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Abstract. The choice of activation functions can have a significant effect on the
performance of a neural network. Although the researchers have been developing
novel activation functions, Rectified Linear Unit (ReLU) remains the most common
one in practice. This paper shows that evolutionary algorithms can discover new
activation functions for side-channel analysis (SCA) that outperform ReLU . Using
Genetic Programming (GP), candidate activation functions are defined and explored
(neuroevolution). As far as we know, this is the first attempt to develop custom
activation functions for SCA. The ASCAD database experiments show this approach
is highly effective compared to the state-of-the-art neural network architectures.
While the optimal performance is achieved when activation functions are evolved for
the particular task, we also observe that these activation functions show the property
of generalization and high performance for different SCA scenarios.
Keywords: Activation functions · Multilayer perceptron · Convolutional neural
network · Side-channel analysis · Evolutionary Algorithms · Neuroevolution

1 Introduction
Modern digital systems are commonly equipped with cryptographic primitives, acting as the
foundation of security, trust, and privacy protocols. While such primitives are proven to be
mathematically secure, poor implementation choices can make them vulnerable to attackers.
Such vulnerabilities are commonly known as leakage [MOP06]. Side-channel leakage
exploits various sources of information leakage in the device where some common examples
of leakage are timing [Koc96], power [KJJ99b], and electromagnetic (EM) emanation [QS01]
and the attacker is a passive one. The researchers proposed several side-channel analysis
(SCA) approaches to exploit those leakages in the last few decades. One common division
of side-channel analyses is into non-profiling and profiling attacks. Non-profiling attacks
like Simple Power Analysis (SPA) [KJJ99a] or Differential Power Analysis (DPA) [KJJR11]
require fewer assumptions but could need thousands of measurements (traces) to break
a target, especially if it is protected with countermeasures. On the other hand, profiling
attacks are considered as one of the strongest possible attacks [CRR02]. There, the attacker
has full control over a clone device, which he uses to build device’s complete profile.
The attacker then uses this profile to target other similar devices to recover the secret
information. The deep learning approaches represent a powerful (and more recent) option
for profiling SCA. Indeed, the results in the last few years show the potential of such an
approach where neural networks like multilayer perceptron (MLP and convolutional neural
networks (CNNs) can break targets protected with countermeasures [KPH+19, ZBHV19].
Still, finding high-performing neural network architectures is often not an easy task due to a
large number of hyperparameters to consider. In the hyperparameter tuning phase, we can
distinguish between two rather different approaches. The first approach considers various
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techniques to select the best-performing hyperparameters [EMH19, FSH15, FAL17, FL18,
GM20, WRP19]. Common techniques include gradient descent, Bayesian hyperparameter
optimization, reinforcement learning, and evolutionary algorithms [CXWT19, FSH15,
ZL17]. The second direction considers the design of neural network architectures or
neural network elements like loss functions or activation functions. While it is possible
to design various activation functions, only a small number of activation functions are
widely used in modern neural network architectures. For instance, the Rectified Linear
Unit, ReLU(x) = max{x, 0}, is popular due to its simplicity and effectiveness [BMM20].
There are also attempts to design new activation functions that have certain properties,
but none achieved widespread adoption like ReLU .

This paper develops an evolutionary approach to evolve activation functions for side-
channel analysis. We build upon recent results considering deep learning architectures.
We ask whether it is possible to make deep learning-based SCA even more efficient if
activation functions in a neural network are optimized for a particular problem (neural
network architecture, side-channel leakage model, and dataset). More precisely, we use
Genetic Programming (GP), where we represent activation functions as syntactic trees,
and we evolve custom expressions. The resulting functions are unlikely to be discovered
manually, yet they perform (surprisingly) well, surpassing traditional activation functions
like ReLU on common side-channel measurements, like those in the ASCAD database. To
the best of our knowledge, this is the first time that neuroevolution is used for SCA or
that evolutionary algorithms are used to develop activation functions for SCA.

The two main contributions of this paper are:
1. We evolve novel activation functions used in multilayer perceptron and Convolutional

Neural Network. Neural networks with those activation functions show better
performance comparing to existing relevant research. This shows that the newly
developed activation functions have their place in the future designs of
neural network architectures for SCA.

2. We replace popular activation functions with evolved activation functions in previously
developed neural network topologies and demonstrate better network performance af-
ter this substitution. This shows that optimization of the activation function
has relevance even when considering already developed neural networks.

We consider experiments on two datasets, two leakage models, two types of neural networks,
and a number of specific scenarios.

The remainder of this paper is organized as follows. Section 2 covers the necessary
definitions and notions. Section 3 discusses related works. Section 4 describes the datasets
and parameters that we considered. Section 5 presents the results obtained by our
experiments. Finally, Section 6 sums up the key contributions of the paper and gives
possible avenues for future work.

2 Background
2.1 Notation
Let calligraphic letters (X ) denote sets, and the corresponding upper-case letters (X)
random variables and random vectors X over X . The corresponding lower-case letters x
and x denote realizations of X and X, respectively. We denote the key candidate as k
where k ∈ K, and k∗ denotes the correct key.

We define a dataset as a collection of traces (measurements) D. Each trace xi is
associated with an input value (plaintext or ciphertext) ii and a key ki. To access a specific
trace or input value, we use the index i. We divide the dataset into three parts: profiling
set consisting of N traces, validation set consisting of V traces, and attack set consisting
of Q traces.
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We denote the vector of learnable parameters in our profiling models as θ and the set
of hyperparameters defining the profiling model as H. We consider the supervised machine
learning task (classification), where the goal is to predict the class value v ∈ V for an input
x. The size of the set V equals c.

