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Abstract. Covert security has been introduced as a compromise be-
tween semi-honest and malicious security. In a nutshell, covert security
guarantees that malicious behavior can be detected by the honest par-
ties with some probability, but in case detection fails all bets are off.
While the security guarantee offered by covert security is weaker than
full-fledged malicious security, it comes with significantly improved effi-
ciency. An important extension of covert security introduced by Asharov
and Orlandi (ASTACRYPT’12) is public verifiability, which allows the
honest parties to create a publicly verifiable certificate of malicious be-
havior. Public verifiability significantly strengthen covert security as the
certificate allows punishment via an external party, e.g., a judge.

Most previous work on publicly verifiable covert (PVC) security focuses
on the two-party case, and the multi-party case has mostly been ne-
glected. In this work, we introduce a novel compiler for multi-party PVC
secure protocols. Our compiler leverages time-lock encryption to offer
high probability of cheating detection (often also called deterrence fac-
tor) independent of the number of involved parties. Moreover, in contrast
to the only earlier work that studies PVC in the multi-party setting
(CRYPTO’20), we provide the first full formal security analysis.

Keywords: Covert Security - Multi-Party Computation - Public Verifi-
ability - Time-Lock Puzzles

1 Introduction

Secure multi-party computation (MPC) allows a set of n parties P; to jointly
compute a function f on their inputs such that nothing beyond the output of
that function is revealed. Privacy of the inputs and correctness of the outputs
need to be guaranteed even if some subset of the parties is corrupted by an
adversary. The two most prominent adversarial models considered in the liter-
ature are the semi-honest and malicious adversary model. In the semi-honest
model, the adversary is passive and the corrupted parties follow the protocol
description. Hence, the adversary only learns the inputs and incoming/outgoing
messages including the internal randomness of the corrupted parties. In con-
trast, the adversarial controlled parties can arbitrarily deviate from the protocol
specification under malicious corruption.



Since in most cases it seems hard (if not impossible) to guarantee that a
corrupted party follows the protocol description, malicious security is typically
the desired security goal for the design of multi-party computation protocols.
Unfortunately, compared to protocols that only guarantee semi-honest security,
protection against malicious adversaries results into high overheads in terms of
communication and computation complexity. For protocols based on distributed
garbling techniques in the oblivious transfer (OT)-hybrid model, the communi-
cation complexity is inflated by a factor of m [WRK17b], where C is the com-
puted circuit and s is a statistical security parameter. For secret sharing-based
protocols, Hazay et al. [HVW20] have recently shown a constant communication
overhead over the semi-honest GMW-protocol [GMWS87]. In most techniques,
the computational overhead grows with an order of s.

In order to mitigate the drawbacks of the overhead required for malicious
secure function evaluation, one approach is to split protocols into an input-
independent offline and an input-dependent online phase. The input-independent
offline protocol carries out pre-computations that are utilized to speed up the
input-dependent online protocol which securely evaluates the desired function.
Examples for such offline protocols are the circuit generation of garbling schemes
as in authenticated garbling [WRK17a, WRK17b] or the generation of correlated
randomness in form of Beaver triples [Bea92] in secret sharing-based protocols
such as in SPDZ [DPSZ12]. The main idea of this approach is that the offline
protocol can be executed continuously in the background and the online protocol
is executed ad-hoc once input data becomes available or output data is required.
Since the performance requirements for the online protocol are usually much
stricter, the offline part should cover the most expensive protocol steps, as for
example done in [WRK17a, WRK17b| and [DPSZ12].

A middle ground between the design goals of security and efficiency has
been proposed with the notion of covert security. Introduced by Aumann and
Lindell [ALO7], covert security allows the adversary to take full control over a
party and let her deviate from the protocol specification in an arbitrary way.
The protocol, however, is designed in such a way that honest parties can detect
cheating with some probability e (often called the deterrence factor). However, if
cheating is not detected all bets are off. This weaker security notion comes with
the benefit of significantly improved efficiency, when compared to protocols in
the full-fledged malicious security model. The motivation behind covert security
is that in many real-world scenarios, parties are able to actively deviate from the
protocol instructions (and as such are not semi-honest), but due to reputation
concerns only do so if they are not caught. In the initial work of Aumann and
Lindell, the focus was on the two-party case. This has been first extended to the
multi-party case by Goyal et al. [GMS08] and later been adapted to a different
line of MPC protocols by Damgard et al. [DKLT13].

While the notion of covert security seems appealing at first glance it has one
important shortcoming. If an honest party detects cheating, then she cannot
reliably transfer her knowledge to other parties, which makes the notion of covert
security significantly less attractive for many applications. This shortcoming of



covert security was first observed by Asharov and Orlandi [AO12], and addressed
with the notion of public verifiability. Informally speaking, public verifiability
guarantees that if an honest party detects cheating, she can create a certificate
that uniquely identifies the cheater, and can be verified by an external party.
Said certificate can be used to punish cheaters for misbehavior, e.g., via a smart
contract [ZDH19], thereby disincentivizing misbehavior.

Despite being a natural security notion, there has been relatively little work
on covert security with public verifiability. In particular, starting with the work of
Asharov and Orlandi [AO12] most works have explored publicly verifiable covert
security in the two-party setting [KM15, HKK*19, ZDH19, DOS20]. These works
use a publicly checkable cut-and-choose approach for secure two-party computa-
tion based on garbled circuits. Here a random subset of size ¢t —1 out of ¢ garbled
circuits is opened to verify if cheating occurred, while the remaining unopened
garbled circuit is used for the actual secure function evaluation. The adversary
needs to guess which circuit is used for the final evaluation and only cheat in
this particular instance. If her guess is false, she will be detected. Hence, there
is a deterrence factor of %

For the extension to the multi-party case of covert security even less is
known. Prior work mainly focuses on the restricted version of covert security
that does not offer public verifiability [GMS08, DGN10, LOP11, DKL*13]. The
only work that we are aware of that adds public verifiability to covert secure
multi-party computation protocols is the recent work of Damgard et al. [DOS20].
While [DOS20] mainly focuses on a compiler for the two-party case, they also
sketch how their construction can be extended to the multi-party setting.

1.1 Our Contribution

In contrast to most prior research, we focus on the multi-party setting. Our main
contribution is a novel compiler for transforming input-independent multi-party
computation protocols with semi-honest security into protocols that offer covert
security with public verifiability. Our construction achieves a high deterrence
factor of %, where t is the number of semi-honest instances executed in the
cut-and-choose protocol. In contrast, the only prior work that sketches a solution
for publicly verifiable covert security for the multi-part setting [DOS20] achieves
~ %, which in particular for a large number of parties n results in a low
deterrence factor. [DOS20] states that the deterrence factor can be increased at
the cost of multiple protocol repetitions, which results into higher complexity
and can be abused to amplify denial-of-service attacks. A detail discussion of
the main differences between [DOS20] and our work is given in Section 8. We
emphasize that our work is also the first that provides a full formal security proof
of the multi-party case in the model of covert security with public verifiability.
Our results apply to a large class of input-independent offline protocols for
carrying out pre-computation. Damgard et al. [DOS20] have shown that an
offline-online protocol with a publicly verifiable covert secure offline phase and
a maliciously secure online phase constitutes a publicly verifiable covert secure
protocol in total. Hence, by applying our compiler to a passively secure offline



protocol and combining it with an actively secure online protocol, we obtain
a publicly verifiable covert secure protocol in total. Since offline protocols are
often the most expensive part of the secure multi-party computation protocol,
e.g., in protocols like [YWZ20] and [DPSZ12], our approach has the potential of
significantly improving efficiency of multi-party computation protocols in terms
of computation and communication overhead.

An additional contribution of our work (which is of independent interest) is to
introduce a novel mechanism for achieving public verifiability in protocols with
covert security. Our approach is based on time-lock encryption [RSW96, MT19,
MMV11, BGJT16], a primitive that enables encryption of messages into the
future and has previously been discussed in the context of delayed digital cash
payments, sealed-bid auctions, key escrow, and e-voting. Time-lock encryption
can be used as a building block to guarantee that in case of malicious behavior
each honest party can construct a publicly verifiable cheating certificate without
further interaction. The use of time-lock puzzles in a simulation-based security
proof requires us to overcome several technical challenges that do not occur for
proving game-based security notions.

In order to achieve efficient verification of the cheating certificates, we also
show how to add verifiability to the notion of time-lock encryption by using
techniques from verifiable delay functions [BBBF18]. While our construction
can be instantiated with any time-lock encryption satisfying our requirements,
we present a concrete extension of the RSW time-lock encryption scheme. Since
RSW-based time-lock encryption [RSW96, MT19] requires a one-time trusted
setup, an instantiation of our construction using the RSW-based time-lock en-
cryption inherits this assumption. We can implement the one-time trusted setup
using a maliciously secure multi-party computation protocol similar to the MPC
ceremony used, e.g., by the cryptocurrency ZCash.

Finally, we show how our compiler can be extended in order to reduce the
size of cheating certificates and how techniques known from [IPS08] and [DOS20]
can be adapted to our compiler in order to be applicable to input-dependent
protocols.

Concurrent and independent work [SSS21]. Independently to our work, Scholl et
al. [SSS21] presented two compilers where the first one transforms semi-honest
protocols to covert protocols with identifiable abort and the second one com-
piles from semi-honest to covert security with public verifiability. We compare
our work with their second compiler. Both works utilize time-lock puzzles as
a building block. We point out the differences between the two works in the
following.

First, while we realize a relaxed form of covert security where the adversary is
able to learn her potential output before deciding to cheat, Scholl et al. consider
the original covert security notion by Aumann and Lindell [ALO7]. However, they
restrict the class of supported functions that can be evaluated by the covert
functionality to preprocessing functions where the adversary may choose the
output of the corrupted parties. We note that for this restricted class of functions,
our security notion implies the original one.



Second, our compiler invokes an actively secure protocol over a circuit with
O(ntk +log?(N)) AND gates, for n parties, ¢t semi-honest instances, a security
parameter £, and an RSA moduls N, while their compiler evaluates an actively
secure protocol over a circuit with only O(ntk) AND gates. Third, Scholl et al.
require the judge to solve n time-lock puzzles for n parties while our compiler
utilizes only a single puzzle. Moreover, we present the notion of a verifiable time-
lock puzzle that allows for a simple verification of puzzle solutions which enables
a more efficient judge. Finally, we mention that Scholl et al. showed concrete
efficiency parameters while we aim for an asymptotic improvement.

1.2 Technical Overview

In this section, we give a high-level overview of the main techniques used in our
work. To this end, we start by briefly recalling how covert security is typically
achieved. Most covert secure protocols take a semi-honest protocol and execute
t instances of it in parallel. They then check the correctness of t — 1 randomly
chosen instances by essentially revealing the used inputs and randomness and
finally take the result of the last unopened execution as protocol output. The
above requires that (a) checking the correctness of the ¢ — 1 instances can be
carried out efficiently, and (b) the private inputs of the parties are not revealed.

In order to achieve the first goal, one common approach is to derandomize
the protocol, i.e., let the parties generate a random seed from which they derive
their internal randomness. Once the protocol is derandomized, correctness can
efficiently be checked by the other parties. To achieve the second goal, the pro-
tocol is divided into an offline and an online protocol as described above. The
output of the offline phase (e.g., a garbling scheme) is just some correlated ran-
domness. As this protocol is input-independent, the offline phase does not leak
information about the parties’ private inputs. The online phase (e.g., evaluating
a garbled circuit) is maliciously secure and hence protects the private inputs.

Public verifiability. To add public verifiability to the above-described approach,
the basic idea is to let the parties sign all transcripts that have been produced
during the protocol execution. This makes them accountable for cheating in one
of the semi-honest executions. One particular challenge for public verifiability
is to ensure that once a malicious party notices that its cheating attempt will
be detected it cannot prevent (e.g., by aborting) the creation of a certificate
proving its misbehavior. Hence, the trivial idea of running a shared coin tossing
protocol to select which of the instances will be checked does not work because
the adversary can abort before revealing her randomness and inputs used in the
checked instances. To circumvent this problem, the recent work of Damgard et
al. [DOS20] proposes the following technique. Each party locally chooses a subset
I of the t semi-honest instances whose computation it wants to check (this is
often called a watchlist [IPS08]). Next, it obliviously asks the parties to explain
their execution in those instances (i.e., by revealing the random coins used in
the protocol execution). While this approach works well in the two-party case,
in the multi-party case it either results in a low deterrence factor or requires



that the protocol execution is repeated many times. This is due to the fact that
each party chooses its watchlist independently; in the worst case, all watchlists
are mutually disjoint. Hence, the size of each watchlist is set to be lower or equal
than % (resulting in a deterrence factor of %) to guarantee that one instance
remains unchecked or parties repeat the protocol several times until there is a
protocol execution with an unchecked instance.

Public verifiability from time-lock encryption. Our approach avoids the above
shortcomings by using time-lock encryption. Concretely, we follow the shared
coin-tossing approach mentioned above but prevent the rushing attack by lock-
ing the shared coin (selecting which semi-honest executions shall be opened)
and the seeds of the opened executions in time-lock encryption. Since the time-
lock ciphertexts are produced before the selection-coin is made public, it will be
too late for the adversary to abort the computation. Moreover, since the time-
lock encryption can be solved even without the participation of the adversary,
the honest parties can produce a publicly verifiable certificate to prove misbe-
havior. This approach has the advantage that we can always check all but one
instance of the semi-honest executions, thereby significantly improving the deter-
rence factor and the overall complexity. One may object that solving time-lock
encryption adds additional computational overhead to the honest parties. We
emphasize, however, that the time-lock encryption has to be solved only in the
pessimistic case when one party aborts after the puzzle generation. Moreover,
in our construction, the time-lock parameter can be chosen rather small, since
the encryption has to hide the selection-coin and the seeds only for two com-
munication rounds. See section 8 for a more detailed analysis of the overhead
introduced by the time-lock puzzle generation and a comparison to prior work.

Creating the time-lock encryption. There are multiple technical challenges that
we need to address to make the above idea work. First, current constructions
of time-lock encryption matching our requirements require a trusted setup for
generating the public parameters. In particular, we need to generate a strong
RSA modulus N without leaking its factorization, and produce a base-puzzle
that later can be used for efficiency reasons. Both of these need to be generated
just once and can be re-used for all protocol executions. Hence, one option is
to replace the trusted setup by a maliciously secure MPC similar to what has
been done for the MPC ceremony used by the cryptocurrency ZCash. Another
alternative is to investigate if time-lock puzzles matching the requirements of
our compiler can be constructed from hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
hyperelliptic curves [DG20]. An additional challenge is that we cannot simply
time-lock the seeds of all semi-honest protocol executions (as one instance needs
to remain unopened). To address this problem, we use a maliciously secure MPC
protocol to carry out the shared coin-tossing protocol and produce the time-lock
encryptions of the seeds for the semi-honest protocol instance that are later
opened. We emphasize that the complexity of this step only depends on ¢ and n,
and is in particular independent of the complexity of the functionality that we



want to compute. Hence, for complex functionalities the costs of the maliciously
secure puzzle generation are amortized over the protocol costs 3.

2 Secure Multi-Party Computation

Secure computation in the standalone model is defined via the real world/ideal
world paradigm. In the real world, all parties interact in order to jointly execute
the protocol II. In the ideal world, the parties send their inputs to a trusted
party called ideal functionality and denoted by F which computes the desired
function f and returns the result back to the parties. It is easy to see that in the
ideal world the computation is correct and reveals only the intended information
by definition. The security of a protocol II is analyzed by comparing the ideal-
world execution with the real-world execution. Informally, protocol IT is said to
securely realize F if for every real-world adversary A, there exists an ideal-world
adversary S such that the joint output distribution of the honest parties and the
adversary A in the real-world execution of I7 is indistinguishable from the joint
output distribution of the honest parties and S in the ideal-world execution.

