
Secure Wire Shuffling in the Probing Model

Jean-Sébastien Coron and Lorenzo Spignoli

University of Luxembourg
jean-sebastien.coron@uni.lu, lorenzo.spignoli@uni.lu

Abstract. In this paper we describe the first improvement of the wire shuffling countermeasure against
side-channel attacks described by Ishai, Sahai and Wagner at Crypto 2003. More precisely, we show
how to get worst case statistical security against t probes with running time O(t) instead of O(t log t);
our construction is also much simpler. Recall that the classical masking countermeasure achieves per-
fect security but with running time O(t2). We also describe a practical implementation for AES that
outperforms the masking countermeasure for t ≥ 6 000.

1 Introduction

The masking countermeasure. The study of circuits resistant against probing attacks was ini-
tiated by Ishai, Sahai and Wagner in [ISW03]. Their construction is based on the masking coun-
termeasure, where each intermediate variable x is shared into x = x1 ⊕ · · · ⊕ xn, and the shares xi
are processed separately. The ISW construction offers perfect security; this means that an adversary
with at most t < n/2 probes learns nothing about the secret variables. Rivain and Prouff showed
in [RP10] how to adapt the ISW construction to AES, by working in F28 instead of F2; in particular,
the non-linear part S(x) = x254 of the AES SBox can be efficiently evaluated with only 4 non-linear
multiplications over F28 , and a few linear squarings. In the last few years, numerous variants and
improvements of the masking countermeasure have been described: for example, high-order evalua-
tion of any SBOX [CGP+12], high-order table re-computation [Cor14], minimization of randomness
usage [FPS17] and efficient implementations of high-order masking [JS17,GJRS18].

The main drawback of the masking countermeasure is that the circuit size is quadratic in the
maximum number of probes t in the circuit; namely in the ISW construction and its variants every
AND gate gets expanded into a gadget of size O(t2); hence the initial circuit C gets expanded
into a new circuit of size O(|C| · t2). One can divide the new circuit into regions corresponding to
each gadget, and by appropriate mask refreshing one can let the adversary put t probes per region,
instead of t probes in the full circuit; the maximum number of probes then becomes |C| · t instead
of t. But the circuit size remains O(|C| · t2), that is quadratic in the maximum number of probes t
per region.

Statistical security. To improve the previous complexity, the ISW authors introduced a weaker
security model with statistical security only [ISW03]. In this model the adversary can still put t
probes wherever he wants in the circuit, but he can now learn a secret variable with some non-zero
probability (instead of zero probability as in the perfect security model); this probability should be
a negligible function of the security parameter k. The authors described a construction in this model
with complexity O(|C| · t log t) for at most t probes in the circuit. This is only quasi-linear in the
number of probes t, so much better than the classical masking countermeasure. In this asymptotic
complexity, a factor poly(k) is actually hidden in the constant, where k is the security parameter;
namely, to achieve 2−Ω(k) statistical security, the size of the protected circuit in [ISW03] is actually
O(|C| · k10 · t log t).

The above result holds in the stateless model, in which the adversary must put his t probes in a
non-adaptive way, that is before the evaluation of the circuit. The authors also considered the more

useful stateful model, in which the adversary can move its probes between successive executions of
the circuit; however within an execution the model is still non-adaptive. For the stateful model, the
authors described a construction with complexity O(|C|·t log t+s·t3 log t), where s is the number of
memory cells in the circuit that must be passed from one execution to the other; for a block-cipher,
s would be the number of key bits. Assuming that the circuit size |C| is significantly larger than
the key size s, this is again better than the classical masking countermeasure with respect to the
number of probes t.

While the masking countermeasure used in the first part of [ISW03] is quite practical and has
been widely studied with numerous improvements, the construction in the statistical model, which
appears in the second part of [ISW03], has never been investigated up to our knowledge. Our
goal in this paper is to describe an improved construction in the statistical model that is better
asymptotically and moreover practical, while we argue that the original construction from [ISW03]
was essentially unpractical.

The wire shuffling countermeasure from [ISW03]. To achieve the O(t · log t) complexity in
the statistical model, the ISW paper proceeds in two steps. First, it considers statistical security in
the weaker random probing model, in which the adversary gets the value of each variable with inde-
pendent probability p. This is easy to achieve from the classical masking countermeasure. Namely,
if we apply the masking countermeasure against t = k probes with 2k + 1 shares (where k is the
security parameter), we get a circuit where each gadget has size at most c · k2 (for some constant
c), and secure against k probes per gadget. These k probes per gadget correspond to a fraction
k/(c · k2) = 1/(c · k) of the gadget wires. Hence if we let p = 1/(10 · c · k), then from Chernoff’s
bound, the probability that in a given gadget the adversary gets more than k probes becomes a
negligible function of k; this gives statistical security in the random probing model. Starting from
a circuit C, we can therefore obtain an intermediate circuit C ′ of size O(|C| · k2) that is secure in
the random probing model with leakage probability p = Ω(1/k).

In the second step, the ISW paper describes a construction where each wire i of the intermediate
circuit C ′ is expanded into ` wires, such that only one of the ` wires contains the original signal value
vi from C ′, while the other wires contain only a dummy value $; see Figure 1 for an illustration.
We call this construction the wire shuffling countermeasure, as it consists in randomly shuffling the
position of the signal among those ` wires. More precisely, for each execution the position of the
signal vi in the expanded circuit C̃ is selected randomly and independently among the ` wires, for
each original wire i of C ′.

2

vi
`

$

...

$

vi

$

$

Fig. 1: A wire with signal vi in C ′ (left), and the corresponding ` wires in C̃ (right); only one of the
` wires contain the signal vi, while the others contain the dummy value $.

Consider now a gate from the intermediate circuit C ′. If the two input wires i and i′ from
the intermediate circuit C ′ have their information located at index j ∈ [1, `] and j′ ∈ [1, `] in
the expanded circuit C̃, one must be able to process the original gate from C ′ without leaking
information on vi and vi′ in the process, except with small probability. One cannot consider all
possible index pairs (j, j′) as the complexity would be quadratic in ` (and eventually quadratic in
t). Instead the ISW paper describes a relatively complex construction based on sorting networks
with complexity O(` log `); it then proves that with ` = O(t/p7) wires, the probability that each
original value vi is learned by the adversary is at most p. This means that the adversary does not
learn more from the worst case probing of the final circuit C̃, than from the p-random probing of
the intermediate circuit C ′. This implies statistical security for C̃ with circuit size O(|C| · t log t),
so better than the classical masking countermeasure with complexity O(|C| · t2). We stress that for
this final circuit C̃, security holds in the worst case probing model as well, where the adversary can
freely choose the position of the t probes in the circuit (as opposed to the random probing model
where every variable leaks with probability p).

Our contribution. In this paper we describe a construction that achieves worst-case statistical
security against t probes in the stateless model with time complexity O(|C| · t) instead of O(|C| ·
t log t); our construction is also much simpler. Our technique is as follows. As in [ISW03], we
randomly shuffle the position of the signal vi among the ` wires, independently for each original
wire i of the intermediate circuit C ′. However, we now explicitly compute the index position ji ∈ [1, `]
of each signal vi among the ` wires; whereas in ISW this position was only implicitly determined by
the value of the ` wires, as one of them would contain the signal vi while the others would get the
dummy value $ (see Fig. 1).

Consider now two wires i and i′ in C ′, for which the signal is located at positions j ∈ [1, `] and
j′ ∈ [1, `] in the expanded circuit C̃. Since the positions j and j′ of the signal are now explicitly
computed, we don’t need to use a sorting network as in [ISW03] anymore. Instead, we can simply
generate a new random index j′′ ∈ [1, `], and cyclically shift the information corresponding to wire i
by ∆ = j′′−j positions modulo `, and similarly by ∆′ = j′′−j′ positions for wire i′. For both inputs
the signal is now located at the common position j +∆ = j′ +∆′ = j′′, so now the signal will be
processed at this position j′′. Such cyclic shift can be computed in time O(`) instead of O(` log `),
hence we can get statistical security with time complexity O(|C| · t) instead of O(|C| · t log t). Our

3

construction is also much easier to implement in practice, as we can use a simple table look-up for
the cyclic shifts, instead of a complex sorting network.

The main difference between our construction and the original ISW is that the index positions
of the signal values are now explicitly computed in the final circuit C̃. This means that those index
positions can be probed by the adversary, so we may as well assume that the adversary knows
all those index positions. Our proof of security crucially relies on the fact that as in [ISW03], the
adversary learns those positions only at the evaluation phase, that is after he has committed his
probes in the circuit. Therefore when the adversary learns the exact locations it is actually too late:
we show that he can only learn the signal values with probability at most p. This means that as
previously the adversary does not learn more from the worst case probing of the final circuit C̃, than
from the p-random probing of the intermediate circuit C ′; this gives worst case statistical security
for our final circuit C̃.

For the stateful construction we must add some additional countermeasure, because if the ad-
versary knows the position of the signal vi at the end of one execution, he can directly probe vi at
the beginning of the next execution; this holds for memory cells that must be transmitted from one
execution to the next. In ISW this is achieved by using a t-private encoding of a random cyclic shift
for each pack of ` wires. Such t-private encoding has complexity O(t2), and since for every memory
cell this cyclic shift requires a circuit of size O(` log `), the additional complexity is O(st2` log `),
which gives a complexity Õ(st3) for s memory cells. To get a better complexity we proceed as fol-
lows: for each wire i from C ′ at the end of one execution, we perform a random permutation of the
` = O(t) corresponding wires in C̃, but without processing the index location explicitly. For this we
use a sequence of log2 ` layers, where in each layer the information in all wires of index j and j+2m

is randomly swapped, for 0 ≤ m < log2 `. The complexity is then O(s` log `) = O(st log t), and
eventually the circuit complexity is O(|C| · t log t). We summarize the time and circuit complexities
in Table 1. We see that asymptotically in the stateless model our construction improves the time
complexity but not the circuit complexity; in the stateful model we improve both the time and
circuit complexities.

Finally, we describe an AES implementation of our shuffling countermeasure, which we compare
with an AES implementation of the masking countermeasure. In practice our shuffling construction
outperforms the masking countermeasure for t ≥ 6 000. We provide the source code in [Cor21].

time complexity
circuit complexity(RAM model)

Stateless model
ISW, Theorem 3 O(|C| · t log t) O(|C| · t log t)
Theorem 6 O(|C| · t) O(|C| · t log t)

Stateful model
ISW, Theorem 8 O(|C| · t log t+ s · t3 log t) O(|C| · t log t+ s · t3 log t)
Theorem 9 O(|C| · t+ s · t log t) O(|C| · t log t)

Table 1: Time and circuit complexity of our new construction vs ISW, where s is the number of
memory cells that must be passed from one execution to the other.

Software probing model. For a software implementation we will work in the RAM model used
in algorithmic analysis; see [MS08, Section 2.2]. In this model, each memory access takes unit time,

4

and every memory cell can store an integer whose bit-size is logarithmic in the input size; for a
polynomial-time algorithm, this enables to store array indices in a single cell.

Moreover, in the software probing model, we assume that during the execution the adversary can
only probe the input address and output value of a RAM cell that is read during a table look-up, but
not the content of the internal wires of the circuit implementation of the RAM. This software probing
model was already used for example in the high-order table look-up countermeasure from [Cor14].
For simplicity we will still describe our construction in terms of an expanded circuit C̃ as in [ISW03].
For a software implementation our circuit C̃ is therefore augmented with a RAM unit, where the
adversary can only probe the input address and the input/output value, but not the internal wires
of the RAM. For completeness we also provide in Appendix D a pure circuit description of our
countermeasure, with a proof of security in the standard wire probing model.

