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Abstract. Constructing interactive zero-knowledge arguments from sim-
ple assumptions with small communication complexity and good compu-
tational efficiency is an important, but difficult problem. In this work, we
study interactive arguments with noticeable soundness error in their full
generality and for the specific purpose of constructing concretely efficient
shuffle arguments.
To counterbalance the effects of a larger soundness error, we show how
to transform such three-move arguments into publicly-accountable ones
which allow the verifier to convince third parties of detected misbehavior
by a cheating prover. This may be particularly interesting for applications
where a malicious prover has to balance the profits it can make from
cheating successfully and the losses it suffers from being caught.
We construct interactive, public-coin, zero-knowledge arguments with
noticeable soundness error for proving that a target vector of commit-
ments is a pseudorandom permutation of a source vector. Our argu-
ments do not rely on any trusted setup and only require the existence
of collision-resistant hash functions. The communication complexity of
our arguments is independent of the length of the shuffled vector. For
a soundness error of 2−5 = 1/32, the communication cost is 153 bytes
without and 992 bytes with public accountability, meaning that our ar-
guments are shorter than shuffle arguments realized using Bulletproofs
(IEEE S&P 2018) and even competitive in size with SNARKs, despite
only relying on simple assumptions.

1 Introduction

Zero-knowledge arguments allow a prover to convince a verifier of the truth of a
statement without leaking any additional information. Such arguments are a fun-
damental building block, ubiquitous in cryptography, with various applications
in both theory and practice.

The quality of an argument system can be measured in several different ways.
One of the most important quality measures is the size of the argument, i.e. how
many bits the prover needs to exchange with the verifier to convince them of the
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validity of the statement. Minimizing this measure is important for real-world
applications, where the statements itself may be over several gigabytes large
and where communicating large amounts of data over a wide area network can
quickly turn into the main efficiency bottleneck. Another important measure is
the computational efficiency of both prover and verifier. We would like our ar-
gument to incur as little computational overhead on both parties as possible.
Finally, we would also like our arguments to rely on simple and well-studied
assumptions. Arguments that rely on highly structured or even non-falsifiable
assumptions may be prone to cryptanalysis, those that rely on more popular
number-theoretic assumptions, like the discrete logarithm or the factoring as-
sumption, can be broken by quantum computers, and arguments that require
a common reference string need to rely on a trusted third party that has to
generate this string.

One particularly popular class of zero-knowledge arguments are those that
enable a prover to convince a verifier that two vectors of commitments or encryp-
tions contain the same multiset of plaintext messages without revealing the mes-
sages themselves or the permutation between the two vectors. Shuffle arguments
are used in applications like e-voting protocols [42], anonymous communication
systems [18, 38], decentralized online poker [10], cryptocurrencies [20, 22], and
others.

The idea of shuffle arguments originates in the work of Chaum on mix-
nets [18] and the first constructions were presented by Sako and Kilian [45]
and Abe [1, 2, 3]. These, as well as early subsequent works [25, 42, 30, 34],
all had argument sizes, which were linear in the size ` of the permuted vector.
The first sublinear shuffle argument, with an argument size of O

(
`2/3

)
, was pre-

sented by Groth and Ishai [33]. Following this work, Groth and Bayer [31, 9]

presented arguments with an argument size of O
(√

`
)

and recently Bünz et

al. [17] showed how to obtain arguments, based on the discrete logarithm as-
sumption, of size O (log `) via sorting circuits. A different line of works construct
so called SNARKs [37, 40], which are constant-sized arguments for arbitrary
statements. Unfortunately, SNARKs inherently rely on strong non-falsifiable
assumptions [26], require a trusted setup, and are computationally expensive
for the prover. Zero-knowledge arguments based on the MPC-in-the-head tech-
nique [35, 5] do not require any trusted setup, base their security solely on the

existence of collision-resistant hash functions, but have a proof size of O
(√

`
)

.

Interactive proofs based on probabilistically checkable proofs [37] only rely on
collision-resistant hash functions, have proofs of size O (log `), but are pro-
hibitively expensive from a computational perspective

Given this state of the art, it is evident that constructing small shuffle argu-
ments, and more generally arbitrary arguments, from simple assumptions with
good computational efficiency is a challenging, but important task. In this work,
we ask:
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Can we construct shuffle arguments of size o(log `) with good
computational efficiency from simple assumptions that satisfy a relaxed,

but still meaningful security notion?

Answering this question is of practical importance. In certain real-world sce-
narios, arguments that satisfy the strongest possible security notion can simply
be too inefficient. In these cases more efficient arguments that satisfy a weaker
security notion may provide an important trade-off between efficiency and secu-
rity.

1.1 Our Contribution

In this work, we study interactive arguments with noticeable soundness errors,
i.e. arguments that allow a cheating prover to convince a verifier of a false state-
ment with some noticeable probability. Such arguments can still be useful in
scenarios, where a malicious prover has to balance the profit that it can make
from successfully cheating and the loss it has, when cheating is detected. Con-
sider for instance a decentralized online poker game, where a malicious prover
wins $1 for every incorrect shuffle argument that is accepted by the verifier,
but loses a $100 security deposit if cheating is detected. In such a scenario, a
soundness error as large as 1/2 may be acceptable, since even then cheating is
not profitable for a rationally behaving prover.

We study arguments with noticeable soundness error both in their full gen-
erality and for specific purpose of constructing concretely efficient shuffle argu-
ments for pseudorandom shuffles. Concretely, we make the following contribu-
tions:

Publicly-Accountable Zero-Knowledge Arguments. To realize the idea
of punishing cheating provers, we need to take care of two things. First, we need
to ensure that a verifier, upon detecting a cheating attempt, obtains a publicly
verifiable certificate that can be used to convince a third party auditor of the
prover’s malicious behavior. Secondly, we need to ensure that an honest prover
cannot be falsely accused. We introduce the notion of publicly-accountable zero-
knowledge arguments that formally model the two requirements above.

In the full version of this work, we show how to transform any three-move,
honest-verifier zero-knowledge argument with a soundness error that is at least
inversely polynomial in the security parameter into a publicly-accountable argu-
ment with only slightly larger communication complexity. This is achieved via
two steps. We prove that those honest-verifier zero-knowledge arguments already
satisfy full zero-knowledge and then show how such zero-knowledge arguments
can be transformed into their publicly-accountable counterparts with the help
of symmetric private information retrieval. In this version of the work we show
how to make the shuffle arguments described below publicly accountable in a
concretely efficient manner.
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It is interesting to note that in contrast to sequential repetition, which is
commonly used to make the soundness error negligible at the cost of a multi-
plicative factor that is linear in the security parameter, our transformation only
incurs a small additive factor in terms of round and bandwidth complexity.

Shuffle Arguments for Pseudorandom Shuffles. Next, we focus on con-
structing efficient three-move (public-coin) honest-verifier zero-knowledge shuf-
fle arguments with inversely polynomial soundness error. For this purpose, we
make one additional observation that allows us to further simplify the problem
we aim to solve. When looking at the majority of applications, where shuffle
arguments are actually used, the concrete permutation between the input and
the output vector is chosen at random. Most often, the goal is to simply hide
the relation between entries in the input and the output vector, but the concrete
permutation itself is irrelevant as long as it is sufficiently random. In e-voting,
for example, users send their encrypted votes to an untrusted shuffling author-
ity, which shuffles them to hide the voting preference of any specific user. In
anonymous communication systems, users send messages through one or more
shuffling authorities to some recipients and shuffling of the ciphertexts ensures
that no outside observer can see which sender communicates with which recip-
ient. Thus, we focus on shuffle arguments for pseudorandom shuffles instead of
arbitrary shuffles.

We introduce the notion of zero-knowledge arguments for partially fixed state-
ments and present conceptually simple interactive shuffling arguments satisfying
this notion. The main idea behind our new notion is to consider statements that
are only partially fixed, i.e. that consist of a fixed and a non-fixed part. The fixed
part is known to both prover and verifier, whereas the non-fixed part is chosen
by the prover. At the end of an interaction between prover and verifier, the ver-
ifier learns the full statement and is convinced of its correctness. For the specific
case of shuffling, the fixed part is the initial vector of commitments and the non-
fixed part is a permutation thereof. Our notion aims to capture the fact that we
only care about the initial vector being permuted, but not about the concrete
permutation that is used. Rather than requiring that zero-knowledge holds for
all statements, we require that zero-knowledge holds for all partially fixed state-
ments with a uniformly random non-fixed part. Our notion is, in spirit, similar
to distributional zero-knowledge [27, 19], but focuses on a particular distribution
over the statements.