We denote the number of parties executing a protocol II by n. Let f :
({0,1}*)™ — ({0,1}*)", where f = (f1,..., fn), be the function realized by II.
For every input vector Z = (x1, ..., Z,) the output vector is g = (f1(Z), ..., fn(Z))
and the i-th party P; with input x; obtains output f;(Z).

An adversary can corrupt any subset I C [n] of parties. We further set
REAL 7, 4(2),1(%,1%) to be the output vector of the protocol execution of I on
input z = (x1,...,x,) and security parameter s, where the adversary A on aux-
iliary input z corrupts the parties I C [n]. By OUTPUT;(REAL 7 4(z),1(Z,1%)),
we specify the output of party P; for i € [n].

2.1 Covert Security

Aumann and Lindell introduced the notion of covert security with e-deterrence
factor in 2007 [ALO7]. We focus on the strongest given formulation of covert
security that is the strong explicit cheat formulation, where the ideal-world ad-
versary only learns the honest parties’ inputs if cheating is undetected. However,
we slightly modify the original notion of covert security to capture realistic ef-
fects that occur especially in input-independent protocols and are disregarded
by the notion of [ALO7]. The changes are explained and motivated below.

As in the standard secure computation model, the execution of a real-world
protocol is compared to the execution within an ideal world. The real world
is exactly the same as in the standard model but the ideal model is slightly
adapted in order to allow the adversary to cheat. Cheating will be detected by
some fixed probability €, which is called the deterrence factor. Let € : N — [0, 1]
be a function, then the execution in the ideal model works as follows.

3 Concretely, for each instantiation we require two exponentiations and a small number
of symmetric key encryptions. The latter can be realized using tailored MPC-ciphers
like LowMC [ARS™15].



Inputs: Each party obtains an input; the i*? party’s input is denoted by x;.
We assume that all inputs are of the same length. The adversary receives an
auxiliary input z.

Send inputs to trusted party: Any honest party P; sends its received
input x; to the trusted party. The corrupted parties, controlled by S, may either
send their received input, or send some other input of the same length to the
trusted party. This decision is made by S and may depend on the values x; for
1 € I and auxiliary input z. If there are no inputs, the parties send ok; instead
of their inputs to the trusted party.

Trusted party answers adversary: If the trusted party receives inputs
from all parties, the trusted party computes (yi,...,ym) = f(w) and sends y;
to S forall ¢ € 1.

Abort options: If the adversary sends abort to the trusted party as ad-
ditional input (before or after the trusted party sends the potential output to
the adversary), then the trusted party sends abort to all the honest parties and
halts. If a corrupted party sends additional input w; = corrupted; to the trusted
party, then the trusted party sends corrupted; to all of the honest parties and
halts. If multiple parties send corrupted;, then the trusted party disregards all
but one of them (say, the one with the smallest index 7). If both corrupted; and
abort messages are sent, then the trusted party ignores the corrupted; message.

Attempted cheat option: If a corrupted party sends additional input w; =
cheat; to the trusted party (as above: if there are several messages w; = cheat;
ignore all but one - say, the one with the smallest index i), then the trusted
party works as follows:

1. With probability €, the trusted party sends corrupted; to the adversary and
all of the honest parties.

2. With probability 1 — €, the trusted party sends undetected to the adversary
along with the honest parties inputs {x;};¢;. Following this, the adversary
sends the trusted party abort or output values {y;};¢; of its choice for the
honest parties. If the adversary sends abort, the trusted party sends abort to
all honest parties. Otherwise, for every j ¢ I, the trusted party sends y; to
P;.

The ideal execution then ends at this point. Otherwise, if no w; equals abort;,

corrupted; or cheat;, the ideal execution continues below.

Trusted party answers honest parties: If the trusted party did not re-
ceive corrupted;, cheat; or abort from the adversary or a corrupted party then it
sends y; for all honest parties P; (where j ¢ I).

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties outputs nothing. The adversary S outputs
any arbitrary (probabilistic) polynomial-time computable function of the initial
inputs {x; };es, the auxiliary input z, and the received messages.

We denote by IDEALCS s, ;(Z, 17) the output of the honest parties and the
adversary in the execution of the ideal model as defined above, where T is the
input vector and the adversary S runs on auxiliary input z.



Definition 1 (Covert security with e-deterrent). Let f,II, and ¢ be as
above. Protocol II is said to securely compute f in the presence of covert adver-
saries with e-deterrent if for every non-uniform probabilistic polynomial-time ad-
versary A for the real model, there exists a non-uniform probabilistic polynomial-
time adversary S for the ideal model such that for every I C [n], every balanced
vector T € ({0,1}*)", and every auziliary input z € {0,1}*:

{IDEALCS 5. (%, 1)} wen = {REAL a2y 1 (%, 1) buen

Notice that the definition of the ideal world given above differs from the
original definition of Aumann and Lindell in four aspects. First, we add the
support of functions with no private inputs from the parties to model input-
independent functionalities. In this case, the parties send ok instead of their
inputs to the trusted party. Second, whenever a corrupted party aborts, the
trusted party sends abort to all honest parties. Note that this message does not
include the index of the aborting party which differs from the original model.
The security notion of identifiable abort [I0Z14], where the aborting party is
identified, is an independent research area, and is not achieved by our compiler.
Third, we allow a corrupted party to abort after undetected cheating, which does
not weaken the security guarantees.

Finally, we allow the adversary to learn the output of the function f before
it decides to cheat or to act honestly. In the original notion the adversary has
to make this decision without seeing the potential output. Although this mod-
ification gives the adversary additional power, it captures the real world more
reliably in regard to standalone input-independent protocols.

Covert security is typically achieved by executing several semi-honest in-
stances and checking some of them via cut-and-choose while utilizing an
unchecked instance for the actual output generation. The result of the semi-
honest instances is often an input-independent precomputation in the form of
correlated randomness, e.g., a garbled circuit or multiplication triples, which is
consumed in a maliciously secure input-dependent online phase, e.g., the circuit
evaluation or a SPDZ-style [DKL'13] online phase. Typically, the precomputa-
tion is explicitly designed not to leak any information about the actual output of
the online phase, e.g., a garbled circuit obfuscates the actual circuit gate tables
and multiplication triples are just random values without any relation to the
output or even the function computed in the online phase. Thus, in such pro-
tocols, the adversary does not learn anything about the output when executing
the semi-honest instances and therefore when deciding to cheat, which makes the
original notion of covert security realistic for such input-dependent protocols.

However, if covert security is applied to the standalone input-independent
precomputation phase, as done by our compiler, the actual output is the cor-
related randomness provided by one of the semi-honest instances. Hence, the
adversary learns potential outputs when executing the semi-honest instances.
Considering a rushing adversary that learns the output of a semi-honest in-
stance first and still is capable to cheat with its last message, the adversary can
base its decision to cheat on potential outputs of the protocol. Although this sce-



nario is simplified and there is often a trade-off between output determination
and cheating opportunities, the adversary potentially learns something about
the output before deciding to cheat. This is a power that the adversary might
have in all cut-and-choose-based protocols that do not further process the out-
put of the semi-honest instances, also in the input-independent covert protocols
compiled by Damgard et al. [DOS20].

Additionally, as we have highlighted above, the result of the precomputation
typically does not leak any information about an input-dependent phase which
uses this precomputation. Hence, in such offline-online protocols, the adversary
has only little benefit of seeing the result of the precomputation before deciding
to cheat or to act honestly.

Instead of adapting the notion of covert security, we could also focus on
protocols that first obfuscate the output of the semi-honest instances, e.g., by
secret sharing it, and then de-obfuscate the output in a later stage. However,
this restricts the compiler to a special class of protocols but has basically the
same effect. If we execute such a protocol with our notion of security up to the
obfuscation stage but without de-obfuscating, the adversary learns the potential
output, that is just some obfuscated output and therefore does not provide any
benefit to the adversary’s cheat decision. Next, we only have to ensure that the
de-obfuscating is done in a malicious or covert secure way, which can be achieved,
e.g., by committing to all output shares after the semi-honest instances and then
open them when the cut-and-choose selection is done.

For the above reasons, we think it is a realistic modification to the covert
notion to allow the adversary to learn the output of the function f before she
decides to cheat or to act honestly. Note that the real-world adversary in cut-
and-choose-based protocols does only see a list of potential outputs but the
ideal-world adversary receives a single output which is going to be the protocol
output if the adversary does not cheat or abort. However, we have chosen to be
more generous to the adversary and model the ideal world like this in order to
keep it simpler and more general. For the same reason we ignore the trade-off
between output determination and cheating opportunities observed in real-world
protocols.

In the rest of this work, we denote the trusted party computing function f
in the ideal-world description by Fcoy.

2.2 Covert Security with Public Verifiability

As discussed in the introduction Asharov and Orlandi introduced to notion of
covert security with e-deterrent and public verifiability (PVC) in the two-party
setting [AO12]. We give an extension of their formal definition to the multi-party
setting in the following.

In addition to the covert secure protocol II, we define two algorithms Blame
and Judge. Blame takes as input the view of an honest party P; after P; outputs
corrupted; in the protocol execution for j € I and returns a certificate Cert,
i.e., Cert := Blame(view;). The Judge-algorithm takes as input a certificate Cert
and outputs the identity id; if the certificate is valid and states that party P;
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behaved maliciously; otherwise, it returns none to indicate that the certificate
was invalid.

Moreover, we require that the protocol IT is slightly adapted such that an
honest party P; computes Cert = Blame(view;) and broadcasts it after cheating
has been detected. We denote the modified protocol by IT’. Notice that due to
this change, the adversary gets access to the certificate. By requiring simulatabil-
ity, it is guaranteed that the certificate does not reveal any private information.

We now continue with the definition of covert security with e-deterrent and
public verifiability in the multi-party case.

Definition 2 (Covert security with e-deterrent and public verifiability
in the multi-party case (PVC-MPCQC)). Let f,II’,Blame, and Judge be as
above. The triple (IT', Blame, Judge) securely computes f in the presence of covert
adversaries with e-deterrent and public verifiability if the following conditions
hold:

1. (Simulatability) The protocol II' securely computes f in the presence of
covert adversaries with e-deterrent according to the strong explicit cheat for-
mulation (see Definition 1).

2. (Public Verifiability) For every PPT adversary A corrupting parties P; for
i € I C [n], there exists a negligible function p(-) such that for all (Z,z) €
({0, 1}*)"*L the following holds:

If OUTPUT;(REAL 7 4(2),1(Z,1%)) = corrupted; for j € [n]\I and i € I then:

Pr[Judge(Cert) = id;] > 1 — u(n),

where Cert is the output certificate of the honest party P; in the execution.

3. (Defamation Freeness) For every PPT adversary A corrupting parties P; for
i € I C [n], there exists a negligible function p(-) such that for all (Z,z) €
({0,1}*)" L and all j € [n]\ I:

Pr[Cert” + A; Judge(Cert™) = id;] < u(n).

3 Preliminaries

3.1 Communication Model & Notion of Time

We assume the existence of authenticated channels between every pair of parties.
Further, we assume synchronous communication between all parties participat-
ing in the protocol execution. This means the computation proceeds in rounds,
where each party is aware of the current round. All messages sent in one round
are guaranteed to arrive at the other parties at the end of this round. We further
consider rushing adversaries which in each round are able to learn the messages
sent by other parties before creating and sending their own messages. This allows
an adversary to create messages depending on messages sent by other parties in
the same round.

11



We denote the time for a single communication round by 7.. In order to
model the time, it takes to compute algorithms, we use the approach presented
by Wesolowski [Wes19]. Suppose the adversary works in computation model
M. The model defines a cost function C' and a time-cost function T. C(A,x)
denotes the overall cost to execute algorithm A on input x. Similar, the time-
cost function T'(A, z) abstracts the notion of time of running A(z). Considering
circuits as computational model, one may consider the cost function denoting
the overall number of gates of the circuit and the time-cost function being the
circuit’s depth.

Let S be an algorithm that for any RSA modulus N generated with respect
to the security parameter x on input N and some element g € Zy outputs the
square of g. We define the time-cost function dsq(k) = T'(S, (N, g)), i.e., the time
it takes for the adversary to compute a single squaring modulo N.

3.2 Verifiable Time-Lock Puzzle

Time-lock puzzles (TLP) provide a mean to encrypt messages to the future. The
message is kept secret at least for some predefined time. The concept of a time-
lock puzzle was first introduced by Rivest et al. [RSW96] presenting an elegant
construction using sequential squaring modulo a composite integer N = p - q,
where p and g are primes. The puzzle is some x € Z}; with corresponding solution
y= 22" . The conjecture about this construction is that it requires T' sequential
squaring to find the solution. Based on the time to compute a single squaring
modulo N, the hardness parameter 7 denotes the amount of time required to
decrypt the message. (See Section 3.1 for a notion of time.)

We extend the notion of time-lock puzzle by a verifiability notion. This prop-
erty allows a party who solved a puzzle to generate a proof which can be effi-
ciently verified by any third party. Hence, a solver is able to create a verifiable
statement about the solution of a puzzle. Boneh et al. [BBBF18] introduced the
notion of verifiable delay functions (VDF). Similar to solving a TLP, the evalu-
ation of a VDF on some input x takes a predefined number of sequential steps.
Together with the output y, the evaluator obtains a short proof 7. Any other
party can use 7 to verify that y was obtained by evaluating the VDF on input x.
Besides the sequential evaluation, a VDF provides no means to obtain the out-
put more efficiently. Since we require a primitive that allows a party using some
trapdoor information to perform the operation more efficiently, we cannot use a
VDF but start with a TLP scheme and add verifiability using known techniques.

We present a definition of verifiable time-lock puzzles. We include a setup
algorithm in the definition which generates public parameters required to effi-
ciently construct a new puzzle. This way, we separate expensive computation
required as a one-time setup from the generation of puzzles.

Definition 3. Verifiable time-lock puzzle (VTLP) A wverifiable time-lock puzzle
scheme over some finite domain S consists of four probabilistic polynomial-time
algorithms (TL.Setup, TL.Generate, TL.Solve, TL.Verify) defined as follows.
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— (pp) + TL.Setup(1*,T) takes as input the security parameter 1* and a hard-
ness parameter T, and outputs public parameter pp.

— p < TL.Generate(pp, s) takes as input public parameters pp and a solution
s € S and outputs a puzzle p.

— (s,m) < TL.Solve(pp, p) is a deterministic algorithm that takes as input pub-
lic parameters pp and a puzzle p and outputs a solution s and a proof m.

— b := TL.Verify(pp, p, s,m) is a deterministic algorithm that takes as input
public parameters pp, a puzzle p, a solution s, and a proof ™ and outputs
a bit b, with b = 1 meaning valid and b = 0 meaning invalid. Algorithm
TL.Verify must run in total time polynomial in logT and A.

We require the following properties of a verifiable time-lock puzzle scheme.

Completeness For all A\ € N, for all T, for all pp < TL.Setup(1*,T), and for
all s, it holds that

(s,-) + TL.Solve(TL.Generate(pp, s)).

Correctness For all A € N, for all T, for all pp + TL.Setup(1*,T), for all s,
and for all p < TL.Generate(pp, s), if (s,m) « TL.Solve(p), then

TL.Verify(pp,p, s, 7) = 1.