Related work. In practice, operation shuffling is often used in addition to the masking coun-
termeasure to improve the resistance against side-channel attacks. Operation shuffling consists in
randomizing the execution order of the cryptographic blocks when the operations are independent;
we refer to [VMKS12] for a comprehensive study. For example, for AES one can randomize the eval-
uation of the 16 Sboxes. In [HOM06], the authors describe an 8-bit implementation of first-order
masking of AES, combined with SBOX shuffling with a random starting index; the technique was ex-
tended to a 32-bit implementation in [THM07]. In [RPD09], the authors investigate the combination
of high-order SBOX masking (but with resistance against first-order attacks only) and shuffling by
a random permutation. Namely the shuffling prevents a second-order DPA attack against the SBOX
masking countermeasure; the authors can then quantify the efficiency of the main attack paths. The
authors of [VMKS12] improve the software implementation of random permutation shuffling, with
an efficient permutation generator; see also [VML16,Pap18] for a description of shuffling counter-
measures with low randomness usage. The main attack against the shuffling countermeasure is the
“integrated DPA” introduced in [CCD00]; it consists in summing the signal over a sliding window.
If the signal is spread in t positions, the signal will be reduced by a factor

√
t only, instead of t

without the integration; see [VMKS12] for an improved security analysis.
In summary, operation shuffling has been used in numerous previous work to improve the prac-

tical resistance of an implementation against side-channel attacks, but not in provable way against
t probes for large t. Conversely, the second part of [ISW03] describes a theoretical construction with
complexity O(t log t) in the statistical model, but it has never been investigated. In this paper, our
goal is to describe an improved construction with provable security in the same model, moreover
with complexity O(t) only, and to compare its performance in practice with the classical masking
countermeasure.

2 Preliminaries

In this section we first recall the perfect privacy model and the masking-based construction from the
first part of [ISW03]. We then recall the statistical security model and the wire shuffling construction
from the second part of [ISW03]. For simplicity we first consider stateless circuits only; we will
consider stateful circuits in Section 4.

A deterministic circuit C is a directed acyclic graph whose vertices are gates or input/output
variables, and whose edges are wires. A randomized circuit is a circuit augmented with gates which
have fan-in 0 and output a random bit. The size of a circuit is defined as the number of gates and
its depth is the length of the longest path from an input to an output.

5

2.1 The ISW model for perfect security

In the ISW probing model [ISW03], the adversary is allowed to put at most t probes in the circuit,
and must learn nothing from those t probes. For stateless circuits, both inputs and outputs are
hidden in every invocation. For this one uses a randomized input encoder I and an output decoder
O; the internal wires of I and O cannot be probed by the adversary.

Definition 1 (Perfect privacy for stateless circuits.). Let T be an efficiently computable
deterministic function mapping a stateless circuit C to a stateless circuit C ′, and let I, O be as
above. We say that (T, I,O) is a t-private stateless transformer if it satisfies:
1. Soundness. The input-output functionality of O ◦C ′ ◦ I (i.e., the iterated application of I, C ′,

O in that order) is indistinguishable from that of C.
2. Privacy. We require that the view of any t-limited adversary, which attacks O◦C ′ ◦I by probing

at most t wires in C ′, can be simulated from scratch, i.e. without access to any wire in the circuit.
The identity of the probed wires has to be chosen in advance by the adversary.

2.2 The ISW construction for perfect privacy

We recall the classical ISW construction for achieving perfect privacy. We first consider the stateless
model; we then explain how the construction can be adapted to the stateful model in Section 4.
For security against t probes, the construction uses a simple secret-sharing scheme with n = 2t+ 1
shares. The three algorithms Encode, Decode, and Transform are defined as follow:

– Encode I. Each binary input x is mapped to n binary values. First, n−1 random bits r1, . . . , rn−1
are independently generated. The encoding of x is composed by these n − 1 random values
together with rn = x ⊕ r1 ⊕ . . . ⊕ rn−1. The circuit I computes the encoding of each input bit
independently.

– Decode O. The output returned by T (C) has the form y1, . . . , yn. The associated output bit of
C computed by O is y1 ⊕ . . .⊕ yn.

– Transform T . Assume without loss of generality that the original circuit C consists of only XOR
and AND gates. The transformed circuit C ′ maintains the invariant that corresponding to each
wire in C will be n wires in C ′ carrying an n-sharing of the value on that wire of C. More
precisely, the circuit C ′ is obtained by transforming the gates of C as follows.
For a XOR gate with inputs a, b and output c, let in C ′ be the corresponding wires a1, . . . , an
and b1, . . . , bn. From c = a⊕ b =

⊕n
i=1 ai ⊕ bi, we let ci = ai ⊕ bi for 1 ≤ i ≤ n.

Consider an AND gate in C with inputs a, b and output c; we have c = a ∧ b =
⊕

i,j aibj .
In the transformation of this gate, intermediate values zi,j for i 6= j are computed. For each
1 ≤ i < j ≤ n, zi,j is computed uniformly random, while zj,i is set to (zi,j ⊕ aibj)⊕ ajbi. Now,
the output bits c1, . . . , cn in C ′ are defined to be the sequence ci = aibi ⊕

⊕
j 6=i

zi,j ; see Appendix

B.1 for an algorithmic description of the AND gadget.

In the transformed circuit C ′ = T (C), every XOR gate and AND gate in C are therefore expanded
to gadgets of size O(n) and O(n2) respectively, and the gadgets in C ′ are connected in the same
way as the gates in C. This completes the description of T .

Theorem 1 (Perfect privacy, stateless model [ISW03]). The above construction is a perfectly
t-private stateless transformer (T, I,O), such that T maps any stateless circuit C of depth d to a
randomized stateless circuit of size O(|C| · t2) and depth O(d log t).

6

2.3 The region probing model and t-SNI security

The above privacy result holds in the worst case probing model, where the adversary can freely
chose the position of the t probes in the circuit. Alternatively one can consider the weaker random
probing model, where each wire leaks with probability p. To prove security in the random probing
model, we first need to consider worst-case privacy in the region probing model, where the adversary
can put t probes per region [ADF16], instead of t probes in the full circuit. Recall that a circuit C
is a directed acyclic graph whose vertices are gates and whose edges are wires. We partition the set
of gates of the circuit into a number of regions, and a wire connecting two gates can therefore meet
at most two regions.

The region probing model was already considered in [ISW03], with one region per gadget. The
authors claimed that security in this model is achieved thanks to the re-randomization property
of the outputs of the AND gadget: for each original output bit, the encoded outputs are (n − 1)-
wise independent even given the entire n-encoding of the inputs; this would imply security against
a stronger type of adversary who may observe at most t′ wires in each gadget, where t′ = Ω(t).
However we argue that this re-randomization property is actually not enough to achieve security in
the region probing model: we exhibit in Appendix A a simple counterexample, i.e. a gadget achieving
the re-randomization property but insecure in the region probing model.

The required property for achieving security in the region probing model is actually the t-SNI
notion introduced in [BBD+16]. The authors showed that the notion allows for securely composing
masked algorithms; i.e. the t-SNI of a full construction can be proven based on the t-SNI of its
component gadgets.

Definition 2 (t-SNI security [BBD+16]). Let G be a gadget taking as input n shares (ai)1≤i≤n
and n shares (bi)1≤i≤n, and outputting n shares (ci)1≤i≤n. The gadget G is said to be t-SNI secure
if for any set of t1 probed intermediate variables and any subset O of output indices, such that
t1 + |O| ≤ t, there exist two subsets I and J of input indices which satisfy |I| ≤ t1 and |J | ≤ t1,
such that the t1 intermediate variables and the output variables c|O can be perfectly simulated from
a|I and b|J .

To achieve privacy in the region probing model, we consider the ISW construction from Section
2.2, in which we additionally perform an (n − 1)-SNI mask refreshing algorithm as inputs of each
XOR and AND gadgets. Such mask refreshing can be based on the AND gadget, since as showed
in [BBD+16], the AND gadget achieves the (n − 1)-SNI security property (see Appendix B.2 for a
concrete mask refreshing algorithm). We define each region as comprising an AND or XOR gadget,
and the mask refreshing of the corresponding output variable, so that each output z(j) is used only
once in the next region; see Fig. 2 for an illustration.

Theorem 2 (t-privacy in the region probing model). Let C be a circuit of fan-out f . Let
(I,O, T) be the previous transformer with n = 2t+1 shares, where a (n− 1)-SNI mask refreshing is
applied as input of each XOR and AND gadgets. The transformed circuit is t-private secure where
the adversary can put at most t probes per regions, each of size O(f · t2).

7

∧

R

R

R

...

x
y

z(1)

z(2)

z(f)

Fig. 2: A region comprises the AND (or XOR) gadget, and the mask refreshing of the output variable.

We provide the proof in Appendix B.4. Note that any circuit C can be converted into a circuit
of fan-out f = 2; therefore we can always obtain regions of size O(t2).

2.4 Security in the random probing model

We recall below the privacy definition when the adversary learns each wire with probability p
(average-case security), instead of freely choosing the positions of the probes as above (worst-case
security); this is the random probing model [ISW03].

Definition 3 (Random probing model [ISW03]). A circuit transformer T = T (C, k) is said
to be (statistically) p-private in the average case if C ′ = T (C, k) is statistically private against
an adversary which corrupts each wire in C ′ with independent probability p. That is, the joint
distribution of the random set of corrupted wires and the values observed by the adversary can be
simulated up to a k−ω(1) statistical distance.

From Theorem 2, the ISW circuit transformer from Section 2.2 with 2k + 1 shares is perfectly
private with respect to any adversary corrupting k wires per region. Since each region has size
O(k2), it follows from Chernoff’s bound that the view of an adversary corrupting each wire with
probability p = Ω(1/k) can be perfectly simulated, except with negligible failure probability. We
provide the proof of Lemma 1 in Appendix C.2.

Lemma 1 (Random probing security [ISW03]). There exists a circuit transformer T (C, k)
producing a circuit C ′ of size O(|C| · k2), such that T is Ω(1/k)-private in the average case.

2.5 Worst-case statistical security model

The masking countermeasure recalled in Section 2.2 achieves perfect security against t probes with
complexity O(t2). To obtain a construction with complexity O(t · log t) only, the authors of [ISW03]
introduced a relaxation of the security model, in which one tolerates a leakage of the secrets, albeit
with a negligible probability; this is called the statistical model of security. We stress that with
respect to the probes we are still working in the worst case model, in which the adversary can freely
chose the position of the t probes (as opposed to the random probing model above in which every
wire leaks with probability p). The definition below is similar to the perfect privacy model, except
that now the simulation can fail with negligible probability. For this worst-case statistical model,
our main goal in this paper is to improve the wire shuffling countermeasure introduced in [ISW03],
with a running time O(t) instead of O(t · log t).

8

Definition 4 (Statistical privacy for stateless circuits). Let T be an efficiently computable
deterministic function mapping a stateless circuit C to a stateless circuit C̃, and let I, O be as
above. We say that (T, I,O) is a statistically t-private stateless transformer if it satisfies:
1. Soundness. The input-output functionality of O ◦ C̃ ◦ I (i.e., the iterated application of I, C̃,

O in that order) is indistinguishable from that of C.
2. Privacy. We require that the view of any t-limited adversary, which attacks O ◦ C̃ ◦ I by probing

at most t wires in C̃, can be simulated except with negligible probability. The identity of the
probed wires has to be chosen in advance by the adversary.

