
Group Encryption: Full Dynamicity, Message
Filtering and Code-Based Instantiation

Khoa Nguyen1, Reihaneh Safavi-Naini2, Willy Susilo3, Huaxiong Wang1,
Yanhong Xu2, and Neng Zeng4

1 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore

2 Department of Computer Science, University of Calgary, Calgary, Canada
3 Institute of Cybersecurity and Cryptology, School of Computing and Information

Technology, University of Wollongong, Wollongong NSW, Australia
4 Information Systems Technology and Design, Singapore University of Technology

and Design, Singapore

Abstract. Group encryption (GE), introduced by Kiayias, Tsiounis and
Yung (Asiacrypt’07), is the encryption analogue of group signatures. It
allows to send verifiably encrypted messages satisfying certain require-
ments to certified members of a group, while keeping the anonymity of
the receivers. Similar to the tracing mechanism in group signatures, the
receiver of any ciphertext can be identified by an opening authority -
should the needs arise. The primitive of GE is motivated by a number
of interesting privacy-preserving applications, including the filtering of
encrypted emails sent to certified members of an organization.

This paper aims to improve the state-of-affairs of GE systems. Our
first contribution is the formalization of fully dynamic group encryption
(FDGE) - a GE system simultaneously supporting dynamic user enrol-
ments and user revocations. The latter functionality for GE has not been
considered so far. As a second contribution, we realize the message fil-
tering feature for GE based on a list of t-bit keywords and 2 commonly
used policies: “permissive” - accept the message if it contains at least
one of the keywords as a substring; “prohibitive” - accept the message
if all of its t-bit substrings are at Hamming distance at least d from
all keywords, for d ≥ 1. This feature so far has not been substantially
addressed in existing instantiations of GE based on DCR, DDH, pairing-
based and lattice-based assumptions. Our third contribution is the first
instantiation of GE under code-based assumptions. The scheme is more
efficient than the lattice-based construction of Libert et al. (Asiacrypt’16)
- which, prior to our work, is the only known instantiation of GE under
post-quantum assumptions. Our scheme supports the 2 suggested poli-
cies for message filtering, and in the random oracle model, it satisfies the
stringent security notions for FDGE that we put forward.
Keywords. group encryption, full dynamicity, revocation, anonymity,
zero-knowledge, spam filtering, code-based protocols, string matching

1 Introduction

The study of group encryption - the encryption analogue of group signatures [22]
- was initiated by Kiayias, Tsiounis and Yung (KTY) [34] in 2007. While group
signatures allow the signers to hide their identities within a set of certified
senders, group encryption protects the anonymity of the decryptors within a
set of legitimate receivers. To keep users accountable for their actions, signa-
tures/ciphertexts can be de-anonymized in cases of disputes, using a secret key
possessed by an opening authority.

In a group encryption scheme, the sender of a ciphertext can generate pub-
licly verifiable proofs that: (i) The ciphertext is well-formed and can be decrypted
by some registered group member; (ii) The opening authority can identify the
intended receiver should the needs arise; (iii) The plaintext satisfies certain re-
quirements, such as being a witness for some public relation.

Group encryption (GE) schemes are motivated by a number of appealing
privacy-preserving applications. A natural application is for encrypted email
filtering, where GE allows a firewall to accept only those incoming emails that
are intended for some certified organization user. If accepted, the encrypted
messages are guaranteed to satisfy some prescribed requirements, such as the
absence of spammy/unethical keywords or the presence of keywords that are of
the organization’s interests.

As pointed out in [34] and subsequent work [20,1,41,37], GE can also find in-
teresting applications in the contexts of anonymous trusted third parties, obliv-
ious retriever storage systems or asynchronous transfers of encrypted datasets.
For instance, it allows to archive on remote servers encrypted datasets intended
for some anonymous client who paid a subscription to the storage provider. Fur-
thermore, the recipient can be identified by a judge if a misbehaving server is
found guilty of hosting suspicious transaction records or any other illegal content.

From the theoretical point of view, one can build a secure GE scheme based on
anonymous CCA2-secure public key encryption schemes, digital signatures, com-
mitments and zero-knowledge proofs. The designs of GE are typically more so-
phisticated than for group signatures, due to the need of proving well-formedness
of ciphertexts encrypted via hidden-but-certified users’ public keys. In particu-
lar, as noted by Kiayias et al. [34], GE implies hierarchical group signatures [59]
- a proper generalization of group signatures [7,8].

In their pioneering work, Kiayias et al. instantiated GE based on the Deci-
sional Composite Residuosity (DCR) and the Decisional Diffie Hellman (DDH)
assumptions. The zero-knowledge proof of ciphertext well-formedness in their
scheme is interactive, but can be made non-interactive in the random oracle
model using the Fiat-Shamir transformation [26]. Cathalo et al. [20] subse-
quently proposed a non-interactive realization based on pairings in the standard
model. El Aimani and Joye [1] then suggested various efficiency improvements
for pairing-based GE. The first construction of GE from lattice assumptions was
later presented by Libert et al. [37].

Libert et al. [41] enriched the KTY model of GE by introducing a refined
tracing mechanism inspired by that of traceable signatures [33]. In this setting,

2

the opening authority can release a user-specific trapdoor that enables public
tracing of ciphertexts sent to that specific users without violating other users’
privacy. Izabachène et al. [31] suggested mediated traceable anonymous encryp-
tion - a related primitive that addresses the problem of eliminating subliminal
channels.

Current Limitations of GE. To date, GE has been much less well-studied
than group signatures [22], even though they are functionally dual to each other.
The group signature primitive has a longer history of development, and serves as
a primary case study for privacy-preserving authentication systems. Meanwhile,
GE was introduced close to the rises of powerful encryption systems such as
attribute-based [30], functional [12] and fully-homomorphic [27] encryption, and
has not gained much traction. Nevertheless, given its compelling features and
the nice applications it can potentially offer, we argue that GE deserves more
attention from the community. In this work, we thus aim to contribute to the
development of GE. To start with, we identify several limitations of existing GE
systems.

First, the problem of user revocation, which is a prominent issue in multi-
user cryptosystems, has not been formally addressed. The KTY model [34], while
allowing dynamic enrolments of new users to the group, does not provide any
mechanism to prevent revoked users (e.g., those who were expelled for misbe-
haviours, stopped subscribing to the services or retired from the organizations)
from decrypting new ciphertexts intended for them (unless the whole system is
re-initiated). We next observe that, although it was not discussed by authors
of [41], their refined tracing method might pave the way for a mechanism akin
to verifier-local revocation [13], in which verifiers test incoming ciphertexts using
the trapdoors corresponding to all revoked users. Beside incurring complexity
linear in the number of revoked users, such a mechanism is known to only provide
a weak notion of anonymity (called selfless-anonymity) for non-revoked users. A
formal treatment of fully dynamic GE (i.e., which supports both dynamic enrol-
ments and revocations of users) with strong security requirements is therefore
highly desirable.

The second limitation is about the usefulness of existing GE schemes in the
context of email filtering - which is arguably the most natural application of
the primitive. Recall that such filtering functionality is supposed to be done
by defining a relation R = {(x,w)} and accepting only messages w such that
(x,w) ∈ R, for a publicly given x. However, in all known instantiations of GE,
the relations for messages are defined according to the computationally hard
problems used in other system components. More precisely, the KTY scheme [34]
employs the discrete-log relation, i.e., it only accepts w if gw = h for given (g, h).
Subsequent works follow this pattern: pairing-based relations are used in [20,1,41]
and a Short-Integer-Solution relation is used in [37] for message filtering. While
such treatment does comply the definitions of GE, it seems too limited to be
useful for filtering spams. Designing GE schemes with expressive policies that
capture real-life spam filtering methods is hence an interesting open question.

3

Third, regarding the diversity of concrete computational assumptions used
in building GE, among all existing schemes, the only one that is not known
to be vulnerable against quantum computers [57] is the lattice-based construc-
tion from [37]. This raises the question of realizing GE based on alternative
quantum-resistant assumptions, e.g., those from codes, multivariates and isoge-
nies. In terms of privacy-preserving cryptographic protocols, other post-quantum
candidates are much less developed compared to lattice-based constructions, and
it would be tempting to catch up in the scope of GE.

Our Contributions and Techniques. This work addresses all the 3 limita-
tions of existing GE that we discussed above. Our first contribution is a formal
model for fully dynamic group encryption (FDGE), with carefully defined syntax
and robust security notions. Our model empowers the KTY model with the user
revocation functionality and paves the way for new instantiations of GE in which
enrolling new users and revoking existing users can be done simultaneously and
efficiently. As a second contribution, we suggest to realize message filtering for
GE not based on computationally hard problems, but a list of keywords and how
these keywords match with substrings of the encrypted messages. To this end,
we define 2 policies for accepting “good” messages and rejecting “bad” ones,
that capture the spirit of the String Matching problem and the Approximate
String Matching problem that are widely used in contemporary spam filtering
techniques. Our third contribution is the first code-based GE scheme that follows
our FDGE model and that supports both of the 2 message filtering policies we
propose. We provide more technical details in the following.

Group Encryption with Full Dynamicity. We formalize the primitive of
FDGE as the encryption analogue of fully dynamic group signatures [14]. Beyond
the usual joining algorithm of the KTY model [34], FDGE makes it possible to
update the group periodically to reflect user revocations. Our model is defined in
a way such that it captures the 2 most commonly used approaches for handling
user revocations in group signatures, based on revocation lists [17] and accu-
mulators [19]. As noted in [14], there is an attack inherently to group signature
schemes following the revocation-list-based approach. When translated into the
GE context, such attack would permit group users to decrypt ciphertexts sent to
them even before they join the group. Our FDGE model does not allow such at-
tack, and we view this as a preventative measure in case a revocation-list-based
revocable GE will be proposed in the future.

Regarding security requirements, we define the notions of message secrecy,
anonymity, and soundness that are inline with and carefully extended from the
KTY model [34]. We consider adversaries with strong capabilities, including
the ability to corrupt the group manager (GM) and/or the opening authority
(OA) to a large extent. Specifically, not only do we permit full corruption 5 of
the GM and/or OA when defining message secrecy and anonymity, but we also
tolerate maliciously generated keys for the fully corrupted authorities. In terms of

5 Full corruption means that the adversary entirely controls the authority - who may
no longer follow its program.

4

soundness, only partial corruption 6 of OA is allowed. Note that the assumption
on partially corrupted OA is minimal, since otherwise a fully corrupted OA could
simply refuse to open ciphertexts.
Message Filtering. Spamming and spam filtering are complicated areas, and
currently there is no single filtering solution that can address all the clever tricks
of spammers. In the present work, we do not attempt to invent such a solution.
Our goal is to equip GE schemes with some basic, yet commonly used policies
for filtering. More precisely, we suggest to employ a public list S = {s1, . . . , sk}
of k binary keywords, each of which has bit-length t, to test against length t
substrings of the encrypted message w ∈ {0, 1}p. This list can be regularly
updated by the GM, depending on the interests and needs of the organization.
The keywords si could either be “good” ones that all legitimate messages are
expected to contain, or be “bad” ones that should be far - in terms of Hamming
distance - from all substrings of w. Respectively, we consider the following 2
policies.