Soundness For all A € N, for all T, and for all PPT algorithms A

_ C pp <+ TL.Setup(1*,T)
H'WWW%ﬁjﬂﬁ—l@%WOHARmT)Smﬂﬂ
(s,+) < TL.Solve(pp,p’)

Security A VTLP scheme is secure with gap € < 1 if there exists a polynomial
T () such that for all polynomials T(-) > T(-) and every polynomial-size
adversary (A1, Aa) = {(A1,A2)r}ren where the depth of As is bounded
from above by TE(X), there exists a negligible function pu(-), such that for all

A € N it holds that
(7,50,51) < «41(1>‘)
pp < TL.Setup(1*, T()\))

b {01}
p < TL.Generate(pp, sp)

Pr | b« Ax(pp,p, )

and (so, s1) € S

Although our compiler can be instantiated with any TLP scheme satisfying
Definition 3, we present a concrete construction based on the RSW time-lock
puzzle [RSW96]. We leave it to further research to investigate if a time-lock
puzzle scheme matching our requirements, i.e., verifiability and efficient puzzle
generation, can be constructed based on hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
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hyperelliptic curves [DG20]. Due to the public setup, such constructions might
be more efficient than our RSW-based solution.

In order to make the decrypted value verifiable we integrate the generation
of a proof as introduced by Wesolowski [Wes19] for verifiable delay functions.
The technique presented by Wesolowski provides a way to generate a small proof
which can be efficiently verified. However, proof generation techniques from other
verifiable delay functions, e.g., presented by Pietrzak [Piel9] can be used as well.
The approach of Wesolowski utilizes a function bin, which maps an integer to
its binary representation, and a hash function Hpyrime that maps any string to an
element of Primes(2k). The set Primes(2k) contains the first 22¥ prime numbers,
where k denotes the security level (typically 128, 192 or 256).

The TL.Setup-algorithm takes the security and hardness parameter and out-
puts public parameter. This includes an RSA modulus of two strong primes, the
number of sequential squares corresponding to the hardness parameter, and a
base puzzle. The computation can be executed efficiently if the prime numbers
are know. Afterwards, the primes are not needed anymore and can be thrown
away. Note that any party knowing the factorization of the RSA modulus can
efficiently solve puzzles. Hence, the TL.Setup-algorithm should be executed in a
trusted way.

The TL.Generate-algorithm allows any party to generate a time-lock puzzle
over some secret s. In the construction given below, we assume s to be an element
in Z};. However, one can use a hybrid approach where the secret is encrypted
with some symmetric key which is then mapped to an element in Z3;. This allows
the generator to time-lock large secrets as well. Note that the puzzle generation
can be done efficiently and does not depend on the hardness parameter 7.

The TL.Solve-algorithm solves a time-lock puzzle p by performing sequential
squaring, where the number of steps depend on the hardness parameter 7. Along
with the solution, it outputs a verifiable proof . This proof is used as additional
input to the TL.Verify-algorithm outputting true if the given secret was time-
locked by the given puzzle.

We state the formal definition of our construction next.

Construction Verifiable Time-Lock Puzzle

TL.Setup(1*,7):

— Sample two strong primes (p, q) and set N :=p-q.
— Set T := T /8sq(N).

— Sample uniform g & Zy and set g := —g*( mod N).

— Compute h := g2T , which can be optimized by reducing 27" module ¢(N)
first.

— Set Z :=(g,h).

Output (T, N, Z).
TL.Generate(pp, s):

— Parse pp:= (7', N, Z) and Z := (g, h).
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— Sample uniform r < {1,...,N?}.
— Compute g" := g" and h* :=h".
— Set ¢*:=h"-s mod N.

— Output p := (g",c").

TL.Solve(pp, p):

— Parse pp:= (7', N, Z) and p := (g*,c").
— Compute h := g*2T ( mod N) by repeated squaring.

— Compute s := - mod N as the solution.
— Compute £ = Hyime(bin(g*)|| * ||bin(s)) € Primes(2k) as the challenge.
=127 /e

— Compute 7 =g as the proof.

— Output (s, 7).

TL.Verify(pp, p, s, 7):

Parse pp := (T', N, Z).

— Parse p:= (g%, ¢").

— Compute £ = Hyime(bin(g™)|| * ||bin(s)) € Primes(2k) as the challenge.
— Compute r = 27" mod ¢.

Compute b’ = wtg*".

Compute s := ;—t

— If s = ', output 1, otherwise output 0.

The security of the presented construction is based on the conjecture that it
requires 7’ sequential squarings to solve a puzzle. Moreover, the soundness of
the proof generation is based on the number-theoretic assumption that it is hard
to find the £-th root modulo an RSA modulus N of an integer « ¢ {—1,0,+1}
where ¢ is uniformly sampled from Primes(2k) and the factorization of N is
unknown. See [Wes19] for a detailed description of the security assumption.

3.3 Commitment

Our protocol makes use of an extractable commitment scheme which is com-
putationally binding and hiding. For ease of description, we assume the scheme
to be non-interactive. We will use the notation (c,d) - Commit(m) to commit
to message m, where c is the commitment value and d denotes the decommit-
ment or opening value. Similarly, we use m’ < Open(c, d) to open commitment
¢ with opening value d to m’ = m or m’ = L in case of incorrect opening. The
extractability property allows the simulator to extract the committed message
m and the opening value d from the commitment ¢ by using some trapdoor
information.

Such a scheme can be implemented in the random oracle model by defining
Commit(z) = H(i,z,r) where i is the identity of the committer, H : {0,1}* —

{0,1}%% is a random oracle and r & {0,1}".
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3.4 Signature Scheme

We use a signature scheme (Gen, Sign, Verify) that is existentially unforgeable un-
der chosen-message attacks. Before the start of our protocol, each party executes
the Gen-algorithm to obtain a key pair (pk,sk). While the secret key sk is kept
private, we assume that each other party is aware of the party’s public key pk.

3.5 Semi-Honest Base Protocol

Our compiler is designed to transform a semi-honest secure n-party protocol with
no private input tolerating n — 1 corruptions, Ilsy, that computes a probabilistic
function (y!,...,y") < f(), where y® is the output for party P;, into a publicly
verifiable covert protocol, Ilpyc, that computes the same function. In order to
compile Ilsy, it is necessary that all parties that engage in the protocol Ilsy
receive a protocol transcript, which is the same if all parties act honestly. This
means that there needs to be a fixed ordering for the sent messages and that
each message needs to be sent to all involved parties 4.

We stress that any protocol can be adapted to fulfill the compilation require-
ments. Adding a fixed order to the protocol messages is trivial and just a matter
of specification. Furthermore, parties can send all of their outgoing messages to
all other parties without harming the security. This is due to the fact, that the
protocol tolerates n — 1 corruptions which implies that the adversary is allowed
to learn all messages sent by the honest party anyway. Note that the transferred
messages do not need to be securely broadcasted, because our compiler requires
the protocol to produce a consistent transcript only if all parties act honestly.

3.6 Coin Tossing Functionality

We utilize a maliciously secure coin tossing functionality F..n parameterized
with the security parameter x and the number of parties n. The functionality
receives ok; from each party P; for ¢ € [n] and outputs a random k-bit string

seed & {0,1}* to all parties.

Functionality Fin

Inputs: Each party P; with ¢ € [n] inputs ok;.

— Sample seed & {0,1}".

— Send seed to A.
e If A returns abort, send abort to all honest parties and stop.
e Otherwise, send seed to all honest parties.

4 This requirement is inherent to all known publicly verifiable covert secure protocols.
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3.7 Puzzle Generation Functionality

The maliciously secure puzzle generation functionality Fpg is parameterized with
the computational security parameter x, the number of involved parties n, the
cut-and-choose parameter ¢ and public TLP parameters pp. It receives a coin
share r?, a puzzle randomness share u?, and the seed-share decommitments for
all instances {d; }iew as input from each party P;. Fpg calculates the random
coin r and the puzzle randomness u using the shares of all parties. Then, it
generates a time-lock puzzle p of r and all seed-share decommitments expect
the ones with index r. In the first output round it sends p to all parties. In the
second output round it reveals the values locked within p to all parties. As we
assume a rushing adversary, A receives the outputs first in both rounds and can
decide if the other parties should receive the outputs as well.

The functionality Fpg can be instantiated with a general purpose maliciously
secure MPC-protocol such as the ones specified by [DKL*13] or [YWZ20].

Functionality Fpg

Inputs: Each party P; with i € [n] inputs (r°,u’, {d}},cpy), where r* € [t],
u' € {0,1}", and d; € {0,1}".
— Compute r := Y " mod ¢t and u := @7, u".
— Generate puzzle p < TL.Generate(pp, (r, {d}}ic[n),je)\r)) using random-
ness u.
Send p to A.
e If A returns abort, send abort to all honest parties and stop.
e Otherwise, send p to all honest parties.®
— Upon receiving continue from each party, send (r, {d;-}ie[n],je[t]\r) to A.
e If A returns abort or some party does not send continue, send abort to
all honest parties and stop.
e Otherwise, send (r, {d}ic[n),jep\r) to all honest parties.

4 PVC Compiler

In the following, we present our compiler for multi-party protocols with no pri-
vate input from semi-honest to publicly verifiable covert security. We start with
presenting a distributed seed computation which is used as subprotocol in our
compiler. Next, we state the detailed description of our compiler. Lastly, we pro-
vide information about the Blame- and Judge-algorithm required by the notion
of publicly verifiable covert security.

4.1 Distributed Seed Computation

The execution of the semi-honest protocol instances IIsy within our PVC com-
piler requires each party to use a random tape that is uniform at random. In order

5 The honest parties receive p or abort in the same communication round as A.

17



to ensure this requirement, the parties execute several instances of a distributed
seed computation subprotocol Ilsg at the beginning. During this subprotocol,
each party P selects a uniform x-bit string as private seed share seed 1M Addi-
tionally, P}, and all other parties get uniform x-bit strings {seed(Q’i)}ie[n]7 which
are the public seed shares of all parties. The randomness used by P} in the semi-
honest protocol will be derived from seed” := seed "™ & seed®™) . This way seed”
is distributed uniformly. Note that if protocol IIsy is semi-malicious instead of
semi-honest secure then each party may choose the randomness arbitrarily and
there is no need to run the seed generation.

As the output, party P, obtains its own private seed, commitments to all
private seeds, a decommitment for its own private seed, and all public seed
shares. We state the detailed protocol steps next. The protocol is executed by
each party P, parameterized with the number of parties n and the security
parameter k.

Protocol Ilsg

(a) Commit-phase
Party P, chooses a uniform k-bit string seed™") sets (ch,d") «
Commit(seed™™), and sends ¢ to all parties.

(b) Public coin-phase
For each i € [n], party Pp, sends ok to Feoin and receives seed(®9),

Output
If P, has not received all messages in the expected communication rounds
or any seed®? = 1, it sends abort to all parties and outputs abort.

Otherwise, it outputs (seed™™ d", {seed@’“, ci}ie[n]).

4.2 The PVC Compiler

Starting with a n-party semi-honest secure protocol ITsy we compile a publicly
verifiable covert secure protocol Ilpyc. The compiler works for protocols that
receive no private input.

The compiler uses a signature scheme, a verifiable time-lock puzzle scheme,
and a commitment scheme as building blocks. Moreover, the communication
model is as defined in Section 3.1. We assume each party generated a signa-
ture key pair (sk, pk) and all parties know the public keys of the other parties.
Furthermore, we suppose the setup of the verifiable time-lock puzzle scheme
TL.Setup was executed in a trusted way beforehand. This means in particular
that all parties are aware of the public parameters pp. We stress that this setup
needs to be executed once and may be used by many protocol executions. The
hardness parameter 7 used as input to the TL.Setup-algorithm needs to be de-
fined as T > 2-T,, where T, denotes the time for a single communication round
(see Section 3.1). In particular, the hardness parameter is independent of the
complexity of ITsy.

From a high-level perspective, our compiler works in five phases. At the
beginning, all parties jointly execute the seed generation to set up seeds from
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which the randomness in the semi-honest protocol instances is derived. Second,
the parties execute t instances of the semi-honest protocol IIsy. By executing
several instances, the parties’ honest behavior can be later on checked in all but
one instance. Since checking reveals the confidential outputs of the other parties,
there must be one instance that is unchecked. The index of this one is jointly se-
lected in a random way in the third phase. Moreover, publicly verifiable evidence
is generated such that an honest party can blame any malicious behavior after-
wards. To this end, we use the puzzle generation functionality Fpg to generate
a time-lock puzzle first. Next, each party signs all information required for the
other parties to blame this party. In the fourth phase, the parties either honestly
reveal secret information for all but one semi-honest execution or abort. In case
of abort, the honest parties execute the fifth phase. By solving the time-lock
puzzle, the honest parties obtain the required information to create a certificate
about malicious behavior. Since this phase is only required to be executed in case
any party aborted before revealing the information, we call this the pessimistic
case. We stress that no honest party is required to solve a time-lock puzzle in
case all parties behave honestly.

A corrupted party may cheat in two different ways in the compiled proto-
col. Either the party inputs decommitment values into the puzzle generation
functionality which open the commitments created during the seed generation
to L or the party misbehaved in the execution of IIsy. The later means that a
party uses different randomness than derived from the seeds generated at the
beginning.

The first cheat attempt may be detected in two ways. In the optimistic ex-
ecution, all parties receive the inputs to Fpg and can verify that opening the
commitments is successful. In the pessimistic case, solving the time-lock puzzle
reveals the input to Fpg. Since we do not want the Judge to solve the puzzle
itself, we provide a proof along with the solution of the time-lock puzzle. To this
end, we require a verifiable time-lock puzzle as modeled in Section 3. Even in the
optimistic case, if an honest party detects cheating, the time-lock puzzle needs
to be solved in order to generate a publicly verifiable certificate.

If all decommitments open the commitments successfully, an honest party can
recompute the seeds used by all other parties in an execution of IIsy and re-run
the execution. The resulting transcript is compared with the one signed by all
parties beforehand. In case any party misbehaved, a publicly verifiable certificate
can be created. For the sake of exposition, we compress the detection of malicious
behavior and the generation of the certificate into the Blame-algorithm.

The protocol defined as follows is executed by each honest party Pj,.

Protocol Ilpyc

Public input: All parties agree on k, n, t, IIsy and pp and know all parties’
public keys {pki}icpn)-
Private input: P, knows its own secret key sky,.
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Distributed seed computation:
We abuse notation here and assume that the parties execute the seed generation
protocol from above.

1. For each instance j € [t] party P interacts with all other parties to receive
(seed§1’h), d?, {seed§2’i), cj-}ie[n]) «— Ilsg
and computes seed;’ = seed;l’m S Seed§2’h).
Semi-honest protocol execution:

2. Party Ph engages in ¢ instances of the protocol IIsy with all other parties.
In the j-th instance, party P, uses randomness derived from seed;-L and
receives a transcript and output:

(trans;, y)) < IIsh.
Create publicly verifiable evidence:

3. Party P, samples a coin share 7" il [t], a randomness share u" & {0,1}",
sends the message (r",u”, {d}};c()) to Frc and receives time-lock puzzle
D as response.

4. For each j € [t], Party Py creates a signature o) « Signy,, (data;), where
the signed data is defined as

. 2,i i
dataj = (h,]7 {seedg. l)}ie[n], {Cj}ie[n]up7 transj).
P, broadcasts its signatures and verifies the received signatures.
Optimistic case:

5. If any of the following cases happens
— P, has not received valid messages in the first protocol steps in the
expected communication round.
— Fpg returned abort, or
— any other party has sent abort
party P broadcasts and outputs abort.
6. Otherwise, Pj, sends continuep to Fpg, receives (n{dji}ie[n]’je[t]\r) as re-
sponse and calculates

(m, cert) := Blame(view")

where view” is the view of P.
If cert # L, broadcast cert and output corrupted,,. Otherwise, P, outputs

h
Yr -
Pessimistic case:

7. If Fpg returned abort in step 6, P, solves the time-lock puzzle

((r, {d;i}ie[n],je[t]\r), m) := TL.Solve(pp, p)
and calculates
(m, cert) := Blame(view")

where view" is the view of P.
If cert # L, broadcast cert and output corrupted,,,. Otherwise, output abort.
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4.3 Blame-Algorithm

Our PVC compiler uses an algorithm Blame in order to verify the behavior
of all parties in the opened protocol instances and to generate a certificate of
misbehavior if cheating has been detected. It takes the view of a party as input
and outputs the index of the corrupted party in addition to the certificate. If
there are several malicious parties the algorithm selects the one with the minimal
index.

