
1

Fast Boolean Queries with Minimized Leakage
for Encrypted Databases in Cloud Computing

Zhiqiang Wu, Kenli Li, Senior, IEEE , Keqin Li, Fellow, IEEE , and Jin Wang, Senior,IEEE

Abstract—This research revisits the fundamental problem of processing privacy-preserving Boolean queries over outsourced
databases on untrusted public clouds. Many current Searchable Encryption (SE) schemes try to seek an appropriate trade-off between
security and efficiency, yet most of them suffer from an unacceptable query leakage due to their conjunctive/disjunctive terms that are
processed individually. We show, however, this trade-off still can be deeply optimized for more security. We consider a Boolean formula
as a set of deterministic finite automatons (DFAs) and propose a novel approach to running an encrypted DFA, which can be effectively
and efficiently processed by the cloud. We give three constructions for conjunctive, disjunctive, and Boolean queries, respectively. Their
notable advantages are single-round, highly-efficient, adaptively-secure, and leakage-minimized. A lot of experiments are made to
evaluate overall efficiency. Testing results show that the schemes achieve enhanced security almost without sacrificing anything of
search efficiency.

Index Terms—Cloud Computing, Privacy Preserving, Searchable Encryption.

F

1 INTRODUCTION

Cloud computing enables ubiquitous, convenient, cost-
effective, and on-demand network access. Outsourcing data
and computing services to clouds becomes popular. How-
ever, the key roadblock of cloud computing is data privacy.
Clouds are not fully trusted since the servers might be
broken by hackers or malicious cloud managers. They can
illegally use the private data that is outsourced by data
owners or sell users’ privacy for money. To preserve data
privacy in cloud computing, researchers proposed search-
able encryption (SE), which encrypts the private data in
such a way that the data can still be queried efficiently.
The cloud now can provide search services directly over
encrypted data without learning any sensitive information.

Encrypted Boolean computation is a fundamental func-
tionality of database systems. A Boolean query is a series
of intersection, union, or negative operations of multi-
dimensional condition strings, in which each condition can
match zero or more results. Consider the following Boolean
query ϕ = (w1,1∨w1,2∨· · ·)∧(w2,1∨w2,2∨· · ·) · · ·∧(wu,1∨
wu,2∨ · · ·). A data owner encrypts her documents into a set
of encrypted files and outsources the files to the cloud. To
quickly match the data, the owner also creates an encrypted
index for her documents. The encrypted files and the index
constitute an encrypted data table on the public cloud. The
owner and data users share a set of secret keys K , which
can encrypt the Boolean query ϕ into TK(ϕ). The data user
sends TK(ϕ) to the cloud to quickly search the data table to

• Zhiqiang Wu and Jin Wang are with the School of Computer & Com-
munication Engineering, Changsha University of Science & Technology,
Hunan, China, 410114 (email: cxiaodiao@hnu.edu.cn).

• Kenli Li is with the College of Information Science and Engineering,
and National Supercomputing Center in Changsha, Hunan University,
Hunan, China, 410082 (email: lkl@hnu.edu.cn).

• Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 (email: lik@newpaltz.edu).

Corresponding author: Jin Wang (e-mail: jinwang@csust.edu.cn).

get a set of file identifiersDB(ϕ) that matches ϕ. We assume
the owner and the users are trusted, but the cloud is not fully
trusted. The cloud may attempt to obtain information about
the content of files and queries from the clients’ requests
when performing any operations. The cloud needs to return
all results accurately while being prohibited from learning
any private data.

If the returned file identifiers are in encrypted form when
being sent back to the users, we call this scheme response-
hiding [28]. We use DB∗(ϕ) to denote a set of encrypted
results for ϕ. If the result identifiers are in plain-text, we
call this scheme response-revealing. Let DB(ϕ) denote a
set of unencrypted result identifiers. In a response-hiding
scheme, if the result sets are not padded with dummy
values, generally, we have |DB∗(ϕ)|=|DB(ϕ)|.

Ideally, we want the cloud to do anything yet we wish
the cloud to learn nothing. It seems like a paradox that can
not be well addressed since any operations over encrypted
data will induce knowledge that can be learned by the
cloud. We call this knowledge leakage. The target of a well-
designed SE scheme is to minimize the leakage and retain
good search performance.

There are two difficulties when we handle the fol-
lowing encrypted SQL query, “select * from users where
name=‘Tom’ or name=‘Jerry’ and gender=‘Male’ ”. First, if
a sub-linear single-keyword SE scheme is not optimized for
the efficiency of Boolean queries, the query will turn out
to be a linear search of the data table. Thus, most single-
keyword SE schemes don’t work well with Boolean queries.
Second, if an SE scheme is not optimized for query leakage,
its procedure will leak almost half of the records of the data
table according to their access pattern.

It is urgent to design an efficient and practical conjunc-
tive/Boolean query SE scheme that provides strong privacy
guarantee, since most of the range, substring, wildcard,
multi-keyword, and phrase queries can be constructed from
Boolean queries. Recent state-of-the-art tree-based SE works

2

are capable of processing conjunctive queries with sub-
linear search complexity, such as KRB proposed by Kamara
and Papamanthou in [9], PBTree in PVLDB’14 [11], IBTree
introduced by Li and Liu in ICDE’17 [25], and VBTree
introduced by Wu and Li in VLDBJ’19 [43]. However, their
query leakage is not well-studied. Consider such a conjunc-
tive query, a ∧ b ∧ c. In the above schemes, according to
their access pattern, the cloud has extra knowledge DB(a),
DB(b), DB(c), DB(a ∧ b), DB(b ∧ c), and DB(a ∧ c). In fact,
we want the cloud only to learn DB(a ∧ b ∧ c). If we
convert the schemes into response-hiding ones (remapping
file identifiers to other forms at the client-side), they still
leak size patterns: |DB(a)|, |DB(b)|, etc.

Is there a more efficient and secure solution to handling
Boolean queries? Our target is to minimize the leakage and
improve the overall performance of the index.

1.1 Security Model
We adopt the IND-CKA2 security (i.e., the adaptive IND-
CKA) definition proposed by Curtmola et al. in CCS’06
[4], to evaluate the security strength of an SE scheme. The
security is parameterized by a leakage function L that will
output all knowledge induced by setup, search, and update
operations.

When the encrypted database is initialized, we refer to
knowledge of the cloud (the adversary) that comes from
the outsourced database as setup leakage (i.e., L(EDB)).
If EDB leaks one or more properties of keywords, such
as term frequency, distance related information, and order
information [15], we call the scheme property-preserving,
otherwise it is non-property-preserving. All IND-CKA or
IND-CKA2 schemes should be non-property-preserving.
When an encrypted query Q is issued, we refer to knowl-
edge induced by queries as query leakage (i.e., L(Q)). The
query leakage mainly consists of two parts, search pattern
(i.e., the repetition of queries using the same keywords)
and access pattern (i.e., the result sets of queries or some
information for accessing the encrypted data). If the query
leakage contains information correlated to some unqueried
keywords (contents that have not been submitted by the
users) with non-negligible probability, we say that the leak-
age is uncontrollable. Otherwise, it is controllable [5]. The
leakage L of all IND-CKA or IND-CKA2 schemes should be
controllable.

1.2 Limitation of Prior Art
We classify all single-round searchable encryption solutions
into three categories, tree-based ones [9], [11], [25], [43],
inverted-index-based ones [26], [28], and other ones [2], [35].

First, in most of current tree-based single-round search-
able encryption schemes, when a user submits a Boolean
query to the cloud, the cloud learns extra statistical infor-
mation about the query in addition to the query result,
because the cloud can use parts of the trapdoor to query
the index with additional results matched. The cloud learns
more information than necessary.

Second, the inverted-index-based single-round SE
schemes, such as OXT [26] and BIEX [28], enjoy a non-
optimized leakage profile. Consider the disjunctive query
a ∨ b ∨ c. They leak |DB(a)|, |DB(b)|, |DB(c)|, and etc. In

fact, the user wants the cloud only to learn |DB(a ∨ b ∨ c)|.
The key problem of this leakage is that it enables the cloud
to learn which term is the main factor that causes the final
result. OXT and BIEX still suffer from the s-term problem.
An s-term of the conjunctive query is the term whose result
set is the smallest among all the query terms. In short, the
s-term problem denotes that their search efficiency of a∧b is
not equal to that of b∧a, and the complexity of (a∨b)∧(c∨d)
is not equal to that of (c ∨ d) ∧ (a ∨ b).

Third, many searchable encryption schemes, such as the
public-key encryption scheme [35], are linear-search solu-
tions.

1.3 Proposed Approach
We introduce the novel forward/intersection/backward to-
ken concepts, to avoid a term of a Boolean formula to
be handled individually by the cloud because this is the
key drawback of most of Boolean SE schemes. A Boolean
query is encrypted into these three tokens. We describe
the cloud on how to handle the encrypted Boolean query
at a high level. The user creates and submits these three
types of tokens to the cloud, where the intersection token is
dependent on the computational result of the forward token,
and the backward token also depends on computational
results of the intersection tokens. The computational result
of the backward token will yield one or two new forward
tokens. Thus, the cloud can recursively apply this rule,
until it reaches a final result. This computation looks like
accessing encrypted linked lists. We note that in such a
process, the query leakage is extremely minimal (level-2-
revealing).

We propose an approach to handling and running deter-
ministic finite automatons (DFAs) over encrypted data. We
first precompute all DFA transition states that will be used
in future, encrypt and put them into each tree node of a
tree-based index [43]. When we search on a tree from top to
bottom, a Boolean query is considered as a set of encrypted
DFAs, where each DFA will be computed in each accessed
tree node. The forward/intersection/backward tokens can
also help the DFAs to be recursively processed. The notable
advantage of the encrypted DFAs is that a DFA-state can
be obliviously and efficiently changed from one state to
another.

With the above approaches, we present three schemes:
VBT-1, VBT-2, and VBT-3 for conjunctive, disjunctive, and
Boolean queries, respectively. These three solutions share
the same search algorithm. Their difference is that in each
tree node, each DFA is constructed particularly. Note that,
this DFA is only a logical concept since it is always in
encrypted forms in any queries. All DFA-states don’t exist
alone at all.