1. “Permissive”: w is a legitimate message if and only if there exists i ∈ [1, k]
such that si is a substring of w. This policy captures the String Matching
problem and can be applied when the current interests of the group are
reflected by the keywords si’s, and all messages that do not contain any of
these keywords are rejected.

2. “Prohibitive”: w is a legitimate message if and only if for every length-t
substring y of w and every si ∈ S, their Hamming distance is at least d.
This policy is related to the Approximate String Matching problem. Here,
the keywords si’s could correspond to topics that are unethical, illegal, adul-
tery, or simply out of the group’s interests. The requirement on minimum
Hamming distance d is to address spammers who might slightly alter si so
that it passes the filtering while still being somewhat readable.

Having defined the policies, our next step is to derive methods for proving in
zero-knowledge that the secret message w satisfies each of the policies, which
will be used by the message sender when proving the well-formedness of the
ciphertext. Let us discuss the high-level ideas.

Regarding the permissive policy, our observation is that if we form matrix
W ∈ {0, 1}t×(p−t+1) whose columns are length-t substrings of w, and matrix
S ∈ {0, 1}t×k whose columns are the keywords si, then w is legitimate if and
only if there exist weight-1 vectors g ∈ {0, 1}p−t+1 and h ∈ {0, 1}k such that
W · g = S · h. Then, to handle this relation, we employ Stern’s permuting
technique [58] to prove knowledge of such g,h and we adapt Libert et al.’s
technique [37] for proving the well-formedness of the quadratic term W · g.

As for the prohibitive policy, we consider all the (p−t+1)·k sums zi,j ∈ {0, 1}t
over Z2 of substrings of w and keywords in S. Then, w is legitimate if and only
if all these sums have Hamming weight at least d. To prove these statements, we
perform the following extension trick, inspired by [42].
6 Partial corruption means that the adversary only knows the secret key of the au-

thority who still follows its prescribed program.

5

We append (t − d) coordinates to zi,j ∈ {0, 1}t to get z∗i,j ∈ {0, 1}2t−d with
Hamming weight exactly t. Such an extension is always possible if zi,j has weight
at least d. Furthermore, the converse also holds: if z∗i,j has weight t, then the
original zi,j must have weight at least t − (t − d) = d. At this point, it suffices
to use Stern’s permuting technique [58] for proving knowledge of fixed-weight
binary vectors.

The techniques sketched above can be smoothly integrated into our code-
based instantiation of FDGE.
Code-based instantiation. To design a scheme satisfying our model of FDGE,
we would need: (1) An anonymous CCA2-secure public-key encryption to en-
crypt messages under a group user’s public key and to encrypt the user’s public
key under the OA’s public key; (2) A secure digital signature to certify pub-
lic keys of group members; and (3) Zero-knowledge proofs compatible with the
encryption and signature layers, as well as with the message filtering layer.

In the code-based setting, the first ingredient can be obtained from the ran-
domized McEliece encryption scheme [54] that satisfies CPA-security and the
Naor-Yung transformation [52]. The second ingredient seems not readily avail-
able, as code-based signatures for which there are efficient zero-knowledge proofs
of knowledge of message/signature pairs are not known to date. To tackle this
issue, we adapt the strategy of Ling et al. in their construction of lattice-based
fully dynamic group signatures [44]. This amounts to replacing the signature
scheme by an accumulator scheme [9] equipped with zero-knowledge arguments
of membership. We hence can make use of the code-based realization of Merkle-
tree acummulators recently proposed by Nguyen et al. [53].

The main idea is to use Merkle-tree accumulators to certify users’ public key.
Let N = 2` be the maximum expected number of group users. Let pk = (G0,G1)
be a user public key, where G0,G1 are 2 McEliece encryption matrices (recall
that we employ the Naor-Yung double encryption technique). Then pk is hashed
to a vector d 6= 0, which is placed at the tree leaf corresponding to the identity
j ∈ {0, 1}` of the user in the group. A tree root is then computed based on all
the 2` leaves. The user’s certificate, which is made available to message senders,
consists of pk, j and hash values in the path from her leaf to the root.

When sending a message w satisfying “permissive” or “prohibitive” policy to
user j, the sender uses pk to encrypt w as cw, and uses the OA’s public key to
encrypt j as coa, so that OA can recover j if necessary. As for well-formedness
of ciphertext, sender proves in zero-knowledge that:

1. w satisfies the given policy. This can be done using the discussed techniques.

2. coa is an honestly computed ciphertext of j. This part is quite straightforward
to realize via techniques for Stern’s protocol.

3. cw is a correct ciphertext of the w from (1.), computed under some hidden
public key pk, whose hash value d 6= 0 is at the tree leaf corresponding to
the j from (2.). This is indeed the most sophisticated portion of our scheme.
It requires to demonstrate: (i) membership of d in the tree and d 6= 0 is the

6

hash of value of pk; (ii) cw has the form cw = pk ·
[

r
w

]
+ e, where (r, e) is

the encryption randomness.

While statement (i) can be handled using the techniques from [53,42], (ii) would
require to prove an Learning-Parity-with-Noise-like relation with hidden-but-
certified matrix pk. We then tackle this problem by adapting the techniques for
Learning-with-Errors relations [55] from [37] into the binary setting.

Having discussed the main technical ingredients of the scheme, let us now
explain how user revocations and dynamic user enrolments can be done in a
simple manner based on Merkle trees. The ideas, first suggested in [44], are as
follows. At the setup phase, all leaves in the tree are set as 0. When a new user
joins the group, as mentioned, 0 is changed to d 6= 0. If the user is later revoked
from the group, the value is set back to 0. For each change, the GM can efficiently
update the tree by re-computing the path in time O(logN). Note that in the
zero-knowledge layer above, the sender in part proves that d is non-zero - which
is interpreted as “the sender is indeed an active group user”.

Putting everything together, we obtain the first construction of code-based
(fully dynamic) GE. In the random oracle model, we prove that the scheme
satisfies all the stringent security notions of FDGE, namely, message secrecy,
anonymity and soundness, based on the security of the code-based technical
ingredients we employ.

The scheme, however, should only be viewed as a proof-of-concept, as it
is not practical - due to the involvement of heavy zero-knowledge arguments.
However, in comparison with [37] the only known GE scheme from post-quantum
assumptions, ours is more efficient. The main reason is that ours uses a Merkle
tree - which can be viewed as a weak form of signatures, while theirs relies on a
standard-model lattice-based signature scheme, whose supported zero-knowledge
arguments incurred an overhead factor of log2 q, where q > 230. We estimate
that, for 128 bits of security, our argument size is about 2 orders of magnitude
smaller than theirs. In other words, our scheme is more efficient than [37], but
is still not practical. We leave the problem of obtaining practically usable FDGE
schemes from post-quantum assumptions as an interesting open question.
Other related Work. Enabling efficient user revocations in advanced privacy-
preserving cryptographic constructions is generally a challenging problem, since
one has to ensure that revoked users are no longer able to act as active users,
and the workloads of other parties (managers, non-revoked users, verifiers) do
not significantly increase in the meantime. In the context of group signatures,
several different approaches have been suggested [17,19,13] to address this prob-
lem, and efficient pairing-based constructions supporting both dynamic joining
and efficient revocation were given in [51,40,39]. Bootle et al. [14] pointed out a
few shortcomings of previous models, and put forward robust security notions
for fully dynamic group signatures. Here, we adapt the [14] model to provide the
first formal treatment of user revocation in the context of GE.

The major tools for building those privacy-preserving constructions are zero-
knowledge (ZK) proof [29] and argument [28,16] systems that allow to prove the

7

truth of a statement while revealing no additional information. Almost all known
zero-knowledge proof/argument systems used in code-based cryptography follow
Stern’s framework [58]. Variants of Stern’s protocol have been employed to de-
sign privacy-preserving constructions, such as proofs of plaintext knowledge [50],
linear-size ring signatures [48,23,49,15], linear-size and sublinear-size group sig-
natures [25,2], proofs of valid openings for commitments and proofs for general
relations [32]. Recently, Nguyen et al. [53] proposed a number of new code-based
privacy-preserving protocols, including accumulators, range proofs, logarithmic-
size ring signatures and group signatures. However, prior to our work, no con-
struction of code-based GE was known.
Organization. The rest of the paper is organized as follows. Section 2 in-
troduces the model and security requirements of FDGE. In Section 3, we re-
call some necessary background on code-based cryptography and techniques for
Stern-like zero-knowledge protocols. In Section 4, we present our ZK argument
for a quadratic relations. This is crucial for proving the permissive relation in
Section 5 - where we also present the strategies for proving the prohibitive re-
lation. Next, we describe our code-based instantiation of FDGE in Section 6.
Then 2 zero-knowledge argument systems supporting the scheme are presented
in Section 7. Finally, we provide security proofs for the scheme in Section 8.

2 Fully Dynamic Group Encryption: Model and Security
Requirements

In this section, we first present the model of fully dynamic group encryption
FDGE that offers both dynamic join and revocation, which is developed from
the one proposed by Kiayias et al. [34]. Our model is analogous to the fully
dynamic group signature one proposed by Bootle et al. [14]. In a FDGE scheme,
the parties involved are the sender, the verifier, the group manager GM who
manages the group of receivers, and the opening authority OA who is capable
of identifying the recipients of ciphertexts. R is a public relation for which a
FDGE should be verifiable. Receivers can join and leave the group at the choice
of the GM. We assume that the GM will publish group information infoτ at the
beginning of each time epoch τ . The information depicts changes to the group
such as the existing group members or the revoked members at current epoch
τ . It is required that anyone can verify the authenticity and well-formedness of
the group information. In addition, by comparing the current group information
with the previous one, it is possible to recover the list of members revoked from
the group at the current epoch. We also assume that the epoch maintains the
order in which the group information was published, i.e., infoτ1 precedes infoτ2

if τ1 < τ2.
Compared to [34], our model enables the GM to remove some users from

the group through a group updating algorithm GUpdate. Another difference is
that we avoid interaction by employing a non-interactive zero-knowledge (NIZK)
proof, which has already been considered by Cathalo, Libert and Yung [20]. As
highlighted by the authors, non-interaction is highly desirable as the sender, who

8

might be required to repeat the proof with many verifiers, needs to maintain a
state and remember all the random coins used to generate the ciphertext.

2.1 Syntax

Formally, a FDGE that is verifiable for a public relationR consists of the following
polynomial-time algorithms.

Setupinit(1λ) The algorithm takes as input the security parameter 1λ and outputs
a set of public parameters pp.

SetupOA(pp) This algorithm is run by the opening authority OA. It takes as
input pp and outputs a key pair (pkOA, skOA).

SetupGM(pp) This algorithm is run by the group manger GM. It takes as input
the public parameters pp and outputs a key pair (pkGM, skGM). Meanwhile,
GM initializes the group information info and a public registration directory
reg.

GR(1λ) This randomized algorithm takes as input the security parameter λ and
outputs public and secret parameters (pkR, skR) for the relation R. Note
that skR is an empty string if a publicly samplable relation R is considered.