Algorithm Blame

On input the view view of a party which contains:

— public parameters (n,t)

— public seed shares {seed§-2’i)}¢€[n]

— shared coin r

— private seed share commitments and decommitments {c;'-, d;’}ie[n],je[t]\r
— additional certificate information

({pk; Yiem)» {data; }iep, 7, {0} Ficm) jer)

1. Calculate seed§1’i) := Open(c}, d}) for each i € [n],j € [t] \ 7.

2. Let My == {(i,) € ([n], [t] \ ) : seed'"" = L}. If My # 0, choose the tuple
(m,1) € My with minimal m and [, prioritized by m, compute (-, 7) :=
TL.Solve(pp, p), if m = L, set cert := (pk,,,data;,w,r, {d;-}ie[n],je[t]\r,a{”)
and output (m, cert).

3. Set seed’ := seedgl’” @ seedf’i) for all ¢ € [n] and j € [t] \ r.

4. Re-run IIsy for all j € [t] \ r by simulating the view of all other parties: In
the j-th instance simulate all parties P; with randomness seedé for i € [n]
and receive (trans},-).

5. Let My := {j € [t] \ 7 : trans} # trans;}. If M> # (), determine the minimal
index m such that P,, is the first party that has deviated from the protocol
description in an instance [ € M. If P,, has deviated from the protocol
description in several instances [ € Ms, choose the smallest such [. Then,
set cert := (pk,,,data, {d }ic(n), 07") and output (m, cert).

6. Output (0,1).

4.4 Judge-Algorithm

The Judge-algorithm receives the certificate and outputs either the identity of
the corrupted party or L. The execution of this algorithm requires no interaction
with the parties participating in the protocol execution. Therefore, it can also
be executed by any third party which possesses a certificate cert. If the output
is pk,,, for m € [n], the executing party is convinced that party P, misbehaved
during the protocol execution. The Judge-algorithm is parameterized with n, ¢,
pp, and Isy.
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Algorithm Judge(cert)

Inconsistency certificate: _
On input cert = (pk,,,data, 7,7, {d; }icin],jeie\r 01") do:

— If Verifypkm(data; o) =1, output L.

— Parse data to (m,1, -, {cf}ie[n],p, .

— If TL.Verify(pp, p, (v, {dj},;), ™) = 0 output L.

— If r =1, output L.

If Open(ci™, di™) # L, output L. Else output pk,,.

Deviation certificate: '
On input cert = (pk,, , data, {d; }ic[n), 07")-

— If Verify, (data;o;") = L, output L.

— Parse data to (m,, {seedl@’i)}ie[n], {ci}icrn), -, transy).

— Set seedl(l’i) < Open(cl,d}) for each i € [n]. If any seedl(l’i) = 1, output L.

— Set seed] := seedl(l’i) @ seedl(Q’i) for each 1.

— Simulate ITsy using the seeds seed! as randomness of party P; and get result
(transj, -).

— If trans; = trans;, output L. Otherwise, determine the index m’ of the first
party that has deviated from the protocol description. If m # m', output
1. Otherwise, output pk,,.

Ill formatted: If the cert cannot be parsed to neither of the two above cases,
output (L).

5 Security

In this section, we show the security of the compiled protocol described in Sec-
tion 4. To this end, we state the security guarantee in Theorem 1 and prove its
correctness in the following.

Theorem 1. Let Ilsy be a n-party protocol, receiving no private inputs, which
1s secure against a passive adversary that corrupts up to n — 1 parties. Let the
signature scheme (Gen, Sign, Verify) be existentially unforgeable under chosen-
message attacks and let the verifiable time-lock puzzle scheme TL be secure with
hardness parameter T > 2 -T,.. Let (Commit,Open) be an extractable commit-
ment scheme which is computationally binding and hiding. Then protocol Ilpyc
along with algorithms Blame and Judge is secure against a covert adversary that
corrupts up to n — 1 parties with deterrence ¢ = 1 — L and public verifiability

t
according to definition 2 in the (Feoin, Fpg)-hybrid model. ©

6 See section 3.1, for details on the notion of time and the communication model.
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Proof. We prove security of the compiled protocol IIpyc by showing simulata-
bility, public verifiability, and defamation freeness according to Definition 2 sep-
arately.

5.1 Simulatability

In order to prove that ITpyc meets covert security with e-deterrent, we define an
ideal-world simulator S using the adversary A in a black-box way as subroutine
and playing the role of the parties corrupted by A when interacting with the
ideal covert-functionality Fcoy.

The proof is given in the (Feoin, Fpg)-hybrid world in which IIsy with ac-
cording simulators Sy exist. Without loss of generality, we assume that P, is
honest and all other parties are corrupt. Scenarios in which other or less parties
are corrupt, are symmetrical. For the sake of simplicity, we ignore messages ok
that are sent to Fcoy. When S sends abort, cheat; or corrupted, on behalf of any
corrupted party P; to Fcov, S also sends ok on behalf of all other corrupted
parties. The simulator S is specified as follows:

0. Ssetsr & [t], M1, M2, L = () and sends ok to Fco, for i € [n] \ h and receives
output {y'}icin\n from Feoy. Then, S generates keys (pky,skn) and sends pk;,
to A.

1. S acts like an honest party during the seed generation and simulates Feoin as

stated in the definition. This way, S obtains public seed shares {seedf’i)}ie[n]

and commitments {c}};c(n) for j € [t]. By simulating the honest party, S

50 @
Commit(seedél’h)) for j € [t]. Use the extractability property of the commit-

gets private seed shares seed;l‘h)7 commitments and openings (ch dh) —
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X ment scheme to obtain the private seed shares {seedgl’l)}ie[n]\h. Finally, com-
: pute seed’; := seedgl‘i) D seed§2’i> for j € [t] and i € [n].

. 2. 8 runs the executions of IIsy with A as follows and let trans; denote the tran-
X script and y;-l denote the output of Py in the j-th execution:

! — In th_e r-th execution, S§ invokes Sy with randomness consistent with
! {seedi}ie[n]\h used by the corrupted parties in the r-th execution and out-
! puts {y"}iem)\n of the corrupted parties.

: — For all j € [t]\ r, S acts like an honest party and derives randomness from
: seed”. _

! Then, S uses {seed};c(n] to recompute the j-th semi-honest instance and to
I obtain transcript trans; for j € [t]. For every | € [t] where trans; # trans,
: determine the first party P,, that has deviated from the protocol description at
: location loc, add (m,,loc) to M2 and [ to L.

X If » € L continue in step 0’. Otherwise continue in 3.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0’ Rewind A and run steps 1’ - 2’ below until’ M} = M, and L' = L.
1’ Run the seed generation with A as in step 1.
2> For j € [t], run an execution of ITsy with A where the randomness is derived
from seed? . Let trans; denote the transcript and y;} denote the output of
Py, in the j-th execution.
S uses {seedé}ie[n] to recompute the j-th semi-honest instance and to ob-
tain transcript transj for j € [t]. For every | € [t] where trans; # trans,
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determine the first party P, that has deviated from the protocol descrip-
tion at location loc, add (m, 1, loc) to M3 and [ to L'.

3. S receives message {(r’,u’, {d’};c() ticin\n that A sends to Fpg and executes
the following steps.

(a) If there is | € [t] and m € [n] where Open(c}",dj") = seed\"™* # | and
seedgl’m>* # seedl(l’m>, S outputs ambiguous and halts.

(b) For every ! € [t] and m € [n] where Open(¢;”,d;") = L, add m to M; and [
to L.

(c) Compute p + TL.Generate(pp, (7, {d’ }icin],je[\r))- S internally hands p to
A.

4. S creates signatures o for j € [t] as an honest party would do and hands
{ojh}je[t] to A. S receives {a§}ie[n]\h7j€[t] that A sends to Pj.

5. If A has not sent valid messages in the first protocol steps in the expected
communication round, send abort to Fcoy, hand abort to A and terminate.
Otherwise, we distinguish three cases, where m* := min;e,) (¢ € M1) if My # 0
and m™ := min;epy,) ((4, -, -) € Ma) otherwise.

— If |L| > 2 then send corrupted,,,. to Fcov, set 7' = r and flag := corrupted,
and continue in step 7.
— If |[L] =1 then send cheatp,* to Fcov.
e If Fco, returns corrupted set v & [t]\ L, flag := corrupted, and
continue below.
e If Fco, returns undetected, set v’ € L, flag := undetected, and continue
below.
— If |L| = 0 then set ' = r and flag := honest and continue below in step 7.

m*

0* Rewind A and run steps 1* - 5* below until” M| = My, M5 = M, and L' = L.
1* Run the seed generation with A as in step 1.
2* Run the semi-honest instances with A as in step 2’.
3* S receives message {(r*,u’,{d}}je)}iem)\n that A sends to Fpe and exe-
cutes the following steps.
(a*) If there is [ € [t| and m € [n] where Open(c;”,d]") = seedl(l'm>* # 1
and seed!""™* £ seed!""™ | rewind to step 1*.
(b*) For every | € [t] and m € [n] where Open(c[*,d;") = L, add m to M]
and [ to L'.
(c*) Compute p <+ TL.Generate(pp, (', {d’ }ic[n],je[]\+))- S internally hands
p to A.
4* S creates signatures o for j € [t] as an honest party would do and hands
{O'Jh}je[t] to A. S receives {O’;}ie[n]\h’je[t] that A sends to Pj.
5% If A has not sent valid messages in the first protocol steps in the expected
communication round, then return to step 1*.

7. 8 receives message {continue;};ci,\n that A sends to Fpe and hands
(', {d%} s\ icin)) back to A. If A responds with abort or S has not received
continue; for all ¢ € [n] \ h, continue in step 8 if flag = corrupted, or send abort
to Fcov and continue in step 8 otherwise.

If A does not respond with abort differentiate the following cases:
— If flag = honest then send continue to Fco, and halt.
— If flag = undetected send yf, to Fcov and halt.
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— If flag = corrupted compute (m*, cert) := Blame(view"), where view" is the
view of the simulated party Pj,. Internally send cert to A and halt.

8. If flag = corrupted then S computes ((r',{d.};eip\ricm)) ™) =
TL.Solve(pp, p) and (m*,cert) := Blame(view"), where view" is the view of the
simulated party Pp, and internally sends cert to A and halts.

If flag € {undetected, honest} then hand abort to A and halt.

We show that the joint distribution of the output of the honest party Pj, and
the view of A in the ideal world is computationally indistinguishable from the
output of the honest party Pj, and the view of A in the real world. We prove
this via a sequence of hybrids and show indistinguishability between each two
subsequent hybrids. The proof is presented in appendix A.

5.2 Public Verifiability

We first argue that an adversary is not able to perform what we call a detection
dependent abort. This means that once an adversary learns if its cheating will be
detected, it can no longer prevent honest parties from generating a certificate.

In order to see this, note that withholding valid signatures by corrupted par-
ties in step 4 results in an abort of all honest parties. In contrast, if all honest
parties receive valid signatures from all other parties in step 4, then they are
guaranteed to obtain the information encapsulated in the time-lock puzzle, i.e.,
the coin r and the decommitments of all parties {dé}ie[n] jel\r- Either, all par-
ties jointly trigger the puzzle generation functionality Fpg to output the values
or in case any corrupted party aborts, an honest party can solve the time-lock
puzzle without interaction. Thus, it is not possible for a rushing adversary that
gets the output of Fpg in step 6 first, to prevent the other parties from learning
it at some time as well. Moreover, the adversary also cannot extract the values
from the puzzles before making the decision if it wants to continue or abort, as
the decision has to be made in time smaller than the time required to solve the
puzzle. Thus, the adversary’s decision to continue or abort is independent from
the coin r and therefore independent from the event of being detected or not.

Secondly, we show that the Judge-algorithm will accept a certificate, created
by an honest party, expect with negligible probability. Assume without loss of
generality that some malicious party P, has cheated, cheating has been detected
and a certificate (blaming party P,,) has been generated. As we have two types
of certificates, we will look at them separately.

If an honest party outputs an inconsistency certificate, it has received an
inconsistent commitment-opening pair (¢, d}") for some | # r. The value ¢}"
is signed directly by P,, and d;* indirectly via the signed time-lock puzzle p.
Hence, Judge can verify the signatures and detect the inconsistent commitment
of P, as well. Note that due to the verifiability of our time-lock construction, the
Judge-algorithm does not have to solve the time-lock puzzle itself but just needs
to verify a given solution. This enables the algorithm to be executed efficiently.

" Ensuring that the simulation runs in expected polynomial time can be realized by
standard techniques introduced by Goldreich and Kahan [GK96].
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If an honest party outputs a deviation certificate, it has received consistent
openings for all j # r from all other parties, but party P, was the first party
who deviated from the specification of ITsy in some instance [ € [t]\r. Since IIsy
requires no input from the parties, deviating from its specification means using
different randomness than derived from the seeds generated at the beginning of
the compiled protocol. As P, has signed the transcript trans;, the private seed-
commitments of all parties {cf}ie[n], the public seeds {seed@’l)}ie[n], and the
certificate contains the valid openings {d;};c[n), the Judge-algorithm can verify
that P,, was the first party who misbehaved in instance [ the same way the
honest party does. Note that it is not necessary for Judge to verify that j # r,
because the certificate generating party can only gain valid openings {d%}ie[n]

for j # r.

5.3 Defamation Freeness

Assume, without loss of generality, that some honest party P, is blamed by the
adversary. We show defamation freeness for the two types of certificates sepa-
rately via a reduction to the security of the commitment scheme, the signature
scheme and the time-lock puzzle scheme.

First, assume there is a valid inconsistency certificate cert* blaming P,. This
means that there is a valid signatures of P, on a commitment c;‘»h and a time-
lock puzzle p* that has a solution s* which contains an opening d;h’ such that
Open(c;", d3"
c;h which equals the commitment honestly generated by P, during the seed
generation. We call such a c;fh correct. Thus, c;fh is either correct or the adversary
can forge signatures. Similar, Pj, does only sign the puzzle p* received by Fpg.
This puzzle is generated on the opening value provided by all parties. Since Py, is
honest, correct opening values are inserted. Therefore, the signed puzzle p* either
contains the correct opening value or the adversary can forge signatures. Due
to the security guarantees of the puzzle, the adversary has to either provide the
correct solution s* or can break the soundness of the time-lock puzzle scheme.
To sum it up, an adversary creating a valid inconsistency certificate contradicts
to the security assumptions specified in Theorem 1.

Second, assume there is a valid deviation certificate cert* blaming P. This
means, there is a protocol transcript trans} in which P} is the first party that has
sent a message which does not correspond to the next-message function of Ilsy
and the randomness, seed;-1 used by the judge to simulate P,. As P, is honest,

)= L and j # r. As Py, is honest, P, only signs a commitment

either trans® or seed? needs to be incorrect. Also, Pj, does not create a signature
for an invalid trans*. Thus, trans* is either correct or the adversary can forge sig-
natures. The seed? is calculated as seed? = seedg-l’h) @seedf’h). The public seed

seed§2’h) is signed by Py, and provided directly. The private seed of Py, is provided

via a commitment-opening pair (C?, d;‘), where c? is signed by Pj. As above, c?
2,h . . o
and seed§ 1) are either correct or the adversary can forge signatures. Similar,

d;? is either correct or the adversary can break the binding property of the com-
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mitment scheme. If the certificate contains correct (trans}f7 c?,d;‘, seedgz’h)) the
certificate is not valid. Thus, when creating an accepting cert®, the adversary
has either broken the signature or the commitment scheme which contradicts to
the assumption of Theorem 1.

