
Fully projective radical isogenies in constant-time

Jesús-Javier Chi-Domínguez *1 and Krijn Reijnders �2

1Cryptography Research Centre, Technology Innovation Institute,

Abu Dhabi, United Arab Emirates
2Radboud University, Nijmegen, The Netherlands

December 2, 2021

Abstract

At PQCrypto-2020, Castryck and Decru proposed CSURF (CSIDH
on the surface) as an improvement to the CSIDH protocol. Soon after
that, at Asiacrypt-2020, together with Vercauteren they introduced
radical isogenies as a further improvement. The main improvement in
these works is that both CSURF and radical isogenies require only one
torsion point to initiate a chain of isogenies, in comparison to Vélu
isogenies which require a torsion point per isogeny. Both works were
implemented using non-constant-time techniques, however, in a realis-
tic scenario, a constant-time implementation is necessary to mitigate
risks of timing attacks. The analysis of constant-time CSURF and
radical isogenies was left as an open problem by Castryck, Decru, and
Vercauteren.

In this work we analyze this problem. A straightforward constant-
time implementation of CSURF and radical isogenies encounters too
many issues to be cost e�ective, but we resolve some of these issues with
new optimization techniques. We introduce projective radical isogenies
to save costly inversions and present a hybrid strategy for integration
of radical isogenies in CSIDH implementations. These improvements
make radical isogenies almost twice as e�cient in constant-time, in
terms of �nite �eld multiplications. Using these improvements, we
then measure the algorithmic performance in a benchmark of CSIDH,
CSURF and CRADS (an implementation using radical isogenies) for
di�erent prime sizes. Our implementation provides a more accurate
comparison between CSIDH, CSURF and CRADS than the original

*jesus.dominguez@tii.ae, The European Commission initially supported this work
through the ERC Starting Grant 804476 (SCARE), while J. J. Chi-Domínguez was a
postdoctoral researcher at Tampere University.

�krijn@cs.ru.nl

1

benchmarks, by using state-of-the-art techniques for all three imple-
mentations. Our experiments illustrate that the speed-up of constant-
time CSURF-512 with radical isogenies is reduced to about 3% in com-
parison to the fastest state-of-the-art constant-time CSIDH-512 imple-
mentation. The performance is worse for larger primes, as radical
isogenies scale worse than Vélu isogenies.

1 Introduction

The �rst proposal of an isogeny-based Di�e-Hellman key exchange was done
by Couveignes [13] and centered on the action of an ideal class group on a set
of ordinary elliptic curves. Later Rostovtsev and Stolbunov [24, 23] indepen-
dently rediscovered it and recognized its potential as a possible post-quantum
candidate. In the last decade, isogeny-based key exchange developed fur-
ther, notably with SIDH in [16, 14, 2]. In Asiacrypt 2018, Castryck, Lange,
Martindale, Panny, and Renes introduced CSIDH (a non-interactive key ex-
change) as a reformulation of the Couveignes-Rostovtsev-Stolbunov system
using supersingular curves de�ned over a prime �eld [9]. With the hope to
improve the performance of CSIDH, Castryck and Decru proposed CSURF,
which exploits 2-isogenies [7] on the surface of the isogeny graph. Later on,
Castryck, Decru, and Vercauteren in Asiacrypt 2020 expanded on the ideas
in CSURF to construct isogenies with small odd degree based on radical com-
putations (N -th roots) [8]. Using radical isogenies, they claimed a speed-up
of about 19% over CSIDH-512, however both of the implementations in [7]
and [8] focus on non-constant-time instantiations. In particular, Castryck,
Decru, and Vercauteren left the analysis of a constant-time implementation
of CSURF and radical isogenies as an open problem. A constant-time al-
gorithm refers to an algorithm whose running time is independent of (or
uncorrelated with) the secret input. This implies the variability in the run-
ning time depends on randomness and not on the leakage of information on
secret values.

Dealing with constant-time implementations of CSIDH (and CSURF) can
be tricky as there are multiple approaches, such as using dummy isogenies or
a dummy-free approach. The �rst constant-time CSIDH instantiation is the
procedure using dummy isogenies proposed by Meyer, Campos, and Reith
in [18], later improved by Onuki et al. in [20]. Subsequently, Cervantes-
Vázquez et al. proposed a dummy-free variant of CSIDH [10], and more
recently, Banegas et al. presented CTIDH [3]. This covers the literature
that we are aware of.

The general idea to make CSIDH implementations run in constant-time is
to perform a �xed number m of isogenies of a certain degree `i, independent
of the secret key ei. For example, take the CSIDH-512 prime p = 4·

∏74
i=1 `i−

1, where `1 up to `73 are the smallest 73 odd prime numbers and `74 = 587.
Let E/Fp : y2 = x3+Ax2+x be a supersingular Montgomery curve with (p+

2

1) rational points. Assuming we require exactly m = 5 isogenies per `i, then
our key space corresponds with the integer exponent1 vectors (e1, . . . , e74) ∈
J−m . . mK74. A dummy-based variant of constant-time CSIDH performs
|ei| secret `i-isogenies and then proceeds by performing (m − |ei|) dummy-
isogenies. The `i-isogeny kernel belongs to either E[π−1] or E[π+1], which
is determined by the sign of ei. A dummy-free variant (which prevents
e.g. fault injection attacks) does not perform the (m− |ei|) dummy-isogeny
constructions, but instead requires ei to have the same parity as m. It then
alternates between using kernels in E[π− 1] and E[π+ 1] in such a way that
one e�ectively applies ei isogenies while performing m isogenies.

The experiments presented in [8] suggest a speed-up of about 19% when
using radical isogenies instead of Vélu's formulas (for a prime of 512 bits). As
mentioned above, these experiments focused on a non-constant-time Magma
implementation for both the group-action evaluation and the chain of radi-
cal isogenies. More speci�cally, the Magma-code implementation of [8] per-
forms �eld inversions in variable time depending on the input. Further-
more, the implementation computes exactly |ei| `i-radical isogenies, where
ei ∈ J−mi . . miK is a secret exponent of the private key (for instance when
ei = 0 the group action is trivial). Clearly, when measuring random non-
constant time instances of CSURF or radical isogenies the average number
of `i-radical isogenies to be performed is mi

2 , whereas in constant-time im-
plementations the number of isogenies of degree `i is the �xed bound mi.

A straightforward constant-time implementation of CSURF and radi-
cal isogenies would replace all non-constant-time techniques with constant-
time techniques. This would, however, drastically reduce the performance
of CSURF and radical isogenies, as inversions become costly and we need
to perform more (dummy) isogenies per degree. Furthermore, radical iso-
genies currently do not use relatively `cheap' Vélu isogenies of low degree
because they are replaced by relatively expensive radical isogenies. Such
an implementation would be outperformed by any state-of-the-art CSIDH
implementation in constant-time.

Contributions. In this paper, we are interested in constant-time imple-
mentations of CSURF and radical isogenies. We present two improvements
to radical isogenies which reduce their algorithmic cost. Then, we analyze
the cost and e�ciency of constant-time CSURF and radical isogenies, and
benchmark their performance when implemented in CSIDH in number of
�nite �eld multiplications. More concretely, our contributions are

1. fully projective radical isogenies, a non-trivial reformulation of radical
isogenies in projective coordinates, and of the required isomorphisms
between curve models. This allows us to perform radical isogenies
without leaving the projective coordinates used in CSIDH. This saves

1The word exponent comes from the associated group action, see Section 2.2

3

an inversion per isogeny and additional inversions in the isomorphisms
between curve models, which in total reduces the cost of radical isoge-
nies in constant-time by almost 50%.

2. a hybrid strategy to integrate radical isogenies in CSIDH, which allows
us to `re-use' torsion points that are used in the CSIDH group action
evaluation to initiate a `chain' of radical isogenies, and to keep cheap
low degree Vélu isogenies. This generalizes the `traditional' CSIDH
evaluation, optimizes the evaluation of radical isogenies, and does not
require sampling an extra torsion point to initiate a `chain' of radical
isogenies.

3. a cost analysis of the e�ciency of radical isogenies in constant-time,
which describes the overall algorithmic cost to perform radical iso-
genies, assuming the aforementioned improvements. We show that,
although these improvements greatly reduce the total cost in terms of
�nite �eld operations, radical isogenies of degree 5, 7, 11 and 13 are
too costly in comparison to Vélu and

√
élu isogenies. We conclude that

only radical isogenies of degree 4 and 9 are an improvement to `tradi-
tional' CSIDH. Furthermore, we show that radical isogenies scale worse
than Vélu isogenies with regards to the size of the base �eld, which re-
duces the e�ectiveness of CSURF and radical isogenies in comparison
to CSIDH for large primes.