SampleR(pkR, skR) This probabilistic algorithm takes (pkR, skR) as input and
outputs a statement and witness pair (x,w).

R(pkR, x, w) The polynomial-time testing algorithm takes as input (pkR, x, w)
and returns 1 if and only if (x,w) is in the relation based on the public
parameter pkR.

〈Join, Issue(skGM)〉(pkGM, infoτcurrent) This is an interactive protocol securely run
between a user and the GM. Both the Join and Issue algorithms takes as
inputs pkGM and infoτcurrent at current time epoch τcurrent while the the latter
algorithm takes skGM as an additional input. Upon successful completion, the
algorithm Join outputs a user key pair (pk, sk) while Issue adds a new record
in the directory reg. Note that GM may update group information and that
reg may store information like user identifier or user public key that may
be used by GM and OA for later updating and opening.

GUpdate(skGM,S, infoτcurrent , reg) This algorithm is run by the GM who will ad-
vance the epoch and update the group information. Given the secret key
skGM, a set S of active users to be deleted from the group, current group
information infoτcurrent , and the directory reg, the GM computes new group
information infoτnew and may update the directory reg as well. If there is
no change to the group information or S contains inactive users (who has
never joined the group yet or who has been revoked from the group), this
algorithm aborts.

Enc(pkGM, pkOA, infoτ , w, pk, L) This randomized encryption algorithm is run by
the sender who wishes to encrypt a witness w for its chosen user pk. It returns
a ciphertext ψ with a certain label L. As in [34], L is a public string bound to
the ciphertext that may contain some transaction related data or be empty.
If pk is not an active user at current time epoch τ or R(pkR, x, w) = 0, this
algorithm aborts. Let coinsψ be the random coins used to generate ψ.

9

P
(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
This randomized proof algo-

rithm is run by the sender who acts as a prover and demonstrates the honest
computation of ciphertext ψ. Given all the inputs, it outputs a proof πψ. The
proof ensures that there exists a certified and active group member at time
τ , who is able to decrypt ψ and obtain w′ such that R(pkR, x, w′) = 1, and
whose public key is encrypted under pkOA and can be later revealed using
the OA’s secret key skOA.

V
(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
This verification algorithm is run by

any verifier who on input the tuple (pp, pkGM, pkOA, infoτ , pkR, x, ψ, L) and
a corresponding proof πψ outputs bit 1 or 0. If the output is 1, we say the
proof πψ is valid.

Dec(infoτ , sk, ψ, L) This decryption algorithm is run by the user in possession of
the secret key sk. Given all the inputs, it outputs w′ such thatR(pkR, x, w′) =
1 or ⊥ otherwise.

Open(infoτ , skOA, ψ, L) This opening algorithm is run by the OA who holds the
key skOA. Given the inputs, it returns an active user public key pk or ⊥ to
indicate opening failure.

To ease the notations, we additionally use the following algorithms in the security
experiments.

IsActive(infoτ , pk) This algorithm returns 1 if user pk is an active user at time τ
and 0 otherwise.

Correctness. Informally, correctness of a GE scheme requires that an honest
proof of correct encryption is always valid, that the designated receiver can
always recover the encrypted message, and that the GM is capable of identifying
the receiver. We model this requirement in the experiment Exptcorr

A (1λ). Below,
we first define some oracles that are accessible to the adversary.

AddU(skGM) This oracle adds an honest user to the group at current time τcurrent.
It simulates the interactive protocol 〈Join, Issue(skGM)〉(pkGM, infoτcurrent) and
maintains an honest user list HUL. Let the output of Join be (pk, sk). It then
adds pk to HUL.

GUp(·) This oracle allows the adversary to remove a set of active users from the
group at current time epoch τcurrent. When a set S is queried, it advances
the time epoch to τnew and updates the group information to infoτnew by
executing the algorithm GUpdate(skGM,S, infoτcurrent , reg). As the algorithm
GUpdate, it may update the reg.

Definition 1. Define Advcorr
A (1λ) = Pr[Exptcorr

A (1λ) = 1] as the advantage of
an adversary A against correctness in the experiment Exptcorr

A (1λ). A FDGE is
correct if, for any PPT adversary A, the advantage of A is negligible in λ.

Experiment Exptcorr
A (1λ)

pp← Setupinit(1λ); (pkOA, skOA)← SetupOA(pp); (pkGM, skGM)← SetupGM(pp).
(pkR, skR)← GR(1λ); HUL← ∅.
(pk, τ, x, w, L)← AAddU,GUp(pp, pkOA, pkGM, pkR).

10

If pk /∈ HUL or infoτ = ⊥ or IsActive(infoτ , pk) = 0
or R(pkR, x, w) = 0, return 0.

ψ ← Enc(pkGM, pkOA, infoτ , w, pk, L).
πψ ← P

(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
.

w′ ← Dec(infoτ , sk, ψ, L); pk′ ← Open(infoτ , skOA, ψ, L).
If V

(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
= 0 or w′ 6= w

or pk′ 6= pk, return 1 otherwise return 0.

2.2 Formulation of the Security Requirements

We now present three security requirements: message secrecy, anonymity, and
soundness for FDGE, which are carefully adapted from the dynamic case. We
formulate those requirements through experiments that are run between a chal-
lenger and an adversary. As mentioned earlier, the adversary is empowered with
attack capability to the maximum extent possible. Specifically, in the definition
of message secrecy and anonymity, it fully corrupts GM and/or OA and generates
keys arbitrarily on behalf of them. Regarding soundness, only partial corruption
of the OA whose key is still honestly generated is allowed. Details of the security
requirements are described below.
Message Secrecy. This security notion protects the appointed receiver from
a malicious adversary who tries to extract the information about the encrypted
message. It requires that the adversary cannot distinguish a ciphertext that is an
encryption of a real witness or encryption of a randomly chosen one even though
it could fully corrupt the GM, the OA, and all group members except one that
is chosen as the receiver. We model this requirement using Exptsec−b

A (1λ) for
b ∈ {0, 1}. In the following, we define some oracles that will be used in the
experiment.

USER() This oracle simulates the algorithm Join, when interacted with adver-
sary A who plays the role of GM, to introduce an honest user to the group
at current time τcurrent. it maintains an honest user list HUL. Let the output
of this oracle be (pk, sk) and add pk to HUL.

RevealU(·) This oracle allows the adversary to learn an honest user secret key.
It maintains a bad user list BUL. When a user public key pk is queried, it
returns the corresponding secret key sk and adds pk to BUL if pk /∈ BUL,
and aborts otherwise.

CHbror(τ, pk, w, L) This is a real-or-random challenge oracle which is only called
once. It returns (ψ, coinsψ) such that ψ ← Enc(pkGM, pkOA, infoτ , w, pk, L) if
b = 1, whereas if b = 0 ψ ← Enc(pkGM, pkOA, infoτ , w′, pk, L) where w′ is
sampled uniformly from the space of all possible plaintexts. In both cases,
coinsψ are the random coins used for the computation of the challenged
ciphertext ψ.

DEC(sk, ·) This is an oracle for the decryption function Dec. When (ψ, τ, L) is
queried to this oracle, it returns the output of Dec(infoτ , sk, ψ, L). When a
tuple (pk, ψ, τ, L) should be rejected by this oracle, we write DEC¬(ψ,τ,L,)(·).

11

PROVEbP,P′(pk, τ, pkR, x, w, L, ψ, coinsψ) This oracle can be invoked a polyno-
mial number times. It generates proofs of validity of the challenged cipher-
text. If b = 1, let πψ ← P

(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
and return the output πψ. If b = 0, it runs a simulator P ′ that takes the
same inputs as P except (w, coinsψ) and returns whatever P ′ outputs.

In the experiment Exptsec−b
A (1λ), the adversary A fully controls the GM and

the OA, and enrolls honest users to the group by interacting with the oracle
USER. It is entitled to corrupt at most all but one honest users by querying
the RevealU oracle and to update the group information, insofar as info and reg
are well-formed. At some point, the adversary chooses a targeted receiver pk∗
and has access to the DEC oracle with respect to pk∗. It then specifies a certain
epoch τ∗, a label L∗ together with the relation pk∗R and the statement witness
pair (x∗, w∗). Afterwards, the challenger encrypts the witness w∗ if b = 1 or a
random message if b = 0 to the receiver pk∗, and sends the resultant ciphertext
ψ∗ to A. After receiving it, A is allowed to query the PROVE oracle for proofs
of its validity and still has access to the DEC oracle with respect to pk∗ with the
natural restriction that (ψ∗, τ∗, L∗) is forbidden. Finally, A is asked to guess the
challenger’s choice.

Definition 2. Let the advantage of an adversary A against message secrecy be
Advsec−b

A (1λ) = |Pr[Exptsec−1
A (1λ) = 1] − Pr[Exptsec−0

A (1λ) = 1]|. A FDGE
satisfies message secrecy if, for any PPT adversary A, the advantage of A is
negligible in λ.

Experiment Exptsec−b
A (1λ)

pp← Setupinit(1λ); (aux, pkGM, pkOA)← A(pp); HUL← ∅, BUL← ∅.
Throughout the experiment, if info or reg is not well-formed, return 0.
(pk∗, aux)← AUSER,RevealU(aux); if pk∗ /∈ HUL \ BUL, return 0.
Let sk∗ be the corresponding secret key of pk∗.
(τ∗, pk∗R, x∗, w∗, L∗)← ADEC(sk∗,·)(aux).
If IsActive(infoτ∗ , pk∗) = 0 or R(pk∗R, x∗, w∗) = 0 return 0.
(ψ∗, coinsψ∗)← CHbror(τ∗, pk∗, w∗, L∗).
Let ð∗ = (pk∗, τ∗, pk∗R, x∗, w∗, L∗, ψ∗, coinsψ∗).
b′ ← APRVOEbP,P′ (ð

∗),DEC¬(ψ∗,τ∗,L∗)(sk∗,·)(aux, ψ∗).
Return b′.

Anonymity. This notion aims to prevent the adversary from learning informa-
tion about the identity of the receiver of a ciphertext. It requires that an adver-
sary without possession of the secret key of OA is not capable of distinguishing
which one of two group members of its choice is the recipient of a ciphertext. Note
that the adversary is forbidden from corrupting these two challenged members
since they know whether a ciphertext is intended for them by simply decrypting
it. We model this requirement in Exptanon−b

A (1λ) for b ∈ {0, 1}, which will utilize
the following challenge oracle CHbanon and opening oracle OPEN.

CHbanon(τ, pk0, pk1, w, L) This is a challenge oracle that can be called only once.
It returns (ψ, coinsψ) such that ψ ← Enc(pkGM, pkOA, infoτ , w, pkb, L).

12

OPEN(skOA, ·) This is an oracle for the opening algorithm Open. When decryp-
tion of a tuple (ψ, τ, L) is requested, it returns Open(infoτ , skOA, ψ, L). When
a tuple (ψ, τ, L) is forbidden, we write OPEN¬(ψ,τ,L)(skOA, ·).