1.4 Key Contributions
We summarize our contributions in four aspects.

First, we propose ideal/real encrypted Boolean func-
tion (IEBF/REBF) concepts to help one to seek an optimal
trade-off between security and efficiency for a single-round
Boolean SE scheme. An adaptively-secure level-2-revealing
construction is an optimal security-efficiency trade-off that
we pursue.

3

Second, we show how to encrypt a deterministic finite
automaton (DFA). We also give a novel approach to process-
ing the DFA over encrypted data. We apply this approach
to building sub-linear Boolean SE schemes.

Third, we present three SE schemes that support build-
ing an adaptively-secure leakage-minimized sub-linear-
search-efficiency encrypted index. As far as we know, VBT-
1 is the first single-round sub-linear level-2-revealing con-
junctive SE scheme with scalable index size. VBT-2 is the
first single-round sub-linear level-2-revealing disjunctive SE
scheme. VBT-3 is the first single-round sub-linear level-2-
revealing Boolean SE scheme.

Fourth, VBT-3 can hide inner operators of an encrypted
Boolean query, such as ∧ and ∨.

We note that the basic tree structure (VBTree) used here is
not the key contribution of this paper. For ease of illustrating
the overall design, we modify the definition of VBTree and
detail it in Section 3. As stated in the security analysis,
VBTree in [43] and other trees (e.g., PBTree, IBTree) are much
weaker than the proposed solutions.

2 RELATED WORK

Searchable symmetric and structured encryption has been
studied for a long time [2], [3], [4], [5], [6], [9], [12]. And
much progress has been made in current researches, in-
cluding scalability improvement [18], update privacy [19],
[20], [24], [40], [41], expressiveness improvement [11], [25],
[26], [28], [29], [43], locality [42], and index rebuilding [38].
Searchable encryption can also be implemented with func-
tional encryption [10], property-preserving encryption [15],
secure multi-computation [23], [30], homomorphic encryp-
tion [14], and ORAM [17], [22], [45]. These solutions can be
applied to encrypted databases [7] [8].

All searchable encryptions can be classified into two cat-
egories, non-interactive constructions and interactive ones
(e.g., Oblivious RAMs [45]). The second is, in general, much
stronger than the first at the cost of high communication
overhead or additional computation, since much private-
computing work has been done by the client or other parties.
Blind Seer in S&P ’14 [29] gave an interactive approach to
run Boolean queries based on Yao’s Garbled Circuits [30],
[36]. Since a Garbled Circuit can be used only one time, this
makes the scheme highly-interactive.

In SIGMOD ’09, Wong et al. proposed a secure distance-
computing scheme, called KNN computation [13]. The ad-
vantage of secure KNN is that it can partially hide the
distances of the points. To some extent, the secure KNN can
be considered as an SE scheme whose keywords are a set
of converted points. Unfortunately, the secure KNN has a
notable drawback that its query leakage is uncontrollable.
A secure-KNN computation will leak a set of formulas
that are correlated to some unqueried keywords (points).
This leakage will enable the adversary to distinguish the
simulated view from the real view. More disastrously, in
the following years, most of secure-KNN-based SE schemes
cannot be proven secure under the IND-CKA (or, IND-CPA)
model, such as [31], [32]. Chosen-plaintext attacks against
secure KNN were proposed in [33] and [34]. A remedy is to
convert the numeric comparison tests to equality tests like
the work in ICDE ’17 [37].

3 SECURE BOOLEAN COMPUTATION AND RE-
LATED DEFINITIONS

We present the ideal/real encrypted Boolean function con-
cepts, to accurately describe the query-leakage level of
Boolean SE schemes. They will help us to seek a practical
and acceptable trade-off between security and overall effi-
ciency.

3.1 Ideal Encrypted Boolean Computation

Definition 3.1 (Ideal Encrypted Boolean Function). Let∏
= (Setup, Trapdoor, Search) be an L-adaptively-secure

single-round Boolean searchable encryption scheme. Let ϕ
be a Boolean query (Q is its encrypted form). Assuming
the user submit the query only one times, we observe
the search leakage Lsearch(ϕ). We say f = Search is
an ideal encrypted Boolean function (IEBF) if the search
leakage profile Lsearch(ϕ) can be written as L′(Q,DB(ϕ))
or L′(Q,DB∗(ϕ))), where L′ is a stateless function. If f is
an IEBF, then we call

∏
level-1-revealing.

The computation can be expressed as f(Q,EDB) =
DB(ϕ). Unfortunately, in reality, it still is a difficulty to
build an IEBF, since the query is handled by the cloud itself,
and then the cloud learns not only the input and output but
also intermediate results because the results are generated
step by step. Thus, all Boolean computation will induce
leakage that can be learned by the cloud. Although we
cannot avoid the leakage, this information can be reduced
to an acceptable level.

Note that, the function f is computed in untrusted
environments. If the algorithms require the cloud to send
Q and EDB back to the client or trusted hardware for
computation, it will deviate from the intention of designs.
The design goal of IEBF is to make maximum use of cloud
resources and reveal as little information as possible.
Theorem 3.1 (IEBF implementation). If there are a random
oracle H , and an RCPA-secure private-key encryption algo-
rithm Enc, then there exists an IEBF f .
Proof: Given a random oracleH , we use the following naive
idea to construct an IEBF. We consider all u-dimensional
Boolean queries as single-keyword strings. The data owner
precomputes all available Boolean conditions Ψ that can
be issued in the future, converts them into single-keyword
strings, and puts them into the index. The encrypted index
can be written as I = {(H(ϕ), Enc(DB(ϕ)) : for all ϕ ∈
Ψ}. Now, an encrypted database EDB = (I,D) is created,
and an ideal Boolean function f is constructed, such that for
any input ϕ, we have f(H(ϕ), EDB) = Enc(DB(ϕ)).

Obviously, the index size of this scheme turns out to be
Ω(
∑

i 2mi), where mi is the number of distinct keywords
in the i-th data file. Even for supporting two-dimensional
queries, the index size is not acceptable. We should make
this construction practical.

3.2 Real Encrypted Boolean Computation

We present subquery-privacy concept to describe the query
leakage. Let ϕ be an unencrypted Boolean query (Q is
its encrypted form). We call subqueries of ϕ subq(ϕ),
which denotes all possible Boolean queries that consist
of query terms which come from the original ϕ (e.g.,

4

subq(a ∨ b) = {a, b, a ∧ b, a ∨ b}). We call subquery privacy
of ϕ ∂(ϕ)={|DB(q)| : for all q ∈ subq(ϕ) and q 6= ϕ} (e.g.,
∂(a ∨ b) = {|DB(a)|, |DB(b)|, |DB(a ∧ b)|}).

Subquery privacy is useful information that can be uti-
lized by attackers [44]. Almost all single-round Boolean SE
schemes partially or fully leak this information. So we need
to minimize it if we can do well.
Definition 3.2 (Real Encrypted Boolean Function). Let∏

= (Setup, Trapdoor, Search) be an L-adaptively-secure
single-round Boolean searchable encryption scheme. Let ϕ
be a Boolean query. Assuming the user submit the query
only one times, we observe the search leakage Lsearch(ϕ).
We say f = Search is a real encrypted Boolean function
(REBF) if the leakage profile Lsearch(ϕ) don’t contain any
subquery privacy ∂(ϕ). If f is a REBF, then we call

∏
level-

2-revealing.
The REBF notation (level-2-revealing) guarantees that

except for the final results, no vital privacy is revealed to
the cloud when Boolean queries are issued. REBF is a strong
security notation. As far as we know, there are no single-
round Boolean SE schemes that achieve level-2-revealing.
For example, we cannot construct a REBF from the OXT
scheme [26], since when w1 ∧ w2 ∧ w3 is issued in OXT, the
cloud learns |DB(w1 ∧w2)|, |DB(w1 ∧w3)|, and |DB(w1)|.

A level-2-revealing solution is a wonderful security-
efficiency trade-off for a single-round SE scheme since we
can implement a REBF efficiently by many approaches.
If the leakage Lsearch(ϕ) of a single-round L-adaptively-
secure SE scheme contains more information than that in
a level-2-revealing one, we label the scheme as level-2+-
revealing.

4 VBT-1: AN ADAPTIVELY-SECURE CONJUNC-
TIVE SCHEME

Let’s study conjunctive queries first. If a REBF supports
only conjunctive queries, we call it a real encrypted con-
junctive function (RECF). We now propose an adaptively-
secure level-2-revealing conjunctive scheme called VBT-1.
The construction consists of three polynomial-time algo-
rithms V BT -1 = (Setup, Trapdoor, Search), where the
algorithms are based on the tree data structure [43] for sub-
linear search efficiency.

4.1 Overview of the Design

We logically consider a conjunctive/Boolean query as a
set of deterministic finite automatons (DFAs), where each
DFA can be used to match a unique keyword set. All data
files are put into a tree-based index, where each tree node
corresponds to the keyword set. If one DFA can efficiently
match the keyword set, all the DFAs can be recursively
processed among all the tree nodes.

Encrypting and Running a DFA. We precompute all
DFAs and put them into each tree node of the tree-based
index. We consider simple DFAs first in this section. A
simple DFA is an automaton that has only two or several
DFA-states x, y. The owner (user) initially stores c = w ⊕ x
on the cloud. Thus c has been learned by the cloud, and
w and x are hidden. If the user sends a mask x ⊕ y to
the cloud, the DFA-state x can be obliviously changed to

y, yet the cloud learns only w ⊕ x ⊕ x ⊕ y = w ⊕ y. We
refer to w ⊕ x and w ⊕ y as encrypted DFA-states of x and
y, respectively. In such a process, the cloud learns nothing
about {w, x, y}. If we recursively apply this approach, the
DFA can be obliviously changed from one state to another.
To eliminate correlations of all DFAs, each DFA corresponds
to a unique path value. With this approach, we can encrypt
and run all DFAs with minimized leakage.