2.6 The ISW construction for statistical privacy

We now recall the statistically private construction from [ISW03] that achieves complexityO(t·log t).
For simplicity we first consider the case of stateless circuits; stateful circuits will be considered in
Section 4. The construction proceeds in two steps. First one applies the classical masking coun-
termeasure, namely the circuit transformer T (C, k) guaranteeing p-privacy in the average case, for
p = Ω(1/k) with security parameter k; see Lemma 1 from Section 2.4. Then one transforms its
output C ′ into a larger circuit C̃, where only a fraction of the computation is useful. Namely the
circuit C̃ will perform the same computation as C ′, but only on a small random subset of its wires;
the remaining wires of C̃ will contain no useful information for the adversary.

The worst-case probing security of the final circuit C̃ will reduce to the p-random probing
security of C ′ as follows. In the stateless model the adversary must commit its probes before the
circuit evaluation. The subset of useful wires in the final circuit C̃ will be only determined during
the invocation of C̃, and therefore it will be independent of the set of corrupted wires. This implies
the adversary in C̃ will be able to obtain information about the original wires in C ′ with small
probability only; hence the worst-case probing security of C̃ will follow from the p-random probing
security of C ′.

Thus, the author’s construction transforms the circuit C ′ = T (C, k) to a circuit C̃ as follows. For
each wire i of C ′ one considers ` wires of C̃ labeled (i, 1), . . . , (i, `). Every such wires can take a value
from the set {0, 1, $}. For every wire i in C ′ carrying a value vi ∈ {0, 1}, the wires (i, 1), . . . , (i, `)
in C̃ will carry the value vi in a random position (independently of other `-tuples), and the value $
in the remaining `− 1 positions; see Figure 1 for an illustration.

Formally we define the Encode’ and Decode’ algorithms for encoding the input wires and decoding
the output wires of the intermediate circuit C ′. Note that these algorithms must eventually be
composed with Encode and Decode from Section 2.2.

– Encode’. To encode a value v, first generate at random an index j←$ [1, `] and output an `-tuple
in which v will be the j-th element, while the other elements carry a dummy value $. That is,
return ($, . . . , $, v, $, . . . , $), where v is at the j-th position.

– Decode’. Given a `-tuple ($, . . . , $, v, $, . . . , $), return v.

We now describe the transformation applied to every gate of the intermediate circuit C ′. Suppose
that vi = vi1 ∗ vi2 , i.e., the value of wire i in C ′ is obtained by applying a boolean operation ∗ to
the values of wires i1, i2 in C ′. Such a gate in C ′ is replaced with a 2`-input, `-output gadget in C̃.
The gadget first puts both values vi1 and vi2 in random but adjacent positions, and then combines
them to obtain the value vi1 ∗ vi2 in a randomly defined wire out of the ` output ones. For this the
gadget makes use of sorting networks as a building block. A sorting network is a layered circuit

9

from ` integer-valued input wires to ` integer-valued output wires, that outputs its input sequence
in a sorted order1. More technically, the gate is processed as follow:

– Preprocessing. Compute `+1 uniformly and independently random integers r, r1, . . . , r` from
the range [0, 2k], where k is the security parameter. For each 1 ≤ j ≤ `, use the values vi1,j , vi2,j
(of wires (i1, j) and (i2, j)) to form a pair (keyj , valj) such that:
1. keyj is set to rj if vi1,j = vi2,j = $ and to r otherwise;
2. valj is set to $ if both vi1,j , vi2,j are $; to a bit value b if one of vi1,j ,vi2,j is b and the other

is $, and to b1 ∗ b2 if vi1,j = b1 and vi2,j = b2.
– Sorting. A sorting network is applied to the above `-tuple of pairs using key as the sorting key.

Let (u1, . . . , u`) denote the `-tuple of symbols valj sorted according to the keys keyj .
– Postprocessing. The jth output vj is obtained by looking at uj , uj+1, uj+2: if uj , uj+1 6= $

then vj = uj ∗ uj+1, if uj = uj+2 = $ and uj+1 6= $ then vj = uj+1, and otherwise vj = $.

This terminates the description of the construction. The above transformation works because
if the input signals vi1 and vi2 are initially located at positions j1 and j2 for some j1 6= j2, then
by definition keyj1 = keyj2 = r, and therefore after sorting by keyj the signal values vi1 and vi2
will be contiguous; then at the postprocessing phase the output signal vi1 ∗ vi2 will be computed,
and located at some random position j3. 2 This gadget can be implemented by a circuit of size
O(k · ` log `).

The following lemma proves the worst-case t-private security of the final circuit C̃, from the p-
random probing security of the intermediate circuit C ′. A minor difference is that we use ` = O(t/p7)
instead of ` = O(t/p4) in [ISW03, Lemma 2]. We claim that this is indeed the correct bound, as it
comes from the relative size of the maximal matching of a graph of degree 4, which is at most 1/7
(and not 1/4 as used in the proof of [ISW03, Lemma 2], see for example [BDD+04]). Note that this
technicality does not change the asymptotic behavior with respect to the number of probes t which
is still O(t · log t), only the dependence with respect to the security parameter k.

Lemma 2. Suppose that C ′ is p-private in the average case. Then the circuit C̃, constructed with
` = O(t/p7), is statistically t-private in the worst case.

The following theorem proves the worst-case statistical t-privacy of the circuit C̃. It is the same
as [ISW03, Theorem 3], except that we make the dependence of the circuit size in the security
parameter k more explicit; this is to enable a comparison with our new construction, which has an
improved complexity not only with respect to the number of probes t but also with respect to k.

Theorem 3. There exists a statistically t-private stateless transformer (T̃ , Ĩ, Õ), such that T̃ (C, k)
transforms a circuit C to a circuit C̃ of size O(|C| · k10 · t · (log k + log t)).

Proof. The worst-case statistical t-privacy of C̃ follows from Lemma 2. The intermediate circuit
C ′ = T (C, k) has complexity O(|C| ·k2). Then C ′ is expanded by a factor O(k ·` log `); from Lemma
2 and with p = Ω(1/k), one can take ` = O(t·k7); the expansion factor is therefore O(k ·(t·k7) log(t·
k7)) = O(k8 · t · (log t+ log k)). The final complexity is therefore O(|C| · k10 · t · (log k + log t)). ut

1 The authors of [ISW03] use the AKS network [AKS83], which achieves the optimal parameters of O(` log `) size
and O(log `) depth.

2 The same holds if j1 = j2.

10

2.7 Random gate-probing model

For proving the security of our new construction, it will be more efficient to work in a slight variant
of the random probing model for the intermediate circuit C ′, in which we assume that every gate
of the circuit leaks all its information with probability p, instead of every wire. When a gate is
leaking, all its input and output wires are leaked (see Figure 3 for an illustration); we call this
variant the random gate-probing model. We also assume that the input wires in C ′ are also leaking
with probability p; this is equivalent to considering a “copy gate” applied to each input and also
leaking with probability p. Given a circuit C and a set of wires W , we define CW as the value of
the wires in W .

a

b
c

p

p

p
(a)

(b)

(c)

a

b
c

p (a, b, c)

Fig. 3: Random probing model (left) vs random gate-probing model (right).

Definition 5 (Random gate-probing security). Consider a randomized circuit C ′ and a ran-
dom sampling W of its internal wires, where each gate Gi of C ′ leaks with independent probability
pi. The circuit C ′ is said (p, ε)-random gate-probing secure if for any (pi)i with pi ≤ p, there exists
a simulator SC′ such that SC′(W)

id
= C ′W (Encode(~x)) for every plain input ~x, except with probability

at most ε over the sampling of W .

Note that our above definition is slightly stronger than Definition 3 from [ISW03]. Namely in
Definition 3 the simulator produces both the random sampling W and the leaking values, whereas
in the above definition the simulator is given W as input and must perfectly simulate the leaking
values, except with probability at most ε over the sampling of W . This slightly stronger definition
will be more convenient for proving the security of our construction. As in Lemma 1, the masking
countermeasure is proven secure in the random gate-probing model via the Chernoff’s bound. The
proof is essentially the same as the proof of Lemma 1 (see Appendix C.2) and is therefore omitted.

Lemma 3. There exists a circuit transformer T (C, k) producing a circuit C ′ of size O(k2|C|), such
that T achieves (Ω(1/k), ε)-random gate-probing security, where ε is a negligible function of the
security parameter k.

3 Our new shuffling countermeasure

In this section we describe our new construction that achieves worst-case probing security with
running time O(t) instead of O(t · log t) in [ISW03]. For simplicity we consider stateless circuits
only; we will consider stateful circuits in Section 4.

11

3.1 Description

Our construction proceeds in two steps, as in the ISW construction recalled in Section 2.6. First we
transform the original circuit C into an intermediate circuit C ′ = T (C, k) with n = 2k + 1 shares,
using Theorem 2 from Section 2.3. Then we transform the circuit C ′ into a circuit C̃ as follows. The
main difference with the original ISW construction recalled in Section 2.6 is the usage of a “shuffling
index” storing the position of each signal wire from C ′ in the final circuit C̃.

Wires. For each wire of i of C ′ we consider ` wires of C̃ labeled (i, 0), . . . , (i, ` − 1) and an index
ji. Let a0, . . . , a`−1 be the value of the ` wires. The circuit C̃ will make the invariant that if wire i
in C ′ has value v, then this value appears at position ji in C̃, that is aji = v, while the value of the
over wires is arbitrary.

Encoding and decoding. We define the Encode’ and Decode’ algorithms for encoding the input
wires and decoding the output wires of the intermediate circuit C ′. As in Section 2.6 these algorithms
must be composed with Encode and Decode from the masking countermeasure (Section 2.2). Note
that the index position of the signal is computed explicitly; therefore we don’t need the dummy
element $ as in Section 2.6 for the `−1 other wires, and at the encoding phase we can simply assign
them to 0.

– Encode’. To encode a value v, first generate at random an index j←$ [0, ` − 1] and output the
encoding (j, (0, . . . , 0, v, 0, . . . , 0)), where v is at the j-th position.

– Decode’. Given (j, (a0, . . . , a`−1)), return aj .

Algorithm 1 Gate ∗ processing
Input: Encodings (j, (a0, a1, . . . , a`−1)) and (j′, (b0, b1, . . . , b`−1))
Output: Index j′′ and array (c0, c1, . . . , c`−1) such that cj′′ = aj ∗ bj′
1: j′′←$ [0, `)
2: ∆ = j′′ − j, ∆′ = j′′ − j′
3: For all 0 ≤ i < `, let a′i ← ai−∆ and b′i ← bi−∆′ . a′j′′ = aj , b′j′′ = bj′ .
4: For all 0 ≤ i < `, let ci ← a′i ∗ b′i . cj′′ = aj ∗ bj′ .
5: return (j′′, (c0, c1, . . . , c`−1))

Gates. We consider a gate G in C ′, taking as input a and b, and outputting c = a ∗ b where ∗ ∈
{XOR,AND}. We provide a formal description in Algorithm 1 above, where all indices computations
are performed modulo `; see also Figure 4 for an illustration. Let (ai)0≤i<` and (bi)0≤i<` be the
corresponding input wires in C̃, and let j and j′ be the corresponding indexes, with a = aj and
b = bj′ the signal values in C ′. To process the gate in C̃, one generates a random j′′ ← [0, ` − 1]
and then cyclically shifts the `-array (ai) by j′′ − j positions modulo `; similarly the `-array (bi)
is cyclically shifted by j′′ − j′ positions. The input signals a and b are then located at common
position j′′, in which the gate G can now be processed; the same gate G is also applied on the other
positions that contain arbitrary values; eventually the output signal c is located at position j′′.