4. the �rst constant-time implementation of CSURF and radical isoge-
nies, optimized with concern to the exponentiations used in radical
isogenies, and optimal bounds and approximately optimal strategies
as in [12, 14, 15], which allow for a more precise comparison in per-
formance between CSIDH, CSURF and implementations using radical
isogenies (CRADS) than [7] and [8]. Our Python-code implementation
allows isogeny evaluation strategies using both traditional Vélu and√
élu formulas, as well as radical isogenies and 2-isogenies (on the sur-

face), and can thus be used to compare CSURF and CRADS against
a state-of-the-art constant-time implementation of CSIDH.

5. a performance benchmark of CSURF and CRADS in comparison to
`traditional' CSIDH, in total �nite �eld operations. Our benchmark is
more accurate than the original benchmarks from [7] and [8] and shows
that the 5% and 19% speed-up (respectively) diminishes to roughly
3% in a precise constant-time comparison. These results gives a de-
tailed view of the performance of radical isogenies in terms of �nite
�eld operations, and their performance when increasing the size of the
base �eld. We show that in low parameter sets, with the additional
cost of moving to constant-time, CSURF-512 and CRADS-512 per-
form a bit better than CSIDH-512 implementations, with a 2.53% and

4

2.15% speed-up respectively. Additionally, with the hybrid strategy
this speed-up is slightly larger for small primes. However, we get no
speed-up for larger base �elds: For primes of 1792 bits and larger,
CSIDH outperforms both CSURF and CRADS due to the better scal-
ing of Vélu isogenies in comparison to radical isogenies.

The (Python) implementation used in this paper is freely available at

https://github.com/Krijn-math/Constant-time-CSURF-CRADS.

The results from the benchmark answer the open question from Castryck,
Decru, and Vercauteren in [8]: in constant-time, the CSIDH protocol gains
only a small speed-up by using CSURF or radical isogenies, and only for
small primes. Even stronger, our hybrid strategy shows that radical isogenies
require signi�cant improvements to make them cost e�ective, as computing
a radical per isogeny is in most cases too expensive. Our results illustrate
that constant-time CSURF and radical isogenies perform worse than large
CSIDH instantiations (i.e. log(p) ≥ 1792), at least at the level of �nite �eld
operations.2

Outline. In Section 2, we recap the theoretical preliminaries on isogenies,
CSIDH, CSURF, and radical isogenies. In Section 3, we introduce our �rst
improvement: fully projective radical isogenies. This allows us to analyse
the e�ectiveness and cost of constant-time radical isogenies in Section 4.
Then we improve the integration of radical isogenies in CSIDH in Section 5,
using a hybrid strategy. In Section 6, we benchmark constant-time CSIDH,
CSURF and CRADS in terms of �nite �eld operations, using state-of-the-
art techniques for all three. Finally, in Section 7 we present our conclusions
concerning the e�ciency of radical isogenies in comparison to CSIDH in
constant-time.

2 Preliminaries

In this section we describe the basics of isogenies, CSIDH, CSURF and rad-
ical isogenies.

Given two elliptic curves E and E′ over a prime �eld Fp, an isogeny is a
morphism ϕ : E → E′ such that OE 7→ OE′ . A separable isogeny ϕ has a
degree deg(ϕ) equal to the size of its kernel, and for any isogeny ϕ : E → E′

there is a unique isogeny ϕ̂ : E′ → E called the dual isogeny, with the
property that ϕ̂ ◦ ϕ = [deg(ϕ)] is the scalar point multiplication on E. A
separable isogeny is uniquely de�ned by its kernel and vice versa; a �nite

2We explicitly do not focus on performance in clock cycles; a measurement in clock
cycles (on our python-code implementation) could give the impression that the underlying
�eld arithmetic is optimized, instead of the algorithmic performance.

5

https://github.com/Krijn-math/Constant-time-CSURF-CRADS

subgroup G ⊂ E(Fp) de�nes a unique separable isogeny ϕG : E → E/G (up
to isomorphism).

Vélu's formulas [25] provide the construction and evaluation of separable
isogenies with cyclic kernel G = 〈P 〉 for some P ∈ E(Fp). Both the isogeny
construction of ϕG and the evaluation of ϕG(R) for a point R ∈ E(Fp) have
a running time of O(#G), which becomes infeasible for large subgroups G.
A new procedure presented by Bernstein, De Feo, Leroux, and Smith in
ANTS-2020 based on the baby-step giant-step algorithm decreases this cost
to Õ(

√
#G) �nite �eld operations [4]. We write this procedure as

√
élu. This

new approach is based on multi-evaluations of a given polynomial, although
at its core it is based on traditional Vélu's formulas.

Isogenies from E to itself are endomorphisms, and the set of all endo-
morphisms of E forms a ring, which is usually denoted as End(E). The
scalar point multiplication map (x, y) 7→ [N](x, y) and the Frobenius map
π : (x, y) 7→ (xp, xp) are examples of such endomorphisms over the �nite �eld
of characteristic p. In particular, the order O ∼= Z[π] is a subring of End(E).
An elliptic curve E is ordinary if it has a (commutative) endomorphism ring
isomorphic to a suborder O of the ring of integers OK for some quadratic
number �eld K. A supersingular elliptic curve has a larger endomorphism
ring: End(E) is isomorphic to an order O in a quaternion algebra, and thus
non-commutative.

2.1 CSIDH and its Surface

CSIDH works with the smaller (commutative) subring Endp(E) of End(E),
which are rational endomorphisms of a supersingular elliptic curve E. This
subring Endp(E) is isomorphic to an order O ⊂ OK . As both [N] and π are
de�ned over Fp, we get Z[π] ⊂ Endp(E). To be more precise, the CSIDH
protocol is based on the commutative action of the class group C̀ (O) on the
set E`̀ p(O) of supersingular elliptic curves E such that Endp(E) is isomorphic
to the speci�c order O ⊂ OK . The group action for an ideal class [a] ∈ C̀ (O)
maps a curve E ∈ E`̀ p(O) to another curve [a]?E ∈ E`̀ p(O) (see Section 2.2).
Furthermore, the CSIDH group action is believed to be a hard homogeneous
space [13] that allows a Merkle-Di�e-Hellman-like key agreement protocol
with commutative diagram

E [a] ? E

[b] ? E [ab] ? E

a

a

b b

The original CSIDH protocol uses the set E`̀ p(O) with O ∼= Z[π] and p =
3 mod 4 (named the �oor). To also bene�t from 2-isogenies, the CSURF

6

protocol switches to elliptic curves on the surface of the isogeny graph, that
is, E`̀ p(O) with O ∼= Z[1+π2]. Making 2-isogenies useful requires p = 7
mod 8.

2.2 The Group Action of CSIDH and CSURF

The traditional way of evaluating the group action of an element [a] ∈ C̀ (O)

is by using `traditional' Vélu's [25] or
√
élu [4] formulas. The group action

maps E → [a] ? E and can be described by the kernel E[a] of an isogeny ϕa

of �nite degree. Speci�cally, [a] ? E = E/E[a] where

E[a] =
⋂
ϕ∈a

Ker(ϕ).

In both CSIDH and CSURF, we apply speci�c elements [li] ∈ C̀ (O) such
that l±1i = (`i, π ∓ 1) and `i is the i-th odd prime dividing (p + 1). For li,
we have

E[l±1i] = E[`i] ∩ E[π ∓ 1],

where P ∈ E[`i] means P is a point of order `i and P ∈ E[π∓ 1] implies
π(P) = ±P , so P is either an Fp-rational point or a zero-trace point over
Fp2 . Thus, the group action E → [l±1i]?E is usually calculated by sampling a

point P ∈ E[l±1i] and applying Vélu's formulas with input point P . A secret
key for CSIDH is then a vector (ei), which is evaluated as E →

∏
i[li]

ei ? E.
CSURF changes the order O used to Z[1+π2] to also perform 2-isogenies on
the surface of the isogeny graph; these 2-isogenies do not require the sampling
of a 2-order point but can instead be calculated by a speci�c formula based
on radical computations.

