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Abstract
This thesis addresses security and privacy problems for digital devices and biometrics,
where a secret key is generated for authentication, identification, or secure computa-
tions. A physical unclonable function (PUF) is a promising solution for local security
in digital devices. A low-complexity transform-coding algorithm is developed to make the
information-theoretic analysis tractable and motivate a noisy (hidden) PUF source model.
The optimal trade-offs between the secret-key, privacy-leakage, and storage rates for

multiple measurements of hidden PUFs are characterized. The first optimal and low-
complexity code constructions are proposed. Polar codes are designed to achieve the best
known rate tuples. The gains from cost-constrained controllable PUF measurements are
illustrated to motivate extensions.





Zusammenfassung
Diese Dissertation befasst sich mit Problemen der Sicherheit und des Datenschutzes für
digitale Geräte und Biometrie, wobei ein geheimer Schlüssel für Authentifizierung, Iden-
tifizierung oder sichere Berechnungen erzeugt wird. Eine physical unclonable function
(PUF) ist eine Lösung für die lokale Sicherheit in digitalen Geräten. Unser Algorithmus
zur Transformationskodierung, der eine geringe Komplexität aufweist, macht die informa-
tionstheoretische Analyse möglich und führt zu einem verrauschten (versteckten) PUF-
Quellmodell.
Der optimale Kompromiss zwischen den Geheimschlüssel-, Privacy-Leakage- und Speicher-

raten für Mehrfachmessungen von versteckten PUFs wird ermittelt. Erste optimale und
wenig komplexe Code-Konstruktionen werden vorgeschlagen. Polar-Codes werden entwor-
fen, um darzustellen, dass sie die besten bekannten Rate Tupeln erreichen. Die Vorteile
aus kostenbeschränkten, kontrollierbaren PUF-Messungen werden veranschaulicht, um Er-
weiterungen zu motivieren.

xiii





1
Introduction
After World War I, the U.S. Army and Navy made fundamental advances in cryptography
in secret. One exception was Claude E. Shannon’s paper “The Communication Theory
of Secrecy Systems” [1]. Until 1967, the literature on security was not extensive, but
a book [2] with a historical review of cryptography changed this trend [3]. Since then,
the amount of sensitive data that needs to be protected against attackers has increased
significantly. Continuous improvements in security are needed and every improvement
creates new possibilities for attacks [4].
A promising local solution to security and privacy problems is a physical unclonable

function (PUF) [5, 6]. PUFs generate “fingerprints” for physical devices by using their
intrinsic and unclonable properties. These functions resemble biometric features of human
beings. In this thesis, we bridge the gap between the practical secrecy systems that use
PUFs and the information-theoretic security limits by

1. Statistically modeling real PUF (and biometric) outputs to solve security problems
with valid assumptions on the output model;

2. Proposing methods that transform PUF symbols so that the transform-domain out-
puts are information-theoretically tractable and result in smaller hardware area than
benchmark designs in the literature;

3. Finding the information-theoretic limits for realistic PUF output models;

4. Providing optimal, practical, and future-proof code constructions to achieve these
limits;

5. Designing best-in-class polar codes for realistic PUF output models by using the
optimal code constructions.

In short, we start from real PUF outputs to obtain mathematically-tractable models of
their behaviour and we propose optimal code constructions for these models. Using the
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real PUF outputs, we then illustrate that our models are realistic and, most importantly,
our methods perform well in practice. Since our designs are based on information theory,
any further improvements in this topic are likely to follow our steps.
The thesis is structured as follows.

. Chapter 2 gives a general definition of PUFs. Practical motivations to use PUFs and
challenges faced when extracting a uniform sequence from PUF outputs are listed.

. Chapter 3 reviews and improves a transform-coding approach [5, 7, 8] to overcome
the noise and correlation in the PUF outputs so that a secret key can be generated
without leaking information about the key. A key agreement (helper data generation)
method is described and error-correcting codes are designed for this method according
to the modeling parameters obtained from the transform-coding algorithm. The
results of this chapter were published in [9–11], where programming for the hardware
implementation was done by Tasnad Kernetzky of TUM.

. In Chapter 4, information-theoretic rate regions are derived for a generalization of
a classic two-terminal source model key agreement problem. The additions to the
model are that the encoder observes a hidden, or noisy, version of the identifier, and
that the encoder and decoder can perform multiple measurements. The gains from
multiple measurements of a hidden source are illustrated for binary sources. The
results of this chapter were published in [12,13].

. In Chapter 5, two linear code constructions, previously proposed for the Wyner-
Ziv (WZ) problem, are developed for two terminals to agree on a secret key hidden
from an eavesdropper. The first (random) code construction achieves all points
of the key-leakage-storage regions of the generated- and chosen-secret models. We
design nested polar codes as the second code construction for vector quantization
during enrollment and for error correction during reconstruction to illustrate that
they improve on existing methods. The results of this chapter are submitted for
publication in [14], where the polar code design tools of Onurcan İşcan of Huawei
(previously at TUM) were used.

. Chapter 6 considers the problem of secret-key based authentication under a privacy
constraint on the source sequence. The identifier measurements during authentica-
tion are assumed to be controllable via a cost-constrained “action” sequence. Single-
letter characterizations of the optimal trade-off among the secret-key rate, storage
rate, privacy-leakage rate, and action cost are given for the two problems when noisy
measurements of a hidden source are enrolled to generate or embed secret keys. The
results of this chapter were published in [15].

. In Chapter 7, two further contributions are summarized. The first contribution is
about characterizing the rate regions for multiple enrollments of PUF measurements,
and the second considers multiple rounds of public communication for the source
model key agreement problem to find sufficient and necessary conditions to obtain
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a positive secret-key capacity. The results of this chapter were partially published
in [16], where the proof of the general two-enrollment case is from Frans Willems and
Lieneke Kusters of TU Eindhoven. The results were also partially published in [17],
where the majority of the work was done by Amin Gohari of Sharif University of
Technology. The extension of [17] will be submitted for publication in [18].

. Chapter 8 summarizes the main contributions of this thesis. We list ongoing and
future works that extend these contributions.

Parts of the material presented in this thesis appear in our papers [7–19]. Direct exten-
sions of this thesis, defended in November 2018 and published in [20] in February 2019,
include the works in [21–34].

Notation
Upper case letters represent random variables and lower case letters their realizations.
A letter with superscript denotes a string of variables, e.g., Xn = X1 . . . Xi . . . Xn, and
a subscript denotes the position of a variable in the string. Xn\i represents the vector
(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn). A random variable X has probability mass PX or prob-
ability density fX . Calligraphic letters such as X denote sets, and set sizes are denoted as
|X |. A set, e.g., X n, with superscript n denotes an n-fold Cartesian product set. T nε (PX)
denotes the set of length-n letter-typical sequences with respect to the probability mass
PX and positive number ε [35, Ch. 3], [36], i.e., we have

T nε (PX) =
{
xn :

∣∣∣∣N(a|xn)
n

− PX(a)
∣∣∣∣ ≤ εPX(a), ∀a ∈ X

}
(1.1)

where N(a|xn) is the number of occurrences of symbol a in xn. H(X) represents the
entropy of a random variable X and H(X|Y ) is the conditional entropy of X given a
random variable Y . I(X;Y ) is the mutual information of X and Y . Hb(x) = −x log x −
(1 − x) log(1 − x) is the binary entropy function and H−1

b (·) denotes its inverse with
range [0, 0.5]. The ∗-operator is defined as p ∗ x = p(1 − x) + (1 − p)x. Bold letters
such as H represent matrices. Enc(·) is an encoder mapping and Dec(·) is a decoder
mapping. X − Y − Z indicates a Markov chain. The operator ⊕ represents the element-
wise modulo-2 summation. The operation x̄=1−x gives the one’s complement of the bit
x. A binary symmetric channel (BSC) with crossover probability p is denoted by BSC(p).
Xn ∼ Bernn(α) denotes that Xn is an independent and identically distributed (i.i.d.)
binary sequence of random variables with Pr[Xi = 1] = α for i = 1, 2, . . . , n. Unif [1 : |X |]
represents a uniform distribution over the integers from 1 to |X |. A linear error-correction
code C with parameters (n, k, d) has block length n, dimension k, and minimum distance
d.





2
Literature Review
We give a brief review of the literature on PUFs and discuss the PUF types considered in
this thesis.
A PUF is a function that is embodied in a physical device and that is unclonable. In the

literature, there are alternative expansions of the term PUF such as “physically unclonable
function” [37], which suggests that it is a function that is only physically unclonable.
Such PUFs may provide a weaker security guarantee since they allow their functions to
be digitally cloned. For any practical application of a PUF, we need the property of
unclonability both physically and digitally. In this thesis, we therefore consider a function
as a PUF only if it is a physical function, which is embodied in a physical device, that is
unclonable digitally and physically.
This chapter is organized as follows. We give a generic definition of PUFs in Section 2.1.

We summarize possible application areas and basics of PUFs in Section 2.2. Four of the
most important PUF types are given in Section 2.3.

2.1. PUF Definition
Physical identifiers such as PUFs are heuristically defined to be complex challenge response
mappings that depend on the random variations in a physical object. Secret sequences are
derived from this complex mapping, which can be used as a secret key. One important
feature of PUFs is that the secret sequence generated is not required to be stored and it
can be regenerated on demand. This property makes PUFs cheaper (no requirement for a
memory for secret storage) and safer (the secret sequence is regenerated on demand only)
alternatives to other secret generation and storage techniques such as storing the secret in
a non-volatile memory (NVM) [6].
There are an immense number of PUF types, which makes it practically impossible to

give a single definition of PUFs that includes all types. We provide the following definition
of PUFs that includes all PUF types of interest in this thesis.
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Definition 2.1 ([6]). A PUF is a challenge response mapping embodied by a physical
device such that it is

. easy and fast for the physical device to evaluate the PUF response;

. hard for an attacker, who cannot access the PUF, to determine the PUF response
to a randomly chosen challenge, even if he has access to a set of challenge-response
pairs.

The terms used in Definition 2.1, i.e., easy, fast, and hard, are relative terms that should
be quantified for each PUF application separately. There are physical functions, called
physical one-way functions (POWFs), in the literature that are closely related to PUFs.
Such functions are obtained by applying the cryptographic concept of “one-way functions”,
i.e., functions that are (on average) difficult to invert but easy to compute [38], to physical
systems. As a first example of POWFs, the speckle pattern obtained from coherent waves
propagating through a disordered medium is a one-way function of both the angle of the
beam used to generate the optical waves and the physical randomness in the medium [39].
Similar to POWFs, biometric identifiers such as the iris, retina, and fingerprints are

closely related to PUFs, and a PUF can be seen as a “fingerprint” of a physical device.
Most of the assumptions for biometric identifiers are satisfied also by PUFs, so we can
apply almost all of the results in the literature for biometric identifiers to PUFs. However,
it is common practice to assume that PUFs can resist invasive (physical) attacks, which are
considered to be the most powerful attacks used to obtain information about a secret in a
system, unlike biometric identifiers that are constantly available for attacks. The reason for
this assumption is that invasive attacks permanently destroy the fragile PUF outputs [6].
This assumption will be the basis for the PUF system models used throughout the thesis.
We therefore assume that the attacker (eavesdropper) does not observe a sequence that is
correlated with the PUF outputs, since physical attacks applied to obtain such a sequence
permanently change the PUF outputs.

2.2. Applications of PUFs
A PUF can be seen as a source of random sequences that are hidden from an attacker who
does not have access to the PUF outputs. Therefore, any security application that takes a
secret sequence as input can theoretically use PUFs. We list some scenarios where PUFs
fit well practically.

. Consider a fifth-generation (5G) mobile device that uses a set of static random access
memory (SRAM) outputs, which are available in mobile devices, as a PUF to extract
secret keys so that the messages to be sent are encrypted with these secret keys
before sending the data over the wireless channel. In this way, the receiver (e.g., a
base station) that previously obtained the secret keys can decrypt the data, while
an eavesdropper who only overhears the data broadcast over the wireless channel
cannot learn the message sent.
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. Security of information in wireless networks with an eavesdropper is a physical-
layer security problem. Consider Wyner’s wiretap channel model introduced in [40],
where a transmitter sends a message through a broadcast channel so that a legitimate
receiver can reliably reconstruct the message, while the message should be kept secret
from an eavesdropper. A randomized encoder helps the transmitter in keeping the
message secret by confusing the eavesdropper. Therefore, one can use PUFs at the
transmitter as the source of private (local) randomness for the random encoder when
a message should be sent securely.

. The controller area network (CAN) bus standard used in modern vehicles is illus-
trated in [41] to be susceptible to denial-of-service attacks, which shows that safety-
critical inputs of the internal vehicle network such as throttle and brakes can be
controlled by an attacker. One countermeasure against such attacks is to encrypt
the transmitted CAN frames by using block ciphers. Secret keys generated from
PUF outputs can be used as inputs to the block cipher to provide security against
such safety-critical attacks.

. Cloud storage requires security to protect users’ sensitive data. However, securing the
cloud is expensive and the users do not necessarily trust the cloud service providers.
A PUF in a universal serial bus (USB) token, i.e., SaturnusR©, has been trademarked
by the company Intrinsic-ID to encrypt user data before uploading data to the cloud.

. Internet-of-things (IoT) devices may carry sensitive data, e.g., wearable or e-health
devices, and use a PUF to store secret keys so that only a mobile device with ac-
cess to the secret keys can control the IoT devices. One common example of such
applications is when PUFs are used to authenticate wireless body sensor network
devices [42].

. Consider system developers who want to mutually authenticate a field-programmable
gate array (FPGA) chip and the intellectual property (IP) components in the chip,
and IP developers who want to protect the IP. In [43], a protocol is described that
achieves these goals with a small hardware area that uses one symmetric cipher and
one PUF.

. Security of an item with a radio frequency identification (RFID) tag can be provided
by using lightweight PUF designs as a source of secret key that protects the RFID
tag from being copied [44].

Other applications of PUFs include providing non-repudiation (i.e., undeniable transmis-
sion or reception of data), proof of execution on a specific processor, and remote integrated
circuit (IC) enabling. Note that every application of PUFs has different assumptions about
the PUF properties, computational complexity of the cryptographic system that takes PUF
outputs as input, and the specific system models. Therefore, there are different constraints
and system parameters for each application. In the thesis, we focus mainly on the appli-
cation where a secret key is generated from a PUF for user, or device, authentication.
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2.3. Main PUF Types
We review four main PUF types, i.e., silicon, arbiter, SRAM, and ring oscillator (RO)
PUFs. We consider mainly the last two PUFs for algorithm and code designs due to their
common use in practice. Another emerging PUF type is the quantum readout PUF that
uses a random quantum state as the challenge and a unitary transform of the quantum
state as the response, which does not require trusted devices for PUF measurement [45].
Furthermore, locally enhanced defectivity PUFs are recently proposed in [46] as a com-
pletely stable PUF.

2.3.1. Silicon and Arbiter PUFs
Common complementary metal–oxide–semiconductor (CMOS) manufacturing processes
are used to build silicon PUFs, where the response of the PUF depends on the circuit delays
which vary across ICs [47]. Due to high sensitivity of the circuit delays to environmental
changes (e.g., ambient temperature and power supply voltage), another PUF scheme, called
arbiter PUF, is proposed in [48], for which an arbiter (i.e., a simple transparent data latch)
is added to the silicon PUFs so that the comparison result of two different path delays
generates a single bit. For instance, the difference of the path delays is mapped to the
bit 0 if the upper path is faster, and the bit 1 otherwise. The difference can be small,
which causes meta-stable outputs. Since the output of the mapper is generally preset
to 0, the incoming signals must satisfy the setup time (tsetup) of the latch to switch the
output to 1. This design results in a bias in the arbiter PUF outputs. Symmetrically
implementable latches (e.g., set-reset latches) should be used to overcome this problem,
which is difficult due to, e.g., the peculiarities of FPGA routing that does not allow the
user to enforce symmetry in the hardware implementation. We discuss below that PUFs
without symmetry requirements, e.g., RO PUFs, provide better results for FPGA chip
authentication.

2.3.2. SRAM PUFs
There are multiple memory-based PUFs such as SRAM PUFs, Flip-flop PUFs, and But-
terfly PUFs [37]. Their common feature is that they posses a small number of challenge-
response pairs with respect to their sizes. As the most promising memory-based PUF
type that is already used in industry, we consider SRAM PUFs. SRAM PUFs use the
uncontrollable settling state of bi-stable circuits [49]. In the standard SRAM design, there
are four transistors used to form the logic of two cross-coupled inverters, as depicted in
Figure 2.1, and two other transistors to access the inverters.
The logically stable states of an SRAM cell are (Q,Q) = (1, 0) and (0, 1). During the

power-up, the state is undefined if the manufacturer did not fix it. The undefined power-
up state of an SRAM cell converges to one of the stable states due to physical mismatch
of the inverters, which is fixed when the cell is manufactured [50]. Furthermore, there is
random electrical noise in the cell that affects the cell at every power-up. Since the physical
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Q Q

Figure 2.1.: SRAM logic circuit.

mismatch of the cross-coupled inverters is a manufacturing variation, the power-up state
of an SRAM cell is considered as a PUF response with one challenge, which is the address
of the SRAM cell [50].

2.3.3. Ring Oscillator PUFs
The logic circuit of an odd number of inverters serially connected with a feedback of the
output of the last inverter into the first inverter is a RO, as depicted in Figure 2.2. The
first logic gate in Figure 2.2 is chosen to be a NAND gate, which gives the same logic
output as an inverter gate when the ENABLE signal is 1 (ON), to enable/disable the
RO circuit. The manufacturing-dependent and uncontrollable component in an RO is the
total propagation delay of an input signal to flow through the RO, which determines the
oscillation frequency x̂ of an RO. This component is used as the source of randomness for
RO PUFs. A self-sustained oscillation is possible when the ring provides a 2π phase shift
and has unit voltage gain at the oscillation frequency x̂.
Consider an RO with m inverters. Each inverter should provide a phase shift of π

m

with an additional phase shift of π due to the feedback. Therefore, the signal should flow
through the RO twice to provide the necessary phase shift [51]. Consider a propagation
delay of τd for each inverter, so the oscillation frequency of a RO is

x̂ = 1
2mτd

. (2.1)

The propagation delay τd is affected by nonlinearities and parasitics in the circuit. Fur-
thermore, there are deterministic noise sources such as the cross-talk between adjacent sig-
nal traces and additional random noise sources such as thermal noise and flicker noise [51].
Such effects should be eliminated to have a reliable RO output. Rather than improving
the standard RO designs, which would impose the condition that all manufacturers should
change their RO designs, the first proposal to fix the reliability problem was to make hard
bit decisions by comparing RO pairs [52], as illustrated in Figure 2.3.
In Figure 2.3, the multiplexers are challenged by a bit sequence of length at most dlog2Ne

so that an RO pair is selected among N of them. The counters output the number of
rising edges from each RO for a fixed time duration. A logic bit decision is made by
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ENABLE

   x̂

1

Figure 2.2.: RO logic circuit.

comparing the counter values, which are related to the oscillation frequencies. For instance,
when the upper RO has a greater counter value, then a bit 0 is generated; otherwise, a
bit 1. Given that ROs are identically laid out in the hardware, the differences in the
oscillation frequencies are determined mainly by uncontrollable manufacturing variations.
Furthermore, it is not necessary to have a symmetric layout when hard-macro hardware
designs are used for different ROs [52], unlike arbiter PUFs.
The key extraction method illustrated in Figure 2.3 gives an output of

(
N
2

)
bits, which

are correlated due to overlapping RO comparisons. This causes a security threat and makes
the RO PUF vulnerable to various attacks. Thus, non-overlapping pairs of ROs are used
in [52] to extract each bit. However, there are systematic variations in the neighboring
ROs due to the surrounding logic, which should also be eliminated to extract keys with
full entropy [53].
Ambient temperature and supply voltage variations are the most important effects that

reduce the reliability of RO PUF outputs. A scheme called 1-out-of-k masking is proposed
in [52] as a countermeasure to these effects. This scheme compares the RO pairs that have
the maximum oscillation frequency differences for a range of voltages and temperatures.
The bits extracted by such a comparison are more reliable than the bits extracted by using
previous methods [52]. The main disadvantages of this scheme are that it is inefficient due
to unused RO pairs, and only a single bit is extracted from the (semi-) continuous RO
outputs. We review and extend in the next chapter an RO PUF method that improves on
these methods by using transforms.
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3
Transform Coding for Key
Agreement with Correlated PUFs
In this chapter, we consider biased (nonuniform) and correlated (dependent) PUF outputs
that are also noisy. We review and improve a transform-coding algorithm [5] to extract
an almost i.i.d. uniform bit sequence from each PUF so that a helper-data generation
algorithm can correct the bit errors in the bit sequence generated from the noisy PUF
outputs. We give a reference hardware design to illustrate that the hardware area occupied
by the proposed algorithm is small. Furthermore, from Section 3.6 on and in the next
chapters, we assume that such a transform-coding algorithm is available to obtain i.i.d.
bit sequences from PUFs so that we can use standard information-theoretic tools. The
results of this chapter were published in [9–11], where programming for the hardware
implementation was done by Tasnad Kernetzky.

3.1. Motivation
Invasive attacks to physical identifiers permanently change the identifier output so that
an attacker cannot learn the secret key by using an invasive attack [39]. This property
eliminates the need for continuous hardware protection. Physical identifiers such as PUFs
are considered to be random sources with high entropy. Security applications that use
a secret key stored in a NVM can alternatively use a PUF for the same purpose. Thus,
we can use PUFs for low-complexity key storage in, e.g., IoT applications like securing a
surgical robot against hacking.
There are multiple key-generation, or generated-secret (GS), and key-binding, or chosen-

secret (CS), methods to reconstruct secret keys from noisy PUF outputs, where the key
is generated from the PUF outputs or bound to them, respectively. A code-offset fuzzy
extractor (COFE) [54] is an example of key-generation methods and the fuzzy commitment
scheme (FCS) [55] is a key-binding method. Since a key should be stored in a secure
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database for both models, it is more practical to allow a trusted entity to choose the secret
key bound to a PUF output. Thus, in this chapter, we aim at further improving reliability,
privacy, secrecy, and hardware cost performance of a transform-coding algorithm that is
applied to PUF outputs in combination with the FCS.
Correlation in PUF outputs leaks information about the secret key, called secrecy leak-

age, and about the PUF output, called privacy leakage [13,56,57]. Moreover, noise reduces
the reliability of PUF outputs and error-correction codes are needed to satisfy the relia-
bility constraints. The transform-coding approach proposed in [5, 7] in combination with
a set of scalar quantizers has made its way into secret-key binding with continuous-output
identifiers. This approach allows to reduce the output correlation and to adjust the ef-
fective noise at the PUF output. For instance, the discrete cosine transform (DCT) is
the building block in [7] to generate a uniformly distributed bit sequence from RO out-
puts under varying environmental conditions. Efficient post-processing steps are applied to
obtain more reliable PUF outputs rather than changing the hardware architecture, so stan-
dard components can be used. This transform-coding approach improves on the existing
approaches in terms of the reliability under varying environmental conditions and maxi-
mum key length [7, 8]. We apply this algorithm to PUF outputs with further significant
improvements by designing the transformation and error-correction steps jointly.
Information-theoretic limits for the FCS are given in [58]. We use these information-

theoretic limits to evaluate error-correction codes proposed for the transform-coding al-
gorithm. Similar analyses were conducted for biometric identifiers in [59], but their as-
sumptions such as i.i.d. identifier outputs and maximum block-error probability constraint
PB = 10−2 are not realistic. We therefore consider highly correlated RO outputs with the
constraint PB ≤ 10−9, which are realistic for security applications that use PUFs [60], as
listed in Chapter 2.

3.1.1. Summary of Contributions and Organization

We improve the DCT-based algorithm of [7] by using different transforms and reliability
metrics. We also propose error-correction codes that achieve better (secret-key, privacy-
leakage) rate tuples than previous code designs. A summary of the main contributions is
as follows.

. We compare a set of transforms to improve the performance of the transform cod-
ing algorithm in terms of the maximum secret-key length, decorrelation efficiency,
uniqueness and security of the extracted bit sequence, and computational complexity.

. Two quantization methods with different reliability metrics are proposed to address
multiple design objectives for PUFs. One method aims at maximizing the length of
the bit sequence extracted from a fixed number of ROs, whereas the second method
provides reliability guarantees for each output in the transform domain by fixing the
decoding capability of a decoder used for error correction.
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. We give a reference hardware design for the transform with the smallest computa-
tional complexity, among the set of transforms considered, in combination with the
second quantization method to illustrate that our algorithm occupies a small hard-
ware area. Our results are shown to be better than the hardware area results of
previous RO PUF designs.

. Error-correction codes that satisfy the block-error probability constraints for practi-
cal PUF systems are proposed for both quantization methods to illustrate complete
key-binding systems. The proposed codes operate at better rate tuples than previ-
ously proposed codes for the FCS. Our quantizer designs also allow us to significantly
reduce the gap to the optimal (secret-key, privacy-leakage) rate point achieved by
the FCS.

This chapter is organized as follows. In Section 3.2, we define the FCS that uses PUF
outputs as the randomness source. The transform-coding algorithm proposed to extract a
reliable bit sequence from RO PUFs is explained in Section 3.3. We propose two different
quantization methods with different reliability metrics in Section 3.4. In Section 3.5, we
illustrate the small hardware area of the proposed algorithm with a reference hardware
design and show the gains in terms of reliability, security, and maximum secret-key length
as compared to the existing methods. Error-correction codes are proposed, and their
secrecy and privacy performance are given in Section 3.6.

3.2. System Model and the Fuzzy Commitment
Scheme

Consider an RO as a source that generates a real-valued symbol x̂. Systematic variations
in RO outputs in a two-dimensional array are less than the systematic variations in one-
dimensional ROs [61]. We thus consider a two-dimensional RO array of size l= r×c and
represent the array as a vector random variable X̂ l. Suppose there is a single PUF circuit,
i.e., a single two-dimensional RO array, in each device with the same circuit design, and it
emits an output X̂ l according to a probability density f

X̂l . Each RO output is disturbed
by mutually-independent additive Gaussian noise and the vector noise is denoted as Ẑ l.
Define the noisy RO outputs as Ŷ l = X̂ l+Ẑ l. Observe that X̂ l and Ŷ l are correlated. A
secret key can thus be agreed by using these outputs of the same RO array [56,57,62,63].
One needs to extract random sequences with i.i.d. symbols from X̂ l and Ŷ l to employ

available information-theoretic results for secret-key binding with identifiers. We propose
an algorithm as the first quantizer that extracts nearly i.i.d. binary and uniformly dis-
tributed random vectors Xn and Y n from X̂ l and Ŷ l, respectively. For such Xn and Y n,
we can define a binary error vector as En=Xn⊕Y n. The random sequence En corresponds
to a sequence of i.i.d. Bernoulli random variables with parameter p, i.e., En ∼ Bernn(p).
The channel PY |X is thus a BSC(p), which is not required for the second quantizer design.
The FCS reconstructs a secret key by using correlated random variables without leaking

any information about the secret key [55]. The FCS is depicted in Figure 3.1, where an
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Cn = Enc (S)

PY |X

Ŝ = Dec (Rn)

W

Xn Y n

S

Enrollment Reconstruction

Ŝ

RnCn

Figure 3.1.: The fuzzy commitment scheme (FCS).

encoder Enc(·) embeds a secret key, uniformly distributed according to Unif [1 : |S|], into
a binary codeword Cn that is added modulo-2 to the binary PUF-output sequence Xn

during enrollment. The resulting sequence is the public helper data W , which are sent
through an authenticated and noiseless channel. The modulo-2 sum of the helper data W
and Y n gives the result

Rn = W ⊕ Y n = Cn⊕ En (3.1)

which is later mapped to an estimate Ŝ of the secret key by the decoder Dec(·) during
reconstruction.

Definition 3.1. A secret-key vs. privacy-leakage rate pair (Rs ,R`) is achievable by the
FCS with perfect secrecy, i.e., zero secrecy leakage, if, given any ε>0, there is some n≥1,
and an encoder and decoder for which Rs = log |S|

n
and

Pr[S 6= Ŝ] ≤ ε (reliability) (3.2)
I (S;W )=0 (perfect secrecy) (3.3)
1
n
I (Xn;W ) ≤ R` + ε (privacy). (3.4)

Theorem 3.1 ([58]). The achievable secret-key vs. privacy-leakage rate region for the
FCS with a channel PY |X that is a BSC(p), uniformly distributed X and Y , and zero
secrecy leakage is

R={ (Rs, R`) : 0 ≤ Rs ≤ 1−Hb(p), R` ≥ 1−Rs}. (3.5)

The region R suggests that any (secret-key, privacy-leakage) rate pair that sums to
1 bit/source-bit is achievable with the constraint that the secret-key rate is at most the
channel capacity of the BSC. Furthermore, smaller secret-key rates and greater privacy-
leakage rates than these rates are also achievable.
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The FCS is a particular realization of the CS model. The region R′ of all achievable
(secret-key, privacy-leakage) rate pairs for the CS model with a negligible secrecy-leakage
rate, where a generic encoder is used to confidentially transmit an embedded secret key to
a decoder that observes Y n and the helper data W , is given in [56] as

R′=
⋃
PU|X

 (Rs, R`) : 0 ≤ Rs ≤ I(U ;Y ), R` ≥ I(U ;X)− I(U ;Y )

 (3.6)

where U−X−Y forms a Markov chain and the alphabet U of the auxiliary random variable
U can be limited to have the size |U| ≤ |X | + 1. The FCS is optimal, i.e., it achieves a
boundary point of R′, for a BSC PY |X with crossover probability p only at the point
(R∗s, R∗` )=(1−Hb(p), Hb(p)) [58]. This point corresponds to the highest achievable secret-
key rate; see Figure 3.7 below. Note that the region R′ gives an outer bound for the
perfect-secrecy case (see [56] for discussions).

3.3. Transform Coding Steps
The aim of transform coding is to reduce the correlations between RO outputs by using
a linear transformation. We propose a transform-coding algorithm that extends the work
in [5, 7]. Optimizations of the quantization and error-correction parameters to maximize
the security and reliability performance, and a simple method to decrease storage are its
main steps. The output of these post-processing steps is a bit sequence Xn (or its noisy
version Y n) used in the FCS. We consider the same post-processing steps for the enrollment
and reconstruction. The difference is that during enrollment the design parameters are
chosen as a function of the source statistics by the device manufacturer. It thus suffices to
discuss only the enrollment steps. Figure 3.2 shows the post-processing steps that include
transformation, histogram equalization, quantization, bit assignment, and bit-sequence
concatenation.
RO outputs X̂ l in an array are correlated due to, e.g., the surrounding logic [64].

A transform Tr×c(·) of size r× c is applied to an array of RO outputs to reduce corre-
lations. Decorrelation performance of a transform depends on the source statistics. We
model each real-valued output T in the transform domain, called transform coefficient,
obtained from an RO-output dataset in [65] by using the corrected Akaike information
criterion (AICc) [66] and the Bayesian information criterion (BIC) [67]. These criteria
suggest that a Gaussian distribution can be fitted to each transform coefficient T for the
DCT, discrete Walsh-Hadamard transform (DWHT), discrete Haar transform (DHT), and
Karhunen-Loève transform (KLT), which are common transforms considered in the liter-
ature for image processing, digital watermarking, etc. [68]. We use maximum-likelihood
estimation [69] to derive unbiased estimates for the parameters of Gaussian distributions.
The histogram equalization step in Figure 3.2 converts the probability density of the

i-th coefficient Ti into a standard normal distribution such that T̂i = Ti−µi
σi

, where µi is the
mean and σi is the standard deviation of the i-th transform coefficient for all i=1, 2, . . . , l.
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Figure 3.2.: Transform-coding steps [7].

