , recm

)

HSS.Eval(pk, j, f, in′j)

yj ← IT-HSS.Eval(j, f, inj)

foreach e ∈ Nρ0 : wt(e) ≤ `− k do

d̃e,j ← HE.Eval

(
β∑
b=1

yj,b · Dece,j,b, r̃j

)
return out′j := (d̃e,j)e∈Nρ0 :wt(e)≤`−k

HSS.Dec

(
sk,

out′1, . . . , out
′
m

rec1, . . . , recm

)
foreach e ∈ Nρ0 : wt(e) ≤ `− k, j ∈ [m] do

de,j ← Dec(sk, d̃e,j)

y :=
∑

e∈Nρ0 :
wt(e)≤`−k

m∑
j=1

rejde,j

return y

Fig. 5. Compiler from IT-HSS to HSS based on HE.

Theorem 6. Let IT-HSS be an (n,m, t)-HSS for degree-d polynomials satisfying
the above properties, and HE be a CPA-secure k-HE scheme, then HSS is an
(n,m, t)-HSS for degree-d polynomials. If IT-HSS and HE are correct, then HSS
is correct. If IT-HSS has the efficiency measures (ρ, α, β), then HSS has the
efficiency measures (ρ′, α′, β′) =

(
ρ, ρ+ α, ρ`−k

)
. If k = `, then ρ′ = 0. Note that

β′ is independent of β.

Proof. The correctness of HSS is already proven in-line in the above discussion.
For security, note that an input share in′j consists of an input share inj of the

underlying IT HSS scheme and an HE ciphertext r̃j . We can thus prove security
by a simple hybrid argument, where we consider an intermediate hybrid security
experiment where the ciphertexts r̃j are replaced by ciphertexts encrypting zeros.
Clearly, this hybrid experiment is indistinguishable from the security experiment
for HSS, based on the CPA-security of HE. Next, we observe that the environment
of the hybrid experiment can be simulated perfectly using an adversary against
the security of the underlying IT HSS scheme. We can therefore conclude that the
advantage of any (unbounded) adversaries in the hybrid experiment is identical
to that against the security of the underlying IT HSS scheme, which is negligible.

The correctness of ρ′ and α′ follows from simple observations. For the cor-
rectness of β′, we observe that an output share consists of (d̃e,j)e∈Nρ0 :wt(e)≤`−k,
where each d̃e,j is of fixed poly(λ) size since HE is assumed to be compact. Note
that the index set {e ∈ Nρ0 : wt(e) ≤ `− k} is of size

(
ρ+`−k
`−k

)
= O(ρ`−k).

21

HSS.PreProc(pk)(
in1, . . . , inp,
r1, . . . , rp

)
← IT-HSS.PreProc(1n)

r̃j ← HE.Enc(pk, rj), ∀j ∈ [p]

in′j := (r̃j , inj), ∀j ∈ [p]

if h > 0 then

rec′j := rj , ∀j ∈ [p]

return

(
in′1, . . . , in

′
p

rec′1, . . . , rec
′
p

)

HSS.ShareComp(pk, r′, s′1, . . . , s
′
p, x)(

inp+1, . . . , inm
rp+1, . . . , rm

)
← IT-HSS.ShareComp

(
in1, . . . , inp,
r1, . . . , rp,

x

)
r̃j ← HE.Enc(pk, rj), ∀j ∈ [m] \ [p]

in′j := (r̃j , inj), ∀j ∈ [m] \ [p]

if h > 0 then

rec′j := rj , ∀j ∈ [m] \ [p]

return

(
in′p+1, . . . , in

′
m

rec′p+1, . . . , rec
′
m

)

Fig. 6. p-Preprocessing of the Compiler from IT-HSS to HSS based on HE.