In the experiment, the adversary A can fully corrupt the GM. By interacting with
the oracles USER,RevealU, it can also introduce honest users to the group and
learn up to all but two secret keys at a later point. As in the Exptsec−b

A (1λ), A is
allowed to update the group at its will, provided that the group information info
and reg are well-formed. Moreover, A has access to the OPEN(skOA, ·) oracle.
At some point, A specifies two targeted receivers pk∗0, pk∗1 and is granted access
to the DEC oracle with respect to both recipients. Next, it outputs a specific
epoch τ∗ and (pk∗R, x∗, w∗) to the challenger, who will encrypt the witness to
receiver pk∗b . Thereafter, the challenger sends the challenge ciphertext ψ∗ to A.
The latter is further allowed to query the proof of validity of ψ∗ and accessible to
oracles DEC(sk∗0, ·),DEC(sk∗1, ·),OPEN(skOA, ·) with the constraint that the tuple
(ψ∗, τ∗, L∗) is not queried to any of the oracles. Lastly, A is asked to guess which
one of the two users is the challenger’s choice.

Definition 3. Define the advantage of an adversary A against anonymity as
Advanon

A (1λ) = |Pr[Exptanon−1
A (1λ) = 1] − Pr[Exptanon−0

A (1λ) = 1]|. A FDGE
satisfies anonymity if, for any PPT adversary A, the advantage of A is negligible
in λ.

Experiment Exptanon−b
A (1λ)

pp← Setupinit(1λ); (pkOA, skOA)← SetupOA(pp); (aux, pkGM)← A(pp, pkOA).
HUL← ∅, BUL← ∅.
Throughout the experiment, if info or reg is not well-formed, return 0.
(pk∗0, pk∗1, aux)← AUSER,RevealU,OPEN(skOA,·)(aux).
If pk∗0 /∈ HUL \ BUL or pk∗1 /∈ HUL \ BUL, return 0.
Let sk∗0 and sk∗1 be the secret keys of pk∗0 and pk∗1, respectively.
(τ∗, pk∗R, x∗, w∗, L∗, aux)← ADEC(sk∗0 ,·),DEC(sk∗1 ,·),OPEN(skOA,·)(aux).
If IsActive(infoτ∗ , pk∗0) = 0 or IsActive(infoτ∗ , pk∗1) = 0 or

R(pk∗R, x∗, w∗) = 0 return 0.
(ψ∗, coinsψ∗)← CHbanon(τ∗, pk∗0, pk∗1, w∗, L∗).
Let ð∗ = (pp, pkGM, pkOA, infoτ∗ , pk∗R, x∗, ψ∗, L∗, w∗, pk∗b , coinsψ∗).
Let t∗ = (ψ∗, τ∗, L∗).
b′ ← AP(ð∗),DEC¬t

∗
(sk∗0 ,·),DEC¬t

∗
(sk∗1 ,·),OPEN¬t

∗
(skOA,·)(aux, ψ∗).

Return b′.
Soundness. This notion requires that the adversary cannot generate a cipher-
text with a valid proof associated with time epoch τ such that (1) the opening of
the ciphertext is a public key that does not belong to any active group member
at time τ , (2) the revealed public key is not in the language Lpp

pk of valid public
keys, (3) the ciphertext is not in the space L(pkGM,pkOA,τ,pkR,x,L,pk)

ciphertext of valid cipher-
texts. Note that Lpp

pk = {pk : ∃ sk such that (pk, sk) is a valid user key pair} and

13

that

L(pkGM,pkOA,τ,pkR,x,L,pk)
ciphertext = {ψ : ∃ w such that ψ = Enc(pkGM, pkOA, infoτ , w, pk, L),

R(pkR, x, w) = 1, and IsActive(infoτ , pk) = 1}.

We model this requirement in the experiment Exptsound
A (1λ). The adversary is

given the secret key of OA and is permitted to adaptively register users to the
group through oracle queries REG(skGM), as defined below. In addition, it can
remove some users from the group by querying the oracle GUp(·).

REG(skGM) This oracle simulates the GM and runs the algorithm Issue. When
queried by adversary A who plays the role of a user, it interacts with A and
if successful registers an adversarially controlled user to the group at current
time τcurrent. As the algorithm Issue, it maintains a public directory reg and
may update the group information as well.

Definition 4. Define Advsound
A (1λ) = Pr[Exptsound

A (1λ) = 1] as the advantage
of an adversary A against soundness in the experiment Exptsound

A (1λ). A FDGE
satisfies soundness if, for any PPT adversary A, the advantage of A is negligible
in λ.

Experiment Exptsound
A (1λ)

pp← Setupinit(1λ); (pkOA, skOA)← SetupOA(pp); (pkGM, skGM)← SetupGM(pp).
(τ, pkR, x, ψ, L, πψ, aux)← AREG,GUp(pp, pkGM, pkOA, skOA).
If V

(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
= 0, return 0.

pk← Open(infoτ , skOA, ψ, L).
If IsActive(infoτ , pk) = 0 or pk /∈ Lpp

pk or ψ /∈ L(pkGM,pkOA,pkR,x,L,pk)
ciphertext ,
return 1 else return 0.

3 Some Background on Code-Based Cryptography and
Stern-like Zero-Knowledge Protocols

Notations. Let a, b ∈ Z. Denote [a, b] as the set {a, . . . , b}. We simply write [b]
when a = 1. Let⊕ denote the bit-wise addition operation modulo 2. If S is a finite
set, then x $←− S means that x is chosen uniformly at random from S. Throughout
this paper, all vectors are column vectors. When concatenating vectors x ∈
{0, 1}m and y ∈ {0, 1}k, for simplicity, we use the notation (x‖y) ∈ {0, 1}m+k

instead of (x>‖y>)>. The Hamming weight of vector x ∈ {0, 1}m is denoted
by wt(x). The Hamming distance between vectors x,y ∈ {0, 1}m is denoted by
dH(x,y), and is equal to wt(x ⊕ y). Denote by B(n, ω) the set of all binary
vectors of length n with Hamming weight ω, and by Sn the symmetric group of
all permutations of n elements.

Let Z+ be the set consisting of all positive integers. For c ∈ Z+ and k divisible
by c, define the following.

14

Regular(k, c) is the set containing all vectors of the form w = (w1‖ . . . ‖w k
c
) ∈

{0, 1}2c· kc that consists of k
c blocks, each of which is an element of B(2c, 1).

We call w regular word if w ∈ Regular(k, c) for some k, c.
2-Regular(k, c) is the set of all vectors x ∈ {0, 1}2c· kc such that there exist regular

words v,w ∈ Regular(k, c) satisfying x = v⊕w. We call w 2-regular word if
w ∈ 2-Regular(k, c) for some k, c.

RE : {0, 1}k → {0, 1}2c· kc is a regular encoding function that maps x ∈ {0, 1}k
to a vector RE(x) ∈ {0, 1}2c· kc as follows. Let x = (x1‖ . . . ‖x k

c
), where

xj = (xj,1, . . . , xj,c)> for j ∈ [kc]. Compute tj =
c∑
i=1

2c−i ·xj,i. Let ∆2c(xj) ∈

B(2c, 1) whose sole 1 entry is at the tj-th position for tj ∈ [0, 2c − 1]. RE(x)
is then defined as (∆2c(x1)‖∆2c(x2)‖ · · · ‖∆2c(x k

c
)) ∈ Regular(k, c).

We now recall the 2-RNSDn,k,c problem, introduced by Augot, Finiasz and
Sendrier (AFS) [4,5]. The problem asks to find low-weight 2-regular codewords in
random binary linear codes, and is closely related to the Small Codeword Prob-
lem [45] and binary Shortest Vector Problem [3], with an additional constraint
that the solution codeword must be 2-regular.

Definition 5. The 2-RNSDn,k,c Problem: given a uniformly random matrix B ∈
Zn×m2 , where m = 2c · k/c, find a non-zero vector z ∈ 2-Regular(k, c) ⊆ {0, 1}m
such that B · z = 0.

The problem is shown to be NP-complete in the worst case [4]. All the previ-
ous algorithms require exponential times in the security parameter in terms of
practical use and a comprehensive discussion of known attacks and parameter
settings was given in [11].
The Modified AFS Hash Function Nguyen et al. [53] recently modified the
AFS hash function family [4,5] so that it takes 2 inputs (instead of just 1) and
hence is suitable for building Merkle hash trees. The definition is given below.

Definition 6. Let m = 2 · 2c · n/c. The function family H mapping {0, 1}n ×
{0, 1}n to {0, 1}n is defined as H = {hB | B ∈ Zn×m2 }, where for B = [B0|B1]
with B0,B1 ∈ Zn×m/2

2 , and for any (u0,u1) ∈ {0, 1}n × {0, 1}n, we have:

hB(u0,u1) = B0 · RE(u0)⊕B1 · RE(u1) ∈ {0, 1}n.

The collision resistance of the hash function family relies on the hardness of the
2-RNSD problem.

Lemma 1 ([53]). The function family H, defined in Definition 6 is collision-
resistant, assuming the hardness of the 2-RNSDn,2n,c problem.

3.1 Code-Based Merkle-tree Accumulators

We now recall the code-based Merkle-tree accumulators suggested in [53].

15

SetupAcc(λ). Given n = O(λ), c = O(1) and m = 2 ·2c ·n/c. Sample B $←− Zn×m2 ,
and output the public parameter pp = B.

AccuB(R = {d0, . . . ,dN−1} ⊆ ({0, 1}n)N). Assume N = 2` without loss of gen-
erality. Re-write dj as u`,j and call dj the leaf value of the leaf node bin(j)
for j ∈ [0, N − 1]. Build a binary tree upon N leaves u`,0, . . . ,u`,2`−1 in the
following way. For k ∈ {` − 1, ` − 2, . . . , 1, 0} and i ∈ [0, 2k − 1], compute
uk,i = hB(uk+1,2i,uk+1,2i+1). Output the accumulated value u = u0,0.

WitGenB(R,d). If d /∈ R, the algorithm outputs ⊥. Otherwise, it outputs the
witness w for d as follows.
1. Set d = dj for some j ∈ [0, N − 1]. Re-write dj = u`,j . Let bin(j) =

[j1| . . . |j`]> ∈ {0, 1}` be the binary representation of j.
2. Consider the path from u`,j to the root u, the witness w then con-

sists of bin(j) as well as all the sibling nodes of the path. Let w =(
bin(j), (w`, . . . ,w1)

)
∈ Z`2 ×

(
Zn2
)`. We give an example in Figure 1.

VerifyB
(
u,d, w

)
. Let w be of the following form:

w =
(
[j1| · · · |j`]>, (w`, . . . ,w1)

)
.

This algorithm then computes v`, . . . ,v0. Let v` = d and

∀i ∈ {`− 1, . . . , 1, 0} : vi =
{
hB(vi+1,wi+1), if ji+1 = 0;
hB(wi+1,vi+1), if ji+1 = 1.

(1)

Output 1 if v0 = u or 0 otherwise.

Lemma 2 ([53]). Assume that the 2-RNSDn,2n,c problem is hard, then the given
accumulator scheme is secure.

