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Abstract. In this paper, we show that OAEP transform is indistin-
guishable under chosen ciphertext attack in the quantum random oracle
model if the underlying trapdoor permutation is quantum partial-domain
one-way. The existing post-quantum security of OAEP (TCC 2016-B [14])
requires a modification to the OAEP transform using an extra hash
function. We prove the security of the OAEP transform without any
modification and this answers an open question in one of the finalists of
NIST competition, NTRU submission [6], affirmatively.
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1 Introduction

The rapid progress on quantum computing and the existence of quantum al-
gorithms like Shor’s algorithm [12] has sparked the necessity of replacing old
cryptography with the post-quantum cryptography. Toward this goal, the Na-
tional Institute of Standards and Technology (NIST) has initiated a competition
for post-quantum cryptography. In this paper we address an open question in
one of the finalists of NIST competition, NTRU submission [6]. The security of
(unmodified) Optimal Asymmetric Encryption Padding (OAEP) in the quantum
random oracle model has been mentioned as an interesting open question in [6].
The existing post-quantum security proof of OAEP [14] requires a modification
to OAEP transform. (See details below.)

The random oracle model [1] is a powerful model in which the security of
a cryptographic scheme is proven assuming the existence of a truly random
function that is accessible by all parties including the adversary. But in real
world applications, the random oracle will be replaced with a cryptographic hash
function and the code of this function is public and known to the adversary.
Following [4], we use the quantum random oracle model in which the adversary can
make queries to the random oracle in superposition (that is, given a superposition
of inputs, he can get a superposition of output values). This is necessary since a
quantum adversary attacking a scheme based on a real hash function is necessarily
able to evaluate that function in superposition. Hence the random oracle model
must reflect that ability if one request post-quantum security.



Bellare and Rogaway [2] proposed OAEP transform, for converting a trapdoor
permutation into an encryption scheme using two random oracles. It was believed
that the OAEP-cryptosystem is provable secure in the random oracle model
based on one-wayness of trapdoor permutation, but Shoup [13] showed it is
an unjustified belief. Later, Fujisaki et al. [9] proved IND-CCA security of the
OAEP-cryptosystem based on a stronger assumption, namely, partial-domain
one-wayness of the underlying permutation.

Is OAEP transform secure in the standard model? The most recent
work to study this question [5] shows that a full instantiation of RSA-OAEP is
only possible for two variants of RSA-OAEP (called ‘t-clear’ and ‘s-clear’). Also,
we emphasize that the positive results in [5] hold against a classical adversary and
one needs to investigate the possibility of such instantiation in the post-quantum
setting. For instance, the partial instantiations are based on algebraic properties
of RSA assumption that trivially does not hold in the post-quantum setting. Or
the full instantiation of t-clear RSA-OAEP is based on non-standard assumptions
(called ‘XOR-type’ assumptions) for which an intuitive justifications has been
only given in light of the multiplicative structure of RSA, and etc. Even though
the post-quantum instantiation of the random oracles in OAEP is a relevant
research question, it is not in the scope of this paper and we leave a further
investigation as an open question. Here, we investigate the security of OAEP
transform in the quantum random oracle model.

Post-quantum security of OAEP transform has been studied in [14]. The
authors modified OAEP transform (called it Q-OAEP) using an extra hash
function that is length-preserving and show that Q-OAEP is IND-CCA secure in
the quantum random oracle model. The extra hash function in Q-OAEP is used
to extract the preimage of a random oracle queries in the security proof. In this
work, we show that this extra hash function is unnecessary. We use Zhandry’s
compressed oracle technique [16] to prove IND-qCCA security of OAEP transform
(without any modification) in the quantum random oracle model. IND-qCCA
notion introduced in [3] is an adaptation of IND-CCA in which the adversary
is allowed to make quantum decryption queries, but, the challenge query is
restricted to be classical. Since security in the sense of IND-qCCA implies IND-
CCA security, our result answers an open question in one of the finalists of NIST
competition, NTRU [6], affirmatively.