2.2 Machine Learning-based SCA
We consider a typical profiling side-channel analysis setting with two phases: training
(profiling) and testing (attack). A powerful attacker has a device (clone device) with
knowledge about the secret key. The attacker can obtain a set of N profiling traces
x1, . . . , xN (where each trace corresponds to the processing of plaintext or ciphertext i).

• The profiling phase aims to learn θ′ that minimize the empirical risk represented by
a loss function L on a profiling set of size N .

• The goal of the attack phase is to make predictions about the classes:

y(x1, k
∗), . . . , y(xQ, k

∗),

where k∗ represents the secret (unknown) key on the device under the attack.
We consider an attack on a block cipher (the AES cipher) and conduct the multi-class

classification task. More precisely, we learn a function f that maps an input to the output
(f : X → Y )) based on examples of input-output pairs, where the number of classes c is
determined by the leakage model. The function f is parameterized by θ ∈ Rn, where n
denotes the number of trainable parameters.

Based on the class predictions, we estimate the effort required to reveal the secret key
k∗. More precisely, a common result of predicting with a model f on the attack set is a
two-dimensional matrix P with dimensions equal to Q× c. Every element pi,v of matrix
P is a vector of all class probabilities for a specific trace xi. The probability S(k) for any
key byte candidate k is used as an log-likelihood distinguisher:

S(k) =
Q∑

i=1
log(pi,v). (1)

The value pi,v denotes the probability that for a key k and input ii, the result is class v
(derived from the key and input through a cryptographic function and a leakage model l).

Finally, to estimate the effort required to break the secret key, it is common to use
the guessing entropy (GE) [SMY09] metric. An attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability given Q traces in the attack phase.
Here, g1 is the most likely key candidate and g|K| the least likely key candidate. Guessing
entropy is the average position of k∗ in g. Our work considers attacks on specific key bytes
only, formally using the partial guessing entropy metric. Still, due to simplicity, we denote
it as guessing entropy.

2.3 Artificial Neural Network
Artificial neural networks (ANNs) is a notion for all computer systems loosely inspired by
biological neural networks. Such systems can “learn” from examples, making them a very
popular paradigm in the machine learning domain. Any ANN is built from a number of
nodes called artificial neurons, where the nodes are connected to transmit a signal.

A very simple type of neural network is called a perceptron. A perceptron is a linear
binary classifier applied to the feature vector as a function that decides whether or not an
input belongs to some categorical class. Each vector component has an associated weight
wi, and each perceptron has a threshold value q. A perceptron’s output equals “1” if the
direct sum between the feature vector and the weight vector is larger than the threshold
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value and “-1” otherwise. A perceptron classifier works only for linearly separable data, i.e.,
when there is some hyperplane that separates all the positive points from all the negative
points [Mit97].

2.3.1 Multilayer Perceptron

By integrating more layers to a perceptron, we obtain a multilayer perceptron algorithm.
Multilayer perceptron (MLP) is a feed-forward neural network that maps sets of inputs
onto sets of appropriate outputs. Differing from linear perceptron, MLP can distinguish
data that are not linearly separable. MLP consists of multiple layers of nodes in a
directed graph, where each layer is connected to the next one. Consequently, each node
in one layer connects with a specific weight w to every node in the following layer.
Multilayer perceptron algorithm consists of at least three layers: one input layer, one
output layer, and one hidden layer. Those layers must consist of nonlinearly activating
nodes [CB04]. The backpropagation algorithm is utilized for training the network, which is
a generalization of the least mean squares algorithm in the linear perceptron. The gradient
descent optimization algorithm utilizes backpropagation to adjust the weight of neurons
by calculating the gradient of the loss function [Mit97].

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a type of neural networks first designed
for 2-dimensional convolutions as it was inspired by the biological processes of animals’
visual cortex [Fuk80, LB95]. From the operational perspective, CNNs are similar to
ordinary neural networks (e.g., multilayer perceptron). More precisely, they consist of a
number of layers where each layer is composed of neurons. CNNs use three main types
of layers: convolutional layers, pooling layers, and fully-connected layers. Convolutional
layers are linear layers that share weights across space. Pooling layers are nonlinear layers
that minimize the spatial size in order to inhibit the number of neurons. Fully-connected
layers are layers where every neuron is connected with all the neurons in the neighborhood
layer (as in the MLP). For additional information about CNNs, we refer interested readers
to [GBC16].

2.3.3 Activation Functions

An activation function of a node is a function g defining the output of a node given an
input or set of inputs from a layer of linear nodes, as denoted in Eq. (2). To enable
replications of nontrivial functions with ANNs using a small number of nodes, one requires
nonlinear activation functions:

y = activation

( |inputs|∑
i=1

(weighti · inputi) + bias

)
. (2)

Changes to the bias value allow the activation function to be shifted across the input
domain, while changes to the weights alter the activation function’s steepness. Combined
with the backpropagation algorithm, this enables the ANN to model the data automatically.

There are three types of activation functions: binary step function, linear activation
function, and nonlinear activation functions. The problem with the first one is that it does
not allow multi-value outputs, which prohibits multi-classification. A linear activation
function suffers from two major problems: it cannot use gradient descent to train the model
because the derivative of the function is a constant, and all layers of the neural network
collapse into one. Note, a linear combination of linear functions is still a linear function,
and such activation function transforms the neural network into a single layer [GBC16].
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As a result, modern neural network models use nonlinear activation functions. They
allow the model to create complex mappings between the network’s inputs and outputs,
essential for learning and modeling complex data or data with high dimensionality. Non-
linear functions address the problems of linear activation functions. First, they allow
backpropagation learning because they have a derivative function that is related to the
inputs. What is more, they allow the stacking of multiple layers of neurons to create a
deep neural network.

There is no clear rule for selecting an activation function. In practice, activation
functions are selected by empirical results and speed of execution. Although some functions
have theoretically substantiated properties, that does not make them the best in practice.
Typically, ReLU is often used, and for the hidden layers of recursive models, tanh is
commonly selected, see, e.g., [DJ99].