3.2 An Efficient Updating Algorithm

To construct our fully dynamic group encryption, it is required to update the
accumulated value u0,0 whenever a user joins or is revoked from the group. It
is thus desirable that one can update u0,0 without having to reconstruct the
whole tree. We follow the approach of Ling et al. [44], who constructed their
dynamic group signature by introducing an efficient updating algorithm to the
static (lattice-based) Merkle tree accumulator [38]. Moreover, their updating
algorithm TUpdateB runs in time O(`): they simply update the path from a
leaf node to the root if that leaf node value needs to be modified. Specifically,
given input a bit-string bin(j) ∈ {0, 1}` and a value d∗ ∈ {0, 1}n, the algorithm
TUpdateB proceeds as follows.

TUpdateB(bin(j),d∗) Let dj be the existing leaf value of the leaf node bin(j). It
executes the algorithm WitGenB(R,dj), obtaining w = (bin(j), (w`, . . . ,w1)).
It then sets v` = d∗ and recursively computes v`−1, . . . ,v0 as in (1). Finally,
for i ∈ [0, `], it sets ui,b j

2`−i
c = vi.

16

u0,0

u3,0 u3,7u3,3 u3,4u3,2 u3,5u3,1 u3,6

d0 d7d3 d4d2 d5d1 d6

u2,0 u2,3u2,1 u2,2

u1,0 u1,1

Fig. 1: A Merkle tree with 23 = 8 leaves, which accumulates the data blocks
d0, . . . ,d7 into the value u = u0,0 at the root. Let j = 5. Then the path from
u3,5 = d5 to the root consists of the yellow nodes, whose siblings are the pink
nodes. Hence, bin(j) as well as the pink nodes form a witness to the fact that d5
is accumulated in u. If one needs to update d5 to d∗, it suffices to update the
yellow nodes.

3.3 The Randomized McEliece Encryption Scheme

Now we recall the original McEliece [47] encryption scheme and its randomized
version proposed in [54]. The following describes the randomized one.

– SetupME(1λ): Let ne = ne(λ), ke = ke(λ), te = te(λ) be the parameters for a
binary [ne, ke, 2te + 1] Goppa code. Choose k1, k2 ∈ Z such that ke = k1 + k2.
Let Zk2

2 be the plaintext space.
– KeyGenME(ne, ke, te): This algorithm outputs the encryption key and decryption

key for the randomized McEliece encryption scheme. It works as follows:
1. Choose a generator matrix G′ ∈ Zne×ke

2 of a randomly selected [ne, ke, 2te +
1] Goppa code. Let S ∈ Zke×ke2 be a random invertible matrix and P ∈
Zne×ne

2 be a random permutation matrix, then compute G = PG′S ∈
Zne×ke

2 . Output encryption key pkME = G and decryption key skME =
(S,G′,P).

– EncME(pkME,m): On input a message m ∈ Zk2
2 and pkME, sample r $←− Zk1

2 and

e $← B(ne, te), and then output the ciphertext c = G ·
(

r
m

)
⊕ e ∈ Zne

2 .

– DecME(skME, c): On input the ciphertext c and decryption key skME, it works as
follows:
1. Multiply P−1 to the left of the ciphertext c, then apply an error-correcting

algorithm. Obtain m′′ = DecodeG′(P−1 · c) where Decode is an error-
correcting algorithm with respect to G′. Returns ⊥ if Decode fails.

2. Multiply S−1 to the left of the ciphertext m′′, then m′ = S−1 ·m′′, parse

m′ =
(

r
m

)
, where r ∈ Zk1

2 and m ∈ Zk2
2 , and return m.

17

Regarding the original McEliece scheme, it encrypts a message m ∈ Zke2 as
c = G ·m⊕e while the decryption algorithm simply outputs m′ ∈ Zke2 . Looking
ahead, we employ the original scheme to ensure that a potential user who re-
quests to join the group knows the underlying McEliece decryption key. This is
achieved by encrypting a random message under the encryption key chosen by
the user and asks the user to output the correct message. As pointed out in [47],
the running time of the user who does not know the underlying decryption key
can be at least as k3

e ·
(
ne
ke

)
/
(
ne−te
ke

)7.
Note that the original McEliece scheme is not even CPA-secure. Fortunately,

the above randomized one has pseudorandom ciphertexts which implies CPA-
security, under the Decisional McEliece problem DMcE(ne, ke, te) and the Deci-
sional Learning Parity with (fixed-weight) Noise problem DLPN(ne, k1,B(ne, te))
in the standard model. The two problems are recalled below.

Definition 7. The DMcE(n, k, t) problem: given a matrix G ∈ Zn×k2 , distin-
guish whether it is uniformly chosen from Zn×k2 or is generated by algorithm
ME.KeyGen(n, k, t) described above.

When n = n(λ), k = k(λ), t = t(λ), we say that the DMcE(n, k, t) problem is
hard, if the success probability of any PPT distinguisher is at most 1/2+negl(λ).

Definition 8. The DLPN(n, k,B(n, t)) problem: given a pair (A, c) ∈ Zn×k2 ×
Zn2 , distinguish whether it is uniformly chosen from Zn×k2 ×Zn2 or is obtained by
choosing A $← Zn×k2 , r $← Zk2 , e $← B(n, t) and outputting (A,A · r⊕ e).

When n = n(λ), k = k(λ), t = t(λ), we say that the DLPN(n, k,B(n, t)) problem
is hard, if the success probability of any PPT distinguisher is at most 1/2 +
negl(λ).

3.4 Zero-Knowledge Arguments and Stern-like Protocols

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(x,w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following conditions hold:

– Completeness. If (x,w) ∈ R then Pr
[
〈P(x,w),V(y)〉 = 1

]
= 1.

– Soundness. If (x,w) 6∈ R, then ∀ PPT P̂: Pr[〈P̂(x,w),V(x)〉 = 1] ≤ e.

7 The estimated running time in [47] is actually k3
e · nkee /(ne − te)ke , which is a fur-

ther estimation of ours. The factor k3
e is the amount of work involved in solving ke

simultaneous equations with ke unknown.

18

An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(x) having oracle access to any V̂(x) and producing a simulated tran-
script that is statistically close to the one of the real interaction between P(x,w)
and V̂(x). A related notion is argument of knowledge, which, for three-move
protocols (commitment-challenge-response), requires the existence of a PPT ex-
tractor taking as input a set of valid transcripts w.r.t. all possible values of the
“challenge” to the same “commitment”, and outputs w′ such that (x,w′) ∈ R.
The statistical zero-knowledge arguments of knowledge presented in this work
are Stern-like [58] protocols. In particular, they are Σ-protocols in the general-
ized sense defined in [32,10] (where 3 valid transcripts are needed for extraction,
instead of just 2). The basic protocol consists of 3 moves: commitment, challenge,
response. If a statistically hiding and computationally binding string commit-
ment is employed in the first move, then one obtains a statistical zero-knowledge
argument of knowledge (ZKAoK) with perfect completeness, constant soundness
error 2/3. In many applications, the protocol is repeated a sufficient number
of times to make the soundness error negligibly small. For instance, to achieve
soundness error 2−80, it suffices to repeat the basic protocol 137 times.
An abstraction of Stern’s protocols. We recall an abstraction, adapted
from [36], which captures the sufficient conditions to run a Stern-like protocol.
Looking ahead, this abstraction will be helpful for us in presenting our ZK argu-
ment systems: we will reduce the relations we need to prove to instances of the
abstract protocol, using our specific techniques. Let K,L be positive integers,
where L ≥ K, and let VALID be a subset of {0, 1}L. Suppose that S is a finite set
such that one can associate every φ ∈ S with a permutation Γφ of L elements,
satisfying the following conditions:{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,
If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.

(2)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{(

(M,v); w
)
∈ ZK×L2 × ZK2 × VALID : M ·w = v

}
.

The conditions in (2) play a crucial role in proving in ZK that w ∈ VALID: To
do so, the prover samples φ $←− S and lets the verifier check that Γφ(w) ∈ VALID,
while the latter cannot learn any additional information about w thanks to the
randomness of φ. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector rw

$←− ZL2 , and convinces the verifier instead
that M · (w⊕ rw) = M · rw ⊕ v.

The interaction between prover P and verifier V is described in Figure 2.
The protocol employs a statistically hiding and computationally binding string
commitment scheme COM, for example, the one proposed in [53, Section 3.1].

The properties of the protocols are summarized in Theorem 1.

Theorem 1 ([36,53]). Assume that COM is a statistically hiding and compu-
tationally binding string commitment scheme. Then, the protocol in Figure 2 is

19

1. Commitment: Prover samples rw
$←− ZL2 , φ $←− S and randomness ρ1, ρ2, ρ3 for

COM. Then he sends CMT =
(
C1, C2, C3

)
to the verifier, where

C1 = COM(φ,M · rw; ρ1), C2 = COM(Γφ(rw); ρ2),
C3 = COM(Γφ(w⊕ rw); ρ3).

2. Challenge: The verifier sends a challenge Ch $←− {1, 2, 3} to the prover.
3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).
– Ch = 2: Let φ2 = φ, w2 = w⊕ rw, and RSP = (φ2,w2, ρ1, ρ3).
– Ch = 3: Let φ3 = φ, w3 = rw, and RSP = (φ3,w3, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw ⊕ tr; ρ3).
– Ch = 2: Check that C1 = COM(φ2,M ·w2 ⊕ v; ρ1), C3 = COM(Γφ2 (w2); ρ3).
– Ch = 3: Check that C1 = COM(φ3,M ·w3; ρ1), C2 = COM(Γφ3 (w3); ρ2).

In each case, the verifier outputs 1 if and only if all the conditions hold.
Fig. 2: Stern-like ZKAoK for the relation Rabstract.

a statistical ZKAoK with perfect completeness, soundness error 2/3, and com-
munication cost O(L). In particular:

– There exists a polynomial-time simulator that, on input (M,v), outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists a polynomial-time knowledge extractor that, on input a com-
mitment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible
values of the challenge Ch, outputs w′ ∈ VALID such that M ·w′ = v.

3.5 Previous Extension and Permutation Techniques

This section reviews several supporting techniques for Stern-like protocols, that
were proposed in previous works and that will be useful for designing the zero-
knowledge arguments of the present paper. We first recall the permutation tech-
nique that is designed to prove knowledge of a binary vector of fixed hamming
weight, which originates from Stern [58].
Technique for handling binary vector with fixed hamming weight. For
any e ∈ B(n, ω) and σ ∈ Sn, it is easy to see that the following equivalence
holds 8.

e ∈ B(n, ω)⇐⇒ σ(e) ∈ B(n, ω), (3)

8 Note that for e = [e1| · · · |em]>, σ(e) is defined as σ(ei) = eσ(i) for i ∈ [n].

20

To show that the vector e has hamming weight ω, the prover samples a uniformly
random permutation σ ∈ Sn and shows the verifier that σ(e) ∈ B(n, ω). Due to
the above equivalence (3), the verifier should be convinced that e ∈ B(n, ω).
Furthermore, σ(e) reveal no information about e due to the uniformity of σ.