5.2 Computation Complexity

The computation complexity of the compiled scheme depends on that of the
base scheme. Suppose that the base scheme has server computation σ. We also
assume that HE.Dec() can be computed in poly(λ) time, and HE.Eval(f, ·) can
be computed in time |f | · poly(λ). Then, the server computation of the compiled
scheme is

σ′ = σ + β

(
ρ+ `− k
`− k

)(
ρ+ k

k

)
· poly(λ) = σ + β · ρ` · poly(λ) ,

and the client computation is γ′ =
(
ρ+`−k
`−k

)
m · poly(λ) = ρ`−k ·m · poly(λ).

5.3 Preprocessing

We show that if the base scheme IT-HSS supports p-preprocessing and satisfies
certain additional properties, then HSS p-preprocessing.

Theorem 7. If IT-HSS supports p-preprocessing, then so does HSS.

Proof. We construct the algorithms HSS.(PreProc,ShareComp) in Figure 6.

5.4 Instantiations

Both CNF` and WY` constructed in Section 4 satisfy the properties required by
the compiler. The main HSS scheme in [31] can be seen as the result of applying
the k-HE-based compiler on the CNF` scheme in the setting with k = `. Lai,
Malavolta, and Schröder [31] discussed the setting with t > 1, but did not provide
any concrete schemes. A constructive version for general t ≥ 1 was proposed
in [35]. The approach of compiling CNF` gives concrete schemes and significantly
simplifies the analysis in [31] (c.f., Section 4.1).

As discussed in Section 4, CNF` is almost strictly inferior to WY`. We therefore
focus on the instantiations with a linearly-homomorphic HE (k = 1) and the `-th
order Woodruff-Yekhanin IT-HSS WY` which has efficiency measures (ρ, α, β) =

22

(`n, n, n`) and supports polynomials of degree d < (`+1)m
t . When ` = 1, we

obtain a compact HSS with efficiency measures (ρ′, α′, β′) = (0, n, 1) supporting
polynomials of degree d < 2m

t , where decoding is linear. When ` = 2, we obtain
a balanced HSS with efficiency measures (ρ′, α′, β′) = (mn, n, n) supporting
polynomials of degree d < 3m

t , where decoding is quadratic.

6 Application to MPC with Preprocessing

In the following we show an application of HSS to multi-party computation (MPC)
with preprocessing. Specifically, we show how to generically construction an m-
party MPC protocol for degree-d polynomials resistant against the corruption of
t parties, assuming the existence of an (n,m+ p, t)-HSS for degree-d polynomials
that supports p-preprocessing. A similar result for the restricted case of 2 parties
was given (implicitly) in [5]. The salient point of our construction is that the
online communication complexity of the MPC scheme is independent of the size
of the polynomial being computed. For certain regimes of parameters, this leads
to an exponential improvement in the communication complexity of the online
phase, when compared with general-purpose MPC solutions.

6.1 Protocol Description

In the following we describe our (semi-honest) MPC protocol for degree-d polyno-
mials assuming the existence of a (n,m+p, t)-HSS scheme with perfect correctness
and a general purpose (semi-honest) m-party MPC that is resilient against the
corruption of up to t parties. For a definition of MPC and its notion of simulation-
based semi-honest security, we refer to [24]. The scheme is detailed below.

Preprocessing: We assume that the (input-independent) preprocessing phase is
run by a trusted party, which can be substituted by an execution of a general-
purpose MPC protocol jointly executed by the m participants. The preprocessing
phase proceeds as follows.

1. Generate a key for the HSS scheme via (pk, sk)← HSS.KGen(1λ).
2. Run HSS.PreProc(pk, 1n) to obtain (in1, . . . , inp, rec1, . . . , recp).
3. Run HSS.Eval(pk, j, f, inj) to obtain outj , for all j ∈ [p].
4. Let s be the concatenation of the variables (sk, in1, rec1, out1, . . . , inp, recp,

outp) as defined above. The preprocessing algorithm computes an t-out-of-m8

secret sharing of s and returns to each party the public key pk and the j-th
share sj .