4.2 Index Setup
We first should employ a tree-based index. To introduce the
tree structure in [43], we review three related concepts.
Full Binary Tree. A full binary tree is a binary tree with 2L−1
tree nodes and 2L−1 leaves, where L (root L = 1) is the
height of the tree.
Path(v). Let v be a non-terminal tree node. Path(v) is a root-
to-node-v path string, where each left-side branch is ‘0’ and
right-side branch is ‘1’.
Nodes(i). Let i ∈ [0, 2L−1 − 1], and leafi denote the i-th leaf
in the tree. Nodes(i) denotes a set of tree nodes along the
root-to-leafi path.
Definition 4.1 (VBTree [43]). A virtual binary tree (VBTree) is
an encrypted full binary tree with the following properties:

1) Each tree node contains zero or more different en-
crypted keywords.

2) The encrypted tree contains only keywords. The tree
nodes and branches are not explicitly stored in the
tree.

3) To index a keyword w of the i-th file (i ∈
[0, 2L−1 − 1]), the keyword is inserted into each
tree node of Nodes(i). The inserted items are
{EK(Path(v), w)}v∈Nodes(i), where K is a set of
secret keys of the data owner, and E is a determin-
istic encryption algorithm that takes as input a path
value Path(v), a keyword w and K , and outputs a
set of binary strings.

0

0 0

1

1 1

L=3

f0 f1 f2 f3

a a,b

a,b

a,b a b
T1 T2(a, ‘0’ ’1’) (b, ‘0’ ‘1’)

a b

a a b

(a, ‘00’ ‘01’) (b, ‘00’ ‘01’)

(a, ‘’ ‘’) (a, ‘’ ‘’) (b, ‘’ ‘’)

(b)(a)

Fig. 1: An example tree
Figure 1(a) shows a logical view of a virtual binary

tree with height L = 3. Path(leaf1) denotes string ‘01’.
Nodes(1) is a set of tree nodes of paths {‘′, ‘0′, ‘01′}. To
locally add a file {‘a’,‘b’} at node ‘f1’, we should insert
the keywords into these three tree nodes. Figure 1(b) is a
physical view of the tree, where T1 and T2 are two hash
tables. For easily encrypting the tree, items and branches are
stored separately in (T1, T2), respectively, where each entry
should be identified by the corresponding path string. The
entry (a, ‘00’, ‘01’) denotes that the children of the current
node are ‘00’ and ‘01’, and so on.

Let W (v) denote a set of keywords in node v. For any
nonterminal node v, if vl is its left child node and vr is its
right child node, we can prove that the keyword set of v are

5

W (v) = W (vl) ∪W (vr). To create a nearly-balanced tree,
n files are inserted into the leaves varying from leaf0 to
leafn−1.

We define two operations to handle a hash table T for
managing the tree: ‘<<’ and ‘>>’. Let T << (k, x) denote
inserting an encrypted key-value pair (k, x) into the hash
table T within two steps. Note that, it is NOT T [k] = x.
First, the value k is split into two parts (k1, k2) in fixed
sizes (k1 is the high bits, and k2 is the low bits). Second,
let T [k1] ← x ⊕ k2. Let T >> (k, x) denote retrieving an
encrypted key-value pair (k, x) from the hash table T by the
key k with the value x returned within two steps. First, the
value k is split into two parts (k1, k2) in fixed sizes. Second,
let x ← T [k1] ⊕ k2. We use T << {(k, x), (k′, x′), · · · } to
denote an insertion of a set of key-value pairs.

We now present a concrete instance of the tree. Let
F, P, V be three keyed pseudo-random functions, and H1

and H2 be two collision-resistant hash functions modeled
as random oracles, where F, P : {0, 1}l × {0, 1}∗ → {0, 1}l,
V : {0, 1}l × {0, 1}∗ → {0, 1}s, H1 : {0, 1}∗ → {0, 1}2l,
and H2 : {0, 1}∗ → {0, 1}3l. Let the left child of the tree
node v be vl, and the right child of the tree node v be vr. A
virtual binary tree has been put into two hash tables T1 and
T2. We define the above function EK(Path(v), w) as the fol-
lowing algorithm. To index a keyword w at a non-terminal
tree node v, the data owner uses two operations: T1 <<
(H1(FK(w||1)⊕PK(Path(v))), FK(w||2)⊕PK(Path(v))),
and T2 << (H2(FK(w||3) ⊕ PK(Path(v))), ((FK(w||4) ⊕
PK(Path(vl)));
(FK(w||4) ⊕ PK(Path(vr))))). If the tree node is a
leaf, we put the corresponding encrypted identifier IDi

into the leaf as a result, i.e., T2 << (H2(FK(w||3) ⊕
PK(Path(v))), (IDi; 0)), where the concatenated zero de-
notes the leaf reached, and IDi is the i-th identifier that is
encrypted by (Enc, Dec), a CPA-secure private-key scheme.

VBT-1.Setup gives the pseudo-code of building an en-
crypted index for a set of files based on the tree. Given a set
of n files, the algorithm outputs an encrypted index, where
File(i) denotes a set of distinct keywords of the i-th file, idi
denotes the plain-text identifier of the i-th file with IDi the
encrypted form.

The index size of VBT-1 is O(NL) ≈ O(N log n), and
the construction time is O(NL) ≈ O(N log n). The index
size of T2 is slightly larger than that of T1. Let W denote
a set of keywords that can be queried. We assume N =∑

w∈W |DB(w)|. In the best case, if all of the files are the
same (except for the file identifiers), the index size is O(N).
In the worst case, if all of the keywords in all documents are
different, the index size is O(NL) ≈ O(N log n).

4.3 Trapdoor Computation

To search over the encrypted index, the data user creates a
trapdoor and sends it to the cloud. The trapdoor is a set of
encrypted conditions constructed from the query. Let p be
a string of L − dlog ne − 1 zeros to denote the start path
of the search process (we assume the user learns the value
n, i.e., the number of files outsourced to the cloud). Note
that, the search begins from the node of path p instead of
the root. Given a u-dimensional conjunctive keyword query
q = w1 ∧ w2 ∧ · · · ∧ wu, the trapdoor is T (q) = (ft, it, bt),

VBT-1.Setup()
1: initialize T1 = {};T2 = {}
2: for i=0 to n− 1 do
3: for all w in File(i) do
4: for all v in Nodes(i) do
5: k1 ← H1(FK(w||1)⊕ PK(Path(v)))
6: x← FK(w||2)⊕ PK(Path(v))
7: insert T1 << (k1, x)
8: k2 ← H2(FK(w||3)⊕ PK(Path(v)))
9: if v is a leaf then

10: IDi ← EncK(idi;VK(idi||w))
11: insert T2 << (k2, (IDi; 0))
12: else
13: randomly generate a bit, b $← {0, 1}
14: if b is 1 then
15: (t1; t2)← PK(Path(vl))||PK(Path(vr))
16: else
17: (t1; t2)← PK(Path(vr))||PK(Path(vl))
18: end if
19: y ← (FK(w||4)⊕ t1;FK(w||4)⊕ t2)
20: insert T2 << (k2, y)
21: end if
22: end for
23: end for
24: end for
25: output I = (T1, T2)

whose first element is ft = FK(w1||1) ⊕ PK(p), whose
second element is it = {FK(wi||2)⊕ FK(wi+1||1)}i∈[1,u−1],
and whose third element is bt = {bt1, bt2} = {FK(wu||2)⊕
FK(wu||3), FK(wu||4)⊕ FK(w1||1)}.

Forward/intersection/backward tokens. The forward to-
ken ft is an encrypted block to get the next token that can be
XORed with the intersection token. The intersection token it
is a set of tokens that are used to test whether the keywords
are in the current tree node or not. The backward token
bt is the encrypted blocks for accessing both the left and
right child tree nodes of the current tree node. The whole
trapdoor consists of these three parts: forward token ft,
intersection token it, and backward token bt. Any matched
final results depend on these three tokens. Without any part
of the trapdoor, the result cannot be correctly computed.

4.4 Searching over VBT-1
There are two kinds of operations on the tree: search pro-
cessing at a non-terminal tree node, and search processing at
a leaf. VBT-1.Search recursively invokes the sub-algorithms
Search and Test to traverse over a tree with the search
beginning on the tree node that is designated by the user.

At a non-terminal node v, the search process test whether
the first term w1 is in the tree node by checking T1 >>
(H1(ft), x). If w1 is not in this node, x will be nothing,
which means the search algorithm returns ‘not-found’ im-
mediately, otherwise, the value x can be XORed by each
individual intersection token. If x is XORed by an individual
intersection token, a new forward token x ⊕ iti, which is
the forward token of w2, will be generated, where iti is the
i-th intersection token. Repeatedly applying this, the cloud
can learn whether the keywords {w2, w3, · · · , wu} are in the
current tree node or not. If one of the keywords is not in
this tree node, the search returns ‘not-found’ immediately.
If they all exist in this tree node, the cloud takes the lastly
returned value of the term wu, i.e, T1 >> (H1(y), z), where
y is the forward token of wu, and z is the lastly returned
value of all intersection tokens. The value z will be used

6

to access the hash table T2 for searching for the left-side or
right-side tree node. If z is XORed by the first element of the
backward token bt1, i.e., z′ ← (z ⊕ bt1), the cloud now has
the token z′ to access the hash table T2. The search algorithm
runs T2 >> (H2(z′), (t1; t2)), and the value (t1; t2) will be
outputted, where t1 and t2 can also be XORed by bt2. We
now have ft1 ← t1 ⊕ bt2, and ft2 ← t2 ⊕ bt2. In fact,
the values {ft1, ft2} are the next forward tokens of w1 to
access the left and right (or the right and left) subtrees of
the current tree node, respectively. The cloud uses tokens
(ft1, it, bt) and (ft2, it, bt) as new trapdoors to recursively
traverse the subtrees.

If the search process reaches a leaf, which can be checked
by testing whether the value ft2 is zero or not, the search
algorithm considers IDi ← ft1 as an encrypted file iden-
tifier and outputs a result. The cloud recursively runs this,
until all results are matched.