Key space. Originally, the secret key e = (ei) was sampled from J−m . . mKn

for some bound m ∈ N. This was improved in [15, 18, 12] by varying the
bound m per degree `i (a weighted L∞-norm ball). Further developments
with regards to improving the key space are presented in [19], using an
(L1 + L∞)-norm ball, and in CTIDH ([3]). These methods can give signi�-
cant speed-ups. In their cores, they rely on (variations of) Vélu isogenies to
evaluate the group action. In [7, 8], the authors compare the performance
of radical isogenies to CSIDH by using an unweighted L∞-norm ball for
CSIDH-512 versus a weighted L∞-norm ball for the implementation using
radical isogenies. This gives a skewed benchmark, which favors the perfor-
mance of CSURF and CRADS. In this paper, to make a fair comparison to
the previous work, we continue in the line of [15, 18, 12] by using weighted
L∞-norm balls for the implementations of CSIDH, CSURF and CRADS. It
remains interesting to analyse the impact of radical isogenies in key spaces
that are not based on weighted L∞-norm balls. As radical isogenies can

7

easily be made to have exactly the same cost per degree (with only slightly
extra cost), they are interesting to analyse with respect to CTIDH.

2.3 The Tate Normal Form

CSURF introduced the idea to evaluate a 2-isogeny by radical computations.
[8] extends this idea to higher degree isogenies, using a di�erent curve model
than the Montgomery curve. To get to that curve model, �x an N -order
point P on E with N ≥ 4. Then, there is a unique isomorphic curve E(b, c)
over Fp such that P is mapped to (0, 0) on E(b, c). The curve E(b, c) is given
by Equation (1), and is called the Tate normal form of (E,P):

E(b, c)/Fp : y2 + (1− c)x− by = x3 − bx2, b, c ∈ Fp. (1)

The curve E(b, c) has a non-zero discriminant ∆(b, c) and in fact, it can
be shown that the reverse is also true: for b, c ∈ Fp such that ∆(b, c) 6= 0,
the curve E(b, c) is an elliptic curve over Fp with (0, 0) of order N ≥ 4. Thus
the pair (b, c) uniquely determines a pair (E,P) with P having order N ≥ 4
on some isomorphic curve E over Fp. In short, there is a bijection between
the set of isomorphism classes of pairs (E,P) and the set of Fp-points of
A2 − {∆ = 0}. The connection with modular curves is explored in more
detail in [21].

2.4 Radical Isogenies

Let E0 be a supersingular Montgomery curve over Fp and P0 a point of order
N with N ≥ 4. Additionally, let E1 = E0/〈P0〉, and P1 a point of order N on
E1 such that ϕ̂(P1) = P0 where ϕ̂ is the dual of the N -isogeny ϕ : E0 → E1.
The pairs (E0, P0) and (E1, P1) uniquely determine Tate normal parameters
(b0, c0) and (b1, c1) with bi, ci ∈ Fp.

Castryck, Decru, and Vercauteren proved the existence of a function ϕN
that maps (b0, c0) to (b1, c1) in such a way that it can be applied iteratively.
This computes a chain of N -isogenies without the need to sample points of
order N per iteration. As a consequence, by mapping a given supersingular
Montgomery curve E/Fp and some point P of order N to its Tate normal
form, we can evaluate E → [li] ? E without any points (except for sampling
P). Thus, it allows us to compute E → [li]

k ?E without having to sample k
points of order N .

E [li] ? E . . . [li]
k ? E

E(b0, c0) E(b1, c1) . . . E(bk, ck)

Vélu

ϕN

To Tate normal form To Montgomery

8

Notice that the top row and the bottom row of the diagram are isomor-
phic. The map ϕN is an elementary function in terms of b, c and α = N

√
ρ

for a speci�c element ρ ∈ Fp(b, c): hence the name `radical' isogeny. Over
Fp, an N -th root is unique whenever N and p− 1 are co-prime (as the map
x 7→ xN is then a bijection). Notice that this in particular holds for all
odd primes `i of a CSIDH prime p = h ·

∏
`i − 1 for a suitable cofactor

h. Castryck, Decru, and Vercauteren provided the explicit formulas of ϕN
for N ∈ {2, 3, 4, 5, 7, 9, 11, 13}. For larger degrees the formulas could not be
derived yet. They also suggest the use of radical isogenies of degree 4 and 9
instead of 2 and 3, respectively.

Later work by Onuki and Moriya [21] provides similar radical isogenies
on Montgomery curves instead of Tate normal curves. Although their results
are of theoretical interest, they only provide such radical isogenies for degree
3 and 4. For degree 3, the use of degree 9 radical isogenies on Tate normal
curves is more e�cient, while for degree 4 the di�erence between their for-
mulas and those presented in [8] are negligible. We, therefore, focus only on
radical isogenies on Tate normal curves for this work.

3 Fully Projective Radical Isogenies

In this section we introduce our �rst improvement to radical isogenies: fully
projective radical isogenies. These allow to us bypass all inversions required
for radical isogenies. We perform (a) the radical isogenies on Tate normal
curves in projective coordinates, and (b) the switch between the Montgomery
curve and the Tate normal curve, and back, in projective coordinates. (a)
requires non-trivial work which we explain in Section 3.1, whereas (b) is only
tediously working out the correct formulas. The savings are worth it: (a)
saves an inversion per radical isogeny and (b) saves numerous inversions in
overhead costs. All in all, it is possible to remain in projective coordinates
throughout the whole implementation, which saves about 50% in terms of
�nite �eld operations in comparison to a�ne radical isogenies in constant
time.

3.1 E�cient Radicals for Projective Coordinates

The cost of an original (a�ne) radical isogenies of degree N in constant-time
is dominated by the cost of the N -th root and one inversion per iteration.
We introduce projective radical isogenies so that we do not require this in-
version. In a constant-time implementation, projective radical isogenies save
approximately 50% of �nite �eld operations in comparison to a�ne radical
isogenies. A straightforward translation to projective coordinates for radical
isogenies would save an inversion by writing the Tate normal parameter b
(when necessary c) as (X : Z). However, this comes at the cost of having

9

to calculate both N
√
X and N

√
Z in the next iteration. Using the following

lemma, we save one of these exponentiations.

Lemma 3.1. Let N ∈ N such that gcd(N, p− 1) = 1. Write α ∈ Fp as (X :

Z) in projective coordinates with X,Z ∈ Fp. Then N
√
α = (

N
√
XZN−1 : Z).

Proof. As α = (X : Z) = (XZN−1 : ZN), we only have to show that the
N -th root is unique. But N is co-prime with p − 1, so the map x 7→ xN is
a bijection. Therefore, the N -th root N

√
ρ is unique for ρ ∈ Fp, so

N
√
ZN =

Z.

Crucially for radical isogenies, we want to compute N -th roots where
N = `i for some i, working over the base �eld Fp with p = h ·

∏
i `i − 1,

and so for such an N we get gcd(N, p− 1) = 1. This leads to the following
corollary.

Corollary 3.1. The representation (XZN−1 : ZN) saves an exponentia-
tion in the calculation of a radical isogeny of degree N = `i in projective
coordinates.

This brings the cost of a projective radical isogeny of small degree `i
down to below 1.25 log(p). Compared with a�ne radical isogeny formulas
in constant-time, which cost roughly two exponentiations, such projective
formulas cost approximately half of the a�ne ones in terms of �nite �eld
operations. The e�ect this has for degrees 2, 3, 4, 5, 7 and 9 can be seen
in Table 1. A similar approach as Lemma 3.1 works for radical isogenies of
degree N = 4.

3.2 Explicit Projective Formulas for Low Degrees

We give the projective radical isogeny formulas for three cases: degree 4,
5 and 7. For larger degrees, it becomes increasingly more tedious to work
out the projective isogeny maps. In the repository, we provide formulas for
N ∈ {2, 3, 4, 5, 7, 9}.

Projective isogeny of degree 4. The Tate normal form for degree 4
is E : y2 + xy− by = x3 − bx2 for some b ∈ Fp. From [8], we get ρ = −b and
α = 4

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = −α(4α2 + 1)

(2α+ 1)4
.