Finally, a random gate r ← {0, 1} is expanded into a gadget outputting (j, (r0, . . . , r`−1)) with
ri ← {0, 1} for all 0 ≤ i < ` and j ← [0, `). This terminates the description of the construction.

12

a
b a ∗ b

a`−1

...

...

a0

a = aj cyclic
shift

∆=j′′−j

−j

j′′

j′′

b0 ...
b = bj′

...

b`−1

−j′

j′′

cyclic
shift

∆′=j′′−j′

...

...

a′0

b′0

a′j′′

b′j′′

a′`−1

b′`−1

a0 ∗ b0
...

...

aj′′ ∗ bj′′ = a ∗ b

a`−1 ∗ b`−1

Fig. 4: Original gate in C ′ (left) and shuffling gadget in C̃ (right). The bold wires contain the original
signal value from C ′; the other wires contain only dummy values.

Theorem 4. The transform defined above achieves the soundness property.

Proof. The intermediate circuit C ′ = T (C, k) computes the same function as C. Moreover every
expanded gate in C̃ computes the same gate as C ′. Namely consider the gate c = a ∗ b in C ′. In the
final circuit C̃ we have cj′′ = a′j′′ ∗ b′j′′ = aj′′−∆ ∗ bj′′−∆′ = aj ∗ bj′ = a ∗ b = c as required. Therefore
C̃ = T̃ (C, k) computes the same function as C. ut

Note that Algorithm 1 can be implemented via a table look-up. Namely the ` wires can be stored
in an array T [i] for 0 ≤ i < `, with T [j] = v for the signal index j, and the cyclic shift is performed
as in Step 3, that is with the loop T ′[i] ← T [i−∆ mod `] for each 0 ≤ i < `. The running time of
Algorithm 1 is O(`) per gadget.

3.2 Shuffling security of a gadget and composition

As in [ISW03], our goal is to show that the adversary does not learn more from the worst-case
probing of the final circuit C̃ than from the p-random probing of the intermediate circuit C ′. For
this we proceed with a similar compositional approach as in [BBD+16]: 1) we introduce a new
security definition for a single gadget in the expanded circuit C̃, 2) we prove that our shuffling
gadget from the previous section satisfies this definition, and 3) we show how to get security for
the full circuit C̃ by composition. The main benefit of this approach is that 3) only depends on 1),
therefore we can later modify the shuffling gadget and still get security for the full circuit, as long
as the shuffling gadget satisfies the security definition.

Definition 6 (Shuffling security). We say that a randomized gadget achieves `-shuffling security
if any set of t probes, excluding the input wires of the gadget, can be perfectly simulated from scratch,

13

except with probability at most t/`, where the probability is taken over the randomness used by the
gadget.

In the above definition we exclude the probing of the gadget input wires, because in the compo-
sition the probing of the input wires of a gadget can be handled by the probing of the output wires
of a previous gadget (except for the input wires of C̃ which we will handle separately).

Lemma 4. The gadget G̃ as described in Algorithm 1 is `-shuffling secure.

Proof. We must construct a simulator that can simulate any set of t probes, with failure proba-
bility at most t/`. In the simulation the input indices j, j′ are fixed, as well as the input arrays
(a0, . . . , a`−1) and (b0, . . . , b`−1). From the definition the adversary cannot probe those input arrays;
in particular, the adversary cannot probe the signal a = aj and b = bj′ .

The proof is based on the fact that the adversary must commit to the position of the probes
before the execution of the gadget. Therefore in the simulation the probes have fixed positions
while the index j′′ is randomly and uniformly distributed in [0, `). This implies that for a fixed
i ∈ [0, `), the variable a′i contains the secret value a with probability at most 1/`; the same holds
for the variables b′i and ci. This implies that the t probes can be perfectly simulated, except with
probability at most t/`. ut

a

b
c

p =
t

`

t

...

...

Fig. 5: A set of t probes in a shuffling gadget in C̃ (right) correspond to a gate-leaking probability
at most p = t/` in C ′ (left).

Composition. We now prove the worst-case statistical t-privacy of the final circuit C̃, from the
p-random probing security of the intermediate circuit C ′; see Fig. 5 for an illustration.

Lemma 5. Suppose that C ′ is (p, ε)-random gate probing secure. Then, the circuit C̃ ′ constructed
as described above with ` := t/p achieves ε-statistical security in the worst case against t probes.

Proof. We must construct a simulator S̃ for the t probes of the final circuit C̃, using a simulator S ′
for the average-case security of the intermediate circuit C ′. According to Definition 5, the simulator
S ′ receives as input a random sampling W of the gates, where each gate leaks with independent
probability pi ≤ p, and S ′ provides a perfect simulation of the gates in W , except with probability
at most ε over the sampling W .

Therefore, our simulator S̃ will proceed as follows. First, we receive all the probes of the adversary
on the wires of the final circuit C̃. We then generate all random index positions of the circuit C̃.

14

As illustrated in Figure 5, a set of ti probes in a shuffling gadget G̃i of C̃ corresponds to a leaking
probability pi = ti/` in the corresponding gate Gi of C ′. More precisely, according to Lemma 4, each
gadget G̃i can be perfectly simulated from scratch, except with probability at most ti/`. Therefore
our simulation for the full circuit C̃ will first run the simulators Si for all gadgets G̃i independently;
when any such simulator Si fails with probability at most pi = ti/` ≤ t/` = p, we include the
corresponding gate Gi in the sampling W . Moreover, from Definition 6 and Lemma 4, the failure
probabilities are independent, because in Definition 6 the failure probability is taken over the gadget
randomness, and the randomness in each gadget is generated independently. Therefore the gates
Gi are included in W with independent probability pi ≤ p as required in Definition 5. Eventually
our simulator S̃ runs the intermediate circuit simulator S ′ with the sampling W , and receives a
simulation of the input wires of the corresponding gates Gi ∈W ; it then uses this simulation of the
input wires to perfectly simulate the ti probes within each expanded gadget G̃i, for the case when
Si has failed. Since the simulator S ′ for the intermediate circuit C ′ provides a perfect simulation
except with probability ε over the sampling W , our final simulator S̃ provides a perfect simulation
of the t probes of C̃ except with probability ε. ut

Eventually our construction has better running time O(|C| · t) but same circuit complexity
O(|C| · t · log t) as ISW.

Theorem 5. There exists a statistically t-private stateless transformer (T̃ , Ĩ, Õ), such that T̃ (C, k)
transforms a circuit C into a circuit C̃ of running time O(|C|·k3·t) and size O(|C|·k3·t·(log k+log t)).

Proof. From Lemma 5, the circuit C̃ achieves statistical privacy in the stateless worst-case model.
The intermediate circuit C has size O(|C|k2), while the final circuit has running time O(|C|k2`)
and size O(|C|k2` log `). With p = t/` and p = Ω(1/k) to achieve average-case privacy for C ′, we
get running time O(|C| · k3 · t). and size O(|C| · k3 · t · (log k + log t)). ut

3.3 Improved time complexity

From the proof of Lemma 5 the previous circuit C̃ is actually secure in the region probing model
where the adversary can put t probes per gadget in C̃. We can however further optimize the circuit
complexity if we only require security against a total of t probes in the full circuit C̃. Namely in
that case we can consider that each gadget of C̃ has ti probes with the condition

∑
i ti ≤ t, instead

of ti ≤ t for all i in the proof of Lemma 5. This means that for each corresponding gate in the
intermediate circuit C ′, we can consider a leakage probability pi = ti/` such that

∑
i pi ≤ µ over the

full circuit C ′, with µ = t/`. Note that this is a much looser condition than in Definition 5, where
we required pi ≤ p = t/` for all gates. In particular, if we take t/` > 1, we can tolerate a leakage
probability pi = 1 for a fraction of the gates in C ′, as long as

∑
i pi ≤ t/` over all gates of C ′; see

Fig. 6 for an illustration. To handle this looser condition, we modify the definition of random gate
probing security as follows.

Definition 7 (Random Σ-gate-probing security). Consider a randomized circuit C ′ and a
random sampling W of its internal wires, where each gate Gi of C ′ leaks with independent probability
pi. The circuit C ′ is said (µ, ε)-random Σ-gate-probing secure if for any (pi)i with

∑
i pi ≤ µ, there

exists a simulator SC′ such that SC′(W)
id
= C ′W (Encode(~x)) for every plain input ~x, except with

probability at most ε over the sampling of W .

Note that here
∑

i pi is the average number of leaking gates in the circuit C ′. Thanks to the looser
condition

∑
i pi ≤ µ, when applying Chernoff’s bound on the intermediate circuit C ′ = T (C, k)

15

p2 =
t2
`

p1 =
t1
`

pi =
ti
`

∑
i
pi ≤

t

`

∑
i
ti ≤ t

t1

...

...

t2

...

...

ti

...

...

Fig. 6: A total of t probes in the final circuit C̃ (right) corresponds to a total of leaking probabilities
at most t/` in the intermediate circuit C ′ (left).

secure against k probes, we can prove random Σ-gate-probing security with µ = Ω(k) instead of
Ω(1/k). Since we are interested in a practical implementation of our countermeasure (see Section
6), we now provide concrete values for µ(k) and ε(k) for the intermediate circuit C ′ based on the
masking countermeasure; we provide the proof in Appendix C.3.

Lemma 6. There exists a circuit transformer T (C, k) producing a circuit C ′ of size O(k2|C|), such
that T achieves (µ, ε)-random Σ-gate-probing security for µ = Ω(k) and ε a negligible function of
the security parameter k. In particular, one can take µ = k/4 and ε = 2−k/(12 log 2).

Note that the above circuit C ′ does not need to be secure in the region probing model with
k probes per region; namely in the proof of Lemma 6 only the total number of probes matters.
Therefore we can use n = k + 1 shares with appropriate mask refreshing as in [BBD+16] (instead
of n = 2k+ 1). Eventually, we obtain a statistically t-private stateless transformer with complexity
O(|C| · k · t), instead of O(|C| · k3 · t) in Theorem 5; as previously, we proceed by first proving the
worst-case security of C̃ from the average-case security of C ′.

Lemma 7. Suppose that C ′ is (µ, ε)-random Σ-gate-probing secure. Then, the circuit C̃ constructed
as described above with ` := t/µ achieves ε-statistical security in the worst case against t probes.

Proof. The proof is essentially the same as the proof of Lemma 5. Instead of having each gadget
G̃i simulator Si fail with probability pi ≤ p, the failure probabilities are still independent but with
the looser condition

∑
i pi ≤ µ = t/`. This gives a sampling W of the gates Gi in C ′ with the same

condition
∑

i pi ≤ µ. Since C ′ is (µ, ε)-random Σ-gate-probing secure, we obtain that C̃ achieves
ε-statistical security in the worst case against t probes. ut

Theorem 6. There exists a statistically t-private stateless transformer (T̃ , Ĩ, Õ), such that T̃ (C, k)
transforms a circuit C into a circuit C̃ of running time O(|C| · k · t) .

Proof. From Lemma 7, the circuit C̃ achieves worst-case statistical t privacy in the stateless model.
Its running time is O(|C| · k2 · `). With ` = t/µ and µ = k/4, the running time is O(|C| · k · t). ut

Note that with running time O(|C| · k · t) instead of O(|C| · k10 · t · (log k + log t)) for ISW
(see Theorem 3), our construction has an improved complexity also with respect to the security
parameter k. In Section 6 we describe an implementation for AES that is practical for large t
compared to the masking countermeasure, while the original ISW would be completely unpractical.