We note that given a query ϕ to search over the tree, an
encrypted result IDi at a leaf node is outputted, if and only
if the accessed leaf matches the query ϕ. There are three
occasions. 1) If a search completes in a non-terminal node,
it cannot get the final result certainly, because all subtree
nodes are encrypted by the information that comes from
their father nodes. 2) Consider a search reaches a leaf node,
assuming the query doesn’t match the leaf. So the search
will complete in one of the intersection token processing.
The search doesn’t have the encrypted key to access T2 to get
the final encrypted result IDi, because IDi is encrypted by
the backward token and the prior information. 3) Consider
a search reaches a leaf, and the query also matches the leaf.
Certainly, IDi can be correctly outputted. In this occasion,
the accessed path forms a decrypted linked list beginning
from the root to the leaf.

//User
VBT-1.Trapdoor(ϕ = w1 ∧ w2 · · · ∧ wu)
1: ft← FK(w1||1)⊕ PK(p)
2: it← {FK(wi||2)⊕ FK(wi+1||1)}i∈[1,u−1]
3: bt← {FK(wu||2)⊕ FK(wu||3), FK(wu||4)⊕ FK(w1||1)}.
4: build T (ϕ) = (ft, it, bt) and send it to the cloud

//Cloud
VBT-1.Search(T (ϕ); T1, T2)
1: parse T (ϕ) as (ft, it, bt).
2: invoke (bi, ft1, ft2)←Test((ft, it, bt); T1, T2)
3: if bi=false, then return ‘not found’
4: if the current node is a leaf by checking ft2, then parse ft1 as a file

identifier id and return one encrypted result.
5: invoke, Search((ft1, it, bt); T1, T2)
6: invoke, Search((ft2, it, bt); T1, T2)

//Cloud
VBT-1.Test((ft, it, bt); T1, T2)
1: read x: T1 >> (H1(ft), x)
2: if x is empty, return (false, 0, 0)
3: for all iti ∈ it do
4: y ← x⊕ iti
5: read z: T1 >> (H1(y), z)
6: if z is empty, return (false, 0, 0)
7: x← z
8: end for
9: parse bt as (bt1, bt2)

10: z′ ← z ⊕ bt1
11: read (t1; t2), i.e., T2 >> (H2(z′), (t1; t2))
12: if (t1; t2) is empty, return (false, 0, 0)
13: compute (ft1, ft2)← (t1 ⊕ bt2, t2 ⊕ bt2)
14: return (true, ft1, ft2)

4.5 Correctness Analysis

Let’s consider an example in a tree node. We assume
the tree node of path p contains keywords ‘a’ and
‘b’. If the cloud runs a query a ∧ b, we now show
Test Procedure how to work. The trapdoor of a ∧ b
is {FK(a||1) ⊕ PK(p), {FK(a||2) ⊕ FK(b||1)}, {FK(b||2) ⊕
FK(b||3), FK(b||4)⊕FK(b||1)}}. The cloud first searches on
T1 by FK(a||1) ⊕ PK(p), and x ← FK(a||2) ⊕ PK(p) will
be returned. Then, the cloud computes x⊕ it[0]=FK(a||2)⊕
PK(p) ⊕ (FK(b||1) ⊕ FK(a||2))=FK(b||1) ⊕ PK(p), which
is the forward token of keyword ‘b’. The cloud runs
T1 >> (H1(FK(b||1)⊕PK(p)), z)), and z=FK(b||2)⊕PK(p)
will be returned. The value z can be XORed by bt1,
i.e., z′ = (z ⊕ bt1) = FK(b||2) ⊕ PK(p) ⊕ (FK(b||2) ⊕
FK(b||3)) = FK(b||3) ⊕ PK(p). Now, the cloud has the
token z′ to access the hash table T2. The cloud searches
on T2, by T2 >> (H2(z′), (t1; t2)), and (t1; t2)=(FK(b||4) ⊕
PK(p1);FK(b||4) ⊕ PK(p2)) will be returned. The cloud
computes (t1 ⊕ bt2, t2 ⊕ bt2)=(FK(b||4) ⊕ PK(p1) ⊕
FK(b||4) ⊕ FK(a||1), FK(b||4) ⊕ PK(p2) ⊕ FK(b||4) ⊕
FK(a||1))=(FK(a||1) ⊕ PK(p1), FK(a||1) ⊕ PK(p2) =
(ft1, ft2). They are two new forward tokens to search on
its two subtrees respectively.

The above computation can be viewed as a DFA that has
only two transition states, ‘0’ and ‘1’. If the DFA matches
the tree node, the accepted state is ‘1’, otherwise ‘0’. We will
extend this DFA in the next sections.

The forward token has two purposes. One is to test
whether a keyword is in a tree node or not, and the other is
to generate the next forward token. If an intersection token
is XORed by the output of the forward token, a new forward
token will be generated. Thus, the cloud learns whether all
queried conjunctive terms exist in this tree node or not. To
access the subtrees, the cloud requires two new forward
tokens, which can be created from the output of the final
intersection token and the backward token. The first element
of the backward token enables the cloud to access T2, and
the second element is for accessing the subtrees.

4.6 Search Complexity

The search complexity is O(uminw∈ϕ |DB(w)| log n),
where ϕ = w1 ∧ w2 ∧ · · · ∧ wu is a conjunctive query. The
query time consists of two parts: one is for traversing all
target tree nodes, and the other is the query time in each
tree node.

To get all the final results, in the worst case,
the search process will traverse the tree nodes whose
size is the smallest among all the individual queries
{O(|DB(wi)| log n)}i∈[1,u], because if a tree node doesn’t
match the conjunctive query, the search procedure of the
current subtree will return immediately. In reality, since
minw∈ϕ |DB(w)| � n, the conjunctive query time is sub-
linear.

5 VBT-2: AN ADAPTIVELY-SECURE DISJUNCTIVE
SE SCHEME

In PBTree [11] and IBTree [25], they convert the numeric
comparison tests to equality tests and consider a numeric

7

range query as a disjunctive query. We now study the weak-
ness of range queries and show how to build an adaptively-
secure level-2-revealing disjunctive SE scheme.

5.1 Statistical Information of Range SE Schemes
A numeric range query can be considered as a disjunctive
query using prefix encoding [11]. According to their design,
a number is converted to a set of prefix strings, and a nu-
meric range query is converted to a disjunctive query. Their
target is to use this range to match the stored encrypted
prefix strings. For example, number 6 is considered as
{‘0011’,‘001*’,‘00**’,‘0***’,‘****’}, where each string denotes
a range string that matches number 6. Given a range query,
say [0,8], it is converted into {‘0***’,‘1000’}, where ‘0***’
means a range [0, 7] and ‘1000’ means a hex string of 8. The
value 6 will be matched by [0, 8] correctly since they share
the common string ‘0***’.

We use R(e) to denote a set of prefix strings that are
converted from the integer e, where e ∈ [0, B], and use
R([a, b]) to denote a set of prefix strings that are converted
from the range [a, b]. We can conclude that for any e, e is in
[a, b], if and only if R(e)

⋂
R([a, b]) 6= ∅ [11].

The problem of the above schemes, such as PBTree and
IBTree, is that they are level-2+-revealing. They leak all
individual queries (i.e., DB(‘0***’) and DB(‘1000’)), and the
cloud learns the main factor that causes the final result
(i.e., DB(‘0***’)). The more disastrous thing is that the cloud
learns |DB(‘0∗∗∗′)|

|DB(‘1000′)| , which is exactly 8, only if the distribution
of the result set is uniform.

Generally, given a range query [a, b], we define its one-
dimensional statistical feature as

SF ([a, b]) =

{ |DB(w1)|
ε

, · · · , |DB(wt)|
ε

}
,

where ε=min |DB(wi)|i∈[1,t], ε 6= 0, and R([a, b]) =
{w1, · · · , wt}. Although the cloud learns nothing about
[a, b], it has SF ([a, b]), which perhaps leads to a severe
breakage [16], [21], [39], [44]. So we need to eliminate it if
we can do well.

5.2 Overview of VBT-2
Compared with conjunctions, it is harder to protect sub-
query privacy of disjunctive queries, since the result set
of disjunctions, generally, is larger than that of conjunctive
queries. If we use the same indexing algorithm as VBT-
1 for disjunctive queries, the result cannot be computed
with level-2-revealing. The problem is that this will enable
the cloud to learn the selectivity of each disjunction. We
address this problem by trading storage complexity for
more privacy.

We now show how to protect the subquery privacy of the
disjunctive or range queries. We should modify the indexing
algorithm in VBT-1 and the indexing elements in each tree
node because, in VBT-1, the DFA has only one transition
state (except the accepted state). In VBT-2, given a tree node
with path p, the DFA has two transition states PK(p||0),
which logically denotes ‘0’, and PK(p||1), which logically
denotes ‘1’. If the cloud can compute DFAs ‘0 ∨ 0 = 0’, ‘0 ∨
1 = 1’, ‘1 ∨ 0 = 1’, and ‘1 ∨ 1 = 1’, without learning ‘1’ or
‘0’, the cloud will handle more complex disjunctive queries

based on these operations. Our approach is to precompute
all related transition states and store them in each tree node.

5.3 Indexing Disjunctive Elements
We first give the keyword indexing algorithm for a tree
node. A DFA-state is an encrypted block constructed from
a node path and a value of true or false. Given a tree
node v with path p = Path(v), the value that denotes
false in this node is encoded as PK(p||0), called state-0,
and the value that denotes true in this node is encoded
as PK(p||1), called state-1. Given a keyword w, it has five
encrypted states FK(w||0), FK(w||1), FK(w||2), FK(w||3)
and FK(w||4). A keyword state is an encrypted block
constructed from the keyword and its sequence number.
If w is in this tree node, we insert four values into the
hash table, T1 << {(k00, x0), (k01, x1), (k10, x1), (k11, x1)},
where kij ← H1(FK(w||i) ⊕ PK(p||j)) (i, j ∈ {0, 1}), and
xi ← FK(w||2) ⊕ PK(p||i) (i ∈ {0, 1}). (k10, x1) means
that state-0 is altered to state-1 when w is in this tree node.
(k11, x1) means that state-1 is still not changed when w is in
this tree node. (k00, x0) and (k01, x1) mean the operations to
initialize the keyword states. Similarly, if w is not in this tree
node, we should still insert four values into the hash table,
T1 << {(k00, x0), (k01, x0), (k10, x0), (k11, x1)}. (k10, x0)
means that state-0 is not changed when w is not in this tree
node. (k11, x1) means that state-1 is not changed even if w is
not in this tree node. (k00, x0) and (k01, x0) mean state ini-
tializing. Suppose the left child of v is vl and the right child
is vr , then the state-1s of vl and vr are t1 ← PK(Path(vl)||1)
and t2 ← PK(Path(vr)||1), respectively. For accessing the
child tree nodes, we should insert items related to w into the
hash table T2 like the procedure in VBT-1, i.e., T2 << (k2, y),
where k2 ← H2(FK(w||3)⊕PK(p||1)) and y ← (FK(w||4)⊕
t1;FK(w||4)⊕ t2) or y ← (FK(w||4)⊕ t2;FK(w||4)⊕ t1). In
the special case, if v is a leaf, we do the same work like in
VBT-1.