Note that in the IND-qCCA notion, the adversary’s challenge queries are
restricted to be classical. Proposing a quantum IND-CCA notion that grants the
adversary the possibility of submitting quantum challenge queries is a challenging
task with some partial successes [7, 10]. We postpone verifying the security of
OAEP transform in the sense of definitions in [7, 10] until a definite definition is
given.
Organization. In Section 2, we present some basics of quantum information
and computation, security definitions needed in the paper and an introduction
for the Compressed Standard Oracle that has been introduced in [16] which we
use it in the paper. In Section 3, we present the OAEP scheme and show that it
is IND-qCCA secure in the quantum random oracle model.

2



2 Preliminaries

Notations. Let MSP stands for the message space. The notation x $←− X means
that x is chosen uniformly at random from the set X. For a natural number
n, [n] means the set {1, · · · , n}. Pr[P : G] is the probability that the predicate
P holds true where free variables in P are assigned according to the program
in G. The function negl(n) is any non-negative function that is smaller than
the inverse of any non-negative polynomial p(n) for sufficiently large n. That is,
limn→∞ negl(n)p(n) = 0 for any polynomial p(n). For a function f , fx denotes the
evaluation of f on the input x, that is f(x). For a bit-string x of size more-than-
equal k, [x]k is the k least significant bits of x and [x]k is the k most significant
bits of x. For two bits b and b′, [b = b′] is 1 if b = b′ and it is 0 otherwise.

2.1 Quantum Computing

We present basics of the quantum computing in this subsection. The inter-
ested reader can refer to [11] for more information. For two vectors |Ψ〉 =
(ψ1, ψ2, · · · , ψn) and |Φ〉 = (φ1, φ2, · · · , φn) in Cn, the inner product is defined
as 〈Ψ, Φ〉 =

∑
i ψ
∗
i φi where ψ∗i is the complex conjugate of ψi. Norm of |Φ〉 is

defined as ‖ |Φ〉 ‖ =
√
〈Φ,Φ〉. The n-dimensional Hilbert space H is the complex

vector space Cn with the inner product defined above. A quantum system is a
Hilbert space H and a quantum state |ψ〉 is a vector |ψ〉 in H with norm 1. An
unitary operation over H is a transformation U such that UU† = U†U = I where
U† is the Hermitian transpose of U and I is the identity operator over H. Norm of
an operator U is ‖U‖ = max|ψ〉 ‖U |ψ〉‖. The computational basis for H consists
of logn vectors |bi〉 of length logn with 1 in the position i and 0 elsewhere. With
this basis, the Hadamard unitary is defined as

H : |b〉 → 1√
2

(
∣∣b̄〉+ (−1)b |b〉),

for b ∈ {0, 1} where b̄ = 1− b. The control-swap unitary is defined as

|b〉 |ψ0〉 |ψ1〉 → |b〉 |ψb〉 |ψb̄〉 ,

for b ∈ {0, 1}. The controlled-unitary U (cU) is define as:

cU |b〉 |Ψ〉 →

{
|b〉U |Ψ〉 if b = 1
|b〉 |Ψ〉 if b = 0

.

The bit-flip unitary X maps |b〉 to
∣∣b̄〉 for b ∈ {0, 1}. An orthogonal projection

P over H is a linear transformation such that P2 = P = P†. A measurement
on a Hilbert space is defined with a family of orthogonal projectors that are
pairwise orthogonal. An example of measurement is the computational basis
measurement in which any projection is defined by a basis vector. The output of
computational measurement on a state |Ψ〉 is i with probability ‖〈 bi, Ψ〉‖2 and
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the post measurement state is |bi〉. For a general measurement {Pi}i, the output
of this measurement on a state |Ψ〉 is i with probability ‖Pi |Ψ〉 ‖2 and the post
measurement state is Pi|Ψ〉