16

3.4 Pure circuit description

The construction described in Section 3.1 can be implemented using table look-ups and is secure in
the software probing model, where the adversary can only probe the input address and input/output
value of a RAM cell, but not the content of the internal wires of the circuit implementation of the
RAM (see Section 1). However it is easy to obtain a pure circuit implementation of the construction,
using a circuit implementation of a cyclic shift, with complexityO(`·log `). The construction achieves
worst-case statistical privacy with complexity O(t log t), as the original ISW construction. We refer
to Appendix D for the description and security proof.

4 Statistical security in the stateful model

In this section we consider the more useful stateful model, in which the adversary can move its
probes between successive executions of the circuit. We first recall the ISW construction for worst-
case statistical security in the stateful model; we will describe our improved construction in Section
5.

A stateful circuit is a circuit augmented with memory cells. A memory cell is a stateful gate
with fan-in 1: on any invocation the gate outputs its previous input, and stores the current input
for the next invocation. We denote by C[s0] the circuit C with memory cells initialized with the
initial state s0. A stateful circuit can also have external input and output wires. For example, for a
block-cipher, the secret key is stored in the memory cells, while the input wires receive the plaintext,
and the output wires produce the ciphertext.

4.1 Perfect privacy for stateful circuits

We recall the perfect privacy definition from [ISW03]. In the stateful case, we consider the circuit
inputs and outputs as public; only the internal state is kept private. The adversary can now access
the transformed circuit and invoke it multiple times, choosing freely the new invocation inputs; the
adversary may choose the next input based on what it has observed in the previous execution.

Definition 8 (Perfect privacy for stateful circuits.). Let T be an efficiently computable ran-
domized algorithm mapping a stateful circuit C along with an initial state s0 to a stateful circuit C ′

along with an initial state s′0. We say that T is a t-private stateful transformer if it satisfies:
1. Soundness. The input-output functionality of C initialized with s0 is indistinguishable from that

of C ′ initialized with s′0. This should hold for any sequence of invocations on an arbitrary sequence
of inputs. In other words, C[s0] and C ′[s′0] are indistinguishable to an interactive distinguisher.

2. Privacy. We require that C ′ be private against a t-limited interactive adversary. Specifically, the
adversary is given access to C ′ initialized with s′0 as its internal state. Then, the adversary may
invoke C ′ multiple times, adaptively choosing the inputs based on the observed outputs. Prior to
each invocation, the adversary may fix an arbitrary set of t internal wires to which it will gain
access in that invocation. To define privacy against such a t-limited adversary, we require the
existence of a simulator which can simulate the adversary’s view using only a black-box access
to C ′, i.e., without having access to any internal wires.

The ISW construction for perfect privacy in the stateful model proceeds as follows; see Figure 7
for an illustration. We use the stateless transformer T (C, t) secure in the region probing model, with
t probes per region. Let denote by Et(x) the encoding used by the stateless transformer, where x is
the input being encoded. The initial state s0 of C is encoded as s′0 = Et(s0).3 At the i-th invocation,
3 Here we can use Et instead of E2t in [ISW03] because we consider a circuit C′ already secure in the region probing
model.

17

in

out

C ′

REt

s0

s′0

in

out

C ′

R
s′1 s′2

Execution 2Execution 1Encoding

tttt

Fig. 7: Illustration of the stateful model. The initial encoding s′0 used in the first execution gets
refreshed into s′1 before getting passed to the next execution. The adversary can put t probes per
region within each execution, where the position of the probes can be changed between executions.

the circuit C ′ = T (C, t) takes as input an encoded state s′i and outputs an encoded state s′i+1 that
is passed to the next circuit execution. Note that the encoded state s′i must be refreshed after each
execution; otherwise the adversary could recover the internal state by probing the encoded state t
probes at a time; in the circuit C ′ this is done by using a (n− 1)-SNI mask refreshing R as output.
For a block-cipher, the internal state corresponds to the key whose encoding must be refreshed after
each execution. The regular input in of C is unprotected, and need not be encoded before getting
fed into C ′; for each execution of C ′, this input is first encoded using Et and the output out is
decoded using the corresponding Dt. This implies that these inputs and outputs are known to the
adversary, so that they can be given for free to the simulator.

Perfect privacy in the stateful model follows from perfect privacy in the stateless case, thanks
to the region probing model. Namely, a sequence of invocations of the stateful circuit C ′ can be
unwound into a larger stateless circuit C ′′; in the unwound circuit, the adversary can corrupt up to t
wires in each region of each circuit produced by the stateless transformation. This means that every
new circuit execution corresponds to adding more regions in the unwound circuit (see Figure 7).
However the adversary can move its probes between circuit executions; therefore in the unwound
circuit C ′′, the probes corresponding to the i-th execution must be simulated without knowing
the position of the probes from the (i + 1)-th execution. To perform these successive simulations
we must consider a slightly stronger definition than t-SNI security for mask refreshing between
successive executions, where in a given gadget the set of input variables I that must be known
for the simulation, does not depend on the set of output variables O to be simulated; we refer
to Appendix E.1 for the definition, and a proof that the AND-based mask refreshing algorithm
satisfies this stronger definition. Finally we prove in Appendix E.2 the following theorem, similar
to [ISW03, Theorem 2], except that we can tolerate t probes per region for each circuit execution
(instead of t probes per execution).

Theorem 7 (Perfect privacy, region stateful model). There exists a perfectly t-private stateful
circuit transformer secure in the region probing model which maps any stateful circuit C of size |C|
and depth d to a randomized stateful circuit of size O(|C| · t2) and depth O(d log t).

18

4.2 Worst-case statistical privacy in the stateful model and the ISW construction

The definition of worst-case statistical privacy in the stateful model is the same as for perfect
privacy, except that the simulator can now fail with negligible probability ε; we recall the definition
in Appendix E.3. We now recall the ISW construction. As for the stateless case, one proceeds in two
steps, with each wire in the intermediate circuit C ′ being expanded into ` wires in the final circuit
C̃, such that only one of the ` wires contains the original signal vi from C ′, while the other wires
contain only the dummy value $.

However for the stateful construction we must add some additional countermeasure, because
the adversary can move its probes between executions, and therefore could accumulate knowledge
about the locations of the signal in C̃. This is easy to see in our stateless construction from Section
3.1: since the adversary can probe the index location j of a signal v at the end of an execution,
he could directly probe v at the beginning of the next execution; this holds for memory cells that
must be transmitted from one execution to the next; see Figure 8 for an illustration. In ISW this is
prevented by using a perfectly t-private encoding of a random cyclic shift for each pack of ` wires,
for each signal vi from C ′ that must be transmitted from one execution to the other. Such t-private
encoding has complexity O(t2), and since for every memory cell this cyclic shift requires a circuit
of size O(` log `), the additional complexity is O(st2` log `), which gives a complexity Õ(st3) for s
memory cells. We recall below the theorem from [ISW03].

Theorem 8 (Worst-case statistical privacy, stateful model). There exists a statistically t-
private stateful transformer T̃ , such that T̃ (C, k) maps a circuit C with s memory cells to a circuit
C̃ of size O(|C| · t log t+ s · t3 log t). The depth of C̃ is the same as that of C, up to polylog factors.

5 Our construction in the statistical stateful model

In this section we describe two constructions in the worst-case statistical stateful model that achieve
a better complexity bound than the ISW construction recalled in the previous section. Recall that
in our stateless construction from Section 3.1, the position j ∈ [0, `− 1] of the signal vi among the `
wires is explicitly computed; we can therefore assume that it is known to the adversary at the end of
a given execution. For the stateful model, this means that without any additional countermeasure,
the adversary could directly probe the signal vi at the beginning of the next execution; this holds
for the hidden state that must be transmitted from one execution to the other (see Fig. 8 for an
illustration).

19

j

1
$ $

...
...

$ $

j
vi vi

$ $

`
$ $

Execution 1 Execution 2

A

Fig. 8: Without additional countermeasure, the adversary learning the index position j at the end
of a given execution can directly probe the signal vi at the beginning of the next.

To handle the adaptive case of the stateful model, we extend Definition 6 by requiring that even
after having observed t probes in the gadget, any set O of output probes can be simulated from
scratch, except with probability at most 2t/`. Note that the construction of Fig. 4 from the stateless
case cannot satisfy this definition, since the adversary could directly probe the output position j′′

of the signal.

Definition 9 (Strong `-shuffling security). We say that a randomized gate G achieves strong
`-shuffling security if any set S of t probes (excluding the input wires) and any set O of output
probes, can be perfectly simulated from scratch, except with probability at most 2t/`, where the set
O is chosen adaptively from the value of the probes in S.

As recalled in the previous section the authors of [ISW03] used a perfectly t-private random
cyclic shift; this construction satisfies Definition 9, since from the t-privacy the adversary gets no
information about the position of the output signal, and therefore for a total of 2t probes the
probability to recover the signal is at most 2t/`; the complexity of the ISW construction for a single
gadget is Õ(`t2).

In the following we describe two improved constructions achieving the strong `-shuffling security
defined above. We then show that any construction satisfying Definition 9 enables to obtain worst-
case statistical security in the stateful model.

5.1 First construction: iterated cyclic shifts

Our first construction consists of a sequence of t + 1 random cyclic shifts with uniformly and
independently distributed shifts ∆1, . . . ,∆t+1 ← [0, ` − 1]; see Figure 9 for an illustration. As
in [ISW03], the construction is used as output for every hidden state bit that must be transmitted
from one execution to the next. As opposed to our stateless construction described in Fig. 4, the
index position of the signal is not explicitly computed in the cyclic shifts; the position of the signal
is only implicitly determined by the value of the wires in {0, 1, $}, where $ is the dummy value. At
the end of a given execution, we must therefore convert from a representation with explicit signal

20

i`

...

i2

i1

...
...
· · ·

· · ·

· · ·

...
o`

...

o2

o1

∆1 ∆2 ∆t+1

Cyclic Shift Cyclic Shift Cyclic Shift
#1 #2 #(t+ 1)

Fig. 9: First construction: sequence of t+ 1 random cyclic shifts.

index j to a representation with wire values in {0, 1, $}; this can be done with complexity O(`). The
index position of the signal is computed again explicitly as the beginning of the next execution.

The construction satisfies the strong `-shuffling security (Definition 9), since with at most t
internal probes, one of the t+1 random cyclic shifts is not probed, and therefore the adversary does
not get information about the position of the output signal. We refer to Appendix E.4 for the proof
of the following lemma. The cost of this first construction is Õ(`t), instead of Õ(`t2) for the ISW
construction with the perfectly t-private random cyclic shift.

Lemma 8. The gadget described above is strong `-shuffling secure.

5.2 Second construction: randomizing network

Our second construction consists of a network of log2 ` layers, where in the m-th layer for 0 ≤ m <
log2 ` the information in all wires of index i and i + 2m is swapped with independent probability
1/2; see Fig. 10 for an illustration; note that for simplicity we assume that ` is a power of 2. Letting
j′ ∈ {0, . . . , ` − 1} be the index position of the signal before the randomizing network, at layer m
the m-th bit of the signal position is therefore randomly flipped. Since this is done for all layers
0 ≤ m < log2 `, at the end the output index of the signal is randomly distributed in {0, . . . , `− 1}.