For this notion, we present the first computationally efficient shuffle argu-
ments for pseudorandom permutations, whose argument size is independent of
the length of the vector that is being permuted. More specifically, we present
public-coin, three-move arguments in the standalone model based on simple as-
sumptions, such as collision-resistant hash functions.3 The soundness error in our
constructions can be set arbitrarily small as long as it remains inversely polyno-

3 Naturally, our arguments are only useful for vectors of rerandomizable commit-
ments/encryptions, which may require specific number-theoretic assumptions. The
arguments itself, however, only rely on simple assumptions.
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mial in the security parameter. The computational overhead of our construction
grows with smaller soundness errors. We show how an arbitrary number of shuffle
arguments can be batched without any additional communication cost.

We evaluate the practical efficiency of our constructions by providing con-
crete argument sizes when instantiated in the standard model. Our evaluation
shows that, for a soundness error of 2−5, the instantiation of our shuffle argu-
ment has a communication cost of 153 bytes without and 992 bytes with public
accountability,

This is on the same order of magnitude as SNARKs such as [32] at 144 bytes
and smaller than Bulletproofs even when the permuted vector of commitments4

is reasonably short. The size of our argument is independent of the specific
number of commitments being shuffled. The computational cost of shuffling an
`-length vector with soundness error 1/t is dominated by computing t · ` reran-
domizations of the shuffled commitments for both prover and verifier. In practice
for Pedersen and similar commitments, the cost for the verifier can be reduced to
roughly 2` rerandomization at the cost of roughly doubling the communication
complexity. A detailed description of this modification can be found in the full
version of this paper.

Since the non-fixed part of the partially fixed shuffle statement is chosen
randomly in each execution, it follows that the fully fixed statement will be
different in each execution with high probability. For this reason, we cannot
reduce the soundness error via sequential repetition. Due to the non-negligible
soundness error, we can also not use the Fiat-Shamir transform [23] for making
them non-interactive.

1.2 Comparison to SNARKs

In terms of size, our shuffle arguments are similar to SNARKs. Our underlying
assumptions, however, are significantly weaker. We do not rely on non-falsifiable
assumptions or a trusted setup. In exchange, we have a noticeable soundness
error. As such, for the specific case of shuffle arguments, our work shows that
the need for a trusted setup and non-falsifiable assumptions can be overcome
in a practically efficient manner in applications that can tolerate a small, but
noticeable soundness error.

1.3 Relation to Secure Computation with Covert Security

Our concept of publicly-accountable zero-knowledge arguments is strongly re-
lated to general two- and multiparty computation protocols with covert security
and public verifiability [7, 6]. A protocol is said to be secure against covert ad-
versaries and publicly verifiable, if an actively misbehaving party in the protocol
execution is caught with some constant probability and the honest parties are

4 For the sake of concreteness, we focus on commitments in this work. However, our
arguments are also applicable to other primitives such as rerandomizable encryption
schemes.
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guaranteed to obtain a certificate that can be shown to third parties to incrim-
inate the misbehaving party. Applying a generic secure computation compiler,
like the one of Damg̊ard, Orlandi, and Simkin [21], to transform zero-knowledge
arguments into publicly-accountable ones can potentially work, but would result
in arguments whose size has an exponentially worse dependence on the soundness
error.

1.4 Technical Overview

In the following, we present the main ideas behind our public-coin, zero-knowledge
shuffle argument and outline how it can be made publicly accountable. In the
full version, we show how arbitrary public-coin arguments with a polynomially
large challenge space can be made publicly accountable.

The Shuffle Argument. Initially, both prover and verifier are given an initial
vector of commitments V . The goal of the prover is to choose some vector V ′ and
convince the verifier that there exists some permutation π, such that V ′ = π(V ).
To be precise, the permutation π here does two things. It first rerandomizes and
then permutes all commitments in V . The high-level idea behind our construc-
tion is to let the prover choose a permutation π, which can be represented as a
sequence of t pseudorandom permutations π1, . . . , πt in a space-efficient manner.
The prover first computes V ′ by sequentially applying each permutation πi for
1 ≤ i ≤ t and then sends a hash of the intermediate vectors Vi and V ′ to the
verifier, who picks t − 1 permutations that shall be opened. The prover sends
descriptions of these t − 1 permutations to the verifier. Skipping over some de-
tails, the verifier now uses V to check every permutation πj with j < i and V ′ to
check every permutation πj with j > i by recomputing the intermediate vectors.
Since πi remains hidden from the verifier, it cannot learn the overall permuta-
tion π. A malicious prover can only convince the verifier of a false statement if it
chose all πj with i 6= j as correct and πi as an incorrect permutation. Thus the
probability of a prover cheating successfully is 1/t. An interesting open question
is whether our approach can be modified to get a better dependence between t
and the resulting soundness error.

If done naively, then the size of the argument described above isO (t · log(`!)),
since the prover has to send each permutation πj for 1 ≤ j ≤ t separately. This
can easily be brought down to O (t) by sending only short random seeds which
can be expanded into a pseudorandom permutation using a regular pseudoran-
dom generator. To further reduce the size of our argument, we use a puncturable
pseudorandom functions (PPRF), which behaves like a regular PRF but has an
additional algorithm Puncture that allows the holder of a secret key k to compute
a key k{x}, which can be used to evaluate the PPRF on every point x′ 6= x.
Importantly, for a PPRF it holds that the key k{x} does not reveal anything
about its evaluation at the point x. Assuming that we have a PPRF F whose
range is the set of all possible permutations, we can now succinctly represent πj
as the evaluation F(k, j) for 1 ≤ j ≤ t. When the verifier asks to open all but
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Fig. 1: The prover chooses the permutation and rerandomization by sampling
a key k for a puncturable PRF. It then derives individual permutations and
rerandomization factors for each stage by feeding the stage index through the
PRF. The final result of performing the individual permutations forms the final
shuffling and thus the prover-chosen part of the statement. The prover then
hashes all of the intermediate permutations. The puncturable key k will allow
the prover to partially open the computation of the intermediate permutations.

the i-th permutation, we return the punctured key k{i} to the verifier. Using
this approach, the size of the argument now mainly depends on the size of the
punctured key and not directly on t. Using a PPRF based on the GGM con-
struction [28], this brings down the size of the argument to O (log t). Using a
recent construction of PPRFs due to Aviram, Gellert, and Jager [8] we can make
the size of our arguments even completely independent of t in the random oracle
model. However, due to the large constants in Aviram et al.’s construction, this
approach is only of theoretical interest. A visual illustration of our construction
can be found in Figure 1.

Making the Argument Publicly Accountable. To make the shuffle argu-
ment publicly-accountable, we need to ensure that a cheating prover produces
some form of self-incriminating evidence whenever it fails to cheat. Since we
want this evidence to be publicly verifiable, we need to assume that there ex-
ists a public signature key pk that is associated with the prover, who holds the
corresponding signing key sk.

Ideally, we would like the prover to sign the transcript of all exchanged mes-
sages at the end of each execution and send this signature to the verifier. If the
prover were to always do this, then we would be done, since the verifier would
obtain a signature incriminating the prover, whenever it attempts to cheat, but
is caught; assuming the prover always sends some last message, even if it can
not respond correctly. Obviously this does not work, since the prover can simply
abort the execution without signing anything, when it receives a challenge that
it does not like. Our idea is to let the verifier receive the prover’s last message
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corresponding to the verifier’s challenge, without revealing the challenge to the
prover. On a high-level, we achieve this through the use of symmetric private
information retrieval, which enables a receiver holding an index i ∈ {1, . . . , t} to
obtain a value xi from the sender’s input vector X = (x1, . . . , xt) in a manner
that does not reveal i to the sender and does not reveal any xj for j 6= i to the
receiver.

For the specific case of our shuffle arguments, the senders inputs will be a
sequence of punctured keys and the receiver will retrieve one of them. We observe
that in this instance the symmetric PIR can in fact be replaced by a very efficient
oblivious key puncturing protocol implicit in the work of Boyle et al. [14].