Projectively, write α as (X : Z) with X,Z ∈ Fp. Then the projective formula
is

(X : Z) 7→ (X ′Z ′4 : Z ′) with

X ′ = (4X2 + Z2)XZ, and Z ′ = 2X + Z.
(2)

10

This isogeny is a bit more complex than it seems. First, notice that the
denominator of the a�ne map is a fourth power. One would assume that
it is therefore enough to map to (X ′ : Z ′) and continue by taking only the
fourth root of X ′ and re-use Z ′ =

4
√
Z ′4. However, as gcd(4, p− 1) = 2, the

root δ = 4
√
Z ′ is not unique. Following [8] we need to �nd the root δ that is

a quadratic residue in Fp. We can force δ to be a quadratic residue: notice
that (X ′ : Z ′4) is equivalent to (X ′Z ′4 : Z ′8), so that taking fourth roots
gives (

4
√
X ′Z ′4 :

4
√
Z ′8) = (

4
√
X ′Z ′4 : Z ′2), where we have forced the second

argument to be a square, and so we get the correct fourth root.
Therefore, by mapping to (X ′Z ′4 : Z ′) we compute 4

√
−b′ as (

4
√
X ′Z ′4 :

Z ′2) using only one 4-th root. This allows us to repeat Equation (2) using
only one exponentiation, without the cost of the inversion required in the
a�ne version.

Projective isogeny of degree 5. The Tate normal form for degree 5
is E : y2 + (1− b)xy − by = x3 − bx2 for some b ∈ Fp. From [8] we get ρ = b
and α = 5

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = α · α
4 + 3α3 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1
.

Projectively, write α as (X : Z) with X,Z ∈ Fp. Then the projective formula
is

(X : Z) 7→ (X ′Z ′4 : Z ′) with

X ′ = X(X4 + 3X3Z + 4X2Z2 + 2XZ3 + Z4), and

Z ′ = Z(X4 − 2X3Z + 4X2Z2 − 3XZ3 + Z4).

(3)

Notice that the image is (X ′Z ′4 : Z ′) instead of (X ′ : Z ′) = (X ′Z ′4 : Z ′5),
following Lemma 3.1. This allows us in the next iteration to compute 5

√
b =

(5
√
X : 5

√
Z) = (

5
√
X ′Z ′4 : Z ′) using only one 5-th root. This allows us to

repeat Equation (3) using only one exponentiation, without the cost of the
inversion required in the a�ne version.

Projective isogeny of degree 7. The Tate normal form for degree 7
is E : y2 + (−b2 + b + 1)xy + (−b3 + b2)y = x3 + (−b3 + b2)x2 for some
b ∈ Fp, with ρ = b5 − b4 and α = 7

√
ρ. However, the a�ne radical isogeny is

already too large to display here, and the projective isogeny is even worse.
However, we can still apply Lemma 3.1. The projective isogeny maps to
(X ′Z ′6 : Z ′) and in a next iteration we can compute α = 7

√
ρ = 7
√
b5 − b4 as

(7
√
X4Z2(X − Z) : Z).

3.3 Cost of Projective Radical Isogenies per Degree

In Table 1, we compare the cost of a�ne radical isogenies to projective radical
isogenies. In Table 2, we compare the cost in switching between the di�erent
curve models for a�ne and projective coordinates.

11

Table 1: Comparison between a�ne radical isogenies from [8] and the pro-
jective radical isogenies in this work. The letters E, M, S, A and I denote
exponentiation, multiplication, squaring, addition and inversion respectively.
The last column expresses the ratio projective/a�ne in terms of �nite �eld
multiplications over Fp for a prime of 512 bits, using close-to-optimal addi-
tion chains for exponentiation and inversion, assuming S = M and ignoring
A.

A�ne Projective Ratio

Degree ([8]) (This work.) projective/a�ne

2-isogeny E + 4M + 6A + I E + 3M + 5S + 10A 50.4%
3-isogeny E + 6M + 3A E + 2M + 10A 99.3%
4-isogeny E + 4M + 3A + I E + 6M + 4S + 3A 50.5%
5-isogeny E + 7M + 6A + I E + 8M + 6S + 18A 50.7%
7-isogeny E + 24M + 20A + I E + 14M + 4S + 64A 50.5%
9-isogeny E + 69M + 58A + I E + 61M + 10S + 202A 52.1%

Table 2: Comparison between the cost of di�erent functions to switch curve
models, necessary to perform radical isogenies. A�ne results from [8] and
projective results from this work.

A�ne Projective Ratio

Function ([8]) (This work.) projective/a�ne

Mont+ to Mont- E + M + S + 2A + I E + 2M + 2S + 4A 50.1%
Mont- to Mont+ E + M + S + 2A + I E + 2S + 4A 50.0%
Mont- to Tate4 7M + S + A + I 5M + 8S + 7A 2.1%
Tate4 to Mont- 2E + 3M + S + 7A + 2I 2E + 6M + S + 11A 50.1%
Full overhead CSURF 7E + 17M + 6S + 19A + 5I 7E + 18M + 16S + 35A 58.5%

Mont+ to TateN E + 9M + S + 11A + I E + 13M + 7S + 13A 51.1%
TateN to Mont+ 3E + 20M + 7S + 34A + I 3E + 33M + 11S + 65A 75.9%
Full overhead CRADS 4E + 34M + 14S + 54A + 4I 4E + 54M + 22S + 83A 50.9%

In summary, fully projective radical isogenies are almost twice as fast
as the original a�ne radical isogenies for constant-time implementations.
Nevertheless, as we will see in the analysis of Section 4.1, the radical isogenies
of degree 5, 7, 11 and 13 still perform worse than `traditional' Vélu isogenies
in realistic scenarios.

4 Cost Analysis of Constant-time Radical Isogenies

In this section, we analyze the cost and e�ectiveness of radical isogenies
on Tate normal curves in constant-time. In a simpli�ed model, the cost of
performing n radical `-isogenies can be divided into 4 steps.

1. Sample a point P on EA of order `;

2. Map (EA, P) to the (isomorphic) Tate normal curve E0 with P 7→
(0, 0);

12

3. Perform the radical isogeny formula n times: E0 → E1 → . . .→ En;

4. Map En back to the correct Montgomery curve EA′ = [l]n ? EA.

In each of these steps, the cost is dominated by the number of exponentia-
tions (E) and inversions (I). Using Tables 1 and 2, in an a�ne constant-time
implementation, moving to the Tate normal curve (step 2) will cost close to
1 E+1 I, an a�ne radical isogeny (step 3) costs approximately 1 E+1 I per
isogeny, and moving back to the Montgomery curve (step 4) will cost about
3 E + 1 I.

Inversions. In contrast to ordinary CSIDH, radical isogenies would require
these inversions to be constant-time, as the value that is inverted can reveal
valuable information about the isogeny walk related to the secret key. Two
methods to compute the inverse of an element α ∈ Fp in constant-time are
1) by Fermat's little theorem3: α−1 = αp−2, or 2) by masking the value that
we want to invert with a random value r ∈ Fp, computing (rα)−1 and mul-
tiplying by r again. Method 1 makes inversion as costly as exponentiation,
while method 2 requires a source of randomness, which is an impediment
from a crypto-engineering point of view. Using Fermat's little theorem al-
most doubles the cost of CSURF and of a radical isogeny in low degrees (2,
3, 4, 5, 7) and signi�cantly increases the cost of a radical isogeny of degree 9,
11 or 13. Furthermore, such constant-time inversions increase the overhead
of switching to Tate normal form and back to Montgomery form, which in
total makes performing n radical isogenies less e�ective. Both methods of
inversion are unfavorable from a crypto-engineering view, and thus we im-
plement the fully projective radical isogenies from Section 3 to by-pass all
inversions completely for radical isogenies.

Approximate cost of radical isogenies. We can now approximate the
cost of evaluating fully projective radical isogenies in constant-time. We can
avoid (most of) the cost of step 1 with a hybrid strategy (see Section 5).
Projective coordinates avoid the inversion required in step 2 to move from
the Montgomery curve to the correct Tate normal curve, and the inversion
required in step 4 to move from the Tate normal curve back to the Mont-
gomery curve. In step 3, projective radical isogenies save an inversion per
isogeny, and so step 3 costs approximately n E. In total, performing n radical
`-isogenies therefore costs approximately (n+ 4)E.

At �rst sight, this approximated cost does not seem to depend on `. How-
ever, there is some additional cost besides the exponentiation per isogeny in
step 3, and this additional cost grows with `. But, the cost of an exponenti-
ation is larger than log2(p) M and so overshadows the additional cost. For

3Bernstein and Yang [5] give a constant-time inversion based on gcd-computations. We
have not implemented this, as avoiding inversions completely is cheaper.

13

more details, see Table 1. For this analysis, the approximated cost �ts for
small degrees.