As in the previous construction, the index position j′ is only known as input and not computed
explicitly during the swaps: the position of the signal is only implicitly determined by the value of
the wires in {0, 1, $}; the index position of the signal is computed again explicitly as the beginning
of the next execution; see Fig. 11 for an illustration. For a single gadget, our second construction has
complexity Õ(`), instead of Õ(`t) in our first construction and Õ(` · t2) in [ISW03]. Moreover, our
second construction has depth polylogarithmic in t, instead of linear in t in our first construction.

Finally, to satisfy the strong `-shuffling security (Definition 9), we must prepend a random cyclic
shift; otherwise, since in Definition 9 the input index j is fixed, the adversary could directly probe
the j-th wire after the first layer, and learn the signal with probability 1/2. We provide the proof
of Lemma 9 in Appendix E.5.

Lemma 9. The gadget described above is strong `-shuffling secure, with circuit complexity O(` ·
log `).

5.3 Composition in the statistical stateful model

As in the stateless case, we show that the worst-case statistical privacy of C̃ in the stateful model
follows from the p-random gate-probing security of C ′, based on the `-shuffling security (Definition

21

∆

i7

i6

i5

i4

i3

i2

i1

i0

o7

o6

o5

o4

o3

o2

o1

o0

m = 0 m = 1 m = 2

Fig. 10: Second construction: random cyclic shift and randomizing network for ` = 8.

6) and strong `-shuffling security (Definition 9) of the gadgets. We provide the proof in Appendix
E.6.

Lemma 10. Suppose that C ′ is (p, ε)-random gate probing secure. Then, the circuit C̃ constructed
as described above with ` := 3t/(2p) achieves stateful ε-statistical security in the worst case against
t probes per execution.

Eventually, thanks to the randomizing network construction with complexity O(` log `), the
complexity of the final circuit C̃ is O(|C| ·t log t) instead of O(|C|t log t+s ·t3) in [ISW03]. Therefore
as opposed to ISW our construction has quasi-linear complexity even for a large number s of memory
cells. Moreover the construction applies without the RAM model as well, see Appendix D.

Theorem 9. There exists a statistically t-private stateful transformer T̃ , such that T̃ (C, k) maps a
circuit C with s memory cells to a circuit C̃ with complexity O(|C| · t · log t). The depth of C̃ is the
same as that of C, up to polylog factors.

Proof. From Lemma 10, the circuit C̃ achieves statistical privacy in the stateful worst-case model,
with circuit complexity O(|C|·` log `). With ` = O(t), the circuit complexity is finally O(|C|·t·log t).

ut

...

Strong
`-shuffling
gadget

o`

...

o2

o1

i′`

...

i′2

i′1

ex
pl
ic
it
in
de
x
j′

...

Execution 1 Execution 2

Fig. 11: Thanks to a strong `-shuffling gadget, the adversary does not get information about the
index position of the signal at the end of an execution.

22

6 Implementation

Security parameters. We consider the implementation of our stateless construction from Section
3.1 under the model from Section 3.3, that is worst-case statistical security against a total of t probes
in the circuit. Recall that the construction proceeds in two steps. Starting from the original circuit
C, we first construct an intermediate circuit C ′ based on the classical masking countermeasure
with perfect security against k probes, where k is the security parameter. From Chernoff bound,
the intermediate circuit C ′ is also secure in the random probing model; more precisely, according
to Lemma 6, the circuit C ′ achieves the (µ, ε)-random Σ-gate-probing security with parameters
µ(k) = k/4 and ε(k) = 2−k/(12 log 2). Here µ(k) = k/4 denotes the number of gates that are probed
on average, and ε(k) = 2−k/(12 log 2) the probability of simulation failure (for the unlucky case when
the number of leaking gates in C ′ is too large). Therefore, to get ε = 2−80 security, we must fix
k = 668. For the intermediate circuit C ′ we use n = k+ 1 shares with appropriate mask refreshing,
as in [BBD+16].

In the second step, every wire from the intermediate circuit C ′ must be expanded into ` wires
in the final circuit C̃, where according to Lemma 7 we must take ` = dt/µe = d4t/ke to get security
against t probes. This implies that we get security against t = k · `/4 probes as a function of `. For
ε = 2−80 and k = 668, this gives security against t = 167 · ` probes as a function of the parameter `.
4 Since the running time of our construction is O(`), the running time is O(t) for security against
t probes, instead of O(t2) for the masking countermeasure.

Number of operations. We compare the concrete number of operations between the masking
countermeasure and our construction. For simplicity we consider a single AND gadget. From the
gadget description in Appendix B.1, the AND gadget in the intermediate circuit C ′ performs a
total of n · (7n − 5)/2 operations, with n = t + 1 shares for perfect security against t probes.
This includes n · (n − 1)/2 random generations, and n · (3n − 2) boolean operations. This gives
Nm = (t+ 1) · (7t+ 2)/2 ' 7t2/2 operations as a function of the maximum number of probes t.

We now consider the circuit C̃ corresponding to the expansion of the AND gadget in C ′. Every
random generation in the intermediate circuit C ′ requires ` + 1 operations in C̃. From Algorithm
1, every boolean operation in C ′ requires 5`+ 3 operations in C̃. The total number of operations is
therefore:

Ns = n · (n− 1)/2 · (`+ 1) + n · (3n− 2) · (5`+ 3) ' 31

2
· n2 · `

With n = k+1 and ` = 4t/k, we get Ns ' 62·k ·t. Finally, with k = 668, the number of operations is
therefore Ns ' 41 416 · t for worst-case security against t probes. We refer to Table 2 for a summary
of the operation count.

Since the masking countermeasure has complexity 7t2/2 and our shuffling countermeasure has
complexity 41 416·t, the two countermeasures have equal complexity for 7t2/2 = 41 416·t, which gives
t ' 12 · 103. Therefore we expect our shuffling countermeasure to beat the masking countermeasure
for a number of probes t ≥ 12 · 103.

AES implementation. We have performed an AES implementation of our shuffling countermea-
sure, which we compare with an AES implementation of the masking countermeasure, using the
4 We see that it would not make sense to use ` ≤ 4, since the intermediate circuit C′ already provides perfect security
against k = 668 probes.

23

Masking countermeasure Shuffling countermeasure
#rand n2/2 1

2 · n
2 · `

#bool 3n2 15n2 · `
#op 7n2/2 31

2 · n
2 · `

#op 7t2/2 41416 · t

Table 2: Number of operations for worst-case security against t probes, where n = t + 1 for the
masking countermeasure, and n = k+1 and ` = 4t/k for the shuffling countermeasure, with k = 668;
we only keep the high-order terms.

same parameters as above. For our shuffling construction we use the following optimization: in the
implementation of SecMult (see Algorithm 2 in Appendix B.1), when accumulating ci ← ci⊕r (lines
7 and 9), for a given index i we always use the same signal position ji among the ` wires. This is
because the SecMult algorithm would remain secure in an extended model of security where the
adversary could obtain all successive values of the ci variables with a single probe.We summarize
the timings in Table 3; see also Fig. 12. We see that our shuffling construction outperforms the
masking countermeasure for a number of probes t ≥ 6 000, with a running time of approximately 2
minutes for t ' 6 000. We provide the source code in [Cor21].

t 668 2004 3340 4676 6012 7348 8684 10020
Masking (s) 1.4 12 34 70 111 187 235 310
Shuffling (s) 52 63 78 91 102 119 134 141

Table 3: Running time of AES implementation, as a function of the number of probes t. We use n =
t+1 for the masking countermeasure, and ` = 4t/k for the shuffling countermeasure. Implementation
on a 3,2 GHz Intel processor, running on a single core.

7 Conclusion

We have described the first improvement of the wire shuffling countermeasure against side-channel
attacks described by Ishai, Sahai and Wagner at Crypto 2003, with running time O(t) instead of
O(t log t) for worst-case security against t probes, and O(t2) for the classical masking countermea-
sure. Our construction is somehow practical in that for an AES implementation we can beat the
classical masking countermeasure for a reasonable running time. However the crossover point occurs
for t ' 6 000, so our countermeasure is probably unpractical for embedded implementations.

Acknowledgements

We thank the reviewers for insightful comments. The two authors were supported by the ERC
Advanced Grant no. 787390.

24

Fig. 12: Running time (in seconds) of the masking and shuffling countermeasure for AES, to get
security against t probes. Implementation on a 3,2 GHz Intel processor, running on a single core.

References

ADF16. Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/ logn)
leakage rate. In Advances in Cryptology - EUROCRYPT 2016 - Proceedings, Part II, pages 586–615, 2016.

AKS83. Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n logn) sorting network. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA,
pages 1–9, 1983.

BBD+16. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves
Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 116–129, 2016.

BDD+04. T. Biedl, E.D. Demaine, C.A. Duncanc, R. Fleischerd, and S.G. Kobourove. Tight bounds on maximal
and maximum matchings. Discrete Mathematics, 285:7–15, 2004.

CCD00. Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential power analysis in the presence of
hardware countermeasures. In Cryptographic Hardware and Embedded Systems - CHES 2000, Proceedings,
pages 252–263, 2000.

CGP+12. Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu Rivain. Higher-order
masking schemes for s-boxes. In FSE, pages 366–384, 2012.

CGPZ16. Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun. Faster evaluation of sboxes
via common shares. In Cryptographic Hardware and Embedded Systems - CHES 2016 - Proceedings, pages
498–514, 2016.

Cor14. Jean-Sébastien Coron. Higher order masking of look-up tables. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 441–458, 2014.

Cor21. Jean-Sébastien Coron. Implementation of higher-order countermeasures, 2021. Publicly available at https:
//github.com/coron/htable/.

FPS17. Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing randomness complexity in private
circuits. In Advances in Cryptology - ASIACRYPT 2017 - Proceedings, Part I, pages 781–810, 2017.

GJRS18. Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-Xavier Standaert. Secure multi-
plication for bitslice higher-order masking: Optimisation and comparison. In Constructive Side-Channel
Analysis and Secure Design - 9th International Workshop, COSADE 2018, Singapore, April 23-24, 2018,
Proceedings, pages 3–22, 2018.

25

https://github.com/coron/htable/
https://github.com/coron/htable/

HOM06. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card implementation resistant
to power analysis attacks. In Applied Cryptography and Network Security, ACNS 2006, Proceedings, pages
239–252, 2006.

ISW03. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against probing
attacks. In Advances in Cryptology - CRYPTO 2003, Proceedings, pages 463–481, 2003.

JS17. Anthony Journault and François-Xavier Standaert. Very high order masking: Efficient implementation
and security evaluation. In Cryptographic Hardware and Embedded Systems - CHES 2017. Proceedings,
pages 623–643, 2017.

MS08. Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer, 2008.
Pap18. Kostas Papagiannopoulos. Low randomness masking and shuffling: An evaluation using mutual informa-

tion. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):524–546, 2018.
RP10. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In Cryptographic

Hardware and Embedded Systems, CHES 2010. Proceedings, pages 413–427, 2010.
RPD09. Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and shuffling for software

implementations of block ciphers. In Cryptographic Hardware and Embedded Systems - CHES 2009, Pro-
ceedings, pages 171–188, 2009.

THM07. Stefan Tillich, Christoph Herbst, and Stefan Mangard. Protecting AES software implementations on
32-bit processors against power analysis. In Applied Cryptography and Network Security, ACNS 2007,
Proceedings, pages 141–157, 2007.

VMKS12. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-Xavier Standaert. Shuffling
against side-channel attacks: A comprehensive study with cautionary note. In Advances in Cryptology -
ASIACRYPT 2012 - Proceedings, pages 740–757, 2012.