2.4 Genetic Programming
Genetic programming (GP) is an automated optimization process for developing computer
programs, used to solve complex problems in computing and the problems we encounter
every day. The concept is based on general ideas derived from the theory of genetic
algorithms and other evolutionary methods. Simply put, the ultimate goal of GP (as a
product) is a universal computer program that finds solutions to problems described only
with input data and the desired results.

Although genetic programming can be applied in many different ways and from many
different perspectives, in most cases, it represents a computer program as a syntactic tree
in the context of graph theory. Namely, each computer program can be represented as
a tree or a forest of trees (in a broader sense), where the tree’s internal nodes have the
role of operators (or functions of a certain number of variables), and the leaves the role
of operands. The set of operators (the function set) and operands (the terminal set) are
predefined for a specific task. The evolution typically begins with a population consisting
of randomly generated candidate solutions. These are called individuals, whose operators
and operands can be altered by three bio-inspired operations: selection, crossover, and
mutation.

Selection is a process whereby certain individuals are selected from the current gen-
eration according to their fitness, thus serving as parents for the next generation. The
individuals are selected probabilistically such that the better performing individuals have a
higher chance of getting selected. In contrast, the crossover is a binary operator, exchanging
information between two individuals to form a new offspring. Similarly, the mutation
is also a stochastic operator that helps increase the population’s diversity by randomly
choosing one or more nodes in an offspring and changing them.

Then, in an iterative process, where an iteration is referred to as generation, each
new individual’s fitness is evaluated. Based on their fitness, we select parent solutions for
breeding. Subsequently, we apply breeding operators on pairs of individuals to generate
new pairs of offsprings. The process is repeated until a predefined number of generations
or another stopping criterion is met.

2.4.1 Activation Function as a Tree

In our work, each activation function is represented as a tree consisting of unary and
binary operators. The terminals in the tree represent the function input values, while
the root node’s value represents the output function value. Each individual in the GP
population is a potential candidate activation function. An individual is evaluated by
using the activation function it embodies in a neural network. The individual’s fitness is
then defined as the neural network’s performance applied to a specific task - in this case,
the key prediction efficiency.
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3 Related Work
Finding better (custom) activation functions for SCA is one perspective of hyperparameter
tuning. Up to now, in SCA, most of the works considered hyperparameter tuning but
using common options (i.e., not designing new neural network elements). There, we can
enumerate several phases in profiling SCA and hyperparameter tuning. The first approaches
in profiling SCA like template attack [CRR02]), or machine learning-based attacks (random
forest [LMBM13], support vector machines [HZ12, PHJ+17], Naive Bayes [PHG17]) had
only a few or even none hyperparameters to tune.

In 2016, Maghrebi et al. introduced convolutional neural networks for profiling
SCA [MPP16]. The authors also reported they used genetic algorithms to tune the
hyperparameters. While it is difficult to know whether this is the first time deep learning
was used in SCA (many works omitted details about neural network architectures), this
work represented a significant turning point in the SCA research. Indeed, from this
moment, the SCA community moved its attention from other profiling methods to (almost
exclusively) deep learning.

As a result, there are multiple research works reporting very good attack performance
even in the presence of countermeasures [CDP17, PHJ+18]. Interestingly, the first work
did not discuss hyperparameter tuning, while the second one conducted manual hyper-
parameter tuning. Kim et al. constructed VGG-like architecture that performs well over
several datasets, but they did not discuss the hyperparameter tuning involved in checking
the performance of such an architecture [KPH+19]. Benadjila et al. made an empirical
evaluation of different CNN hyperparameters for the ASCAD dataset [BPS+20]. Perin
et al. used a random search in predefined ranges to build deep learning models to form
ensembles [PCP20]. Both of those works reported very good results, despite relatively
simple methods to choose hyperparameters. Wu et al. proposed to use Bayesian optimiza-
tion to find optimal hyperparameters for MLP and CNN architectures [WPP20]. Their
results indicated it is possible to find excellent architectures and that even random search
can find many architectures that exhibit top performance. Rijsdijk et al. explored how
reinforcement learning can be used for hyperparameter tuning for CNNs [RWPP21]. They
reported very good results (attack performance with small neural network architectures),
but their approach requires significant computational resources.

Besides improving the neural network performance by conducting efficient hyperpa-
rameter tuning, several works aim to provide a methodology to build neural networks
for SCA. Zaid et al. proposed a method to select hyperparameters related to the size
(number of learnable parameters, i.e., weights and biases) of layers in CNNs. The au-
thors considered the number of filters, kernel sizes, strides, and the number of neurons in
fully-connected layers [ZBHV19]. Wouters et al. [WAGP20] improved upon the work from
Zaid et al. [ZBHV19], and discussed several problems in the original work. More precisely,
Wouters et al. showed how to reach similar attack performance with significantly smaller
neural network architectures.

Some works also concentrate on improving the performance of deep learning-based SCA
by designing custom neural network elements. Pfeifer and Haddad designed a new type of
layer called “Spread”, and they claimed it reduces the number of layers required and speeds
up the learning phase [PH18]. Zheng et al. proposed a new metric function called Cross
Entropy Ratio (CER), where they adapted it to a new loss function, designed specifically
for deep learning in SCA [ZZN+20]. Zaid et al. introduced a new loss function derived
from the learning to rank approach that helps to prevent approximation and estimation
errors [ZBD+20].