O

6 PVC Compiler for Input-Dependent Protocols

Damgéard et al. [DOS20] have shown how to apply the cut-and-choose approach
to publicly verifiable covert protocols in the input-dependent setting without
sacrificing the privacy of the inputs. Their approach is based on the player vir-
tualization paradigm introduced by [IPS08] and extended by [LOP11]. We show
how to apply their technique to our compiler in order to extend it to the scope
of input-dependent protocols.

Upon input 2", party P, splits its input into ¢ shares using a t-out-of-t secret
sharing. Each share is used as input of a single virtual party executed by Pj. It
follows that each real party simulates ¢ virtual parties. We therefore require a
(tn)-party semi-honest protocol, 11, realizing function f” defined as follows. Let
f(x',....2") = (y',...,y") be the function all parties want to jointly compute
with protocol ITsy. The function f’ takes as input a t-out-of-t secret sharing
of each real party’s input and computes a t-out-of-t secret sharing of each real
party’s output. More precisely, f’ is defined as

Yyl = ka2,

where

f @x;,,@x? = @y},,@y?
JElt] JElt] JElt] JE[t]

As assumed by our compiler for input-independent protocols, we require each
message to be sent to all real parties. Even if messages are sent from one virtual
party to another virtual party which are both simulated by the same real parties.

Besides committing to the private seed shares in step 1, the parties need to
commit to the input shares of the virtual parties in step 2. The corresponding
opening values are inserted to the puzzle generation functionality as well. In the
input-independent protocol parties validated a whole protocol instance at once
by simulating the actions of all parties. In the input-dependent protocol, this is
not possible because some of the virtual parties need to remain private and hence
cannot be simulated. However, a virtual party can also be simulated individually
as all of its actions are fully determined by its randomness, its input share and
all of its in-going messages; all of this information is available once the virtual
party has been opened. We stress that since the input is t-out-of-¢ secret shared
and only ¢ — 1 input shares are opened, the input of a real party remains private.

Moreover, in contrast to the compiler for input-independent protocols, this
compiler executes only one instance of the (¢n)-party protocol I1¢,, secure against
tn—1 passive corruptions. The full specification of the input-dependent compiler
is deferred to appendix B.
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7 Short Certificates

For the sake of exposition, we have described our protocol and the corresponding
algorithms in a straightforward way. In this section, we will present two addi-
tional improvements which reduce the size of the certificates and thus enable
additional use-cases, e.g., uploading certificates to a public blockchain.

Reduce transcript size via a Merkle tree. The Judge-algorithm of the input-
independent publicly verifiable covert secure protocol IIpyc receives the whole
transcript of one of the semi-honest protocol instances as part of the certificate
of misbehavior. Based on the transcript, the algorithm verifies which party sent
the first incorrect message. However, depending on the size of the semi-honest
protocol, the transcript can become very large. By utilizing Merkle trees, we can
replace the protocol transcript within a certificate by the root hash of a Merkle
tree constructed over the transcript messages. In case of a deviation certificate,
two messages and corresponding Merkle tree proofs are added.

In order to use the Merkle tree root as verifiable evidence, parties create a
Merkle tree of each protocol transcript, i.e., all messages that have been sent dur-
ing one semi-honest protocol instance, and include the Merkle tree root instead
of the protocol transcript into the signatures. When checking for misbehavior,
an honest party calculates the last message mg at position k — 1 which has been
valid and the first message m; at position k in which a party has deviated from
the protocol description resp. its supposed randomness. These messages, the cor-
responding Merkle tree proofs and the position of m, within the transcript are
inserted into the certificate. The judge then simulates the protocol until the k-th
message and thus gets the messages m(, and m/ that have been supposed to be
sent at position £ — 1 and k. Using the received information, the judge checks
that (1) mg = mg, (2) m1 # mf, (3) mo and m; are leaves at position k — 1
resp. k of a Merkle tree, with a root that has been signed by the accused party,
and (4) my is the first incorrect message. For the latter, the judge checks that
the Merkle proof of mg corresponds to the protocol messages (tree leaves) at
position < k that the judge has simulated itself.

This improvement is only applicable to the input-independent compiler, as
this procedure requires to validate the actions of all parties in order to determine
the first deviation from the expected transcript.

Separate signature for inconsistency certificates and deviation certificates. Cur-
rently, the parties create one signature which contains all the information that
is needed in an inconsistency certificate and a deviation certificate. This means
that data, which is not used by the Judge-algorithm for a certain type of certifi-
cate (e.g., the time-lock puzzle p in case of deviation certificates) still needs to be
provided in order to enable the judge to verify the signatures. Such data depicts
an unnecessary overhead in terms of certificate size. Fortunately, it is quite easy
to get rid of this overhead. Instead of creating one signature per instance, parties
create two signatures that contain the information only relevant for the incon-
sistency certificate respectively the deviation certificate. In particular, party Py,
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signs the tuples

dataj"") = (h,j,c},p)

(2,h) ._ . (2,h) h
data,”" := (h,],seedj ,Cj,transy)

for each j € [t]. The former data is used for inconsistency certificates and the
latter for deviation certificates. A similar improvement can be applied to the
input-dependent compiler.

8 Evaluation

8.1 Efficiency of our Compiler

In Section 4, we presented a generic compiler for transforming input-independent
multi-party computation protocols with semi-honest security into protocols that
offer covert security with public verifiability. We elaborate on efficiency param-
eters of our construction in the following.

The deterrence factor e = % only depends on the number of semi-honest
protocol executions t. In particular, € is independent of the number of parties.
This property allows for achieving the same deterrence factor for a fixed number
of semi-honest executions while the number of parties increases. Our compiler
therefore facilitates secure computation with a large number of parties. Further-
more, the deterrence factor grows with the number of semi-honest instances (¢),
similar to previous work based on cut-and-choose (e.g., [AL07, AO12, DOS20]).
Concretely, this means that for only five semi-honest instances, our compiler
achieves a cheating detection probability of 80%. Moreover, the semi-honest in-
stances are independent of each other and, hence, can be executed in parallel.
This means, that the communication and computation complexity in comparison
to a semi-honest protocol increases by factor t. However, our compiler preserves
the round complexity of the semi-honest protocol. Hence, it is particularly useful
for settings and protocols in which the round complexity constitutes the major
efficiency bottleneck. Similarly, the requirement of sending all messages to all
parties further increases the communication overhead by a factor of n — 1 but
does not affect the round complexity. Since this requirement is inherent to all
known publicly verifiable covert secure protocols, e.g., [DOS20], these protocols
incur a similar communication overhead.

While our compiler requires a maliciously secure puzzle generation function-
ality, we stress that the complexity of the puzzle generation is independent of
the cost of the semi-honest protocol. Therefore, the relative overhead of the
puzzle generation shrinks for more complex semi-honest protocols. One applica-
tion where our result may be particular useful is for the preprocessing phase of
multi-party computation, e.g., protocols for generating garbled circuits or multi-
plication triples. In such protocols, one can generate several circuits resp. triples
that are used in several online instances but require just one puzzle generation.

For the sake of concreteness, we constructed a boolean circuit for the puzzle
generation functionality and estimated its complexity in terms of the number of
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AND-gates. The construction follows a naive design and should not constitute
an efficient solution but should give a first impression on the circuit complexity.
We present some intuition on how to improve the circuit complexity afterwards.

We utilize the RSW VTLP construction described in Section 3.2 with a hy-
brid construction, in which a symmetric encryption key is locked within the
actual time-lock puzzle and is used to encrypt the actual secret. Note that the
RSW VTLP is not optimized for MPC scenarios. Since our compiler can be in-
stantiated with an arbitrary VTLP satisfying Definition 3, any achievements in
the area of MPC-friendly TLP can result into an improved puzzle generation
functionality for our compiler. To instantiate the symmetric encryption opera-
tion, we use the LowMC [ARS™15] cipher, an MPC-friendly cipher tailored for
boolean circuits.

Let n be the number of parties, t being the number of semi-honest instances,
k denoting the computational security parameter, and N represents the RSA
modulus used for the RSW VTLP. We use the notation |x| to denote the bit
length of x. The total number of AND-gates of our naive circuit is calculated as
follows:

(n—1)- (11]¢] + 22|N| + 12)
+ nt - (4|t| + 2K + 755)
+ 192| N2 + 112|N|? + 22| N|

It is easy to see that the number of AND-gates is linear in both n and
t. The most expensive part of the puzzle generation is the computation of two
exponentiations required for the RSW VTLP, since the number of required AND-
gates is cubic in |N| for an exponentiation. However, we can slightly adapt our
puzzle generation functionality and protocol to remove these exponentiations
from the maliciously secure puzzle generation protocol. For the sake of brevity,
we just give an intuition here.

Instead of performing the exponentiations g* and h" required for the puzzle
creation within the puzzle generation functionality, we let each party P; input
a 0-puzzle consisting of the two values g; = ¢g"* and h; = h"*. The products of
all g; respectively h; are used as ¢g* and h* for the VTLP computation. Since
we replace the exponentiations with multiplications, the number of AND-gates
is quadratic instead of cubic in |N|.

Note that this modification enables a malicious party to modify the resulting
puzzle by inputting a non-zero puzzle. Intuitively, the attacker can render the
puzzle invalid such that no honest party can create a valid certificate or the
puzzle can be modified such that a corrupted party can create a valid certificate
defaming an honest party. Concretely, one possible attack is to input inconsistent
values g; and h;, i.e., to use different exponents for the two exponentiations. As
such an attack must be executed without knowledge of the coin r, it is sufficient
to detect invalid inputs and consider such behavior as an early abort. To this
end, parties have to provide u; to the puzzle generation functionality and the
functionality outputs u = X wu;, g* and h* in the second output round together
with the coin and the seed openings. By comparing if ¢* = ¢* and h* = A",
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each party can check the validity of the puzzle. Finally, we need to ensure that a
manipulated puzzle cannot be used to create an inconsistency certificate blaming
an honest party. Such false accusation can easily be prevented, e.g., by adding
some zero padding to the value inside the puzzle such that any invalid puzzle
input renders the whole puzzle invalid.

8.2 Comparison with Prior Work

To the best of our knowledge, our work is the first to provide a fully specified
publicly verifiable multi-party computation protocol against covert adversaries.
Hence, we cannot compare to existing protocols directly. However, Damgard
et al. [DOS20] have recently presented two compilers for constructing publicly
verifiable covert secure protocols from semi-honest secure protocols in the two-
party setting, one for input-independent and one for input-dependent protocols.
For the latter, they provide an intuition on how to extend the compiler to the
multi-party case. However, there is no full compiler specification for neither
input-dependent nor input-independent protocols. Still, there exist a natural
extension for the input-independent compiler, which we can compare to.

The major difference between our input-independent protocol and their input-
independent protocol, is the way the protocols prevent detection dependent abort.
In the natural extension to Damgard et al. [DOS20], which we call the watchlist
approach in the following, each party independently selects a subset of instances
it wants to check and receives the corresponding seeds via oblivious transfer. The
transcript of the oblivious transfer together with the receiver’s randomness can
be used by the receiver to prove integrity of its watchlist to the judge; similar
to the seed commitments and openings used in our protocol. The watchlists are
only revealed after each party receives the data required to create a certificate
in case of cheating detection, i.e., the signatures by the other parties. Once a
party detects which instances are checked, it is too late to prevent the creation
of a certificate. Our approach utilizes time-lock puzzles for the same purpose.

In the watchlist approach, all parties have different watchlists. For ¢ semi-
honest instances and watchlists of size s > %, there is a constant probability
Pr[bad] that no semi-honest instance remains unwatched which leads to a failure
of the protocol. Thus, parties either need to choose s < % and hence e = § < % or
run several executions of the protocol. For the latter, the probability of a protocol
failure Pr[bad] and the expected number of protocol runs runs are calculated
based on the inclusion-exclusion principle as follows:

22:1(—1)(1¢71) * (,i) % (Hj;é(t i k)"
[Tt =)
_ t 3 t (t—k)-(t—s)\"
=13 <k> . ((t_k_s)'t'>
runs = Pr[bad] ™!

Pr[bad] = 1 —
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Setting the watchlist size s > % such that there is a constant failure proba-
bility has the additional drawback that the repetition can be abused to amplify
denial-of-service attacks. An adversary can enforce a high failure probability by
selecting its watchlists strategically. If s > (n—il) and n — 1 parties are cor-
rupted, the adversary can cause an error with probability 1 which enables an
infinite DoS-attack.

This restriction of the deterrence factor seems to be a major drawback of the
watchlist approach. Although our approach has an additional overhead due to
the puzzle generation, which is independent of the complexity of the transformed
protocol and thus amortizes over the complexity of the base protocols, it has the
benefit that it immediately supports an arbitrary deterrence factor e. This is
due to the fact that the hidden shared coin toss determines a single watchlist
shared by all parties. In Table 1, we display the maximal deterrence factor of
our approach e in comparison to the maximal deterrence factor of the watch-
list approach without protocol repetitions € for different settings. Additionally,
we provide the number of expected runs required to achieve € in the watchlist
approach with repetitions.

Our approach Watchlist approach

n t -

€ € or runs

1/2 - 2

2 3 2/3 1/3 3
10 9/10 4/10 10
1/2 - 4

3 4 3/4 1/4 16
10 9/10 3/10 100

5 1/2 - 16
5/6 1/6 1296

Table 1. Maximal deterrence factor or expected number of runs of the watchlist ap-
proach in comparison to our approach.

A similar comparison can be made for the input-dependent setting. Note that
both input-dependent compilers, ours and the one using the watchlist approach,
execute one protocol instance between virtual parties instead of running multiple
executions of the semi-honest base protocol. We refer to Section 6, Appendix B
and [DOS20] for more detailed descriptions of the input-dependent compilers. In
the following we will restrict the analysis to the setting in which an adversary
corrupts n — 1 of the n parties. The number of virtual parties per real party is
denoted as t and the number of opened virtual parties per real party is denoted

S

as s. Hence, the deterrence factor is e = . Our compiler extension ensures that

all parties open and check the same virtual parties. Hence, s can be chosen to
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be t — 1 which enables us to achieve a high deterrence factor. In the watchlist
approach, each party selects its own watchlist. In the input-dependent setting
it, is not possible to tolerate that all virtual parties of one real party are checked
as this leaks the real party’s input and hence breaks privacy. Therefore, it needs
to hold that ¢ > (n — 1) - s. It follows that the deterrence factor is bound by
€< ﬁ
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A Indistinguishability via Hybrids

In the following, we show that the joint distribution of the output of the honest
party P, and the view of A in the ideal world involving simulator S and ideal
functionality Fcoy is computationally indistinguishable from the output of the
honest party Pj, and the view of A in a real-world execution of the protocol Ilpyc.
We will do so via a sequence of hybrids gradually reducing the usage of the sim-
ulator’s special capabilities (e.g., rewinding) and by showing indistinguishability
between each two subsequent hybrids.

Hybrid,, :

In order to describe honest parties, simulator and ideal functionality in one
experiment, we inline the actions of S, Fcov, and the honest party Pj to obtain
the following experiment. This is the ideal-world execution with simulator S as
described above in section 5.