VML16. Nikita Veshchikov, Stephane Fernandes Medeiros, and Liran Lerman. Variety of scalable shuffling coun-
termeasures against side channel attacks. J. Cyber Secur. Mobil., 5(3):195–232, 2016.

A Re-randomization and region probing model: a counterexample

In [ISW03], the authors write: “for each original output bit [of the AND gadget with m+ 1 shares],
the encoded outputs are m-wise independent even given the entire encoding of the inputs. This
can be used to prove that the construction is in fact secure against a stronger type of adversary
who may observe at most t′ wires in each gadget, where t′ = Ω(t).” While the re-randomization
property indeed holds for the encoded output of the AND gadget, we explain that such property is
not enough to prove security in the region probing model, by providing a simple counterexample.

Namely we consider a mask refreshing algorithm taking as input x1, . . . , xn and outputting
y1 = x1 ⊕ r1, . . . , yn−1 = xn−1 ⊕ rn−1 and yn = xn ⊕ r1 ⊕ · · · ⊕ rn−1, for randoms r1, . . . , rn−1;
here yn is computed from left to right. Such mask refreshing clearly achieves the re-randomization
property as the output shares y1, . . . , yn are (n − 1)-wise independent, even given all the input
shares x1, . . . , xn. However such mask refreshing does not achieve region probing security. Namely
if we iterate such mask refreshing multiple times, one can see that the adversary can accumulate
knowledge and eventually recover the original secret, by probing only a constant fraction of the
wires in each mask refreshing gadget.

More precisely, assume that we can probe n/4 + 2 internal variables at each iteration. At the
first iteration, the adversary probes the variables x1, . . . , xn/4, xn and xn⊕r1⊕· · ·⊕rn/4. Therefore
the adversary can compute:

y1 ⊕ · · · ⊕ yn/4 = (x1 ⊕ r1)⊕ · · · ⊕ (yn/4 ⊕ rn/4)
= x1 ⊕ · · · ⊕ xn/4 ⊕ xn ⊕ (xn ⊕ r1 ⊕ · · · ⊕ rn/4)

Therefore from the knowledge of x1⊕· · ·⊕xn/4, the adversary can keep the knowledge of y1⊕· · ·⊕yn/4
by spending only 2 additional probes within the mask refreshing.

Let z1 = y1⊕r′1, . . . , zn−1 = yn−1⊕r′n−1 and zn = yn⊕r′1⊕· · ·⊕r′n−1 be the second iteration of the
mask refreshing algorithm. The adversary can now probe yn/4+1, . . . , yn/2, yn and yn⊕r′1⊕· · ·⊕r′n/2.

26

He can then compute as previously:

z1 ⊕ · · · ⊕ zn/2 = (y1 ⊕ · · · ⊕ yn/4)⊕ yn/4+1 ⊕ · · · ⊕ yn/2 ⊕ yn ⊕ (yn ⊕ r′1 ⊕ · · · ⊕ r′n/2)

Similarly, at the 3rd iteration, the adversary can compute the xor of 3/4 of the output shares, and
after the 4th iteration, he can eventually recover the xor of the n shares. The attack can be adapted
when probing any constant fraction of the n shares. Therefore the above mask refreshing algorithm
is not secure in the region probing model, despite achieving the re-randomization property.

B AND gadget, mask refreshing and composition

B.1 The AND gadget

We recall in Algorithm 2 the AND gadget from the ISW construction (SecMult). It was extended
to F2k in [RP10] for protecting AES against t-th order attacks. The SecMult gadget was proven
(n− 1)-SNI in [BBD+16].

Lemma 11. The AND gadget from Algorithm 2 achieves (n− 1)-SNI security.

Algorithm 2 SecMult

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for i = 1 to n do
5: for j = i+ 1 to n do
6: r ← F2

7: ci ← ci ⊕ r
8: r ← (ai · bj ⊕ r)⊕ aj · bi
9: cj ← cj ⊕ r

10: end for
11: end for
12: return (c1, . . . , cn)

B.2 Mask refreshing

Since the above AND gadget achieves the (n − 1)-SNI security property [BBD+16], we can use it
to obtain an (n− 1)-SNI mask refreshing algorithm, by using a n-sharing of 1 as one of its inputs.
This gives the following RefreshMasks algorithm below.

Lemma 12 ((n − 1)-SNI of RefreshMasks). Let (ai)1≤i≤n be the input shares of RefreshMasks
algorithm, and (ci)1≤i≤n be the output shares. For any set of t intermediate variables and any subset
|O| ≤ tO of output shares such that t+ tO < n, there exists a subset I of indexes with |I| ≤ t, such
that the distribution if those t intermediate variables as well as the output shares c|O can be perfectly
simulated from a|I .

27

Algorithm 3 RefreshMasks
Input: a1, . . . , an
Output: c1, . . . , cn such that

⊕n
i=1 ci =

⊕n
i=1 ai

1: For i = 1 to n do ci ← ai
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← F
5: ci ← ci ⊕ r
6: cj ← cj ⊕ r
7: end for
8: end for
9: return c1, . . . , cn

B.3 Security in the region probing model with n = 3t + 1 shares

We first prove the region probing security of a slightly simpler construction where we only apply an
(n − 1)-SNI mask refreshing algorithm as output of each XOR gadget. In that case, we show that
for a circuit C of fan-out 2, we can get security against t probes per region, with n = 3t+1 shares.
We show in the next section that the number of shares can actually be decreased to n = 2t + 1,
moreover without the bounded fan-out condition, by adding more mask refreshing.

Theorem 10. Let C be a circuit with fan-out at most 2. Let (I,O, T) be the transformer from
Section 2.2 with n = 3t+ 1 shares, where a (n− 1)-SNI mask refreshing is applied after every XOR
gadget. The transformed circuit is t-private secure where the adversary can put at most t probes per
region, each of size O(t2).

To prove Theorem 10 we first show that the XOR gadget followed by a mask refreshing achieves
the (n− 1)-SNI property; see Fig. 13 for an illustration.

Lemma 13. Let G be the XOR gadget from Section 2.2, where a (n − 1)-SNI mask refreshing is
applied after it. Such gadget achieves (n− 1)-SNI security.

Proof. Let (ai)1≤i≤n and (bi)1≤i≤n be the input shares of the XOR gadget, and (ci)1≤i≤n be the
corresponding output shares; let (c′i)1≤i≤n the output shares of Refresh. Let t1 and t2 be the number
of probes within the XOR and Refresh gadgets respectively, with t1 + t2 + |O| < n, where O is the
set of output variables to be simulated.

⊕

re
fr
es
h

(bi)

(ai)

(c′i)

(ci)

Fig. 13: XOR gadget composed with RefreshMasks.

28

Since by assumption the Refresh gadget is (n − 1)-SNI and t2 + |O| < n, the t2 probes within
Refresh and the output variables c′|O can be simulated from c|R, with |R| ≤ t2; furthermore the
variables c|R can be simulated from a|R and b|R. Moreover the t1 probes within the XOR gadget can
be perfectly simulated from a|S and b|S , with |S| ≤ t1. Therefore the output variables c′|O and the
t = t1 + t2 probes within the full gadget can be perfectly simulated from a|I and b|I with I = R∪S
and |I| ≤ |R|+ |S| ≤ t1 + t2 = t as required. ut

Proof (of Theorem 10). We consider the circuit as a set of q gadgets G1, . . . , Gq that we order as
a direct acyclic graph from output to input in a reverse topological sort order; see Figure 14 for
an illustration. We assume that each gadget Gi achieves the (n− 1)-SNI property, with n = 3t+ 1

shares. Let denote by (x
(j)
i)1≤i≤n the input shares of the composed circuit, for 1 ≤ j ≤ k, where k

is the number of inputs in the original circuit corresponding to the q gadgets G1, . . . , Gq. We prove
by recurrence on q that the composition of the q gadgets achieves the following property: any set
of t probes in each gadget can be perfectly simulated from the knowledge of the input shares x(j)|Ij ,
for subsets Ij with |Ij | ≤ t for all 1 ≤ j ≤ k.

The base case q = 1 is straightforward from the (n− 1)-SNI property of the gadget G1. We now
consider q gadgets G1, . . . , Gq with input shares (x(j)i)1≤j≤n for 1 ≤ j ≤ k, and an additional gadget
Gq+1. By assumption any set of t probes in each gadget G1, . . . , Gq can be perfectly simulated
from the knowledge of the input shares x(j)|Ij , with |Ij | ≤ t for all 1 ≤ j ≤ k. Let (yi)1≤i≤n be the

output shares of Gq+1, and let (x(k+1)
i)1≤i≤n, (x

(k+2)
i)1≤i≤n be the corresponding input shares. Since

the original circuit C has fan-out 2, the output shares of Gq+1 are used by at most two gadgets
Gj1 and Gj2 . Let O = Ij1 ∪ Ij2 be the output shares of Gq+1 that must be simulated; we have
|O| ≤ |Ij1 |+ |Ij2 | ≤ 2t. Since Gq+1 is (n−1)-SNI and |O|+ t ≤ 3t < n, the t probes within Gq+1 and
the output shares y|O can be perfectly simulated from x

(k+1)
|Ik+1

and x(k+2)
|Ik+2

, with |Ik+1|, |Ik+2| ≤ t. This
proves the inductive property for the q + 1 gadgets G1, . . . , Gq+1. Eventually, this proves that the
transformed circuit is t-private secure where the adversary can put at most t probes per region. ut

6

4

5

2

3

1

1 2
3

4
5 6

Fig. 14: Example of a circuit (top), and same circuit displayed in reverse topological sort order
(bottom)

B.4 Security in the region probing model with n = 2t+1 shares: proof of Theorem 2

In our construction, a (n − 1)-SNI mask refreshing is applied as input of each XOR and AND
gadgets. We define each region as comprising an AND or XOR gadget, and the mask refreshing of
the corresponding output variable, so that each output z(j) is used only once in the next region;
see Fig. 2 for an illustration. It is easy to see that the corresponding gadget achieves an extended
(n − 1)-SNI property, where for any subsets O1, . . . , Of with |Oj | + t < n for all 1 ≤ j ≤ f , the

29

output shares z(j)|Oj
for 1 ≤ j ≤ f and any set of t probes can be perfectly simulated from the input

shares x|I and y|J , for |I|, |J | ≤ t.
The proof is then essentially the same as the proof of Theorem 10 in the previous section. The

difference is that since each output variables z(j) is used only once (instead of at most twice), we
can assume recursively that |Oi| ≤ t for all 1 ≤ i ≤ f in each gadget (instead of |O| ≤ 2t), and
therefore we can use n = 2t+ 1 shares instead of n = 3t+ 1.