On the other hand, several works investigate the evolution of activation functions by
using evolutionary algorithms and machine learning. A first attempt to learn activations in
a neural network can be found in [LY96], where the authors proposed to randomly add or
remove logistic or Gaussian activation functions using genetic programming. In [MHR+18],
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the authors developed a method to automatically select an activation function for each
layer of a neural network. More precisely, they identify the evaluation points during
the learning process to evaluate the accuracy and perform early stopping if needed.
Hagg et al. improved over the NEAT algorithm [SM02] to concurrently evolve network
topology, weights, and activation functions of neurons [HMA17]. Ramachandran et al.
investigated the combination of reinforcement learning and exhaustive search to design
activation functions automatically [RZL17]. Their experiments resulted in many good
activation functions, but their analysis concentrated on one activation function (x · σ(x))
that they report works better than ReLU on deeper neural network models. Bingham
et al. augmented previous research by introducing an evolutionary algorithm to design
novel activation functions [BMM20]. The authors showed that it is possible to evolve
specialized activation functions that perform well for the CIFAR-10 and CIFAR-100
datasets. In [BR18], the authors use a hybrid genetic algorithm to evolve a function
defined differently on the positive and negative domains. Parts of the function are
represented by trees and crossed by special operators that separately change the positive
and negative sides. The set of nodes comprises of basic arithmetic operations, and leaves
are popular activation functions without constants. The authors also presented the new
activation functions ELiSH and Hard ELiSH, which they built manually, intending to
combine smaller functions’ good properties. On three datasets, they showed that their
functions perform the best.

Finally, we briefly discuss works investigating activation functions designed manually.
Nair and Hinton introduced rectified linear unit (ReLU), which is today de-facto standard
activation function for deep learning [NH10]. Various ReLU modifications were proposed
over the years, where one example is leaky ReLU (LReLU), which deals with the dead
neurons issue [MHN13]. More variations of ReLU can be found in [KMK15, HZRS15].
Clevert et al. experimented with exponential linear unit function (ELU), which reduces the
vanishing gradient problem [CUH16]. Furthermore, Klambauer et al. extended properties
of ELU with scaled exponential linear unit function (SELU) [KUMH17]. The authors
in [KH19, MR18] proposed to use a combination of different activation functions in the
same layer. However, this approach has memory issues, which is typically a critical
parameter in real-world scenarios.

4 Experimental Setup
In this section, we first discuss the datasets and leakage models we consider. Afterward,
we give details about the investigated approaches to design activation functions.

4.1 Datasets and Leakage Models
In our experiments, we consider two versions of the ASCAD database [BPS+20]. This
database contains the measurements from an 8-bit AVR microcontroller running a masked
AES-128 implementation. This database is publicly available from https://github.com/
ANSSI-FR/ASCAD.

The first version of the ASCAD database has a fixed key and consists of 50 000 traces for
profiling and 10 000 for the attack. The traces in this dataset have 700 features (preselected
window when attacking the third key byte). We use 45 000 traces for training and 5 000 for
validation from the original training set. The second version of the ASCAD database has
random keys, and the dataset consists of 200 000 traces for training and 100 000 for testing.
Each trace in this database has 1 400 features (preselected window for the third key byte).
We use 5 000 traces from the original training set for validation. We normalize the input
features to a Gaussian distribution (zero mean and unit variance) for both datasets by
calculating the training set’s distribution parameters.

https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD
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This paper considers the Hamming Weight (HW) leakage model and the Identity (ID)
leakage model. In the HW leakage model, the attacker assumes the leakage is proportional
to the sensitive variable’s Hamming weight. When considering a cipher that uses an 8-bit
S-box, this leakage model results in nine classes. Since this induces a heavy imbalance
in the label distribution, we additionally calculate the imbalance weights that balance
the calculated model loss. For calculating the imbalance weights, we follow the guidelines
given in [PHJ+18]. For the ID leakage model, the attacker considers the leakage in the
form of an intermediate value of the cipher. When considering an 8-bit S-box, this leakage
model results in 256 classes (values between 0 and 255).

4.2 Architecture Search Strategies
In our experiments, we consider two neural network types: CNN and MLP. The specific
CNN architecture is described in [ZBHV19] for the ASCAD synchronized dataset, and
we use it with all of its reported hyperparameters. The procedure’s seed values were
not defined, so we translated their original architecture and training procedure from
Keras to PyTorch and ran the process with several seed values until we observed an
equal or better result than reported in the original paper. The exact hyperparameters
are reported in Section 5. We used the same seed value throughout our experiments for
this architecture. The authors implemented a one-cycle learning rate schedule, which we
replaced with the implementation in PyTorch, following their hyperparameter setup. The
network architecture consists of a convolutional layer with four output channels, followed
by batch normalization, activation function, and average pooling. The output of this block
is flattened and fed to an MLP tail to produce the final prediction. The width and depth
of the MLP tail were optimized per dataset with the grid search. In the CNN training
procedures, we use the one-cycle policy for learning rate with reported hyperparameters of
learning rate 0.005, with 40% of the cycle incrementing the value using a linear annealing
strategy.

Since CNN inference time can be quite long compared to MLP, we apply and compare
both architectures. The MLP architecture is defined with consecutive blocks consisting of
a dense linear layer, batch normalization layer, and a nonlinear activation function.

We first employ architecture search to find the representative architecture for each of
the datasets (and neural network types). Two different algorithms were used to explore the
space of network architectures and their hyperparameters: grid search and random search.
Both techniques include evaluating a multitude of points of search space to find the optimal
one. The points are evaluated on the test set to obtain a distribution of representative
solutions that will later serve for further optimization with evolution. The techniques are
also easily parallelized, allowing a much faster search process than sequential evaluation.
We consider grid search for CNNs as the number of hyperparameters is large, making
it more difficult for a random search. For MLP, we use random search as related works
reported good results even with such a simple tuning setup [PCP20, WPP20].