2 Preliminaries

We denote by λ ∈ N the security parameter that is implicitly given as input to
all algorithms in unary representation 1λ. We denote by {0, 1}` the set of all
bit-strings of length `. For a finite set S, we denote the action of sampling x
uniformly at random from S by x ← S, and we denote the cardinality of S by
|S|. An algorithm is efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y := A(x; r) we denote that A is run on
input x and with random coins r and produces output y. If no randomness is
specified, then it is assumed that A is run with freshly sampled uniform random
coins. We write this as y ← A(x). A function negl(λ) is negligible if for every
positive polynomial poly(λ) there exists an N ∈ N such that for all λ > N ,
negl(λ) ≤ 1

poly(λ) .

For two interactive Turing machines A and B we denote by 〈A(a), B(b)〉
the execution of the protocol between A and B an inputs a and b. We denote
by (t, s) ← 〈A(a), B(b)〉 the outputs of A and B after the protocol execution
respectively. In protocols where A does not receive an output, we write s ←
〈A(a), B(b)〉 to denote the output of B. We further denote by T := 〈A(a), B(b)〉
the transcript resulting from the interaction.

2.1 Puncturable Pseudorandom Functions

Puncturable pseudorandom functions (PPRFs) can be constructed from one-way
functions, where the key-length is O (log |D|) and D is the input domain of the
PRF [12, 36, 15]. Subsequent works have shown how to construct PPRFs with
short keys from the strong RSA [8] and lattice-based assumptions [16].

Definition 1 (Puncturable PRFs). The tuple (F ,Puncture) of PPT algo-
rithms is a secure puncturable pseudorandom function with key length κ(λ), input
length i(λ), and range O(λ) if the following conditions hold:

Functionality: For every λ ∈ N, k ∈ {0, 1}κ(λ), x, x′ ∈ {0, 1}i(λ) with x 6= x′,
and k′ ← Puncture(k, x) it holds that F(k, x′) = F(k′, x′).
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Pseudorandomness: For any PPT adversary A it holds that∣∣∣∣∣ Pr[x← A(1λ) : A(Puncture(k, x),F(k, x)) = 1]

−Pr[x← A(1λ); y ← O(λ) : A(Puncture(k, x), y) = 1]

∣∣∣∣∣ ≤ negl(λ).

For our shuffle arguments (for vectors of length `) we require a PPRF with
range Perm` ×R` where R is the randomness space of a perfectly and inversely
rerandomizable commitment scheme and Perm` is the set of all `! permutations
over {0, . . . , `−1}. To obtain a PPRF over this range, one can simply use a PPRF
that outputs bit strings, potentially stretching the output using a pseudorandom
generator, and combine it with a shuffling algorithm like the Fisher-Yates shuf-
fle [24] by using the stretched output of the PPRF as the random tape of the
shuffling algorithm.

2.2 Oblivious Key Puncturing

We formalize the notion of an oblivious key puncturing protocol (OPP) between
a receiver R, who has a secret index i, and a sender S, who has a secret PRF key k.
At the end of the protocol execution, the receiver should learn the key punctured
at i, while the sender should learn nothing. An oblivious key puncturing protocol
is effectively a special case of a symmetric PIR, where the sender’s inputs are all
possible punctured keys.

Definition 2 (Oblivious Key Puncturing). Let (F ,Puncture) be a secure
puncturable PRF with key length κ(λ), input length i(λ), and range O(λ). A pair
of PPT algorithms (S,R) along with a setup algorithm Setup that outputs a crs is
a secure receiver-extractable, oblivious key puncturing protocol for (F ,Puncture),
if the following conditions hold:

Completeness: For any k ∈ {0, 1}κ(λ) and i ∈ {0, 1}i(λ), it holds that

Pr

[
crs← Setup(1λ); k′ ← Puncture(k, i);

k′′ ← 〈S(crs, k),R(crs, i)〉
: k′ = k′′

]
= 1.

Receiver Privacy: For any i, i′ ∈ {0, 1}i(λ) and any malicious PPT sender S∗,
it holds that∣∣∣∣∣ Pr[crs← Setup(1λ); b← 〈S∗(crs),R(crs, i)〉 : b = 1]

−Pr[crs← Setup(1λ); b← 〈S∗(crs),R(crs, i′)〉 : b = 1]

∣∣∣∣∣ ≤ negl(λ),

where the probabilities are taken over the random coins of Setup, S∗ and R.
Sender Simulation: There exists a PPT simulator Sim = (Sim0,Sim1) such

such that for any key k ∈ {0, 1}κ(λ) and any malicious PPT receiver R∗ it
holds that∣∣∣∣∣∣∣∣

Pr[crs← Setup(1λ); b← 〈S(crs, k),R∗(crs, 1λ)〉 : b = 1]

−Pr

[
(crs, td)← Sim0(1λ);

b← 〈Sim
Puncture(k,·)
1 (crs, td),R∗(crs, 1λ)〉

: b = 1

] ∣∣∣∣∣∣∣∣ ≤ negl(λ),
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where Sim1 can query its oracle at most once and the probability is taken
over the random coins of the involved parties.

Remark 1. Protocols that need a (non-empty) CRS, require a trusted setup. For
those protocols, using standard techniques, the trusted setup can be avoided at
the cost of a constant number of additional rounds of communication.

It turns out that for the PPRF based on one-way functions [12, 36, 15], highly
efficient instantiations of such an oblivious key puncturing protocol already exist
implicitly in [14]5. For a PPRF with domain D, the communication and compu-
tational complexity of their protocol is effectively that of log|D| invocations of
an actively secure 1-out-of-2 oblivious transfer.

2.3 Commitments

Shuffle proofs are generally only of interest for rerandomizable commitment
schemes. Our construction of shuffle proofs requires more than just perfect reran-
domizability. Specifically we require that rerandomization can also be performed
in reverse.

Definition 3 (Perfectly and Inversely Rerandomizable Commitments).
Let C = (Setup,Com) be a commitment scheme with message space M and ran-
domness space R. C is perfectly and inversely rerandomizable, if there exist PPT
algorithms Rerand,Rerand−1 such that the following conditions hold:

Perfect Rerandomization: For every ck ← Setup(1λ), m ∈ M, and c ←
Com(ck,m)it holds that for a uniformly chosen r ← R, Rerand(ck, c, r) and
Com(ck, c; r) are distributed identically.

Inverse Rerandomization: For every ck ← Setup(1λ), m ∈ M, r ∈ R, and
c← Com(ck,m) it holds that Rerand−1(ck,Rerand(ck, c, r), r) = c.

One example of a popular commitment scheme satisfying the properties de-
scribed above is the Pedersen commitment scheme [43]. Note that since we as-
sume perfect rerandomizability, it is guaranteed that for any ck, c, r1, and r2,
there exists an r3 such that Rerand(ck,Rerand(ck, c, r1), r2) = Rerand(ck, c, r3).

3 Zero-Knowledge Argument for Partially Fixed
Statements

In a regular proof or argument system, the full statement is fixed a priori and
given to both the prover and verifier which then run an interactive protocol
between them. In contrast in an arguments for partially fixed statements only

5 The authors prove (in Theorem 7 in [14]) that their construction satisfies a weaker
notion than the one we defined here, but it can be easily seen that their construc-
tion satisfies our notion as well, when instantiated with an actively secure oblivious
transfer.
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a part x of the statement is fixed and the prover gets to sample the rest of the
statement y together with auxiliary information aux that will allow the prover to
efficiently prove that (x, y) ∈ L. Note, that aux is not necessarily just a regular
witness for (x, y). In fact, in our shuffle proof, a regular witness for the statement
would merely be the permutation and rerandomization factors. However, the
auxiliary information used by our prover is a highly compact representation of a
decomposition of both the permutation and rerandomization. This also implies
that a prover in such a system is not necessarily capable of proving all (x, y) ∈ L,
but merely a, potentially small, subset. However, the definition of zero-knowledge
will imply that the full statement (x, y) chosen by the prover is indistinguishable
from a uniform choice of (x, y) ∈ L conditioned on x. To formally define such
argument systems, we first define partially fixable languages, as those languages
where y can be efficiently uniformly sampled conditioned on x.

Definition 4 (Partially Fixable Languages). Let X,Y be sets. Let L ⊆
X×Y be an NP language consisting of pairs (x, y) ∈ X×Y with the corresponding
NP-relation R. For any x ∈ X we denote by Lx the language Lx = {(x, y′) | y′ ∈
Y ∧ (x, y′) ∈ L}. L is called partially fixable if for all x ∈ X such that Lx 6= ∅ it
is possible to uniformly sample from Lx in expected polynomial time.

We can now define argument systems for such languages.