The cost of exponentiation is upperbounded by 1.5 log(p) by the (subop-
timal) square-and-multiply method, assuming squaring (S) costs as much as
multiplication (M). In total, we get the following approximate cost:

Lemma 4.1. The cost to perform n radical isogenies (using Tate normal
curves) of degree ` ∈ {5, 7, 9, 11, 13} is at least

(n+ 4) · α · log2(p),

�nite �eld multiplications (M) where α ∈ [1, 1.5] depends on the method to
perform exponentiation (assuming S = M).

4.1 Analysis of E�ectiveness of Radical Isogenies

In this subsection, we analyze the e�ciency of radical isogenies in comparison
to Vélu isogenies, assuming the results from the previous sections. We argue
that the cost of (n + 4) · α · log2(p) from Lemma 4.1 for radical isogenies is
too high and it is therefore not worthwhile to perform radical isogenies for
degrees 5, 7, 11 and 13. Degrees 2 and 3, however, bene�t from the existence
of radical isogenies of degree 4 and 9. Degree 4 and 9 isogenies cost only one
exponentiation, but evaluate as two. This implies that performing radical
isogenies is most worthwhile in degrees 2 and 3. We write 2/4 and 3/9 as
shorthand for the combinations of degree 2 and 4, resp. degree 3 and 9
isogenies.

The three crucial observations in our analysis are

1. Current faster
√
élu isogeny formulas require O(

√
`log2 3) �eld multi-

plications, whereas the cost of a radical isogeny scales as a factor of
log2(p)(for more details, see [4] and [1]);

2. The group action evaluation �rst performs one block using
√
élu isogeny

formulas, and then isolates the radical isogeny computations. What is
particularly important among these

√
élu isogeny computations, is that

removing one speci�c `′-isogeny does not directly decrease the number
of points that need to be sampled. Internally, the group action looks
for a random point R and performs all the possible `i-isogenies such

that
[
p+1
`i

]
R 6= O.

3. Replacing the smallest Vélu `-isogeny with a radical isogeny could re-
duce the sampling of points in that speci�c Vélu isogeny block. This
is because the probability of reaching a random point R of order `
is `−1

` , which is small for small `. Additionally, the cost of verifying[
p+1
`

]
R 6= O is about 1.5 log2

(
p+1
`

)
point additions ≈ 9 log2

(
p+1
`

)
14

�eld multiplications (for more details see [10]). In total, sampling n
points of order ` costs

sampling(n, p, `) = 9

⌊
n`

`− 1

⌉
log2

(
p+ 1

`

)
M

≈ 9

⌊
n`

`− 1

⌉
(log2(p)− log2(`))M.

Nevertheless, using radical isogenies for these degrees does not save the
sampling of n points, just a fraction of them. To be more precise, let
`′ > ` be the next smallest prime such that the group action requires

n′ `′-isogenies and
⌊
n`
`−1

⌉
≥
⌊
n′`′

`′−1

⌉
. Then the savings are given by

their di�erence with respect to the cost sampling such torsion-points
(see Equation (4)).

9

(⌊
n`

`− 1

⌉
−
⌊
n′`′

`′ − 1

⌉)
(log2(p)− log2(`))M. (4)

Whenever
⌊
n`
`−1

⌉
<
⌊
n′`′

`′−1

⌉
, using radical isogenies does not reduce the

number of points that need to be sampled.

As an example for the cost in a realistic situation, we take the approxi-
mately optimal bounds analyzed in [20] and [12]. In both works, log2(p) ≈
512 and the �rst �ve smallest primes `i's in {3, 5, 7, 11, 13} have bounds mi

that satisfy

⌊
m0`0
`0 − 1

⌉
=

⌊
m1`1
`1 − 1

⌉
=

⌊
m2`2
`2 − 1

⌉
=

⌊
m3`3
`3 − 1

⌉
=

⌊
m4`4
`4 − 1

⌉
.

Thus, there are no savings concerning sampling of points when includ-
ing small degree radical isogenies. Clearly, performing n radical `-isogenies
becomes costlier than using

√
élu isogenies, and thus the above analysis

suggests radical isogenies need their own optimal bounds to be competitive.
The analysis is di�erent for degree 2 and 3, where we can perform 4-and
9-isogenies in

⌈
n
2

⌉
radical computations instead of n computations. In fact,

4-isogenies directly reduces the sampling of points by decreasing the bounds
of the other primes `i's. Nevertheless, performing n radical isogenies takes at
least (n+ 4) log2(p) �eld multiplications (Lemma 4.1), which implies higher
costs (and then lower savings) for large prime instantiations. For example,
a single radical isogeny in a 1024-bit �eld costs twice as much as a single
radical isogeny in a 512-bit �eld, and in a 2048-bit �eld this becomes four
times as much. These expected savings omit the cost of sampling an initial
point of order `i, as we show in Section 5 how we can �nd such points with
little extra cost with high probability.

15

4.2 Further Discussion

In this subsection, we describe the two further impacts on performance in
constant-time and higher parameter sets in more detail: Radical isogenies
scale badly to larger primes, as their cost scales with log(p), and dummy-
free isogenies are more expensive, as we need to switch direction often for a
dummy-free evaluation.

Radical isogenies do not scale well. Using the results in Tables 1 and 2,
the cost of a single radical isogeny is approximately 600 �nite �eld opera-
tions, with an overhead of about 2500 �nite �eld operations for a prime of
512 bits. Thus, a CSURF-512 implementation (which uses 2/4- radical iso-
genies) or a CRADS-512 implementation (which uses 2/4- and 3/9- radical
isogenies) could be competitive with a state-of-the-art CSIDH-512 implemen-
tation. However, implementations using radical isogenies scale worse than
CSIDH implementations, due to the high cost of exponentiation in larger
prime �elds. For example, for a prime of 2048 bits, just the overhead of
switching curve models is already over 8500 �nite �eld operations, which is
close to 1% of total cost for a `traditional' CSIDH implementation. There-
fore, CSIDH is expected to outperform radical isogenies for larger primes.
In Section 6, we demonstrate this using a benchmark we have performed on
CSIDH, CSURF, CRADS, and an implementation using the hybrid strategy
we introduce in Section 5, for six di�erent prime sizes, from 512 bits up to
4096 bits. These prime sizes are realistic: several analyses, such as [6, 11, 22],
call the claimed quantum security of the originally suggested prime sizes for
CSIDH (512, 1024 and 1792 bits) into question. We do not take a stance on
this discussion, and therefore provide an analysis that �ts both sides of the
discussion.

Dummy-free radical isogenies are costly. Recall that radical isogenies
require an initial point P of order N to switch to the right Tate normal form,
depending on the direction of the isogeny. So, two kinds of curves in Tate
normal form arise: P belongs either to E[π − 1] or to E[π + 1]. Now, a
dummy-free chain of radical isogenies requires (at some steps of the group
action) to switch the direction of the isogenies, and therefore to switch to a
Tate normal form where P belongs to either E[π − 1] or E[π + 1]. As we
switch direction mi − |ei| times, this requires mi − |ei| torsion points. That
is, a dummy-free implementation of a chain of radical isogenies will require
at least (mi − |ei|) torsion points, which leaks information on ei. We can
make this procedure secure by sampling mi points every time, but this costs
too much. These costs could be decreased by pushing points through radical
isogenies, however, this is still not cost-e�ective. In any case, we will only
focus on dummy-based implementations of radical isogenies.

16

5 A Hybrid Strategy for Radical Isogenies

In this section we introduce our second improvement to radical isogenies: a
hybrid strategy for integrating radical isogenies into CSIDH. In [8], radical `-
isogenies replace Vélu `-isogenies, and they are performed before the CSIDH
group action, by sampling a point of order ` to initiate a `chain' of radical
`-isogenies. Such an approach replaces cheap Vélu `-isogenies with relatively
expensive radical `-isogenies and requires �nding a point of order ` to initiate
this `chain'. The hybrid strategy combines the `traditional' CSIDH group
action evaluation with radical isogenies in an optimal way, so that we do not
sacri�ce cheap Vélu isogenies of low degree and do not require another point
of order ` to initiate the `chain'. This substantially improves the e�ciency
of radical isogenies.

Concretely, in `traditional' CSIDH isogeny evaluation, one pushes a tor-
sion point T through a series of `-isogenies with Vélu's formulas. This implies
that at the end of the series of Vélu isogenies, such a point T might still have
suitable torsion to initiate a chain of radical isogenies. Re-using this point
saves us having to speci�cally sample a torsion point to initiate radical iso-
genies. Furthermore, with this approach we can do both radical and Vélu
isogenies for such ` where we have radical isogenies. We show this hybrid
strategy generalizes CSIDH, CSURF and CRADS (an implementation with
radical isogenies) and gives an improved approach to integrate radical isoge-
nies on Tate normal curves in CSIDH.