The above technique was later developed to prove various forms of secret
vectors. We now review the extension and permutation techniques for proving the
knowledge of arbitrary binary vectors, non-zero binary vector and well-formed
regular words, which were presented in [38], [42] and [53], respectively.

Let ⊕ denote the bit-wise addition operation modulo 2. For any bit b ∈ {0, 1},
denote by b the bit b = b ⊕ 1. Note that, for any b, d ∈ {0, 1}, we have b⊕ d =
b⊕ d⊕ 1 = b⊕ d.
Techniques for handling arbitrary binary vectors. To prove the knowledge
of a binary vector x ∈ {0, 1}n, define the extension process and permutation as
follows.

– For a binary vector x = [x1 | . . . |xn]> ∈ {0, 1}n, where n ∈ Z+, denote by
Encode(x) the vector [x1 |x1 | . . . |xn |xn]> ∈ {0, 1}2n.

– Let I∗n ∈ Zn×2n
2 be an extension of the identity matrix In, obtained by

inserting a zero-column 0n right before each column of In. We have for
x ∈ {0, 1}n,

x = I∗n · Encode(x). (4)

– For b = [b1 | . . . | bn]> ∈ {0, 1}n, define the permutation Fb that transforms
vector z = [z1,0 | z1,1 | . . . | zn,0 | zn,1]> ∈ {0, 1}2n into:

Fb(z) = [z1,b1 | z1,b1
| . . . | zn,bn | zn,bn]>.

Note that, for any b,x ∈ {0, 1}n, we have:

z = Encode(x) ⇐⇒ Fb(z) = Encode(x⊕ b). (5)

The above equivalence (5) is useful in the Stern’s framework [58] for proving
knowledge of binary witness-vectors. Towards the goal, one encodes x to z =
Encode(x), samples a random binary vector b and permutes z using Fb. Then
one demonstrates to the verifier that the permuted vector Fb(z) is of the correct
form Encode(x ⊕ b). Due to (5), the verifier should be convinced that z is well
formed, which further implies the knowledge of a binary vector x. Meanwhile,
vector b serves as a “one-time pad” that perfects hides x. In addition, if we have
to show that x appears somewhere else, we can use the same b at those places.
Techniques for handling non-zero binary vector. To prove the knowledge
of a non-zero binary vector x ∈ {0, 1}n \ {0n}, we note that applying the above
Encode function is not sufficient. It does not allow any way to show that x is
non-zero. Fortunately, Ling et al. [42] suggested a technique that allows proving
knowledge of a non-zero binary vector9. It first concatenates n − 1 “dummy”
9 In fact, they also proposed a technique on proving knowledge of an arbitrary binary

vector x ∈ {0, 1}n by first appending n dummy entries to it to obtain x∗ ∈ B(2n, n)

21

entries to x to get x∗ ∈ B(2n−1, n) and then convinces the verifier that π(x∗) ∈
B(2n − 1, n) for π $←− S2n−1. Let P∗n = [In|0n×(n−1)] ∈ Zn×2n−1

2 . Then for any
x ∈ {0, 1}n \ {0n}, we have

x = P∗n · x∗. (6)

It is worth mentioning that it is impossible to extend a zero vector to an element
of the set B(2n− 1, n). For any π $←− Sn, the following equivalence holds.

x ∈ {0, 1}n \ {0n} ⇐⇒ x∗ ∈ B(2n− 1, n) ⇐⇒ π(x∗) ∈ B(2n− 1, n). (7)

Techniques for handling regular words. To prove knowledge of a vector
z ∈ {0, 1}2c·nc such that there exists x ∈ {0, 1}n and z = RE(x) ∈ Regular(n, c),
the authors in [53] introduces the following permutations.

– For every b = [b1 | · · · | bc] ∈ {0, 1}c, define the permutation Eb that trans-
forms vector z = [z0,0,...,0 | · · · | zi1,...,ic | · · · | z1,1,...,1] ∈ {0, 1}2c into vector
Eb(z) = [z′0,0,...,0 | · · · | z′1,1,...,1], where for each (i1, . . . , ic) ∈ {0, 1}c, we
have zi1,...,ic = z′i1⊕b1,...,ic⊕bc . It is verifiable that for any x,b ∈ {0, 1}c, we
have:

z = ∆2c(x) ⇐⇒ Eb(z) = ∆2c(x⊕ b). (8)

– For b = (b1‖ · · · ‖bn
c
) ∈ {0, 1}n consisting of n

c blocks of length c, define
the permutation E′b that transforms vector z = (z1‖ · · · ‖znc) ∈ {0, 1}2c·nc

consisting of n
c blocks of length 2c into vector of the following form

E′b(z) =
(
Eb1(z1) ‖ · · · ‖Ebn

c
(zn

c
)
)
.

For any x,b ∈ {0, 1}n, it follows immediately from (8), the following equiv-
alence holds.

z = RE(x) ⇐⇒ E′b(z) = RE(x⊕ b). (9)

The above equivalence (9) is essential in the Stern’s framework for proving knowl-
edge of a regular word. The prover samples a uniformly random b and only needs
to demonstrate to the verifier that the right-hand side of (9) holds. Therefore,
the verifier is convinced that the left-hand side of the equivalence also holds
without learning any information about x due to the “one-time pad” b.

3.6 Code-Based Zero-Knowledge Arguments of Set Membership

In this section, we recall Nguyen et al.’s zero-knowledge argument of set mem-
bership [53] based on the Merkle-tree accumulator described in Section 3.1. Es-
sentially, the goal of the prover P is to convince the verifier V that he knows a

and demonstrating to the verifier that π(x∗) ∈ B(2n, n) for π $←− S2n. This technique,
however, incurs permutation size 2n · log 2n while the technique in [38] just needs
permutation size n.

22

value that is accumulated in the root of the Merkle tree. This protocol is very
useful for designing privacy-enhancing protocols, and has been utilized in [53] to
construct group signatures [22] and ring signatures [56]. In this work, we follow
this line and use it as a sub-protocol in Section 7.2, in which we describe the
supporting ZKAoK of our group encryption scheme. The protocol is summarized
as follows.

Let n be an integer and m = 2 · 2c · nc . Given a uniformly random matrix
B ∈ Zn×m2 and the accumulated value u ∈ Zn2 , the goal of P is to demonstrate to
V the knowledge of a value d ∈ Zn2 and a valid witness w ∈ {0, 1}` × ({0, 1}n)`.
The associated relation is as follows:

Racc =
{((

B,u
)
;
(
d, w

))
∈
(
Zn×m2 × Zn2

)
×
(
Zn2 × {0, 1}` × ({0, 1}n)`

)
:

VerifyB(u,d, w) = 1
}
.

We first recall the techniques that are developed from [38] and previous permu-
tation techniques for handling regular words, which are essential for the ZKAoK
for the above relation.

– For d ∈ {0, 1} and x ∈ {0, 1}m2 , denote Ext(d,x) as
(
d · x
d · x

)
.

– For e ∈ {0, 1}, for b ∈ {0, 1}n, define the permutation Φe,b that acts on

z =
(

z0
z1

)
∈ {0, 1}m, where z0, z1 ∈ {0, 1}

m
2 , as follows. It transforms z to

Φe,b(z) =
(
E′b(ze)
E′b(ze)

)
. Namely, it rearranges the blocks of z according to e

and permutes each block using E′b.
– For any d, e ∈ {0, 1} and v,w,b, c ∈ {0, 1}n, it follows from (9) that the

following equivalences hold:{
y = Ext(d,RE(v)) ⇐⇒ Φe,b(y) = Ext(d⊕ e,RE(v⊕ b))
z = Ext(d,RE(w)) ⇐⇒ Φe,c(z) = Ext(d⊕ e,RE(w⊕ c)).

(10)

Now let us look at the equations pertaining to the relation Racc. Write B =
[B0|B1]. Recall that w is of the form ([j1|j2| · · · |j`]>,w`, . . . ,w1) and that Verify
algorithm computes v` = d,v`−1, . . . ,v1,v0 = u, where vi for i ∈ {`−1, . . . , 1, 0}
is computed as follows:

vi =
{

B0 · RE(vi+1)⊕B1 · RE(wi+1) if ji+1 = 0;
B0 · RE(wi+1)⊕B1 · RE(vi+1) if ji+1 = 1.

(11)

The equation (11) is equivalent to the following form.

vi = ji+1 ·
(
B0 · RE(vi+1)⊕B1 · RE(wi+1)

)
⊕ ji+1 ·

(
B0 · RE(wi+1)⊕B1 · RE(vi+1)

)
= B

(
ji+1 · RE(vi+1)
ji+1 · RE(vi+1)

)
⊕B

(
ji+1 · RE(wi+1)
ji+1 · RE(wi+1)

)
= B · Ext(ji+1,RE(vi+1))⊕B · Ext(ji+1,RE(wi+1))

23

Therefore, the goal of P is now equivalent to prove knowledge of [j1|j2, . . . |j`]>,v1,
. . . , v`, w1, . . . ,w` such that the following hold.

B · Ext(j1,RE(v1))⊕B · Ext(j1,RE(w1)) = u;
B · Ext(j2,RE(v2))⊕B · Ext(j2,RE(w2))⊕ v1 = 0;
· · · · · ·
B · Ext(j`,RE(v`))⊕B · Ext(j`,RE(w`))⊕ v`−1 = 0.

(12)

We aim to transform the above equations (12) into an instance of the abstract
form described in Section 3.4 such that the equivalences in (2) hold. To this end,
we apply the function Encode to vi for i ∈ [`−1]. Let xi = Encode(vi) ∈ {0, 1}2n

for i ∈ [`− 1]. We therefore obtain vi = I∗n · xi. To ease the notation, for i ∈ [`],
denote {

yi = Ext(ji,RE(vi)) ∈ {0, 1}m;
zi = Ext(ji,RE(wi)) ∈ {0, 1}m.

(13)

Now equations in (12) are equivalent to
B · y1 ⊕B · z1 = u;
B · y2 ⊕B · z2 ⊕ I∗n · x1 = 0;
· · · · · ·
B · y` ⊕B · z` ⊕ I∗n · x`−1 = 0.

(14)

Through some basic algebra, we can transform the equations in (14) to a unifying
equation of the form Macc ·wacc = vacc, where Macc ∈ Z`n×Lacc

2 and vacc ∈ Z`n2
are public and wacc ∈ {0, 1}Lacc is secret with Lacc = 2`m+ 2(`− 1)n and

wacc = (y1 ‖ · · · ‖ y` ‖ z1 ‖ · · · ‖ z` ‖ x1 ‖ · · · ‖ x`−1). (15)

Now we specify the set VALIDacc that contains of secret vector wacc, the set Sacc,
and permutations {Γφ : φ ∈ Sacc} such that the equivalences in (2) hold. Let
VALIDacc contain all vectors of the form

ŵacc = (ŷ1 ‖ · · · ‖ ŷ` ‖ ẑ1 ‖ · · · ‖ ẑ` ‖ x̂1 ‖ · · · ‖ x̂`−1)

satisfying the following constraints:

– For i ∈ [`], there exists ĵi ∈ {0, 1}, v̂i, ŵi ∈ {0, 1}n such that

ŷi = Ext(ĵi,RE(v̂i)) ∈ {0, 1}m; and ẑi = Ext(ĵi,RE(ŵi)) ∈ {0, 1}m.