Definition 5 (Arguments for Partially Fixed Statements). Let L ⊆ X ×
Y be a partially fixable language with the corresponding NP-relation R. A prob-
abilistic polynomial time two-stage prover P = (P0,P1) and a probabilistic poly-
nomial time verifier V are said to be an interactive argument for partially fixed
statements of L with soundness error ε if the following conditions hold:

Completeness: For any x ∈ X with Lx 6= ∅ it holds that

Pr[(y, aux)← P0(x); b← 〈P1(x, y, aux),V(x, y)〉 : (x, y) ∈ L ∧ b = 1] = 1.

Soundness: For any malicious probabilistic polynomial time prover P∗ and any
(x, y) 6∈ L it holds that

Pr[b← 〈P∗(1λ),V(x, y)〉 : b = 1] ≤ ε+ negl(λ).

We are only interested in arguments that are zero knowledge. We define two
flavors of zero-knowledge.

Definition 6 (Zero-Knowledge Arguments for Partially Fixed State-
ments). Let (P,V) be an interactive argument for partially fixed statements of
L. The argument is said to be zero knowledge if there exists an expected poly-
nomial time simulator Sim, such that for any (potentially malicious) polynomial
time verifier V∗, all probabilistic polynomial time distinguishers D, and all x ∈ X
with Lx 6= ∅ it holds that∣∣∣∣∣ Pr[(y, aux)← P0(x); s← 〈P1(x, y, aux),V∗(x, y)〉 : D(x, y, s) = 1]

−Pr[(x, y)← Lx; s← SimV∗(x,y)(x, y) : D(x, y, s) = 1]

∣∣∣∣∣ ≤ negl(λ)

where Sim has the power of rewinding V∗.
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Definition 7 (Honest Verifier Zero-Knowledge). Let (P,V) be an inter-
active argument for partially fixed statements of L. The argument is said to be
honest verifier zero knowledge if there exists an expected polynomial time simu-
lator Sim, such that for all probabilistic polynomial time distinguishers D, and
all x ∈ X with Lx 6= ∅ it holds that∣∣∣∣∣ Pr[(y, T )← Simu(x) : D(x, y, T ) = 1]

−Pr[(y, T )← Real(x) : D(x, y, T ) = 1]

∣∣∣∣∣ ≤ negl(λ),

where Real and Simu are defined as follows

Real(x)

(y, aux)← P0(x)

T := 〈P1(x, y, aux),V(x, y)〉
return (y, T )

Simu(x)

(x, y)← Lx
T ← Sim(x, y)

return (y, T )

We note several important differences compared to regular argument systems.
When defining an argument systems where the prover can choose part of the
statement completeness can no longer be defined by simply quantifying over
all valid statements. Instead, completeness explicitly specifies that the honest
prover will always choose valid statements. Further, in the definition of zero-
knowledge, it is not necessarily clear how y should be chosen in the simulated
case. The definition above requires that y is chosen uniformly at random from Lx
in this case as opposed to also being chosen by the prover. This has an important
implication. Namely it implicitly requires the honest prover to choose y in a way
that is computationally indistinguishable from uniform, since otherwise there
exists a trivial distinguisher. Lastly we note that these definitions coincide with
the standard zero-knowledge argument definitions, when |Lx| = 1.

4 On Three-Move Public-Coin HVZK Arguments and
Zero-Knowledge

In the following, we show that any three-move public-coin6 argument with a
polynomially large challenge space that satisfies (computational) HVZK is also
(computationally) zero-knowledge against malicious verifiers. A corollary of this
result is that our shuffle argument from Section 5, which we will prove to be
HVZK, is automatically fully zero-knowledge.

Theorem 1. Let (P,V) be some three-move public-coin honest verifier zero-
knowledge argument for language L ⊆ X × Y and let C be the associated chal-
lenge space. If |C| ≤ poly(λ) then (P,V) is also zero-knowledge against malicious
verifiers.
6 We call a three-move argument system public-coin if the second message is a uni-

formly random bit-string.
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Proof. Let V∗ be an arbitrary malicious polynomial time verifier. Let Sim′ be the
honest verifier zero-knowledge simulator for the 3-move public-coin argument as
specified in Definition 7. To prove the theorem, we specify a zero-knowledge
simulator Sim that takes as input a statement (x, y), has blackbox access to
V∗, and produces an output that is computationally indistinguishable from the
output of V∗ in a real protocol execution.

At first sight, the proof of the theorem statement may seem trivial. Intuitively,
Sim picks a random challenge d, runs the simulator Sim′ to obtain a transcript
(e, d, z), feeds the first message e to V∗ and if the verifier outputs a challenge d∗

with d∗ = d, then we are done and otherwise we simply restart this whole process
until we guess the verifier’s challenge correctly. Unfortunately, this approach only
works if we have an argument that satisfies perfect HVZK and it turns out that
this naive simulator is not guaranteed to run in expected polynomial time if our
argument system is only computationally HVZK.

To make sure that our simulator V∗ does indeed run in expected polynomial
time, we closely follow a proof strategy due to Goldreich and Kahan [29].7 We
specify the zero-knowledge simulator Sim in Figure 2.

SimV∗(x,y)(x, y)

1 : (e, d, z)← Sim′(x, y)

2 : d∗ ← V∗(e)

3 : if d∗ = abort

4 : return abort

5 : δ̃ ← EstimateDelta(x, y)

6 : for 0 ≤ i < min
(
4|C|λδ̃−1, 2λ

)
7 : rewind V∗

8 : (e, d, z)← Sim′(x, y)

9 : d∗ ← V∗(e)

10 : if d = d∗

11 : return V∗(z)

12 : return fail

EstimateDelta(x, y)

k := 0,m := 0

while k < 12λ

m := m+ 1

rewind V∗

(e, d, z)← Sim′(x, y)

if V∗(e) 6= abort

k = k + 1

return k/m

Fig. 2: Zero-knowledge simulator for any three-move public coin honest verifier
zero knowledge argument with a polynomially large challenge space.

We first observe in Lemma 2 that for any verifier V∗ the probability of abort-
ing after seeing a simulated first message output by Sim′ does not differ signifi-
cantly from the probability of aborting after seeing a real first protocol message.

7 See [39] for a very nice and detailed discussion of this proof strategy.
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Lemma 2. For any polynomial time algorithm V∗ and any x ∈ X, such that
Lx 6= ∅ it holds that∣∣∣∣∣ Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = abort]

−Pr [(y, e, d, z)← Real(x) : V∗(x, y, e) = abort]

∣∣∣∣∣ ≤ negl(λ)

Proof. Let V∗ be an arbitrary malicious polynomial time verifier. Consider the
following distinguisher D against the honest verifier zero-knowledge property
of the argument: Upon receiving (x, y) and (e, d, z) as input, the distinguisher
D invokes V∗ with fresh random coins and input (x, y, e). If V∗ aborts then D
outputs 1. Otherwise it outputs 0. We observe that D’s distinguishing advantage
against the honest verifier zero-knowledge property of the argument corresponds
exactly to the difference in the abort probabilities of V∗. Since the argument is
honest verifier zero-knowledge, D’s distinguishing advantage must be negligible
and Lemma 2 thus follows. ut

Furthermore, we use an observation made previously by Goldreich and Ka-
han [29].

Lemma 3 ([29]). For any algorithm V∗, let δ = δ(λ) be the probability that it
does not abort upon seeing a simulated first message. With probability at least
1 − 2−λ, the estimate δ̃ in line 5 of Sim in Figure 2 is within a constant factor
of δ.

Using these two observations we will now analyze the probability that one
iteration of Sim’s main loop is successful. I.e. we will show that the probability
that for a precomputed transcript (e, d, z), V∗ upon receiving input e will return
d∗ with d = d∗ with probability at least δ/|C| − negl(λ).

Lemma 4. Let (P,V) be a three-move public-coin honest verifier zero-knowledge
argument for language L ⊆ X×Y and let C be the associated challenge space with
|C| ≤ poly(λ). Let further V∗ be any polynomial time verifier. For any x ∈ X,
such that Lx 6= ∅ it then holds that

Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C|
− negl(λ).