In this section, V refers to the set of primes for which we have Vélu
isogenies (i.e. all `i), and R ⊂ V refers to the set of degrees for which we
have radical isogenies. Currently, R = {3, 4, 5, 7, 9, 11, 13}.

5.1 A Hybrid Strategy for Integration of Radical Isogenies

Vélu isogenies for degree `i with i ∈ R are much cheaper than the radical
isogenies for those degrees, as a single radical isogeny always requires at least
one exponentiation which costs O(log(p)). The downside to Vélu isogenies
is that they require a torsion point per isogeny. However, torsion points can
be re-used for Vélu isogenies of many degrees by pushing them through the
isogeny, and so the cost of point sampling is amortized over all the degrees
where Vélu isogenies are used. Thus, although for a single degree n radical
isogenies are much cheaper than n Vélu isogenies, this does not hold when
the cost of point sampling is distributed over many other degrees. The idea
of our hybrid strategy is to do both types of isogeny per degree: we need
to perform a certain amount of Vélu blocks in any CSIDH evaluation, so we
expect a certain amount Ti of points of order `i. So, for i ∈ R, we can use
Ti − 1 of these points to perform Vélu `i-isogenies, and use the last one to
initiate the chain of radical `i-isogenies. Concretely, we split up the bound
mi for i ∈ R into mv

i and mr
i . Here, mv

i is the number of Vélu isogenies,

17

which requiremv
i points of order `i, andm

r
i is the number of radical isogenies,

which require just 1 point of order `i.
Thus, our hybrid strategy allows for evaluation of CSIDH with radical

isogenies, in such a way that we can the following parameters

� for i ∈ R, mr
i is the number of radical isogenies of degree `i,

� for i ∈ V , mv
i is the number of Vélu/

√
élu isogenies of degree `i.

For i ∈ R, we write mi = mv
i + mr

i for simplicity. What makes the dif-
ference with the previous integration of radical isogenies, is that this hybrid
strategy allows R and V to overlap! That is, the hybrid strategy does not
require you to pick between Vélu or radical isogenies for {3, 5, 7, 9, 11, 13}.
In this way, hybrid strategies generalize both CSIDH/CSURF and CRADS:

Lemma 5.1. The CSIDH/CSURF group action evaluation as in [9] and [7],
and the radical isogenies evaluation from [8] are both possible in this hybrid
strategy.

Proof. Take mr
i = 0 for all i ∈ R to get the CSIDH/CSURF group ac-

tion evaluation, and take mv
i = 0 for all i ∈ R to get the radical isogenies

evaluation.

In the rest of this section, we look at non-trivial hybrid parameters (i.e.
there is some i such that both mv

i and mr
i are non-zero) to improve the

performance of CSIDH and CRADS. As we can predict Ti (the number of
points of order `i) in a full CSIDH group action evaluation, we can choose our
parameter mv

i optimally with respect to Ti: for i ∈ R, we take mv
i = Ti − 1

and use the remaining point of order `i to initiate the `chain' of radical `i
isogenies of length mr

i .

5.2 Choosing Parameters for Hybrid Strategy.

As we explained above, the parameter mv
i is clear given Ti, and we are left

with optimizing the value mr
i . Denote the cost of the overhead to switch

curve models by coverhead and the cost of a single isogeny by csingle(`), then
the cost of performing the mr

i radical isogenies is clearly c = coverhead +mr
i ·

csingle(`i) (see also Lemma 4.1). Furthermore, given mv
i , the increase in key

space is

b = log2

(
2 · (mr

i +mv
i) + 1

2 ·mv
i + 1

)
.

So, we can minimize c/b for a given mv
i (independent of p). This min-

imizes the number of �eld operations per bits of security. Notice that for
degree 3, the use of 9-isogenies means we get a factor 1

2 for the cost of single
isogenies, as we only need to perform half as many.

18

It is possible that the `optimal' number mr
i is higher, when c/b is still

lower than in CSIDH. However, we heuristically argue that such an optimum
can only be slightly higher, as the increase in bits of security decreases quite
rapidly.

5.3 Algorithm for Evaluation of Hybrid Strategy.

Evaluating the hybrid strategy requires an improved evaluation algorithm,
as we need to re-use the `left-over' torsion point at the right moment of
a `traditional' CSIDH evaluation. We achieve this by �rst performing the
CSIDH evaluation for all i ∈ V and decreasing mv

i by 1 if a Vélu `i-isogeny
is performed. If mv

i becomes zero, we remove i from V , so that the next
point of order `i initiates the `chain' of radical isogenies of length m

r
i . After

this, we remove i from R too.

Algorithm 1 High-level evaluation of hybrid strategy for radical isogenies

Input: A ∈ Fp, a key (e1, . . . , en), a set V (Vélu isog.) and a set R (radical
isog.).

Output: B ∈ Fp such that
∏

[li]
ei ? EA = EB

1: while mi 6= 0 for i ∈ V ∪R do

2: Sample x ∈ Fp, set s← 1 if x3+Ax2+x is a square in Fp, else s← −1.

3: Let S = {i ∈ V ∪R | mv
i 6= 0, sign(ei) = s}. Restart if S is empty.

4: Let k ←
∏
i∈S `i and compute T ← [(p+ 1)/k]P .

5: for i ∈ S ∩ V do

6: Compute Q← [k/`i]T . If Q =∞, skip this i and set S ← S − {i}.

7: Compute φ : EA → EB with kernel 〈Q〉 using Vélu.
8: When ei 6= 0, set A← B, T ← φ(T), ei ← ei − s
9: Set mv

i ← mv
i − 1 and set S ← S − {i}

10: If mv
i = 0, set V ← V − {i}

11: for i ∈ S ∩R do

12: Compute Q← [k/`i]T . If Q =∞, skip this i.
13: Compute EB = [li]

ei ? EA using mr
i radical `i-isogenies

14: Set A← B, R← R− {i}, and start over at line 1
15: return A.

E�ectively, for i ∈ V ∩ R, we �rst check if we can perform a Vélu `i-
isogeny in the loop in lines 5-9 (a Vélu block). If mv

i of these have been
performed, we check in lines 11-14 if the `left-over' point Q has order `i for
some i ∈ S∩R, so that it can initiate the `chain' of radical `i-isogenies in line
13. Algorithm 1 does not go into the details of CSURF (i.e. using degree 2/4
isogenies), which can easily be added and does not interfere with the hybrid
strategy. Furthermore, Algorithm 1 does not leak any timing information

19

about the secret values ei, only on mi, which is public information. For
simplicity's sake, we do not detail many lower-level improvements.

6 Implementation and Performance Benchmark

All the experiments presented in this section are centred on constant-time
CSIDH, CSURF and CRADS implementations, for a base �eld of 512-, 1024-,
1792-, 2048-, 3072-, and 4096-bits. To be more precise, in the �rst subsection
we restrict our experiments to i) the most competitive CSIDH-con�gurations
according to [15, 12], ii) the CSURF-con�guration presented in [7, 8] and iii)
the radical isogenies-con�guration presented in [8] (i.e. without the hybrid
strategy). As mentioned in Section 4, we only focus on dummy-based vari-
ants such as MCR-style [18] and OAYT-style [20]. The experiments using
only radical isogenies of degree 2/4 are labelled CSURF, whereas the ex-
periments using both radical isogenies of degree 2/4 and 3/9 are labelled
CRADS. In the second subsection, we integrate the hybrid strategy to our
experiments, and focus on dummy-based OAYT-style implementations. This
allows us to compare the improvement of the hybrid strategy against the pre-
vious section. When comparing totals, we assume one �eld squaring costs
what a �eld multiplication costs (S = M). Primes used are of the form
p = h ·

∏74
i=1 `i − 1, with h = 2k · 3. The key space is about 2256.

On the optimal exponent bounds (�xed number of `i-isogenies required),
the results from [15] give ≈ 0.4% of saving in comparison to [12] (see Table 5
from [12]). The results from [15] are mathematically rich: analysis on the per-
mutations of the primes and the (integer) convex programming technique for
determining an approximately optimal exponent bound. However, their cur-
rent Matlab-based code implementation from [15] only handles CSIDH-512
using OAYT-style prioritizing multiplicative-based strategies. Both works
essentially give the approximate same expected running time, and by sim-
plicity, we choose to follow [12], which more easily extends to any prime size
(for both OAYT and MCR styles). Furthermore, all CSIDH-prime instanti-
ations use the approximately optimal exponent bounds presented in [12].