– For i ∈ [`− 1], x̂i = Encode(v̂i) ∈ {0, 1}2n.

Let Sacc = ({0, 1})` × ({0, 1}n)` × ({0, 1}n)`. Then for each

φ = (g1, . . . , g`, b1, . . . , b`, c1, . . . , c`) ∈ Sacc,

24

define the permutation Γφ that transforms vector of the form

ŵacc = (ŷ1 ‖ · · · ‖ ŷ` ‖ ẑ1 ‖ · · · ‖ ẑ` ‖ x̂1 ‖ · · · ‖ x̂`−1)

with ŷi, ẑi ∈ {0, 1}m for i ∈ [`] and x̂i ∈ {0, 1}2n for i ∈ [`− 1] to vector

Γφ(ŵacc) =
(
Φg1,b1(ŷ1) ‖ · · · ‖Φg`,b`(ŷ`) ‖
Φg1,c1(ẑ1) ‖ · · · ‖Φg`,c`(ẑ`) ‖ Fb1(x̂1) ‖ · · · ‖ Fb`−1(x̂`−1)

)
.

Based on the equivalence observed in (10) and (5), it can be checked that w∗acc ∈
VALIDacc is equivalent to Γφ(ŵacc) ∈ VALIDacc. Furthermore, if φ is randomly
chosen from Sacc, then Γφ(ŵacc) is randomly distributed in VALIDacc. In other
words, we have successfully reduced the considered relation to an instance of
Rabstract. Therefore, P and V interact as described in Figure 2. The resulting
protocol is a statistical ZKAoK with perfect completeness, soundness error 2/3,
and communication cost O(Lacc) = O(` · (m+ n)) = O(λ · logN) bits.

4 Zero-Knowledge Arguments for Quadratic Relations

In this section, we present our ZKAoK for quadratic relations. More concretely,
our arguments demonstrate that a given value c is an honest evaluation of
the form A · r ⊕ e, where A, r, e are all secret and may satisfy other con-
straints. In Section 4.1, we present our ZKAoK for LPN relation with hidden
A ∈ Zn×m2 , r ∈ Zm2 , e ∈ B(n, t). In Section 4.2 we then present our ZKAoK for
a variant of LPN relation, where we consider the vector r with fixed hamming
weight instead. We remark that while the first ZKAoK can be easily developed
from previous works [37,43], where the authors proved quadratic statements
about Learning With Errors (LWE) relation [55] and Ring Learning With Errors
(RLWE) relation [46] respectively, the second one is a novel contribution of this
work. These two protocols will be crucial sub-protocols of our main ZKAoK in
Section 7.2.

4.1 Proving the LPN Relation with Hidden Matrix

We now present our ZKAoK for the LPN relation with hidden matrix. Let n,m, t
be positive integers, A ∈ Zn×m2 , r ∈ Zm2 , e ∈ B(n, t), c ∈ Zn2 . The target of P is
to demonstrate the knowledge of A, r, e such that c = A · r⊕ e. The associated
relation is defined as follows:

RLPN =
{(

c; (A, r, e)
)
∈ Zn2 ×

(
Zn×m2 × Zm2 × B(n, t)

)
: c = A · r⊕ e

}
.(16)

Before we present our ZKAoK, let us first introduce the double-bit extension ext
and matrix-vector product expansion expand together with their corresponding
permutation techniques that are directly adapted from [37,43].
Double-bit extension. To prove knowledge of a bit c such that c is a product
of two secret bits a, r, define the following notations and techniques.

25

– For any two bits a, r, define extension of c = a · r to be the vector

ext(c) 4= ext(a, r) = [a · r| a · r| a · r| a · r]> ∈ {0, 1}4.

– Define h = [0|0|0|1], then it is easy to see that c = h · ext(c).
– For any two bits b, s ∈ {0, 1}, define Tb,s as the permutation that transforms

vector z = [z0,0 | z0,1 | z1,0 | z1,1]> ∈ {0, 1}4 into vector

Tb,s(z) = [zb,s | zb,s | zb,s | zb,s]> ∈ {0, 1}4.

Note that for any bits a, r, b, s, we have

z = ext(a, r) ⇐⇒ Tb,s(z) = ext(a⊕ b, r ⊕ s). (17)

Note that the above equivalence (17) is useful in Stern’s framework. To prove the
well-formedness of c that is a product of a, r, the prover extends c to z = ext(a, r),
and permutes z using two randomness b, s. Then it demonstrates to the verifier
that the permuted vector Tb,s(z) is well-formed. Due to the above equivalence,
the verifier is convinced that c is well-formed as well. In addition, the “one-
time pads” b, s hide the information of a, r. We remark that this technique is
only useful when a, r satisfy other constraints, since otherwise we could simply
prove knowledge of a bit c using previously described Encode and the associated
permutation.

Matrix-vector product expansion. Let n,m be positive integers. Denote vec-
tor a = [a1,1 | · · · | a1,n | a2,1 | · · · | a2,n | · · · | am,1 | · · · | am,n]> ∈ {0, 1}mn and
vector r = [r1 | · · · | rm]> ∈ {0, 1}m. We now present the techniques to show the
well-formedness of c ∈ {0, 1}mn such that c is of the form

c = [c1,1 | · · · | c1,n | c2,1 | · · · | c2,n | · · · | cm,1 | · · · | cm,n]>

with ci,j = ai,j · ri for i ∈ [m], j ∈ [n]. Define the extension of c to be a vector
of the following form:

expand(a, r) =
(
ext(c1,1)‖ · · · ‖ ext(c1,n)‖ext(c2,1)‖ · · · ‖ext(c2,n)‖ · · · ‖

ext(cm,1)‖ · · · ‖ext(cm,n)
)
∈ {0, 1}4mn.

Now for b = [b1,1 | · · · |b1,n |b2,1| · · · |b2,n | · · · |bm,1 | · · · |bm,n]> ∈ {0, 1}mn and
s = [s1 | · · · |sm]> ∈ {0, 1}m, we define T ′b,s that transforms vector z ∈ {0, 1}4mn

of the following form

z = (z1,1 ‖ · · · ‖ z1,n ‖ z2,1 ‖ · · · ‖ z2,n ‖ · · · ‖ zm,1 ‖ · · · ‖ zm,n),

which consisting of mn blocks of length 4, to vector T ′b,s of the following form

T ′b,s(z) = (Tb1,1,s1(z1,1) ‖ · · · ‖ Tb1,n,s1(z1,n) ‖ Tb2,1,s2(z2,1) ‖ · · · ‖
Tb2,n,s2(z2,n) ‖ · · · ‖ Tbm,1,sm(zm,1) ‖ · · · ‖ Tbm,n,sm(zm,n)).

26

It then follows from (17) that the following equivalence holds.

z = expand(a, r) ⇐⇒ T ′b,s(z) = expand(a ⊕ b, r⊕ s). (18)

The Zero-knowledge argument. We aim to transform the relation RLPN to
an instance of Rabstract such that the equivalences in (2) hold. Towards this goal,
we proceed as follows.

Write A = [a1 | · · · |am] ∈ Zn×m2 and r = [r1 | · · · | rm]> ∈ Zm2 , then we
have

A · r =
m∑
i=1

ai · ri =
m∑
i=1

[ai,1 · ri | ai,2 · ri | · · · | ai,n · ri]>

=
m∑
i=1

[
h · ext(ai,1, ri) |h · ext(ai,2, ri) | · · · |h · ext(ai,n, ri)

]>
=

m∑
i=1

Hn,1
(

ext(ai,1, ri) ‖ ext(ai,2, ri) ‖ · · · ‖ ext(ai,n, ri)
)

=
m∑
i=1

Hn,1 · zi

= [Hn,1| · · · |Hn,1]︸ ︷︷ ︸
m times

·(z1 ‖ · · · ‖ zm),

where Hn,1 =


h

h
. . .

h

 ∈ Zn×4n
2 and zi = (ext(ai,1, ri)‖ · · · ‖ext(ai,n, ri)) ∈

Z4n
2 . Denote Hn,m = [Hn,1| · · · |Hn,1]︸ ︷︷ ︸

m times

∈ Zn×4mn
2 , z = (z1‖ · · · ‖zm) ∈ Z4mn

2 , and

a = [a1,1| · · · |a1,n|a2,1| · · · |a2,n| · · · |am,1| · · · |am,n]> ∈ Zmn2 . Then z is indeed the
expansion vector of a and r, i.e., z = expand(a, r). If no ambiguity cause, we
write z = expand(A, r). Hence, we obtain the following:

c = A · r⊕ e⇐⇒ c = Hn,m · expand(A, r)⊕ e. (19)

Denote MLPN = [Hn,m|In] ∈ Zn×LLPN
2 and wLPN = (expand(A, r)‖e) ∈ ZLLPN

2

with LLPN = 4mn+ n. We then have c 4= vLPN = MLPN ·wLPN mod 2.
Now we are ready to specify the set VALIDLPN that contains of secret vector

wLPN, the set SLPN, and permutations {Γφ : φ ∈ SLPN} such that the equiva-
lences in (2) hold. To this end, let VALIDLPN contain all vectors ŵLPN = (ẑ‖ê) ∈
Z4mn+n

2 satisfying the following constraints:

– There exists â ∈ Znm2 and r̂ ∈ Zm2 such that ẑ = expand(â, r̂).
– ê ∈ B(n, t).

27

It is easy to verify that wLPN ∈ VALIDLPN. Let SLPN = {0, 1}mn×{0, 1}m×Sn.
Then for each φ = (b, s, σe) ∈ SLPN, define the permutation Γφ that transforms
vector of the form ŵLPN = (ẑ ‖ ê) with ẑ ∈ Z4mn

2 , ê ∈ Zn2 to vector Γφ(ŵLPN) =
(T ′b,s(ẑ) ‖σe(ê)).

Based on the equivalence observed in (18) and (3), it can be checked that
ŵLPN ∈ VALIDLPN is equivalent to Γφ(ŵLPN) ∈ VALIDLPN. Furthermore, if
φ is randomly chosen from SLPN, then Γφ(ŵLPN) is randomly distributed in
VALIDLPN. In other words, we have successfully reduced the considered relation
to an instance of Rabstract. Therefore, P and V interact as described in Fig-
ure 2. The resulting protocol is a statistical ZKAoK with perfect completeness,
soundness error 2/3, and communication cost O(LLPN) = O(mn) = O(λ2) bits.

4.2 Proving A Variant of LPN Relation with Hidden Matrix

Let n,m, t, tr be positive integers, A ∈ Zn×m2 , r ∈ B(m, tr), e ∈ B(n, t), c ∈ Zn2 .
We now present our ZKAoK that allows P to prove its knowledge of A, r, e such
that c = A · r⊕ e. The associated relation is defined as follows:

RVLPN =
{(

c; (A, r, e)
)
∈ Zn2 ×

(
Zn×m2 × B(m, tr)× B(n, t)

)
: c = A · r⊕ e

}
.