Next, given the i-th file, for any tree node v ∈ Nodes(i),
and any keyword w ∈ W , we use the above algorithm to
process all keywords. Repeat this procedure until all files
have been processed. The pseudo-code is shown in VBT-
2.Setup.

Let m denote the dictionary size (i.e., m = |W |). Since
all tree items are nearly balanced, the index size can be
considered as O(mn), which is a trade-off between query
privacy and storage overhead.

5.4 Searching over VBT-2
The searching algorithm is the same as that in VBT-1. The
user builds a search trapdoor (ft, it, bt) for w1 ∨ · · · ∨ wu

and sends it to the cloud. The procedure will output a set of
encrypted file identifiers that match the disjunctive query.

Let ’s consider an example. Let p be the start path.
Suppose keyword b exists only in the first file and key-
words a and c are not exist. If the user queries a ∨ b ∨ c,
the trapdoor is (ft, it, bt), where ft=FK(a||0) ⊕ PK(p||1),
it={FK(a||2) ⊕ FK(b||1), FK(b||2) ⊕ FK(c||1)}, and bt =
{FK(c||2)⊕ FK(c||3), FK(c||4)⊕ FK(a||0)}. The cloud first
computes T1 >> (ft, x), and x = FK(a||2)⊕ PK(p||0) will
be outputted. Since a is not in this tree node, x is related
to state-0. Next, the cloud computes x⊕ it[0] = FK(a||2)⊕

8

PK(p||0)⊕FK(a||2)⊕FK(b||1)=FK(b||1)⊕PK(p||0), which
is the forward token of b. The cloud computes T1 >>
(FK(b||1) ⊕ PK(p||0), x′), and x′ = FK(b||2) ⊕ PK(p||1)
will be outputted. x′ is related to state-1 and it can still be
XORed by it[1]. The cloud computes T1 >> (FK(c||1) ⊕
PK(p||0), x′′), and x′′ = FK(c||2) ⊕ PK(p||1) will be out-
putted. x′′ is related to state-1. With x′′ and bt, the cloud
searches T2, and it will get two new forward tokens of
keyword a for both subtrees. The cloud can recursively
apply this algorithm.

In the above searching process, the DFA-states do not
exist alone, and they are always encrypted by mask values,
which are keyword states. The keyword states still do not
exist alone. Therefore, the cloud learns nothing about which
term is the main factor that causes the result from a query. In
the above example, the cloud learns nothing aboutDB(a) =
∅, |DB(b)| = 1 and DB(c) = ∅, and it learns only |DB(a∨
b ∨ c)| = 1.

The search complexity of VBT-2 is O(u|DB(ϕ)| log n).

VBT-2.Setup()
1: initialize T1 = {};T2 = {}
2: for i=0 to n− 1 do
3: for all w ∈W do
4: for all v ∈ Nodes(i) do
5: k00 ← H1(FK(w||0)⊕ PK(Path(v)||0))
6: k01 ← H1(FK(w||0)⊕ PK(Path(v)||1))
7: k10 ← H1(FK(w||1)⊕ PK(Path(v)||0))
8: k11 ← H1(FK(w||1)⊕ PK(Path(v)||1))
9: x0 ← FK(w||2)⊕ PK(Path(v)||0)

10: x1 ← FK(w||2)⊕ PK(Path(v)||1)
11: if w ∈ File(i) then
12: T1 << {(k00, x0), (k01, x1), (k10, x1), (k11, x1)}
13: else
14: T1 << {(k00, x0), (k01, x0), (k10, x0), (k11, x1)}
15: end if
16: let k2 ← H2(FK(w||3)⊕ PK(Path(v)||1))
17: if v is a leaf then
18: IDi ← EncK(idi;VK(idi||w))
19: insert T2 << (k2, (IDi; 0))
20: else
21: randomly generate a bit, b $← {0, 1}
22: if b is 1 then
23: t1 ← PK(Path(vl)||1)
24: t2 ← PK(Path(vr)||1)
25: else
26: t1 ← PK(Path(vr)||1)
27: t2 ← PK(Path(vl)||1)
28: end if
29: y ← (FK(w||4)⊕ t1;FK(w||4)⊕ t2)
30: insert T2 << (k2, y)
31: end if
32: end for
33: end for
34: end for
35: output I = (T1, T2)

//User
VBT-2.Trapdoor(ϕ = w1 ∨ w2 · · · ∨ wu)
1: ft← FK(w1||0)⊕ PK(p||1)
2: it← {FK(wi||2)⊕ FK(wi+1||1)}i∈[1,u−1]
3: bt← {FK(wu||2)⊕ FK(wu||3), FK(wu||4)⊕ FK(w1||0)}.
4: build T (ϕ) = (ft, it, bt) and send it to the cloud

//Cloud
VBT-2.Search(T (ϕ); T1, T2)
1: invoke, VBT-1.Search(T (ϕ); T1, T2)

5.5 Level-2-revealing Range queries
We now do the attractive thing: level-2-revealing numeric
range queries. Recall that a range query can be considered as
a disjunctive query. We first convert all integers that exist in
files into prefix keywords and put them into the index. Next,
we can use range queries to search over the outsourced
database.

Given a range query [a, b], in a level-2+-revealing dis-
junctive SE scheme, SF ([a, b]) contains much information,
yet in VBT-2, SF ([a, b])=∅ (if |R([a, b])| ≥ 2).

6 VBT-3: AN ADAPTIVELY-SECURE BOOLEAN SE
SCHEME

6.1 Overview of VBT-3
Given a tree node with path p, the DFA has many transition
states with the form of PK(p||x), which denotes state-x.
State-1 means ‘1’, and state-0 means ‘0’, and etc. If the
cloud can compute simple Boolean expressions, such as
‘(0 ∨ 0) ∧ (1 ∨ 0) = 0’, ‘(0 ∨ 1) ∧ (1 ∨ 1) = 1’, without
leaning ‘1’ or ‘0’, the cloud will obliviously handle more
complex Boolean queries based on these operations.

Like in VBT-2, our approach is to precompute all transi-
tion states that will be used in the future and store them in
each tree node. For simplicity, we assume the queries are in
conjunctive normal form (CNF). If a CNF formula consists
of only 0, 1, parenthesis, ∧, and ∨, we call it a simple CNF.

A simple CNF formula is a deterministic finite au-
tomaton (DFA) that consists of a 5-tuple, (S,

∑
, δ, s0, sa),

where S is a finite set of DFA-states;
∑

is a finite set
of input symbols called the alphabet; δ is a transition
function, δ:S ×

∑
→ S; s0 is an initial state, s0 ∈ S;

and sa is a set of accepted states, sa ⊆ S. An en-
crypted Boolean computation is, in fact, an array of en-
crypted DFA computations. Table 1 shows the transition
table of the DFA, where S={0,1,‘0∧(0’,‘0∧(1’,‘1∧(0’,‘1∧(1’}
,
∑

={‘0’,‘1’,‘∨0’,‘∨1’, ‘∨0)’, ‘∨1)’, ‘∧(0’, ‘∧(1’ }, s0 is 0 or
1, and sa = {0, 1}. For example, δ(‘1∧(0’,‘∨0)’)=0, and
δ(‘1∧(0’,‘∨0’)=‘1∧(0’. To reduce the index size, this table
shows only the simplified states. The query x∧y is converted
into x ∧ (y ∨ y) to be suitable for this table. For easily
expressing keyword states, we write a DFA transition as
d = δ(a, (b, c)), where a is a DFA-state, b is a string that
is related to a keyword, d is a result state, and c is 1 or 0,
which denotes the keyword of the symbol is in the current
tree node or not. (b, c) will output a valid symbol.

6.2 Precomputing and storing all DFAs
To run the above DFAs obliviously, for each tree node
and each keyword, we precompute |S||

∑
| − 20=28 key-

value pairs (referring to Table 1) and put them into T1 like
the approach mentioned in VBT-2. The sub-procedure of
the setup is shown in VBT-3.Indexword, where FK(bw||1)
denotes a keyword state for keyword w to precompute
the DFAs, and bw is a string consisting of an operator, a
bracket or the keyword. The function Replace is a string-
replacing algorithm (e.g., Replace(b,‘#’, c) =‘∨1’ if b =‘∨#’
and ‘c=1’). The pseudo-code to update T2 is the same as
that in VBT-2. For each keyword w in W , each file i, and
each node v in Nodes(i), the setup procedure repeatedly

9

invokes Indexword(i, w, v) to build the index. The index
size of VBT-3 is O(βmn), where β = |S||

∑
|.

One symbol in {0, 1} denotes an operation to initialize
a DFA-state. The other symbols are used to run the CNF
query. In the simple DFA, the operators such as ∧,∨, and ∧)
are all considered as parts of keywords. Thus, a Boolean
query is converted into an array of keywords first. This
conversion will help us to hide all the Boolean operators.
Note that, an invalid state is ignored since a CNF query
doesn’t have such a state (e.g., ‘0 ∨ (0’).