To reduce the cost of exponentiations in radical isogenies, we used short
addition chains (found with [17]), which reduces the cost from 1.5 log(p)
(from square-and-multiply) to something in the range [1.05 log(p), 1.18 log(p)].
These close-to-optimal addition chains save at least 20% of the cost of an ex-
ponentiation used per (a�ne or projective) radical isogeny in constant-time.

Our CSURF and CRADS constant-time implementations evaluate the
group action by �rst performing the evaluation as CSIDH does on the �oor
of the isogeny graph, with the inclusion of radical isogenies as in Algorithm 1.
Afterwards we move to the surface to perform the remaining 4-isogenies. So,
the only curve arithmetic required is on Montgomery curves of the form
E/Fp : By2 = x3 + Ax2 + x. Concluding, we compare three di�erent im-

20

plementations which we name CSIDH, CSURF and CRADS. The CSIDH
implementation uses traditional Vélu's formulas to perform an `i-isogeny
for `i ≤ 101 and switches to

√
élu for `i > 101. The CSURF implementa-

tion adds the functionality of degree 2/4 radical isogenies, while the CRADS
implementation uses radical isogenies of degree 2/4 and 3/9.

6.1 Performance Benchmark of Radical Isogenies

We compare the performance using a di�erent keyspace (i.e., di�erent bounds
(ei)) for CSIDH, CSURF, and CRADS than in [7, 8], where they have used
weighted L∞-norm balls for CSURF and CRADS to compare against an un-
weighted L∞-norm ball for CSIDH. Analysis from [15, 18, 12] shows that such
a comparison is unfair against CSIDH. We therefore use approximately opti-
mal keyspaces (using weighted L∞-norm) for CSIDH, CSURF and CRADS.

Suitable bounds. We use suitable exponent bounds for approximately
optimal keyspaces that minimize the cost of CSIDH, CSURF, and CRADS
by using a slight modi�cation of the greedy algorithm presented in [12],
which is included in the provided repository. In short, the algorithm starts
by increasing the exponent bound m2 ≤ 256 of two used in CSURF, and
then applies the exponent bounds search procedure for minimizing the group
action cost on the �oor (the CSIDH computation part). Once having the
approximately optimal bounds for CSURF, we proceed in a similar way
for CRADS: this time m2 is �xed and the algorithm increases the bound
m3 ∈ J1 . . m2K until it is approximately optimal.

Comparisons. The full results are given in Table 3. From Figure 1a we
see that CSURF and CRADS outperform CSIDH for primes of sizes 512 and
1024 bits, and is competitive for primes of sizes 1792 and 2048 bits. For larger
primes, CSIDH outperforms both CSURF and CRADS. Using OAYT-style,
CSURF-512 provides a speed-up over CSIDH-512 of 2.53% and CRADS-512
provides a speed-up over CSIDH-512 of 2.15%. The speed-up is reduced to
1.26% and 0.68% respectively for 1024 bits. For larger primes both CSURF
and CRADS do not provide speed-ups, because radical isogenies scale worse
than Vélu's (or

√
élu's) formulas (see Section 4.2). This is visible in Figure 1a

and Figure 1b.
Furthermore, the approximately optimal bounds we computed show that

the exponents m2 and m3 decrease quickly: from m2 = 32 and m3 = 12 for
512-bits, to e0 = e1 = 4 for 1792-bits, to e0 = e1 = 2 for 4096-bits. When us-
ing MCR-style CSURF and CRADS are slightly more competitive, although
the overall cost is signi�cantly higher than OAYT-style. Table 3 presents
the results obtained in this benchmark and highlights the best result per
parameter set. Notice that CSURF outperforms CRADS in every parameter

21

-3

-2

-1

 0

 1

 2

 3

512 1024 2048 3072 4096

%
 d

if
fe

re
n

ce
 t

o
 C

S
ID

H

Bitlength of prime p

CSIDH
CSURF
CRADS

(a) OAYT-style

-3

-2

-1

 0

 1

 2

 3

512 1024 2048 3072 4096

%
 d

if
fe

re
n

ce
 t

o
 C

S
ID

H

Bitlength of prime p

CSIDH
CSURF
CRADS

(b) MCR-style

Figure 1: Relative di�erence between the number of �nite �eld multipli-
cations required for CSURF and CRADS in comparison to CSIDH. The
percentage is based on the numbers in Table 3.

Table 3: Results for di�erent prime sizes. The numbers are given in millions
of �nite �eld multiplications, and the results are the average over 1024 runs.
The results count multiplication (M) and squaring (S) operations, assuming
S = M. Numbers in bold are optimal results for that prime size.

Dummy-style 512-bits 1024-bits 1792-bits 2048-bits 3072-bits 4096-bits

CSIDH-OAYT 0.791 0.873 0.999 1.039 1.217 1.361

CSURF-OAYT 0.771 0.862 1.000 1.042 1.225 1.387
CRADS-OAYT 0.774 0.867 1.007 1.050 1.237 1.399

CSIDH-MCR 1.011 1.093 1.218 1.255 1.436 1.580
CSURF-MCR 0.980 1.074 1.211 1.253 1.443 1.594
CRADS-MCR 0.985 1.086 1.228 1.272 1.469 1.625

set, which implies that replacing Vélu 3-isogenies with radical 9-isogenies is
not cost e�ective.

6.2 Performance of Radical Isogenies using the Hybrid Strat-

egy

In this subsection, we benchmark the performance of radical isogenies when
the hybrid strategy of Section 5 is used to integrate radical isogenies into
CSIDH. Concretely, in comparison to the previous benchmark, we allow
a strategy using both Vélu and radical isogenies for degree 3/9. We de-
note this by CRAD-H, and used our code to estimate the expected running
time. We compared this against the results from Table 3. As a corollary of
Lemma 5.1, CRAD-H may e�ectively become a `traditional' CSIDH imple-
mentation, when mr

i = 0 turns out to be most optimal for all i ∈ R (i.e. we
get the trivial `hybrid' paramaters of ordinary CSIDH). We see this happen-
ing for primes larger than 1024 bits due to the scaling issues with radical

22

isogenies. Table 4 shows the results4.

Table 4: Results for di�erent prime sizes. The �rst row is given in millions of
�nite �eld multiplications, counting multiplication (M) and squaring (S) op-
erations, assuming S =M. The second row gives the speed-up in comparison
to CSIDH. Trivial parameters are denoted by a superscript t.

CRAD-H 512-bits 1024-bits 1792-bits 2048-bits 3072-bits 4096-bits

performance 0.765 0.861 0.999t 1.039t 1.217t 1.361t

speed-up 3.3% 2.2% - - - -

Interestingly, an implementation using non-trivial hybrid parameters out-
performs any of the other implementations for a prime of 512 bits. This shows
that radical isogenies can improve performance in constant-time when using
the hybrid strategy. We conclude that replacing Vélu 3-isogenies with radical
9-isogenies is too costly, but adding radical 9-isogenies after Vélu 3-isogenies
can be cost e�ective. However, due to the scaling issues of radical isogenies,
the value mr

i quickly drops to 0 and we get trivial parameters for primes
larger than 1024 bits, implying that traditional CSIDH performs better for
large primes than any implementation using radical isogenies, even when
such an implementation does not have to sacri�ce the cheap Vélu isogenies
of small degree. We conclude that `horizontally' expanding the degrees `i
for large primes p is more e�cient than `vertically' increasing the bounds mi

using radical isogenies. Nevertheless, for small primes, our hybrid strategy
for radical isogenies can speed-up CSIDH and requires only slight changes
to a `traditional' CSIDH implementation.

Remark. The CTIDH proposal from [3] is about twice as fast as CSIDH
by changing the key space in a clever way: CTIDH reduces the number
of isogenies by half compared to CSIDH, using this new key space, which
requires the Matryoshka structure for Vélu isogenies. The radical part of
CSIDH is isolated from the Vélu part, and this will be the same case for
CTIDH , when using radical isogenies. The CTIDH construction decreases
the cost of this Vélu part by approximately a factor half, but the radical part
remains at the same cost. Hence, we heuristically expect that the speed-up
of radical isogenies in CTIDH decreases from 3.3%, and may even become a
slow-down.