Quantization steps for all transform coefficients are thus the same. Without histogram
equalization, we need a different quantizer for each transform coefficient. Therefore, the
histogram equalization step reduces the storage for the quantization steps. Transformed
and equalized coefficients T̂i are independent if the transform Tr×c(·) decorrelates the RO
outputs perfectly and the transform coefficients Ti are jointly Gaussian. One can thus use a
scalar quantizer for all coefficients without a performance loss. We propose scalar quantizer
and bit extraction methods that satisfy the security and reliability requirements of the
FCS with the independence assumption, in combination with a correlation-thresholding
approach discussed below.

3.4. Quantizer and Code Designs
The aim of the post-processing steps in Figure 3.2 is to extract a uniformly-random bit
sequence Xn. We use a quantizer Q(·) with quantization-interval values k = 1, 2, · · · , 2Ki ,
where Ki is the number of bits we extract from the i-th coefficient T̂i for i=1, 2, . . . , l. We
have

Q(t̂i) = k if bk−1<t̂i≤bk (3.7)

and we choose bk = Φ−1
(
k

2Ki

)
, where Φ−1(·) is the quantile function of the standard

normal distribution. The quantizer output k is assigned to a bit sequence of length Ki.
The chosen permutation of assigned bit sequences does not affect the security performance.
However, the most likely error event when we quantize T̂i is a jump to a neighboring
quantization step due to zero-mean noise. We thus apply a Gray mapping when we assign
bit sequences of lengthKi to the integers k = 1, 2, . . . , 2Ki so that neighboring bit sequences
change only in one bit position.
We next propose two different reliability metrics for joint quantizer and code designs.
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The first metric results in BSC measurements of each extracted bit with approximately
the same crossover probability. This method extracts a different number of bits from each
transform coefficient. The code design is then done for a fixed crossover probability of the
BSCs. The second method fixes the maximum number of erroneous transform coefficients
and considers an error-correction code that can correct all error patterns with up to a fixed
number of errors.

3.4.1. Quantizer Design with Fixed Measurement Channels
Observe that with the quantizer in (3.7) and a Gray mapping, one can model the chan-
nel between a bit extracted from the enrollment outputs X̂ l and the corresponding bit
extracted from the reconstruction outputs Ŷ l as a BSC with a fixed average crossover
probability pb. Our algorithm thus fixes an average crossover probability pb such that the
error-correction step in the FCS can satisfy the maximum block-error probability of 10−9.
The algorithm enforces that each output t̂i results in an average bit error probability as
close as possible to, but not greater than, pb by adapting the number of bits Ki(pb) ex-
tracted from the i-th coefficient T̂i for all i = 1, 2, . . . , l. We use the average fractional
Hamming distance D(K) between the quantization intervals assigned to the original and
noisy coefficients as a metric to determine Ki(pb). Define

Di(K)= 1
K

∫ ∞
−∞

∫ ∞
−∞

 2K∑
k=1

Pr[Q(t̂+n̂) = k]HDk(t̂)
 · f

T̂i
(t̂)f

N̂i
(n̂)dt̂dn̂ (3.8)

where HDk(t̂) is the Hamming distance between the bit sequences assigned to the k-th
quantization interval and to the interval Q(t̂), and N̂i represents the Gaussian noise in
the i-th coefficient after histogram equalization. We then determine Ki(pb) as the greatest
number of bits K such that Di(K)≤pb.
The first coefficient, i.e., DC coefficient, T̂1 is not used since its value is a scaled version

of the mean of the RO outputs in the array, which is generally known by an eavesdropper.
Ambient-temperature and supply-voltage variations have a highly-linear effect on the RO
outputs, so the DC coefficient is the most affected coefficient, which is another reason not
to use the DC coefficient [8]. Therefore, the total number n(pb) of extracted bits from all
transform coefficients for a fixed pb is

n(pb) =
l∑

i=2
Ki(pb). (3.9)

We calculate the maximum secret-key length Smax by using (3.5) for a BSC(pb) with the
maximum secret-key rate R∗s =1−Hb(pb) as

Smax = (1−Hb(pb)) · n(pb) (3.10)

which is used to compare different transforms and to decide whether one can use an RO
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PUF with fixed number of ROs and pb for secret-key binding. For instance, for the Ad-
vanced Encryption Standard (AES), the minimum secret-key length is 128 bits. However,
the rate region R in (3.5) is valid for large n. One thus needs to consider the rate loss due
to a finite block length for a system design. One can alternatively combine multiple RO
arrays in a device to approach the maximum secret-key rate.

3.4.2. Quantizer Design with Fixed Number of Errors
We now propose a conservative approach, based on the assumption that either all bits
extracted from a transform coefficient are correct or they all flip, to provide reliability
guarantees. The correctness probability Pc of a transform coefficient is defined to be the
probability that all bits associated with this coefficient are correct. We use this metric
to determine the number of bits extracted from each coefficient such that there is an
encoder and a bounded minimum distance decoder (BMDD) that satisfy the block-error
probability constraint PB ≤ 10−9. This approach results in reliability guarantees for the
random-output RO arrays.
For a K-bit quantizer and the quantization boundaries bk as in (3.7) for an equalized

(i.e., standard) Gaussian transform coefficient T̂ , we obtain the correctness probability

Pc(K)=
2K−1∑
k=0

bk+1∫
bk

Q(bk− t̂
σn̂

)
−Q

(
bk+1− t̂
σn̂

)f
T̂

(t̂)dt̂ (3.11)

where σ2
n̂ is the noise variance and f

T̂
is the probability density of the standard Gaussian

distribution.
Suppose our channel decoder can correct all errors in up to Cmax transform coefficients.

Suppose further that coefficient errors occur independently and that the correctness prob-
ability Pc,i(K) of the i-th coefficient T̂i for i= 1, 2, . . . , l is at least Pc(Cmax). A sufficient
condition for satisfying the block-error probability constraint PB ≤ 10−9 is that Pc(Cmax)
satisfies the inequality

l∑
c=Cmax+1

(
l

c

)
(1−Pc(Cmax))cPc(Cmax)l−c≤10−9. (3.12)

We thus determine the number Ki of bits extracted from the i-th transform coefficient as
the maximum value K such that Pc,i(K) ≥ P̄c(Cmax). Similar to Section 3.4.1, we choose
K1 =0 so that the total number n(Cmax) of extracted bits is

n(Cmax)=
l∑

i=2
Ki. (3.13)

In the worst case, the coefficients in error are the coefficients from which the greatest
number of bits are extracted. We sort the numbers Ki of bits extracted from all coefficients
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in descending order such that K ′i≥K ′i+1 for all i=1, 2, . . . , l−1. The channel decoder thus
must be able to correct up to

e(Cmax) =
Cmax∑
i=1

K ′i (3.14)

bit errors, which can be satisfied by using a block code with minimum distance dmin ≥
2e(Cmax)+1.
Suppose a key bound to physical identifiers in a device is used in the AES with a

uniformly-distributed secret key with a length of 128 bits. The block code used in the
FCS should thus have a code length of at most n(Cmax) bits, code dimension of at least
128 bits, and minimum distance of dmin ≥ 2e(Cmax) + 1 for a fixed Cmax. The code rate
should be as high as possible to operate close to the optimal (secret-key, privacy-leakage)
rate point of the FCS. This optimization problem is hard to solve. We illustrate by an
exhaustive search over a set of Cmax values and over a selection of algebraic codes that
there is a channel code that satisfies these constraints with a reliability guarantee for each
extracted bit. Restricting our search to codes that admit low-complexity encoders and
decoders is desired for IoT applications, for which complexity is the bottleneck.
Note that the listed conditions are conservative. For a given transform coefficient, the

correctness probability can be significantly greater than the correctness thresholdPc(Cmax).
Secondly, due to Gray mapping, it is more likely that less thanKi bits are in error when the
i-th coefficient is erroneous. Thirdly, it is also unlikely that the bit errors always occur in
the transform coefficients from which the greatest number of bits is extracted. Therefore,
even if a channel code cannot correct all error patterns with up to e(Cmax) errors, it can
still be the case that the block-error probability constraint is satisfied. We illustrate such
a case in the next section.

3.5. Performance Evaluations

Suppose the RO output X̂ l is a vector random variable with the autocovariance matrix
CX̂X̂. Consider RO arrays of sizes 8× 8 and 16× 16. Autocovariance matrix of such RO
array outputs and noise are estimated from the dataset in [65]. We compare the DCT,
DWHT, DHT, and KLT in terms of their decorrelation efficiency, maximum secret-key
length, complexity, uniqueness, and security.

3.5.1. Decorrelation Performance

One should eliminate correlations between the RO outputs and make them independent
to extract uniform bit sequences by treating each transform coefficient separately. We use
the decorrelation efficiency ηc [70] as a decorrelation performance metric. Consider the
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Table 3.1.: The average RO output decorrelation-efficiency results.
DCT DWHT DHT

ηc for 8× 8 0.9978 0.9977 0.9978
ηc for 16× 16 0.9987 0.9988 0.9986

autocovariance matrix CTT of the transform coefficients, so ηc of a transform is

ηc = 1−

l−1∑
a=0

l−1∑
b=0
|CTT(a, b)|1{a 6=b}

l−1∑
a=0

l−1∑
b=0
|CX̂X̂(a, b)|1{a 6=b}

(3.15)

where the indicator function 1{a 6= b} takes on the value 1 if a 6= b and 0 otherwise.
The decorrelation efficiency of the KLT is 1, which is optimal [70]. We list the average
decorrelation efficiency results of other transforms in Table 3.1. All transforms have similar
and good decorrelation efficiency performance for the RO outputs in the dataset in [65].
The DCT and DHT have the highest efficiency for 8×8 RO arrays, whereas for 16×16 RO
arrays, the best transform is the DWHT. Table 3.1 indicates that increasing the array size
improves ηc.

3.5.2. Maximum Secret-key Length
The maximum number of bits extracted with the method given in Section 3.4.2 depends
on the fixed number of transform coefficients that are in error. Moreover, the method uses
a conservative metric. However, for the method given in Section 3.4.1, we can optimize
the number of bits extracted from each coefficient to maximize the secret-key length. We
therefore consider only the method in Section 3.4.1 for maximum key-length comparisons.
The secret key S should satisfy the length constraints of the cryptographic primitives

that use it. Consider, e.g., again the AES with a 128-bit secret key. We compare different
transforms by calculating the maximum secret-key lengths Smax, defined in (3.10), for
various crossover probabilities pb that can be obtained by applying the post-processing
steps in Figure 3.2. For RO array dimensions 8×8, we show Smax results of the considered
transforms in Figure 3.3. For pb ≤ 0.05, R∗s is high but n(pb) is small, so Smax is mainly
determined by n(pb), as depicted in Figure 3.3. For pb≥0.07, n(pb) is high but R∗s mainly
determines Smax, which is small.
The DHT, DWHT, and DCT have similar Smax results and the KLT has worse perfor-

mance than the others, which is mainly determined by the signal-to-noise ratio (SNR) in
the transform domain. This illustrates that a transform’s ηc performance for the estimated
RO output distribution, and its Smax performance for the estimated RO output and noise
distributions can be different. We determine a crossover probability range P=[0.05, 0.07]
such that the secret-key lengths of all transforms are close to their maximum and greater
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Figure 3.3.: The maximum key lengths Smax for 8×8 RO arrays.

than 128 bits. For a BSC with crossover probability p ∈ P , we design error-correction
codes such that PB≤ 10−9 is satisfied. The crossover probability range considered in [60]
is [0.12, 0.14], while 0.14 is the only value considered in [71] for the same PB constraint.
Considering a set of crossover values rather than a single value provides more flexibility
in designing error-correction codes. Our crossover probability range also allows us to use
higher-rate codes than the codes for the range [0.12, 0.14] since the maximum key rate
R∗s of the FCS increases with decreasing pb. The proposed transform-coding algorithm
with the first quantizer method is thus beneficial for code design due to smaller crossover
probability pb.
The maximum number of extracted bits, which corresponds to n in (3.9), for an 8×8 RO

array is 16 bits for the 1-out-of-8 masking scheme [52], 32 bits for the non-overlapping RO
pairs [52], both of which are discussed in Chapter 2 above, and 64 bits for the regression-
based distillers [53]. Even if one assumes no errors, i.e., R∗s =1, for these methods, their Smax
results are much smaller than the Smax results of our algorithm, as shown in Figure 3.3.

3.5.3. Transform Complexity
We measure the complexity of a transform in terms of the number of operations required
to compute the transform and the hardware area required to implement it in a FPGA.
We are first interested in a computational-complexity comparison for RO arrays of sizes
r=c=8 and r=c=16, which are powers of 2, so that fast algorithms are available for the
DCT, DWHT, and DHT. We then present an RO PUF hardware design for the transform
with the minimum computational complexity.
The computational complexity of the KLT for r=c=n is O(n3), while it is O(n2 log2 n)
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for the DCT and DWHT, and O(n2) for the DHT [68]. There are efficient implementations
of the DWHT without multiplications [72]. The DWHT is thus a good candidate for RO
PUF designs for, e.g., IoT applications.
We now give a reference FPGA implementation for the DWHT without multiplications

to illustrate that the hardware area occupied by the transform-coding algorithm is small
and the processing time is significantly better than previous RO PUF designs.

FPGA Implementation

We use a Xilinx ZC706 evaluation board with a Zynq-7000 XC7Z045 system-on-chip (SoC)
to evaluate our DWHT design. A high level overview of the design is depicted in Figure 3.4.
The Zynq SoC consists of an FPGA part and an ARM Cortex-A9 dual-core processor,
connected with memory-mapped AXI4 buses [73]. The ARM processor is connected to
three components: the RO array, DWHT, and quantizer. The RO array is connected via
a bi-directional memory-mapped AXI bus, and the other components are connected via
AXI streaming buses [74]. We first measure RO outputs with counters, give the counter
values as input to the DWHT, and then quantize the transform coefficients to assign bits.
This is an implementation of the transform-coding algorithm given in Figure 3.2.
We use a standard RO array of size 16×16. All ROs in a row are connected to a counter

and they can be measured serially by using the same counter. There is an additional
counter that stops the counting operations after a specified time. For the FPGA we use, it
is practically necessary to use at least five inverters for each RO since using three inverters
results in oscillation frequencies of about 1 GHz, which violates the timing constraints of
the FPGA. Our RO designs with five inverters have oscillation frequencies in the range
[400, 500] MHz. Furthermore, we use 16-bit counters so that the minimum duration Tmin
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to have an overload in a counter is

Tmin = 216 − 1
500 MHz = 131µs. (3.16)

We count each RO output for a duration of 100µs, which is less than Tmin to avoid overloads.
This results in a total counting duration of 1.6ms for all 16 columns of the RO array, which
is compared below with the previous RO PUF designs.
We next implement an extended version of the algorithm in [72], proposed for an 8× 8

array, to calculate the two-dimensional (2D) 16× 16 DWHT without multiplications. The
main block we use is the 4-point (4P)-2D DWHT [72] that takes four inputs [x0, x1, x2, x3]
and calculates y0 y1

y2 y3

 = 1
2

x0 + x1 + x2 + x3 x0 − x1 + x2 − x3

x0 + x1 − x2 − x3 x0 − x1 − x2 + x3

 . (3.17)

We successively apply the 4P-2D DWHT to the 16 × 16 RO array according to an
extension of the input-selection algorithm proposed in [72]. We implement a finite-state
machine (FSM) to control the input and output AXI streaming interfaces as well as the
input-selection algorithm. The building blocks of our DWHT implementation is depicted
in Figure 3.5, which includes

. a data random access memory (RAM) to store all array elements,

. a 32-bit index read-only memory (ROM), where each word stores four 8-bit array-
element addresses,

. a multiplexer (MUX) to select the RAM address to be accessed,
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. a second MUX to select the ROM input,

. a register for each input to convey different RAM words to different ports.

We first store all RO outputs in the data RAM. Then, the first word of the index ROM
is fetched. This word holds the addresses of four array elements to be loaded. These array
elements are passed to the 4P-2D DWHT’s input registers by selecting the corresponding
port in the address MUX and register bank. After evaluating the 4P-2D DWHT, the
new array elements [y0, y1, y2, y3] are written back to the locations from where the inputs
[x0, x1, x2, x3] were fetched. The FSM performs the same steps for all remaining ROM
words and conveys the 2D DWHT coefficients to the AXI output port.
The addition and subtraction operations on four numbers in each 4P-2D DWHT evalu-

ation requires at most two additional bits, while the subsequent bit shift to implement the
division by 2 in (3.17) removes one bit. Since the 4P-2D DWHT is applied in total four
times to each RAM location, the transform requires 20-bit operations and storage in order
to process the 16-bit signed numbers used for counter values.
The quantizer contains AXI stream ports, an FSM, and one ROM. The ROM holds

2Ki − 1 quantization boundaries for the i-th transform coefficient. We remark that the
histogram equalization step in Figure 3.2 is useful when the number of bits Ki extracted
is large, but we choose Ki = K = 1 for all used transform coefficients, which is illustrated
in combination with an error-correction code design in Section 3.6.2. Therefore, we do not
apply the histogram equalization step for this case, so the ROM contains 255 words and is
of size 638 Bytes (≥ 255× 20 bits) in total. The FSM compares the quantizer input with
the corresponding quantization boundary to assign a bit 1 for transform-coefficient values
greater than the quantization boundary, and the bit 0 otherwise. The assigned bits are
then conveyed to the output port.

Hardware Design Comparisons

We now compare our results with a benchmark RO PUF hardware design given in [60] in
terms of the hardware area and processing times. The number of lookup tables (LUTs),
registers, and MUXs used in [60] are not available. However, our results can be compared
with their slice-count and processing-delay results since the FPGA (Spartan-6) used in [60]
also has 4 LUTs, 8 registers, and 3 MUXes in each slice, the same as the FPGA used in
this chapter. In addition, our quantizer and DWHT clock rate is 54 MHz, as in [60]. We
list in Table 3.2 the hardware area occupied by individual components of our RO PUF
design and by the RO PUF design of [60].
Table 3.2 illustrates that the RO array requires the highest hardware area and uses

approximately 82% of all occupied LUTs, 62% of registers, and 86% of slices. We do not
include the area for RAMs and ROMs, because we use Block RAM slices that are available
in the FPGA. However, we include the control logic area required to control the Block
RAM slices. Our DWHT-based design occupies an approximately 11% smaller RO PUF
hardware area than the RO PUF design proposed in [60] in terms of the number of slices
used. This result can be improved if we reuse the same area for different ROs, which might
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Table 3.2.: Hardware area and processing delays for RO PUF designs.
Blocks LUT Register MUX RAM&ROM[B] Slice Time[µs]

Proposed-ROs 1632 397 65 0 729 1600

Proposed-DWHT 326 200 0 1664 99 66

Proposed-Quantizer 43 39 0 638 21 14

Proposed (ROPUF) 2001 636 65 2302 849 1680

PUFKY (ROPUF) [60] n.a. n.a. n.a. n.a. 952 4611

increase correlations in the RO outputs. In addition, the DWHT and quantizer constitute
approximately 14% of the total slice count of our RO PUF design. These results illustrate
that the transform-coding approach occupies a small hardware area.
The total counter duration of 1.6ms is a result of the calculation given in (3.16) to avoid

overloads in the counters, and the choice of this value depends mainly on the number
of inverters used for each RO and counter bit width. The overall processing time of the
proposed design is approximately 1.68 ms, which is significantly better than the processing
delay of the benchmark RO PUF design in [60].

3.5.4. Uniqueness and Security

The bit sequence extracted from a physical identifier should be uniformly distributed to
make the rate region R in (3.5) valid. A common measure, called uniqueness, for checking
randomness of a bit sequence is the average fractional Hamming distance between the bit
sequences extracted from different RO PUFs [7]. We obtain similar uniqueness results
for all transforms, where the mean Hamming distance is 0.500 and Hamming distance
variance is approximately 7×10−4. All transforms thus provide close to optimal unique-
ness results due to their high decorrelation efficiencies and equipartitioned quantization
intervals. These results are significantly better than the results 0.462 [52] and 0.473 [65].
The National Institute of Standards and Technology (NIST) provides a set of randomness

tests that check whether a bit sequence can be differentiated from a uniformly random bit
sequence [75]. We apply these tests to evaluate the randomness of the generated sequences.
We observe that the bit sequences generated from ROs in the dataset [65] with the DWHT
pass most of the applicable tests for short lengths for both reliability metrics, which is
considered to be an acceptable result [75]. We also conclude that the KLT performs the
best due to its optimal decorrelation performance. One can apply a thresholding approach
such that the reliable transform coefficients from which the bits are extracted do not have
high correlations, which further improves the security performance [8].
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3.6. Privacy and Secrecy Analysis of Proposed
Error-Correction Codes

Suppose that extracted bit sequences are i.i.d. and uniformly distributed so that the
secrecy leakage is zero. We propose different codes for the transform-coding algorithm
according to the two proposed reliability metrics.

3.6.1. Codes for the Quantizer Design with Fixed Measurement
Channels

For the first quantizer method given in Section 3.4.1, fix an average crossover probability
pb = 0.06 to obtain the highest maximum secret-key length, as shown in Figure 3.3. We
illustrate that there are efficient error-correction codes for the FCS with PB≤10−9 and a
small privacy-leakage rate. Recall that the code dimension has to be at least 128 bits, a
requirement of the AES, so the block length is in the short block-length regime for error-
correction codes with high rates and k = 128. We expect a rate loss in our code designs
due to the small block-error probability and short block length.
The basic approach to design codes for small block-error probabilities and reasonable

decoding complexity is to use concatenated codes. Since the hardware complexity of a
code design should be small for IoT applications, we minimize also the field sizes of the
codes.

Remark 3.1. It would be natural to use iterative decoders in combination with high-
performance codes like low density parity check (LDPC) and turbo codes. However,
hardware complexity might increase and it is a difficult task to simulate these codes for
PB≤10−9. We use concatenated algebraic codes so that we can find analytical bounds on
PB without simulations for the outer code.

The first construction uses a Reed-Muller (RM) code C(32, 6, 16) as the inner code and a
Reed-Solomon (RS) code C(28, 22, 7) that operates with symbols from the Galois field F26

as the outer code of a concatenated code. Every symbol of the RS code can be represented
by 6 bits and the code takes 22 symbols as input, which corresponds to 132 input bits
which is greater than 128 bits. The maximum likelihood decoder (MLD) of the inner RM
code transforms the BSC with crossover probability pb = 0.06 into a channel with errors
and erasures by declaring an erasure if there are two codewords with equal distances to
a received vector and makes an error if a wrong codeword is selected. Simulation results
show that the erasure probability after the MLD of the inner code is about 6.57×10−5 and
the error probability is about 4.54× 10−6. One can correctly reconstruct the codeword of
the outer code if 2 × e + ν < d, where e is the number of errors and ν is the number of
erasures in the received vector [76]. The block-error probability after decoding the outer
RS code is approximately PB ≈ 1.37×10−11. The key and leakage rates of this code are
Rs=0.1473 and R`=0.8527 bits/source-bit, respectively.
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An alternative concatenated code is a binary extended Bose-Chaudhuri-Hocquenghem
(BCH) code C(256, 132, 36) as the outer code and a repetition code C(3, 1, 3) as the inner
code. The MLD for the inner code transforms the BSC with crossover probability pb =
0.06 into a BSC with pb = 0.0104 so that the BMDD for the outer BCH code results in
PB = 3.48 × 10−10. The key-leakage rate pair (Rs, R`) for this code is (0.1719, 0.8281)
bits/source-bit, which gives better rates than the RM+RS concatenation above and the
best generalized concatenated code (GCC) design with the FCS in [71] with the key-leakage
rate pair (0.1260, 0.8740) bits/source-bit, which is shown to be better than the previous
results in [60]. The significant improvement in the rates with a low-complexity code is due
to the decrease in pb by using our transform-coding algorithm.
The FCS can asymptotically achieve the maximum secret-key rateR∗s = 0.6726 bits/source-

bit and corresponding minimum privacy-leakage rate R∗` = 0.3274 bits/source-bit for a
BSC(pb=0.06). Better key-leakage rate pairs are thus possible, e.g., by using GCCs or by
improving the decoder for the outer code. However, these constructions would result in
increased hardware complexity, which is not desired for IoT applications.

3.6.2. Codes for the Quantizer Design with Fixed Number of
Errors

We now select a channel code according to Section 3.4.2 to store a secret key of length
128 bits. The correctness probabilities defined in (3.11) for the transform coefficients T
with the three highest and three smallest probabilities are plotted in Figure 3.6. The
indices of the 16× 16 transform coefficients follow the order in the dataset [65], where the
coefficient index at the first row and first column is 1, and it increases columnwise up to
16 so that the second row starts with the index 17, the third row with the index 33, etc.
The most reliable transform coefficients are the low-frequency coefficients, which are in
our case at the upper-left corner of the 2D transform-coefficient array with indices such
as 1, 2, 3, 17, 18, 19, 33, 34, 35. The low-frequency transform coefficients therefore have the
highest SNRs for the source and noise statistics obtained from the RO dataset in [65]. The
least reliable coefficients are observed to be spatially away from the transform coefficients
at the upper-left or lower-right corners of the 2D transform-coefficient array. These results
indicate that the SNR-packing efficiency, which can be defined similarly as the energy-
packing efficiency, of a transform follows a more complicated scan order than the classic zig-
zag scan order used for the energy-packing efficiency metric [77]. Observe from Figure 3.6
that increasing the number of extracted bits decreases the correctness probability for all
coefficients since the quantization boundaries get closer so that errors due to noise become
more likely, i.e., the probability Pc(K) defined in (3.11) decreases with increasing K.
We fix the maximum number Cmax of transform coefficients T allowed to be in error

and calculate the correctness threshold Pc(Cmax) using (3.12), the total number n(Cmax)
of extracted bits using (3.13), and the number e(Cmax) of errors the block code should
be able to correct using (3.14). We observe that if Cmax ≤ 10, Pc(Cmax) is so large that
Pc,i(K = 1) ≤ Pc(Cmax) for all i = 2, . . . , l. If 11 ≤ Cmax ≤ 15, n(Cmax) is less than
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Figure 3.6.: The correctness probabilities for transform coefficients.

the required code dimension of 128 bits. Increasing Cmax results in a smaller correctness
threshold Pc(Cmax) so that the maximum of the number Kmax(Cmax) =K ′1(Cmax) of bits
extracted among the l − 1 used coefficients increases. This result can increase hardware
complexity. We thus do not consider the cases where Cmax>20. Table 3.3 showsPc(Cmax),
n(Cmax), and e(Cmax) for the remaining range of Cmax values, which are used for channel-
code selection.

Consider again binary (extended) BCH and RS codes, which have good minimum-
distance properties. An exhaustive search does not provide a code with dimension of
at least 128 bits and with parameters satisfying any of the (n(Cmax), e(Cmax)) pairs in Ta-
ble 3.3. However, the correctness threshold analysis leading to Table 3.3 is conservative. We
therefore choose a BCH code with parameters as close as possible to a (n(Cmax), e(Cmax))
pair and then prove that even if the number eBCH of errors the chosen BCH code can
correct is less than e(Cmax), the block-error probability constraint is satisfied. Consider
therefore the BCH code with the block length 255, code dimension 131, and a capability
of correcting all error patterns with eBCH = 18 or less errors.

We now show that the proposed code satisfies the block-error probability constraint.
First, we impose the condition that exactly one bit is extracted from each coefficient, i.e.,
Ki=1 for all i=2, 3, . . . , l, so that in total n= l− 1=255 bits are obtained. Note that this
results in independent bit errors Ei. It follows from this condition that the chosen block
code should be able to correct all error patterns with up to e= 20 bit errors rather than
e(20) = 25 bit errors, which is still greater than the error-correction capability eBCH = 18
of the considered BCH code.

The block error probability PB for the BCH code C(255, 131, 37) with a BMDD corre-
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Table 3.3.: Code-parameter constraints.
Cmax 16 17 18 19 20
P̄c 0.9902 0.9889 0.9875 0.9860 0.9844
Kmax 3 3 3 3 3
n 144 224 250 255 259
e 18 20 21 23 25

sponds to the probability of having more than 18 errors in the codeword, i.e.,

PB =
255∑
j=19

 ∑
A∈Fj

∏
i∈A

(1− Pc,i) •
∏
i∈Ac

Pc,i

 (3.18)

where Pc,i is the correctness probability of the i-th transform coefficient T̂i defined in
(3.11) for i=2, 3, . . . , 256, Fj is the set of all size-j subsets of the set {2, 3, . . . , 256}, and
Ac denotes the complement of the set A. The correctness probabilities Pc,i are different and
they represent probabilities of independent events due to the independence assumption for
the transform coefficients.
One needs to consider∑18

j=0

(
255
j

)
≈ 1.90×1027 different cases to calculate (3.18), which is

not practical. We thus use the discrete Fourier transform - characteristic function method
[78] to calculate the block-error probability and obtain the result PB ≈ 1.26×10−11 <
10−9. The block-error probability constraint is thus satisfied by using the BCH code
C(255, 131, 37) with a BMDD although the conservative analysis suggests that it would
not be satisfied.
We now compare the BCH code C(255, 131, 37) with previous codes proposed for binding

keys to physical identifiers with the FCS and a secret-key length of 128 bits such that
PB≤10−9 is satisfied. The (secret-key, privacy-leakage) rate pair for this proposed code is
(Rs, R`) = (131

255 , 1−
131
255) ≈ (0.514, 0.486) bits/source-bit. This pair is significantly better

than our previous results in Section 3.6.1 proposed for a BSC (pb = 0.06). The main
reason for obtaining a better (secret-key, privacy-leakage) rate pair is that the quantizer
in Section 3.4.2 allows us to exploit higher identifier-output reliability by decreasing the
number of bits extracted from each transform coefficient.
We compare the secret-key and privacy-leakage rates of the BCH code C(255, 131, 37)

with the region of all achievable rate pairs for the CS model and the FCS for a BSC
PY |X with crossover probability pb = 1 − 1

l−1
∑l
i=2 Pc,i(Ki = 1)≈ 0.0097, i.e., the probabil-

ity of being in error averaged over all used transform coefficients with the quantizer in
Section 3.4.2. We compute the boundary points of the region R′ by using Mrs. Gerber’s
lemma [79], which gives the optimal auxiliary random variable U in (3.6) when PY |X is
a BSC. We plot the regions of all rate pairs achievable by the FCS and CS model, the
maximum secret-key rate point, the (secret-key, privacy-leakage) rate pair of the proposed
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code, and a finite-length bound [80] for the block length of n = 255 bits and PB =10−9 in
Figure 3.7.
The maximum secret-key rate is R∗s ≈ 0.922 bits/source-bit with a corresponding min-

imum privacy-leakage rate of R∗` ≈ 0.079 bits/source-bit. There is a gap between the
secret-key rate of the proposed code and the only operation point where the FCS is op-
timal, i.e., (R∗` , R∗s). Part of this rate loss can be explained by the short block length of
the code and the small block-error probability constraint. The finite-length bound given
in [80, Theorem 52] establishes that the rate pair (Rs, R`)=(0.691, 0.309) bits/source-bit is
achievable by using the FCS, as depicted in Figure 3.7. One can therefore further improve
the rate pairs by using better codes and decoders with higher hardware complexity, but
this may not be possible for IoT applications. Figure 3.7 also illustrates that there exist
other code constructions, e.g., the WZ-coding construction in Chapter 5, that reduce the
privacy-leakage rate for a fixed secret-key rate.