6.3 Level-2-revealing Boolean Queries

Consider a CNF query ϕ = ϕ1 ∧ · · · ∧ ϕu, where each
disjunction ϕi = wi,1 ∨ · · · ∨ wi,l(i). The user first serial-
izes ϕ into an array of keywords (w1, · · · , wt). For exam-
ple, (a ∨ b) ∧ (c ∨ d) is serialized into (‘a’,‘∨b’,‘∧(c’,‘∨d)’).
Meanwhile, remove all operators and generate an array
of keywords (a1, · · · , at) (e.g., (‘a’,‘b’,‘c’,‘d’)). Let p be
the start path. Next, let ft ← FK(w1||1) ⊕ PK(p||1), let
it ← {FK(wk||2) ⊕ FK(ak+1||1)}k∈[1,t−1], and let bt ←
{FK(wt||2) ⊕ FK(wt||3), FK(wt||4) ⊕ FK(w1||1)}. Third,
build T (ϕ) = (ft, it, bt) and send it to the cloud. Fourth,
the cloud invokes VBT-1.Search(T (ϕ);T1, T2). Its search ef-
ficiency is O(umini∈[1,u] |DB(ϕi)| log n).

We show an example to run a Boolean query ϕ =
(a ∨ b) ∧ (c ∨ d) in a tree node of path p, assuming there
logically exists a DFA for this node. Suppose a and c
are not in this tree node, and b and d are in this tree
node. For simplicity, let b∗ = ‘ ∨ b′, c∗ = ‘ ∧ (c′, and
d∗ = ‘ ∨ d)′. ϕ is split into four parts (a, b∗, c∗, d∗). The
trapdoor is (ft, it, bt), where ft = FK(a||1) ⊕ PK(p||1),
it = {FK(a||2)⊕FK(b∗||1), FK(b||2)⊕FK(c∗||1), FK(c||2)⊕
FK(d∗||1)}, and bt = {FK(d||2) ⊕ FK(d||3), FK(d||4) ⊕
FK(a||1)}. First, the cloud computes T1 >> (ft, x), and
then it has x = FK(a||2) ⊕ PK(p||0). The DFA-state is
initialized with PK(p||0) (state-0), since a is not in the node.
It computes x ⊕ it[0]=FK(b∗||1) ⊕ PK(p||0)=ftb. Second, it
computes T1 >> (ftb, x

′), and x′=FK(b||2)⊕ PK(p||1) will
be yielded, since b is in this tree node. The DFA-state is obliv-
iously changed from PK(p||0) to PK(p||1) (state-1). Third, it
computes x′ ⊕ it[1] = FK(b||2) ⊕ PK(p||1) ⊕ FK(b||2) ⊕
FK(c∗||1) = FK(c∗||1)⊕PK(p||1) = ftc. Third, it computes
T1 >> (ftc, x

′′), and it has x′′ = FK(c||2)⊕PK (p||‘1∧ (0′).
The DFA-state is changed from PK(p||1) to PK (p||‘1 ∧ (0′)
(state-‘1∧(0′) . It computes x′′⊕it[2]=FK(d∗||1)⊕PK (p||‘1∧
(0′)=ftd. Fourth, it computes T1 >> (ftd, x

′′′), and it has
x′′′=FK(d||2) ⊕ PK(p||1). The DFA-state is changed from
PK (p||‘1 ∧ (0′) to PK(p||1) (state-1). With bt and x′′′, the
cloud can access T2 and the subtrees like in VBT-1.

A DFA-state can be obliviously changed from one state
to another by a symbol. Repeatedly run the transitions, until
reaching a final accepted state. The final accepted state is 1
or 0, which denotes the query matches this tree node or not.
In the above process, all transition states are hidden from
the cloud, and the cloud learns only the encrypted accepted
state.

VBT-3.Indexword(i,w,v)
1: if w ∈ File(i), then c← 1, otherwise c← 0
2: initialize A = {‘#′,∨#′, ‘ ∨#)′, ‘ ∧ (#′}.
3: for all a ∈ S do
4: for all b ∈ A do
5: replace # with c in b, i.e.,

b′ ← Replace(b, ‘#′, c).
6: d← δ(a, b′); if d is empty, continue;
7: replace string # with w in b,

i.e., bw ← Replace(b,#, w)
8: k1 ← H1(FK(bw||1)⊕ PK(Path(v)||a))
9: x← FK(w||2)⊕ PK(Path(v)||d)

10: insert T1 << (k1, x)
11: end for
12: end for
13: Insert items into T2; the same as the lines 16∼31 of VBT-2.Setup

TABLE 1: State transition table of simple CNF computations.

S

∑
0 1 ∨0 ∨1 ∨0) ∨1) ∧(0 ∧(1

0 0 1 0 1 - - 0∧(0 0∧(1
1 0 1 1 1 - - 1∧(0 1∧(1

0∧(0 - - 0∧(0 0∧(1 0 0 - -
0∧(1 - - 0∧(1 0∧(1 0 0 - -
1∧(0 - - 1∧(0 1∧(1 0 1 - -
1∧(1 - - 1∧(1 1∧(1 1 1 - -

The symbol ‘-’ denotes an invalid state.

7 SECURITY ANALYSIS

7.1 Leakage Function
To formally describe the leakage of the schemes, we ana-
lyze the search and access patterns. Let Q denote a two-
dimensional array that stores all historical Boolean queries
issued in order of arrival, e.g., Q[0][0]=‘a’, Q[0][1]=‘∨b’,
Q[0][2]=‘∧(c’, and Q[0][3]=‘∨d)’ for the 0-th Boolean query
(a ∨ b) ∧ (c ∨ d). Given a Boolean query ϕ, the set of
all tree nodes that the search process needs to traverse is
denoted by tn(ϕ). The search pattern of a query consists
of four parts: SP1(ϕ) = {i : for all Q[i][0] = ϕ[0]},
SP2(ϕ) = {(i, j, k) : for all Q[i][j] = ϕ[k] and Q[i][j+1] =
ϕ[k + 1]}, SP3(ϕ) = {i : for all Q[i].last = ϕ.last}, and
SP4(ϕ) = {(i, j, k, v) : for all Q[i][j] = ϕ[k] and v ∈
tn(Q[i])}, where ϕ.last denotes the last item in this array.
In fact, SP1 is due to the forward token, SP2 is due to the
intersection token, SP3 is due to the backward token, and
SP4 is due to all the tokens. The access pattern is some
information that is used for accessing the index and the
encrypted files. It includes two parts. The access pattern
for a node v is AP (ϕ, v)={(dfav, x): if ϕ matches v then
x← 1, else x← 0}, where dfav denotes the final encrypted
accepted DFA-state of node v, and the access pattern for
the encrypted files is DB∗(ϕ). Note that {AP (ϕ, v)}v∈tn(ϕ)

means the query will reveal all DFA encrypted-accepted-
states (not accepted-states) of all accessed tree nodes tn(ϕ).

We now have the leakage function of VBT-3: L =
(L1,L2) = (LSetup,LSearch), where
L1 = LSetup(I,D) = (M1,M2, L, n, sizes, ids), and
L2 = LSearch(T (ϕ)) =
({SP1, SP2, SP3, SP4}, {AP (ϕ, v)}v∈tn(ϕ), DB

∗(ϕ)).
Given an encrypted tree I = (T1, T2) and a set of

encrypted files D, L1 leakage contains (M1,M2), i.e., the
number of entries in the hash tables (T1, T2) respectively,
L, i.e., the height of the tree, and n, i.e., the number of
files. sizes and ids are size information and identifiers

10

respectively, which come from the set of files encrypted by
a CPA-secure scheme.

Given a Boolean query T (ϕ), L2 leakage function out-
puts the search and access patten. The length of Boolean
queries u is also in this leakage. L2 leakage is unavoidable in
a single-round SE scheme. Note that, SP2 and SP4 are very
small compared with SP (ϕ) = {(i, j, k) : for all Q[i][j] =
ϕ[k]} in [25] and [43]. AP (ϕ, v) is also very small compared
with {DB(w)}w∈ϕ in [25] and [43], whose subquery privacy
is not well protected. Another notice is that the real path
value of v doesn’t equal Path(v) since the real paths are
disordered when the index is initialized.

7.2 Leakage Analysis
We now show how VBT-3 achieves minimized leakage.
There are three occasions in the searching process. The
search completes in a non-terminal tree node. The algorithm
completes in a leaf, but it doesn’t match the leaf. The algo-
rithm completes in a leaf, and it matches the leaf. Only on
the last occasion, as mentioned in VBT-1, can the encrypted
results be correctly outputted. Since the search path from
the root to the leaf forms an encrypted linked list, without
any parts of the linked list, the cloud cannot get the final
correct results. Thus, the access pattern for the files is only
DB∗(ϕ). This is the significant difference with the state of
the arts [25], [26], [28], [43].

The access pattern for node v {AP (ϕ, v)}v∈tn(ϕ) de-
notes, in fact, the DFA whether matches v or not. This is just
an optimal point of the security-efficiency trade-off we seek.
With this leakage, VBT-3 degrades to a level-2-revealing
scheme.

We note that VBT-3 achieves only level-2-revealing (can-
not achieve level-1-revealing). This is, however, the best one
can do in a single-round SE scheme. For simplicity, we write
Llevel2
2 to denote this leakage is level-2-revealing.