7 Concluding Remarks and Future Research

We have implemented, improved and analyzed radical isogeny formulas in
constant-time and have optimized their integration into CSIDH with our hy-

4Only for OAYT-style. Using the code, we analysed the cost of mr
i projective radical

isogenies and mv
i Vélu isogenies. The results are realistic; there are no extra costs.

23

brid strategy. We have evaluated their performance against state-of-the-art
CSIDH implementations in constant-time. We show that fully projective rad-
ical isogenies are almost twice as fast as a�ne radical isogenies in constant-
time. But, when integrated into CSIDH, both CSURF and radical isogenies
provide only a minimal speed-up: about 2.53% and 2.15% respectively, com-
pared to state-of-the-art CSIDH-512. Furthermore, larger (dummy-based)
implementations of CSURF and CRADS become less competitive to CSIDH
as radical isogenies scale worse than Vélu or

√
élu isogenies. In such in-

stances (log(p) ≥ 1792 bits) the use of constant-time radical isogenies even
has a negative impact on performance.

Our hybrid strategy improves this performance somewhat, giving better
results for primes of size 512 and 1024, increasing the speed-up to 3.3%,
and making radical 9-isogenies cost e�ective. For larger primes however,
our hybrid approach shows that

√
élu-isogenies quickly outperformed radical

isogenies, as we get `trivial' parameters for our hybrid strategy. We therefore
conclude that, for larger primes, expanding `horizontally' (in the degrees `i)
is more e�cient than expanding `vertically' (in the bounds mi).

Due to the large cost of a single exponentiation in large prime �elds, which
is required to compute radicals, it is unlikely that (a�ne or projective) radical
isogenies can bring any (signi�cant) speed-up. However, similar applications
of modular curves in isogeny-based cryptography could bring improvements
to current methods. Radical isogenies show that such applications do exist
and are interesting; they might be more e�ective in isogeny-based cryptog-
raphy in other situations than CSIDH. For example with di�erently shaped
prime number p or perhaps when used in Veri�able Delay Functions (VDFs).

Acknowledgements. The authors would like to thank Simona Samard-
jiska, Peter Schwabe, Francisco Rodríguez-Henríquez, and anonymous re-
viewers for their valuable comments that helped to improve the technical
material of this paper.

References

[1] Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-
Henríquez. Karatsuba-based square-root Vélu's formulas applied to two
isogeny-based protocols. IACR Cryptol. ePrint Arch., page 1109, 2020.

[2] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes,
Vladimir Soukharev, and David Urbanik. Supersingular isogeny key
encapsulation. Third round candidate of the NIST's post-quantum cryp-
tography standardization process, 2020., 2020.

24

[3] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou,
Tanja Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková.
Ctidh: faster constant-time csidh. Cryptology ePrint Archive, Report
2021/633, 2021. https://ia.cr/2021/633.

[4] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin
Smith. Faster computation of isogenies of large prime degree. IACR
Cryptol. ePrint Arch., 2020:341, 2020.

[5] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd compu-
tation and modular inversion. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(3):340�398, 2019.

[6] Xavier Bonnetain and André Schrottenloher. Quantum security analysis
of CSIDH. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology � EUROCRYPT 2020, volume 12106, pages 493�522, 2020.
https://eprint.iacr.org/2018/537.

[7] Wouter Castryck and Thomas Decru. CSIDH on the surface. In Jintai
Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020, Paris, France, April
15-17, 2020, Proceedings, volume 12100 of Lecture Notes in Computer
Science, pages 111�129. Springer, 2020.

[8] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. Radical
isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the
Theory and Application of Cryptology and Information Security, Dae-
jeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume
12492 of Lecture Notes in Computer Science, pages 493�519. Springer,
2020.

[9] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. CSIDH: an e�cient post-quantum commutative group
action. In Thomas Peyrin and Steven D. Galbraith, editors, Advances
in Cryptology - ASIACRYPT 2018, Part III, volume 11274 of Lecture
Notes in Computer Science, pages 395�427. Springer, 2018.

[10] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-
Domínguez, Luca De Feo, Francisco Rodríguez-Henríquez, and Ben-
jamin Smith. Stronger and faster side-channel protections for CSIDH.
In Peter Schwabe and Nicolas Thériault, editors, Progress in Cryptology
- LATINCRYPT 2019 - 6th International Conference on Cryptology and
Information Security in Latin America, Santiago de Chile, Chile, Octo-
ber 2-4, 2019, Proceedings, volume 11774 of Lecture Notes in Computer
Science, pages 173�193. Springer, 2019.

25

https://ia.cr/2021/633
https://eprint.iacr.org/2018/537

[11] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and
Francisco Rodríguez-Henríquez. The SQALE of CSIDH: square-root
vélu quantum-resistant isogeny action with low exponents. IACR Cryp-
tol. ePrint Arch., 2020:1520, 2020.

[12] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. Opti-
mal strategies for CSIDH. IACR Cryptol. ePrint Arch., 2020:417, 2020.

[13] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. http://eprint.iacr.org/2006/291.

[14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. J. Math.
Cryptol., 8(3):209�247, 2014.

[15] Aaron Hutchinson, Jason LeGrow, Brian Koziel, and Reza Azarder-
akhsh. Further optimizations of csidh: A systematic approach to e�-
cient strategies, permutations, and bound vectors. Cryptology ePrint
Archive, Report 2019/1121, 2019. https://ia.cr/2019/1121.

[16] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-
Quantum Cryptography - 4th International Workshop, PQCrypto 2011,
Taipei, Taiwan, November 29 - December 2, 2011. Proceedings, volume
7071 of Lecture Notes in Computer Science, pages 19�34. Springer, 2011.

[17] Michael B. McLoughlinn. addchain: Cryptographic addition chain gen-
eration in go. Github Repository, 2020.

[18] Michael Meyer, Fabio Campos, and Ste�en Reith. On lions and elli-
gators: An e�cient constant-time implementation of CSIDH. In Jin-
tai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019, Chongqing, China,
May 8-10, 2019 Revised Selected Papers, volume 11505 of Lecture Notes
in Computer Science, pages 307�325. Springer, 2019.

[19] Kohei Nakagawa, Hiroshi Onuki, Atsushi Takayasu, and Tsuyoshi Tak-
agi. l1-norm ball for csidh: Optimal strategy for choosing the se-
cret key space. Cryptology ePrint Archive, Report 2020/181, 2020.
https://ia.cr/2020/181.

[20] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Tak-
agi. (short paper) A faster constant-time algorithm of CSIDH keep-
ing two points. In Nuttapong Attrapadung and Takeshi Yagi, edi-
tors, Advances in Information and Computer Security - 14th Inter-
national Workshop on Security, IWSEC 2019, Tokyo, Japan, August
28-30, 2019, Proceedings, volume 11689 of Lecture Notes in Computer
Science, pages 23�33. Springer, 2019.

26

http://eprint.iacr.org/2006/291
https://ia.cr/2019/1121
https://ia.cr/2020/181

[21] Hiroshi Onuki and Tomoki Moriya. Radical isogenies on montgomery
curves. IACR Cryptol. ePrint Arch., 2021:699, 2021.

[22] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology � EUROCRYPT 2020,
volume 12106, pages 463�492, 2020. https://eprint.iacr.org/2019/
725.

[23] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem
based on isogenies. IACR Cryptology ePrint Archive, 2006:145, 2006.

[24] Anton Stolbunov. Constructing public-key cryptographic schemes based
on class group action on a set of isogenous elliptic curves. Adv. in Math.
of Comm., 4(2):215�235, 2010.

[25] Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris
Sér. A-B, 273:A238�A241, 1971.

27

https://eprint.iacr.org/2019/725
https://eprint.iacr.org/2019/725

	Introduction
	Preliminaries
	CSIDH and its Surface
	The Group Action of CSIDH and CSURF
	The Tate Normal Form
	Radical Isogenies

	Fully Projective Radical Isogenies
	Efficient Radicals for Projective Coordinates
	Explicit Projective Formulas for Low Degrees
	Cost of Projective Radical Isogenies per Degree

	Cost Analysis of Constant-time Radical Isogenies
	Analysis of Effectiveness of Radical Isogenies
	Further Discussion

	A Hybrid Strategy for Radical Isogenies
	A Hybrid Strategy for Integration of Radical Isogenies
	Choosing Parameters for Hybrid Strategy.
	Algorithm for Evaluation of Hybrid Strategy.

	Implementation and Performance Benchmark
	Performance Benchmark of Radical Isogenies
	Performance of Radical Isogenies using the Hybrid Strategy

	Concluding Remarks and Future Research
	References