4
Key Agreement with Multiple
Measurements of Identifiers
In this chapter, we consider the gains from measuring an identifier multiple times during
reconstruction and also during enrollment. The latter scenario suggests that the identi-
fier output is a hidden, or remote, source whose noisy measurements are observed at the
encoder unlike previous identifier models in the literature. We determine the information-
theoretic rate regions for the hidden source case and quantify the reduction in the privacy-
leakage rate for a hidden identifier as compared to a noise-free, or visible, identifier. More
importantly, if the encoder incorrectly models the source as visible, it is shown that sub-
stantial secrecy leakage may occur and the reliability of the reconstructed key might de-
crease. The results of this chapter were published in [12,13].

4.1. Motivation
Consider the key agreement model introduced in [62] and [63] where two terminals observe
dependent random variables and have access to a public communication link; an eaves-
dropper observes the messages, called helper data, transmitted over this link. Similar to
Chapter 3, we consider the GS and CS models, where the information through helper data
about the secret key, called the secrecy leakage, should be negligible. Furthermore, the
information leaked about the identifier, called the privacy leakage, should be minimized
so that an eavesdropper cannot obtain information about a second secret key stored by a
second encoder that uses the same or a correlated identifier.
The secret-key vs. privacy-leakage, or key-leakage, regions for the two models are given

in [56] and [57]. In addition to the secret-key and privacy-leakage rates, it is important
to consider the amount of storage in the public link that is required for the decoder
to reliably reconstruct the secret key [81]. The storage rate is generally equal to the
privacy-leakage rate when we consider the GS model. Similarly, for the CS model, the
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storage rate is generally equal to the sum of the secret-key and privacy-leakage rates. The
storage rate is different from the privacy-leakage rate for general (non-negligible) secrecy-
leakage levels [82], unlike for the negligible secrecy-leakage rate constraint considered in [56]
and [57]. We show that the storage and privacy-leakage rates are different also when the
identifier is a remote or hidden source [83, p. 118], [84, p. 78].

Secret-key based user or device authentication with a privacy-leakage constraint is con-
sidered in [85]. There is an assumption in [85] that the eavesdropper has side information
correlated with the identifier outputs, which is reasonable for biometric identifiers be-
cause they are continuously available for attacks. However, physical identifiers like PUFs
are used for on-demand key reconstruction. Invasive attacks on PUFs also permanently
change the identifier output, as mentioned in Chapter 3, so we assume in this chapter that
the eavesdropper cannot obtain information correlated with the PUF output. Key agree-
ment with correlated side information at the eavesdropper has been studied in [86–88].
We remark that there can be algorithms designed for key agreement with PUFs that mis-
takenly do not eliminate the effects of correlation between the PUF outputs in different
devices, which results in side information available to the eavesdropper. We therefore con-
sider an eavesdropper with side information in Chapter 6 for biometric identifiers and for
such algorithms.

Multiple measurements of biometric or physical identifiers at the decoder can substan-
tially decrease the privacy-leakage and storage rates because less side information is re-
quired to reconstruct the secret key as compared to a single measurement. One obtains a
diversity gain, corresponding to a gain in reliability, to combat erroneous measurements by
averaging over different channels. One can also exploit the additional degrees of freedom
by increasing the extracted secret-key size. The latter gain can be viewed as a multiplex-
ing gain, in analogy to multiple antenna systems for wireless communications. Such gains
in the achievable key-leakage rates are illustrated in [12] when there are multiple noisy
measurements of the source at the decoder.

The above models assume that the encoder measures the “true” source. We propose that
the true source, i.e., the ground truth, is instead hidden from the encoder and the encoder
measures a noisy version of the source (see also discussions in [7] on key-binding with
a hidden identifier, [89] where a hidden source is considered for authentication, and [90,
Sec. II] for indirect rate-distortion problems with action-dependent side information). For
example, many secrecy systems require multiple measurements at the encoder to obtain
the “noise-free” output. As a second example, different systems may generate different
sequences from the same identifier.

Consider multiple encoders with independent channels from the hidden source to the
corresponding encoders. This is a valid scenario for biometric and physical identifiers
due to differences in the environmental conditions when extracting secret keys by different
encoders. An eavesdropper who wants to seize a secret key can use the information available
from other encoders about the hidden source, which leads to privacy-leakage with respect
to the hidden source rather than the noisy encoder measurements.
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PX

(S,W ) = Enc(X̃n)

PY |X

P
X̃|X

Ŝ = Dec (Y n,W )
W

Xn Y n

X̃n

S Ŝ

Figure 4.1.: The GS model where a secret key is generated from a noisy identifier measure-
ment.

4.1.1. Models for Identifier Outputs
We study the physical and biometric identifier outputs that are i.i.d. according to a
probability distribution with a discrete alphabet. These models are reasonable if one
uses transform-coding algorithms, as given in Chapter 3, to extract almost i.i.d. bits
from PUFs. Similar transform-coding based algorithms have been applied to biometric
identifiers to obtain independent output symbols [91].

4.1.2. Summary of Contributions and Organization
We extend the model of [56] and [57] to include multiple noisy identifier measurements at
the encoder and decoder. A summary of the main contributions is as follows.

. We derive the key-leakage-storage regions for the GS and CS models with a hidden
source; see Figures. 4.1 and 4.2 for the corresponding models. Our rate regions
recover several results in the literature, including various results for a visible source
without eavesdropper side information in [56, 57, 62, 63, 81]. We further recover our
previous results from [12] that studied the visible source model.

. We evaluate the rate region for a binary hidden source with multiple measurements
at the decoder and a single noisy measurement at the encoder by applying Mrs.
Gerber’s lemma (MGL) [79]. The analysis differs from [56] and [57] because we
need to apply MGL twice in different directions to a Markov chain rather than once.
For measurement channels with a certain symmetry, we find the optimal auxiliary
random variable for coding.

. We show that a significant amount of secrecy might be leaked, and the reliability
of the reconstructed key might decrease, if the visible source model is mistakenly
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PX

W = Enc(X̃n, S)

PY |X

P
X̃|X

Ŝ = Dec (Y n,W )
W

Xn Y n

X̃n

S Ŝ

Figure 4.2.: The CS model where a secret key is given to the encoder together with a noisy
identifier measurement.

used for multiple decoder measurements of a hidden source. Such a mistake leads to
violations of the security and reliability constraints.

. Gains from having multiple measurements at the encoder are also illustrated. We
show that gains in the secret-key rate can come at a large cost of storage.

This chapter is organized as follows. In Section 4.2, we describe our problem and de-
velop the key-leakage-storage regions for the GS and CS models. The key-leakage-storage
region of a binary hidden source with multiple measurements at the decoder is derived in
Section 4.3. In Section 4.4, we illustrate gains from the hidden source model as compared
to the visible one and depict the maximum secret-key rates achieved by having multiple
encoder and decoder measurements.

4.2. System Models and Rate Regions

4.2.1. System Models
Consider a discrete memoryless source that generates i.i.d. symbols Xn from a finite set X
according to a probability distribution PX . Identifier outputs are noisy due to, for instance,
cuts on a finger. The noise at the encoder and decoder is modeled as memoryless channels
P
X̃|X and PY |X , respectively. The outputs of P

X̃|X and PY |X are, respectively, the strings
X̃n with realizations from a finite set X̃ n, and Y n with realizations from a finite set Yn.
We thus have

P
X̃nXnY n

(x̃n, xn, yn) =
n∏
i=1

P
X̃|X(x̃i|xi)PX(xi)PY |X(yi|xi). (4.1)
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The distributions P
X̃|X and PY |X are assumed to be known for now, although we later

study what happens if the encoder treats X̃n as the true source.
In the GS model depicted in Figure 4.1, an encoder sees X̃n and generates a secret key S

and helper dataW as (S,W ) = Enc(X̃n), where Enc(·) is an encoder mapping. The decoder
estimates the key as Ŝ= Dec(Y n,W ), where Dec(·) is a decoder mapping. In the CS model
shown in Figure 4.2, S is independent of (Xn, X̃n, Y n) and an encoder mapping generates
the helper data as W = Enc(X̃n, S). The decoder estimates the key as Ŝ= Dec(Y n,W ).

Definition 4.1. A (secret-key, privacy-leakage, storage) rate triple (Rs, R`, Rw) is achiev-

able if, given any δ>0, there is some n≥1, an encoder, and a decoder for whichRs = log |S|
n

and

Pr[S 6= Ŝ] ≤ δ (reliability) (4.2)
1
n
I (S;W ) ≤ δ (weak secrecy) (4.3)

1
n
I (Xn;W ) ≤ R` + δ (privacy) (4.4)

1
n
H(S) ≥ Rs − δ (uniformity) (4.5)

1
n

log |W| ≤ Rw + δ (storage). (4.6)

The key-leakage-storage region is the closure of the set of achievable rate tuples. We refer
to models where X̃n = Xn as visible source model (VSM) and other cases as hidden source
model (HSM).

4.2.2. Key-leakage-storage Regions
We present the key-leakage-storage regions for the GS and CS models in Theorems 4.1
and 4.2, respectively. The proofs of the theorems are given in Appendices A.1-A.2. We
derive cardinality bounds for the auxiliary random variable in Appendix A.3. Using stan-
dard arguments, one can establish the convexity of the rate regions, i.e., there is no need
for convexification via a time-sharing random variable.

Theorem 4.1. The key-leakage-storage region for the GS model is

R1 =
⋃
P
U|X̃

{
(Rs, R`, Rw) :

0 ≤ Rs ≤ I(U ;Y ),
R` ≥ I(U ;X)− I(U ;Y ),

Rw ≥ I(U ; X̃)− I(U ;Y )
}

(4.7a)

where P
UX̃XY

= P
U |X̃ · PX̃|X · PX · PY |X . (4.7b)
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Theorem 4.2. The key-leakage-storage region for the CS model is

R2 =
⋃
P
U|X̃

{
(Rs, R`, Rw) :

0 ≤ Rs ≤ I(U ;Y ),
R` ≥ I(U ;X)− I(U ;Y ),

Rw ≥ I(U ; X̃)
}

(4.8a)

where P
UX̃XY

= P
U |X̃ · PX̃|X · PX · PY |X . (4.8b)

Remark 4.1. The Markov conditions in (4.7b) and (4.8b) state that U−X̃−X−Y forms
a Markov chain. One may restrict the cardinality of the auxiliary random variable U to
|U|≤|X̃ |+ 2 for both theorems.

Remark 4.2. The converses for Theorems 4.1 and 4.2 permit randomization at the encoder
(see (A.24)(b) and (A.27)(b)) and decoder (see (A.21)(a)). Since achievability requires no
randomization, we may use deterministic encoders and decoders. The achievability of R2
follows directly from the achievability of R1 by using the key S of the GS model as a key
of a one-time pad to secure a chosen key and storing the output at rate I(U ;Y ).

We recover the previous results in [56] and [57] if X̃ =X in both theorems so that the
maximum achievable secret-key rate I(X̃;Y ) in these regions is at most I(X;Y ), which
is the maximum achievable secret-key rate if the identifier Xn is observed noise-free at
the encoder. The minimum achievable privacy-leakage rate in these regions decreases as
compared to in [56] and [57] because I(U ;X) ≤ I(U ; X̃).

4.3. Binary Identifier Measurements
We evaluate the key-leakage-storage regions for a binary hidden source. The binary ran-
dom sequence X̃n corresponds to a single noisy measurement of the binary source Xn at
the encoder, and the random sequence Y n

1:MD
is the output of MD measurements of Xn for

MD≥ 1 at the decoder. We assume that the inverse channel P
X|X̃ is a BSC, an assump-

tion that is fulfilled if PX is uniform and P
X̃|X is a BSC. Moreover, we assume that the

channel PY1:MD |X can be decomposed into a mixture of BSCs (i.e., binary-input symmetric
memoryless channels [92], [93]), as illustrated below in Figure 4.3 for dependent BSCs.
The former constraint lets us apply MGL to the Markov chain U − X̃ −X; the latter lets
us apply an extension of MGL to the Markov chain U −X − Y1:MD

. Recall that MGL is
based on the result that, for any 0 ≤ p ≤ 1, the function

f(ν) = Hb(p ∗H−1
b (ν)) (4.9)

is convex in ν for 0 ≤ ν ≤ 1 [79].
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Evaluating the key-leakage-storage regions corresponds to maximizing I(U ;Y1:MD
) and

minimizing I(U ; X̃) for a fixed I(U ;X). It thus requires minimizing H(Y1:MD
|U) and

maximizing H(X̃|U) for a fixed H(X|U).
Let p̃i∈ [0, 0.5] be the smaller transition probability from U=ui to X = 0 or X = 1 for

i∈{1, 2, . . . , |U|}. We have

H(X|U) =
|U|∑
i=1

PU(ui)Hb(p̃i) (4.10)

H(Y1:MD
|U) =

|U|∑
i=1

PU(ui)g(p̃i) (4.11)

where

g(p̃i) = H(Y1:MD
|U = ui). (4.12)

In the following, we first study dependent BSCs PY1:MD |X , which can be decomposed
into a mixture of BSCs. We next discuss the convexity of the function g(H−1

b (ν)) in ν
for binary-input channels PY1:MD |X that can be decomposed into a mixture of BSCs to
establish a tight lower bound on H(Y1:MD

|U) if we fix H(X|U). Then, we simplify the
key-leakage-storage regions of binary identifiers measured through such channels PY1:MD |X .

4.3.1. Measurements Through Dependent BSCs

We show that channels with multiple measurements of X through dependent BSCs can be
decomposed into a mixture of independent BSCs. For simplicity, consider MD=3 with

Y1

Y2

Y3

=X


1
1
1

⊕

B1

B2

B3

 (4.13)

where B1, B2, and B3 are mutually dependent binary random variables that are jointly
independent of X. We can decompose the channel (4.13) into four independent BSCs,
since we have

PY1Y2Y3|X(y1, y2, y3|x) = PY1Y2Y3|X(ȳ1, ȳ2, ȳ3|x̄). (4.14)

Define

qy1y2y3 = PY1Y2Y3|X(y1, y2, y3|0). (4.15)
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p3 = q100/PA(3)

Figure 4.3.: MD = 3 dependent BSCs represented as a mixture of 2MD−1 = 4 BSCs.

The decomposed channel is depicted in Figure 4.3, where the subchannel probabilities are

PA(0) = q000 + q111 (4.16)
PA(1) = q001 + q110 (4.17)
PA(2) = q010 + q101 (4.18)
PA(3) = q011 + q100 (4.19)

and the crossover probabilities are p0 = q111/PA(0), p1 = q110/PA(1), p2 = q101/PA(2), and
p3 =q100/PA(3).

More generally, we can decompose a channel with MD dependent BSC measurements
into 2MD−1 independent subchannels each with output symbols such that one symbol is the
one’s complement of the other symbol. We define

qbMD = PY1:MD |X(bMD |0) (4.20)
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for the length-MD binary string bMD =b0b1 . . . bMD−1 and

PA(a) = qBin(a)+qBin(a) (4.21)

where Bin(a) is the one’s complement of Bin(a) for a= 0, 1, . . . , 2MD−1−1. The crossover
probability of the a-th subchannel is pa = qBin(a)/PA(a).

4.3.2. Mixtures of BSCs

Consider a channel PY1:MD |X with a binary input and MD binary measurements as output,
i.e., the channel has 2MD possible output symbols. We decompose the channel into L =
2MD−1 BSCs as described above. We index these BSCs from 1 to L. Let A = a represent
the BSC index chosen by the channel and let pa be the crossover probability of a-th
subchannel. The conditional decoder-output entropy is

H(Y1:MD
|U) (a)= H(Y1:MD

, A|U)

(b)= H(A) +
|U|∑
i=1

PU(ui)
L−1∑
a=0

PA(a)H(Y1:MD
|A = a, U = ui)

(c)=H(A)+
|U|∑
i=1
PU(ui)

L−1∑
a=0

PA(a)Hb(pa∗H−1
b

(
H(X|U=ui)

)
)

=
|U|∑
i=1

PU(ui)
L−1∑
a=0

PA(a)
(
Hb(pa ∗ p̃i)− logPA(a)

)
(4.22)

where (a) follows because the output symbols determine A, (b) follows since A is indepen-
dent of X so that U and A are independent, and (c) follows because Hb(pa∗p) is symmetric
with respect to p = 1

2 . Using (4.12) and (4.22), we have

g(p̃)=
L−1∑
a=0

PA(a)
(
Hb(pa ∗ p̃)−logPA(a)

)
. (4.23)

Examples of channels that are mixtures of BSCs are the dependent BSCs in Section 4.3.1,
the binary erasure channel (BEC) [94, p. 107], and additive white Gaussian noise (AWGN)
channels with binary phase shift keying (BPSK) signals and symmetric (e.g., uniform)
quantizers [94, p. 108].
The convexity property (4.9) carries over to channels PY1:MD |X that can be decomposed

into a mixture of BSCs [92], i.e., the function g(·) in (4.23) has the property that g(H−1
b (ν))

is convex in ν for 0 ≤ ν ≤ 1. To see this, note that PA(·) is fixed and the following term
in (4.22)(c)

L−1∑
a=0

PA(a)Hb(pa ∗H−1
b (νi)))
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where νi=H(X|U=ui), is a weighted sum of convex functions of νi by MGL. An alternative
proof of the convexity property for multiple independent BSCs is given in Appendix A.4.
We extend this result below in Theorem 4.5 to show that the boundary points of R1 and
R2 are achieved by channels P

X̃|U that are BSCs.

4.3.3. Two Lemmas
Consider a binary-input channel PY1:MD |X that can be decomposed into a mixture of BSCs.
For Theorem 4.5 below, we use the following two technical lemmas.

Lemma 4.3. We have

H(Y1:MD
|U) ≥ g

(
H−1
b

(
H(X|U)

))
. (4.24)

Proof. Since g(H−1
b (ν)) is convex in ν, by Jensen’s inequality we have

H(Y1:MD
|U) =

|U|∑
i=1

PU(ui)g
(
H−1
b

(
Hb(p̃i)

))
≥ g

H−1
b

 |U|∑
i=1

PU(ui)Hb(p̃i)
.

Lemma 4.4. There is a unique p̃∗ in the interval [0, 0.5] for which H(X|U) = Hb(p̃∗) = ν.

Proof. The function Hb(·) is strictly increasing from 0 to 1 in the interval [0, 0.5). We
further have 0≤H(X|U)≤H(X)≤1.

4.3.4. Simplified Rate Region Characterizations
We now simplify the key-leakage-storage regions for the measurement channels P

X̃|X and
PY1:MD |X considered above so that a single parameter characterizes the regions.

Theorem 4.5. Suppose P
X|X̃ is a BSC with crossover probability p, where 0 ≤ p ≤ 0.5,

and PY1:MD |X is a mixture of BSCs. The boundary points of R1 and R2 are achieved by
channels P

X̃|U that are BSCs.

Proof. Consider the boundary points of R1 that satisfy

(Rs, R`, Rw)=
(
I(U ;Y1:MD

), I(U ;X)−I(U ;Y1:MD
), I(U ; X̃)−I(U ;Y1:MD

)
)
.

For a fixed H(X|U), we obtain

I(U ;Y1:MD
)≤ H(Y1:MD

)−g
(
H−1
b (H(X|U))

)
(4.25)
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and

I(U ;X)−I(U ;Y1:MD
)≥H(X)−H(X|U)−H(Y1:MD

)+g
(
H−1
b (H(X|U))

)
(4.26)

and

I(U ; X̃)−I(U ;Y1:MD
)

≥ H(X̃)−Hb

H−1
b (H(X|U))− p

1− 2p

−H(Y1:MD
) + g

(
H−1
b (H(X|U))

)
(4.27)

where we used Lemma 4.3 to bound H(Y1:MD
|U), and the MGL result in (4.9) with ν =

H(X̃|U) to bound H(X̃|U). By choosing P
U |X̃ such that P

X̃|U is a BSC with crossover
probability

x̃ = H−1
b (H(X|U))− p

1− 2p (4.28)

where x̃ ∈ [0, 0.5], we achieve the right-hand sides of (4.25)-(4.27) since assigningH(X̃|U) =
Hb(x̃) achieves equality in (4.9) and (4.24) for the given channels. By Lemma 4.4, this x̃
is the unique solution. The proof for R2 is similar.

The convexity property for a BSC, used in MGL, is extended to any binary channel PY1|X
by Witsenhausen in [95], by Wyner as a remark in [95, Sec. III], and also by Ahslwede and
Körner in [96]. Therefore, the channels PY1:MD |X that can be decomposed into a mixture
of binary channels also satisfy the convexity property. This result follows because the
function g(·) for such channels, obtained from (4.12), also consists of a constant part and
a weighted sum of functions that are convex in νi.

Remark 4.3. In [12, Theorem 1], we claimed that for a mixture PY1:MD |X of binary chan-
nels, we achieve the boundary points of R1 and R2 when X̃n = Xn by using channels
PX|U that are BSCs. It turns out that this claim is valid for mixtures PY1:MD |X of BSCs,
but not necessarily otherwise. The reason is that one cannot necessarily achieve equality
in [12, (25) and (26)]. This is illustrated in Appendix A.5 for a binary asymmetric channel.

4.4. Model Comparisons

4.4.1. Hidden Source Model
We study the GS model with a hidden binary symmetric source (BSS) such that PX(0)=
PX(1)=0.5. Suppose P

X̃|X is a BSC with crossover probability pE and PY1:MD |X consists of
MD independent BSCs each with crossover probability pD. The inverse channel PX|X̃ is also
a BSC with crossover probability pE because of source symmetry. Due to the independence
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assumption for MD BSCs, the probabilities of sequences y1:MD
with the same Hamming

weight are equal. Therefore, the decoder-output entropy is

H(Y1:MD
) =

MD∑
k=0

Pr
MD∑
m=1

Ym=k

× log2

(MD

k

)/
Pr
MD∑
m=1

Ym=k


 (4.29)

where

Pr
MD∑
m=1

Ym=k

=
(
MD

k

) p̄MD−k
D pkD+p̄kDp

MD−k
D

2

. (4.30)

By Theorem 4.5, the crossover probability x̃, as in (4.28), of the BSC P
X̃|U is the only

parameter required to characterize R1 for the considered source and channels. Thus, using
Theorem 4.5, the conditional entropy H(Y1:MD

|U) can be calculated similarly as in (4.29)
by using the weighted sum in (4.30) with the weights p̃ = p̃1 = p̃2 and 1 − p̃, defined in
Section 4.3, instead of 1

2 .

4.4.2. Mismatched Code Design

The encoder, e.g., a hardware manufacturer (for PUFs) or a trusted entity (for biometrics),
models the source as visible or hidden, and a code is then constructed for the assumed
model. Therefore, the assumed model determines the performance of the actual system.
In the literature, the physical and biometric identifiers are modeled by the VSM; see,
e.g., [54–57]. We first illustrate that treating the HSM as if it were a VSM might give
pessimistic privacy-leakage rate results for MD ≥ 1, and over-optimistic secret-key and
storage rate results for MD > 1, which results in unnoticed secrecy leakage and reduced
reliability.
Consider the crossover probabilities pE ∈ {0.03, 0.10}, which are realistic values for bio-

metric [56] and physical identifiers [7]. We fix the crossover probability of PYi|X for
i = 1, 2, . . . ,MD to pD = 0.10. For the supposed VSM, X̃n is mistakenly considered to
be a noise-free source, i.e., pV SME = 0, and the corresponding decoder-output channel
P V SM
Y1:MD |X̃

consists of MD independent BSCs each with crossover probability pE ∗ pD be-
cause P

Y |X̃ is estimated from identifier measurements. However, the HSM considers an
encoder measurement through a BSC with crossover probability pE and MD independent
decoder measurements through BSCs, each with crossover probability pD. Therefore, the
HSM results in a conditional probability distribution P

Y1:MD |X̃
that is different from the

supposed VSM distribution P V SM
Y1:MD |X̃

for MD > 1 and in a key-leakage-storage region R1

that is different from the supposed VSM region RV SM
1 for MD≥1. We next illustrate the

rate regions for different numbers of encoder and decoder measurements with pE and pD
values given above.
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Figure 4.4.: Storage-leakage projection of the boundary triples for the GS model example
with pD =0.10.

4.4.3. Single Encoder and Multiple Decoder Measurements

The projections of the boundary triples (Rs, R`, Rw) for the HSM and VSM onto the
(Rw, R`)-plane and onto the (Rw, Rs)-plane are depicted in Figures 4.4 and 4.5, respectively,
for different crossover probabilities at the encoder and different numbers of measurements
at the decoder. Every marker on each curve corresponds to the evaluation of the rate-region
boundaries for a fixed crossover probability x̃ given in (4.28), so Figures. 4.4 and 4.5 should
be considered jointly for analysis. Recall from (4.7a) that any smaller Rs and greater R`

and Rw than the boundary triples are achievable.
At the highest storage-leakage points (R∗w, R∗` ) in Figure 4.4, one achieves the maximum

secret-key rates R∗s, which corresponds to the highest points in Figure 4.5. Moreover,
Figure 4.4 shows that if MD = 1, for the supposed VSM the privacy-leakage and storage
rates are equal, and are also equal to the storage rate for the HSM, and the supposed
VSM gives pessimistic privacy-leakage rate results. Figure 4.5 shows that increasing the
number of decoder measurements increases the maximum secret-key rate R∗s for the HSM
and supposed VSM. The R∗s of the HSM and supposed VSM are equal if MD=1, but the
supposed VSM gives over-optimistic secret-key and storage rate results for MD> 1. These
comparisons show that designing a code for the supposed VSM can lead to substantial
secrecy leakage, which violates (4.3), and reliability reduction, which violates (4.2).
Consider, for instance, the parameters

(
pE =0.03, pD =0.10, MD = 35

)
. For the GS and
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Figure 4.5.: Storage-key projection of the boundary triples for the GS model example with
pD =0.10.

CS models with the HSM, R∗` is then approximately 3×10−9 bits/source-bit. The privacy-
leakage rate can thus be made small for both models with multiple decoder measurements.
R∗w is approximately 0.194 bits/source-bit for the GS model, which is smaller than the 0.541
bits/source-bit obtained for MD =1. We remark that less storage decreases the hardware
cost. It is not possible for the CS model to give such a small storage rate with multiple
decoder measurements since the key is independent of the hidden source. Independence
of the key results in an additional storage rate, equal to R∗s that is non-decreasing with
respect to MD, to reliably reconstruct the secret key at the decoder.
One may build intuition about the gains achieved by having multiple decoder measure-

ments as follows. Since the decoder seesMD noisy versions Y1:MD
of the same hidden source

symbol X, it can “combine” the measurements to form a less noisy equivalent channel.
This is entirely similar to using maximal ratio combining to obtain a sufficient statistic
about a symbol that is transmitted several times over an AWGN channel. The resulting
gain may thus be interpreted as a diversity gain.
Figures. 4.4 and 4.5 further show that increasing pE decreases R∗s and R∗` , and increases

R∗w for the HSM. For instance, consider the HSM, and fix MD = 1 and the secret-key
rate to its maximum R∗s = 0.320 bits/source-bit achieved for pE = 0.10. The storage rate
for pE = 0.03 is approximately 56.2% less than the storage rate for pE = 0.10 and their
privacy-leakage rates are equal. Therefore, more reliable encoder-output channels P

X̃|X ,
i.e., channels with smaller pE values, achieve better storage rates. Similarly, we can show
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Table 4.1.: Key-leakage-storage (R∗s, R∗` , R∗w) rate points for the GS model with the HSM
for pE =0.03 and pD =0.10.

(ME,MD) (R∗s, R∗` , R∗w) bits/source-bit
(1, 1) (0.459, 0.346, 0.541)
(1, 3) (0.707, 0.098, 0.293)
(3, 1) (0.525, 0.458, 1.041)
(3, 3) (0.849, 0.134, 0.717)

that more reliable decoder-output channels PY1:MD |X , i.e., channels with smaller pD values,
improve the rate triples (see also [12, Figure 5]) due to the independence assumption for
encoder and decoder measurements.

Remark 4.4. One can alternatively consider encoder and decoder measurements through
a broadcast channel. An unreliable channel at the encoder might be desirable for this case
if the decoder-output channel is unreliable, since such correlations might allow less storage
and privacy-leakage, and greater secret-key rates.

4.4.4. Multiple Encoder and Decoder Measurements
Consider the general case with ME ≥ 1 measurements X̃n

1:ME
= [X̃1X̃2 . . . X̃ME

]n of the
hidden source Xn at the encoder for the GS model with the HSM. Suppose each encoder-
output channel P

X̃i|X
for i=1, 2, . . . ,ME is an independent BSC with crossover probability

pE. The maximum secret-key rate R∗s is achieved by choosing U=X̃1:ME
forR1. We list the

(R∗s, R∗` , R∗w) points in Table 4.1 for different numbers of encoder and decoder measurements
with pE =0.03 and pD =0.10. Table 4.1 shows that the storage rates for multiple encoder
measurements can be greater than 1 bit/source-bit, which cannot be the case for a single
encoder measurement. Increasing the number ME of encoder measurements to increase
the secret-key rate, as listed in Table 4.1, can therefore come at a large cost of storage and
can increase the privacy-leakage rate.





5
Optimal Code Constructions
Consider the two-terminal key agreement problem defined in Chapter 4 when the identifier
outputs during enrollment are noiseless (visible). In this chapter, we propose two optimal
linear code constructions based on Wyner-Ziv (WZ) coding. The first construction uses
random linear codes and achieves all points of the key-leakage-storage regions of the GS
and CS models. The second construction uses nested polar codes for vector quantization
during enrollment and error correction during reconstruction. Simulations show that the
nested polar codes achieve privacy-leakage and storage rates that improve on existing code
designs. One proposed code achieves a rate tuple that cannot be achieved by existing
methods. We also show how to extend these results to the hidden source model defined
in Chapter 4. The results of this chapter are submitted for publication in [14], where the
polar code design tools of Onurcan İşcan were used.

5.1. Motivation
Several practical code constructions for key agreement with identifiers have been proposed
in the literature. For instance, the COFE and the FCS both require an error-correction
code to satisfy the constraints of, respectively, the key generation (GS model) and key
embedding (CS model) problems. Similarly, a polar code construction is proposed in [97]
for the GS model. We show that these constructions are suboptimal in terms of the
privacy-leakage and storage rates.
The binary Golay code is used in [56] as a vector quantizer (VQ) in combination with

Slepian-Wolf (SW) codes [98] to illustrate that the key vs. storage (or key vs. leakage)
rate ratio can be increased via quantization. This observation motivates the use of a VQ
to improve the performance of previous constructions. In this work, we apply VQ by using
WZ coding [99] to decrease storage rates, as suggested in [100, Remark 4.5].
The WZ-coding construction turns out to be optimal, which is not coincidental. For

instance, the bounds on the storage rate of the GS model and on the WZ rate (storage rate)
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have the same mutual information terms optimized over the same conditional probability
distribution. This similarity suggests an equivalence that is closely related to formula
duality defined, e.g., in [101]. In fact, the optimal random code construction, encoding,
and decoding operations are identical for both problems. We therefore call the GS model
and WZ problem functionally equivalent. Such a strong connection suggests that there
might exist constructive methods that are optimal for both problems for all measurement
channels, which is closely related to operational duality; see [101].