0. Setr & [t], M1, Ms, L = §, and compute (y',...,y™) + f(L). Then S generates
keys (pky,,sks) and sends pk,, to A.

1. S acts like an honest party during the seed generation and simulates Feoin as
stated in the definition. This way, S obtains public seed shares {seed;z”}ie[n]
and commitments {C;'}»L‘g[n] for j € [t]. By simulating the honest party, S
gets private seed shares seedg-l’h)7 commitments and openings (c;”, d?) —
Commit(seed;.l’h)) for j € [t]. Use the extractability property of the commit-
ment scheme to obtain the private seed shares {seedgl'i)}ie[n]\h, Finally, com-
pute seed’ := seed;-l’i) @ seed§-2’i) for j € [t] and i € [n].

2. Run the executions of ITsy with A as follows and let trans; denote the transcript
and y;vl denote the output of P, in the j-th execution:

— In the r-th execution, S invokes Sy with randomness consistent with
{seedi}ie[n]\h used by the corrupted parties in the r-th execution and out-
puts {y"}icnp\n of the corrupted parties.

— For all j € [t]\ r, S derives randomness from seed).

Then, S uses {seedj};c(n] to recompute the j-th semi-honest instance and to
obtain transcript trans; for j € [t]. For every | € [t] where trans; # trans,
determine the first party P, that has deviated from the protocol description at
location loc, add (m,,loc) to M2 and [ to L.

If r € L continue in step 0’. Otherwise continue in 3.

0’ Rewind A and run steps 1’ - 2’ below until M} = M> and L' = L.

1’ Run the seed generation with A as in step 1.

2> For j € [t], run an execution of ITsy with A where the randomness is derived
from seed?, Let trans; denote the transcript and y;} denote the output of
Py, in the j-th execution.
S uses {seedé}ie[n] to recompute the j-th semi-honest instance and to ob-
tain transcript transj for j € [t]. For every | € [t] where trans; # trans,
determine the first party P, that has deviated from the protocol descrip-
tion at location loc, add (m,1,loc) to M3 and [ to L'.

3. S receives message {(r*,u’,{d}};c()}iem)\n that A sends to Fpg and executes
the following steps.
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4.

5.

0*

6.

(a) If there is [ € [t] and m € [n] where Open(c*,d") = seedgl’m)* # 1 and
seedgl’"m # seedl(l’m), S outputs ambiguous and halts.

(b) For every ! € [t] and m € [n] where Open(c;",d;") = L, add m to M, and [
to L.

(c) Compute p < TL.Generate(pp, (r, {d }ic[n),jee)\r))- S internally hands p to
A.

S creates signatures o) for j € [t] as an honest party would do and hands

{ajh}je[t] to A. S receives {a§}ie[n]\h7j€[t] that A sends to Pj.

If A has not sent valid messages in the first protocol steps in the expected

communication round, hand abort to A, P, outputs abort, and terminate the

experiment.

Otherwise, we distinguish three cases.

— If |L| > 2 then set ' = r and flag := corrupted and continue in step 6.

— If |L] = 1 then with probability € set r’ & [t] \ L and flag := corrupted, and
with remaining probability (1 —€) set 7’ € L and flag := undetected. In any
case, continue below.

— If |L| = 0 then set ' = r and flag := honest, and continue below in step 6.

Rewind A and run steps 1* - 5* below until M; = My, M4 = M>, and L' = L.
1* Run the seed generation with A as in step 1.
2* Run the semi-honest instances with A as in step 2.
3* S receives message {(r%,u’, {d; Yier) Yie\n that A sends to Fpg and exe-
cutes the following steps.
(a*) If there is | € [t] and m € [n] where Open(cj”, di") = seed"™* # |
and seed'"™" £ seed""™ | rewind to step 1*.
(b*) For every | € [t] and m € [n] where Open(c[*,d;") = L, add m to M
and [ to L'.
(c*) Compute p < TL.Generate(pp, (r', {d}}icin),jepn~)). S internally
hands p to A.
4* S creates signatures a] for j € [t] as an honest party would do and hands
{O'J }iemy to A. S receives {aj}le[ I\h,jelt] that A sends to Pr.
5% If A has not sent valid messages in the first protocol steps in the expected
communication round, then return to step 1*.

S receives message {continuel}ze[n]\;L that A sends to Fpg and hands
7', {d}}jei\ric[n)) back to A. If A responds with abort or S has not received

contlnueZ for all ¢ € [n] \ h, continue in step 7.

If A does not respond with abort differentiate the following cases:

— If flag = honest then P;, outputs y" and the experiment halts.

— If flag = undetected then P, outputs y" and the experiment halts.

— If flag = corrupted compute (m, cert) := Blame(view"), where view” is the
view of the simulated party Pp. Internally send cert to A, P, outputs
corrupted,, and the experiment halts.

If flag = corrupted then S computes ((r' {d Yiem iemn])s ™) := TL.Solve(pp, p)
and (m, cert) := Blame(view”), where view” is the Vlew of the simulated party
P, internally sends cert to A, P, outputs corrupted,,, and the experiment halts.
If flag € {undetected, honest} then hand abort to A, Py outputs abort and the
experiment halts.



Hybrid, :
In Hybrid,, we do no longer ask the ideal covert functionality to decide if non-
blatant cheating should be detected but let the experiment decide. To this end,

we set 1/ & [t] in step 5 if |L| = 1 and set flag according to the result of the coin
toss. We obtain:

I I
\ 5. — If |[L| =1 then set ¢’ & [t] and flag := corrupted if ' ¢ L and set flag :=
: undetected if 7’ € L. In any case continue below. X

Since r’ ¢ L with probability 1 — % = e and v’ € L with probability % =1-—c¢

if |L| = 1, the output distributions of Hybrid, and Hybrid; are identical.

Hybrid,, :

In Hybrid,, we want to remove the utilization of the semi-honest simulator Sp7.
To this end, we change step 2 of the experiment. In the r-th instance, S selects a
new seed seed; and executes the semi-honest protocol with randomness derived
from seed; @ seed?’h) instead of invoking Sy7. In addition, the output of the r-th
semi-honest instance is taken as the final output in case of honest behavior of
A. Thus, P, outputs y” in step 6 if flag = honest. The modified steps of Hybrid,
are as follows:

0. Set r <& [t] and M7, M2, L = (. Then S generates keys (pk;, skx) and sends pk,,
to A.
2. Run the executions of ITsy with A as follows and let trans; denote the transcript
and y? denote the output of P, in the j-th execution:
— In the r-th execution, S samples a new k-bit string seed; and derives ran-
domness from seed; ® seed ™.
— For all j € [t]\ r, S derives randomness from seed).
Then, S uses {seed}};c[n) to recompute the j-th semi-honest instance and to
obtain transcript trans; for j € [t]. For every | € [t] where trans; # trans,
determine the first party P,, that has deviated from the protocol description at
location loc, add (m,,loc) to M2 and [ to L.
If r € L continue in step 0’. Otherwise continue in 3.
6. — If flag = honest then P, outputs " and the experiment halts.

We first elaborate on the transcript generated in step 2 in Hybrid; and
Hybrid,. For all instances j € [t] \ r, the transcript is generated by S acting
like an honest party. In the r-th execution, S calls S to generate a transcript
in Hybrid, while S acts like an honest party in Hybrid,. Notice that if A cheats
in the r-th instance, i.e., if » € L, the simulator rewinds and then generates
the transcript by acting like an honest party in both experiments. Therefore, S
simulates the transcript differently only if A behaves honestly.

Assuming an adversary acting like an honest party, the security of Ilsy
against passive adversaries guarantees that the transcript generated by Spr is
indistinguishable from the transcript obtained during honest execution. Hence,
S may act like an honest party instead of generating the transcript using Syy.

Moreover, the security notion fulfilled by Ilsy guarantees that the output of
an honest execution is indistinguishable from (y*,...,y") + f(L1).
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It remains to show that the randomness used in the semi-honest protocol
execution is uniformly distributed. Note that honest behavior of A implies using
randomness derived from seeds {seedi}ie[n]\h. Since seed’ = seed(") @ seedg’i),
where seed?’i) is the uniform random output of F,, the seed seedﬁ. is uniform
as well.

It follows that Hybrid; and Hybrid, are indistinguishable.

Hybrid, :

In Hybrid;, we want to align the randomness of the r-th semi-honest base
protocol instance (previously executed via the semi-honest simulator S;7) with
the randomness determined by the joined seed sampling procedure. To this end,
we change step 2 of the experiment again. Instead of sampling a fresh seed seed;
for the 7-th execution, S sets seed): to be seed£17h).

We reduce the indistinguishably of Hybrid, and Hybrid; to the hiding property
of the commitment scheme. Assume the existence of a distinguisher D which is
able to distinguish Hybrid, and Hybrid;. We use D to construct and adversary
Acom that wins the commitment hiding game with non-negligible probability.

First, Acom samples two uniform seeds s-bit strings s° and s! and sends them
to the hiding game. The hiding game answers with a commitment ¢*, which is

the commitment of s*, where b & {0, 1} is privately chosen by the security game.
Secondly, Acom executes an instance of Hybrid,, let us call it Hybridy 3, with the
following modifications:

— Acom advises S to use ¢* instead of cf.
— Acom advises S to set seed to be equal to st

Note that if the security game selects b to be 1, the execution of Hybrid, 3
equals the execution of Hybrid;, because the same seed is used for both, com-
mitment and the execution of the r-th semi-honest instance. Otherwise, the
execution of Hybrid, 5 equals the execution of Hybrid,.

Additionally, note that if A does not cheat in any instance, then & does not
need to use d because step 3* is never executed and step 3 does not use the
opening d”. If A cheats the simulator rewinds and generates a new value ¢ and
thus also obtains an opening d”. This value is used in step 3*. Thus, Acom is
able to produce valid executions for Hybrid, or Hybrid,.

Finally, Acom gives the view generated by the instance Hybridy 3 to D and
outputs whatever D outputs. As the execution of Hybrid,.5 equals the execution
of Hybrid; if b = 1 and the execution of Hybrid, otherwise and D is able to
distinguish views generated by executing Hybrid, and Hybrid; with non-negligible
probability, Acom has a non-negligible advantage in the security game.

Hence, the existence of D contradicts the hiding property of the commitment
scheme. It follows that Hybrid, and Hybrid; are computationally indistinguish-
able.

Hybrid, :
In this hybrid, we get rid of the first rewinding steps by collapsing the first
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rewound thread. Since steps 1 - 2 are identical to steps 1’ - 2’, the resulting
experiment (Hybrid,) is indistinguishable from Hybrids.

. Set r & [t] and M1, M2, L = (. Then S generates keys (pk,,,skn) and sends pk,,

to A.

. S acts like an honest party during the seed generation and simulates Feoin as

stated in the definition. This way, S obtains public seed shares {seedgg’i)}ie[n]
and commitments {c;}icn) for j € [t]. By simulating the honest party, S
gets private seed shares seedg.l‘h)7 commitments and openings (c?,d?) —
Commit(seedg-l’h)) for j € [t]. Use the extractability property of the commit-
ment scheme to obtain the private seed shares {seedgl’i)}ie[n]\h. Finally, com-

pute seed’; := seed§1’i) ) seedgz’“ for j € [t] and i € [n].

. For j € [t], run an execution of ITsy with A where the randomness is derived

from seed;ﬁ Let trans; denote the transcript and y]h denote the output of P, in
the j-th execution.

S uses {seedé}ie[n] to recompute the j-th semi-honest instance and to obtain
transcript transj for j € [t]. For every [ € [t] where trans; # trans;, determine
the first party P,, that has deviated from the protocol description at location
loc, add (m,!,loc) to M> and I to L.

. S receives message {(r’,u’,{d}};eq) biepn)\n that A sends to Fpe and executes

the following steps.

(a) If there is [ € [t] and m € [n] where Open(ci™,d]") = seedl(l’m)* # 1 and
seedgl’m)* # seedgl’m), S outputs ambiguous and halts.

(b) For every ! € [t] and m € [n] where Open(¢;”,dj") = L, add m to M; and [
to L.

¢) Compute p < TL.Generate(pp, (7, {d%}icinl icrens)). S internally hands p to

(c) pute p pp, (1, {dj e e y P
A.

. S creates signatures U;-L for j € [t] as an honest party would do and hands

{U;L}je[t] to A. S receives {U;}ie[n]\hde[t] that A sends to Pj.

. If A has not sent valid messages in the first protocol steps in the expected

communication round, hand abort to A, P, outputs abort, and terminate the
experiment.
Otherwise, we distinguish three cases.
— If |L| > 2 then set ' = r and flag := corrupted, and continue in step 6.
— If |[L| = 1 then set 7’ & [t] and flag := corrupted if v’ ¢ L and set flag :=
undetected if 7' € L. In any case continue below.
— If |L| = 0 then set ' = r and flag := honest, and continue below in step 6.

0* Rewind A and run steps 1* - 5* below until M| = My, M5 = M>, and L' = L.

1* Run the seed generation with A as in step 1.
2* Run the semi-honest instances with A as in step 2.
3* S receives message {(r’,u’, {d; Yier) Yiem\n that A sends to Fpc and exe-
cutes the following steps.
(a*) If there is | € [t] and m € [n] where Open(cj”, di") = seed"™* # L
and seed'"™" £ seed""™ | rewind to step 1*.
(b*) For every | € [t] and m € [n] where Open(c[*,d;") = L, add m to M]
and [ to L'.
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(c*) Compute p < TL.Generate(pp, (r',{d}}ic(n),jer\)). S internally
hands p to A.
4* S creates signatures o for j € [t] as an honest party would do and hands
{O'Jh}je[t] to A. S receives {O’;}ie[n]\h’je[t] that A sends to Pj.
5% If A has not sent valid messages in the first protocol steps in the expected
communication round, then return to step 1*.

I

I

I

I

I

I

1

1

1

1

1

|

I

! 6. S receives message {continue;};cin\n that A sends to Fpc and hands
! (r',{d}}jepnr icin)) back to A. If A responds with abort or S has not received
! continue; for all ¢ € [n] \ h, continue in step 7.

| If A does not respond with abort differentiate the following cases:

\ — If flag = honest then Pj, outputs y” and the experiment halts.

X — If flag = undetected then P, outputs yff, and the experiment halts.

! — If flag = corrupted compute (m, cert) := Blame(view"), where view” is the
! view of the simulated party Pp. Internally send cert to A, P, outputs
I corrupted,,, and the experiment halts.

LT If flag = corrupted then S computes ((r’,{d;'-}jg[t],ie[n]),vr) := TL.Solve(pp, p)
| and (m, cert) := Blame(view™), where view" is the view of the simulated party
X Py, internally sends cert to A, P, outputs corrupted,,,, and the experiment halts.
! If flag € {undetected, honest} then hand abort to A, P}, outputs abort and the
! experiment halts.

Hybrid; :

In this hybrid, we align the execution of the main thread and the remaining
rewinding thread in order to prepare the removal of the rewound thread. We will
show computationally indistinguishability of Hybrid, and Hybrid; via a reduction
to the security guarantees of the time-lock puzzle.

In Hybrid;, we set 7’ := r in step 0*:

E 0* Set r’ := r, rewind A and run steps 1* - 5* below until M{ = M1, M5 = M, E
1 and L/ = L. :

Unfortunately, we cannot directly reduce indistinguishability to the security
of the TLP, as the puzzle distinguisher in the TLP security game is bound to run
in time 7, while the distinguisher of the hybrids is allowed to run in arbitrary
polynomial time.

Therefore, we will first examine the behavior of A and show that the two
hybrids are computationally indistinguishable unless there exists a class of PPT
adversaries A which are able to display a certain behavior at a specific time
slot, and hence can be bound in time 7. In particular, adversaries that are able
to display a specific behavior with different probability in the rewound threads
of Hybrid, and Hybrid;. Secondly, we show that the existence of any adversary
A’ € A contradicts the security of the time-lock puzzle.