Proof. Let V∗ be an arbitrary polynomial time verifier. Now consider the follow-
ing distinguisher D against the honest verifier zero-knowledge property of the
argument. The distinguisher D receives as input (x, y) and (e, d, z). It initializes
V∗, provides it with (x, y, e), and receives back d∗. If d∗ = abort, then D flips a
random coin b and return that as its guess. Otherwise, D outputs 1 if d = d∗ and
0 if d 6= d∗. Let δ + γ be the probability that V∗ aborts after seeing a first real
message, where |γ| = negl(λ) by Lemma 2. By the honest verifier zero-knowledge
property of the argument it must then hold that

negl(λ) ≥

∣∣∣∣∣ Pr[(y, e, d, z)← Simu(x) : D(x, y, e, d, z) = 1]

−Pr[(y, e, d, z)← Real(x) : D(x, y, e, d, z) = 1]

∣∣∣∣∣
14



=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr [(y, e, d, z)← Simu(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort]

+ Pr [(y, e, d, z)← Simu(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) = abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = abort]︸ ︷︷ ︸
=1−δ

−Pr [(y, e, d, z)← Real(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) = abort]

· Pr [(y, e, d, z)← Real(x) : V∗(x, y, e) = abort]︸ ︷︷ ︸
=1−δ−γ

−Pr [(y, e, d, z)← Real(x) : D(x, y, e, d, z) = 1 | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Real(x) : V∗(x, y, e) 6= abort]︸ ︷︷ ︸
=δ+γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort]

+ Pr [b← {0, 1} : b = 1]︸ ︷︷ ︸
=1/2

·(1− δ)− Pr [b← {0, 1} : b = 1]︸ ︷︷ ︸
=1/2

·(1− δ − γ)

−
=1/|C|︷ ︸︸ ︷

Pr [(y, e, d, z)← Real(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· (δ + γ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort] +
γ

2
− δ + γ

|C|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort]− δ

|C|
+

(|C| − 2)γ

2|C|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort]− δ

|C|
+ negl(λ)

∣∣∣∣∣∣. (1)

We can now consider the two cases of the value between the absolute value bars
in Equation 1 being positive, or negative. If it’s positive, then it holds that

δ

|C|
− negl(λ) ≤Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort] . (2)

If it’s negative, then it must hold that

negl(λ) ≥− Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort] +
δ

|C|
− negl(λ)
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and thereby that

δ

|C|
− negl(λ) ≤Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d | V∗(x, y, e) 6= abort]

· Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) 6= abort] . (3)

Combining the two cases, i.e., Equations 2 and 3 we can use the law of total
probability to conclude that

Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C|
− negl(λ).

as claimed. ut

We now want to use Lemma 4 to argue that the output of the simulator is
indistinguishable from the output of V∗ in a real execution. For this, consider
the following. By Lemma 4, there exists a negligible function ε, such that

Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C|
− ε(λ).

For each security parameter λ ∈ N we can consider two cases:

Case i. If it holds that δ(λ) > 2|C|ε(λ), then we have ε(λ) < δ/(2|C|) and it
therefore holds that

Pr [(y, e, d, z)← Simu(x) : V∗(x, y, e) = d] ≥ δ

|C|
− ε(λ) >

δ

2|C|
.

It follows that in expectation the simulator needs at most 2|C|/δ rewinding at-
tempts to obtain one non-aborting and correctly guessed execution. Via markov-
inequality it follows that the probability of not having seen a single non-aborting
correctly guessed execution after 4λ|C|/δ rewindings is negligible.

Lastly observe that by Lemma 3 the estimate δ̃ is within a constant factor of
δ with probability 1−2−λ. Therefore, the simulator will output a valid transcript
with a probability of 1 − negl(λ), ensuring that the output of the simulator is
indistinguishable from the output of V∗ in a real execution with overwhelming
probability.

Case ii. If it holds that δ(λ) ≤ 2|C|ε(λ), then δ is smaller than a negligible
function for this λ. Assume that in this case the rewinding strategy always fails.
Then a real execution of V ∗ results in abort with probability at least 1 − (δ −
negl(λ)) by Lemma 2, while Sim outputs abort with probability 1 − δ. That
means the statistical distance between the two output distributions is at most
δ + negl(λ) which is an overall negligible function. Combining the two cases, we
can conclude that the distinguishing advantage against Sim is upper bounded
by a negligible function for each λ ∈ N and thus is overall computationally
indistinguishable from the output of V∗ in a real execution.
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It remains to bound the expected runtime of Sim. Again, by Lemma 3, the
estimate δ̃ is within a constant factor of δ with probability 1−2−λ. But whenever
the estimate is wrong, the runtime of the main loop is still bounded by the worst
case running time of 2λ with the simulator outputting fail. We thus have an
upper bound on the expected runtime of

lines 1-4︷ ︸︸ ︷
poly(λ) +δ

( EstimateDelta︷ ︸︸ ︷
poly(λ) +

12λ

δ
poly(λ) +

lines 6-12︷ ︸︸ ︷(
(1− 2−λ)

4λ|C|
δ̃

+ 2−λ2λ
)
· poly(λ)

)
≤poly(λ) + (12λ+O(1) · 4λ|C|+ δpoly(λ)) · poly(λ) ≤ poly(λ). ut

5 An Efficient Shuffle Argument

Let C = (Setup,Com,Rerand) be a perfectly and inversely rerandomizable com-
mitment scheme with message space M and randomness space R. To define
shuffle arguments for C, we first need to define partially fixable language of valid
shuffles relative to a rerandomizable commitment scheme. To this end, we first
define π as an algorithm that takes a vector of C commitments V , a permutation
p ∈ Perm`, and randomnesses r0, . . . , r`−1 ∈ R` as input, permutes the elements
of V and randomizes each commitment. The algorithm π as well as it’s inverse is
described in Figure 3. We can now define the partially fixable language of valid
shuffles relative to π as follows.

Definition 8 (Valid Shuffle). Let C be a perfectly rerandomizable commitment
scheme with commitment space C. The language Shuffle` ⊆ C` × C` of valid
shuffles of vectors of length ` is defined as

Shuffle` =
{

(V, V ′) ∈ C` × C`
∣∣ ∃ (p, ~r) ∈ Perm` ×R`. V ′ = π(V, p, ~r)

}
Shuffles are transitive as stated by the following lemma.

Lemma 5. If (V, V ′) ∈ Shuffle` and (V ′, V ′′) ∈ Shuffle`, then (V, V ′′) ∈ Shuffle`.

Proof. Since permutations are closed under composition and since, by assump-
tion on the commitment scheme, it holds that for any r1, r2 ∈ R, there exists an
r3 ∈ R such that Rerand(ck,Rerand(ck, c, r1), r2) = Rerand(ck, c, r3), the lemma
immediately follows. ut

π(V, p, r0, . . . , r`−1)

for 0 ≤ i < `

V ′[p(i)] := Rerand(ck, V [i], rp(i))

return V ′

π−1(V ′, p, r0, . . . , r`−1)

for 0 ≤ i < `

V [i] := Rerand−1(ck, V ′[p(i)], ri)

return V ′

Fig. 3: The algorithms for rerandomizing and permuting a vector of ciphertexts,
as well as its inverse.
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Definition 9 (Shuffle Argument). An interactive arguments for partially
fixed statements of Shuffle` relative to any perfectly rerandomizable commitment
scheme C is called a shuffle argument for C.

Now, let (F ,Puncture) be a puncturable pseudorandom function with key
length k(λ), input length i(λ), and range Perm`×R`. Let H be a collision resistant
hash function. In Figure 4 we then describe a simple three-move shuffle argument.
We will first prove that this protocol is a zero knowledge shuffle argument as

P0(V0)

k ← {0, 1}k(λ)

for 1 ≤ i ≤ t
Vi := π(Vi−1,F(k, i))

c := H(V1, . . . , Vt−1)

return (Vt, (c, k))

P1(V0, (c, k))

return c

V1(V ′0 , V
′
t , c)

d← {1, . . . , t}
return d

P2(d)

if d ∈ {1, . . . , t}
k′ ← Puncture(k, d)

return k′

else

return ⊥

V2(k′)

for 1 ≤ i < d

V ′i := π(V ′i−1,F(k′, i))

for t > i ≥ d

V ′i := π−1(V ′i+1,F(k′, i+ 1))

if H(V ′1 , . . . , V
′
t−1) = c

return 1

else return 0

Fig. 4: An algorithmic description of the shuffle argument.

stated in the following theorem.

Theorem 6. Let C = (Setup,Com,Rerand) be a perfectly and inversely reran-
domizable commitment scheme with message spaceM and randomness space R.
Let (F ,Puncture) be a puncturable pseudorandom function with key length k(λ),
input length i(λ), and range Perm` × R`. Let H be a collision resistant hash
function. Then the argument system 〈P = (P0,P1,P2),V = (V1,V2)〉 described
in Figure 4 is a zero-knowledge shuffle argument with soundness error 1/t for C.