7.3 IND-CKA2 Security
Theorem 8.1 (IND-CKA2 Security). If F, P and V are pseudo-
random functions, and H1 and H2 are different random or-
acles, then VBT-3 is IND-CKA2 (L1,Llevel2

2)-secure against
an adaptive adversary.
Proof: We prove the scheme security at a high level. Let’s
consider such a stateful and efficient simulator S , who can
adaptively simulate the adversary’s view including histor-
ical queries, the encrypted index, and files, by using only
the leakage L. We now prove that the adversary A cannot
distinguish the real view from the simulated view with non-
negligible probability. The simulation includes two parts
(I∗,D∗) and Q∗.
S creates a set of simulated files D∗ and a simulated

index I∗ = (T ∗1 , T
∗
2) by using random values, since S has

the L1 leakage.
S adaptively simulates the search trapdoor Q =

{ft, it, bt}. Consider the query at a start node v. First,
S builds a simulated trapdoor Q∗ = (ft∗, it∗, bt∗) =
(ft∗, {it∗i }i∈[0,u−2], {bt∗1, bt∗2}) by using random values with
the same size as Q since S has L2 leakage. Second, S
randomly chooses a key-value pair (ft∗∗, x∗∗) from T ∗1 , and
programs the random oracle H1 such that T ∗1 >> (ft∗, x∗)
(i.e., H1(ft∗) = (ft∗∗;x∗ ⊕ x∗∗)). The following variables

are similar to these ones. Third, S randomly chooses a set
of key-value pairs {(b∗∗1 , y∗∗1), (b∗∗2 , y

∗∗
2), · · · , (b∗∗u−1, y∗∗u−1)}

from T ∗1 and programs the random oracle H1, such that
b∗1 ← x∗ ⊕ it∗[0], T ∗1 >> (b∗1, y

∗
1), b∗2 ← y∗1 ⊕ it∗[1],

T ∗1 >> (b∗2, y
∗
2), · · · , b∗u−1 ← y∗u−2 ⊕ it∗[u − 2], and T ∗1 >>

(b∗u−1, y
∗
u−1). Fourth, according to the access pattern of L2,

S knows that Q∗ matches v or not. If Q∗ doesn’t match
v, S ignores this value (don’t simulate the query process-
ing in the subtrees), otherwise S randomly chooses a pair
(c∗∗, (z∗∗1 ; z∗∗2)) from T ∗2 and programs the random oracle
H2 such that c∗ ← y∗u−1 ⊕ bt∗1, and T ∗2 >> (c∗, (z∗1 ; z∗2)). S
randomly chooses two pairs {(ft∗∗l , x∗∗l), (ft∗∗r , x

∗∗
r)} from

T ∗1 for accessing the subtrees. S programs the random
oracle H1 such that ft∗l ← z∗1 ⊕ bt∗2, T ∗1 >> (ft∗l , x

∗
l),

ft∗r ← z∗2 ⊕ bt∗2, and T ∗1 >> (ft∗r , x
∗
r). S recursively runs

the above procedure until all subtrees are simulated. If the
search process reaches a leaf, S uses the access pattern
DB∗(ϕ) for simulation. If a part of search tokens have
appeared before, according to the search pattern, S chooses
the corresponding pairs that have been used before for
simulation. The simulated trapdoor Q∗ will yield the same
output as the original one Q.

According to the pseudo-random functions and the CPA-
secure encryption algorithm, the simulated index and the
original index, the simulated files and the original files, and
the adaptively simulated search trapdoors and the original
search trapdoors cannot be distinguished in polynomial
time with non-negligible probability. This implies that ex-
cept for the leakage L, the adversaryA learns nothing about
the encrypted index, the encrypted files, and the trapdoors.
Thus, VBT-3 is secure against an adaptive adversary. Fur-
thermore, since L2 contains nothing of ∂(ϕ), VBT-3 is level-
2-revealing.

8 EXPERIMENTAL EVALUATIONS

Level-2-revealing Boolean computation brings some draw-
backs, such as index size blowing up especially in a disjunc-
tive scheme. In this section, we perform some experiments
to evaluate overall performance.

8.1 Experimental Methodology
DataSets: We choose the Enron email dataset [1] to eval-
uate VBT-1. This unstructured dataset consists of 517,401
email files in total, with sizes varying from 1 KB to 391
KB. To evaluate VBT-2 and VBT-3, we create an index for
two data columns (age,gender) of a relational data table,
where age∈[0,100] and gender∈{male, female}. We ran-
domly generate 100,000 records and insert them into the
table. To create an index for a relational data table, we use
the prefix encoding approach and convert the table to a set
of unstructured data files [43].
Implementation Details: We conduct our experiments on a
desktop computer running Windows 10 Enterprise Edition
with 64GB memory and an Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz processor. We choose Blake2b as the pseudo-
random functions. The schemes are fully implemented in
C++. We also write several testing cases to output experi-
mental data.

The height of the tree L is set to 32. H1 outputs 40 bytes,
with H2 60 bytes. The maximum load factor of the hash

11

tables is set to α=80%. In VBT-1, a keyword of a tree node
consumes 100 bytes (40 bytes in T1 and 60 bytes in T2) only
if this keyword is in this node. Thus, the index size of VBT-1
is five times that of [43]. In VBT-2, a keyword of a tree node
occupies 220 bytes (160 bytes in T1 and 60 bytes in T2) even
if this keyword is not in this tree node. VBT-3 consumes
more disk space than other two, yet it is just our trade-off.

For simplicity, we write DB(w)=15 to denote a query
with 15 results. We ignore all communication time and
identifier-decrypting time. In all experiments, the indexes
are loaded into memory first.

8.2 Index Construction Evaluations
Figure 2 and Figure 4 show the index size and time of
VBT-1 are practically acceptable. Although the index size
of VBT-1 is five times that of [43], it is still scalable even for
an unstructured dataset, which means that the size of the
keyword space m is dynamically changed with the number
of files n growing.

Figure 3 and Figure 5 show that VBT-2 and VBT-3 are
more suitable for a fixed-size dictionary (keyword space).
Although they consume much disk space or memory, we
can use them to protect those frequently-used keywords,
since most of these keywords are much weaker than
infrequently-used ones [16].

8.3 Query Processing Evaluations
Experimental results in Figures 6 and 7 demonstrate that
these three solutions are highly-efficient, and their query
processing time in the millisecond scale. The data also
shows that the s-term problem that exists in OXT [26]
and BIEX [28] has been well addressed. Figures 6 and 7
give the conjunctive query time and disjunctive query time,
respectively, with the number of files n growing.

Figure 8 demonstrates that the Boolean query of VBT-
3 is highly-efficient and it is scalable in the final result
set size, where “age∈[20,30] ∧ g.=male” denotes that all
users whose age are between 20 and 30, and whose gender
are male. This figure implies that VBT-3 supports multi-
dimensional range/keyword Boolean queries. It will take
96.3 ms to search over 100,000 records by using a Boolean
query consisting of range-query terms and string terms with
5000 results matched.

8.4 Compared with IBTree and VBTree
Experimental results in Figures 9 demonstrate that VBT-1 is
more efficient than IBTree [25] and is almost as efficient as
VBTree [43]. We conduct these experiments over 1 million
files. All the trees can be optimized with traversal width or
height by using their proposed approaches in [25] and [43].
Thus, we generate a set of queries that are all in the worst-
case distribution (random distribution). IBTree is slower
than the other two due to two facts. First, the number of
non-contiguous memory accesses (locality [42]) of IBTree is
k in a tree node, where k is the number of hash functions
in a Bloom filter. Second, the number of pseudo-random
computations of IBTree is k in a tree node, whereas the other
two have only one or two locality or computations in a tree
node.

To support dynamic updates with forward and back-
ward privacy [19] [27], we use the version control repository
(VCR) proposed in [43]. All forward tokens are marked with
different versions. This will be left to our future work.

9 CONCLUSIONS

In this paper, we propose ideal/real encrypted Boolean
function concepts to mark all single-round Boolean-query
SE schemes with different security levels. We present a novel
approach to encrypt and run deterministic finite automatons
(DFAs) on untrusted clouds. Based on this fundamental
component, we give three SE constructions for conjunc-
tive/disjunctive/Boolean queries, respectively. Their advan-
tage is that they achieve sub-linear search complexity and
enhanced security that we call level-2-revealing. The exper-
imental results show that these solutions support efficient
Boolean queries and can be used for building an index
for private encrypted databases. Our future work includes
1) designing rich database queries based on the encrypted
DFA computation; 2) optimizing the index size of VBT-3; 3)
developing new level-2-revealing DFA-query schemes.

REFERENCES

[1] Enron email dataset. http://www.cs.cmu.edu/˜enron/, 2015.
[2] E. J. Goh. “Secure Indexes,” IACR Cryptology ePrint Archive,

2003.
[3] D. X. Song, D. Wagner, and A. Perrig. “Practical techniques for

searches on encrypted data,” in Security and Privacy (S&P). IEEE,
2000.

[4] R. Curtmola, J. Garay, S. Kamara, et al., “Searchable symmetric
encryption: improved definitions and efficient constructions,” in
the 13th ACM conference on Computer and Communications
Security (CCS), pp. 79-88. ACM, 2006.

[5] M. Chase and S. Kamara, “Structured Encryption and Controlled
Disclosure,” in the Theory and Application of Cryptology and
Information Security (ASIACRYPT), pp. 577-594. Springer, 2010.

[6] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM confer-
ence on Computer and Communications Security (CCS), pp. 965-
976. ACM, October, 2012.

[7] R. A. Popa, C. Redfield, et al., “CryptDB: protecting confidentiality
with encrypted query processing,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP),
pp. 85-100. ACM, October, 2011.

[8] S. Bajaj, and R. Sion, “TrustedDB: a trusted hardware based
database with privacy and data confidentiality,” in the 2011 ACM
SIGMOD International Conference on Management of data (SIG-
MOD), pp. 205-216. ACM, 2011.

[9] S. Kamara, and C. Papamanthou, “Parallel and dynamic search-
able symmetric encryption,” in International Conference on Finan-
cial Cryptography and Data Security, pp. 258-274. Springer, Berlin,
Heidelberg, April, 2013.

[10] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in International conference
on the theory and applications of cryptographic techniques, pp.
506-522. Springer, Berlin, Heidelberg, May, 2004.

[11] R. Li, A. X. Liu, A. L Wang, et al., “Fast range query processing
with strong privacy protection for cloud computing,” in Interna-
tional Conference on Very Large Data Bases (VLDB), vol. 7, no. 14,
pp. 1953-1964, 2014.

[12] B. Bruhadeshwar, A. X. Liu, B. Jayaraman, A. L. Wang, and R.
Li, “Privacy preserving string matching for cloud computing,” in
2015 IEEE 35th International Conference on Distributed Comput-
ing Systems, pp. 609-618. IEEE, 2015.

[13] W. K. Wong, D. W. L. Cheung, B. Kao, and N. Mamoulis. “Secure
kNN computation on encrypted databases,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management of
data, pp. 139-152, ACM, 2009.