5.1.1. Summary of Contributions
We propose code constructions for the key agreement model defined in Chapter 4 and
illustrate that they are asymptotically optimal and improve on all existing methods. A
summary of the main contributions is as follows.

. The GS and WZ problems are shown to be functionally equivalent, in the sense
that the constraints of both problems are satisfied simultaneously by using the same
random code construction.

. We describe two WZ-coding constructions for BSSs and binary symmetric channels
(BSCs). Such sources and channels are often used for physical identifiers such as RO
PUFs [7] and SRAM PUFs [50]. The first WZ-coding construction is based on [102]
and achieves all points of the key-leakage-storage regions of the GS and CS models.
The second construction uses nested polar codes.

. We design and simulate our polar codes for standard parameters for SRAM PUFs
under ideal environmental conditions, and for RO PUFS under varying environmental
conditions. The target block error probability is PB = 10−6 and the target secret-key
size is 128 bits. One of the codes achieves key-leakage-storage rates that cannot be
achieved by existing methods.

. In Appendix B.1, we prove that there are random binning and random coding based
approaches that achieve all points of the key-leakage-storage regions of the GS and
CS models and that result in strong secrecy.

. In Appendix B.2, we consider a hidden identifier source whose noisy measurements
via BSCs are observed at the encoder and decoder. The first WZ-coding construction
is shown to be optimal also for such identifiers.

5.1.2. Organization
This chapter is organized as follows. In Sections 5.2.1 and 5.2.2, we briefly review the GS
and CS models, describe the WZ problem, and give their rate regions. In Section 5.2.3,
we show that there is a random code construction that satisfies the constraints of the WZ
problem and the GS model simultaneously to motivate using a WZ-coding construction for
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key generation and embedding. We show that existing methods are suboptimal even after
applying improvements described in Section 5.3. Section 5.4 describes a random linear
code construction based on WZ-coding. Section 5.5 describes a nested polar code design
for the GS model and illustrates that it improves on existing code designs.

5.2. Problem Formulations

5.2.1. Generated-secret (GS) and Chosen-secret (CS) Models

Consider again the GS model in Figure 4.1, where a secret key is generated from a biometric
or physical source. During enrollment, the encoder observes an i.i.d. noiseless sequence
X̃n = Xn, generated by the visible source according to some PX , and computes a secret
key S and public helper data W as (S,W ) = Enc(Xn). During reconstruction, the decoder
observes a noisy source measurement Y n of the visible source Xn through a memoryless
channel PY |X together with the helper data W . The decoder estimates the secret key as
Ŝ= Dec(Y n,W ). Similarly, Figure 4.2 shows the CS model, where a secret key S that
is independent of (Xn, Y n) is embedded into the helper data as W = Enc(Xn, S). The
decoder for the CS model estimates the secret key as Ŝ = Dec(Y n,W ). The source,
measurement, secret key, and storage alphabets X , Y , S, and W are finite sets.

Definition 5.1. A key-leakage-storage tuple (Rs, R`, Rw) is achievable for GS and CS
models with a visible source if, given any ε > 0, there is some n≥ 1, an encoder, and a
decoder such that Rs = log |S|

n
and (4.2)-(4.6) are satisfied. The key-leakage-storage regions

R′1 and R′2 for, respectively, the GS and CS models with a visible source are the closures
of the sets of achievable tuples for the corresponding models.

Theorem 5.1. The key-leakage-storage regions for the GS and CS models with a visible
source, respectively, are

R′1 =
⋃
PU|X

{
(Rs, R`, Rw) :

0 ≤ Rs ≤ I(U ;Y ),
R` ≥ I(U ;X)− I(U ;Y ),
Rw ≥ I(U ;X)− I(U ;Y ) for

PUXY =PU |XPXPY |X

}
, (5.1)
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R′2 =
⋃
PU|X

{
(Rs, R`, Rw) :

0 ≤ Rs ≤ I(U ;Y ),
R` ≥ I(U ;X)− I(U ;Y ),
Rw ≥ I(U ;X) for

PUXY =PU |XPXPY |X

}
. (5.2)

These regions are convex sets. The alphabet U of the auxiliary random variable U can be
limited to have size |U|≤|X |+ 1 for both regions R′1 and R′2.

Remark 5.1. The proof of Theorem 5.1 follows from the regions R1 and R2 given, re-
spectively, in Theorems 4.1 and 4.2 by choosing X̃ = X; see Appendix B.1 for alternative
proofs.

5.2.2. Wyner-Ziv (WZ) Problem

Consider two dependent random variables X and Y with joint distribution PXY . Figure 5.1
depicts the WZ problem. The source, side information, and message alphabets X , Y , and
W are finite sets. An encoder that observes Xn generates the message W ∈ [1, 2nRw ].
The decoder observes Y n and W and puts out a quantized version X̂n of Xn. Define the
average distortion between Xn and the reconstructed sequence X̂n as

1
n

n∑
i=1

E[d(Xi, X̂i(Y n,W ))] (5.3)

where d(x, x̂) is a distortion function and X̂i(yn, w) is a reconstruction function. For
simplicity, assume that d(x, x̂) is bounded.

Definition 5.2. A WZ rate-distortion pair (Rw, D) is achievable for a distortion measure
d(x, x̂) if, given any ε > 0, there is some n ≥ 1, an encoder, and a decoder that satisfy the
inequalities (4.6) and

1
n

n∑
i=1

E[d(Xi, X̂i(Y n,W ))] ≤ D + ε. (5.4)

The WZ rate-distortion region RWZ is the closure of the set of achievable rate-distortion
pairs. ♦
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PXY X̂n = Dec(Y n,W )
W = Enc(Xn)Xn W

Y n X̂n

Figure 5.1.: The WZ problem.

Theorem 5.2 ([99]). The WZ rate-distortion region is

RWZ =
⋃
PU|X

⋃
X̂(Y,U)

{
(Rw, D) :

Rw ≥ I(U ;X)− I(U ;Y ),
D ≥ E[d(X, X̂(Y, U))] for

PUXY =PU |XPXY

}
(5.5)

where X̂(Y, U) is a reconstruction function used at the decoder. One can limit the alphabet
U of the auxiliary random variable U to have size |U|≤|X |+1. The region RWZ is convex.

5.2.3. Functional Equivalence
The duality of two problems is sometimes useful because it can help to find optimal code
constructions for otherwise difficult-looking problems. Similar to duality, we call the prob-
lems given in Definitions 5.1 and 5.2 functionally equivalent because the optimal random
code constructions for the GS model and WZ problem are the same. More precisely, we say
that the problems are functionally equivalent for some specified (Rs, R`, Rw, D) if there is
a random code construction that satisfies (4.2)-(4.6) and (5.4) simultaneously. Functional
duality is closely related to functional equivalence, but we do not exchange the encoders
and decoders for the latter, unlike for the functional duality.

Theorem 5.3. The GS model with the probability distributions PX and PY |X , and the WZ
problem with the joint probability distribution PXY = PXPY |X and a distortion function
d(x, x̂) are functionally equivalent.

Proof Sketch. Fix a PU |X and X̂(y, u) such that E[d(X, X̂(Y, U))] ≤ D + ε for some dis-
tortion D > 0 and ε > 0. Randomly and independently generate codewords un(w, s),
w=1, 2, . . . , 2nRw , s=1, 2, . . . , 2nRs according to ∏n

i=1 PU(ui), where
PU(ui) = ∑

x∈X PU |X(u|x)PX(x). These codewords define the random codebook

C = {Un(w, s)}(2nRw ,2nRs )
(w,s)=(1,1) . (5.6)

Let 0<ε′<ε.
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Encoding: Given xn, the encoder looks for a codeword that is jointly typical with xn,
i.e., (un(w, s), xn)∈T nε′ (PUX). If there is one or more such codeword, the encoder chooses
one of them and puts out (w, s). If there is no such codeword, set w=s=1. The encoder
publicly stores w.
Decoding: The decoder puts out ŝ if there is a unique key label ŝ that satisfies the

typicality check (un(w, ŝ), yn)∈T nε (PUY ); otherwise, it sets ŝ= 1. The decoder then puts
out X̂(yi, ui(w, ŝ)) = x̂i for all i = 1, 2, . . . , n.
Using covering and packing lemmas [103, Lemmas 3.3 and 3.1], there is a code that satis-

fies (4.2)-(4.6) and (5.4) if we consider large n and approximately 2n(I(U ;X)−I(U ;Y )) storage
labels w and 2nI(U ;Y ) key labels s. This code asymptotically achieves the key-leakage-
storage tuple (Rs, R`, Rw) = (I(U ;Y ), I(U ;X) − I(U ;Y ), I(U ;X) − I(U ;Y )). Using the
typical average lemma [103, Section 2.4], the rate-distortion (Rw, D) pair can be achieved
as well.

Note that by using the coding scheme defined in the proof of Theorem 5.3 and by
taking the union of the achieved rate tuples over all PU |X , one can achieve the key-leakage-
storage region R′1. Achieving the region R′2 follows by adding a one-time pad step to the
proof of the GS model [56]; see Appendix A.1.2 for similar steps. Similarly, by using the
same coding scheme and by taking the union of the achieved tuples over all PU |X and all
reconstruction functions X̂(·), one can achieve the rate-distortion region RWZ.
Motivated by Theorem 5.3, we show in Section 5.4 that a linear WZ-coding construction

achieves all boundary points of the key-leakage-storage regions of the GS and CS models
for uniform binary sources measured through a BSC.

5.3. Prior Art and Comparisons
There are several existing code constructions proposed for the GS and CS models. We
here consider the three best methods: FCS for the CS model, and COFE and the polar
code construction in [97] for the GS model.
During enrollment with the FCS, an encoder takes a uniformly distributed secret key S

as input to generate a codeword Cn. The codeword and the binary source output Xn are
summed modulo-2, and the sum is stored as the helper data W . During reconstruction,
W and another binary sequence Y n, correlated with Xn through, e.g., a BSC(pA), are
summed modulo-2 and this sum is used by a decoder to estimate S. Similar steps are
applied in the COFE, except that the secret key is a hashed version of Xn. The FCS
achieves the single optimal point in the key-leakage region with the maximum secret-key
rate R∗s = I(X;Y ); the privacy-leakage rate is R∗` = H(X|Y ) [58]. Similarly, the COFE
achieves the same boundary point in the key-leakage region. This is, however, the only
boundary point of the key-leakage regions that these methods can achieve.
We can improve both methods by adding a VQ step: instead of Xn we use its quantized

version Xn
q during enrollment. This asymptotically corresponds to summing the original

helper data and an independent random variable Jn ∼ Bernn(q) such that W = Xn ⊕
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Cn ⊕ Jn is the new helper data so that we create a virtual channel PY |X⊕J and apply the
FCS or COFE to this virtual channel. The modified FCS and COFE can achieve all points
of the key-leakage region if we take a union of all rate pairs achieved over all q ∈ [0, 0.5].
However, the helper data has n bits for both methods, and the resulting storage rate of 1
bit/source-bit is not necessarily optimal.
The polar code construction in [97] requires less storage rate than the FCS and COFE.

However, this approach improves only the storage rate and cannot achieve all points of the
key-leakage-storage region. Furthermore, in [97] some code designs assume that there is
a “private” key shared only between the encoder and decoder, which is not realistic since
a private key requires hardware protection against invasive attacks. If such a protection
is possible, then there is no need to use an on-demand key reconstruction method like a
PUF.
The existing methods cannot, therefore, achieve all points of the key-leakage-storage

region for a BSC, unlike the WZ-coding constructions we describe in Sections 5.4 and 5.5.
In previous works such as [60], only the secret-key rates of the proposed codes are

compared because the sum of the secret-key and storage (or privacy-leakage) rates is one.
This constraint means that increasing the key vs. storage (or key vs. leakage) rate ratio is
equivalent to increasing the key rate. Instead, our code constructions are more flexible than
the existing methods in terms of achievable rate tuples. We will use the key vs. storage
rate ratio as a metric to control the storage and privacy leakage in our code designs.

5.4. First WZ-coding Construction

Consider the lossy source coding construction proposed in [102] that achieves the boundary
points of the WZ rate-distortion region by using linear codes. We use this code construction
to achieve the boundary points of R′1 and R′2 for a binary uniform identifier source PX and
a BSC PY |X with crossover probability pA (see Chapter 3 and [91] for algorithms to obtain
approximately such outputs from correlated and biased identifier outputs). Figure 5.2
plots the proposed code construction for the GS model.
Code Construction: Choose uniformly at random full-rank parity-check matrices H1,

H2, and H as

H =

H1

H2

 (5.7)

where H1 with dimensions m1×n defines a binary (n, n−m1) linear code C1 and H2 with
dimensions m2 × n defines another binary (n, n−m2) linear code C2. The (n, n−m1−m2)
code C defined by H in (5.7) is thus a subcode of C1 such that C1 is partitioned into 2m2
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PX

Xn
q = VQ(H1, X

n)
W = Xn

q HT
2 , S=DecC(Xn

q )

PY |X

X̂n
q = Y n ⊕ fC([0, W ]⊕ Y nHT )

Ŝ=DecC(X̂n
q )

W

Xn Y n

Enrollment Reconstruction

S Ŝ

Figure 5.2.: First WZ-coding construction for the GS model, where VQ(·) represents the
vector quantization and DecC(·) represents the mapping between a codeword
of the code C1 and a corresponding information sequence decoded by the code
C.

cosets of C. For some distortion q ∈ [0, 0.5] and δ > 0, impose the conditions

m1

n
= Hb(q)− δ (5.8)

m1 +m2

n
= Hb(q ∗ pA) + δ. (5.9)

Enrollment: The vector quantizer (VQ) in Figure 5.2 quantizes the source output Xn

into the closest codeword Xn
q in C1 in Hamming metric. If there are two or more codewords

with the minimum Hamming distance, the VQ chooses one of them uniformly at random.
Define the error sequence

En
q = Xn ⊕Xn

q (5.10)

which resembles an i.i.d. sequence ∼ Bernn(q) when n→∞ due to uniformity of Xn and
the linearity of C1 [102].

In the GS model, we publicly store the side information

W = Xn
q HT

2 (5.11)

which corresponds to a coset of C. We sum modulo-2 the bit sequence that is in the coset
W and that has the minimum Hamming weight with Xn

q to obtain a codeword Xn
c of

C. Then, we assign the information sequence that is encoded to the codeword Xn
c as the

secret key S such that Xn
c = SG, where G is the generator matrix of C. The secret key

has length n−m1 −m2 bits. We denote this operation as DecC(·).
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Consider the secrecy leakage for the GS model:

lim
n→∞

1
n
I(S;W )= lim

n→∞

1
n

(
H(S)+H(W )−H(W,S)

)
(a)
≤ lim

n→∞

1
n

(
log |S|+ log |W| −H(W,S,Xn

q )
)

≤ lim
n→∞

1
n

(
(n−m1 −m2) +m2 −H(Xn

q )
)

(b)
≤ lim

n→∞

1
n

(
n−m1 − (n−m1 − nδn)

)
= 0 (5.12)

where (a) follows because (W,S) determines Xn
q and (b) follows with high probability for

some δn such that limn→∞ δn = 0 due to the translation invariance of the linear code C1
and the uniformity of Xn (see also the discussions in [104, Section I]).
For the CS model, we have access to an embedded (chosen) secret key S ∈ S that

is independent of (Xn, Y n). Assume that a secret key S ′ ∈ S and helper data W ′ are
generated by using the GS model. For the CS model, we store the helper data W =
[W ′, S ′ ⊕ S]. The secrecy leakage for the CS model is

lim
n→∞

1
n
I(S;W ) = lim

n→∞

1
n
I(S;W ′, S ′ ⊕ S)

(a)= lim
n→∞

1
n

(
H(S) +H(W ′, S ′ ⊕ S)−H(W ′, S ′)−H(S)

)
≤ lim

n→∞

1
n

(
H(W ′) +H(S ′ ⊕ S)−H(W ′, S ′)

)
(b)
≤ lim

n→∞

1
n

(
log |W|+ log |S| −H(W ′, S ′, Xn

q )
)

(c)
≤ lim

n→∞

1
n

(
m2 + (n−m1−m2)− (n−m1−nδn)

)
=0 (5.13)

where (a) follows because S is independent of (W ′, S ′), (b) follows because S ′ ∈ S and
(W ′, S ′) determines Xn

q , and (c) follows with high probability for some δn such that
limn→∞ δn = 0 due to the translation invariance of the linear code C1 and uniformity
of Xn.
Remark 5.2. We can improve the weak-secrecy results in (5.12) and (5.13) to strong-
secrecy results, i.e., we replace (4.3) with

I(S;W ) ≤ ε (strong secrecy) (5.14)

by applying information reconciliation and privacy amplification steps to multiple blocks
of identifier outputs as described in [105], e.g., by using multiple PUFs for key agreement.
Remark 5.3. We prove in Appendix B.1 that there are code constructions that provide
strong secrecy for general probability distributions PXY without additional information
reconciliation and privacy amplification steps.
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Reconstruction: The noisy identifier output observed during reconstruction is Y n =
Xn ⊕ Zn, where Zn is independent of Xn and Zn ∼ Bernn(pA). The error sequence En

q

and the noise sequence Zn are independent. Furthermore, En
q asymptotically resembles

an i.i.d. sequence ∼ Bernn(q) when n → ∞, as discussed above. Therefore, when n →
∞, the sequence En

q ⊕ Zn, which corresponds to the noise sequence of the equivalent
channel PY n|Xn

q
, is distributed according to Bernn(q ∗ pA) since the equivalent channel is

a concatenation of two BSCs. One can thus reconstruct Xn
q with high probability when

n→∞ by using the syndrome decoder fC(·) of the code C as follows

X̂n
q = Y n ⊕ fC([0, W ]⊕ Y nHT )

(a)= Y n ⊕ fC(Xn
q HT ⊕ Y nHT )

(b)= (Xn
q ⊕ En

q ⊕ Zn)⊕ fC((En
q ⊕ Zn)HT )

(c)= (Xn
q ⊕ En

q ⊕ Zn)⊕ (En
q ⊕ Zn)

= Xn
q (5.15)

where (a) follows by (5.11) and because Xn
q is a codeword of C1, (b) follows by (5.10), and

(c) follows with high probability because, asymptotically, En
q ⊕Zn ∼ Bernn(q ∗pA) so that

the syndrome decoder fC(·) determines the noise sequence En
q ⊕ Zn. This is because the

constraint in (5.9) indicates that the code rate of C is below the capacity of the BSC(q∗pA).
The secret-key is reconstructed in the GS model as

Ŝ = DecC(X̂n
q ) (5.16)

and in the CS model as

Ŝ = Ŝ ′ ⊕ (S ′ ⊕ S) (5.17)

both of which result in the same error probability.

5.4.1. Optimality of the Proposed Construction for the GS
Model

Recall that Xn ∼ Bernn(1
2) and that the channel PY |X is a BSC(pA), where pA ∈ [0, 0.5].

Using Mrs. Gerber’s lemma, the key-leakage-storage region of the GS model is

R′1,bin =
⋃

q∈[0,0.5]

{
(Rs, R`, Rw) :

0 ≤ Rs ≤ 1−Hb(q ∗ pA),
R` ≥ Hb(q ∗ pA)−Hb(q),

Rw ≥ Hb(q ∗ pA)−Hb(q)
}
. (5.18)
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Theorem 5.4. The key-leakage-storage region R′1,bin for the GS model is achieved by
using the WZ-coding construction proposed above.

Proof. By (5.8) and (5.9), we have

log |W|
n

= m2

n
= Hb(q ∗ pA)−Hb(q) + 2δ ≤ Rw + 2δ (5.19)

if Rw ≥ Hb(q ∗ pA)−Hb(q).
The secret key satisfies

H(S)
n
≥ n−m1 −m2

n
− δ = 1−Hb(q ∗ pA)− 2δ

≥ Rs − 2δ (5.20)

if RS ≤ 1−Hb(q ∗ pA). Furthermore, we have

I(Xn;W )
n

(a)= H(W )
n

≤ log |W|
n

= m2

n
= Hb(q ∗ pA)−Hb(q) + 2δ ≤ R` + 2δ (5.21)

if R` ≥ Hb(q ∗ pA)−Hb(q), where (a) follows because Xn determines W .

5.4.2. Optimality of the Proposed Construction for the CS
Model

The key-leakage-storage region of the CS model for a uniform binary source measured
through a BSC(pA) is

R′2,bin =
⋃

q∈[0,0.5]

{
(Rs, R`, Rw) :

0 ≤ Rs ≤ 1−Hb(q ∗ pA),
R` ≥ Hb(q ∗ pA)−Hb(q),

Rw ≥ 1−Hb(q)
}
. (5.22)

Theorem 5.5. The key-leakage-storage region R′2,bin for the CS model is achieved by
using the WZ-coding construction proposed above.

Proof. The storage rate for the CS model is the sum of the storage and secret-key rates
of the GS model. By choosing achievable storage and key rates for the GS model, we can
achieve for the CS model a storage rate of

Rw ≥ 1−Hb(q). (5.23)
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Since H(S) = log |S|, S ′ ∈ S, and S is independent of (Xn, Y n), the secret-key and
privacy-leakage rates are the same as in the GS model, i.e., we have

Rs ≤ 1−Hb(q ∗ pA) (5.24)
R` ≥ Hb(q ∗ pA)−Hb(q). (5.25)

Remark 5.4. We show in Appendix B.2 that the above WZ-coding construction is optimal
also for hidden sources, i.e., the encoder observes a noisy measurement of the source rather
than the source itself.

5.5. Second WZ-coding Construction
Polar codes [106] have a low encoding/decoding complexity, asymptotic optimality for
various problems, and good finite length performance if a list decoder is used. Furthermore,
they have a structure that allows simple nested code design and they can be used for WZ
coding [107].
Polar codes rely on the channel polarization phenomenon, where a channel is converted

into polarized bit channels by a polar transform. This transform converts an input sequence
Un with frozen and unfrozen bits to a codeword of the same length n. A polar decoder
processes a noisy observation of the codeword together with the frozen bits to estimate
Un.
Let C(n,F , G|F|) denote a polar code of length n, where F is the set of indices of the

frozen bits and G|F| is the sequence of frozen bits. In the following, we use the nested
polar code construction proposed in [107].

5.5.1. Polar Code Construction for the GS Model
We use two polar codes C1(n,F1, V ) and C(n,F , V ) with F = F1 ∪ Fw and V = [V,W ],
where V has length m1 and W has length m2 such that m1 and m2 satisfy (5.8) and (5.9).
The indices in F1 represent frozen channels with assigned values V for both codes and C
has additional frozen channels with assigned values W denoted by Fw, i.e., the codes are
nested.
The code C1 serves as a VQ with a desired distortion q and the code C serves as the

error-correction code for a BSC(q ∗ pA). The idea is to obtain W during enrollment and
store it as public helper data. For reconstruction, W is used by the decoder to estimate
the secret key S of length n−m1−m2. Figure 5.3 shows the block diagram of the proposed
construction. In the following, suppose V is the all-zero vector so that no additional storage
is necessary. This choice has no effect on the average distortion E[q] between Xn and Xn

q

defined below; see [107, Lemma 10].
Enrollment: The uniform binary sequence Xn generated by a PUF during enrollment is

treated as the noisy observation of a BSC(q). Xn is quantized by a polar decoder of C1.
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Ûn

Key
Extraction

Ŝ
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Figure 5.3.: Second WZ-coding construction for the GS model.

We extract from the decoder output Un the bits at indices Fw and store them as the helper
data W . The bits at the indices i ∈ {1, 2, . . . , n} \ F are used as the secret key. Note
that applying a polar transform to Un generates Xn

q , which is a distorted version of Xn.
The distortion between Xn and Xn

q is modeled as a BSC(q) because the error sequence
En
q = Xn ⊕Xn

q resembles an i.i.d. sequence ∼ Bernn(q) when n→∞ [107, Lemma 11].
Reconstruction: During reconstruction, the polar decoder of C observes the binary se-

quence Y n, which is a noisy measurement of Xn through a BSC(pA). The frozen bits
V = [V,W ] at indices F are input to the polar decoder. The output Ûn of the polar
decoder is the estimate of Un and contains the estimate Ŝ of the secret key at the unfrozen
indices of C, i.e., i ∈ {1, 2, . . . , n} \ F .
We next give a method to design practical nested polar codes for the GS model.
Construction of C and C1: Since C ⊆ C1 are nested codes, they must be constructed

jointly. F and F1 should be selected such that the reliability and security constraints are
satisfied. For a given secret key size n−m1−m2, block length n, crossover probability pA,
and target block-error probability PB = Pr[S 6= Ŝ], we propose the following procedure.

1. Construct a polar code of rate (n−m1−m2)/n and use it as the code C, i.e., define
the set of frozen indices F .

2. Evaluate the error correction performance of C with a decoder for a BSC over a range
of crossover probabilities to obtain the crossover probability pc, resulting in a target
block-error probability of PB. Using pc = E[q] ∗ pA, we obtain the target distortion
E[q] averaged over a large number of realizations of Xn.
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3. Find an F1 ⊂ F that results in an average distortion of E[q] with a minimum possible
amount of helper data. Use F1 as the frozen set of C1.

Step 1 is a conventional polar code design task and step 2 is applied by Monte-Carlo
simulations. For step 3, we start with F ′1 = F and compute the resulting average distortion
E[q′] via Monte-Carlo simulations. If E[q′] is not less than E[q], we remove elements from
F ′1 according to the reliabilities of the polarized bit channels and repeat the procedure
until we obtain the desired average distortion E[q].
We remark that the distortion level introduced by the VQ is an additional degree of

freedom in choosing the code design parameters. For instance, different values of PB can
be targeted with the same code by changing the distortion level. Alternatively, devices
with different pA values can be supported by using the same code. This additional degree
of freedom makes the proposed code design suitable for a wide range of applications.

5.5.2. Proposed Codes for the GS Model
Consider, for instance, the GS model where S is used in the advanced encryption standard
(AES) with length 128, i.e., log |S| = n − m1 − m2 = 128 bits. If we use PUFs in
a field-programmable gate array (FPGA) as the randomness source, we must satisfy a
block-error probability PB of at most 10−6 [108]. Consider a BSC PY |X with crossover
probability pA = 0.15, which is a common value for SRAM PUFs under ideal environmental
conditions [50] and for RO PUFs under varying environmental conditions [8]. We design
nested polar codes for these parameters to illustrate that we can achieve better key-leakage-
storage rate tuples than previously proposed codes.
Code 1 : Consider n = 1024 and recall that n − m1 − m2 = 128, PB = 10−6, and

pA = 0.15. Polar successive cancellation list (SCL) decoders with list size 8 are used as
the VQ and channel decoder. We first design the code C of rate 128/1024 and evaluate its
performance with the SCL decoder for a BSC with a range of crossover probabilities, as
shown in Figure 5.4. We observe a block-error probability of 10−6 at a crossover probability
of pc = 0.1819. Since pA = 0.15, this corresponds to an average distortion of E[q] = 0.0456,
i.e., E[q] ∗ pA = 0.1819.
Figure 5.5 shows the average distortion E[q] with respect to n−m1 = n−|F1|, obtained

by Monte-Carlo simulations. We observe from Figure 5.5 that the target average distortion
is obtained at n −m1 = 778 bits. Thus, m2 = 650 bits of helper data suffice to obtain a
block-error probability of PB = 10−6 to reconstruct an n−m1 −m2 = 128-bit secret key.
We observe that the parameter pc is less than pA = 0.15 when we apply the procedure

in Section 5.5.1 to n = 512 with the same PB. Therefore, it is not possible to construct
a code with our procedure for n ≤ 512 since q ∗ pA is an increasing function of q for any
q ∈ [0, 0.5]. Such a code construction for n = 512 might be possible if one improves the
code design and the decoder.
Code 2 : Consider the same parameters as in code 1, except n = 2048. We apply the

same steps as above and plot the performance of an SCL decoder for a BSC with a range of
crossover probabilities in Figure 5.4. A crossover probability of pc = 0.2682 is required to
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Figure 5.4.: Block error probability of C over a BSC(pc) with an SCL decoder (list size 8)
for codes 1 (blue) and 2 (red) of length 1024 and 2048, respectively.

obtain a block-error probability of 10−6, which gives an average distortion of E[q] = 0.1689.
As depicted in Figure 5.5, we achieve the target average distortion with n−m1 = 739 bits
so that helper data of length 611 bits is required to satisfy PB = 10−6 for a secret key of
length 128 bits.

Remark 5.5. Our assumptions on the channel statistics are not necessarily satisfied for the
model depicted in Figure 5.3 for finite n since, e.g., the channel PXn|Xn

q
is not ∼ Bernn(q).

However, our code designs and analysis are based on simulations made over a large number
of possible inputs at fixed lengths, which allows us to give reliability guarantees to a set
of input realizations. The results of such guarantees are given below.

The error probability PB is calculated as an average over a large number of PUF real-
izations, i.e., over a large number of PUF devices with the same circuit design. To satisfy
the block-error probability requirement for each PUF realization, one could consider using
the maximum distortion instead of E[q] as a metric in step 3 in Section 5.5.1. This would
increase the amount of helper data. We can guarantee a block-error probability of at most
10−6 for 99.99% of all realizations xn of Xn by adding 32 bits to the helper data for code 1
and 33 bits for code 2. The numbers of extra helper data bits required are small since the
variance of the distortion q over all PUF realizations is small for the blocklengths consid-
ered. For comparisons, we use the helper data sizes required to guarantee PB = 10−6 for
99.99% of all PUF realizations.