C Security in the random probing model

C.1 Chernoff Bound

The Chernoff bound is obtained by applying Markov’s inequality to etX . For every t > 0:

Pr[X ≥ a] = Pr[eX ≥ ea] ≤ E[et·X]
et·a

Assume X = X1 + · · ·+Xn where X1, . . . , Xn are independent variables. We get for any t > 0:

Pr[X ≥ a] ≤ e−t·a
n∏
i=1

E[etXi]

If the variables Xi have their value in {0, 1}, letting pi = Pr[Xi = 1], we get:

E[etXi] = e0 · (1− pi) + et · pi = 1 + pi · (et − 1) ≤ epi·(et−1)

This gives:
Pr[X ≥ a] ≤ e−t·a · e

∑n
i=1 pi·(et−1) = e−t·a+µ·(e

t−1)

where we let µ = E[X] =
∑n

i=1 pi. We take a = (1 + δ) · µ for δ > 0. We take t = log(1 + δ). This
gives the Chernoff bound:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
Using the inequality 2δ/(2 + δ) ≤ log(1 + δ), we obtain:

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−δ2µ
2 + δ

)
For δ ≥ 1, we have:

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−δµ
3

)

C.2 Security in the random probing model: proof of Lemma 1

We consider the ISW construction from Theorem 2 with n = 2k + 1 shares and secure against the
probing of at most k probes per gadget, where each gadget has a number of wires at most c · k2 for
some constant c. We first consider a single gadget with ` ≤ c · k2 wires, where each wire is leaking
with probability p. Let X1, . . . , X` be independent Bernoulli random variables, where Xi = 1 if
the i-th wire is probed, and Xi = 0 otherwise; we have Pr[Xi = 1] = p for all 1 ≤ i ≤ `. Let
X = X1 + . . . + X` be the total number of leaking wires in the gadget. From Theorem 2, we can
provide a perfect simulation of the probes if X ≤ k in each gadget.

30

We apply Chernoff bound on a single gadget with δ ≥ 1 (see Appendix C.1):

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
−δ
3
E[X]

)
(1)

where E[X] = p · `. We fix p = 1/(2c ·k). Since we must upper-bound Pr[X ≥ k], we fix δ such that:

k = (1 + δ)E[X]

This gives using ` ≤ c · k2:

1 + δ =
k

E[X]
=

k

p · `
=

2c · k2

`
≥ 2c · k2

c · k2
≥ 2

and therefore δ ≥ 1 as required. Moreover we have:

δ

3
E[X] =

δ

3
· k

1 + δ
≥ k

6

Therefore we obtain from (1):

Pr[X ≥ k] ≤ exp(−k/6)

The simulation failure probability over all gadgets is therefore at most |C| · exp(−k/6).

C.3 Proof of Lemma 6

Let X1, . . . , Xm be independent Bernoulli random variables, where Xi = 1 if the i-th gate of C ′ is
probed, and Xi = 0 otherwise. We assume that

∑
i Pr[Xi] ≤ µ with µ = k/4. Let X = X1+. . .+Xm

be the total number of leaking gates in the circuit C ′. The circuit C ′ = T (C, k) is perfectly secure
against an adversary probing at most k variables; hence it is perfectly secure against the leakage of
k/2 gates; namely a gate can be perfectly simulated from the knowledge of its two inputs. Therefore
we can provide a perfect simulation of the probes if X ≤ k/2.

To compute the simulation failure probability we apply the Chernoff bound for δ ≥ 1 (see
Appendix C.1):

Pr[X ≥ (1 + δ) · E[X]] ≤ exp

(
−δ
3
E[X]

)
We fix δ such that (1 + δ)E[X] = 2µ. Since E[X] =

∑
i Pr[Xi] ≤ µ, we have δ ≥ 1 as required. We

obtain:
δ

3
E[X] =

δ

3
· 2µ

1 + δ
≥ µ/3

Finally, using µ = k/4, we obtain:

Pr[X ≥ k/2] ≤ exp(−k/12)

The simulation failure probability is therefore upper-bounded by ε = exp(−k/12) = 2−k/(12 log 2).

31

D Worst-case statistical security: pure circuit description

In this section we consider a pure circuit construction of a worst-case statistically secure transformer,
without using the RAM model. The construction is the same as in Section 3.1, except that the cyclic
shift is implemented by a circuit of complexity O(` log `), instead of a table look-up with running
time O(`). The main difference with Section 3.1 is that the adversary can now probe the wires
within the cyclic shift. Therefore we can use the same approach as in [ISW03, Lemma 2], with
` = O(t/p7) instead of ` = O(t/p4); see Section 2.6. Since our expanded gate has complexity
O(` log `) instead of O(k · ` log `) in [ISW03], the final complexity is O(|C| · k9 · t · (log k + log t))
instead of O(|C| · k10 · t · (log k + log t)). This proves the following theorem.

Theorem 11. There exists a statistically t-private stateless transformer (T̃ , Ĩ, Õ), such that T̃ (C, k)
transforms a circuit C to a circuit C̃ of size O(|C| · t · log t). The depth of C̃ is the same as that of
C, up to polylog factors.

Similarly, we can obtain the same result in the stateful model using the randomizing network
construction from Section 5.2.

Theorem 12. There exists a statistically t-private stateful transformer T̃ , such that T̃ (C, k) maps
a circuit C with s memory cells to a circuit C̃ with complexity O(|C| · t · log t). The depth of C̃ is
the same as that of C, up to polylog factors.

E Security in the stateful model

E.1 Free t-SNI security

We introduce a slightly stronger notion of security than t-SNI, called free-t-SNI security. Under
this notion, the output variables c|O must be uniformly and independently distributed for any
O ([1, n] \ I, and this must be true even conditioned on the probed variables and c|I . This means
that even after the simulation of the probed variables has been provided to the adversary, we can
still simulate the variables in c|O, simply by generating uniformly and independently random values
(this was not necessarily the case with the original t-SNI notion).

Definition 10 (Free-t-SNI security). Let G be a gadget taking as input n shares (ai)1≤i≤n and
outputting n shares (ci)1≤i≤n. The gadget G is said to be free t-SNI secure if for any set of t1 ≤ t
probed intermediate variables, there exists a subset I of input indices with |I| ≤ t1, such that the t1
intermediate variables and the output variables c|I can be perfectly simulated from a|I , while for any
O ([1, n] \ I the output variables in c|O are uniformly and independently distributed, conditioned
on the probed variables and c|I .

The RefreshMasks algorithm (Algorithm 3 from Appendix B.2) satisfies the above free t-SNI
notion. The proof is essentially the same as the proof of the ISW multiplication algorithm from
[CGPZ16, Appendix B.1]; namely the proof constructs a subset I = U of indices such that the t1
probes and c|I can be perfectly simulated from a|I , and in the proof the other output variables c|O
from any O ([1, n] \ I are simulated by generating a random value. Therefore the output variables
in c|O are uniformly and independently distributed, conditioned on the probed variables and c|I .

Lemma 14 (Free-(n− 1)-SNI of RefreshMasks). The RefreshMasks algorithm is free-(n− 1)-SNI.

32

E.2 Perfect privacy in the stateful model: proof of Theorem 7

The proof is essentially the same as the proof of Theorem 2 in Appendix B.4. The difference is
that in the unwound circuit C ′′, the adversary can move its probe between regions corresponding to
different executions of the circuit C ′. This implies that the simulation for the i-th execution must
be performed before knowing the position of the probes for the (i + 1)-th execution. This is not a
problem thanks to the free-(n − 1)-SNI property of RefreshMasks (Lemma 14). Namely the input
shares of the next gadget (that must be known for the next simulation), either belong to the set
c|I of outputs shares from the previous gadget and are already simulated, or to a set c|O of output
shares that can be simulated by generating uniformly distributed values. Therefore the simulation
for the stateful model can be performed by running a sequence of simulations from the stateless
model.

E.3 Statistical privacy in the stateful model

We recall the definition of statistical privacy for stateful circuits from [ISW03].

Definition 11 (Statistical privacy for stateful circuits.). Let T be an efficiently computable
randomized algorithm mapping a stateful circuit C along with an initial state s0 to a stateful circuit
C̃ along with an initial state s′0. We say that T is a statistical t-private stateful transformer if it
satisfies:
1. Soundness. The input-output functionality of C initialized with s0 is indistinguishable from

that of C̃ initialized with s′0. This should hold for any sequence of invocations on an arbitrary
sequence of inputs.

2. Privacy. We require that C̃ be private against a t-limited interactive adversary. Specifically, the
adversary is given access to C̃ initialized with s′0 as its internal state. Then, the adversary may
invoke C̃ multiple times, adaptively choosing the inputs based on the observed outputs. Prior to
each invocation, the adversary may fix an arbitrary set of t internal wires to which it will gain
access in that invocation. To define privacy against such a t-limited adversary, we require the
existence of a simulator which can simulate the adversary’s view, using only a black-box access
to C̃, except with negligible probability.

E.4 Iterated cyclic shifts: proof of Lemma 8

We consider the following sequence of two security games.

Game1: we follow Definition 9, in which the adversary first chooses t probes (excluding the input
wires), obtain their value, and then chooses another t probes among the output wires of the gadget.
The adversary wins the game if he observes the signal value x. We denote by S1 the event that the
value x is revealed by the first t probes, and by T1 the event that the value x is revealed by the t
output wires chosen by the adversary. We have Pr[S1] ≤ t/`.
Game2: we proceed as in Game1 above, but now we modify the way the output of the first t probes
are generated, in that we never reveal the value x; instead we always leak the dummy value $. Let
T2 be the event in Game2 that the value x is revealed by the t output wires. We see that events T1
and T2 are identical, unless one of the first t probes would reveal x. This means T1∧¬S1 = T2∧¬S1.

We claim that in Game2 the adversary gets no information about the index position of the signal
in the output variables. Namely from the first set of t probes the adversary can only receive the
dummy value $; moreover the adversary can only probe at most t of the t + 1 shifting index ∆i

of the cyclic shifts. Since at least one of those t + 1 random cyclic shifts has not been probed, the

33

distribution of the signal position after this cyclic shift is independent from the adversary’s view
and uniform in [0, `); this also holds for the signal position in the output variables. This implies
Pr[T2] ≤ t/`. Eventually we obtain:

Pr[S1 ∨ T1] = Pr[S1] + Pr[T1 ∧ ¬S1] = Pr[S1] + Pr[T2 ∧ ¬S1] ≤ Pr[S1] + Pr[T2] ≤ 2t/`

Therefore, the 2t probes can be simulated except with probability at most 2t/`.

E.5 Randomizing network: proof of Lemma 9

The proof is essentially the same as the proof of Lemma 8 from the previous section. We assume
that when the adversary probes a swap, he learns the two input wires of the swap, and additionally
a bit b corresponding to whether a swap of the wire values occurred or not. We consider two security
games Game1 and Game2. In Game1 we follow Definition 9; as previously, in Game2 we always leak
the dummy value $; moreover, when a swap is probed, we replace the bit b by an independently
generated random bit. As previously, we claim that in Game2 the adversary learns nothing about
the position of the signal among the output wires. Denoting by S1 the event in Game1 that the
value x is revealed by the first t probes, we have Pr[S1] ≤ 2t/`, since the adversary can now learn 2
wires at a time. Denoting by T1 and T2 the same events as in the proof of Lemma 8, we obtain as
previously:

Pr[S1 ∨ T1] ≤ Pr[S1] + Pr[T2] ≤ 2t/`+ t/` = 3t/`

Therefore the 2t probes can be simulated except with probability at most 3t/`. To satisfy Definition
9 we can therefore use 3`/2 wires instead of `.

E.6 Composition: proof of Lemma 10

The proof is essentially the same as the proof for the stateless case (see Lemma 5 in Section 3.2).
For the stateful case we first obtain a p-random secure intermediate circuit C ′ from Theorem 7.
The proof then proceeds as in the stateless case. In a given execution the adversary probes in C̃
generate a random sampling W of the gates in C ′, where from Definition 6 each gate leaks with
probability at most p. Moreover Definition 9 implies that the input wires for the next execution
of C ′ also leak with probability at most p. From the p-random probing security of C ′, this implies
worst-case t-privacy in the stateful model of the final circuit C̃.

34

	Secure Wire Shuffling in the Probing Model