12

Number of (w,id) pairs N
100 102 104 106 108

In
de

x
si

ze
 (

by
te

)

104

105

106

107

108

109

1010

m=26,163

VBT-1

Fig. 2: Index size
(VBT-1)

Number of (w,id) pairs N
101 102 103 104 105

In
de

x
si

ze
 (

by
te

)

104

105

106

107

108

109

1010

VBT-2:m=1352
VBT-2:m=203
VBT-3:m=203

Fig. 3: Index size
(VBT-2,3)

Number of (w,id) pairs N
100 102 104 106 108

S
et

u
p
 t

im
e

(s
)

10-2

10-1

100

101

102

m=26,163
VBT-1

Fig. 4: Index time
(VBT-1)

Number of (w,id) pairs N
101 102 103 104 105

S
et

up
 ti

m
e

(s
)

10-2

10-1

100

101

102

103

104

VBT-2:m=1352
VBT-2:m=203
VBT-3:m=203

Fig. 5: Index time
(VBT-2,3)

Number of files n ×104

2 4 6 8 10

Q
ue

ry
 t

im
e

(m
s)

0.25

0.3

0.35

0.4

0.45

0.5

a ∧ b:
DB(a)=2000
DB(b)=15

VBT-1
VBT-3

Fig. 6: Conj. queries

Number of files n ×104

2 4 6 8 10

Q
ue

ry
 ti

m
e

(m
s)

12

13

14

15

16

17

18

19

a ∨ b:
DB(a)=2000
DB(b)=15

VBT-2
VBT-3

Fig. 7: Disj. queries

Number of final results
101 102 103 104

Q
ue

ry
 ti

m
e

(m
s)

10-1

100

101

102

Q1:age∈[20 30] ∧ g.=male
Q2:age∈[20 30]

VBT-3,Q1
VBT-3,Q2

Fig. 8: Boolean queries in-
cluding ranges

Size of DB(x)
101 102 103 104 105

Q
ue

ry
 ti

m
e

(m
s)

10-2

10-1

100

101

a ∧ x: DB(a)=15

VBT-1(v2)
VBTree(v1)
IBTree

Fig. 9: Compared with IBTree
and VBTree

[14] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Annual Interna-
tional Conference on the Theory and Applications of Crypto-
graphic Techniques, pp. 24-43, Springer, Berlin, Heidelberg, May,
2010.

[15] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios, and R.
Canetti, “Modular order-preserving encryption, revisited,” in Pro-
ceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 763-777. ACM, 2015.

[16] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), pp. 644-655. ACM, 2015.

[17] Z. Chang, D. Xie, and F. Li, “Oblivious ram: a dissection and ex-
perimental evaluation,” in Proceedings of the VLDB Endowment,
vol. 9, no. 12, pp. 1113-1124. 2016.

[18] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. C.
Rosu, and M. Steiner, “Dynamic searchable encryption in very-
large databases: data structures and implementation,” In NDSS,
Vol. 14, pp. 23-26, 2014.

[19] R. Bost, “Σoϕoς : Forward Secure Searchable Encryption,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 1143-1154. ACM, 2016.

[20] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic search-
able encryption via blind storage,” in 2014 IEEE Symposium on
Security and Privacy (S&P), pp. 639-654. IEEE, 2014.

[21] G. Kellaris, G. Kollios, K. Nissim, and A. O’neill, “Generic attacks
on secure outsourced databases,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security
(CCS), pp. 1329-1340. ACM, 2016.

[22] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: effi-
cient oblivious RAM in two rounds with applications to search-
able encryption,” in Annual International Cryptology Conference
(Crypto), pp. 563-592. Springer, Berlin, Heidelberg, 2016.

[23] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: a system for
secure multi-party computation,” in Proceedings of the 15th ACM
conference on Computer and communications security (CCS), pp.
257-266. ACM, October, 2008.

[24] E. Stefanov, C. Papamanthou, and E. Shi, “Practical Dynamic

Searchable Encryption with Small Leakage,” in NDSS, vol. 71, pp.
72-75, February, 2014.

[25] R. Li, and A. X. Liu, “Adaptively secure conjunctive query pro-
cessing over encrypted data for cloud computing,” in 2017 IEEE
33rd International Conference on Data Engineering (ICDE), pp.
697-708. IEEE, April, 2017.

[26] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. C. Ro?u, and M.
Steiner, “Highly-scalable searchable symmetric encryption with
support for boolean queries,” in Annual Cryptology Conference
(Crypto), pp. 353-373. Springer, Berlin, Heidelberg, August, 2013.

[27] Y. Zhang, J. Katz, and C. Papamanthou. “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in 25th USENIX Security Symposium (USENIX), pp.
707-720, 2016.

[28] S. Kamara, and T. Moataz, “Boolean searchable symmetric en-
cryption with worst-case sub-linear complexity,” in Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, pp. 94-124. Springer, Cham. April, 2017.

[29] V. Pappas, F. Krell, B. Vo, et al., “Blind seer: A scalable private
dbms,” in 2014 IEEE Symposium on Security and Privacy (S&P),
pp. 359-374. IEEE, May, 2014.

[30] A. C. Yao, “Protocols for secure computations,” In FOCS, vol. 82,
pp. 160-164, November, 1982.

[31] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data,”
IEEE transactions on parallel and distributed systems (TPDS), vol.
27, no. 2, pp. 340-352. IEEE, 2016.

[32] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Transactions on parallel and distributed systems (TPDS), vol. 25,
no. 1, pp. 222-233. IEEE, 2014.

[33] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,”
in 2013 IEEE 29th international conference on data engineering
(ICDE), pp. 733-744. IEEE, April, 2013.

[34] C. Gu, and J. Gu, “Known-plaintext attack on secure kNN com-
putation on encrypted databases,” Security and Communication
Networks, vol. 7, no. 12, pp. 2432-2441. 2014.

[35] D. Boneh, and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Theory of Cryptography Conference
(Crypto), pp. 535-554. Springer, Berlin, Heidelberg, February, 2007.

13

[36] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proceedings of the 2012 ACM conference on Computer
and communications security (CCS), pp. 784-796. ACM, October,
2012.

[37] X. Lei, A. X. Liu, and R. Li, “Secure knn queries over encrypted
data: Dimensionality is not always a curse,” in 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pp. 231-
234. IEEE, April, 2017.

[38] S. Kamara, T. Moataz, and O. Ohrimenko, “Structured encryption
and leakage suppression,” in Annual International Cryptology
Conference (Crypto), pp. 339-370. Springer, Cham, August, 2018.

[39] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proceedings of the 22nd
ACM SIGSAC conference on computer and communications secu-
rity (CCS), pp. 668-679. ACM, October, 2015.

[40] K. S. Kim, M. Kim, D. Lee, et al., “Forward secure dynamic
searchable symmetric encryption with efficient updates,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1449-1463. ACM, October, 2017.

[41] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private
searchable symmetric encryption with optimized I/O efficiency,”
Transactions on Dependable and Secure Computing (TDSC). IEEE,
2018.

[42] D. Cash, and S. Tessaro, “The locality of searchable symmetric en-
cryption,” In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 351-368. Springer,
Berlin, Heidelberg, May, 2014.

[43] Z. Wu, and K. Li, “VBTree: forward secure conjunctive queries
over encrypted data for cloud computing,” The VLDB Journal—
The International Journal on Very Large Data Bases, vol. 28, no. 1,
pp. 25-46, 2019.

[44] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V.
Shmatikov, “ The tao of inference in privacy-protected databases,”
in Proceedings of the VLDB Endowment, vol. 11, no. 11, pp. 1715-
1728, 2018.

[45] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer and communications security (CCS), pp. 299-310. ACM,
November, 2013.

Zhiqiang Wu received the B.S. degree in com-
puter application technology from the Central
South University, China, in 2003, and received
the Ph.D. degree in computer science from
the Hunan University, China, in 2019. He cur-
rently works with the Changsha University of
Science and Technology. His research interests
include network security, data encryption, em-
bedded systems, software architecture, high-
performance computing, and big data comput-
ing. He has authored several papers in interna-

tional journals, such as the VLDB Journal.

Kenli Li received the Ph.D. degree in computer
science from the Huazhong University of Sci-
ence and Technology, China, in 2003. He was
a Visiting Scholar with the University of Illinois
at Urbana-Champaign, from 2004 to 2005. He
is currently a Full Professor of computer science
and technology with Hunan University and the
Deputy Director of the National Supercomputing
Center, Changsha. He has authored over 150
papers in international conferences and jour-
nals, such as the IEEE-TC, the IEEE-TPDS, and

the IEEE-TSP. His major research includes parallel computing, cloud
computing, and big data computing. He is an Outstanding Member
of CCF. He is currently serving on the editorial boards of the IEEE
TRANSACTIONS ON COMPUTERS and the International Journal of
Pattern Recognition and Artificial Intelligence.

Keqin Li Dr. is a SUNY Distinguished Professor
of computer science with the State University
of New York. He is also a Distinguished Pro-
fessor at Hunan University, China. His current
research interests include cloud computing, fog
computing and mobile edge computing, energy-
efficient computing and communication, embed-
ded systems and cyberphysical systems, het-
erogeneous computing systems, big data com-
puting, high-performance computing, CPU-GPU
hybrid and cooperative computing, computer ar-

chitectures and systems, computer networking, machine learning, in-
telligent and soft computing. He has published over 630 journal arti-
cles, book chapters, and refereed conference papers, and has received
several best paper awards. He currently serves or has served on the
editorial boards of the IEEE Transactions on Parallel and Distributed
Systems, the IEEE Transactions on Computers, the IEEE Transactions
on Cloud Computing, the IEEE Transactions on Services Computing,
and the IEEE Transactions on Sustainable Computing. He is an IEEE
Fellow.

Jin Wang received the B.S. and M.S. de-
grees from the Nanjing University of Posts and
Telecommunications, China, in 2002 and 2005,
respectively, and the Ph.D. degree from Kyung
Hee University, South Korea, in 2010. He is cur-
rently a Professor with the Changsha University
of Science and Technology. He has published
more than 300 international journal and confer-
ence papers. His research interests mainly in-
clude wireless sensor networks, network perfor-
mance analysis, and optimization. He is a Senior

Member of the IEEE and a member of ACM.