4.2.1 Grid Architecture Search for CNNs

Grid search evaluates all possible combinations of parameter values for a given search
space, where the continuous variables are sampled along with fixed steps. We employ
this search strategy following [ZBHV19] to find an optimal CNN architecture for a given
dataset. Due to time constraints, we slightly truncated this search space by removing
hyperparameter values that were not expected to give good results (such as very shallow
or narrow architectures). The considered hyperparameter space is described in Table 1
and resulted in 2160 grid samples to obtain the best convolutional model (CNN - GSbest)
for each of the datasets.
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4.2.2 Random Architecture Search for MLP

Random search strategy samples the given space by randomly selecting points in the search
space. The search space can be defined with a multitude of features, both discrete and
continuous. It is similar to grid search but without a structured sampling of continuous
spaces, which might introduce bias by selecting from only a subset of possible values. We
find this bias unwanted as we do not use a learning rate schedule for our MLP models, and
the model might be more sensitive to a fixed learning rate’s exact value. We define the
search space as the collection of hyperparameters that affect the shape of MLP architecture
and its train parameters, listed in Table 1. The search space slightly differs from the grid
search strategy by offering more resolution for the layer widths, learning rate, and over
several seed values to compensate for the possibility of bad initialization. We sample 600
random points from this space to obtain an approximate distribution of the actual solution
space for MLP architectures for each of the datasets. From this we can obtain the best
model (MLP - RSbest) and the median model (MLP - RSmedian).

Table 1: Definitions of the architecture search spaces. The values in square brackets
represent a continuous range, while the curly brackets denote a set of discrete values.

Parameter Type Grid search subspace Random search sub-
space

Seed int 36 [0,100]
Number of layers int {2, 3, 4} [2, 8]
Layer width int {10, 15, 20, 25, 100} [100, 1000]
Learning rate float 5e-3 [1e-4, 1e-2]
Optimizer operator {SGD, RMSProp,

Adam}
{SGD, RMSProp,
Adam}

Activation function function {ReLU, ELU, SELU,
tanh}

{ReLU, LReLU, ELU,
SELU, tanh, Sin}

Train epochs int {20, 25, 50, 75} 50

4.3 Evolving Activation Functions
In this section, we describe in detail the setup for evolving activation functions.

4.3.1 Search space and Solution Encoding

The space of all feasible solutions is called a search space. Each activation function in the
search space represents one possible solution. Every activation function is represented as a
tree consisting of unary and binary operators with leaves corresponding to function inputs
~x, namely the outputs of a dense linear layer. We consider the following operators:

• Unary: ~x, −~x, |~x|, sin(~x), cos(~x), e~x, erf(~x), ~x2, 1//~x, σ(~x), σH(~x), ReLU(0, ~x),
ELU(~x), Softsign(~x), Softplus(~x), tanh(~x)

• Unary, multidimensional: normalized(~x), Softmax(~x), Softmin(~x)
• Binary: ~x1 + ~x2, ~x1 − ~x2, ~x1 · ~x2, ~x1// ~x2
The operator // denotes protected division, where the denominator value is replaced

with ε = 10−4 if the denominator’s absolute value is smaller than ε. ReLU denotes the
rectified linear unit, ELU the exponential linear unit, erf the Gaussian error function,
σ the sigmoid function, σH the hard sigmoid function, and normalized the L2 vector
normalization. The initial tree depth is between 2 and 5, and the maximal tree depth is
limited to 12. Moreover, there is no constraint of tree balancedness as discussed in [RZL17]
and [BMM20].
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4.3.2 Evolutionary Process

The selection process used in this work is presented as Algorithm 1 and employs a variant
called steady-state tournament selection with the size of the tournament (k) equal to 3.

Algorithm 1 Steady-state tournament selection.
randomly select k individuals;
remove the worst of k individuals;
child = crossover (best two of the tournament);
perform mutation on child, with given individual mutation probability;
insert child into population;

Starting with a population of P randomly created activation functions, a tournament
with three randomly selected individuals is performed in each iteration of the selection
process. The worst individual from the tournament is eliminated, and a new one is
constructed by performing crossover on the remaining two. The mutation is applied to the
new individual, subject to the defined individual mutation rate. With P new individuals
created in this way, a single generation of the evolutionary process is completed. The best
activation function is always preserved in the population (elitism) since the best individual
can never be selected for elimination. This process is repeated for a number of generations,
and the activation functions with the best performance are returned as a result.

Evolution offers a more efficient approach to space sampling since it uses information
from previous samplings to guide the search. We use this technique to find an activation
function that optimizes the generalization of our models. The search space of functions is
very large and requires some assumptions to make the search feasible. First, we assume
the function can be represented as a tree, making the genetic programming technique a
natural choice. Here, we constrain leaves to only be the function input, without constants
or learnable parameters. Next, we limit the maximal depth of candidate trees to restrict
the search to a fast to evaluate subspace of functions since they need to be evaluated for
each layer. Finally, we limit the representation’s expressivity by defining a set of possible
unary and binary operations that can be used as function nodes (see Section 4.3.1). We use
a population of 20 individuals and run the algorithm with a budget of 2000 evaluations.

4.3.3 Fitness Function

A neural network is trained with each function on a given training dataset, starting with a
population of P activation functions. Recall, guessing entropy denotes the average key
rank, i.e., the correct key position in the guessing vector after processing Q attack traces.
As such, we aim to minimize the guessing entropy for any number of attack traces. Thus,
it is natural to consider the number of attack traces required to reach the GE of 0, which
we denote as QtGE

. Each candidate function is assigned a fitness value F :

F = QtGE
+ (1− accuracy). (3)

The goal is to minimize fitness value F , where the optimal value is 1 (this would
require only a single trace to break the target, which represents the optimal scenario).
The guessing entropy is averaged over 100 attacks on randomly selected data subsets. The
maximum subset sizes were selected depending on a particular experiment to balance
between differentiation of result qualities and computation time. In turn, this induces very
similar results between individuals in initial iterations and slows the EA convergence. To
remedy this, we add the accuracy error (1− accuracy) to the fitness, which is also subject
to minimization, and adds additional information for differentiation between results. In
preliminary experiments, we observed faster convergence by using this fitness function.