Note that the main thread in the simulation is used to determine A’s strategy
and the rewound threads, if any, are executed until A repeats this strategy. As
strategy, we understand the abort behavior and the cheating behavior of A, i.e.,
the existence of an abort before step 5, the instances A cheats in (L), the location
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the adversary cheats in (loc) and the parties A uses to execute its attacks (M,
and My). This corresponds directly to the behavior of aborting, blatant cheating
(IL| > 1), strategic cheating (]L| = 1) and being honest (|L| = 0).

Formally, a single execution of the hybrid experiment Hybrid; with security
parameter £ € N involving an PPT adversary A with auxiliary input 2o € {0, 1}*
and random tape z; € {0,1}* corrupting a subset of parties I with |I| =n —1
is defined as Hybridg(z(),zl)_l(l"). Further, the joint distribution of the output of
honest parties and adversary A in the experiment Hybridf4(Z07Z1)71(1"‘) is defined
as {Hybridf4(20721)71(1“)}20’217,€ where the distribution is taken over all possible
choices for 29, 21, and . In the following, we will simplify the notation and denote
Hybrid’y ., .,y ;(1%) as Hybrid;* and {Hybrid’y ., ..y ;(1)}; .2, .4 as {Hybrid;'}.
Finally, we denote the subset of {Hybrid?'} including executions of Hybrid:" that
involve a specific event E as {Hybrid?* | E}.

We make the following observations. First, the two hybrids are exactly the
same up to the end of step 5. The decision if the experiment needs to rewind
or not is made in step 5. Hence, it follows that the probability of rewinding is
exactly the same in both hybrids.

Prlrewind in Hybrid;'] = Pr[rewind in Hybridz!] (1)

Secondly, in any instance without rewinding, the modified line, step 0%, is not
executed in both of the hybrids. Hence, it follows that conditioned on the event
that there is no rewinding the distributions of the two hybrids are the same.

{Hybrid* | Hybrid7' does not rewind}
= {Hybrid2 | HybridZ' does not rewind}

(2)

Finally, we need to show that the distributions of the two hybrids conditioned
on the event that there is rewinding are at least computationally indistinguish-
able:

{Hybrid* | Hybrid7' does rewind}

3
=c {Hybridg4 | HybridsA does rewind} ®)

To show indistinguishability of the distributions conditioned on the rewinding
event, we traverse through the hybrids and show that the views generated by
the two hybrids until the particular step are indistinguishable. Again, note that
both hybrids are the same up to step 5 (inclusively) and hence the views after
executing step 5 have the same distribution. The difference between the two
hybrids is that r is sampled uniformly random in [t] in Hybrid, and set to equal
r in Hybrid;. However, r is a uniform random element in [¢], no state of the
main thread (including 7) is used during the execution of the rewound thread,
the adversary cannot know anything about the main thread after being rewound
and the actions taken in the rewound thread of both hybrids are the same. Hence,
the view of the adversary up to step 5* is distributed equally in both hybrids.
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After step 5* the adversary is rewound until it displays the same strategy as
in the main thread. At this point there can emerge a discrepancy in the view of
the adversary in the two hybrids.

Intuitively speaking, in Hybrid,, it can happen that the strategy the adver-
sary would prefer in the rewound thread (based on coin r’) is different from
the one determined by the main thread (with coin ) that is enforced on the
adversary via rewinding. Hence, the view distribution in Hybrid, can contain
more final views that involve a coin r’ and a strategy B; than expected from an
experiment without rewinding, because r’ is typically associated with a strategy
Bs. Looking ahead, such a view distribution is not possible in Hybrids. Still in-
tuitively speaking, we will show via a reduction to the security guarantees of the
time-lock puzzle that an adversary is not able to base its decision on the coin r’
and hence cannot utilize its decision to distinguish the two hybrids.

More formally, we define a class of PPT adversaries A, for which there ex-
ist a strategy B which is followed in the main thread of both hybrids with
non-negligible probability, in the rewound thread of Hybrid, with probability
Pr[Hybrid,, B] and in the rewound thread of Hybrid; with Pr[Hybrids, B], such
that |Pr[Hybrid,, B] — Pr[Hybrids, B]| > negl. It follows that all adversaries A ¢ A
follow every strategy B that is followed in the main thread with non-negligible
probability with negligible close probability in the rewound threads of Hybrid,
and Hybrids.

We continue with showing that statement 3 holds for all A ¢ A. After jump-
ing from the rewound loop back to the main thread the view of the adversary is
equal to the one after step 5* but involves a strategy which is enforced by the
simulator. The strategy enforced from outside looks arbitrary to the adversary
as the adversary has no information about the main thread. Still, the enforced
strategy has the same distribution in both hybrids as the main thread deter-
mining the enforced strategy is the same in both hybrids. Additionally, each
A ¢ A follows each strategy with the same probability in the rewound thread of
Hybrid, and Hybrid; and hence independent of the coin /. Therefore, A cannot
use the enforced strategy to distinguish Hybrid, and Hybrid; and the view of A
right before step 6 os computationally indistinguishable. As the two hybrids are
the same in the succeeding steps, the view of each A ¢ A in both hybrids is
computationally indistinguishable.

Finally, we will show that A = () via a reduction to the security guarantees
of the time-lock puzzle and hence show that statement 3 holds for all PPT
adversaries. An observation, we need for the reduction to the time-lock puzzle
is that the execution of S for the protocol in steps 3* to 5*, denoted as Sz._5x,
takes time 8 T'(Ss._54,S52%), where S5t is the state of the simulator right
after step 2*. Note that adversary A is internally executed by S. Hence, Ss._s5s
also includes the execution of A for the steps 3* to 5* and thus the decision of
A to continue or abort. For the same reason, S5 includes the state of A right
before step 3*.

8 See section 3.1 for the notion of time used in this work and the definition of the
time-cost function T'(-,-).

42



If A follows a different strategy than in the main thread in steps 3* or 5%, S
interprets this different strategy as abort. Each of these steps takes maximally
one communication round (of time 7). Thus, in case of an aborting A, Ss._s5«
takes maximally time 2 - T, < T Finally, if A wants to continue, it needs to
sent valid messages in step 3* or 5*%. Otherwise, the behavior is interpreted as
abort. As the messages need to be sent within the correct communication round,
continuing also takes time less than 7. Hence, it holds that T'(Ss._54, S52%) < 7.

Next, we will show that the existence of any attacker A’ € A contradicts
the security guarantees of the time-lock puzzle and thus show that A = (). We
construct a polynomial-time adversary (AJ'F, AJ'P) against the security of the
time-lock puzzle, where the running time of AJ" is bounded from above by T.
This adversary (A7, AIYP) utilizes an arbitrary A’ € A and acts as S, when
interacting with A’.

Without loss of generality assume A’ follows a strategy B (which leads to
rewinding) in the main thread with non-negligible probability Pr[main, B], in the
rewound threads of Hybrid, with probability Pr[Hybrid,, B] and in the rewound
threads of Hybrid; with probability Pr[Hybrids, B] such that Pr[Hybrid,, B] >
Pr[Hybrids, B] + negl.

In the time-lock puzzle security game, AJ'P executes one instance of S in
Hybrid, up to right after protocol step 5. If A" does not follow strategy B or
aborts before step 5, AT sends arbitrary values to the security game and AJ-P
outputs 1. Otherwise, AP continues with the simulation until step 2* and
extracts the decommitments {d;}ie[n],je[t], the coin r, which has been used in
the main thread, and the coin r’, which has not been used yet, from the current
state of the simulator, Sa.. As S§2* corresponds to the execution of Hybrid,, it
is possible that r # r’.

Then, AJ'P sends two secrets sg and s; to the security game, where

so := (', {d% Yiein,je)

and ‘
s1:= (1, {dj e, jeln)-

Upon receiving a puzzle Z;, AJP continues with the rewound thread Sa.
by executing S3._5. but using Z as time-lock puzzle p. If the adversary repeats
strategy B output 0, otherwise output 1.

Note that depending on whether the game returns sy or si, the rewound
threads executed by AJLP correspond exactly to the rewound thread executed
by Hybrid, or the rewound thread executed by Hybrids. Since S3,_5. runs in time
T < T, as shown above, AI'P fulfills the requirement of being bounded from
above by T.

The win probability is calculated as follows. If the security game has chosen
s0, the probability that (A", AJ'P) wins equals the probability that B is fol-
lowed in the main thread and in the rewound thread. As the security game has
chosen s, the rewound thread corresponds to Hybrid,:

Prwin|b = 0] = Pr[main, B] - Pr[Hybrid,, B]

43



If the security game has chosen sy, the probability that (AJ'F, ATLP) wins equals
the probability that B is not chosen in the main thread or B is chosen in the
main thread but not in the rewound thread. As the security game has chosen
51, the rewound thread corresponds to Hybrids:

Pr{win|b = 1] = (1 — Pr[main, B]) 4+ Pr[main, B] - (1 — Pr[Hybrids, B])

Overall, (AT'?) AJP) wins the security game with probability:
Priwin] = = - (Pr[main, B] - Pr[Hybrid,, B])
+ = - ((1 = Pr[main, B]) + Pr[main, B] - (1 — Pr[Hybrid;, B]))

DO = N o) =

+ % - (Pr[main, B] - Pr[Hybrid,, B] — Pr[main, B] - Pr[Hybrid;, B])

As Pr[main, B] > negl and Pr[Hybrid,, B] > Pr[Hybrids, B]+negl, (AT-?, ATLP)
wins the security game with non-negligible advantage. This contradicts the se-
curity of the time-lock puzzle. It follows that A = ().

Hence, statement 3 holds for all PPT adversaries .4 and Hybrid, and Hybrid;
are computationally indistinguishable.

Hybridg :

In Hybridg, we simplify the specification of the experiment in order to ease the
explanations in the following hybrid. In particular, we replace all occasions of r’
with r as they are always identical (' is always defined to equal r before being
used). Additionally, observe that in step 6 the experiment does exactly the same
if flag = undetected or flag = honest. Therefore, we merge these two cases into
one. As the changes made in Hybrid, are just semantic and do not influence the
output distribution of Hybridg, Hybrid; and Hybridg are identical.

Hybrid., :

In this hybrid, we remove the remaining rewinding steps by collapsing the
rewound thread. As the steps 1* - 5* are identical to steps 1 - 5, the resulting
experiment (Hybrid;) is indistinguishable from Hybridg.

0. Set r & [t] and M7, M2, L = (. Then S generates keys (pky, ski) and sends pk,,
to A.

1. S acts like an honest party during the seed generation and simulates Feoin as
stated in the definition. This way, S obtains public seed shares {seedf’”}ie[n]
and commitments {c;};c,) for j € [t]. By simulating the honest party, S
gets private seed shares secad;-l’h)7 commitments and openings (cf,d}) <
Commit(seed;.l’h)) for j € [t]. Use the extractability property of the commit-
ment scheme to obtain the private seed shares {seedgl‘i)}ie[n]\h. Finally, com-
pute seed’ := seed;-l’i) @ seedgg’i) for j € [t] and i € [n].

2. For j € [t], run an execution of IIsy with A where the randomness is derived
from seed?. Let trans; denote the transcript and yjh denote the output of P, in
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the j-th execution.

S uses {seedé}iehﬂ to recompute the j-th semi-honest instance and to obtain
transcript trans} for j € [¢]. For every | € [¢] where trans; # trans;, determine
the first party P, that has deviated from the protocol description at location
loc, add (m,!,loc) to M> and [ to L.

3. S receives message {(r*,u’, {d}};e)}iem)\n that A sends to Fpg and executes
the following steps.

(a) If there is | € [t] and m € [n] where Open(¢i™,d]") = seedl(l’m)* # 1 and
seedgl’m)* + seedl(l'm>, S outputs ambiguous and halts.

(b) For every ! € [t] and m € [n] where Open(¢;”,d;") = L, add m to M; and [
to L.

(c) Compute p + TL.Generate(pp, (r, {d’ }ic(n),jefi\r))- S internally hands p to
A.

4. S creates signatures af for j € [t] as an honest party would do and hands
{o"} e to A. S receives {o% }icn\n.je( that A sends to Py.

5. If A has not sent valid messages in the first protocol steps in the expected
communication round, hand abort to A, P, outputs abort, and terminate the
experiment.

Otherwise, we distinguish three cases.
— If |L| > 2 then set flag := corrupted, and continue below.
— If |L| = 1 then set flag := corrupted if r ¢ L and set flag := undetected if
r € L. In any case continue below.
— If |L]| = 0 then set flag := honest, and continue below.

6. S receives message {continuei}ie[n]\h that A sends to Fpg and hands
(r,{d5}jer\ricin)) back to A. If A responds with abort or S has not received
continue; for all ¢ € [n] \ h, continue in step 7.

If A does not respond with abort differentiate the following cases:
— If flag € {honest, undetected} then Pj, outputs 3 and the experiment halts.
— If flag = corrupted compute (m, cert) := Blame(view"), where view” is the
view of the simulated party Pp. Internally send cert to A, P, outputs
corrupted,, and the experiment halts.

7. If flag = corrupted then S computes ((r, {d%};e(,ic[n)), ™) = TL.Solve(pp, p)
and (m, cert) := Blame(view”), where view” is the view of the simulated party
Py, internally sends cert to A, P, outputs corrupted,,,, and the experiment halts.
If flag € {undetected, honest} then hand abort to A, P, outputs abort and the
experiment halts.

Hybridg :

Up to Hybridg, S utilizes extracted variables that should remain private during
the whole protocol to assess the adversary’s behavior, i.e., the decommitment
d. In Hybridg, we avoid the utilization of this special power and assess the
behavior solely based on variables that will eventually be published unless the
adversaries chooses to abort. However, the variables might not public at the time
they are used. To this end, we change the computation of the sets M;, M, and
L. Instead of checking misbehavior of the adversary in all instances j € [t], we
restrict the simulator to j € [¢t] \ r. To emphasize the difference, we define the
sets Ml, M, and L in step 0. In step 2 and 3 of Hybridg, S construct the sets
My, M, and L only based on instances [ € [t] \ r. We further change step 5:
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I
. 0. Setr & [t] and My, My, L = 0. Then S generates keys (pk;,, skx) and sends pk;,
X to A.

' 2. For j € [t], run an execution of IIsy with A where the randomness is derived
! from seed?. Let trans; denote the transcript and yjh denote the output of P, in
I the j-th execution.

| S uses {seed;}ie[n] to recompute the j-th semi-honest instance and to obtain
: transcript trans; for j € [t] \ r. For every [ € [t] \ r where trans; # trans;,
\ determine the first party P,, that has deviated from the protocol description at
X location loc, add (m, [, loc) to M and [ to L.

! 3. S receives message {(r*,u’, {d%}jei) Yiepn\n that A sends to Fpe and executes
! the following steps.

| (a) If there is [ € [t] and m € [n] where Open(c}”,d}") = seed!""™* # 1 and
E seedl(l’m>* # seedl(l’m>, S outputs ambiguous and halts.

! (b) For every | € [t]\ r and m € [n] where Open(c{",d;") = L, add m to M,
I and ! to L.

| (c) Compute p + TL.Generate(pp, (r, {d’ }ic[n},jei\r))- S internally hands p to
| A.

. 5. If A has not sent valid messages in the first protocol steps in the expected
: communication round, hand abort to A, P, outputs abort, and terminate the
! experiment.

I Otherwise, we distinguish two cases.

| —IfL # () then set flag := corrupted and continue below.

X — If L = 0 then set flag := undetected and continue below.

Let L be defined as in Hybrid..
It holds that

|IL|>2or|L|=1;r¢ L L#0

and
|Ll|=1reLor|Ll=0&L=0.

Moreover, S acts identically in steps 6 and 7 if flag = honest or flag =
undetected. Therefore, we can merge both cases, honest behavior and undetected
cheating, to the case where flag := undetected

It follows that Hybrid; and Hybridg are distributed identically.