‖Pi|Ψ〉‖ .
For two operators U1 and U2, the commutator is [U1,U2] = U1U2−U2U1. For

two quantum systemsH1 andH2, the composition of them is defined by the tensor
product and it is H1 ⊗H2. For two unitary U1 and U2 defined over H1 and H2
respectively, (U1⊗U2)(H1⊗H2) = U1(H1)⊗U2(H2). In this paper, QFT over an
n-qubits system is H⊗n. Any classical function f : X → Y can be implemented as
a unitary operator Uf in a quantum computer where Uf : |x, y〉 → |x, y ⊕ f(x)〉.
Note that it is clear that U†f = Uf . A quantum adversary has standard oracle
access to a classical function f if it can query the unitary Uf .

2.2 Definitions

Here, we define an asymmetric encryption scheme, the IND-qCCA security notion
and the quantum partial one-wayness.

Definition 1. An asymmetric encryption scheme E consists of three polynomial
time (in the security parameter n) algorithms, E = (Gen,Enc,Dec), such that:

1. Gen, the key generation algorithm, is a probabilistic algorithm which on input
1n outputs a pair of keys, (pk, sk)← Gen(1n), called the public key and the
secret key for the encryption scheme, respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m ∈ MSP and outputs a ciphertext
c← Encpk(m). The message space, MSP, may depend on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns the message m := Decsk(c). It
is required that the decryption algorithm returns the original message, i.e.,
Decsk(Encpk(m)) = m, for every (pk, sk) ← Gen(1n) and every m ∈ MSP.
The algorithm Dec returns ⊥ if ciphertext c is not decryptable.

In the following, we define the IND-qCCA security notion [3] in the quantum
random oracle model. The IND-qCCA security notion for an asymmetric encryp-
tion scheme allows the adversary to makes quantum decryption queries but the
challenge query is classical. We define UDec as:

UDec |c, y〉 →

{
|c, y⊕ ⊥〉 if c∗ is defined & c = c∗

|c, y ⊕Decsk(c)〉 otherwise
,

where c∗ is the challenge ciphertext and ⊥ is a value outside of the output space.
We say that the quantum algorithm A has quantum access to the random oracle
H if A can submit queries in superposition and the oracle H answers to these
queries by applying a unitary transformation that maps |x, y〉 to |x, y ⊕H(x)〉.

Definition 2 (IND-qCCA in the quantum random oracle model). An
asymmetric encryption scheme E = (Gen,Enc,Dec) is IND-qCCA secure if for
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any quantum polynomial time adversary A

Pr
[
b = 1 : b← ExpqCCA,qROA,E (n)

]
≤ 1/2 + negl(n),

where ExpqCCA,qROA,E (n) game is define as:
ExpqCCA,qROA,E (n) game:
Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk) and
chooses random oracles.

Query: The adversary A given the public key pk, the quantum oracle access
to UDec and the quantum access to the random oracles, chooses two classical
messages m0,m1 of the same length and sends them to the challenger. The chal-
lenger chooses a random bit b and responds with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the random
oracles. Finally, the adversary A produces a bit b′. The output of the game is
[b = b′].

Definition 3 (Quantum partial-domain one-way function). We say a per-
mutation f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m is quantum partial-domain one-way
if for any polynomial time quantum adversary A,

Pr
[
s̃ = s : s $←− {0, 1}n+k1 , t

$←− {0, 1}k0 , s̃← A(f(s, t))
]
≤ negl(n).

2.3 Compressed Standard Oracle

In this section, we briefly present the Compressed Standard Oracle (CStO) that
have been introduced in [16]. The interested reader can refer to [8, 16] for more
details.

In the standard quantum random oracle model, a function H : {0, 1}m →
{0, 1}n is chosen uniformly at random from the set of all functions (lets call it
ΩH) and superposition queries will be answered by the unitary UH that maps
|x, y〉 to |x, y ⊕H(x)〉. Another perspective to consider this is that the oracle
puts the superposition of all functions on his private register1 and a query is
implemented as

StO : |x, y〉
∑
H

1√
|ΩH |

|H〉 →
∑
H

1√
|ΩH |

|x, y ⊕H(x)〉 |H〉 .