8 We use t-out-of-m secret sharing to refer to an m-party secret sharing scheme which
is resilient against t corrupt parties.

23

Online: The online phase is jointly executed by the m participants, who collec-
tively receive the inputs x, i.e., either x is secret shared among the m participants
or each participant has knowledge of a disjoint subset of entries of x. The j-th
party inputs the j-th output of the preprocessing phase (pk, sj) and its share of
x. The parties jointly compute the following function using a general-purpose
MPC protocol. For simplicity we assume that the function takes as input the
variable s as defined in the preprocessing, which can be obtained by running the
reconstruction procedure of the t-out-of-m secret sharing scheme.

1. Run HSS.ShareComp(in1, . . . , inp, rec1, . . . , recp,x) to obtain the tuple (inp+1,
. . . , inm+p, recp+1, . . . , recm+p).

2. The j-th participant is given inp+j and an t-out-of-m secret share of s̃ =
(recp+1, . . . , recm+p).

The j-th party locally computes HSS.Eval(pk, p + j, f, inp+j) to obtain outp+j .
Then the m parties engage once again in a general-purpose MPC on input
the secret key sk, the output shares (out1, . . . , outm+p), and the reconstruction
information (rec1, . . . , recm+p). Whenever some information is not available to
any party in plain, the MPC protocol reconstructs it from the shares.

1. Run HSS.Dec(sk, out1, . . . , outm+p, rec1, . . . , recm+p)) and return the output
to all parties.

6.2 Analysis

The security of the MPC protocol follows from a standard argument, which
we sketch in the following. Observe that the view of the parties consist of the
public key of the HSS scheme together with HSS shares of the input x and the
t-out-of-m secret sharing of the variables s and s̃. By the semi-honest security
of the MPC protocol, the MPC transcript does not reveal anything beyond the
output of the computation. Thus the t-out-of-m security of the resulting MPC
follows by a reduction against the HSS scheme (observe that the variables s
and s̃ are information-theoretically hidden from the eyes of any t-subset of the
participants).

We analyze the communication complexity of our protocol when instantiating
the general-purpose MPC with any OT-based protocol (e.g. [25]) and the HSS
scheme with k-HE-compiled variant of WY` described in Section 5. To reduce
cluttering, we assume that t and 1 ≤ k ≤ ` are constants, e.g., t = 1, k = 1,
and ` = 1 or 2. Recall that (compiled) WY` supports

⌊
t
`+1

⌋
-preprocessing.

We therefore set p =
⌊

t
`+1

⌋
= O(1). The communication complexity of the

preprocessing phase is upper bounded by

(|HSS.KGen|+ |HSS.PreProc|+ p|HSS.Eval(·, ·, f, ·)|) · poly(λ)
=
(
1 + ` · n · p+ p(|f |n`−1 + (`n2)`)

)
· poly(λ)

=(|f |n`−1 + n2`) · poly(λ) .

24

On the other hand, the online communication is upper bounded by

(|HSS.ShareComp|+ |HSS.Dec|) · poly(λ)
=
(
p · nt+m(` · n)`−k

)
· poly(λ)

=mn`−k · poly(λ) .

In case t is a multiple of `+ 1, the protocol allows the participants to jointly
evaluate a degree d multivariate polynomial where d < (`+1)m

t + 1, i.e., we gain
1 degree compared to using the k-HE-compiled WY` scheme as-is. The size of
the circuit representation of such a polynomial ranges from a constant to O(nd).
Thus for large enough m, the communication complexity of the online phase is
exponentially smaller than that of a naive implementation using a general-purpose
MPC protocol. We stress that this result is obtained without relying on heavy
machinery, such as fully-homomorphic encryption.

7 Conclusion

With the conceptual observation that the HSS scheme of [31] can be abstractly seen
as compiling the CNF IT HSS using a k-HE, in this work we have constructed a
generic compiler which turns a class of compatible IT HSS for degree-d polynomials
into a computational one with more favourable parameters.