5.5.3. Code Comparisons and Discussions
We show in Figure 5.6 the storage-key (Rw, Rs) projection of the boundary points of the
region R′1,bin for pA = 0.15. Furthermore, we show the point with the maximum secret-key
rate R∗s and the minimum storage rate R∗w to achieve R∗s. For the FCS and COFE, we
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Figure 5.5.: Average distortion E[q] with respect to n−m1 with an SCL decoder (list size
8) for codes 1 (blue) and 2 (red) of length 1024 and 2048, respectively.

use the random coding union bound [80, Thm. 16] to confirm that the plotted rate pairs
are achievable for a secret-key length of 128 bits, an error probability of PB = 10−6, and
blocklengths of n = 1024 and n = 2048. These rate pairs are shown in Figure 5.6 to the
right of the dashed line representing Rw + Rs = 1. Similarly, the rate pairs achieved by
the previous polar code design, and codes 1 and 2 are shown in Figure 5.6.
The storage rates of the FCS and COFE are 1 bit/source-bit, which is suboptimal as

discussed in Section 5.3. The previous polar code construction in [97] achieves a rate point
with Rs+Rw = 1 bit/source-bit, which is expected since this is a SW-coding construction.
The polar code construction improves on the rate pairs achieved by the FCS and COFE
in terms of the key vs. storage ratio.
We achieve the key-leakage-storage rates of approximately (0.125, 0.666, 0.666) bits/source-

bit by code 1 and (0.063, 0.315, 0.315) bits/source-bit by code 2, projections of which
are depicted in Figure 5.6. These rates are significantly better than the best rate tuple
(0.125, 0.875, 0.875) bits/source-bit in the literature, i.e., the previous polar code construc-
tion in [97], for the same parameters and without any private key assumption. We increase
the key vs. storage rate ratio Rs/Rw from approximately 0.188 for code 1 to 0.199 for code
2, which suggests to increase the blocklength to obtain better ratios. Furthermore, code
2 achieves privacy-leakage and storage rates that cannot be achieved by existing meth-
ods without applying time sharing (see, e.g., [103, Section 4.4]). This is because code 2
achieves privacy-leakage and storage rates of 0.315 bits/source-bit that are significantly
less than the minimum privacy-leakage and storage rates R∗w = R∗` = Hb(pA) u 0.610
bits/source-bit that can be asymptotically achieved by existing methods at the maximum
secret-key rate R∗s u 0.390 bits/source-bit.
We use the sphere packing bound [109, Eq. (5.8.19)] to upper bound the key vs. storage

rate ratio that can be achieved by SW-coding constructions for the maximum secret-key
rate point. Consider pA = 0.15, n = 1024, and PB = 10−6, for which the sphere packing
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satisfies PB ≤ 10−6 and the key length is 128 bits for all code points.

bound requires that the rate of the code C satisfies RC ≤ 0.273. If we assume that the key
rate is given by its maximal value Rs = RC and the storage rate is given by its minimal value
Rw = 1−RC, then we arrive at Rs/Rw ≤ 0.375. A similar calculation for n = 2048 yields
Rs/Rw ≤ 0.437. These results indicate that there are still gaps between the maximum key
vs. storage rate ratios achieved by WZ-coding constructions, which might achieve higher
ratios than SW-coding constructions, and the ratios achieved by codes 1 and 2. The gaps
can be reduced by using, e.g., larger list sizes at the decoder, which is not desired for IoT
applications where hardware complexity is constrained.





6
Controllable Measurements for
Private Authentication
We consider here another extension of the key agreement problem. Suppose the key agreed
by using an identifier is used for authentication under a privacy constraint on the source
sequence. Furthermore, we allow the identifier measurements during authentication (or
reconstruction) to be controllable via a cost-constrained “action” sequence. We character-
ize the optimal trade-off among the secret-key rate, privacy-leakage rate, storage rate, and
action cost for two problems, where noisy (hidden) measurements of the source are enrolled
to generate (the GS model) or embed (the CS model) secret keys. The results are relevant
for several user-authentication scenarios, including physical and biometric authentication
with multiple measurements as discussed in Chapter 4. Our results include as special cases
results for secret-key generation and embedding with action-dependent side information
without any privacy constraint on the enrolled source sequence. The results of this chapter
were published in [15].

6.1. Motivation
There is a fundamental trade-off between privacy and security of an authentication system.
An information theoretic formulation provides a framework to capture such a trade-off [56],
[57]. Moreover, the identifier measurements can be controlled or tuned with an additional
cost. In this chapter, we study the optimal trade-offs among the key, privacy-leakage and
storage rates, and expected action cost for discrete memoryless sources and measurement
channels. The availability of post-processing methods in Chapter 3 to obtain memoryless
channels and sources from biometric or physical identifiers allows us to avoid considering
channels with memory and correlated sources; see [110] and [111].
The use of authentication for access control is an effective method to ensure information

security. Unlike concealing the data to be transmitted as in a wiretap channel [40], authen-
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tication of a user by using a secret requires correlated random variables in order to agree on
a sequence [62,63]. Most important physical identifiers used for device authentication are
PUFs. Similarly, body traits like irises and fingerprints are used as biometric randomness
sources for authentication. There are code constructions in the biometric secrecy literature
proposed for authentication, e.g., the fuzzy vault scheme [112], FCS, and COFE. We show
in Chapter 5 that the FCS and COFE are suboptimal for a simplified version of the pri-
vate authentication problem we consider in this chapter. Accordingly, we are interested in
understanding the fundamental limits of private authentication by studying optimal code
constructions and their rate regions.
The use of biometric or physical identifiers that involve different forms of measurements,

e.g., the use of multiple measurements or variations in the quality of the measurement pro-
cess [90], [113], motivates us to consider a new private authentication model. In this model,
the measurement process is represented by a cost-constrained action-dependent (adaptive)
side information acquisition, where an action sequence determines the measurement chan-
nel. A high action cost can, for instance, represent the use of a high quality measurement
device.
Similar to the previous chapters, we first consider the GS model, where the key is

generated from the identifier outputs. The secret key reconstructed at the decoder is
generally stored in a trusted database. It can be practical to embed a uniformly-distributed
and independently chosen key into the encoder rather than generating it from identifier
outputs. We therefore also consider this practical model, defined in the previous chapters
as the CS model, with additional cost-constrained actions and show how much more storage
it requires as compared to the GS model.
Biometric and physical identifier outputs are noisy by nature. For instance, a cut in

the palm corresponds to noise on the palmprint. Similar to multiple-antenna systems,
multiple identifier measurements at the decoder can significantly improve the rate regions
as compared to a single measurement. Suppose we have multiple measurements also at
the encoder, as in Chapter 4 where the source is hidden. It is shown in Chapter 4 that if a
noiseless (visible) source is mistakenly assumed for system design, there can be unnoticed
secrecy leakage and the reliability at the decoder can decrease. Motivated by these results,
we study hidden identifiers with cost-constrained actions for the GS and CS models.

6.1.1. Summary of Contributions and Organization

Chapter 4 illustrated that rate regions can grow by using multiple noisy measurements
of a hidden source. An attacker, this time with access to a correlated identifier measure-
ment, tries to deceive the authentication in [114]. We combine and extend the models
in Chapter 4 and [114], and consider a cost-constrained action sequence that controls the
source measurements during authentication to reconstruct the secret key. Multiple iden-
tifier measurements both at the encoder and decoder are allowed by considering a hidden
identifier.
The main contributions of this chapter are as follows.
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Figure 6.1.: A hidden source: (a) represents the GS model and (b) represents the CS model.
The decoder and EVE measurements can be performed after observing the
action sequence.

. The key-leakage-storage-cost region for secret-key generation from an identifier with
a cost-constrained action at the decoder and a noisy (hidden) output at the encoder
is given. This rate region recovers several results in the literature including the
key-leakage rate regions for a visible source in [56] and [57].

. We extend the region for key generation to a chosen secret-key embedding scenario
(CS model), where the source output is used to conceal the chosen key.

. As an example, we use realistic channel and source model parameters to generate se-
cret keys from PUFs and illustrate the key-leakage-storage-cost trade-off for a binary
physical identifier with cost-constrained actions during authentication.

This chapter is organized as follows. In Section 6.2, we describe the models considered
in this chapter. We develop the key-leakage-storage-cost regions for the two problems.
An achievable key-leakage-storage-cost region for a binary source with cost-constrained
measurements during authentication is illustrated in Section 6.4.

6.2. Problem Formulations

6.2.1. Hidden Source, GS Model
Consider the system model in Figure 6.1(a), where a key is generated from a hidden
source. The decoder observes cost-constrained controllable source measurements Y n during
authentication, whereas the encoder observes uncontrollable noisy measurements X̃n of the
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hidden source outputs Xn through a memoryless channel P
X̃|X . The source alphabet X ,

the measurement alphabets X̃ ,Y ,Z, and the action alphabet A are finite sets.

Definition 6.1. A
(
|W|, |S|, n

)
-code Cn for private authentication with a key generated

from noisy measurements of a hidden source, controllable decoder measurements, and noisy
encoder measurements consists of

• an encoder Enc(·) : X̃ n →W ×S,

• an action encoder Enca(·) :W → An,

• a decoder Dec(·) :W ×Yn → S. ♦

Definition 6.2. A key-leakage-storage-cost tuple (Rs, R`, Rw, C) is said to be achievable
for a hidden source with the GS model if, for any δ > 0, there is some n ≥ 1 and a(
|W|, |S|, n

)
-code for which Rs= log |S|

n
such that

Pr[Ŝ 6= S] ≤ δ, (reliability) (6.1)
1
n
I(S;W,Zn) ≤ δ (weak secrecy) (6.2)

1
n
H(S) ≥ Rs − δ (uniformity) (6.3)

1
n
I(Xn;W,Zn) ≤ R` + δ (privacy) (6.4)

1
n

log
∣∣∣W∣∣∣ ≤ Rw + δ (storage) (6.5)

E[Γ(An)] ≤ C + δ (cost) (6.6)

where we have (W,S)=Enc(X̃n), An=Enca(W ), Ŝ=Dec(W,Y n), and Γ(An)= 1
n

∑n
i=1 Γ(Ai)

for some cost function Γ(·). The key-leakage-storage-cost region Rhgs is the closure of all
achievable tuples. ♦

6.2.2. Hidden Source, CS Model
Consider the problem of binding a chosen secret key to a hidden biometric or physical
identifier, as shown in Figure 6.1(b). The decoder observes cost-constrained controllable
source measurements during authentication, whereas the encoder observes uncontrollable
noisy source outputs.

Definition 6.3. A
(
|W|, |S|, n

)
-code Cn for private authentication with an embedded

secret key concealed by noisy measurements of a hidden source, controllable decoder mea-
surements, and noisy encoder measurements consists of

• an encoder Enc(·) : X̃ n × S → W ,
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• an action encoder Enca(·) :W → An,

• a decoder Dec(·) :W ×Yn → S. ♦

Definition 6.4. A key-leakage-storage-cost tuple (Rs, R`, Rw, C) is said to be achievable
for a hidden source with the CS model if, for any δ > 0, there is some n ≥ 1 and a(
|W|, |S|, n

)
-code for which Rs= log |S|

n
such that (6.1)-(6.6) are satisfied, where we have

W = Enc(X̃n, S), An = Enca(W ), Ŝ = Dec(W,Y n), and Γ(An) = 1
n

∑n
i=1 Γ(Ai) for some

cost function Γ(·). The key-leakage-storage-cost region Rhcs is the closure of all achievable
tuples. ♦

Remark 6.1. The encoder- and decoder-measurement channels in Figure 6.1 are modeled
as two separate channels, i.e., X̃ − (A,X) − (Y, Z) forms a Markov chain. This is the
case if, e.g., there is a considerable amount of time between the encoder and decoder
measurements of a palmprint so that any cuts on it during enrollment and authentication
are independent.

6.3. Key-leakage-storage-cost Regions
We are interested in characterizing the optimal trade-off among the secret-key rate, privacy-
leakage rate, storage rate, and expected action cost. We next give the rate regions.

Theorem 6.1 (Hidden Source, GS). For given PX , PX̃|X , and PY Z|XA, the key-leakage-
storage-cost region Rhgs is given as the set of all tuples (Rs, R`, Rw, C) satisfying

Rs ≤ I(V ;Y |A,U)− I(V ;Z|A,U) (6.7)
R`≥I(X;A, V, Y )+I(X;Z|A,U)−I(X;Y |A,U) (6.8)
Rw ≥ I(X̃;A) + I(V ; X̃|A, Y ) (6.9)

for some PXPX̃|XPA|X̃PY Z|XAPV |X̃APU |V such that E[Γ(A)]≤C with |U|≤ |X̃ ||A| + 3 and
|V|≤(|X̃ ||A|+ 3)(|X̃ ||A|+ 2).

Proof. Achievability is based on a random coding scheme that consists of superposition of
a rate-distortion code for communicating the action sequence and a two-layered binning for
secret-key generation. The converse is based on standard properties of entropy functions.
The proof is given in Appendices C.4.1-C.4.2.

Remark 6.2. We can write the bounds in (6.7) and (6.8), respectively, as

Rs ≤ I(V ;Y |A)− I(V ;Z|A)− (I(U ;Y |A)− I(U ;Z|A)) (6.10)
R` ≥I(X;A, V, Y )+I(X;Z|A)−I(X;Y |A) + (I(U ;Y |A)− I(U ;Z|A)). (6.11)
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To maximize the secret-key rate and minimize the privacy-leakage rate simultaneously, we
should minimize the term I(U ;Y |A)− I(U ;Z|A). This term is minimized by choosing an
auxiliary random variable U = U∗ such that I(U ;Y |A)− I(U ;Z|A) ≤ 0 and if we choose
U as a constant, we have I(U ;Y |A) − I(U ;Z|A) = 0; see [115]. This suggests that the
eavesdropper can decode the codeword Un in the first layer given Zn and A. Therefore, we
can view the two-layer binning approach used in the achievability proofs as having a public
codeword Un and a private codeword V n; see [85, Remark 1] for a similar conclusion.

Theorem 6.2 (Hidden Source, CS). For given PX , PX̃|X , and PY Z|XA, the key-leakage-
storage-cost region Rhcs is given as the set of all tuples (Rs, R`, Rw, C) satisfying

Rs ≤ I(V ;Y |A,U)− I(V ;Z|A,U) (6.12)
R`≥I(X;A, V, Y )+I(X;Z|A,U)−I(X;Y |A,U) (6.13)
Rw ≥ I(X̃;A, V )− I(U ;Y |A)− I(V ;Z|A,U) (6.14)

for some PXPX̃|XPA|X̃PY Z|XAPV |X̃APU |V such that E[Γ(A)]≤C with |U|≤ |X̃ ||A| + 3 and
|V|≤(|X̃ ||A|+ 3)(|X̃ ||A|+ 2).

Proof. We use the proof of achievability for Theorem 6.1 and add a one-time padding step.
The secret-key and privacy-leakage rate bounds have the same expressions, and the new
storage rate bound is the sum of the secret-key and storage rate bounds of the GS model
for a hidden source. The proof details are given in Appendices C.5.1-C.5.2.

Remark 6.3. Theorems 6.1 and 6.2 can be seen as extensions of the results in Chapter 4
with the addition of cost-constrained action-dependent measurements at the decoder and
correlated side information at the eavesdropper.

Remark 6.4. If X̃n = Xn in Figure 6.1, we recover the noiseless (visible) source models.
By choosing X̃ = X in Theorems 6.1 and 6.2, we have the rate regions Rgs and Rcs,
respectively, for the GS and CS models for a visible source; see Appendices C.2.1-C.3.2
for proofs. This means that Theorems 6.1 and 6.2 also include, as special cases, results
for one-round secret-key generation and embedding, respectively, that extend the results
in [62], where there is no privacy constraint on the source sequence. Moreover, Theorem 6.1
can also be seen as an extension of the result in [114] because we additionally capture cost-
constrained action-dependent decoder measurements.

6.3.1. Rate Region Comparisons and Discussions
Consider the key-leakage-storage region given in [114, Theorem 2] for the GS model and
a visible source, which is a simplified version of the model we consider. We compare
this region with the rate region Rgs to illustrate the effects of the cost-constrained action
sequence. In particular, we observe that the action A appears in Rgs as a conditioning
random variable in each mutual information term in [114, Theorem 2], the new storage and
privacy-leakage rate limits are increased by the rate-distortion coding amount of I(X;A)
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and the probability distribution of A is restricted due to an expected cost constraint.
Therefore, the cost-constrained action sequence An brings the possibility of enlarging the
rate region, which recovers the rate region in [114, Theorem 2] by choosing a constant
action with fixed cost. The action sequence An has similar effects on other rate regions.
The rate region Rgs differs from the rate region Rcs only in the bound for the storage

rate. The bound in (6.14) with X̃ = X can be written as I(X;A) + I(X;V |A, Y ) +
I(V ;Y |A,U) − I(V ;Z|A,U) (cf. (6.9) with X̃ = X), revealing an additional rate that is
I(V ;Y |A,U)−I(V ;Z|A,U) (cf. (6.12)) needed to convey the chosen secret to the decoder.
Suppose (Rs, R`, Rw, C) ∈ Rcs for given PX and PY Z|XA. Therefore, there exist A, U , and
V such that U − V − (X,A)− (Y, Z) forms a Markov chain. It is straightforward to show
that (Rs, R`, Rw − Rs, C) ∈ Rgs for the same PX and PY Z|XA. Similar conclusions follow
also for a hidden source.
The bounds for the secret-key and privacy-leakage rates of visible and hidden sources

have the same expressions, i.e., for the GS model in Rgs and Rhgs, and for the CS model
in Rcs and Rhcs, respectively. However, the storage-rate limits of different source models
are different. Moreover, the Markov chain constraints and the cardinality bounds on the
auxiliary random variables are different for the visible and hidden source models. The
rate regions therefore differ significantly, which can result in unnoticed secrecy leakages
and reliability reductions if the wrong source model is used for the system design; see
Chapter 4.

6.4. Example
We want to illustrate an achievable rate region for cost-constrained action-dependent
secret-key generation from a visible source. We first define the scenario where a PUF
in an IoT device is used for key generation so that only a mobile device with access to the
key can control the IoT device. We then derive an achievable rate region for this scenario
by proving specific convexity results. These convexity results significantly simplify the
encoder design by decreasing the cardinality of the auxiliary random variable.
SupposeX is binary and uniformly distributed, the channel PA|X is a BSC with crossover

probability α, and the channels PY |AX(.|a, .) are BSCs with crossover probabilities pa for
a=0, 1. Suppose the eavesdropper has degraded side information and the channel PZ|Y is
a BSC with crossover probability p. In practice, quantized fine variations of RO outputs
follow these source and channel models. The effects of voltage and temperature variations
can also be suppressed by a legitimate user by applying additional post-processing steps to
the RO outputs [8]. Classic crossover probabilities for the BSCs PY |AX(·|a, ·) under ideal
environmental conditions are pa=0.03 and 0.05 for a = 0, 1, where, e.g., a = 0 corresponds
to the case that Xn is sent through the PY |AX(·|0, ·) channel.
Suppose the attacker has access to a noisy version Zn of the RO outputs Xn disturbed

by environmental variations in addition to noise. A classic crossover probability for one of
the BSCs PZ|AX(·|a, ·) is p′ = 0.15 [8]. We thus choose p0 = 0.03, p1 = 0.05, p= 0.1277 so
that p ∗ p0 =0.15=p′ and p ∗ p1 =0.1649. We also consider the cost of Γ(0)=0.5 units for
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a= 0 and Γ(1) = 0.3 units for a= 1 since obtaining a more reliable channel requires more
post-processing steps, which results in higher cost.
Suppose the crossover probability α of the BSC PA|X is 0.2. It is therefore more likely

that the input X=1 is sent through a channel that is stochastically degraded with respect
to the channel through which the input X= 0 is sent because p1>p0. This is the case if,
e.g., a one-bit quantizer is applied to RO outputs, where the bit 0 is extracted if the output
value is less than the mean over all ROs and the bit 1 otherwise. RO output values decrease
with increasing temperature. Therefore, the error probability of the channel through which
the input bit 0 is sent is smaller than the bit 1 is sent if the ambient temperature is greater
than the temperature assumed for the system design.
We now illustrate an achievable rate region for the RO PUF problem defined above by

proving convexity of a function used for entropy calculations. Choose the auxiliary random
variable V as (A,X) for simplicity so that the rate region of interest for the GS model
with a visible source is

Rs ≤ I(X;Y |A,U)− I(X;Z|A,U)
R` ≥ H(X)− (I(X;Y |A,U)− I(X;Z|A,U))
Rw ≥ I(X;A) +H(X|A, Y ) (6.15)

such that U − (A,X)− (Y, Z) forms a Markov chain and C ≥ E[Γ(A)]. The optimization
problem of achieving boundary points in (6.15) is equivalent to

min
PAX|U

H(Z|A,U) for a fixed H(Y |A,U)=η (6.16)

for all 0≤η≤1, which is a similar problem to MGL. Denote the conditional probabilities
PAX|U(a, x|i) = x̂i,ax and the probabilities PU(i)=ui for i=1, 2, . . . , |U|. To preserve PAX ,
we obtain the constraints

|U|∑
i=1

uix̂i,01 =
|U|∑
i=1

uix̂i,10 = α

2 , (6.17)

|U|∑
i=1

uix̂i,00 =
|U|∑
i=1

uix̂i,11 = 1−α
2 . (6.18)

To fix H(Y |A,U), it therefore suffices for all i=1, 2, . . . , |U| to consider

x̂i,01 = 1
2−x̂i,00, x̂i,10 = 1

2−x̂i,11. (6.19)

Define the functions

f(x̂i,00, x̂i,11)=
Hb

p0 ∗
2x̂i,00

1− 2(x̂i,11 − x̂i,00)

+Hb

p1 ∗
2x̂i,11

1−2(x̂i,00 − x̂i,11)

, (6.20)
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g(x̂i,00, x̂i,11)=
Hb

p ∗ p0 ∗
2x̂i,00

1− 2(x̂i,11 − x̂i,00)

+Hb

p∗ p1∗
2x̂i,11

1−2(x̂i,00−x̂i,11)

. (6.21)

Using (6.19), (6.20), and (6.21), we obtain

H(Y |A,U) =
|U|∑
i=1
ui

1
2 f(x̂i,00, x̂i,11), (6.22)

H(Z|A,U) =
|U|∑
i=1

ui
1
2 g(x̂i,00, x̂i,11). (6.23)

Define an inverse function f−1(ν)=(x̄, x̄) for all ν∈ [Hb(p0)+Hb(p1), 2] and x̄∈ [0, 0.5] so
that it suffices to replace f(x̂i,00, x̂i,11) with

f̄(x̄) = f
(
x̄

2 ,
x̄

2

)
(6.24)

to obtain any value in (6.22). Similarly, it suffices to replace g(x̂i,00, x̂i,11) with

ḡ(x̄) = g
(
x̄

2 ,
x̄

2

)
(6.25)

to obtain any value in (6.23).
Note that this choice of functions is not necessarily optimal to achieve the boundary

points of the rate region in (6.15), which is discussed below.

Lemma 6.3. There is a unique x̄ in the interval [0, 0.5] for which H(Y |A,U)= 1
2 f̄(x̄).

Proof. The function f̄(x̄) is strictly increasing from Hb(p0)+Hb(p1) to 2 in the interval
[0, 0.5) and we have Hb(p0)+Hb(p1)≤2H(Y |A,U)≤2H(Y )≤2.

Lemma 6.4. Define p̃′=min{p′, 1−p′} for some 0≤p′≤1. If p̃ ∗ p̃0 ≥ p̃1 and p̃ ∗ p̃1 ≥ p̃0,
the function ḡ(f−1(ν)) is convex in ν for ν∈ [Hb(p0)+Hb(p1), 2].

Proof. The functions f̄(x̄) and ḡ(x̄) are symmetric with respect to p0 = 1
2 , p1 = 1

2 , and p= 1
2 .

It thus suffices to prove the convexity for 0≤ p̃0, p̃1, p̃≤0.5. ḡ(f−1(ν)) is convex in ν if

∂2

∂ν2

(
ḡ(f−1(ν))

)
= 1
f̄ ′(x̄)

∂

∂x̄

(
ḡ′(x̄)
f̄ ′(x̄)

)
≥0 (6.26)

for all x̄∈ [0, 0.5], as proved in Appendix A.4. Note that Hb(·) is an increasing function
for x̄∈ [0, 0.5], so f̄ ′(x̄)≥ 0 for all x̄∈ [0, 0.5]. It thus suffices to show that ∂

∂x̄

(
ḡ′(x̄)
f̄ ′(x̄)

)
≥ 0,

i.e.,

ḡ′′(x̄)f̄ ′(x̄)−f̄ ′′(x̄)ḡ′(x̄)≥0. (6.27)
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The functions f̄(x̄) and ḡ(x̄) consist of two parts as Hb(p̃a ∗ x̄) and Hb(p̃ ∗ p̃a ∗ x̄),
respectively, for a = 0, 1. It is shown in [79] that Hb(p̃ ∗ H−1

b (ν)) is convex in 0≤ ν ≤ 1
for any p̃∈ [0, 0.5], so the terms in (6.27) that consist of the multiplications of the parts
with the same p̃a are positive valued. It thus suffices to find a set of p̃0 and p̃1 values that
satisfies

1−2(p̃∗p̃a)

(p̃∗p̃a∗x̄)(1−p̃∗p̃a∗x̄) log
(

1−p̃∗p̃a∗x̄
p̃∗p̃a∗x̄

) ≤ 1−2p̃b
(p̃b∗x̄)(1−p̃b∗x̄) log

(
1−p̃b∗x̄
p̃b∗x̄

) (6.28)

where b=1−a for a=0, 1. Define the function

l(p̂) = 1− 2p̂

(p̂∗x̄)(1−p̂∗x̄) log
(

1−p̂∗x̄
p̂∗x̄

) (6.29)

for 0≤ p̂, x̄≤0.5. It is straightforward to prove that l(p̂) is a decreasing function by showing
that l(p̂) is convex and l′(0.5)=0. The inequality in (6.28) is thus satisfied if p̃∗p̃a≥ p̃b for
a=0, 1. This proves the convexity.

We use the convexity property for channels satisfying the assumptions in Lemma 6.4 to
give an achievable lower bound for H(Z|A,U) when H(Y |A,U) is fixed.

Lemma 6.5. Suppose ḡ(f−1(ν)) is convex in ν. With the assumptions given above, we
have

H(Z|A,U)≥ 1
2 ḡ(f−1(2H(Y |A,U))). (6.30)

Proof. Using Jensen’s inequality, we have

H(Z|A,U)=
|U|∑
i=1

ui
1
2 ḡ(f−1(f̄(x̄i)))≥

1
2 ḡ
(
f−1

( |U|∑
i=1

uif̄(x̄i)
))

= 1
2 ḡ
(
f−1(2H(Y |A,U))

)
.

Lemma 6.6. Consider the problem setup defined above and the region in (6.15). The
BSCs PAX|U(a, ·|·) with the same crossover probability x̄ ∈ [0, 0.5] when PA|U(·|·) = 1

2
achieve the region that satisfies equality in (6.30) if p̃ ∗ p̃0≥ p̃1 and p̃ ∗ p̃1≥ p̃0 are satisfied.

Proof. Consider the bounds in (6.15) that depend on U . Using Lemma 6.5, we obtain

Rs≤ H(Y |A,U)−H(Y |A,X)− 1
2 ḡ
(
f−1(2H(Y |A,U))

)
+H(Z|A,X), (6.31)

R`≥ H(X)−H(Y |A,U)+H(Y |A,X)+ 1
2 ḡ
(
f−1(2H(Y |A,U))

)
−H(Z|A,X) (6.32)

where we use Lemma 6.4 for the convexity requirement and Lemma 6.3 to show that the
inverse function f−1(·) is a bijective mapping. Equalities in (6.31) and (6.32) are achieved
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by BSCs PAX|U(a, ·|·) with the same crossover probability 0≤ x̄≤0.5, defined in Lemma 6.3,
for a = 0, 1 when PAX|U(·, 0|·)+PAX|U(·, 1|·) = PA|U(·|·) = 1

2 , which follows by (6.19).

Remark 6.5. One can show that the lower bound in (6.30) can be improved forH(Z|A,U)
given in (6.23) that is a function of a general g(x̂i,00, x̂i,11), although this lower bound is
tight for the function ḡ(x̄).

For the RO PUF problem with the source and channel parameters given above, we obtain
that Rw ≥ 0.4731 bits/source-bit and C ≥ 0.4 units since PAXY Z is fixed. The boundary
points for Rs and R` sum up to H(X) = 1 bits, which determines the trade-off between
the secret-key and privacy-leakage rates for this example. The maximum Rs achievable by
using Lemma 6.6 is R∗s =0.3876 bits/source-bit, achieved with R`≥0.6124 bits/source-bit.





7
Other Contributions
This chapter briefly summarizes two of our other contributions. The first contribution
considers multiple enrollments of the same PUF. The second contribution considers condi-
tions for the secret-key rate to be positive when multiple rounds of communication between
legitimate parties are allowed. We have more contributions that are in progress and not
summarized in the thesis, e.g., key agreement with broadcast channel measurements of
hidden biometric or physical identifiers, and the operational equivalence of the WZ prob-
lem and the GS model. The results of this chapter were published in [16], where the proof
of the general two-enrollment case is from Frans Willems and Lieneke Kusters, and in [17],
where the majority of the work was done by Amin Gohari. The extension of [17] will be
submitted for publication in [18].

7.1. Key Agreement with Multiple PUF Enrollments
In the key agreement literature, usually only a single enrollment is performed for each
PUF. We are interested in cases where multiple enrollments are used to generate multiple
keys. This may happen in practice when the used key is replaced with a new key.
Suppose multiple keys and helper messages are generated from different measurements

of the same PUF. For example, Figure 7.1 shows an enrollment model, where during each
enrollment j ∈ {1, 2}, a key Sj and corresponding helper message Wj are generated from
a noisy observation X̃j of the hidden PUF source Xn. The helper message Wj should
have enough information so that a decoder can reconstruct the secret Sj when another
noisy observation Y n

j of the hidden source Xn is available. An eavesdropper, given all
helper messages (W1,W2); however, should learn only a negligible amount of information
about any of the secrets. We assume that the same encoding Enc(·) and decoding Dec(·)
algorithms are used for each enrollment.

Definition 7.1. A secret-key rate tuple (R1, R2, . . . , R|J |) is said to be achievable for a
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X̃n
1 (S1,W1) = Enc(X̃n

1 ) Ŝ1 = Dec(Y n
1 ,W1)

Ŝ1S1

Y n
1

W1

X̃n
2 (S2,W2) = Enc(X̃n

2 ) Ŝ2 = Dec(Y n
2 ,W2)

Ŝ2S2

Y n
2

W2

Figure 7.1.: Two-enrollment model.

multiple-enrollment model if, given any δ > 0, there is some n ≥ 1, an encoder, and a
decoder such that for ∀j ∈ J , we have Rj = log |Sj|

n
and

Pr[Ŝj 6= Sj] ≤ δ (reliability) (7.1)
1
n
I(Sj; {Wj :j ∈ J }) ≤ δ (weak secrecy) (7.2)

1
n
H(Sj) ≥ Rj − δ (uniformity) (7.3)

where we have (Wj, Sj)=Enc(X̃n
j ) and Ŝj =Dec(Wj, Y

n
j ). The secret-key rate region R is

the closure of all achievable secret-key rate tuples. ♦

7.1.1. Two-Enrollment Model with the Same Measurement
Channels

We first assume that every noisy measurement of the hidden source is made through the
same memoryless channel for the two-enrollment model, i.e., we assume

P
X̃1|X(z|x) = P

X̃2|X(z|x) = PY1|X(z|x) = PY2|X(z|x) ∀z ∈ X̃1 = X̃2 = Y1 = Y2. (7.4)

We have X̃ d= X̃1
d= X̃2 and Y d= Y1

d= Y2, where d= denotes the equality in probability
distribution, since they have the same statistical properties. For the two-enrollment model
shown in Figure 7.1 with the assumption of the condition in (7.4), we have the following
result; see [16] for the proof.

Theorem 7.1. The secret-key region R for a two-enrollment model that satisfies (7.4) is

R = {(R1, R2) : 0 ≤ R1 ≤ I(X̃;Y ), 0 ≤ R2 ≤ I(X̃;Y )}. (7.5)

This result shows that for two enrollments of a PUF where all measurement channels
have the same statistics, we can achieve the maximum secret-key rates for each enroll-
ment simultaneously. Therefore, having two enrollments does not necessarily reduce the
individual secret-key rates achieved.



7.1. Key Agreement with Multiple PUF Enrollments 81

7.1.2. Zero Secrecy Leakage for Symmetric PUFs
In this section, we illustrate cases where zero secrecy leakage occurs for any number |J |
of enrollments, when a linear code is used in the FCS, and the PUF source has a certain
type of symmetry. We use the following theorem.