Note that if the oracle measures its internal state in the computational basis,
this corresponds to choosing H uniformly at random from ΩH and answer with
UH . So these two oracles are perfectly indistinguishable. Now if we apply QFT to

1This requires exponential number of registers that is not efficient.
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the output register before and after applying StO, we will get the Phase oracle
that operates as follows:

PhO : |x, y〉
∑
H

1√
|ΩH |

|H〉 →
∑
H

1√
|ΩH |

(−1)y·H(x) |x, y〉 |H〉 .

Let D represents the truth table of the function H and Px,y represents the truth
table of the point function that is y on the input x and it is zero elsewhere. With
this notation we can write the query above as follows:

PhO : |x, y〉
∑
D

1√
|ΩH |

|D〉 →
∑
D

1√
|ΩH |

(−1)Px,y·D |x, y〉 |D〉 .

Now if the oracle applies QFT to the oracle register after applying PhO, it will
get:

QFTDPhO : |x, y〉
∑
D

1√
|ΩH |

|D〉 → |x, y〉 |Px,y〉 .

Note that QFTD only effects the oracle state and it is undetectable to the
adversary. At this stage, the oracle will symmetrically store the inputs/outputs of
the the adversary’s queries in its private register. Informally, if the oracle is able
to move the entry that is not zero in the database Px,y to the beginning of its
private register and remove all the zero slots (without the adversary’s detection),
the private register of the oracle can contain polynomial number of registers.

RmoVDMoVDQFTDPhO :
∑
x,y

αx,y |x, y〉
∑
D

1√
|ΩH |

|D〉 →
∑
x,y

αx,y |x, y〉 |x, y〉 .

Following the perspective above, Zhandry [16] developed the CStO oracle
that its private register can be implemented efficiently, symmetrically stores the
inputs/outputs of the adversary’s queries in its private register and it is perfectly
indistinguishable from the standard oracle (StO).

Lemma 1 (Lemma 4 in [16]). CStO and StO are perfectly indistinguishable.

For the rest, we import the representation of CStO from [8]. Let D = ⊗x∈XDx

be the oracle register. The state space of Dx is generated with vectors |y〉 for
y ∈ Y ∪ {⊥}. Let FDx

is an unitary acting on Dx that maps |⊥〉 to QFT |0〉 and
vice versa. And for any vector orthogonal to |⊥〉 and QFT |0〉, F is identity. We
define CStO to be the following unitary acting on the input register, the output
register and the D register.

CStO =
∑
x

|x〉〈x| ⊗ FDxCNOTYDxFDx ,

where CNOTYDx |y, yx〉 = |y ⊕ yx, yx〉 for y, yx ∈ Y and it is identity on |y,⊥〉.
The initial state of D register is ⊗x∈X |⊥〉.

We call a query to CStO ‘dummy’ if its output register is set to the uniform
superposition. Note that for such a query CNOTYDx

is identity and therefore
CStO is identity.
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In the following, we present preliminaries for Theorem 3.1 in [8] that will be
used in the security proof in Section 3. For a fixed relation R ⊂ X × Y , ΓR is
the maximum number of y’s that fulfill the relation R where the maximum is
taken over all x ∈ X:

ΓR = max
x∈X
|{y ∈ Y |(x, y) ∈ R}|.

We define a projector Πx
Dx

that checks if the register Dx contains a value y 6=⊥
such that (x, y) ∈ R:

Πx
Dx

:=
∑

y s.t. (x,y)∈R

|y〉〈y|Dx
.