Theorem 6 follows from Lemmas 7 and 10 as well as Corollary 12, which we
prove in the following.

Lemma 7. Let C, (F ,Puncture), and H be as in Theorem 6. Then the argument
system described in Figure 4 is complete.

Proof. We need to show that it always holds that (V0, V
′
t ) ∈ Shuffle` and that,

in an interaction with the honest prover, the verifier always accepts and outputs
1.

Claim 8. For any V0 ∈ C` and any (Vt, (c, k))← P0(V0) it holds that (V0, V
′
t ) ∈

Shuffle`.
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The prover computes each Vi as Vi := π(Vi−1,F(k, i)), where F(k, i) outputs
the description of a permutation and ` random values in R. It then follows
from the definition of π in Figure 3 and the perfect rerandomizability of C, that
for 0 < i ≤ t, (Vi−1, Vi) ∈ Shuffle`. Using Lemma 5 we can then conclude by
induction, that (V0, Vt) ∈ Shuffle`.

Claim 9. For any V0 ∈ C` and any (Vt, (c, k)) ← P0(V0) any honest execution
of 〈P(V0, Vt, (c, k)),V(V0, Vt)〉 will always output 1.

We note that V2 uses k′ to recompute all V ′i for 1 ≤ i < t. For 1 ≤ i < d, this
happens by computing V ′i := π(V ′i−1,F(k′, i)) = π(V ′i−1,F(k, i)), where the last
equality holds by the functionality requirement of the puncturable PRF, since
i 6= d. As it always holds that V ′0 = V0, it follows by induction over i, that
V ′i = Vi for 1 ≤ i < d.

For d ≤ i < t, the verifier computes V ′i := π−1(V ′i+1,F(k′, i + 1)). It always
holds that Vt = V ′t and the prover computes Vt := π(Vt−1,F(k, t)). This gives
us V ′t−1 = π−1(π(Vt−1,F(k, t)),F(k, t)), since t 6= d. By the definition of π and
π−1 we thus have that for 0 ≤ j < ` it holds that

V ′t−1[j] = Rerand−1(Rerand(V ′[j], rj), rj) = Vt−1[j]

for some value of rj . The last equality follows from the inverse rerandomizability
of C. Therefore, it follows that V ′t−1 = Vt−1 and by induction that V ′i = Vi for
d ≤ i < t.

We thus have that with probability 1, (V ′1 , . . . , V
′
t−1) = (V1, . . . , Vt−1) and

therefore H(V ′1 , . . . , V
′
t−1) = c. It thus follows that V2 outputs 1.

Combining the two claims Lemma 7 immediately follows. ut

Lemma 10. Let C, (F ,Puncture), and H be as in Theorem 6. Then the argument
system described in Figure 4 is sound with soundness error 1/t.

Proof. Let (V ∗0 , V
∗
t ) 6∈ Shuffle` and let P∗ be an arbitrary probabilistic polyno-

mial time prover. We will show, that

Pr[b← 〈P∗(1λ),V(x, y)〉 : b = 1] ≤ 1/t+ negl(λ).

We will assume without loss of generality, that P∗ actually sends a first message
c and that c is fixed.8

Let d0, d1 ∈ {1, . . . , t} be two arbitrary distinct challenges and let k′0 ←
P∗(d0) and k′1 ← P∗(d1) be the corresponding responses. Consider, that the
verifier works by recomputing Vb = (V b1 , . . . , V

b
t−1) and checking that it hashes

to c. The verifier computes V bi as V bi = π(V bi−1,F(k′b, i)) for i < db and as
π−1(V bi+1,F(k′b, i+ 1)) for i ≥ db.

By definition of π and π−1, this implies for i < d0 that (V 0
i−1, V

0
i ) ∈ Shuffle`

and for i ≥ d0 that (V 0
i , V

0
i+1) ∈ Shuffle`. By Lemma 5 we can thus conclude

that
(V0, V

0
d0−1) ∈ Shuffle` and (V 0

d0 , Vt) ∈ Shuffle`. (4)

8 This is without loss of generality, since we can fix the prover’s random coins to those
that lead to the highest success probability.
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Since d1 6= d0, we have by the same reasoning, that

(V 1
d0−1, V

1
d0) ∈ Shuffle`. (5)

If it were true, that (V 0
d0−1, V

0
d0

) = (V 1
d0−1, V

1
d0

) then it would follow from Equa-
tions 4 and 5 by Lemma 5 that (V0, Vt) ∈ Shuffle` which would contradict the
initial assumption. Therefore, it must hold that (V 0

d0−1, V
0
d0

) 6= (V 1
d0−1, V

1
d0

) and
V0 6= V1. This would mean, however, that we could break collision resistance of
H by presenting V0,V1 with probability

Pr[(k′0, r0)← P∗(d0) : V2(k′0) = 1] · Pr[(k′1, r1)← P∗(d1) : V2(k′1) = 1].

Since the hash function is collision resistant, it follows that the above prob-
ability can be bounded by a negligible function. Thus, at least one of the two
probabilities must be itself negligible. Since we have shown the above for all
pairs of distinct challenges, this means that there can exist at most one chal-
lenge d ∈ {1, . . . , t} such that Pr[(k′, r) ← P∗(d) : V2(k′) = 1] is non-negligible.
It thus ultimately follows that

Pr[b← 〈P∗(1λ),V(x, y)〉 : b = 1]

=

t∑
d=1

Pr[V1(c) = d] · Pr[k′ ← P∗(d) : V2(k′) = 1]

=
1

t
·

t∑
d=1

Pr[k′ ← P∗(d) : V2(k′) = 1]

≤1

t
· (1 + (t− 1) · negl(λ)) ≤ 1

t
+ negl(λ)

as claimed.

Lemma 11. Let C, (F ,Puncture), and H be as in Theorem 6. Then the argument
system described in Figure 4 is honest verifier zero-knowledge.

Before we prove Lemma 11, we first state the following simple corollary which
follows immediately from by combining Lemma 11 with Theorem 1.

Corollary 12. Let C, (F ,Puncture), and H be as in Theorem 6. Then the ar-
gument system described in Figure 4 is zero-knowledge.

Proof (Lemma 11). By Definition 7 we need to show that there exists a simulator
Sim, such that∣∣∣∣∣ Pr[(Vt, T )← Simu(V0) : D(V0, Vt, T ) = 1]

−Pr[(Vt, T )← Real(V0) : D(V0, Vt, T ) = 1]

∣∣∣∣∣ ≤ negl(λ). (6)

We specify the honest-verifier zero-knowledge simulator in Figure 5 and use a
series of game hops specified in Figures 6 and 7 to prove that the above equation
holds.
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Sim(V0, Vt)

d← {1, . . . , t}

k ← {0, 1}k(λ)

for 1 ≤ i < d

Vi := π(Vi−1,F(k, i))

for t > i ≥ d

Vi := π−1(Vi+1,F(k, i+ 1))

c := H(V1, . . . , Vt−1)

k′ ← Puncture(k, d)

return (c; d; k′)

Game1(V0)

d← {1, . . . , t}

k ← {0, 1}k(λ)

for 1 ≤ i < d

Vi := π(Vi−1,F(k, i))

p← Perm`, ~r ←R`

Vt := π(V0, p, ~r)

for t > i ≥ d

Vi := π−1(Vi+1,F(k, i+ 1))

c := H(V1, . . . , Vt−1)

k′ ← Puncture(k, d)

b← D(V0, Vt, (c; d; k′)

return b

Fig. 5: Honest-verifier zero knowl-
edge simulator for the three-move
protocol specified in Figure 4

Fig. 6: Game 1 for the proof of
honest verifier zero-knowledge.

We first observe that

Pr[(Vt, T )← Simu(V0) : D(V0, Vt, T ) = 1] = Pr[Game1(V0) = 1] (7)

This is easily verified. Vt is chosen uniformly at random from all valid shufflings
in both cases. Further, c, d and k′ are all computed in exactly the same way.
Similarly, we observe that

Pr[(Vt, T )← Real(V0) : D(V0, Vt, T ) = 1] = Pr[Game4(V0)] (8)

This is also easily verified. Game4 computes Vt and (c, k) in exactly the same
way as P0, lets the honest verifier V1(V0, Vt, c) choose d and finally computes
k′ in exactly the same manner as P2. What remains is to bound the differences
between each pair of consecutive games.