Karlo Knezevic, Juraj Fulir, Domagoj Jakobovic and Stjepan Picek 11

We note that it could be somewhat counterintuitive to use accuracy for SCA. This
problem can be especially pronounced for the HW leakage model as it results in highly
imbalanced data [PHJ+18]. Still, as the second part of the fitness function is bounded in
the range [0, 1], for neural networks that perform well (i.e., those that reach GE of 0 in a
small number of traces), added information about accuracy can help by providing more
search space gradient. When the number of required traces is high, the accuracy term’s
contribution is small, so the number of traces remains the primary objective.

4.3.4 Mutation and Crossover

In mutation, one node in an activation function tree is selected uniformly at random, and
at that point, the selected subtree is replaced by generating a new subtree, respecting
the maximal depth limit. The probability of mutation was selected from the preliminary
experiments on the ASCAD fixed key dataset to provide reasonable exploration and
exploitation properties and was kept at 70% through all of the experiments. In the
crossover, two parent activation functions exchange randomly selected subtrees, producing
new children activation functions. The crossover is performed with a simple tree crossover
with 90% bias for functional nodes being selected as crossover points.

4.4 Learning System
All experiments were performed on a machine using a single GeForce GTX 1080 Ti graphics
card, i7-6700 CPU, and 32 GB of RAM, running Ubuntu 16.04. We implemented our
experiments in Python 3.7 with the usage of the DEAP[FDG+12] framework (v1.3.1) for
evolutionary algorithms and PyTorch framework [PGM+19] (v1.7.0) for deep learning with
the CUDA (v11.2) backend.

As our model architectures do not require a significant GPU memory, we fully utilize
the hardware by parallelizing individuals’ evaluation step via multiprocessing. This proved
crucial as our experiments are extremely time-consuming, in the order of 7 days per
architecture search and 14 days per evolution without parallelization. Note that the upper
limit of the number of processes is dictated by the available GPU memory and physical
CPU cores.

To ensure our experiments’ reproducibility, we carefully set the seed value on both the
CPU and GPU side. Python’s random, numpy, and torch libraries provide methods for
managing the state of a random generator. Implementing a simple context manager, entire
blocks of an experiment can be run under the standardized setup while maintaining the
code clean and automatically restoring the context afterward.

5 Results
This section presents the experimental results, demonstrating that evolved activation func-
tions can outperform commonly used activation functions. We first search for the optimal
network architecture and hyperparameters using the previously discussed architecture
search methods (random search - RS and grid search - GS) for each experimental setup.
Then on the selected setup, we apply the evolutionary algorithm to further optimize the
model by changing its activation function. Finally, we compare the results of mentioned
techniques on both datasets and leakage models. During the evaluation of GS and RS
on ASCAD fixed key dataset with the ID leakage model, we truncated the evaluation of
QtGE

to 1000 as we observed over 25% of results lied in this subspace, thus leading to an
efficient region of interest. Additionally, we focused on 500 traces during the evaluation of
GP to further improve efficiency while still obtaining better results. For the random keys
dataset, we needed to increase the truncation bar to 1000 as it became more difficult to
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Table 2: Final QtGE
values for ASCAD fixed and random keys datasets on the Hamming

weight leakage model. Here we compare the best obtained value of grid search on the
CNN model (CNN - GSbest, with its evolved activation function CNN - GP and the best
obtained MLP model on random search MLP - RSbest.

Fixed Key Random Keys
best 2nd best 3rd best best 2nd best 3rd best

CNN - GSbest 299 - - 606 - -

CNN - GP 287 331 339 QtGE
> 5000 QtGE

> 5000 QtGE
> 5000

MLP - RSbest 561 669 749 1133 1592 1615

Table 3: Final QtGE
values for ASCAD fixed and random keys datasets on the ID leakage

model. Here we compare the best obtained value of grid search on the CNN model (CNN -
GSbest), version with its evolved activation function (CNN - GP) and the best obtained
MLP model on random search MLP - RSbest. The star denotes result obtained from
reconstructing the resulting architecture in [ZBHV19].

Fixed Key Random Keys
best 2nd best 3rd best best 2nd best 3rd best

CNN - GSbest 191* - - QtGE
> 1000 - -

CNN - GP 115 123 130 QtGE
> 1000 QtGE

> 1000 QtGE
> 1000

MLP - RSbest 156 162 191 145 163 194

obtain 25% results in this subspace. Finally, for all of the HW leakage model tasks, we
further increased the bar to 5000 as they proved to be quite a bit harder.

In Tables 2 and 3, we depict the best-obtained results for the Hamming weight and
the ID leakage models, respectively. We additionally compare with the state-of-the-art
results [ZBD+20] when possible. The notation QtGE

> x denotes that we could not reach
GE of 0 in x attack traces. We also depict the three best results obtained with various
search techniques.

First, for the HW leakage model (Table 2) and fixed key, the best results are obtained
with GP, while grid search with CNN performs slightly worse. Random search for MLP
results are much worse than the first two, but we still manage to break the target. For
random keys, we can see that the best results are reached for CNN with grid search,
followed by MLP obtained through random search. Interestingly, CNN evolved with GP
cannot converge even with 5000 attack traces. The architectures end with guessing entropy
values: 108, 110, and 111 for the top 3 individuals, respectively. We postulate this happens
as the random keys dataset is more difficult and becomes easier to overfit. Still, we believe
adding more generations to the GP procedure would improve its behavior and attack
results.