Let Π̄x
Dx

= IDx
−Πx

Dx
. We define the measurement M to be the set of projectors

{Σx}x∈X∪{∅} where

Σx :=
⊗
x′<x

Π̄x′

Dx′
⊗Πx

Dx
for x ∈ X and Σ∅ := I−

∑
x

Σx. (1)

Informally, the measurement M checks for the smallest x for which Dx contains
a value y 6=⊥ such that (x, y) ∈ R. If no register Dx contains a value y 6=⊥ such
that (x, y) ∈ R, the outcome of M is ∅. We define a purified measurement MDP

corresponding to M that XORs the outcome of the measurement to an ancillary
register:

MDP |φ, z〉DP →
∑

x∈X∪{∅}

Σx |φ〉D |z ⊕ x〉P .

The following lemma states that CStO and MDP almost commute if ΓR is small
proportional to the size of Y .

Lemma 2 (Theorem 3.1 in [8]). For any relation R and ΓR defined above,
the commutator [CStO,MDP ] is bounded as follows:

‖[CStO,MDP ]‖ ≤ 8 · 2−n/2
√

2ΓR.

In addition to lemmas above, we use ‘gentle-measurement lemma’ [15] in the
proof. Informally, it states that if an output of a measurement is almost certain
for a quantum state, the measurement does not disturb the state much.

Lemma 3 (gentle-measurement lemma). Let M = {Pi}i is a measure-
ment. For any state |Ψ〉, if there exists an i such that ‖Pi |Ψ〉 ‖2 ≥ 1 − ε, then
tr(|Ψ〉 ,M |Ψ〉) ≤

√
ε+ ε.

3 Security of OAEP

Definition 4. Let G : {0, 1}k0 → {0, 1}k−k0 , H : {0, 1}k−k0 → {0, 1}k0 be
random oracles. The encryption scheme OAEP = (Gen,Enc,Dec) is defined as:
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1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0, 1}n, the encryption algorithm computes
s := m||0k1 ⊕G(r) and t := r ⊕H(s),

where r $←− {0, 1}k0 , and outputs the ciphertext c := f(s, t)2.
3. Dec: Given a ciphertext c, the decryption algorithm does the following: Com-

pute f−1(c) = (s, t) and then,
(a) query the random oracle G on input t ⊕ H(s) and compute M := s ⊕

G(t⊕H(s)).
(b) if the k1 least significant bits of M are zero then return the n most

significant bits of M , otherwise return ⊥.
Note that k0 and k depend on the security parameter n.

Theorem 1. If the underlying permutation is quantum partial-domain one-way,
then the OAEP scheme is IND-qCCA secure in the quantum random oracle model.

Proof. Let ΩH and ΩG be the set of all function H : {0, 1}k−k0 → {0, 1}k0 and
G : {0, 1}k0 → {0, 1}k−k0 , respectively. Let A be a polynomial time quantum
adversary that attacks the OAEP-cryptosystem in the sense of IND-qCCA in
the quantum random oracle model and makes at most qH and qG queries to the
random oracles H and G respectively and qdec decryption queries.

Game 0: This is IND-qCCA game in qROM, ExpqCCA,qROA,OAEP (n).
Game 0:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}, H $←− ΩH , G
$←− ΩG

let m0,m1 ← AH,G,UDec(pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← AH,G,UDec(c∗)
return [b = b′]

Game 1: In this game, we consider H,G are being implemented as the com-
pressed standard oracles CStOH and CStOG . Since these oracles are equivalent
to the standard oracles StOH and StOG, respectively, by Lemma 1, this change
does not effect the adversary’s success probability.
Game 1:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
let m0,m1 ← ACStOH ,CStOG,UDec(pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(c∗)
return [b = b′]

2Q-OAEP in [14] outputs the ciphertext c :=
(
f(s, t), H ′(s, t)