Hop from Game1 to Game2. The changes between the two games are purely
syntactic. In Game1 the final shuffling Vt is sampled uniformly at random from
all valid shuffles of V0. In Game2 the final shuffling Vt is computed as the compo-
sition of several intermediate valid shuffles. The shuffling at position d is chosen
uniformly at random and independently from all other shuffles. Since all previ-
ous shuffles are valid, this makes Vd a uniformly random shuffling of V0. Further,
since all following shuffles are valid and the shuffling of Vd was independent,
this makes Vt a uniformly random shuffling of V0. Therefore Vt is distributed
identically in both games. By the perfect and inverse rerandomizability of C, it
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Game2(V0)

d← {1, . . . , t}

k ← {0, 1}k(λ)

for 1 ≤ i < d

Vi := π(Vi−1,F(k, i))

p← Perm`, ~r ←R`

Vd := π(Vd−1, p, ~r)

for d < i ≤ t
Vi := π(Vi−1,F(k, i))

c := H(V1, . . . , Vt−1)

k′ ← Puncture(k, d)

b← D(V0, Vt, (c; d; k′)

return b

Game3(V0)

d← {1, . . . , t}

k ← {0, 1}k(λ)

for 1 ≤ i ≤ t
Vi := π(Vi−1,F(k, i))

c := H(V1, . . . , Vt−1)

k′ ← Puncture(k, d)

b← D(V0, Vt, (c; d; k′)

return b

Game4(V0)

k ← {0, 1}k(λ)

for 1 ≤ i ≤ t
Vi := π(Vi−1,F(k, i))

c := H(V1, . . . , Vt−1)

d← V1(V0, Vt, c)

k′ ← Puncture(k, d)

b← D(V0, Vt, (c; d; k′)

return b

Fig. 7: Game 2 through 4 for the proof of honest verifier zero-knowledge.

makes no difference, whether the Vi for d < i < t are computed in the “forward”
direction from Vi−1 or in the “backwards” direction from Vi+1. Therefore the
two games are perfectly equivalent, and it holds that

Pr[Game1(V0) = 1] = Pr[Game2(V0) = 1]. (9)

Hop from Game2 to Game3. Note that the only difference between the two
games is in the computation of Vd, which is computed as a uniformly random
shuffle in Game2 and as a pseudorandom shuffle in Game3. This means we can
bound the difference between the two games using a reduction to the pseudoran-
domness of the puncturable pseudorandom function. Specifically we use D as a
distinguisher against F by requesting a key punctured on d and after receiving k′

and y = (p, ~r), computing Vi with key k′ as in Game2 except that we compute
Vd using y = (p, ~r). It is easy to see, that if y is uniformly random, then we
perfectly simulate Game2, whereas if y = F(k, d) we perfectly simulate Game3.
By the security of F it must therefore hold that

|Pr[Game2(V0) = 1]− Pr[Game3(V0) = 1]| ≤ negl(λ) (10)

Hop from Game3 to Game4. The changes between the two games are again
merely syntactic. In particular, the games behave identically, except that Game3
chooses d uniformly at random from {1, . . . , t} whereas Game4 lets the verifier
choose d← V0(V0, Vt, c). However, by definition of V0 these two sampling strate-
gies are identical and it holds that

Pr[Game3(V0) = 1] = Pr[Game4(V0) = 1]. (11)
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Finally, combining Equations 9 through 11, we get

|Pr[Game1(V0) = 1]− PrGame4(V0) = 1| ≤ negl(λ), (12)

which combined with Equation 7 and Equation 8 gives us Equation 6 thus con-
cluding the proof. ut

In the full version of this paper, we additionally show how to modify the
constrution to achieve straightline simulation in strict polynomial time in the
CRS model. We also show how the amortized efficiency of the construction can
be improved through batching and how the verifier’s computational overhead
can be optimized at the cost of a slightly worse communication complexity.

6 Public Accountability

If a public-key infrastructure (PKI), which associates the prover with a public
key pk, is available, then we can discourage malicious provers from attempting
to cheat by ensuring that the verifier obtains a publicly verifiable certificate that
attests any failed cheating attempt by the prover. In the context of blockchains,
such a certificate could for example be used to punish the prover through finan-
cial penalties.

In the following definition, we define this property by requiring the existence
of a judge algorithm that can verify valid certificates and cannot be fooled by in-
valid certificates that falsely accuse an honest prover of misbehavior. For the sake
of readability, we implicitly assume that the verifier has access to the prover’s
public key amd the prover has access to their own public and secret keys.

Definition 10 (Publicly-Accountable Zero-Knowledge Arguments). Let
L ⊆ X × Y be a partially fixable language. Let (P,V) be an interactive zero-
knowledge argument for L with soundness error ε in the PKI model. We say
that the argument system is publicly accountable, if there exists a PPTalgorithm
Setup and a deterministic polynomial time judge algorithm J, such that the fol-
lowing conditions hold:

Accountability: Fix any (x, y) 6∈ L and let P∗ be a malicious probabilistic
polynomial time prover with

Pr[crs← Setup(1λ); b← 〈P∗(crs),V(crs, x, y)〉 : b = 1] ≥ δε,

where the probability is taken over the random coins of the prover and the
verifier and 0 < δ ≤ 1. Then it holds that

Pr[crs← Setup(1λ); cert← 〈P∗(crs),V(crs, x, y)〉 : J(crs, pk, cert) = 1]

≥δ(1− ε)− negl(λ),

where the probability is taken over the random coins of the prover and the
verifier.

23



Defamation-Freeness: For any x ∈ X with Lx 6= ∅, for any honest prover P
and malicious probabilistic polynomial time verifier V∗, it holds that

Pr

 crs← Setup(1λ);
(y, aux)← P0(crs, x);

cert← 〈P1(x, y, aux),V∗(crs, x, y)〉
: J(pk, cert) = 1

 ≤ negl(λ).

We show that the three move zero-knowledge shuffle argument (P,V) de-
scribed in Figure 4 in Section 5 can be transformed into a publicly-accountable
zero-knowledge argument.

P1(crs, V0, Vt, (c, k)) V(crs, V0, Vt)
c

OPP

k (d; rR)

k′
d← {1, . . . , t}

σ ← Sig(sk, (V0, Vt, c‖TOPP))

σ if Vf(pk, (V0, Vt, c‖TOPP), σ) = 1

abort

if V′2(k′) = 1

return 1

return (V0, Vt, d, rR, c, TOPP, σ)

Fig. 8: The publicly-accountable transformation of the three-move shuffle argu-
ment. Here rR refers to the random tape V uses to execute R in the OPP. TOPP

refers to the full transcript resulting from the OPP execution.

Theorem 13. Let 〈P′,V′〉 be the three-move zero-knowledge shuffle argument
described in Figure 4 in Section 5. Let (S,R) be a secure receiver-extractable,
oblivious key puncturing protocol for the puncturable PRF used in 〈P′,V′〉. Let
(Gen,Sig,Vf) be an existentially unforgeable signature scheme. Then the protocol
〈P,V〉 with P = (P′0,P1), with P1 and V as specified in Figure 8 is a publicly-
accountable zero-knowledge argument with soundness error 1/t.

Proof. We now show that this construction is indeed a publicly-accountable
zero-knowledge argument.

Lemma 14. The argument system (P,V) is complete.

Proof. This directly follows from the completeness of the underlying argument
system (P′,V′), the completeness of the oblivious key puncturing protocol, and
the correctness of the signature scheme. ut

Lemma 15. The argument system (P,V) is sound with soundness error 1/t.
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Proof. Let (V0, Vt) 6∈ Shuffle` and let P ∗ be an arbitrary malicious probabilistic
polynomial time prover against (P,V). We use P ∗ to construct a probabilis-

tic polynomial time prover P̃ against the original three move argument system
(P′,V′) as follows. P̃ initializes P∗ with uniform random coins. Without loss of

generality assume that P∗ outputs a first message c, which P̃ forwards to the
verifier. The verifier outputs a challenge d. P̃, acting on behalf of a simulated
verifier towards P∗, engages in an execution of the oblivious puncturing protocol
as the receiver, where d is the choice index. Let k′ be the output that P̃ receives
from P∗ in this execution. P̃ forwards k′ to the verifier. It is straightforward to
see that P̃’s success probability is at least as large as the success probability of
P∗. Since by Theorem 6 P̃’s success probability is bounded by 1/t+ negl(λ) the
lemma follows. ut

Lemma 16. The argument system (P,V) is zero-knowledge.