Theorem 7.2 ([116]). Consider |J | PUF enrollments when the symmetry condition

Pr[X̃1 = x̃1, X̃2 = x̃2, . . . , X̃|J | = x̃|J |] = Pr[X̃1 = x̃1, X̃2 = x̃2, . . . , X̃|J | = x̃|J |] (7.6)

where x is the one’s complement of the bit x, is satisfied for all x̃1, x̃2, . . . , x̃|J | ∈ X̃ .
Then, for any secret-key rate tuple (R1, R2, . . . , R|J |) such that Rj ≤ I(X̃j;Yj) for all
j ∈ {1, 2, . . . , |J |}, we have zero secrecy leakage about each secret key, i.e., we obtain

I(Sj;W1,W2, . . . ,W|J |) = 0 (7.7)

for all j ∈ {1, 2, . . . , |J |} if we use the FCS discussed in Chapter 3.

We give two cases that satisfy the constraint in Theorem 7.2.

SRAM-PUF Model Under Varying Ambient Temperature

An SRAM has binary outputs and each SRAM cell has two hidden model variables to
define the probability Pr[X̃ = 1] at an ambient temperature T . The hidden variable M
defines the bias of the cell and D defines the effect of temperature, when M and D are
independent. For an SRAM cell with given realizations m and d, the jth observation at
temperature T (j) is modeled as [117]

x̃(j)(T (j)) =

0 if m+ n(j) + d · T (j) ≤ τ,

1 if m+ n(j) + d · T (j) > τ
(7.8)

where n represents the noise in each measurement distributed according to N (0, 1). The
probability that X̃ = 1 is observed at temperature T for this cell is given by Q(−m−d·T+
τ), where Q(·) is the Q-function. The realizationsm and d are assumed to be unknown and
they are modeled as the realizations of the random variables, respectively,M ∼ N (µM , σM)
and D ∼ N (0, σD) for each SRAM cell. Therefore, at the j-th measurement we have

Pr[X̃(j) = 1] =
∫ ∞
−∞

∫ ∞
−∞

Q(−m− d · T (j) + τ)pM(m)pD(d) dm dd. (7.9)

Suppose that the SRAM cells are unbiased, i.e., µM = τ . For |J | observations of an
SRAM cell at various given temperatures T |J | = (T (1), T (2), . . . , T (|J |)), we show that

Pr(X̃ |J | = x̃|J |) = Pr(X̃ |J | = x̃|J |) (7.10)
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by using the symmetry properties pM(m) = pM(−m) and pD(d) = pD(−d). Since the
hidden model variables are i.i.d. over all SRAM cells, we have for n SRAM cells

Pr
[
X̃
|J |
1 = x̃

|J |
1 , X̃

|J |
2 = x̃

|J |
2 , . . . , X̃ |J |n = x̃|J |n

]
=

n∏
i=1

Pr[X̃ |J |i = x̃
|J |
i ]

(a)=
n∏
i=1

Pr[X̃ |J |i = x̃
|J |
i ]

= Pr
[
X̃
|J |
1 = x̃

|J |
1 , X̃

|J |
2 = x̃

|J |
2 , . . . , X̃ |J |n = x̃

|J |
n

]
(7.11)

where (a) follows by (7.10). This shows that the model given in (7.8) meets the symmetry
condition in (7.6). By Theorem 7.2, the temperature dependent SRAM-PUF model (7.8)
results in zero secrecy leakage about each embedded key, as in (7.7), if the FCS is used for
secret-key agreement.

Other PUF Models with the Symmetry Property

Any binary-input symmetric memoryless measurement channel, as discussed in Chapter 4,
satisfies the symmetry constraint (7.6) if the hidden source is symmetric.
We give an example source-channel model pair where both the source and channel are

asymmetric but the outputs are symmetric to further illustrate that the symmetry property
in (7.6) is not limited to a small set of source-channel models. Consider a measurement
channel with probability transition matrix

Tu =

 1 0 0 0
9
64

25
64

15
64

15
64

 (7.12)

and a binary hidden source X with Pr[X = 1] = 0.8. This setup corresponds to the
measurement of a binary hidden source through two independent Z-channels, both with
parameter z = 0.375. The first two outputs in (7.12) have the same probability 5/16 and
the last two outputs in (7.12) have probability 3/16. This shows that (7.6) is satisfied,
which is a sufficient condition for zero secrecy leakage for multiple enrollments with the
FCS. Also note that for this source-channel model, the secret-key capacity for each key is
approximately Rs = 0.0456 bits/source-bit, which illustrates that key agreement is possible
with linear codes used in the FCS.

7.2. Coding for Positive Rate in the Key Agreement
Problem

We now consider a general key agreement problem where the legitimate parties are allowed
to talk over a public and authenticated channel in both directions and multiple times,
unlike our previous models. Furthermore, we allow the eavesdropper to observe a sequence
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that is correlated with the observations of the legitimate parties. Such a scenario can be
observed in key agreement via a wireless channel, i.e., physical-layer security, and in key
agreement with two legitimate parties that observe different noisy measurements of the
same biometric source.
Suppose Alice, Bob, and eavesdropper (Eve), respectively, observe n i.i.d. realizations

of X, Y , and Z that are distributed according to the pmf pXY Z(x, y, z) for x ∈ X , y ∈ Y ,
z ∈ Z, where X , Y , and Z are finite sets. Alice and Bob want to agree on a key hidden from
Eve as follows: Alice first creates a public message F1 using some pF1|Xn(f1|xn) and sends
it to Bob. Bob generates a public message F2 using some pF2|Y nF1(f2|yn, f1) and sends it to
Alice, then Alice generates F3 according to some pF3|XnF1:2(f3|xn, f1:2), etc. After k rounds
of communications, Alice creates a key KA according to some pKA|XnF1:k(kA|xn, f1:k) and
Bob creates a key KB according to some pKB |Y nF1:k(kB|yn, f1:k).
A key rate Rs is achievable if, given any δ > 0, there is some n≥ 1, an encoder, and a

decoder for which Rs = 1
n

log |KA| and

Pr[KA 6= KB] ≤ δ (reliability)
1
n
H(KA) ≥ Rs − δ (uniformity)

1
n
I(KA;Zn, F1:k) ≤ δ (weak secrecy). (7.13)

The supremum of all achievable key rates is called the source model secret-key (SK) ca-
pacity and denoted by S(X;Y ‖Z).

Definition 7.2. (X, Y, Z) is an erasure source with parameter ε if pZ|XY is an erasure
channel, i.e., Z = XY with probability 1−ε and Z = e with probability ε, where e is the
erasure symbol. The alphabet of Z is Z={e} ∪(X × Y).

We here restrict the pmfs to the erasure sources; see our results in [18] for extensions to
general pmfs.

Definition 7.3. (X, Y ) is a doubly symmetric binary source (DSBS) with parameter p, i.e.,
DSBS(p), for X, Y ∈ {0, 1}, if pXY (0, 0) = pXY (1, 1) = p/2 and pXY (0, 1) = pXY (1, 0) =
(1− p)/2.

Definition 7.4. (X, Y, Z) is a doubly symmetric binary-erasure (DSBE) source with pa-
rameters (p, ε) if (X, Y, Z) is an erasure source with parameter ε and (X, Y ) is a DSBS(p).
The alphabet of Z is Z = {e, (0, 0), (1, 1), (0, 1), (1, 0)}.

Consider an erasure source with parameter ε. When ε = 0, we have Z = XY and
S(X;Y ‖Z) = 0. When ε = 1, Z = e is constant and S(X;Y ‖Z) = I(X;Y ). We are
interested in the values of ε ∈ [0, 1] such that S(X;Y ‖Z) > 0. Our approach provides a
sufficient condition on ε such that S(X;Y ‖Z) > 0. We also prove the necessity of this
condition when X or Y is binary.
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7.2.1. Literature Review
We now list the most important bounds on the SK capacity.

SK Capacity Lower Bounds

The SK capacity when messages are transmitted only in one direction over the public
channel is given in [62]. The one-way SK capacity from X to Y , denoted by Sow(X;Y ‖Z),
is

Sow(X;Y ‖Z)= max
U−V−X−Y Z

I(V ;Y |U)−I(V ;Z|U) (7.14)

which is a lower bound on the SK capacity S(X;Y ‖Z).
The best known lower bound on the SK capacity S(X;Y ‖Z) for general sources (using

interactive communication) was as follows [118]. Given random variables U1, U2, · · · , Uk
satisfying the Markov chain conditions

Ui −XU1:i−1 − Y Z for odd i, (7.15)
Ui − Y U1:i−1 −XZ for even i (7.16)

and for any integer ζ such that 1 ≤ ζ ≤ k, we have S(X;Y ‖Z) ≥ L(X;Y ‖Z) where

L(X;Y ‖Z)=
∑
i≥ζ
odd i

I(Ui;Y |U1:i−1)− I(Ui;Z|U1:i−1)

+
∑
i≥ζ

even i

I(Ui;X|U1:i−1)−I(Ui;Z|U1:i−1). (7.17)

Denote the best possible lower bound obtained from (7.17) by L̄(X;Y ‖Z).

SK Capacity Upper Bound

The intrinsic mutual information upper bound [62, pp. 1126, Remark 2], [119] is

S(X;Y ‖Z) ≤ B0(X;Y ‖Z) , min
PJ|Z(j|z)

I(X;Y |J). (7.18)

We next list three results below; see [18] for proofs.

7.2.2. Main Results
Our first main result follows by relating the parameter ε with the strong data processing
constant [120]; see also [119].

Theorem 7.3. Let (X, Y, Z) be a DSBE source with parameters (p, ε). Then L̄(X;Y ‖Z) =
0 if and only if the one-way SK capacity Sow(X;Y ‖Z) from Alice to Bob (or Bob to Alice)
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vanishes, which is the case if and only if

ε ≤ 4p(1− p). (7.19)

We define a path before giving our second main result.

Definition 7.5. A sequence (x1, y1, x2, y2, · · · , xk, yk) forms a path if all xi’s with xi ∈ X
are distinct and also all yi’s with yi ∈ Y are distinct. We say the length of the path is 2k
and we assign the following value to the path


k∏
i=1

pXY (xi, yi)

pXY (x1, yk)
k∏
i=2

pXY (xi, yi−1)


1/k

. (7.20)

Let ε1 be the minimum assigned value of all possible paths and ε2 be the minimum assigned
value of all possible paths of length at most four.

We now give lower and upper bounds on the maximum erasure probability for which
the SK capacity is zero for an erasure source.

Theorem 7.4. For any erasure source (X, Y, Z) with erasure probability ε, we have
S(X;Y ‖Z) = 0 if ε ≤ ε1, and S(X;Y ‖Z) > 0 if ε > ε2, where ε1 and ε2 are as in
Definition 7.5.

Remark 7.1. If X or Y is binary, we have ε1 = ε2 so that this theorem gives a tight
bound on the maximum erasure probability for which the SK capacity is zero.

The proof of the converse for Theorem 7.4 follows from the intrinsic mutual informa-
tion upper bound B0(X;Y ‖Z) by constructing a random variable J such that pXY ZJ =
pXY ZpJ |Z and I(X;Y |J) = 0.
For achievability, suppose that ε2 is obtained at the minimizer path (x1, y1, x2, y2). Define

pij = pXY (xi, yj) for i = 1, 2 and j = 1, 2. Therefore, ε2 is equal to the value of this path,
i.e., we have

ε2 =
(
p11p22

p12p21

)1/2

. (7.21)

The achievability proof of Theorem 7.4 follows by converting the source PXnY nZn into a
DSBE source with parameters (p̃, εn); see [18] for the coding scheme, where

p̃ = p
n/2
11 p

n/2
22

p
n/2
11 p

n/2
22 + p

n/2
12 p

n/2
21

. (7.22)
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It therefore follows from Theorem 7.3 that, we can find a fixed and sufficiently large n such
that S(X;Y ||Z) > 0 if

ε >
min{√p11p22,

√
p21p12}

max{√p11p22,
√
p21p12}

(7.23)

whose right-hand side is less than or equal to ε2 given in (7.21). This proves that SK
capacity is positive if ε > ε2.
Our third main result is the observation that S(X;Y ‖Z) 6= L̄(X;Y ‖Z) for a DSBE(p, ε)

source if

min{p, 1− p}
max{p, 1− p} < ε ≤ 4p(1− p) (7.24)

where the left hand side is equal to ε2. This result follows directly from Theorems 7.3 and
7.4, which illustrates that the lower bound L̄(X;Y ‖Z) is loose.
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Conclusion
In this thesis, we studied the source model key agreement problem with PUFs and bio-
metrics. Our main focus was on:

. Algorithm designs with a small hardware area to eliminate PUF (or biometric) output
correlations, bias, and noise;

. Gains from multiple measurements of a noisy (hidden) PUF source as compared to
a noiseless (visible) source;

. Information-theoretically optimal, future-proof, and practical code constructions based
on binning;

. Improvements from action-dependent (adaptive) decoder measurements during re-
construction.

In the following, we summarize the main results of the thesis.
Chapter 3 The reliability, uniqueness, security, computational-complexity, and key-

length performance of various transforms were compared to select the best transforms for
reliable secret-key binding for RO PUFs by using the FCS. The DWHT and DHT were
shown to perform the best in terms of computational-complexity, maximum key length,
and reliability. All transforms gave close to optimal uniqueness and good security results.
A reference hardware design with the DWHT showed that the hardware area required by
the transform-coding approach is small and less than the area required by existing RO
PUF designs. Low-complexity concatenated codes with high secret-key and small privacy-
leakage rates are proposed for a block-error probability of 10−9. The codes improve on
previous designs. Furthermore, we designed quantizers with reliability guarantees. These
quantizers convert the block-error probability constraint PB ≤ 10−9 into a constraint on
the number of transform coefficients allowed to be in error. We proposed a BCH code with
a higher code rate than our previously proposed codes. Comparisons with the region of
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all achievable (secret-key, privacy-leakage) rate pairs for the FCS showed that there is still
a gap between the optimal rate pairs and the proposed code. This gap can be closed by
using other channel codes and decoders at the cost of higher hardware area or by designing
codes for other code constructions, as illustrated in Chapter 5.
Chapter 4 We derived the key-leakage-storage regions for a HSM for biometric and

physical identifiers. For a BSS, we used MGL to evaluate the key-leakage-storage regions
for decoder-output channels that can be decomposed into a mixture of BSCs and quantified
the rate improvements with multiple measurements at the decoder as compared to a single
measurement. By taking a large number of measurements of the hidden source at the
decoder, the privacy-leakage rate is made small for the GS and CS models, and the storage
rate is significantly decreased for the GS model, which is not possible for the CS model.
We showed that if one mistakenly uses the VSM when the source is hidden, then the
privacy-leakage rate might be pessimistic, whereas the secret-key and storage rates might
be over-optimistic, which leads to unnoticed secrecy leakage and reliability reductions. The
rate points at the maximum secret-key rates in the key-leakage-storage regions for multiple
encoder measurements showed that the gain in the secret-key rate from multiple encoder
measurements results in greater privacy-leakage and significantly greater storage rates.
The examples illustrate that higher reliability in the encoder measurements improves the
storage rate, which also applies to decoder measurements because the encoder and decoder
measurements are obtained through separate channels.
In Chapter 5, we showed that there are random codes that asymptotically achieve

all points of the rate regions of the WZ problem and GS model simultaneously, i.e., these
problems are functionally equivalent. Extending the functional equivalence, we argued that
the first WZ-coding construction based on random linear codes is asymptotically optimal
for the GS and CS models with uniform binary sources with decoder measurements through
a BSC. These source and channel models are the standard models for RO PUFs and SRAM
PUFs. We implemented the second WZ-coding construction with nested polar codes that
achieve better rate tuples than existing methods, and one of our codes achieves a rate tuple
that cannot be achieved by existing methods without time sharing. Gaps to the maximum
key vs. storage rate ratios were illustrated. Other code constructions to achieve strong
secrecy results, and extensions to HSMs, were also given.
Chapter 6 We derived the key-leakage-storage-cost regions for a hidden source with

the GS and CS models when a cost-constrained action sequence controls the source mea-
surements during authentication. Correlated side information at the eavesdropper is also
considered as a realistic assumption, especially for biometric identifiers. The achievabil-
ity proof of the GS model involves layered random binning. We illustrate achievable
key-leakage-storage-cost regions with an example motivated by realistic authentication
scenarios.
Chapter 7 We studied security of the key agreement scheme with multiple PUF enroll-

ments. We proved that there exist codes for certain PUF measurement channels such that
the secret key remains secure when the same PUF is enrolled for the second time. Further-
more, we show that the FCS remains secure for any number of enrollments when the PUF
outputs meet a symmetry condition. We argued that there is a large set of source-channel



89

models that satisfies this symmetry condition. For instance, the temperature-dependent
output model for SRAM-PUFs is shown to meet this condition.
We also consider an erasure source and provide a sufficient condition to obtain a positive

SK capacity when two legitimate parties are allowed to communicate in multiple rounds.
We prove the necessity of this condition when at least one of the legitimate parties’ source
is binary. Furthermore, we show, for the first time in the literature, that the best exist-
ing lower bound for general sources is loose. Extensions to non-erasure sources are also
mentioned.
We discussed that our algorithm and code designs can be further improved at the cost

of higher complexity. A brief list of ongoing and future works is as follows:

. Derive water-filling techniques for the transform-coding algorithm to improve the
reliability and security performance;

. Consider key-leakage-storage regions for encoder and decoder measurements through
a broadcast channel to show that reduced reliability in the measurements might
enlarge the rate regions;

. Show whether the WZ problem and GS model are operationally equivalent to moti-
vate the usage of WZ-coding constructions for the GS model with general sources;

. Consider key-leakage-storage-cost regions for adaptive decoder measurements with
causal actions that depend on the helper data and previous decoder measurements,
which might improve the rate regions as compared to noncausal actions considered
in Chapter 6;

. Apply our methods to private search problems, which are closely related to private
information retrieval problems.





A
Appendices for Chapter 4

A.1. Achievability Proofs

A.1.1. Achievability Proof for Theorem 4.1

Overview

We choose the conditional probabilities P
U |X̃(u|x̃) for all u∈U and x̃∈ X̃ . We randomly

and independently generate 2n(Rw+Rs) ≈ 2nI(U ;X̃) sequences un(w, s) for w = 1, . . . , 2nRw

and s=1, . . . , 2nRs . Consider 2nRw ≈ 2n(I(U ;X̃)−I(U ;Y )) storage labels w and 2nRs ≈ 2nI(U ;Y )

key labels s, which can be considered as bins. The encoder finds a un(w, s) sequence that
is jointly typical with the observed measurement x̃n of the source xn. It then publicly
sends the storage label w to the decoder. The decoder sees another measurement yn of the
source and it determines the unique un(w, ŝ) that is jointly typical with yn. Using standard
arguments, one can show that the error probability Pr[S 6= Ŝ]→0 as n→∞. The secrecy-
leakage rate is negligible if there is no error. The privacy-leakage rate is approximately
I(U ;X)−I(U ;Y ), which requires a different analysis than in [56].

Proof

Fix P
U |X̃ . Randomly and independently generate codewords un(w, s), w = 1, . . . , 2nRw ,

s=1, . . . , 2nRs according to ∏n
i=1 PU(ui), where

PU(ui) =
∑

(x̃,x)∈X̃×X

P
U |X̃(ui|x̃)P

X̃|X(x̃|x)QX(x). (A.1)
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These codewords define the codebook

C = {un(w, s), w = 1, . . . , 2nRw , s = 1, . . . , 2nRs}

and we denote the random codebook by

C̃ = {Un(w, s)}(2nRw ,2nRs )
(w,s)=(1,1) . (A.2)

Let 0<ε′<ε.
Encoding: Given x̃n, the encoder looks for a codeword that is jointly typical with x̃n,

i.e., (un(w, s), x̃n) ∈ T nε′ (PUX̃). If there is one or more such codeword, then the encoder
chooses one of them and puts out (w, s). If there is no such codeword, set w=s=1. The
encoder publicly stores the label w.
Decoding: The decoder puts out ŝ if there is a unique key label ŝ that satisfies the

typicality check (un(w, ŝ), yn)∈T nε (PUY ); otherwise, it sets ŝ=1.
Error Probability: Define the error events

E1 =
{

(Un(w, s), X̃n) 6∈ T nε′ (PUX̃) for all (w, s)∈ [1 :2nRw ]× [1 :2nRs ]
}

E2 =
{

(Un(W, s), X̃n, Y n) 6∈ T nε (P
UX̃Y

) for all s∈ [1 :2nRs ]
}

E3 =
{

(Un(W, s′), Y n) ∈ T nε (PUY ) for some s′ 6=S
}
.

and the overall error event E = ∪3
i=1Ei. Using the union bound, we have

Pr[E]≤Pr[E1]+Pr[Ec
1 ∩ E2]+Pr[E3]. (A.3)

Pr[E1] is small with large n and small ε′ if

Rw+Rs>I(U ; X̃)+δ(ε′) (A.4)

where δ(ε′) is small with small ε′ (see the covering lemma [103, Lemma 3.3]).
Note that the event {X̃n= x̃n, Un=un} implies Y n∼∏n

i=1 PY |X̃(yi|x̃i). By the conditional
typicality lemma [103, Section 2.5], we obtain that Pr[Ec

1 ∩ E2] is small with large n.
Due to symmetry in the code generation, we can set W =1 and have

Pr[E3]=Pr[(Un(1, s′), Y n)∈T nε (PUY) for some s′ 6=S].

Using the packing lemma [103, Lemma 3.1], we find that Pr[E3] is small with large n and
small ε if

Rs<I(U ;Y )−δ(ε) (A.5)

where δ(ε) is small with small ε.
We therefore define some δ1 and δ2, where δ2 > δ(ε) and δ1 > δ(ε′)+δ2, that are small
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with small ε and some δ′ that is small with large n and small ε such that

Pr[E] ≤ δ′ (A.6)
Rw = I(U ; X̃)− I(U ;Y ) + δ1 (A.7)
Rs = I(U ;Y )− δ2. (A.8)

We first establish bounds on the secrecy-leakage, secret-key, privacy-leakage, and storage
rates averaged over the random codebook C̃ and then we show that there exists a codebook
satisfying (4.2)-(4.6). In the following, Un represents Un(W,S).
Secrecy-leakage Rate: Observe that

H(W,S|C̃) (a)= H(Un,W, S|C̃)
≥ H(Un|C̃)
= H(Un, X̃n|C̃)−H(X̃n|Un, C̃)
(b)
≥ nH(X̃)−H(X̃n|Un, C̃)
(c)
≥ nH(X̃)−n(H(X̃|U) + δε)
= n(I(U ; X̃)−δε)
(d)= n(Rw+Rs− δ1+δ2−δε) (A.9)

where
(a) follows because, given the codebook, (W,S) determines Un,
(b) follows because X̃n is independent of the codebook,
(c) follows by using Lemma C.2 for δε that is small with small ε,
(d) follows by (A.7) and (A.8).
Using (A.9), we obtain

1
n
I(S;W |C̃)= 1

n
(H(S|C̃)+H(W |C̃)−H(W,S|C̃))

≤ 1
n

(nRs+nRw−H(W,S|C̃))

≤ δ1−δ2+δε (A.10)

which is small with small ε.
Key Uniformity: We have

1
n
H(S|C̃) ≥ 1

n
(H(W,S|C̃)−H(W |C̃))

(a)
≥ Rs− δ1+δ2−δε. (A.11)

where (a) follows by (A.9).
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Privacy-leakage Rate: First, consider

H(W |XnC̃) = H(W, X̃n|Xn, C̃)−H(X̃n|W,Xn, C̃)
(a)
≥H(X̃n|Xn)−H(X̃n|W,Xn, C̃)
(b)=H(X̃n|Xn)−H(X̃n, S|W,Xn, C̃)
(c)
≥nH(X̃|X)−H(S|W,Xn, C̃)−H(X̃n|Xn, Un, C̃)
(d)=nH(X̃|X)−H(S|W,Xn, Y n, Ŝ, C̃)−H(X̃n|Xn, Un, C̃)
(e)
≥nH(X̃|X)−Pr[E] log|S|−Hb(Pr[E])−H(X̃n|Xn, Un, C̃)
(f)=nH(X̃|X)−nδ′′−H(X̃n|Xn, Un, C̃)
(g)
≥nH(X̃|X)−nδ′′−n(H(X̃|X,U)+δ′ε)
=n(I(U ; X̃|X)−(δ′′+δ′ε)) (A.12)

where
(a) follows because C̃ is independent of (X̃n, Xn),
(b) follows because, given the codebook, X̃n determines S,
(c) follows since, given the codebook, (W,S) determines Un,
(d) follows by the Markov chain (S,W,Un)−X̃n−Xn−Y n,
(e) follows from Fano’s inequality,
(f) follows by using |S|≤|X̃ |n and defining a parameter δ′′ that is small with large n and
small ε due to (A.6),
(g) follows by using Lemma C.2 for δε that is small with small ε.

Using (A.12), we have

1
n
I(Xn;W |C̃)= 1

n
(H(W |C̃)−H(W |Xn, C̃))

≤Rw−(I(U ; X̃|X)−(δ′′+δ′ε))
(a)=Rw−(H(U |X)−H(U |X̃)−(δ′′+δ′ε))
(b)=I(U ;X)−I(U ;Y )+δ′′+δ′ε+δ1 (A.13)

where (a) follows by the Markov chain U−X̃−X and (b) follows by (A.7).

Storage Rate: Using (A.7), we have

1
n

log |W| = Rw = I(U ; X̃)− I(U ;Y ) + δ1. (A.14)

Applying the selection lemma [100, Lemma 2.2] to these results, there exists a codebook
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for the GS model that approaches the key-leakage-storage triple

(Rs, R`, Rw) =
(
I(U ;Y ), I(U ;X)−I(U ;Y ), I(U ; X̃)−I(U ;Y )

)
.

A.1.2. Achievability Proof for Theorem 4.2

Overview

We use the achievability proof of the GS model in combination with a one-time pad to con-
ceal the embedded secret key S by the key S ′ generated by the GS model. The embedded
key S is uniformly distributed and independent of other random variables. The secret-key
and privacy-leakage rates do not change, but the storage rate I(U ; X̃) is approximately
the sum of the storage and secret-key rates of the GS model.

Proof

Suppose S has the same cardinality as S ′, i.e., |S|= |S ′|. We use the codebook, encoder,
and decoder of the GS model and add the masking layer (one-time pad) approach of [56]
and [62] for the CS model as follows:

W = Enc(X̃n, S) = [S ′+S,W ′] (A.15)
Ŝ = Dec(Y n,W ) = S ′+S−Ŝ ′ (A.16)

where W ′ is the helper data of the GS model, and the addition and subtraction operations
are modulo-|S|.
Error Probability: We have

Pr[S 6= Ŝ] = Pr[S ′ 6= Ŝ ′] (A.17)

which is small by (A.6).
Secrecy-leakage Rate: The helper data W of the CS model consists of S ′+S and the

helper data W ′ of the GS model. Using (A.10), (A.11), and since S is independent of
(S ′,W ′, C̃) and uniformly distributed, we obtain

1
n
I(S;W ′, S ′+S|C̃) ≤ 2(δ1−δ2+δε). (A.18)

We thus have a secrecy-leakage rate that is small with small ε.
Privacy-leakage Rate: Using (A.13), we have

1
n
I(Xn;W ′, S ′+S|C̃)≤I(U ;X)−I(U ;Y )+δ′′+δ′ε+δ1 (A.19)

since S ′+S is independent of (W ′, Xn, C̃).
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Storage Rate: We obtain

1
n
H(W ′, S ′+S|C̃)

(a)
≤ Rw + 1

n
H(S ′+S)

(b)= I(U ; X̃)−I(U ;Y )+δ1 +I(U ;Y )−δ2 = I(U ; X̃) + δ1−δ2 (A.20)

where (a) follows because S ′+S is independent of (W ′, C̃), and (b) follows by (A.7) and
(A.8).
Using the selection lemma [100, Lemma 2.2], there exists a codebook for the CS model

that approaches the key-leakage-storage triple

(Rs, R`, Rw) =
(
I(U ;Y ), I(U ;X)−I(U ;Y ), I(U ; X̃)

)
.

A.2. Converses
The converses for Theorems 4.1 and 4.2 follow similar steps. Therefore, we give the proofs
of both theorems with different bounds for the storage rates.
Suppose that for some δ>0 and n there is an encoder and a decoder such that (4.2)-(4.6)

are satisfied for the GS or CS model by the key-leakage-storage triple (Rs, R`, Rw). Fano’s
inequality for S and Ŝ gives

nεn≥H(S|Ŝ)
(a)
≥H(S|W,Y n) (A.21)

where εn=δRs+Hb(δ)/n and (a) permits randomized decoding. Note that εn→0 if δ→0.
We use (A.21) to bound the key, leakage, and storage rates.
Secret-key rate: Using (4.3), (4.5), (A.21), and because Y i−1−(W,S,X i−1)−Yi forms a

Markov chain, we obtain

n(Rs−δ)≤ H(S) = I(S;W ) + I(S;Y n|W ) +H(S|W,Y n)

≤ nH(Y )−
n∑
i=1

H(Yi|W,S,X i−1)+n(δ+εn). (A.22)

Identify Ui , (W,S,X i−1) in (A.22), so Ui−X̃i−Xi−Yi forms a Markov chain, which
follows since PY |X and P

X̃|X are memoryless channels. Introduce a time-sharing random
variable Q∼Unif[1 :n] independent of other random variables. Define X =XQ, X̃ = X̃Q,
Y =YQ, and U=(UQ,Q), so U−X̃−X−Y forms a Markov chain. Using (A.22), we obtain

Rs≤H(Y )− 1
n

n∑
i=1

H(Yi|Ui)+2δ+εn

= H(Y )−H(YQ|UQ, Q)+2δ+εn = I(U ;Y )+2δ+εn. (A.23)



A.2. Converses 97

Storage rate: For the GS model, we have

n(Rw+δ)
(a)
≥ H(W ) ≥ H(W |Y n)

(b)
≥ H(W,S, Y n)−H(Y n)−H(S|W,Y n)−H(W,S|X̃n)
(c)
≥
[ n∑
i=1
I(W,S, X̃ i−1; X̃i)−I(W,S, Y i−1;Yi)

]
−nεn

(d)
≥
[ n∑
i=1
I(W,S,X i−1; X̃i)−I(W,S,X i−1;Yi)

]
−nεn

=
[ n∑
i=1
I(Ui; X̃i)− I(Ui;Yi)

]
−nεn (A.24)

where (a) follows by (4.6), (b) follows from the encoding step, (c) follows by (A.21) and
because X̃n and Y n are i.i.d., and (d) follows by the Markov chains

Y i−1−(W,S,X i−1)−Yi (A.25a)
X i−1−(W,S, X̃ i−1)−X̃i. (A.25b)

Using the definition of U above, we obtain for the GS model

Rw ≥ I(U ; X̃)− I(U ;Y )− (δ+εn). (A.26)

For the CS model, we have

n(Rw+δ)
(a)
≥H(W )

= I(W,S; X̃n)−H(S|W )+H(W,S|X̃n)
(b)
≥ I(W,S; X̃n)+I(S;W )

≥
n∑
i=1

I(W,S, X̃ i−1; X̃i)

(c)
≥

n∑
i=1

I(W,S,X i−1; X̃i)

=
n∑
i=1

I(Ui; X̃i) (A.27)

where (a) follows by (4.6), (b) follows because S is independent of X̃n and from the encoding
step, and (c) follows by applying (A.25b). Using the definition of U above, we have for
the CS model

Rw ≥ I(U ; X̃)− δ. (A.28)



98 Appendix A. Appendices for Chapter 4

Privacy-leakage rate: Observe that

n(R`+δ)
(a)
≥ I(Xn;W ) ≥ H(W |Y n)−H(W |Xn)

= H(W,S, Y n)−H(S|W,Y n)−H(Y n)−H(W |Xn)
≥ I(W,S;Xn)−I(W,S;Y n)−H(S|W,Y n)
(b)
≥
[ n∑
i=1
I(W,S,X i−1;Xi)−I(W,S, Y i−1;Yi)

]
−nεn

(c)
≥
[ n∑
i=1
I(W,S,X i−1;Xi)−I(W,S,X i−1;Yi)

]
−nεn

=
[ n∑
i=1

I(Ui;Xi)− I(Ui;Yi)
]
− nεn (A.29)

where (a) follows by (4.4), (b) follows by (A.21), and (c) follows from the Markov chain in
(A.25a). Using the definition of U above, we have

R` ≥ I(U ;X)− I(U ;Y )− (δ+εn). (A.30)

The converse for Theorem 4.1 follows by (A.23), (A.26), and (A.30), and by letting δ→0.
The converse for Theorem 4.2 follows by (A.23), (A.28), and (A.30), and by letting δ→0.