Hybridg :

In Hybridy, we go one step further and avoid S’s utilization of variables before
they become public. To this end, we change steps 6 and 7 by differentiating the
behavior of the adversary based on the output of the Blame-algorithm instead of
the value of flag. Since this means that flag is never used by the simulator, we may
change step 5, where flag is defined. Moreover, the sets Ml, M, and L are only
required for defining flag in step 5, and thus we can remove the computation of
these sets from steps 2 and 3 as well. The changed steps of Hybridg are as follows:

I
1 0. Setr & [t]. Then S generates keys (pk,,skn) and sends pk,, to A. E
I .
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2. For j € [t], run an execution of IIsy with A where the randomness is derived :
from seed?. Let trans; denote the transcript and y]h denote the output of P, in |
the j-th execution. :

3. S receives message {(r*,u’, {d’};c() tiein)\n that A sends to Fpg and executes |
the following steps. X
If there is [ € [t] and m € [n] where Open(¢”,d[") = seedl(l‘m)* # L1 and !
seedl(l’m)* # seedfl’m), S outputs ambiguous and halts. !
Otherwise, compute p < TL.Generate(pp, (r, {d;'}ie[n],jE[t]\r))- S internally !
hands p to A. I

5. If A has not sent valid messages in the first protocol steps in the expected |
communication round, hand abort to A, P, outputs abort, and terminate the ,
experiment. X

6. S receives message {continue;};cinj\n that A sends to Fpc and hands !
(r,{dj}jer\r,iemm)) back to A. If A responds with abort or S has not received !
continue; for all ¢ € [n] \ h, continue in step 7. I
If A does not respond with abort then compute (m, cert) := Blame(view”), where |
view” is the view of the simulated party Py. If cert # L, internally send cert to ,
A, P, outputs corrupted,,, and the experiment halts. Otherwise, if cert = L, P, |
outputs y” and the experiment halts. !

7. 8 computes ((r,{d:};jcq,icin)),™) = TL.Solve(pp,p) and (m,cert) := !
Blame(viewh), where view” is the view of the simulated party Pp. If cert # L, 1
internally send cert to A, P, outputs corrupted,,, and the experiment halts. |
Otherwise, if cert = L, then hand abort to A, P, outputs abort and the experi- ,
ment halts. X

We first observe that if the opening values d; provided by the adversary in
step 3 open to some valid seed seed!
halts in both Hybridg and Hybridg.

In case the adversary provides an incorrect opening value d;'- in step 3 of
Hybridg such that Open(c},d}) = L for any i € [n]\ h and j € [t] \r, S adds j to
set L and defines flag := corrupted in step 5. If A executes the same behavior in
Hybridy, the Blame-algorithm detects that Open(cé», d;) = 1 and outputs a valid
certificate.

In case the adversary provides correct opening values, such that Open(cé-, d;) =
seed§1’z), for all ¢ € [n] \ h and j € [t] \ r, the opened values used in the Blame-
algorithm equal the values extracted by S in step 1 of Hybridg. Therefore, the
recomputation of the semi-honest instances are exactly the same and any mis-
behavior is detected in both hybrids.

Since the Blame-algorithm analyzes the behavior of all parties for instances
J € [t]\ r, the Blame algorithm performs the same checks as computed explicitly
by S in step 2, 3 and 5 in Hybridg and, hence, captures the identical behavior.
It follows that for (m, cert) := Blame(view”) it holds

#* seedgl’i), S outputs ambiguous and

cert # 1 & flag = corrupted

and
cert = 1 & flag = undetected.
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It follows that Hybridg and Hybridg are distributed identically.

Hybrid,, :

In Hybrid,,, we show that S outputs ambiguous in the experiment only with
negligible probability via reduction to the binding property of the commitment
scheme. This allows us to remove S’s extra power of detecting ambiguous opening
values while obtaining a computational indistinguishable Hybrid,,. Step 3 is as
follows.

3. S receives message {(Ti7ui,{d;}je[t])}ie[n]\h that A sends to Fpg, computes
: p < TL.Generate(pp, (1, {d} }icin) jer\r)) and internally hands p to A.

In order to show computational indistinguishability between Hybridy and
Hybrid,,, we need to show that S output ambiguous in Hybridy only with negligi-
ble probability. To this end, we construct an adversary Agi, against the binding
property of the commitment scheme that utilizes adversary A of Hybridy. We
show that if A force § in Hybridy to output ambiguous with non-negligible prob-
ability, our constructed adversary Ag;, breaks the binding property.

Adversary Agi, acts exactly like S in Hybridy. In particular, Agi, uses the
(171‘)
) J

and the opening values d; for i € [n] \ h and j € [t] in step 1 and Agi, checks if

extractability property of the commitment scheme to obtain the value seed

adversary A provides a value d}”* in step 3 where Open(c}™*, d™*) = seedl(l’m)* =+
1 and seedl(l’m)* + seedl(l’m). If this is the case, Agin found a tuple (¢}, dj*, dj™*)
which breaks the binding property.

The success probability of Apg;, is exactly the probability that the simulator
S in Hybridg outputs ambiguous. By contradiction, it follows that S outputs
ambiguous only with negligible probability if the binding property holds.

Hybrid,; :
Finally, we want S to execute Fpg, Feoin and the commitment scheme as in-
tended, without injecting forged variables or extracting secret information. To

this end, we replace choosing r & [t] at the outset of the experiment with sam-

pling v & [¢] and setting r := St 7" mod ¢ in step 3. Moreover, we remove
the extraction of the corrupted parties’ seed shares in step 1. By applying these
changes, the steps presented below changed accordingly. This results in the real
world protocol execution.

0. S generates keys (pky,,sky) and sends pk,, to A.

1. S acts like an honest party during the seed generation and simulates ]_:coin as
stated in the definition. This way, S obtains public seed shares {seedg-Q’Z)}ie[n]
and commitments {c}};c(n for j € [t]. By simulating the honest party, S

Commit(seed
for j € [t].

2. S receives message {(r*,u’, {d}};c()}iem)\n that A sends to Fpg and executes
the following steps.

(1h)) @2.h)
J

for j € [t]. Finally, compute seed;-‘ = seed§1’h) @ seed;

1
1
I
I
I
|
I
| gets private seed shares seed;-l’h)7 commitments and openings (c?,d?) —
|
1
I
I
I
I
I
I
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h n i

I
I
! Sample r & [t] and set r = o ,r" modt Compute p <+
! TL.Generate(pp, (7, {d} }ic[n],jee)\r))- Internally hand p to A.

Since 7" is chosen uniform at random from [¢] the value of r is distributed
uniform randomly as well. Thus, r is distributed identically in Hybrid,, and
Hybrid,; . .

Moreover, the seeds of the corrupted parties seed; for j € [t]\r and i € [n]\h
are only required in the computation of the Blame-algorithm in steps 6 and 7.
Since the values can be computed within Blame after the openings of the private
seed shares d3 are either revealed in 6 or by solving the time-lock puzzle in 7,
there is no need to use the extractability property of the commitment scheme in
step 1. Hybrid,, and Hybrid,; are distributed identically.

Since Hybrid,; equals the real-world execution, this concludes the proof and
shows that the ideal-world execution is computationally indistinguishable from
the real-world execution.

B Input-Dependent Protocol

In this section, we specify the input-dependent compiler described in Section 6.
As the compiler is similar to the input-independent one, we emphasize the dif-
ferences to the input-independent compiler by highlighting them in red.

The protocol of the input-dependent compiler. The main difference between
the input-dependent publicly verifiable covert protocol (HiFSjVC) and the input-
independent one (ITpyc) is that in ITjS, parties do not run ¢ instances of a semi-
honest n-party protocol but one instance of a semi-honest (¢ - n)-party protocol,
in which each real party plays the role of ¢ virtual parties. Real parties secret
share their input between each of their virtual parties and simulate the actions
of the virtual parties in the protocol I1¢,, (see Ssection 6 for the specification of
I1¢,). In the verification step, parties open all but one of their virtual parties by
revealing the input shares and random tapes used by the virtual parties.

Protocol T},

Public input: All parties agree on k, n, t, II$, and pp and know all parties’
public keys {pki}icin)-
Private input: P, knows its own secret key skj, and secret input z".

Setup:
We abuse notation here and assume that the parties execute the seed generation
protocol from above.

1. For each index j € [t], party P, interacts with all other parties to receive
(seedg-l’h), d;l'h), {seedf’“, C;l,i)}ig[n]) <+ SeedGen

and computes seed? = seed;l’m ©® Seed§2’h).
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2. Party P creates t secret shares 1:}7’ of input " such that =" = @je[t] .”[,’;-L,
calculates (clf,d}}) := Commit(z") for all j € [t] and sends {c}},c( to each

other party.
Semi-honest protocol execution:

3. Party P, engages in one instance of the (¢-n)-parties protocol I15y with all
other parties. Party P, plays the role of the virtual parties V,f , which has
the input z{, uses randomness derived from seed_;-” and receives output y_;l,
for j € [t]. Additionally, Py receives the protocol transcript trans. Denote
by tra nsé the ordered set of all messages that have been sent or received by
the virtual party V. As all messages are sent to all parties, each party can
construct each set trans;.

Create publicly verifiable evidence:

4. Party P, samples a coin share " & [t], a randomness share u" & {0,1}",
sends the message (r", u", {(d‘g-l’h)7 d})}jen) to Fie and receives time-lock
puzzle p as response.

5. For each j € [t], Party Pj creates a signature ojh « Sign
the signed data is defined as

ok, (datall), where

data?’ = (h, j, seed&z’i), c;.l"i), ¢}, p, trans}).
P, broadcasts its signatures and verifies the received signatures.
Optimistic case:

6. If any of the following cases happens
— P, has not received valid messages in the first protocol steps in the
expected communication round.
— Fpc returned abort, or
— any other party has sent abort
party P}, broadcasts and outputs abort. _
7. Otherwise, P, sends continuey, to Fis, receives (r, {(d;f(l"")7 &) Yiem)ger\r)
as response and calculates

(m, cert) := Blame" (view")

where view” is the view of P.
If cert # L, broadcast cert and output corrupted,,. Otherwise, P, outputs

" h
@je OEZE
Pessimistic case:

7. If Fpg returned abort in step 6, P, solves the time-lock puzzle

((r, (" d5) Yiepm serone), @) = TL.Solve(pp, p)
and calculates .
(m, cert) := Blame (view™)

where view” is the view of Py.
If cert # L, broadcast cert and output corrupted,,,. Otherwise, output abort.
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Puzzle generation functionality of the input-dependent compiler. The maliciously
secure puzzle generation functionality, s, which can be instantiated using a
maliciously secure general purpose multi-party computation protocol, takes as
additional input the openings (d;) of each virtual party’s input share and includes
them into the puzzle and output according to the coin toss.

Functionality Fis-

Inputs: Each party P; with i € [n] inputs (1%, u’, {(d;l"i’), di)}ier), where r' €
[t], u' € {0,1}", and (d\"",d}) € {0,1}*".

— Compute 7 :=>_" 7" mod ¢t and u := ", u’.
— Generate puzzle p < TL.Generate(pp, (r, {(d;l’l)., di)Yien)jeq\r)) using
randomness u.
— Send p to A.
e If A returns abort, send abort to all honest parties and stop.
e Otherwise, send p to all honest parties. v
Upon receiving continue from each party, send (7, {(d;-l"">. di) Yiem)jel\r)
to A.
e If A returns abort or some party does not send continue, send abort to
all honest parties and stop.
e Otherwise, send (r, {(d;l’”, d5)}Yiem],jeq\r) to all honest parties.

Blame algorithm of the input-dependent compiler. The blame algorithm of the
input-dependent protocol, Blame', checks that the openings of the input shares
and seed shares are correct and that the semi-honest protocol between the virtual
parties has been executed correctly. For the latter, the algorithm simulates the
protocol execution between the virtual parties. The opened virtual parties are
simulated based on their randomness and input share and the unopened ones by
re-using their messages of the original transcript.

Algorithm Blame'

On input the view view of a party which contains:

— public parameters (n,t)
— public seed shares {seed§2’z)}ie[n]
— shared coin r
— private seed share commitments and decommitments
{ (1,1) d(l’”}' ‘
Cj @5 sign] e\
— input share commitments and decommitments {c7, d;-}_ie[,,_,] E[H\r

/ %

2J
— additional certificate information ({pk,};cpn), 7, {(data}, o5) bicin),jer)
do:

1. Calculate seed;l’i) = Open(c§1’i),d§1’i>) and z := Open(c},d’) for each
i€ n],jeft]\r
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2. Let My := {(i,j) € ([n],[t] \ r) : seed™ = L or 2} = L}. If
M, # 0, choose the tuple (m,l) € M; with minimal m and [, prior-
itized by m, compute (-,7) := TL.Solve(pp,p), if @ = L, set cert :=
(pk,,,data, m, T, {(d_;l"),d_’j)},-e[nwe[t]\r,ol’") and output (m, cert).

3. Set seed’ := seed;l’i) P seedf’i) for all i € [n] and j € [t] \ 7.

4. Simulate I1$y by playing the role of all virtual parties. The virtual parties
Vj for i € [n] and j € [t] \ r are executed as defined by I1&; and with
randomness seed; and input xj. The virtual parties V' are assumed to
behave correctly and are simulated by making them send exactly the same
messages as in trans. Denote the transcript of the simulated protocol as
trans’.

5. If trans # trans’, determine the virtual party V;”™ that has sent
the first message which is different in trans and trans’. Set cert :=
(pk,,,data, d"™  di", o7") and output (m,cert).

6. Output (0,1).

Judge algorithm of the input-dependent compiler. In the judge algorithm of the
input-dependent compiler, Judge'd, parties accuse virtual parties instead of real
party. If the judge detects misbehavior of a virtual party it announces the re-
sponsible real party to be corrupted. In case of inconsistency certificates, the
judge behaves as the judge in the input-independent protocol but additionally
receives and checks the commitment and opening of the virtual party’s input
share. In case of deviation certificates, the judge cannot simulate the whole pro-
tocol, as done in the input-independent compiler, as the judge cannot simulate
the unopened virtual parties. Instead, the judge receives the ordered set of all
messages received or sent by the accused virtual party. Then, the judge checks
if the sent messages are correct based on the input share, the randomness and
the received messages of the virtual party.

Algorithm Judge (cert)

Inconsistency certificate: o
On input cert = (pk,,,, data, , 7, {(olfjl"")7 d5)Yiem e or) dos

— If Verify,, (data;0;") = L, output L.

— Parse data to (m, 1, -, (cfyhm)7 ) py)-

— If TL.Verify(pp, p, (1, {(d;-l""), di)}ij),m) = 0 output L.

If r =1, output L.

It Open(cl(l’m>,dl(1’m)) # L1 and Open(c*,d;") # L, output L. Else output

pk,,-

Deviation certificate:
On input cert = (pk,,, data, d;l’m), 4t o).

— If Verify, (data;o;") = L, output L.
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— Parse data to (m, 1, seedl<2'm)7 cgl’m), e, -, trans™).

— Set seed™™ «— Open(c{"™,d"™) and z* <+ Open(c)",dj"). If
seedl(l’m) =1 or 2" = L, output L.

— Set seed]" := seedl(l’m) @ seedl(Q’m).

— Simulate the behavior of the virtual party Vl/m in I1¢y, by using z7" as input
of V|, seed]™ as randomness of V;"*, the messages in trans;" that have been
received by V;" as incoming messages of V;"™* and by defining the outgoing
messages of V| according to IT<y. Denote the resulting transcript of party
V™" as trans’.

— If trans’ = trans}”, output L. Otherwise, output pk,,.

Ill formatted: If the cert cannot be parsed to neither of the two above cases,
output (L).
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