In Table 3, we depict results for the ID leakage model. Interestingly, for the fixed key,
we see that both CNN evolved with GP and MLP with random search work better than
related work [ZBHV19]. For random keys, we reach good results with MLP with random
search only. Again, this shows that random keys setup is more difficult, and we require a
more sophisticated search process to reach good results. The CNN - GSbest ends with a
guessing entropy of 128, while the top 3 evolved results end respectively with values: 125,
128, and 128.

Next, in Table 4, we give median results for the HW leakage model when comparing
MLP architectures obtained with random search and after evolving activations functions
with GP. Note that GP improves the performance significantly for the fixed key, while GP
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Table 4: Results of the EA effectiveness experiment for ASCAD fixed and random keys
on the Hamming weight leakage model. The median architecture is compared before MLP
- RSmedian and after evolution MLP - GP.

Fixed Key Random Keys
MLP - RSmedian MLP - GP MLP - RSmedian MLP - GP

QtGE
2377 1168 3350 QtGE

> 5000

Table 5: Results of the EA effectiveness experiment for ASCAD fixed and random keys
datasets on the ID leakage model. The median architecture is compared before MLP -
RSmedian and after evolution MLP - GP.

Fixed Key Random Keys
MLP - RSmedian MLP - GP MLP - RSmedian MLP - GP

QtGE
531 279 437 188

does not converge for the random keys dataset. At the same time, the configuration found
with random search manages to break the target in somewhat more than 5000 attack
traces, ending with a guessing entropy value of 124. As the results with GP denote that
the median does not manage to break the target, this again reiterates that we require
more than 100 generations to evolve good activation functions.

Finally, in Table 5, we compare the median results for MLP with random search and
after using genetic programming when considering the ID leakage model. Observe how for
both fixed and random keys settings, GP reaches significantly better results. This indicates
that while the random search can find a good performing neural network architecture just
by guessing, the average results obtained over a number of solutions are not very good. On
the other hand, evolving customized activation functions manages to improve the neural
network performance significantly.

5.1 ASCAD Fixed Key

For the HW leakage model, we obtained a CNN architecture with the tail of four hidden
dense layers of width 100, activated by ELU , and initialized with seed 36. The training
setup uses the RMSProp optimizer with a learning rate of 0.005 over 20 epochs with
batch size 64. For the architecture search of MLP, we obtained a model with eight hidden
dense layers of width 478, activated by ReLU , and initialized with seed 42. The training
setup uses the Adam optimizer with a learning rate of 0.0017 over 50 epochs with batch
size 200.

For the ID leakage model, we reimplemented the CNN reported in [ZBHV19] and
obtained similar results. The training setup uses the Adam optimizer with a learning rate
of 0.005 over 50 epochs with batch size 50. The architecture is initialized with a seed
equal to 36 and uses the SELU activation function. For the architecture search of MLP,
we obtained a model with five hidden dense layers of width 661, activated by the Sine
function and initialized with seed 2. The training setup uses the Adam optimizer with a
learning rate of 0.0086 over 50 epochs with batch size 200.

The best activation functions we obtained are denoted below, with the first letter in
the subscript corresponding to the setup type and the second one to the architecture type.
Note that the functions look rather complex, and it would be hard to expect that a human
designer would find them. Still, the experimental results show they work very well.
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(b) Fitness value of CNN - GP.

Figure 1: The evolution of fitness value for the ASCAD fixed key dataset and the ID
leakage model.

aID,C(~x) = sin(erf(~x− softmin(~x)2))− (4)
~x2 · softsign(σ(softmin(softsign(σH(σ(normalized(softmax(~x2)))))))) (5)

aID,M (~x) = normalized(softsign(normalized(~x · tanh(softplus(softsign(erf(~x)))))))
(6)

aHW,C(~x) = −(tanh(−~x) · |softsign(2~x)− (σ(tanh(~x)) + ELU(~x))|) (7)

aHW,M (~x) = softmax(softmin(sin(normalized(tanh( −1
σ(~x2)2 ))))− ~x) (8)

(9)

In Figure 1, we depict the GP evolution convergence plots for the MLP and CNN
architecture for the ASCAD fixed key dataset. Notice how both architectures improve with
iterations (clearly showing there is learning happening). Especially strong convergence can
be seen for CNN, where the final fitness is more than twice smaller than in the MLP case.

Next, in Figure 2, we depict the best-obtained activation function and its derivation.
Recall, the derivation is important as we require the differentiable function if we use the
backpropagation algorithm, as is common in the training of neural networks. Notice that
we obtain a non-monotonic function for CNN, which is strikingly different from commonly
(and state-of-the-art) used activation functions.

Finally, in Figure 3, we depict the number of attack traces required to reach a guessing
entropy of 0. That value is denoted with a red dot. Notice that we break the target
significantly faster when using CNN than MLP, but both techniques perform well. This
ensures that we can find custom activation functions for SCA that perform well regardless
of the neural network selection. Moreover, in Appendix A, we depict the corresponding
plots for the HW leakage model.

5.2 ASCAD Random Keys
In the case of the HW leakage model for the random keys dataset and CNN’s architecture
search, we obtained an architecture tail with four hidden dense layers of width 100,
activated by the SELU activation function, and initialized with seed 36. The training setup
uses the SGD optimizer with a learning rate equal to 0.005 over 75 epochs with batch size
50. Using the architecture search of MLP, we obtained a model with two hidden dense
layers of width 716, activated by SELU and initialized with seed 2. The training setup
uses an SGD optimizer with a learning rate of 0.0042 over 50 epochs with batch size 200.
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Figure 2: Plots represent the 1D slice of the best activation function (solid) and its
derivative (dotted) obtained through evolution on the ASCAD fixed key dataset for ID
prediction. The slice is defined by setting the first dimension to the x-axis and the second
dimension is set to 0.
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(a) The guessing entropy of MLP - GP (Table
5).
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(b) The guessing entropy of CNN - GP (Table
3).