A.3. Cardinality Bound
Consider X̃ = {x̃1, x̃2, . . . ,x̃|X̃ |} and the following |X̃ |+2 real-valued continuous functions
on the connected compact subset P of all probability distributions on X̃ :

fj(PX̃) =



P
X̃

(x̃j) for j = 1, 2, . . . , |X̃ |−1

H(X) for j = |X̃ |

H(X̃) for j = |X̃ |+ 1

H(Y ) for j = |X̃ |+ 2.

(A.31)

By using the support lemma [83, Lemma 15.4], we find that there is a random variable
U ′ taking at most |X̃ |+2 values such that P

X̃
, H(X̃), H(X|U), H(X̃|U), and H(Y |U)

are preserved if we replace U with U ′. We preserve the joint distribution P
X̃XY

(x̃, x, y)=
P
X̃

(x̃)P
X|X̃(x|x̃)PY |X(y|x) by preserving P

X̃
(x̃), so the entropies H(X) and H(Y ) are also

preserved. Hence, the expressions in Theorems 4.1 and 4.2

I(U ;Y )=H(Y )−H(Y |U)
I(U ;X)− I(U ;Y )=H(X)−H(X|U)−H(Y )+H(Y |U)
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I(U ; X̃)−I(U ;Y )=H(X̃)−H(X̃|U)−H(Y )+H(Y |U)
I(U ; X̃)=H(X̃)−H(X̃|U)

are preserved by some U ′ that satisfies the Markov condition U ′−X̃−X−Y with |U ′| ≤
|X̃ |+ 2.

A.4. Alternative Convexity Proof for Independent
BSCs

We first give a sufficient condition for the convexity of the function g(f−1(ν)) in ν for
ν ∈ [0, 1] and some general functions f(·), which is different from the function in (4.9),

and g(·). Define f ′(x)= d

dx
f(x), f ′′(x)= d2

dx2f(x) and note that

d

dx
f−1(x) = 1

f ′(f−1(x)) . (A.32)

Let ν = f(x), where f(·) is invertible. The second partial derivative of g(f−1(ν)) with
respect to ν is

∂2

∂ν2

(
g(f−1(ν))

)
= ∂

∂ν

(
g
′(f−1(ν))
f ′(f−1(ν))

)

= g
′′(f−1(ν))f ′(f−1(ν))− g′(f−1(ν))f ′′(f−1(ν))

f ′(f−1(ν))3

= g
′′(x)f ′(x)− g′(x)f ′′(x)

f ′(x)3

= 1
f ′(x)

∂

∂x

(
g
′(x)
f ′(x)

)
. (A.33)

Observe that (A.33) is non-negative, and thus g(f−1(ν)) is convex in ν, as long as the
ratio g′(x)/f ′(x) is non-decreasing and f(x) is strictly increasing. There are other possi-
bilities to satisfy convexity, e.g., a strictly decreasing f(x) and a non-increasing derivative
ratio. We next show that independent BSCs satisfy the former sufficient condition.
For a channel PY1:L|X that consists of L independent BSCs with crossover probability p

we have (see (4.12))

g(x)=−
 L∑
k=0

(
L

k

)(
xp̄L−kpk+x̄p̄kpL−k

)
× log2

(
xp̄L−kpk+x̄p̄kpL−k

). (A.34)
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Observe from (4.10) and (A.34) that we have

f(x) = Hb(x)=Hb(x̄), g(x)=g(x̄), gp(x)=gp̄(x) (A.35)

so it suffices to prove convexity for 0≤x≤ 0.5 and 0≤ p≤ 0.5. We compute H ′b(x) =
ln (x̄/x), which is positive for 0≤x< 0.5. In addition, we define

hL,k(p, x) =
(
b(k, p)− b(k, p̄)

)
× ln xb(k, p̄) + x̄b(k, p)

xb(k, p) + x̄b(k, p̄) (A.36)

where b(k, p) =
(
L
k

)
pkp̄L−k. Hence, we have

g
′(x) =

bL−1
2 c∑

k=0
hL,k(p, x) (A.37)

where we exploit the symmetry in the summation terms. g
′(x) is non-negative when

0≤x< 0.5 and 0≤ p≤ 0.5. Define

qL,k(p, x) = hL,k(p, x)
ln
(
x̄
x

) (A.38)

so that the ratio g′(x)/H ′b(x) becomes

F (x) =
bL−1

2 c∑
k=0

qL,k(p, x). (A.39)

F (x) = g
′(x)/f ′(x) should be then non-decreasing in x to satisfy the convexity property.

We show that each summation term in (A.39) increases in x. Define u = x̄/x and c =
b(k, p̄)/b(k, p). The new constraints are u> 1 and 0≤ c≤ 1 since we restrict ourselves to
0≤x< 0.5 and 0≤ p≤ 0.5 when k ∈{0, 1, . . . , bL−1

2 c}. The term (b(k, p)− b(k, p̄)) is non-
negative for all k and it is zero if p= 0.5. Hence, by dx= (−1/(u+ 1)2)du, it suffices to
show that

∂

∂u

 ln
(
c+u
cu+1

)
ln u

 6 0 (A.40)

which is equivalent to

ln u 6 ln
(
c+ u

cu+ 1

)
· (c+ u)(cu+ 1)

(1− c)(c+ 1)u . (A.41)

The inequality in (A.41) is valid when c= 0 for every u. It therefore suffices to prove
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that the right hand side is increasing with respect to c for every u so that

∂

∂c

(
ln
(
c+ u

cu+ 1

)
· (c+ u)(cu+ 1)

(1− c)(c+ 1)u

)
> 0 (A.42)

which has to satisfy the same conditions with the following inequality for all u> 1 and
0≤ c≤ 1:

ln
(
c+ u

cu+ 1

)
>

(1− c2) (u2 − 1)
c2 (u2 + 1) + 4cu+ u2 + 1. (A.43)

Using the inequality 2θ
2+θ 6 ln(1 + θ) that is valid for θ≥ 0 [121], it suffices to show that

2
(
c+u
cu+1 − 1

)
2 + c+u

cu+1 − 1 −
(1− c2) (u2 − 1)

c2 (u2 + 1) + 4cu+ u2 + 1 > 0 (A.44)

which is equivalent to

(1− c)3(u− 1)3

(c+ 1)(u+ 1) (c2 (u2 + 1) + 4cu+ u2 + 1) > 0. (A.45)

The last inequality is satisfied by all u and c with u> 1 and 0≤ c≤ 1. For x = 0.5
the functions are constants, so convexity also follows for this case. Hence, convexity of
g(H−1

b (ν)) in ν is established for independent BSCs.

A.5. On A Lower Bound for Binary Asymmetric
Channels

Consider the Markov chain U−X−Y1, a binary random variable X with the probability
distribution QX , and a binary channel PY1|X with probability transition matrix

T =

a 1− a

b 1− b

 (A.46)

which is asymmetric if a+b 6=1. One can restrict attention to the cases a+b≤1 and a≥b by
swapping the outputs and inputs, respectively, if necessary [95]. The conditional entropies
H(X|U) and H(Y1|U) are as defined in (4.10) and (4.11), respectively. Since the convexity
property is satisfied for all binary channels PY1|X (see Section 4.3), we have the following
lower bound due to Lemma 4.3:

H(Y1|U) ≥Hb

(
aH−1

b (H(X|U))+b
(
1−H−1

b (H(X|U))
))
. (A.47)
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Note that if a=b, then (A.47) does not depend on H(X|U), since the channel would then
have zero capacity.
Consider the achievability of the bound in (A.47) for the model considered in [12, Theo-

rem 1], where a ternary U suffices to evaluate the key-leakage-storage region. For a channel
PX|U with probability transition matrix

Tu =


au 1− au
bu 1− bu
cu 1− cu

 (A.48)

we obtain

H(X|U) = PU(u0)Hb(au)+PU(u1)Hb(bu)+PU(u2)Hb(cu) (A.49)

and

H(Y1|U) = PU(u0)Hb(aau+b(1−au))
+ PU(u1)Hb(abu+b(1−bu)) + PU(u2)Hb(acu+b(1−cu)) (A.50)

where PU(u2)=1−PU(u0)−PU(u1) and

PU(u1)= PX(0)−cu−PU(u0)(au−cu)
bu−cu

. (A.51)

Figure A.1 shows the possible (H(X|U), H(Y1|U)) pairs by assigning an appropriate
set of values to the first column of Tu and to PU(u0) for a uniform X and an asymmetric
binary channel PY1|X with parameters a = 0.4 and b = 0.2. The convexity lower bound
in Figure A.1 is thus not tight for such an asymmetric binary channel. Our simulations
suggest that this is the case for all asymmetric channels, except for special cases like a=b.
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Figure A.1.: Comparison of the lower bound and possible choices of U for a uniform input
and a binary channel PY1|X with parameters a=0.4 and b=0.2 in (A.46).





B
Appendices for Chapter 5

B.1. Strong Secrecy
Theorem B.1. For the GS model (or CS model), given any ε > 0, there exist some n ≥ 1,
an encoder, and a decoder that achieve the key-leakage-storage region R′1 (or R′2) and that
satisfy the strong-secrecy constraint (5.14).

We prove Theorem B.1 for the GS model by using two approaches; the first proof uses
output statistics of random binning (OSRB) [122] and the second uses resolvability [123]
and a likelihood encoder [124]. The proofs for the CS model follow by applying a one-time
pad step, as in Section 5.2.3.

Proof Sketch 1. We first give a random binning based proof by following the steps in [122].
Fix a PU |X and let (Un, Xn, Y n) be i.i.d. according to PU |XPXPY |X . For each un, assign
three random bin indices S ∈ [1 : 2nRs ], W ∈ [1 : 2nRw ], and C ∈ [1 : 2nRc ], which
represent, respectively, the secret key, helper data, and randomness shared by the encoder,
decoder, and eavesdropper (similar to W ).
We use a SW decoder to estimate Ûn from (C,W, Y n), which satisfies (4.2) if (see [122,

Lemma 1])

Rw +Rc > H(U |Y ). (B.1)

We further have that (S,W,C) are almost mutually independent and uniform so that
(4.5) and (5.14) are satisfied if we have (see [122, Theorem 1])

Rs +Rw +Rc < H(U). (B.2)

Similarly, the shared randomness C is almost independent of Xn, suggesting that it is
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almost independent of Y n also, if

Rc < H(U |X). (B.3)

Applying Fourier-Motzkin elimination [125, Section 12.2] to (B.1)-(B.3) and following a
similar privacy-leakage rate analysis as in Theorem 5.3, there exists a binning with a fixed
value of C and that achieves all rate tuples (Rs, R`, Rw) in the key-leakage-storage region
R′1 with strong secrecy.

Proof Sketch 2. We next give a random coding based proof by following the steps in [124]
and [126, Section 1.6.2]. Consider the allied channel coding problem where S ∈ [1 : 2nRs ]
and W ∈ [1 : 2nRw ] are uniform and independent inputs of an encoder Enc(·) with the
output codeword Un that passes through a channel PX|U to obtain Xn, which further
passes through the channel PY |X to obtain Y n. Applying the resolvability result from [123,
Theorem 1], one can simulate Xn ∼ ∏n

i=1 PX(xi) if

Rs +Rw > I(U ;X). (B.4)

Furthermore, one can reliably estimate Ûn from (W,Y n) if

Rs < I(U ;Y ). (B.5)

Note that this channel coding problem defines a joint probability distribution

P̃SWXnY n(s, w, xn, yn)

= Unif [1 : |S|](s)Unif [1 : |W|](w)1{xn=Enc(w, s)}
n∏
i=1

PY |X(yi|xi) (B.6)

where Unif [1 : |S|] and Unif [1 : |W|] are uniform probability distributions over the sets,
respectively, S = [1 : 2nRs ] and W = [1 : 2nRw ], and 1{·} is the indicator function.
However, for the original problem, we should invert the random coding and use a stochas-

tic encoder according to the conditional probability distribution P̃SW |Xn obtained from
(B.6), which is induces a joint distribution

PSWXnY n(s, w, xn, yn) = P̃SW |Xn(s, w|xn)
n∏
i=i
PX(xi)PY |X(yi|xi). (B.7)

It follows from the above channel coding problem that (4.2), (4.5), (4.6), and (5.14) are
satisfied. Following similar privacy-leakage rate analysis as in Theorem 5.3, there exist
some n ≥ 1, an encoder, and a decoder that achieve all rate tuples (Rs, R`, Rw) in the
key-leakage-storage region R′1 with strong secrecy.

Remark B.1. Since resolvability can be achieved by a random linear code (RLC) con-
struction [127] for binary input channels PX|U , one can use the decoder for such an RLC
during enrollment to obtain the bins (S,W ) with strong secrecy. Note that a binary U is
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optimal for the rate regions R′1 and R′2 if, e.g., PY |X can be decomposed into a mixture of
BSCs; see Section 4.3.

Remark B.2. In [128, Theorem 10], a polar code construction based on OSRB is shown
to be optimal for the GS model with strong secrecy. This construction requires chains of
identifier-outputs, each of which has size n, and a secret seed shared between the encoder
and decoder. Furthermore, the constructions used in Proofs 1 and 2 of Theorem B.1 are
stochastic and such code constructions do not seem to be practical.

B.2. Extensions to Hidden Sources with Multiple
Decoder Measurements

In Chapter 4, the encoder measures a noisy version X̃n of a hidden, or remote, identifier
source Xn rather than the source itself. This is a more general model than the visible
source model assumed in Chapter 5. The key-leakage-storage regions R1 and R2 that
satisfy (4.2)-(4.6) for the GS and CS models with a hidden source are given, respectively,
in Theorems 4.1 and 4.2.
Suppose next the encoder measures a binary hidden source Xn through a channel P

X̃|X
such that the inverse channel P

X|X̃ is a BSC, and the decoder measures the source through
a channel PY |X that is a BSC. Using Theorem 4.5, we next argue the optimality of the first
WZ-coding construction given in Section 5.4 for the GS and CS models with the hidden
source model considered.

Theorem B.2. The WZ-coding construction given in Section 5.4 achieves the regions R1
and R2 for a uniform source Xn, an inverse channel P

X|X̃ that is a BSC, and a decoder-
measurement channel PY |X that is also a BSC.

Proof. We first modify the WZ-coding construction in Section 5.4 by defining the new
error sequence

Ẽn
q = X̃n ⊕ X̃n

q (B.8)

which resembles an i.i.d. sequence ∼ Bernn(q) for some q ∈ [0, 0.5] when X̃n
q is the

closest codeword of C1 to X̃n in Hamming distance and n→∞. The new error sequence
represents the BSCs P

X̃|U since the new common randomness X̃n
q asymptotically represents

the auxiliary random variable Un. Therefore, we asymptotically obtain i.i.d. channels
P
X̃|U ∼ BSC(q). It follows from Theorem 4.5 that applying the code construction and

taking a union of the rate tuples achieved over all q ∈ [0, 0.5], we can achieve the boundary
points of R1 and R2.

Remark B.3. Applying additional information reconciliation and privacy amplification
steps to multiple blocks of identifier outputs, as in Remark 5.2, can improve the weak-
secrecy results to strong-secrecy results also for hidden sources. Alternatively, random
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binning and random coding based approaches can be applied, as in Theorem B.1, to show
that there exist code constructions that provide strong secrecy for the GS and CS models
with a hidden source.



C
Appendices for Chapter 6

C.1. Proofs of Rate Regions
Based on the condition that all sequences are jointly typical with high probability, we
bound some conditional entropy terms of interest with single letter expressions using the
following two lemmas.

Lemma C.1 ([113]). Let (Xn, An) be jointly typical with high probability and Zn i.i.d. ∼
PZ|XA, we have H(Zn|Xn, An) ≥ n(H(Z|X,A)− δε), where δε → 0 as ε→ 0 and ε→ 0 as
n→∞.

Lemma C.2 ([113]). Let (An, Un, Zn) be jointly typical with high probability and Cn repre-
sent a random codebook generated according to∏n

i=1 PU |A(ui|ai). Then,H(Zn|An, Un, Cn)≤
n(H(Z|A,U)+δε), where δε → 0 as ε→ 0 and ε→ 0 as n→∞.

C.2. Proof for Rgs

C.2.1. Proof of Achievability
The proof follows from standard random coding arguments where we show the existence of a
code that satisfies the key, privacy-leakage, and storage rate, and expected cost constraints;
see also [19].
Codebook generation: Fix PA|XPV |XAPU |V such that E[Γ(A)] ≤ C + ε.

. Randomly and independently generate 2n(I(X;A)+δε) codewords an(wa) according to∏n
i=1 PA(ai(wa)) for wa ∈ [1 : 2n(I(X;A)+δε)].

. For each wa, randomly and conditionally independently generate 2n(I(U ;X|A)+δε) code-
words un(wa,m) each according to ∏n

i=1 PU |A(ui|ai(wa)) for m ∈ [1 : 2n(I(U ;X|A)+δε)],
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and distribute them uniformly at random into 2n(I(U ;X|A)−I(U ;Y |A)+2δε) bins bU(wu)
for wu ∈ [1 : 2n(I(U ;X|A)−I(U ;Y |A)+2δε)]. Without loss of generality, we can identify the
index m = (wu,m′) for some m′ ∈ [1 : 2n(I(U ;Y |A)−δε)].

. For each (wa,m) pair, randomly and conditionally independently generate
2n(I(V ;X|A,U)+δε) codewords vn(wa,m, l) each according to∏n
i=1 PV |UA(vi|ui(wa,m), ai(wa)) for l ∈ [1 : 2n(I(V ;X|A,U)+δε)], and distribute them

uniformly at random into 2n(I(V ;X|A,U)−I(V ;Y |A,U)+3δε) bins bV (m,wv) for wv ∈ [1 :
2n(I(V ;X|A,U)−I(V ;Y |A,U)+3δε)]. Furthermore, for each bin, we divide codewords vn into
2n(I(V ;Y |A,U)−I(V ;Z|A,U)−δε) equal-sized subbins, each denoted by a subbin index ws.
Without loss of generality, we can identify the index l = (wv, ws, l′) for some l′ ∈ [1 :
2n(I(V ;Z|A,U)−δε)].

The codebook is revealed to all parties.
Encoding:

. For a given source sequence xn, the encoder looks for a an(wa) which is jointly
typical with xn. Since there are more than 2nI(X;A) codewords an, by the covering
lemma [103], there exists such an an with high probability. If there are more than
one, we choose one uniformly at random and send the corresponding index wa to the
decoder.

. The encoder then looks for a un(wa,m) that is jointly typical with (xn, an). Since
there are more than 2nI(U ;X|A) codewords un, by the covering lemma, there exists
such a un with high probability. If there are more than one, we choose one uniformly
at random and send the corresponding bin index wu to the decoder.

. Again, the encoder looks for a vn(wa,m, l) which is jointly typical with (xn, an, un).
Since there are more than 2nI(V ;X|A,U) codewords vn, by the covering lemma, there
exists such a vn with high probability. If there are more than one, we choose one
uniformly at random and send the corresponding bin index wv to the decoder. The
secret key s is chosen to be the subbin index ws of the chosen codeword vn.

This gives the total storage rate of

I(X;A) + [I(U ;X|A)− I(U ;Y |A)] + [I(V ;X|A,U)− I(V ;Y |A,U)] + 6δε
= I(X;A) + I(V ;X|A, Y ) + 6δε. (C.1)

Once the action sequence is chosen, action-dependent side information (yn, zn) is generated
as the output of the memoryless channel PY Z|XA.
Decoding:

. Upon receiving the indices (wa, wu, wv) and side information yn, the decoder looks
for the unique un which is jointly typical with (yn, an). Since there are less than
2nI(U ;Y |A) sequences in the bin bU(wu), by the packing lemma [103], it will find the
unique and correct un with high probability.



C.2. Proof for Rgs 111

. Then, the decoder looks for the unique vn which is jointly typical with (yn, an, un).
Since there are less than 2nI(V ;Y |A,U) sequences in the bin bV (m,wv), by the packing
lemma, it will find the unique and correct vn with high probability. The decoder puts
out ŝ as the subbin index ŵs of the decoded codeword vn which will be the correct
one with high probability.

Action Cost: Since each action sequence an is in the typical set with high probability,
by the typical average lemma [103], the expected cost constraint is satisfied.
Privacy-leakage Rate: The information leakage averaged over the random codebook Cn

can be bounded as

I(Xn;Wa,Wu,Wv, Z
n|Cn)

≤ I(Xn;Wa,M,Wv, Z
n|Cn)

= H(Xn|Cn)−H(Xn,Wa,M,Wv, Z
n|Cn) +H(Wa,M,Wv|Cn) +H(Zn|Wa,M,Wv, Cn)

= −H(Zn|Xn, Cn)−H(Wa,M,Wv|Xn, Zn, Cn) +H(Wa,M,Wv|Cn) +H(Zn|Wa,M,Wv, Cn)
(a)
≤ −H(Zn|Xn, An) +H(Wa,M,Wv|Cn) +H(Zn|Wa,M,Wv, Cn)
(b)
≤ −H(Zn|Xn, An) +H(Wa|Cn) +H(M |Cn) +H(Wv|Cn) +H(Zn|An, Un, Cn)
(c)
≤ n[−H(Z|X,A) + I(X;A) + I(U ;X|A) + 5δε

+ (I(V ;X|A,U)− I(V ;Y |A,U)) +H(Z|A,U)]
(d)= n[I(X;A, V, Y )−I(X;Y |A,U)+I(X;Z|A,U)+δ′ε]
≤ n[R` + δ′ε] (C.2)

if R` ≥ I(X;A, V, Y ) − (I(X;Y |A,U) − I(X;Z|A,U)), where (a) follows because condi-
tioning cannot increase entropy, and because Zn − (Xn, An) − Cn forms a Markov chain,
(b) follows because given the codebook, (An, Un) are functions of (Wa,M), (c) follows
from the codebook generation, from the memoryless properties of the source and the side
information channel, from Lemma C.1 with which we bound the term H(Zn|Xn, An), and
from Lemma C.2 with which we bound the term H(Zn|An, Un, Cn), and (d) follows from
the Markov chain (Y, Z)− (X,A)− V − U .
Secrecy-leakage Rate: The secrecy-leakage rate averaged over the random codebook Cn

can be bounded as

I(Ws;Wa,Wu,Wv, Z
n|Cn)

≤ H(Ws|Cn)−H(Ws|Wa,M,Wv, Z
n, Cn)

= H(Ws|Cn)−H(Wa,M,L, Zn|Cn)+H(L′|Wa,M,Wv,Ws, Z
n, Cn)+H(Wa,M,Wv, Z

n|Cn)
(a)
≤ H(Ws|Cn)−H(An, Un, V n, Zn|Cn) + nεn +H(Wa|Cn) +H(M |Cn) +H(Wv|Cn)

+H(Zn|An, Un, Cn)
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(b)
≤ H(Ws|Cn)−H(An, Un, V n, Zn|Cn) + nεn + n(I(X;A) + I(U ;X|A)

+ I(V ;X|A,U, Y ) +H(Z|A,U) + δ′ε)
(c)
≤ nδ(2)

ε (C.3)

where (a) follows because, given the codebook, (An, Un) are functions of (Wa,M) and V n

of (Wa,M,L), and from Fano’s inequality where, given (Wa,M,Wv,Ws, Z
n), the codeword

V n and thus L′ can be decoded correctly with high probability since there are less than
2nI(V ;Z|A,U) remaining V n, (b) follows from the codebook generation and Lemma C.2, and
(c) follows from the codebook generation, from the bound on H(An, Un, V n, Zn|Cn) which
is shown below, and from the Markov chain U − V − (X,A)− (Y, Z). We have

H(An, Un, V n, Zn|Cn)
(a)= H(An, Un, V n, Xn|Cn) +H(Zn|Xn, An)−H(Xn|An, Un, V n, Zn, Cn)
≥H(Xn)+H(Zn|Xn, An)−H(Xn|An, Un, V n, Zn, Cn)
(b)
≥ n(H(X) +H(Z|X,A)−H(X|A,U, V, Z)− δ′ε)

where (a) follows from the Markov chain Zn− (Xn, An)− (Un, V n, Cn) and (b) follows from
Lemma C.1 and from a bound on H(Xn|An, Un, V n, Zn, Cn) which can be derived similarly
as in Lemma C.2.
Secret-key Rate: The key rate averaged over the random codebook Cn can be bounded

as follows:

H(Ws|Cn) ≥ H(Ws|Wa,M,Wv, L
′, Cn)

(a)
≥ H(An, Un, V n|Cn)−H(Wa|Cn)−H(M |Cn)−H(Wv|Cn)−H(L′|Cn)
(b)
≥ n(I(X;A,U, V )− I(X;A)− I(U ;X|A)− I(V ;X|A,U, Y )− I(V ;Z|A,U)− δ′ε)
= n(I(V ;Y |A,U)−I(V ;Z|A,U)−δ′ε) ≥ n(Rs − δ′ε) (C.4)

if Rs ≤ I(V ;Y |A,U)− I(V ;Z|A,U), where (a) follows from the fact that given the code-
book (An, Un, V n) are functions of (Wa,M,L), (b) follows from the codebook generation,
from the bound PAnUnV n(an, un, vn) = ∑

xn∈Tε(X|an,un,vn) PXn(xn) ≤ 2−n(I(X;A,U,V )−δε), and
from the Markov chain V − (X,A,U)− Y .
Using the selection lemma [100, Lemma 2.2], we have that a tuple (Rs, R`, Rw, C) that

satisfies (6.7)-(6.9) with X̃ = X for some PA|X , PV |XA, and PU |V such that E[Γ(A)] ≤ C
is achievable.

C.2.2. Proof of Converse
Let Ui , (W,An\i, Y n

i+1, Z
i−1) and Vi , (W,S,An\i, Y n

i+1, Z
i−1), which satisfy the Markov

chain Ui−Vi−(Ai, Xi)−(Yi, Zi) for all i = 1, 2, . . . , n. For any achievable tuple (Rs, R`, Rw, C),
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we have the following.

Storage Rate: We obtain

n(Rw + δn) ≥ log |W| ≥ H(W )
(a)= H(W ) +H(An|W ) = H(An) +H(W |An)
≥ [H(An)−H(An|Xn, Zn)] + [H(W |An, Y n)−H(W |An, Xn, Y n, Zn)]
=H(Xn, Zn)−H(Xn, Zn|An)+H(Xn, Zn|An, Y n)−H(Xn, Zn|An, Y n,W )
=H(Xn)+H(Zn|Xn)−H(Y n|An)+H(Y n, Zn|Xn, An)−H(Zn|Xn, An)

−H(Xn, Zn|An, Y n,W, S)− I(Xn, Zn;S|An, Y n,W )
≥H(Xn)−H(Y n|An)+H(Y n, Zn|Xn, An)−H(Xn, Zn|An, Y n,W, S)−H(S|An, Y n,W )
(b)
≥

n∑
i=1

H(Xi)−H(Yi|Ai) +H(Yi, Zi|Xi, Ai)−H(Xi, Zi|An, Y n,W, S,X i−1, Zi−1)− nεn

(c)
≥

n∑
i=1

H(Xi)−H(Yi|Ai) +H(Yi|Xi, Ai, Zi) +H(Zi|Xi, Ai)−H(Xi, Zi|Ai, Yi, Vi)− nεn

≥
n∑
i=1

I(Xi;Ai) + I(Vi;Xi|Ai, Yi)− nεn (C.5)

where (a) follows from the deterministic action encoder, (b) follows from Fano’s inequality,
and (c) follows from the definition of Vi.

Privacy-leakage Rate: We have

n(R` + δn) ≥ I(Xn;W,Zn)
= I(Xn;W ) + I(Xn;Zn|W )
(a)= I(Xn;W,An) + I(Xn;Zn|W,An)
=H(Xn)−H(Xn|W,S,An, Y n)−I(Xn;S|W,An, Y n)−I(Xn;Y n|W,An) + I(Xn;Zn|W,An)
(b)
≥

n∑
i=1

H(Xi)−H(Xi|W,S,An, Y n, X i−1)−H(Yi|W,An, Y n
i+1) +H(Yi|Xi, Ai)

+H(Zi|W,An, Zi−1)−H(Zi|Xi, Ai)− nεn
(c)=

n∑
i=1

H(Xi)−H(Xi|W,S,An, Y n, X i−1, Zi−1)− I(Xi;Yi|Ai) +H(Yi|Ai) + I(Xi;Zi|Ai)

−H(Zi|Ai)−H(Yi|W,An, Y n
i+1) +H(Zi|W,An, Zi−1)− nεn

(d)
≥

n∑
i=1

H(Xi)−H(Xi|Vi, Ai, Yi)− I(Xi;Yi|Ai) +H(Yi|Ai) + I(Xi;Zi|Ai)−H(Zi|Ai)

−H(Yi|W,An, Y n
i+1)+H(Zi|W,An, Zi−1)−nεn
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=
n∑
i=1

I(Xi;Ai, Vi, Yi)− I(Xi;Yi|Ai) + I(Xi;Zi|Ai)︸ ︷︷ ︸
,Pi

+I(W,Y n
i+1, A

n\i;Yi|Ai)

− I(W,Zi−1, An\i;Zi|Ai)− nεn

where (a) follows from the deterministic action encoder, (b) follows from Fano’s inequality
and the Markov chain (W,S,An\i, Xn\i, Y n

i+1, Z
i−1) − (Ai, Xi) − (Yi, Zi), (c) follows from

the Markov chain (Xi,W, S,A
n
i , Y

n
i )− (Ai−1, X i−1)− (Zi−1, Y i−1), and (d) follows from the

definition of Vi and the deterministic action encoder.
By adding Csiszár sum identity [129,130], i.e.,

n∑
i=1

I(Yi;Zi−1|An,W, Y n
i+1)− I(Zi;Y n

i+1|An,W, Zi−1) = 0

to the right hand side, we get

n(R` + δn) ≥
n∑
i=1

Pi + I(W,Y n
i+1, Z

i−1, An\i;Yi|Ai)− I(W,Y n
i+1, Z

i−1, An\i;Zi|Ai)− nεn

(a)=
n∑
i=1

I(Xi;Ai, Vi, Yi)− I(Xi;Yi|Ai) + I(Xi;Zi|Ai) + I(Ui;Yi|Ai)− I(Ui;Zi|Ai)− nεn

(b)=
n∑
i=1

I(Xi;Ai, Vi, Yi)− I(Xi;Yi|Ui, Ai) + I(Xi;Zi|Ui, Ai)− nεn, (C.6)

where (a) follows from the definitions of Pi and Ui and (b) from the Markov chain Ui −
(Ai, Xi)− (Yi, Zi).
Secret-key Rate: We obtain

n(Rs − δn) ≤ H(S)
(a)
≤ H(S|W,Zn) + nδn

(b)= H(S|W,An, Zn) + nδn
(c)
≤ H(S|W,An, Zn)−H(S|W,An, Y n) + 2nδn

=
n∑
i=1

I(S;Yi|W,An, Y n
i+1)− I(S;Zi|W,An, Zi−1) + 2nδn

(d)=
n∑
i=1

I(S;Yi|W,An, Y n
i+1, Z

i−1)− I(S;Zi|W,An, Y n
i+1, Z

i−1) + 2nδn

(e)=
n∑
i=1

I(Vi;Yi|Ai, Ui)−I(Vi;Zi|Ai, Ui)+2nδn (C.7)

where (a) follows by (6.2), (b) follows from the deterministic action encoder, (c) follows
from Fano’s inequality, (d) follows from Csiszár’s sum identity, and (e) follows from the
definitions of Ui and Vi.
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Action Cost: We have

C + δn ≥ E
[
Γ(An)

]
= 1
n

n∑
i=1

E
[
Γ(Ai)

]
. (C.8)

Finally, we complete the proof by the standard time-sharing argument and letting δn →
0.
Cardinality Bounds: It can be shown by using the support lemma [83] that U should

have |X ||A| − 1 elements to preserve PXA and three more to preserve H(X|U, V,A, Y ),
I(X;Z|A,U)− I(X;Y |A,U), and I(V ;Y |A,U)− I(V ;Z|A,U). Similarly, the cardinality
|V| can be limited to at most (|X ||A|+ 2)(|X ||A|+ 1).