)
for a fresh random

oracle H ′.
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Game 2: In this game we change UDec oracle to UDec(1) described below. Let
DG denotes the database of CStOG. We define the relation RGc to be the set
of all (r,Gr) such that [[f−1(c)]n+k1 ⊕Gr]k1 = 0k1 . Given the relation RGc , the
projectors Σr

c for r ∈ {0, 1}k0 and Σ∅c are defined similar to Equation (1). Now
the measurement M = {Σr

c}r∈{0,1}k0∪{∅} checks if there exists a pair in DG

satisfying the relation RGc or not. If there are more than one pair satisfying
the relation RGc , the smallest r will be the output of M. If there is no such a
pair the output of M is ∅. Let Mc

DG,P
be the following purified measurement

corresponding to M:

Mc
DGP |φ, z〉DGP

→
∑

r∈{0,1}k0∪{∅}

Σr
c |φ〉DG

|z ⊕ x〉P .

We define the unitary MDG,P that operates on the ciphertext, DG and P registers
as:

MDG,P |c〉 |φ, z〉DGP
→ |c〉 ⊗Mc

DGP |φ, z〉DGP
.

For each decryption query, UDec(1) first applies the MDG,P unitary with the P
register initiated with 0. Then, if c∗ is defined and c = c∗ it XORs ⊥ to the
output register. Otherwise, if the P register contains ∅ it XORs ⊥ to the output
register and make two dummy queries to the random oracles G,H 3. If the P
register does not contain ∅, it executes UDec:

|c, y〉 |z〉P →


|c, y⊕ ⊥〉 |z〉 if c∗ is defined & c = c∗

|c, y⊕ ⊥〉 |z〉 if z = ∅∣∣c, y ⊕Decf−1(c)
〉
|z〉 if z 6= ∅

.

Finally, it applies the unitary MDG,P .

Game 2:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
let m0,m1 ← ACStOH ,CStOG,UDec(1) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(1) (c∗)
return [b = b′]

In the following, we show that UDec and UDec(1) algorithms are indistinguishable
and therefore Game 1 and Game 2 are indistinguishable.

1. When c∗ is defined and c = c∗, both algorithms return ⊥ without any random
oracle queries. Since UDec(1) does not make any query to the random oracle
G for decryption the second application of MDG,P undo the first application
of MDG,P . In other words, the database DG remains unaffected.

3Note that these dummy queries are required to make the number of queries
submitted to G, H equal in both games.
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2. When z = ∅, UDec(1) returns ⊥. We show that a ciphertext c for which z = ∅
and Decf−1 6=⊥ can be generated only with a negligible probability. Let
c is a ciphertext for which z = ∅ and [s′ ⊕ G(t′ ⊕ H(s′))]k1 = 0k1 where
(s′, t′) = f−1(c). Note that since z = ∅, there is no pair (r,Gr) in DG that
satisfies [[f−1(c)]n+k1 ⊕ Gr]k1 = 0k1 . This means that the adversary has
not queried the input t′ ⊕H(s′) to G and since G is a random oracle, the
probability of producing c is at most 1/2k1 . So UDec returns ⊥ with the
probability at least 1− 1/2k1 . In addition, both algorithm make a query to
the random oracles G,H to do the decryption. Note that the output register
in a dummy query contain the uniform superposition and therefore it does not
have any effect in the databases. Similar to the above, the second application
of MG

DP cancel out the first application of MG
DP . So the database DG remains

unaffected.
3. When z 6= ∅, both algorithms execute Decf−1 . We only need to show that

the purified measurement MDG,P will not have any noticeable effect on DG.
To do that, we show MDG,P and Decf−1 almost commute. Note that MDG,P

interfaces with Decf−1 when Decf−1 makes a query to the random oracle G.
By Lemma 2, if we commute Mc

DG,P
and Decf−1 , this will be distinguishable

to the adversary with a probability at most 8·2−
n+k1

2
√

2ΓRc
G
. Since ΓRc

G
= 2n,

the distinguishing advantage of the adversary is at most 2−
k1
2 −

7
2 .