Figure 3: The guessing entropy of the best evolved activation functions on the ASCAD
fixed key dataset and the ID leakage model.
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Figure 4: The evolution of fitness value on the ASCAD random keys dataset and the ID
leakage model.

For the ID leakage model and the CNN’s architecture search, we obtained an architecture
tail with two hidden dense layers of width 100, activated by tanh activation function and
initialized with seed 36. Using the architecture search of MLP, we obtained a model with
five hidden dense layers of width 622, activated by ReLU and initialized with seed 2. The
training setup uses the Adam optimizer with a learning rate of 0.00086 over 50 epochs
with batch size 200.

The activation functions we obtained are shown below, with the first letter in the
subscript corresponding to the setup type and the second one to the architecture type.
Notice that these activation functions are slightly less complex (having fewer terms) than
in the ASCAD fixed key scenario.

aID,C(~x) = (tanh(|sin(cos(~x))|))−1 (10)
aID,M (~x) = softplus(~x+ ELU(~x)) + ~x− σ(ELU(cos(σH(cos(softplus(σ(~x)))))))

(11)
aHW,C(~x) = exp(cos(softmax(sin(~x)−1))) (12)
aHW,M (~x) = ReLU(σH(cos(softmin(normalized(|softmin(softmax(~x))|))2))) (13)

Next, in Figure 4, we depict the convergence plots. Again, CNN converges faster,
and even with a relatively short number of iterations, there is no more improvement in
the fitness value. Considering rather small improvements in the fitness value, we could
conclude that the evolution process gets stuck in local optima. One potential solution
could be to consider larger mutation rates to stimulate search space exploration.

Figure 5 presents plots for the activation function and its derivation. Notice that while
for MLP, the obtained functions have some similarity with commonly used ones, for CNN,
the shape is rather unusual (and not intuitive that it would work). Finally, in Figure 6,
we depict the guessing entropy results. Interestingly, MLP works very well (on the level
as for the ASCAD with fixed key dataset), while CNN does not converge. Again, this
reiterates that it is easier to tweak MLP architectures, regardless of whether it is done
via hyperparameter tuning [WPP20] or evolution of activation functions as investigated
here. What is more, the results indicate that MLP architectures are sufficient to break the
targets, especially if there is no trace misalignment (recall that in this work, we consider
only synchronized traces). For CNNs, working with larger mutation rates and longer
evolution could resolve the problems indicated here.
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4 2 0 2 4
Activation

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Ou
tp

ut
(b) Best activation function for CNN - GP.

Figure 5: Plots represent the 1D slice of the best activation function (solid) and its
derivative (dotted) obtained through evolution on the ASCAD random keys dataset. The
slice is defined by setting the first dimension to the x-axis and the second dimension is set
to 0.
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(a) The guessing entropy of MLP - GP (Table 5).
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(b) The guessing entropy of CNN - GP (Table 3).

Figure 6: The guessing entropy of best evolved activation functions on the ASCAD random
keys dataset.
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6 Conclusions and Future Work
This paper investigates how neuroevolution can improve deep learning-based side-channel
analysis. More precisely, we consider the setting where genetic programming evolves activa-
tion functions specifically adapted for the side-channel analysis. We conduct experiments
for two SCA datasets and two leakage models to show that it is possible to evolve activation
functions that improve the attack behavior.

We observe that activation function evolution has higher efficiency for a simpler
dataset, indicating that more work is needed to understand this approach’s advantages
and drawbacks. Additionally, we observe the need for more informative and cost-effective
fitness functions that would lead to better individuals faster.

Since this is the first work considering neuroevolution for SCA, there are many possible
research directions for future work. One direction would be to consider evolving other
elements of the learning procedure, like the loss function. Another option could be to
use neuroevolution to evolve the whole neural network architecture, not restricting to
activation function only. Finally, another viable option is to use evolution instead of the
backpropagation algorithm so that the activation function search does not need to be
restricted to differentiable elements. Considering the application of different activation
functions, one natural option would be to consider the evolution of activation functions that
are different for various layers. It would also be interesting to investigate how transferable
the obtained activation functions are when considering already designed neural network
architectures. Our preliminary testing indicates this transferability to be rather limited,
but more experiments are required.
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A ASCAD Fixed Key for the HW Leakage Model
For the HW leakage model and the ASCAD fixed key dataset, we depict in Figure 7 the
convergence plots for the MLP and CNN architectures. We see that CNN converges faster,
where the final fitness is two times smaller than in the MLP case. Next, in Figure 8, we
depict the best-obtained activation function and its derivation. Both obtained functions
have similarities with the commonly used ones. Interestingly, the GP evolved activation
functions with similar properties to tanh(−x) (see Figure 8a) function and ELU (see
Figure 8b) activation function.

Finally, in Figure 9, we depict the number of attack traces required to reach a guessing
entropy of 0, and we denoted that value with a red dot. Despite the fact that MLP and
CNN architectures perform well, we break the target significantly faster when using CNN
than MLP.
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(a) Fitness value of MLP - GP.
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(b) Fitness value of CNN - GP.

Figure 7: The evolution of fitness value on the ASCAD random keys dataset and the HW
leakage model.
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(a) Best activation function for MLP - GP.
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(b) Best activation function for CNN - GP.

Figure 8: Plots represent the 1D slice of the best activation function (solid) and its
derivative (dotted) obtained through evolution on the ASCAD fixed key dataset. The slice
is defined by setting the first dimension to the x-axis and the second dimension is set to 0.
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(a) The guessing entropy of MLP - GP (Table 5).
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(b) The guessing entropy of CNN - GP (Table 3).

Figure 9: The guessing entropy of best evolved activation functions on the ASCAD fixed
key dataset.
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