A generic compiler has many advantages. For starters, it allows instantiation
withWY, which, unlike CNF, scales well with a large number of servers. In contrast,
[31] using CNF becomes exponentially inefficient. Due to degree-amplification,
this improvement is significant in practice as higher degrees can be supported by
simply employing more servers. The preprocessing property of WY also allows
application to preprocessing MPC, which was not possible with [31]. Other choices
of instantiating the IT-HSS and k-HE potentially yield further improvements.

Acknowledgments

Yuval Ishai is supported by ERC Project NTSC (742754), ISF grant 2774/20, NSF-
BSF grant 2015782, and BSF grant 2018393. Russell W. F. Lai is supported by
the State of Bavaria at the Nuremberg Campus of Technology (NCT) – a research
cooperation between the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Technische Hochschule Nürnberg Georg Simon Ohm (THN).

References

1. Akavia, A., Feldman, D., Shaul, H.: Secure search via multi-ring fully homomorphic
encryption. IACR Cryptology ePrint Archive 2018, 245 (2018)

2. Akavia, A., Gentry, C., Halevi, S., Leibovich, M.: Setup-free secure search on en-
crypted data: Faster and post-processing free. Proceedings on Privacy Enhancing
Technologies 2019(3), 87–107 (2019)

25

3. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with applications
to database search problems. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 395–411. Springer, Heidelberg (Aug 2005), DOI: 10.1007/11535218_24

4. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoretical Computer
Science 22(3), 317 – 330 (1983), DOI: https://doi.org/10.1016/0304-3975(83)90110-
X

5. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (Feb 2014), DOI: 10.1007/978-3-642-54242-8_14

6. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson Jr., M.J., Locasto, M.E.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 13. LNCS, vol. 7954, pp. 102–118.
Springer, Heidelberg (Jun 2013), DOI: 10.1007/978-3-642-38980-1_7

7. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (Feb
2005), DOI: 10.1007/978-3-540-30576-7_18

8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS. vol. 4324, p. 4325 (2015)

9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Heidelberg (Aug 2019), DOI: 10.1007/978-3-030-26954-8_16

10. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (Aug 2016), DOI: 10.1007/978-3-662-
53018-4_19

11. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol.
11891, pp. 341–371. Springer, Heidelberg (Dec 2019), DOI: 10.1007/978-3-030-
36030-6_14

12. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018. vol. 94, pp. 21:1–21:21. LIPIcs
(Jan 2018), DOI: 10.4230/LIPIcs.ITCS.2018.21

13. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477,
pp. 3–33. Springer, Heidelberg (May 2019), DOI: 10.1007/978-3-030-17656-3_1

14. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Heidelberg
(Apr 2015), DOI: 10.1007/978-3-319-16715-2_26

15. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-2
functions on encrypted data. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015.
pp. 1518–1529. ACM Press (Oct 2015), DOI: 10.1145/2810103.2813624

16. Cheon, J.H., Kim, M., Lauter, K.E.: Homomorphic computation of edit distance.
In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015 Workshops.
LNCS, vol. 8976, pp. 194–212. Springer, Heidelberg (Jan 2015), DOI: 10.1007/
978-3-662-48051-9_15

17. Couteau, G.: A note on the communication complexity of multiparty computa-
tion in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 473–503. Springer, Heidelberg (May
2019), DOI: 10.1007/978-3-030-17656-3_17

26

https://doi.org/10.1007/11535218_24
https://doi.org/https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-38980-1_7
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1145/2810103.2813624
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1007/978-3-030-17656-3_17

18. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure efficient multiparty
computing of multivariate polynomials and applications. In: Lopez, J., Tsudik, G.
(eds.) ACNS 11. LNCS, vol. 6715, pp. 130–146. Springer, Heidelberg (Jun 2011),
DOI: 10.1007/978-3-642-21554-4_8

19. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (Feb 2001), DOI: 10.1007/3-540-44586-
2_9

20. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

22. Franklin, M.K., Mohassel, P.: Efficient and secure evaluation of multivariate poly-
nomials and applications. In: Zhou, J., Yung, M. (eds.) ACNS 10. LNCS, vol. 6123,
pp. 236–254. Springer, Heidelberg (Jun 2010), DOI: 10.1007/978-3-642-13708-2_
15

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009), DOI:
10.1145/1536414.1536440

24. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 1st edn. (2009)

25. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M.
(ed.) CRYPTO’86. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (Aug 1987),
DOI: 10.1007/3-540-47721-7_11

26. Graepel, T., Lauter, K., Naehrig,M.: ML confidential: Machine learning on encrypted
data. In: Kwon, T., Lee, M., Kwon, D. (eds.) ICISC 12. LNCS, vol. 7839, pp. 1–21.
Springer, Heidelberg (Nov 2013), DOI: 10.1007/978-3-642-37682-5_1

27. Harsha, P., Ishai, Y., Kilian, J., Nissim, K., Venkatesh, S.: Communication vs.
computation. Comput. Complex. 16(1), 1–33 (2007), DOI: 10.1007/s00037-007-
0224-y

28. Ishai, Y., Kushilevitz, E.: Improved upper bounds on information-theoretic private
information retrieval (extended abstract). In: 31st ACM STOC. pp. 79–88. ACM
Press (May 1999), DOI: 10.1145/301250.301275

29. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proc. IEEE Global Telecommunication Conf. (Globecom’87). pp.
99–102 (1987)

30. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding.
In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 167–176. ACM Press
(Jun 2011), DOI: 10.1145/1993636.1993660

31. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low
degree polynomials. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III.
LNCS, vol. 11274, pp. 279–309. Springer, Heidelberg (Dec 2018), DOI: 10.1007/
978-3-030-03332-3_11

32. Mishkov, R.: Generalization of the formula of faa di bruno for a composite function
with a vector argument. Int. J. Math. Math. Sci. 24, 481–491 (01 2000)

33. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW 2011. pp. 113–124. ACM (2011), https://dl.acm.org/citation.cfm?id=
2046682

27

https://doi.org/10.1007/978-3-642-21554-4_8
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-13708-2_15
https://doi.org/10.1007/978-3-642-13708-2_15
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/s00037-007-0224-y
https://doi.org/10.1007/s00037-007-0224-y
https://doi.org/10.1145/301250.301275
https://doi.org/10.1145/1993636.1993660
https://doi.org/10.1007/978-3-030-03332-3_11
https://doi.org/10.1007/978-3-030-03332-3_11
https://dl.acm.org/citation.cfm?id=2046682
https://dl.acm.org/citation.cfm?id=2046682

34. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (May 1999), DOI: 10.1007/3-540-48910-X_16

35. Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K.: Constructive
t-secure homomorphic secret sharing for low degree polynomials. In: Progress in
Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryptology in
India. LNCS, vol. 12578, pp. 763–785. Springer (2020), DOI: 10.1007/978-3-030-
65277-7_34

36. Shamir, A.: How to share a secret. Communications of the Association for Computing
Machinery 22(11), 612–613 (Nov 1979)

37. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic pri-
vate information retrieval. In: 20th Annual IEEE Conference on Computational
Complexity (CCC’05). pp. 275–284. IEEE (2005)

38. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Packed ho-
momorphic encryption based on ideal lattices and its application to biometrics. In:
Security Engineering and Intelligence Informatics - CD-ARES 2013 Workshops:
MoCrySEn and SeCIHD. LNCS, vol. 8128, pp. 55–74. Springer (2013), DOI:
10.1007/978-3-642-40588-4_5

28

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-65277-7_34
https://doi.org/10.1007/978-3-030-65277-7_34
https://doi.org/10.1007/978-3-642-40588-4_5

	A Geometric Approach toHomomorphic Secret Sharing