C.3. Proof for Rcs

C.3.1. Proof of Achievability
Fix PA|X , PV |XA, and PU |V such that E[Γ(A)] ≤ C + ε. We use the achievability proof of
the GS model. Suppose the key S ′ = Ws′ , generated as in the GS model, has the same
cardinality as the chosen key S = Ws, i.e., |S ′| = |S|. Consider an encoder Enc(·) with
inputs (Xn, S) and outputs W = (S ′ + S,W ′), where W ′ is the helper data for the GS
model, and a decoder Dec(·) with inputs (Y n,W ) and output Ŝ = S ′ + S − Ŝ ′, where the
addition and subtraction operations are modulo-|S|. The decoder of the GS model is used
at the decoder to obtain Ŝ ′. Furthermore, the action encoder Enca(·) takesW ′ as its input.
Error Probability: We have

Pr[S 6= Ŝ] = Pr[S ′ 6= Ŝ ′] (C.9)

which is small due to the proof of achievability for the GS model.
Action Cost: Similar to the GS model, one can show that the expected cost constraint

is satisfied with high probability by using the typical average lemma.
Privacy-leakage Rate: We obtain

I(Xn;Wa′ ,Wu′ ,Wv′ ,Ws +Ws′ , Z
n|Cn)

= I(Xn;Wa′ ,Wu′ ,Wv′ , Z
n|Cn) + I(Xn;Ws +Ws′ |Wa′ ,Wu′ ,Wv′ , Z

n, Cn)
≤ I(Xn;Wa′ ,Wu′ ,Wv′ , Z

n|Cn) +H(Ws +Ws′ |Wa′ ,Wu′ ,Wv′ , Z
n, Cn)

−H(Ws +Ws′ |Wa′ ,Wu′ ,Wv′ , Z
n, Xn,Ws′ , Cn)

(a)
≤ I(Xn;Wa′ ,Wu′ ,Wv′ , Z

n|Cn) + log |S| −H(Ws)
(b)
≤ n[I(X;A, V, Y )−(I(X;Y |A,U)−I(X;Z|A,U))+δ′ε]
≤ n[R` + δ′ε] (C.10)

if R` ≥ I(X;A, V, Y ) − (I(X;Y |A,U) − I(X;Z|A,U)), where (a) follows because the
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chosen key S = Ws is independent of (Wa′ ,Wu′ ,Wv′ , Z
n, Xn,Ws′ , Cn) and (b) follows from

uniformity of Ws and (C.2).
Secrecy-leakage Rate: Observe that

I(Ws;Wa′ ,Wu′ ,Wv′ ,Ws +Ws′ , Z
n|Cn)

= I(Ws;Wa′ ,Wu′ ,Wv′ , Z
n|Cn) + I(Ws;Ws +Ws′ |Wa′ ,Wu′ ,Wv′ , Z

n, Cn)
(a)= H(Ws +Ws′|Wa′ ,Wu′ ,Wv′ , Z

n, Cn)−H(Ws′|Wa′ ,Wu′ ,Wv′ , Z
n, Cn)

≤ log |S| −H(Ws′) + I(Ws′ ;Wa′ ,Wu′ ,Wv′ , Z
n|Cn)

(b)
≤ n(δn + δ(2)

ε ) (C.11)

where (a) follows because S = Ws is independent of (Wa′ ,Wu′ ,Wv′ , Z
n, Cn) and (b) follows

by (C.3) and (C.4).
Secret-key Rate: We have

H(Ws|Cn) = log |S| ≥ H(Ws′ |Cn)
(a)
≥ n(I(V ;Y |A,U)−I(V ;Z|A,U)−δ′ε)≥n(Rs−δ′ε) (C.12)

if Rs ≤ I(V ;Y |A,U)− I(V ;Z|A,U), where (a) follows by (C.4).
Storage Rate: The storage rate is the sum of the storage Rw′ for the GS model and for

S ′ + S. We obtain

Rw ≤ Rw′ +
1
n

log |S|
(a)= I(X,A) + I(V ;X|A, Y ) + 6δε +Rs

(b)
≤ I(X,A) + I(V ;X|A, Y ) + 6δε + I(V ;Y |A,U)− I(V ;Z|A,U)
(c)= I(X;A, V )− I(U ;Y |A)− I(V ;Z|A,U) + 6δε (C.13)

where (a) follows from the storage rate of the GS model, (b) follows by (C.12), and (c)
follows from the Markov chain U − V − (X,A)− (Y, Z).
Using the selection lemma, we have that a tuple (Rs, R`, Rw, C) that satisfies (6.12)-

(6.14) with X̃ = X for some PA|X , PV |XA, and PU |V such that E[Γ(A)]≤C is achievable.

C.3.2. Proof of Converse

Use the definitions of Ui and Vi given in Appendix C.2.2 so that Ui−Vi− (Ai, Xi)− (Yi, Zi)
forms a Markov chain for all i = 1, 2, . . . , n. The main step is the proof of converse for the
storage rate.
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Secret-key Rate: Use similar steps as in (C.7) to obtain

Rs≤
1
n

[ n∑
i=1

I(Vi;Yi|Ai, Ui)−I(Vi;Zi|Ai, Ui)+3nδn
]
. (C.14)

Action Cost: Similar to Appendix C.2.2, we obtain (C.8) for the expected cost constraint.

Privacy-leakage Rate: We apply similar steps as in Appendix C.2.2 and obtain

R` ≥
1
n

[ n∑
i=1

I(Xi;Vi, Ai, Yi)− I(Xi;Yi|Ui, Ai) + I(Xi;Zi|Ui, Ai)− nεn − nδn
]
. (C.15)

Storage Rate: We have

n(Rw + δn) ≥ log |W| ≥ H(W )
(a)= H(W ) +H(An|W ) = H(An) +H(W |An)
(b)
≥ H(An)−H(An|Xn, Zn) +H(An|Xn, Zn) +H(W |An, Y n)−H(W |An, Xn, Y n, Zn)

+H(W |An, Xn)
= H(Xn, Zn)−H(Xn, Zn|An) +H(An|Xn, Zn) +H(Xn, Zn|An, Y n)
−H(Xn, Zn|An, Y n,W ) +H(W |An, Xn)

= H(Xn) +H(Zn|Xn)−H(Y n|An) +H(Y n, Zn|Xn, An)−H(Zn|Xn, An)
+H(An|Xn, Zn)−H(Xn, Zn|An, Y n,W, S)− I(Xn, Zn;S|An, Y n,W ) +H(W |An, Xn)

= H(Xn) + I(Zn;An|Xn)−H(Y n|An) +H(Y n, Zn|Xn, An) +H(An|Xn, Zn)
−H(Xn, Zn|An, Y n,W, S)−H(S|An, Y n,W )+H(S|An, Y n,W,Xn, Zn)+H(W |An, Xn)

(c)=H(Xn)+H(W,An, S|Xn)−H(Y n|An)+H(Y n, Zn|Xn, An)
−H(Xn, Zn|An, Y n,W, S)−H(S|An, Y n,W )

(d)
≥H(Xn)+H(S)−H(Y n|An)+H(Y n, Zn|Xn, An)−H(Xn, Zn|An, Y n,W, S)−H(S|An, Y n,W )
≥ H(Xn)−H(Y n|An) +H(Y n, Zn|Xn, An)−H(Xn, Zn|An, Y n,W, S) +H(S|An, Zn,W )
−H(S|An, Y n,W )

≥
n∑
i=1

H(Xi)−H(Yi|Ai) +H(Yi, Zi|Xi, Ai)−H(Xi, Zi|An, Y n,W, S,X i−1, Zi−1)

+ I(S;Yi|W,An, Y n
i+1)− I(S;Zi|W,An, Zi−1)

(e)=
n∑
i=1

H(Xi)−H(Yi|Ai) +H(Yi, Zi|Xi, Ai)−H(Xi, Zi|An, Y n,W, S,X i−1, Zi−1)

+ I(S;Yi|W,An, Y n
i+1, Z

i−1)− I(S;Zi|W,An, Y n
i+1, Z

i−1)
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(f)
≥

n∑
i=1

H(Xi)−H(Yi|Ai) +H(Yi|Xi, Ai, Zi) +H(Zi|Xi, Ai)−H(Xi, Zi|Ai, Yi, Vi)

+ I(Vi;Yi|Ai, Ui)− I(Vi;Zi|Ai, Ui)

≥
n∑
i=1

I(Xi;Ai) + I(Vi;Xi|Yi, Ai) + I(Vi;Yi|Ai, Ui)− I(Vi;Zi|Ai, Ui)

(g)=
n∑
i=1

I(Xi;Ai, Vi)− I(Ui;Yi|Ai)− I(Vi;Zi|Ai, Ui)

where (a) follows from the deterministic action encoder, (b) follows from the Markov chain
W − (An, Xn)− (Y n, Zn), (c) follows from the Markov chain (S,W )− (An, Xn)− (Y n, Zn),
(d) follows because the chosen key S is independent of Xn, and (e) follows from Csiszár’s
sum identity. We use the definitions of Ui and Vi in (f), and (g) follows because Ui− Vi−
(Ai, Xi)− (Yi, Zi) forms a Markov chain for all i = 1, 2, . . . , n.
The converse follows by applying the standard time-sharing argument and letting δn →

0.
Cardinality Bounds: We use the support lemma and should satisfy the Markov condition

U − V − (A,X) − (Y, Z). We therefore preserve PXA by using |X ||A| − 1 elements. The
bound in (6.14) with X̃ = X for the storage rate can be written as

I(X;A, V )− I(U ;Y |A)− I(V ;Z|A,U)
= I(X;A)+I(V ;X|A, Y )+I(V ;Y |A,U)−I(V ;Z|A,U).

We thus have to preserve three more expressions, i.e., I(V ;Y |A,U)− I(V ;Z|A,U),
H(X|U, V,A, Y ), and I(X;Z|A,U)− I(X;Y |A,U). One can therefore preserve all expres-
sions in Rcs by using an auxiliary random variable U with |U| ≤ |X ||A|+ 2 and, similarly,
V with |V| ≤ (|X ||A|+ 2)(|X ||A|+ 1).

C.4. Proof of Theorem 6.1

C.4.1. Proof of Achievability
Consider the codebook generation, encoding, and decoding steps of the GS model with a
visible source. Fix P

A|X̃ , PV |X̃A, and PU |V such that E[Γ(A)] ≤ C + ε.
We apply the steps in Appendix C.2.1 after replacing every X with X̃ and every real-

ization xn with x̃n. These replacements guarantee that (X̃n, An, Un, V n, Y n) are jointly
typical with high probability due to standard arguments used in Appendix C.2.1 for error
analysis. The Markov lemma [103] then ensures that (Xn, X̃n, An, Un, V n, Y n) are also
jointly typical with high probability.
Action Cost: The typical average lemma shows that the expected cost constraint is

satisfied with high probability.
Storage Rate: After replacing X with X̃ in Appendix C.2.1, the total storage rate in
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this case is Rw = I(X̃, A) + I(V ; X̃|A, Y ) + 6δε because U − V − (A, X̃)− (A,X)− (Y, Z)
forms a Markov chain.

Privacy-leakage Rate: Consider the leakage about the hidden source averaged over the
random codebook Cn:

I(Xn;Wa,Wu,Wv, Z
n|Cn) ≤ I(Xn;Wa,Wu,M

′,Wv, Z
n|Cn)

= I(Xn;Wa,M,Wv, Z
n|Cn)

= H(Xn|Cn)−H(Xn,Wa,M,Wv, Z
n|Cn) +H(Wa,M,Wv|Cn) +H(Zn|Wa,M,Wv, Cn)

(a)=−H(Zn|Xn, Cn)−H(Wa, A
n,M,Wv|Xn, Zn, Cn)+H(Wa,M,Wv|Cn)+H(Zn|Wa,M,Wv, Cn)

=−H(Zn|Xn, An, Cn)−I(An;Zn|Xn, Cn)−H(An|Xn, Zn,Cn)−H(Wa,M,Wv|Xn, Zn, An,Cn)
+H(Wa,M,Wv|Cn) +H(Zn|Wa,M,Wv, Cn)

(b)= −H(Zn|Xn, An)−H(An|Xn, Cn)−H(Wa,M,Wv,W |Xn, Zn, An, Cn)
+H(Wa,M,Wv|Cn) +H(Zn|Wa,M,Wv, Cn)

= −H(Zn|Xn, An)−H(An|Xn, Cn)−H(Wa,M,Wv,W, V
n|Xn, Zn, An, Cn)

+H(V n|Xn, Zn, An,Wa,M,Wv,W, Cn) +H(Wa,M,Wv|Cn) +H(Zn|Wa,M,Wv, Cn)
(c)
≤ −H(Zn|Xn, An)−H(An|Xn, Cn)−H(V n|Xn, Zn, An, Cn)+nεn+H(Wa,M,Wv|Cn)

+H(Zn|Wa,M,Wv, Cn)
(d)
≤−H(Zn|Xn, An)−H(V n, An|Xn, Cn)+H(Wa|Cn)

+H(M |Cn)+H(Wv|Cn)+H(Zn|An, Un, Cn)+nεn
(e)
≤−H(Zn|Xn, An)−n[H(V,A|X)−H(V,A|X̃)−2δε]+H(Wa|Cn)+H(M |Cn)+H(Wv|Cn)

+H(Zn|An, Un, Cn) + nεn
(f)
≤ −n[H(Z|X,A)−H(V,A|X) +H(V,A|X̃) + 7δε + I(X̃;A) + I(X̃;U |A)+I(V ; X̃|A,U)
−I(V ;Y |A,U)+H(Z|A,U) + εn]

(g)= n[I(X̃;V,A)−H(V,A|X) +H(V,A|X̃)−I(V ;Y |A,U) + I(X;Z|A,U) + δ(3)
ε ]

= n[I(X;V,A)−I(V ;Y |A,U)+I(X;Z|A,U)+δ(3)
ε ]

(h)= n[I(X;A, V, Y )−(I(X;Y |A,U)−I(X;Z|A,U))+δ(3)
ε ]

≤ n[R` + δ(3)
ε ] (C.16)

if R` ≥ I(X;A, V, Y ) − (I(X;Y |A,U) − I(X;Z|A,U)), where (a) follows since given Cn,
Wa determines An,
(b) follows since Zn − (Xn, An) − Cn forms a Markov chain and (Wa,Wu,Wv) determine
the helper data W ,
(c) follows from the Markov chain V n−(Xn, An,W, Cn)−Y n and Fano’s inequality applied
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as

H(V n|Xn, Zn, An,Wa,M,Wv,W, Cn)
≤H(V n|Xn, An,W, Cn)≤H(V n|Y n, An,W, Cn)≤nεn,

(d) follows from the Markov chain V n−(Xn, An, Cn)−Zn and because, given the codebook,
Wa determines An and (Wa,M) determine Un,
(e) follows from the following inequality

H(V n, An|Xn, Cn)
= H(An|Xn, Cn) +H(V n|Xn, An, X̃n, Cn) + I(V n; X̃n|Xn, An, Cn)
≥ H(X̃n, An|Xn, Cn)−H(X̃n|Xn, An, V n, Cn)
(a)
≥ H(X̃n|Xn)−H(X̃n|Xn, An, V n, Cn)
(b)
≥ n[H(X̃|X)−H(X̃|X,A, V )− 2δε]
(c)= n[H(V,A|X)−H(V,A|X̃)− 2δε]

where (a) follows since X̃n − Xn − Cn forms a Markov chain, (b) follows by applying
Lemma C.2 to bound the term H(X̃n|Xn, An, V n, Cn), and (c) follows due to the Markov
chain (V,A)− X̃ −X,
(f) follows from the codebook generation, from the memoryless property of the source
and side information channels, from Lemma C.1 applied to H(Zn|Xn, An), and from
Lemma C.2 applied to H(Zn|An, Un, Cn),
(g) follows from the Markov chains U − (V,A)− X̃ and U − (A,X)− Z,
(h) follows from the Markov chain U − V − (A,X)− Y .

Secrecy-leakage Rate: The secrecy-leakage rate analysis follows by replacing every Xn in
Appendix C.2.1 with X̃n when bounding the term H(An, Un, V n, Zn|Cn) since, this time,
(Un, V n, Cn)− (An, X̃n)− Zn and U − V − (A, X̃)− (Y, Z) form Markov chains. Use

H(Zn|X̃n, An, Cn)
= H(Zn|X̃n, An, Xn, Cn) + I(Zn;Xn|X̃n, An, Cn)
(a)=H(Zn|An, Xn)+H(Xn|X̃n)−H(Xn|X̃n,An, Zn,Cn)
(b)
≥n(H(Z|A,X)+H(X|X̃)−2δε)−H(Xn|X̃n,An,Zn,Cn)
(c)
≥n(H(Z|A,X)+H(X|X̃, A)−H(X|X̃, A, Z)−3δε)
(d)= n(H(Z|X̃, A)− 3δε)

where (a) follows because Zn− (An, Xn)− (X̃n, Cn) and Xn− X̃n− (An, Cn) form Markov
chains, (b) follows by applying Lemma C.1 to bound the term H(Zn|An, Xn) because
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Zn is i.i.d. ∼ PZ|XA, (c) follows from the Markov chain X − X̃ − A and by applying
Lemma C.2 to bound the term H(Xn|X̃n, An, Zn, Cn), and (d) follows from the Markov
chain Z − (A,X)− X̃. We thus obtain

I(Ws;Wa,Wu,Wv, Z
n|Cn) ≤ nδ(4)

ε . (C.17)

Secret-key Rate: Using the codebook generation in Appendix C.2.1 and the Markov
chain V − (A, X̃, U)− Y , it is straightforward to show that

H(Ws|Cn) ≥ n[I(V ;Y |A,U)− I(Y ;Z|A,U)− δ(3)
ε ]

≥ n(Rs − δ(3)
ε ) (C.18)

if Rs ≤ I(V ;Y |A,U)− I(V ;Z|A,U).
Using the selection lemma, we have that a tuple (Rs, R`, Rw, C) that satisfies (6.7)-(6.9)

for some P
A|X̃ , PV |X̃A, and PU |V such that E[Γ(A)]≤C is achievable.

C.4.2. Proof of Converse
Use the definitions of Ui and Vi given in Appendix C.2.2 so that Ui − Vi − (Ai, X̃i) −
(Ai, Xi)− (Yi, Zi) forms a Markov chain for all i = 1, 2, . . . , n.
Storage Rate: Replace every Xn with X̃n and every Xi with X̃i for all i = 1, 2, . . . , n in

Appendix C.2.2 and apply similar steps to obtain

Rw≥
1
n

[ n∑
i=1

I(X̃i;Ai)+I(Vi; X̃i|Ai, Yi)−nεn−nδn
]
. (C.19)

Privacy-leakage Rate: We apply similar steps as in Appendix C.2.2. It is also straightfor-
ward to show that (W,S,An\i, Xn\i, Y n

i+1, Z
i−1) − (Ai, Xi) − (Yi, Zi), (Xi,W, S,A

n
i , Y

n
i ) −

(Ai−1, X i−1) − (Zi−1, Y i−1), and Ui − (Ai, Xi) − (Yi, Zi) form Markov chains for all i =
1, 2, . . . , n also for a hidden source. We thus obtain

R` ≥
1
n

[ n∑
i=1

I(Xi;Ai, Vi, Yi)− I(Xi;Yi|Ai, Ui) + I(Xi;Zi|Ai, Ui)− nεn − nδn
]
. (C.20)

Secret-key Rate: The converse is similar to the converse for a visible source with the GS
model. By applying similar steps as in Appendix C.2.2, we obtain

Rs≤
1
n

[ n∑
i=1

I(Vi;Yi|Ai, Ui)−I(Vi;Zi|Ai, Ui)+3nδn
]
. (C.21)

Action Cost: We obtain (C.8) for the expected cost constraint.
The converse follows by applying the standard time-sharing argument and letting δn →

0.
Cardinality Bounds: We use the support lemma and should satisfy the Markov condition
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U − V − (A, X̃) − (A,X) − (Y, Z), so we preserve P
X̃A

by using |X̃ ||A| − 1 real-valued
continuous functions. We have to preserve four more expressions, i.e., I(V ;Y |A,U) −
I(V ;Z|A,U), H(X̃|U, V,A, Y ), H(X|U, V,A, Y ), and I(X;Z|A,U) − I(X;Y |A,U). One
can therefore preserve all expressions in Theorem 6.1 by using an auxiliary random variable
U with |U| ≤ |X ||A|+ 3 and, similarly, V with |V| ≤ (|X ||A|+ 3)(|X ||A|+ 2).

C.5. Proof of Theorem 6.2

C.5.1. Proof of Achievability
Fix P

A|X̃ , PV |X̃A, and PU |V such that E[Γ(A)] ≤ C + ε. We use the achievability proof
of Theorem 6.1. Suppose the key S ′ = Ws′ generated as in the GS model for a hidden
source has the same cardinality as the chosen key S = Ws, i.e., |S ′| = |S|. Consider an
encoder Enc(·) with inputs (X̃n, S) and outputs W = (S ′+S,W ′), where W ′ is the helper
data in the GS model for a hidden source. Similarly, consider a decoder Dec(·) with inputs
(Y n,W ) and output Ŝ = S ′ + S − Ŝ ′, where the addition and subtraction operations are
modulo-|S|. Note that the decoder of the GS model for a hidden source is used at the
decoder to obtain Ŝ ′. Furthermore, the action encoder Enca(·) takes W ′ as its input.
Error Probability: We obtain (C.9), which is small due to the proof of achievability for

Theorem 6.1.
Action Cost: Similar to Appendix C.4.1, one can show that the expected cost constraint

is satisfied with high probability by using the typical average lemma.
Privacy-leakage Rate: We have

I(Xn;Wa′ ,Wu′ ,Wv′ ,Ws +Ws′ , Z
n|Cn)

≤ I(Xn;Wa′ ,Wu′ ,Wv′ , Z
n|Cn) + log |S| −H(Ws +Ws′ |Wa′ ,Wu′ ,Wv′ , Z

n, Xn,Ws′ , Cn)
(a)
≤ n[I(X;A, V, Y )−(I(X;Y |A,U)−I(X;Z|A,U))+δ(3)

ε ]
≤ n[R` + δ(3)

ε ] (C.22)

if R` ≥ I(X;A, V, Y )− (I(X;Y |A,U)− I(X;Z|A,U)), where (a) follows because S = Ws

is independent of (Wa′ ,Wu′ ,Wv′ , Z
n, Xn,Ws′ , Cn), and from uniformity of Ws and (C.16).

Secrecy-leakage Rate: We obtain

I(Ws;Wa′ ,Wu′ ,Wv′ ,Ws +Ws′ , Z
n|Cn)

= I(Ws;Wa′ ,Wu′ ,Wv′ , Z
n|Cn) + I(Ws;Ws +Ws′|Wa′ ,Wu′ ,Wv′ , Z

n, Cn)
(a)= H(Ws +Ws′|Wa′ ,Wu′ ,Wv′ , Z

n, Cn)−H(Ws′ |Wa′ ,Wu′ ,Wv′ , Z
n, Cn)

≤ log |S| −H(Ws′) + I(Ws′ ;Wa′ ,Wu′ ,Wv′ , Z
n|Cn)

(b)
≤ n(δn + δ(4)

ε ) (C.23)

where (a) follows because S = Ws is independent of (Wa′ ,Wu′ ,Wv′ , Z
n, Cn) and (b) follows
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by (C.17) and (C.18).
Secret-key Rate: Observe that

H(Ws|Cn) = log |S| ≥ H(Ws′|Cn)
(a)
≥ n(I(Y ;V |A,U)− I(Z;V |A,U)− δ(3)

ε )
≥ n(Rs − δ(3)

ε ) (C.24)

if Rs ≤ I(V ;Y |A,U)− I(V ;Z|A,U), where (a) follows by (C.18).
Storage Rate: The storage rate is the sum of the storage Rw′ for a hidden source with

the GS model and for S ′ + S. We obtain

Rw ≤ Rw′ +
1
n

log |S|
(a)= I(X̃, A) + I(V ; X̃|A, Y ) + 6δε +Rs

(b)
≤ I(X̃, A) + I(V ; X̃|A, Y ) + 6δε + I(V ;Y |A,U)− I(V ;Z|A,U)
(c)= I(X̃;A, V )− I(U ;Y |A)− I(V ;Z|A,U) + 6δε (C.25)

where (a) follows from the storage rate for a hidden source with the GS model, (b) follows
by (C.24), and (c) follows from the Markov chain U − V − (A, X̃)− (Y, Z).
Using the selection lemma, we have that a tuple (Rs, R`, Rw, C) that satisfies (6.12)-

(6.14) for some P
A|X̃ , PV |X̃A, and PU |V such that E[Γ(A)]≤C is achievable.

C.5.2. Proof of Converse
Use the definitions of Ui and Vi given in Appendix C.2.2 so that Ui − Vi − (Ai, X̃i) −
(Ai, Xi)− (Yi, Zi) forms a Markov chain for all i = 1, 2, . . . , n.
Secret-key Rate: The converse for the secret-key rate is similar to the converse for a

hidden source with the GS model. We obtain

Rs≤
1
n

[ n∑
i=1

I(Vi;Yi|Ai, Ui)−I(Vi;Zi|Ai, Ui)+3nδn
]
. (C.26)

Action Cost: Similar to Appendix C.4.2, we obtain (C.8) for the expected cost constraint.
Privacy-leakage Rate: We apply similar steps to Appendix C.4.2. It is straightfor-

ward to show that (W,S,An\i, Xn\i, Y n
i+1, Z

i−1) − (Ai, Xi) − (Yi, Zi), (Xi,W, S,A
n
i , Y

n
i ) −

(Ai−1, X i−1) − (Zi−1, Y i−1), and Ui − (Ai, Xi) − (Yi, Zi) form Markov chains for all i =
1, 2, . . . , n also for a hidden source and an chosen secret key S. We thus obtain

R` ≥
1
n

[ n∑
i=1

I(Xi;Ai, Vi, Yi)− I(Xi;Yi|Ai, Ui) + I(Xi;Zi|Ai, Ui)− nεn − nδn
]
. (C.27)

Storage Rate: This time, we apply similar steps as in Appendix C.3.2. Replace every
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sequence Xn with X̃n and every Xi with X̃i for all i = 1, 2, . . . , n. Using similar steps as
in Appendix C.3.2, and the facts that Ui − Vi − (Ai, X̃i) − (Yi, Zi) for all i = 1, 2, . . . , n
and (S,W )− (An, X̃n)− (Y n, Zn) form Markov chains, we obtain

Rw ≥
1
n

[ n∑
i=1

I(X̃i;Ai, Vi)− I(Ui;Yi|Ai)− I(Vi;Zi|Ai, Ui)− nδn
]
. (C.28)

The converse follows by applying the standard time-sharing argument and letting δn →
0.
Cardinality Bounds: We use the support lemma. One also has to satisfy the Markov

condition U−V −(A, X̃)−(A,X)−(Y, Z). We preserve P
X̃A

by using |X̃ ||A|−1 real-valued
continuous functions. The bound in (6.14) can be written as

I(X̃;A, V )− I(U ;Y |A)− I(V ;Z|A,U)
= I(X̃;A)+I(X̃;V |A, Y )+I(V ;Y |A,U)−I(V ;Z|A,U).

We therefore have to preserve four more expressions, i.e., I(V ;Y |A,U) − I(V ;Z|A,U),
H(X̃|U, V,A, Y ), H(X|U, V,A, Y ), and I(X;Z|A,U) − I(X;Y |A,U). One can therefore
preserve all expressions in Theorem 6.2 by using an auxiliary random variable U with
|U| ≤ |X ||A|+ 3 and, similarly, V with |V| ≤ (|X ||A|+ 3)(|X ||A|+ 2).
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Abbreviations

AES Advanced Encryption Standard
AICc corrected Akaike information criterion
AWGN additive white Gaussian noise
BCH Bose-Chaudhuri-Hocquenghem
BIC Bayesian information criterion
BMDD bounded minimum distance decoder
BPSK binary phase shift keying
BSC binary symmetric channel
BSS binary symmetric source
CAN controller area network
CMOS complementary metal–oxide–semiconductor
COFE code-offset fuzzy extractor
CS chosen-secret
DCT discrete cosine transform
DHT discrete Haar transform
DWHT discrete Walsh-Hadamard transform
EVE eavesdropper
FCS fuzzy commitment scheme



126 Abbreviations

FPGA field-programmable gate array
FSM finite-state machine
GCC generalized concatenated code
GS generated-secret
HSM hidden source model
i.i.d. independent and identically distributed
IC integrated circuit
IoT Internet-of-things
IP intellectual property
KLT Karhunen-Loève transform
LDPC low density parity check
LUTs lookup tables
MGL Mrs. Gerber’s lemma
MLD maximum likelihood decoder
MUX multiplexer
NIST National Institute of Standards and Technology
NVM non-volatile memory
POWFs physical one-way functions
PUF physical unclonable function
RAM random access memory
RFID radio frequency identification
RM Reed-Muller
RO ring oscillator
ROM read-only memory
RS Reed-Solomon
SK secret-key
SNR signal-to-noise ratio
SoC system-on-chip
SRAM static random access memory
SW Slepian-Wolf
VSM visible source model
WZ Wyner-Ziv
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