Game 3: LetDH be the databases for CStOH . In this game, the decryption oracle.
UDec(1) is changed to a new decryption oracle UDec(2) that uses the databases DH

and DG to decrypt. Let Search be a function that on input (c,DH ,DG) searches
for the pairs (s,Hs) in DH and (r,Gr) in DG such that c = f(s, r ⊕ Hs) and
[Gr ⊕ s]k1 = 0k1 . If it finds such pairs, it returns (1, [Gr ⊕ s]n), otherwise it
returns (0,⊥).

Let QbQm be quantum registers of size (n+ 1) that are initiated with zero.
The unitary UDec(2) first applies the unitary USearch where its output is stored in
QbQm registers. Then it does as the following:

|c, y〉 |b,m〉QbQm
→


|c, y⊕ ⊥〉 |b,m〉 if c∗ is defined & c = c∗

|c, y⊕ ⊥〉 |b,m〉 if b = 0
|c, y ⊕m〉 |b,m〉 if b = 1

,

and in addition it submits dummy queries to the random oracles G,H when c∗
is not defined or c 6= c∗ (in the last two lines when b = 0, 1). Finally, it applies
USearch to undo Qb′Qm registers to zero.
Game 3:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
let m0,m1 ← ACStOH ,CStOG,UDec(2) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(2) (c∗)
return [b = b′]
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In the following, we show that UDec(1) and UDec(2) are indistinguishable:

1. When c∗ is defined and c = c∗, both algorithms XOR ⊥ to the output register
without any random oracle queries.

2. When b = 1, it is clear that z 6= ∅ after invoking MG
DGP

in UDec(1) . So both
algorithms XOR [Gr ⊕ s]n to the output register and make random oracle
queries to G,H.

3. When b = 0 and z = ∅, both algorithms XOR ⊥ to the output register and
make random oracle queries to G,H.

4. When b = 0 and z 6= ∅. Both algorithms make queries to G,H. The algorithm
UDec(1) invokes Decf−1 but UDec(2) returns ⊥. We show that Decf−1 returns
⊥ with a high probability. Let c := f(s′, t′) for which b = 0. Recall that
b = 0 means there are no pairs (s,Hs) in DH and (r,Gr) in DG such
that c = f(s, r ⊕ Hs) and [Gr ⊕ s]k1 = 0k1 . So if (s′, Hs′) is in DH and
(t′ ⊕ Hs′ , Gt′⊕Hs′ ) is in DG, then [s′ ⊕ G(t′ ⊕ Hs′)]k1 6= 0k1 and Decf−1

returns ⊥. If (s′, Hs′) is in DH and (t′ ⊕ Hs′ , Gt′⊕Hs′ ) is not in DG, then
[s′⊕G(t′⊕Hs′)]k1 = 0k1 with probability at most 1/2k1 and Decf−1 returns ⊥
with probability at least 1− 1

2k1 . If (s′, Hs′) is not in DH , from the adversary’s
point of view, Hs′ is an uniformly random value. Consequently, t′ ⊕Hs′ is
uniformly at random. Then [s′ ⊕ G(t′ ⊕ Hs′)]k1 = 0k1 with probability at
most 1/2k1 and Decf−1 returns ⊥ with probability at least 1− 1

2k1 .

Game 4: This is identical to Game 3, except it measures all the queries to CStOG

with the projective measurements Mr∗ . If there is an 1-output measurement, it
aborts and returns a random bit.

Game 4:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
Mr∗ = {P1 = |r∗〉〈r∗| ,P0 = I− P1},
run until there is an 1-output measurement with Mr∗

let m0,m1 ← ACStOH ,CStOG,UDec(3) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(3) (c∗)

return [b = b′]

If there is no query to CStOG with non-negligible weight on the state |r∗〉 , we
can use Lemma 3 (gentle-measurement lemma) to show that these two games are
indistinguishable. In more details, let ρi is the state of the i-th query (for i ∈ [qG])
and let Mr∗(ρi) returns 1 with the probability εi. By the gentle-measurement
lemma, the trace distance between Mr∗(ρi) and ρi is at most√εi+εi. So in overall,
these two games are distinguishable with the advantage of at most 2qG

√
maxi{εi}.