Proof. Let V∗ be an arbitrary verifier to which we have blackbox access. Let
(Sim0,Sim1) be the simulator from the sender simulation property of the OPP.

We construct a verifier Ṽ′ for the underlying argument system, which makes
blackbox use of V∗ and works as follows. First we let Ṽ′ sample a signature key
pair (sk, pk) and whenever V∗ asks the (simulated) PKI for the verification key

of the prover, our verifier will return pk. Then Ṽ′ generates a simulated common
reference string for the OPP as (crs, td) ← Sim0(1λ) and initializes V∗(crs, 1λ).

Upon receiving a first prover message c, verifier Ṽ′ forwards the message to
V∗. Then, Ṽ′ uses Sim1(crs, td) to execute the oblivious key puncturing protocol
with V∗. If and when Sim1 makes its single query d to its puncturing oracle,
Ṽ′ simulates the oracle by outputting d as its challenge message and returning
the response k′ as the answer. Finally, Ṽ′ outputs whatever V∗ outputs. Due
to the sender simulation property of the OPP, the view of V∗ when simulated
by Ṽ′ is computationally indistinguishable from a real execution. Therefore the
output of Ṽ′ is computationally indistinguishable from the output of V∗ in a
real execution of the publically accountable protocol. Since, Ṽ′ is a verifier for
the underlying three-move argument and by Corollary 12 that argument is zero-
knowledge, there exists a zero-knowledge simulator Sim′ that can simulate this
output given only blackbox access to Ṽ′. We can, thus, define the zero-knowledge
simulator Sim with blackbox access to V∗ simply as Sim′ with blackbox access
to Ṽ′. ut

Lemma 17. The argument system (P,V) satisfies accountability.

Proof. The judge algorithm J is specified in Figure 9. Let (V0, Vt) 6∈ Shuffle`,
let P∗ be an arbitrary malicious PPT prover. Let noAbort(~r) be the event that
P∗ does not abort and sends a valid signature when the parties run on random
tapes ~r = (rP, rV). Let d(~r) be the function that returns the verifier’s challenge.
Without loss of generality, we assume that for any fixed first message of the
prover, there exists a set of verifier challenges D(~r), which the prover successfully
answers in such a way that the verifier accepts.
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J(crs, pk, cert = (V0, Vt, d, rR, c, T , σ))

if Vf(pk, (V0, Vt, c‖T ), σ) = 0

return 0

k′ := TCheck(crs, T , d, rR)

if k′ = ⊥
return 0

b := V′2(k′)

return b⊕ 1

Fig. 9: The judge algorithm J for the publicly-accountable transformation of a
three-move zero-knowledge argument. Here TCheck refers to an algorithm that
given a CRS, an OPP transcript T , an input d and a random tape rR outputs
R’s output, if the transcript is consistent with d and rR and ⊥ otherwise.

From the receiver privacy of the OPP, it follows that∣∣Pr[noAbort(~r) | d(~r) ∈ D(~r)]− Pr[noAbort(~r) | d(~r) 6∈ D(~r)]
∣∣ ≤ negl(λ),

where the probability is taken over the random coins ~r of the parties. We observe
that

Pr[cert← 〈P∗(1λ; rP),V(x, y; rV)〉 : J(pk, cert) = 1 | (V0, Vt) 6∈ Shuffle`]

≥Pr[noAbort(~r) | d(~r) 6∈ D(~r)] · Pr[d(~r) 6∈ D(~r)]

≥ (Pr[noAbort(~r) | d(~r) ∈ D(~r)]− negl(λ)) · Pr[d(~r) 6∈ D(~r)]

≥ (δ − negl(λ)) · (1− ε− negl(λ))

≥δ(1− ε)− negl(λ) ut

Lemma 18. The argument system (P,V) is defamation-free.

Proof. Let (V0, Vt, d, rR, c, T , σ)) be the certificate presented by V∗. We observe,
that the existential unforgeability of the signature scheme implies that except
with negligible probability, c and T must have originated from an interaction
with the honest prover on input (V0, Vt). The completeness of the OPP implies
that TCheck will either output ⊥, in which case J will output 0, or the correct
response k′ to the challenge d. It follows that (c, d, k′) is the view of V′ in an
honest execution of the three-move shuffle argument. If (V0, Vt) ∈ Shuffle`, the
completeness of the argument implies that have V′2(k′) = 1 and J will output 0.
The lemma directly follows from the above observations. ut

The theorem statement follows from Lemmas 15, 16, 17, and 18. ut

7 Instantiation and Comparison

To evaluate the practical usefulness of the shuffle argument from Section 5 and its
publicly accountable counterpart from Section 6, we explore how to instantiate
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them in practice. We are particularly interested in the concrete communication
complexities of such instantiations, since this is where our constructions shine.
Towards this goal, we need to pick specific instantiations of the underlying build-
ing blocks, such as the collision-resistant hash function and the PPRF with its
oblivious puncturing protocol. We aim for a security level of roughly 128 bits.

Scheme Assumptions
Trusted
Setup

Soundness
Communication

Cost (byte)

This Work CRHF,PRG None
2−2 81
2−5 153
2−γ 32 + dγ · 24 1

8
e

This Work
(with accountability) CRHF,PRG,DDH CRS

2−2 416
2−5 992
2−γ 32 + γ · 192

This Work
(with accountability) CRHF,PRG,RLWE CRS

2−2 0.44 · 220

2−5 1.1 · 220

2−γ 32 + γ · 0.215 · 220

Bayer-Groth [9] Discrete Logarithm CRS negl(λ) 700, 000

Bulletproofs [17] Discrete Logarithm CRS negl(λ) 1, 600

SNARKs [32] Generic Bilinear Group SRS negl(λ) 144

Table 1: Transcript size of shuffle arguments for vectors of length 100, 000. The re-
ported numbers for our constructions correspond to the instantiations described
in Section 7 and are independent of the vector length and the type of commit-
ment being shuffled. The numbers for Bayer-Groth [9] are taken from their paper
for an instantiation in a q order subgroup of Z∗p with |q| = 160 and |p| = 1024
shuffling ElGamal ciphertexts. For Bulletproofs [17], we consider an instantiation
in ristretto255 [48] for shuffling Pedersen commitments. For the Groth SNARK
[32] we consider an instantiation with curve BLS12-381 [13] and observe that
the numbers are independent of the kind of commitments being shuffled and the
vector length.

The Hash Function The collision resistant hash function can in practice be
instantiated using any of SHA-256 [46], SHA3-256, or SHAKE256 [47] with 256
bit output length. Any of these instantiations leads to hashes of size |c| = 256
bits.

The Puncturable PRF The PPRF can be instantiated using the construction
of Goldreich, Goldwasser and Micali (GGM) [28]. This construction relies on
an internal length-doubling pseudorandom generator which can be instantiated
using a secure stream cipher, such as AES [4] in CTR mode or ChaCha20 [11].
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Taking the losses introduced by both the security proof of GGM as well as the
proof of zero-knowledge into account, we require a PRG with 128 + d2 log t +
log log te bits of security to achieve our security goal of 128 bits. For reasonable
values of t, using AES-192 in CTR mode would thus suffice. Simply instantiating
GGM like this yields a PPRF with range {0, 1}192. As explained in Section 2,
to construct a PPRF with range Perm` ×R`, the output can be stretched using
a PRG and combined with the Fisher-Yates shuffle [24] by using the stretched
output as the random tape of the shuffling algorithm. The necessary PRG can
again be instantiated using, e.g., AES-192 in CTR mode or ChaCha20. Overall,
the size of a punctured key with the AES-192 instantiation is |k′| = dlog te · 192
bits.

The Oblivious Puncturing Protocol Using the PPRF construction of GGM men-
tioned above, we can use the oblivious puncturing protocol described in [14],
which itself relies on dlog te many oblivious transfers with active security. These
can be instantiated with the 2-round UC secure protocol of Peikert, Vaikunan-
than, and Waters [44] over ristretto255 [48] by relying on the DDH assumption.
From a computational point of view, the parties need to perform 10dlog te expo-
nentiations, 6dlog te multiplications, and 2t evaluations of a PRG for one obliv-
ious puncturing. Using our instantiation, the OPP runs in two rounds and thus
the overall protocol runs in three, since the signature σ can be sent in parallel
with the second message of the OPP from the prover to the verifier.

To obtain post-quantum security, we can instantiate the oblivious transfer
with the protocol of Micciancio and Sorrell [41], which relies on the ring learning
with errors assumption.
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