Therefore, if maxi{εi} is negligible, two games are indistinguishable.
Proof by contrary, let assume A makes a query to CStOG with a non-

negligible weight on |r∗〉. From A, we can construct an adversary B that breaks
the quantum partial-domain one-wayness of f . In more details, B on input
c∗
(

:= f(s∗, t∗) for uniformly random s∗, t∗
)
, chooses a random element i from
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[qG] and a random bit b, runs the adversary A, answers random oracle queries
and decryption queries using two compressed oracles CStOH , CStOG and finally
it measures the input register of the i-th query to CStOG and the database DH

with the computational basis measurement, returns an output and aborts. In the
following we describe B in more details.

Simulation of random oracle queries. For H-queries, the adversary B uses
CStOH . For G-queries, B does as follows. Let Find is an operator that on inputs
r, c∗,DH , checks if there exists a pair (s∗, Hs∗) in DH such that c∗ = f(s∗, r ⊕
Hs∗). If there exists such a pair it returns (1, s∗). Otherwise, it returns (0, 0n+k1).
For each query, B first applies Find operator with an ancillary register QbQs of
(1 + n+ k1) qubits initiated with zero. Then, if the query is conducted before the
challenge query or the Qb is set to 0, it forwards the query to CStOG, otherwise,
it XORs mb||0k1 ⊕ s∗ to the output register:

G′ : |r, y〉 |DH〉 →


|r, y ⊕G(r)〉 if mb is not defined
|r, y ⊕G(r)〉 if Find(r, c∗,DH) = (0, 0)∣∣r, y ⊕ (mb||0k1 ⊕ s∗)

〉
if Find(r, c∗,DH) = (1, s∗)

.

And finally it applies Find operator. Note that if there is no G-query with a
non-negligible weight on |r∗〉 for which Find(r∗, c∗,DH) = (1, s∗), CStOG and G′
are the same. Also, in this case, Find will cancel out with its second application.
So the simulation of random oracle queries will be indistinguishable unless the
adversary submits a post-challenge query with a non-negligible weight on the
state |r∗〉 such that Find(r∗, c∗,DH) = (1, s∗). (And if this happens, it breaks the
quantum partial-domain one-wayness of f explained below.)
The challenge query. Upon receiving m0 and m1 from A, the adversary B
returns c∗ as the challenge ciphertext.
Simulation of decryption queries. B uses the oracle UDec(3) on inputs DH

and DG for the decryption queries. Note that G and G′ only differ on the input
r∗ for which c∗ = f(s∗, r∗ ⊕ Hs∗). Since UDec(3) on input c∗ does not use its
database and returns ⊥, the simulation of the decryption queries is perfect.

Output of B. The adversary B measures the (i)-th random oracle query to
CStOG withMr∗ and it measures the databaseDH . Since there exists a query with
a non-negligible weight on the state |r∗〉 for which Find(r∗, c∗,DH) = (1, s∗), the
adversary B can obtain r∗ with a non-negligible probability. Then, the adversary
searches over DH to find the s∗ in which c∗ = f(s∗, r∗ ⊕Hs∗). Finally it returns
s∗ as the partial inverse of f on the input c∗. Since f is quantum partial-domain
one-way, Games 4 and 3 are indistinguishable.

Now, it is clear that Game 4 returns 1 with the probability 1/2 because if
one of the measurements returns 1, the output of the game is a random bit. If
non of measurements return 1, G(r∗) remains an uniformly random value for A
and consequently mb||0k1 ⊕G(r∗) is an uniformly random value for A. So the
probability that A guesses b is 1/2. Finally, since each two consecutive games

12



are indistinguishable, the probability that A guesses b in Game 0 is 1/2 + neg(n)
and this finishes the proof of theorem.
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