To prove r has fixed hamming, we introduce the following Hadamard product ex-
tension and extended matrix-vector product expansion and their corresponding
permutations.
Hadamard product extension. Let vectors a ∈ {0, 1}m, r ∈ B(m, tr) and
c = [a1 ·r1|a2 ·r2| · · · |am ·rm]>. The goal is to prove the well-formedness of c, i.e.,
c is a Hadamard product of two binary vectors, one of which has fixed hamming
weight tr. We therefore introduce the following extension and permutation.

– Define extension of ci = ai · ri as ext′(ci)
4= ext′(ai, ri) = [ai · ri|ai · ri]> ∈

{0, 1}2. Let h′ = [0|1], then we obtain ci = h′ · ext′(ci).
– Define the extension of c to be vector of the form

ext′(a, r) = [a1 · r1 |a1 · r1 |a2 · r2 |a2 · r2 | · · · |am · rm |am · rm]> ∈ {0, 1}2m.

– For any b = [b1|b2| · · · |bm]> ∈ {0, 1}m, σ ∈ Sm, define permutation Ψb,σ
that transforms a vector

z = [z(0)
1 | z(1)

1 | z(0)
2 | z(1)

2 | · · · | z(0)
m | z(1)

m]> ∈ Z2m

to a vector

Ψb,σ(z) = [z(bσ(1))
σ(1) | z(bσ(1))

σ(1) | z(bσ(2))
σ(2) | z(bσ(2))

σ(2) | · · · | z(bσ(m))
σ(m) | z(bσ(m))

σ(m)]>.

– For any a,b ∈ {0, 1}m, r ∈ B(m, tr), σ ∈ Sm, it is verifiable that the following
equivalence holds.

z = ext′(a, r)⇐⇒ Ψb,σ(z) = ext′
(
σ(a ⊕ b), σ(r)

)
. (20)

28

Example. Let m = 4, tr = 2, a = [1|1|0|1]>, b = [0|1|0|1]>, r = [1|0|0|1]>,
σ(i) = i + 1 for i ∈ [3] and σ(4) = 1. We have d = σ(a ⊕ b) = [0|0|0|1]>,
e = σ(r) = [0|0|1|1]>, and

z = ext′(a, r) = [z(0)
1 | z(1)

1 | z(0)
2 | z(1)

2 | z(0)
3 | z(1)

3 | z(0)
4 | z(1)

4]>

= [0 | 1 | 0 | 0 | 0 | 0 | 0 | 1]>;

Ψb,σ(z) = [z(b2)
2 | z(b2)

2 | z(b3)
3 | z(b3)

3 | z(b4)
4 | z(b4)

4 | z(b1)
1 | z(b1)

1]>

= [z(1)
2 | z(0)

2 | z(0)
3 | z(1)

3 | z(1)
4 | z(0)

4 | z(0)
1 | z(1)

1]>

= [0 | 0 | 0 | 0 | 1 | 0 | 0 | 1]>;
ext′(d, e) = [d1 · e1 | d1 · e1 | d2 · e2 | d2 · e2 | d3 · e3 | d3 · e3 | d4 · e4 | d4 · e4]

= [0 | 0 | 0 | 0 | 1 | 0 | 0 | 1]>.

Extended matrix-vector product expansion. Let vectors a, r be of the form
a = [a1,1| · · · |a1,n| · · · |am,1| · · · |am,n]> ∈ Zmn2 and r = [r1| · · · |rm]> ∈ B(m, tr),
and c ∈ Zmn2 be of the form

c = [a1,1 · r1 | · · · |a1,n · r1 |a2,1 · r2 | · · · |a2,n · r2 | · · · |am,1 · rm | · · · |am,n · rm]>.

We now present the techniques to show the well-formedness of c.
Define extension of c to be a vector expand′(a, r) ∈ Z2mn

2 of the form:

expand′(a, r) =
[
a1,1 · r1 | a1,1 · r1 | a1,2 · r1 | a1,2 · r1 | · · · | a1,n · r1 | a1,n · r1|
a2,1 · r2 | a2,1 · r2 | a2,2 · r2 |a2,2 · r2 | · · · | a2,n · r2 | a2,n · r2 | · · · |

am,1 · rm | am,1 · rm | am,2 · rm | am,2 · rm | · · · | am,n · rm | am,n · rm
]>

Now for b = [b1,1 | · · · |b1,n |b2,1 | · · · |b2,n | · · · |bm,1 | · · · |bm,n]> ∈ Zmn2 and
σ ∈ Sm, we define Ψ ′b,σ that transform vector z ∈ {0, 1}2mn of the following form

z =
[
z

(0)
1,1 | z

(1)
1,1 | z

(0)
1,2 | z

(1)
1,2 | · · · | z

(0)
1,n | z

(1)
1,n |

z
(0)
2,1 | z

(1)
2,1 | z

(0)
2,2 | z

(1)
2,2 | · · · | z

(0)
2,n | z

(1)
2,n | · · · |

z
(0)
m,1 | z

(1)
m,1 | z

(0)
m,2 | z

(1)
m,2 | · · · | z(0)

m,n | z(1)
m,n

]
to vector Ψ ′b,σ of the following form

Ψ ′b,σ(z) =
[
y

(0)
1,1 | y

(1)
1,1 | y

(0)
1,2 | y

(1)
1,2 | · · · | y

(0)
1,n | y

(1)
1,n |

y
(0)
2,1 | y

(1)
2,1 | y

(0)
2,2 | y

(1)
2,2 | · · · | y

(0)
2,n | y

(1)
2,n | · · · |

y
(0)
m,1 | y

(1)
m,1 | y

(0)
m,2 | y

(1)
m,2 | · · · | y(0)

m,n | y(1)
m,n

]
such that y(0)

i,j = z
(bσ(i),j)
σ(i),j and y

(1)
i,j = z

(bσ(i),j)
σ(i),j for i ∈ [n], j ∈ [m]. For ease

of notation, given f = (f1‖ · · · ‖fm) ∈ {0, 1}mn, where each fi ∈ {0, 1}n, and
σ ∈ Sm, define

σ(n)(f) = (fσ(1) ‖ · · · ‖ fσ(m)).

29

Precisely, σ(n) permutes the blocks of f using σ. The following equivalence then
immediately follows from (20) for a,b ∈ {0, 1}mn, r ∈ B(m, tr), σr ∈ Sm.

z = expand′(a, r)⇐⇒ Ψ ′b,σr (z) = expand′
(
σ(n)
r (a ⊕ b), σr(r)

)
. (21)

The zero-knowledge argument. We now transform the relation RVLPN to
an instance of Rabstract such that the equivalences in (2) hold. Write A =
[a1 | · · · |am] ∈ Zn×m2 and r = [r1 | · · · | rm]> ∈ Zm2 , then we have

A · r =
m∑
i=1

ai · ri =
m∑
i=1

[ai,1 · ri | ai,2 · ri | · · · | ai,n · ri]>

=
m∑
i=1

[
h′ · ext′(ai,1, ri) |h′ · ext′(ai,2, ri) | · · · |h′ · ext′(ai,n, ri)

]>
=

m∑
i=1

H′n,1
(

ext′(ai,1, ri) ‖ ext′(ai,2, ri) ‖ · · · ‖ ext′(ai,n, ri)
)

=
m∑
i=1

H′n,1 · zi

= [H′n,1| · · · |H′n,1]︸ ︷︷ ︸
m times

·(z1 ‖ · · · ‖ zm),

where H′n,1 =


h′

h′
. . .

h′

 ∈ Zn×2n
2 and zi = (ext′(ai,1, ri)‖ · · · ‖ext′(ai,n, ri)) ∈

Z2n
2 . Denote H′n,m = [H′n,1| · · · |H′n,1]︸ ︷︷ ︸

m times

∈ Zn×2mn
2 , z = (z1‖ · · · ‖zm) ∈ Z2mn

2 , and

a = [a1,1| · · · |a1,n|a2,1| · · · |a2,n| · · · |am,1| · · · |am,n]> ∈ Zmn2 . Then z is indeed the
extended expansion vector of a and r, i.e., z = expand′(a, r). If no ambiguity
caused, we write z = expand′(A, r). Hence, we obtain the following:

c = A · r⊕ e⇐⇒ c = H′n,m · expand′(A, r)⊕ e. (22)

Denote MVLPN = [H′n,m|In] ∈ Zn×LVLPN
2 and wVLPN = (expand′(A, r)‖e) ∈

ZLVLPN
2 with LVLPN = 2mn+ n. Hence c 4= vVLPN = MVLPN ·wVLPN mod 2.

Now we are ready to specify the set VALIDVLPN that contains of secret vector
wVLPN, the set SVLPN, and permutations {Γφ : φ ∈ SVLPN} such that the
equivalences in (2) hold. To this end, let VALIDVLPN contain all vectors ŵVLPN =
(ẑ‖ê) ∈ Z2mn+n

2 satisfying the following constraints:

– There exists â ∈ Znm2 and r̂ ∈ B(m, tr) such that ẑ = expand′(â, r̂).
– ê ∈ B(n, t).

30

It is easy to that the secret vector wVLPN belongs to VALIDVLPN. Let SVLPN =
{0, 1}mn×Sm×Sn. Then for each φ = (b, σr, σe) ∈ SVLPN, define the permuta-
tion Γφ that transforms vector of the form ŵVLPN = (ẑ ‖ ê) with ẑ ∈ Z2mn

2 , ê ∈
Zn2 to vector Γφ(ŵVLPN) = (Ψ ′b,σr (ẑ) ‖σe(ê)).

Based on the equivalence observed in (21 and (3), it can be checked that the
conditions in (2) are satisfied and we have successfully reduced the consider rela-
tion RVLPN to an instance of Rabstract. Now P and V can interact as described in
Figure 2. The resulting protocol is a statistical ZKAoK with perfect completeness,
soundness error 2/3, and communication costO(LVLPN) = O(mn) = O(λ2) bits.

5 Message Filtering in Zero-Knowledge

In this section, we first specify the 2 policies we use for filtering messages en-
crypted in the code-based FDGE scheme of Section 6. Then we discuss our main
ideas for proving in zero-knowledge that the underlying messages satisfy the
given policies.

5.1 Formulation

Let p, t, d ∈ Z+ such that p > t > d. A string y = [y1| · · · |yt]> ∈ {0, 1}t is called
a substring of string w = [w1| · · · |wp]> ∈ {0, 1}p, denoted as y < w, if there
exists an integer i ∈ [1, p − t + 1] such that yj = wi+j−1 for all j ∈ [1, t]. The
Hamming distance between x,y ∈ {0, 1}t, denoted by dH(x,y), is the number
of coordinates at which x and y differ. In other words, dH(x,y) = wt(x⊕ y).

Let w ∈ {0, 1}p be an encrypted message and let S = {s1, . . . , sk} be a given
list of k ≥ 1 keywords, where si ∈ {0, 1}t, for all i ∈ [1, k]. We will realize 2
commonly used policies of message filtering.

1. “Permissive”: w is a legitimate message if and only if there exists i ∈ [1, k]
such that si is a substring of w. The induced relation Rpermit is defined as

Rpermit =
{(

(s1, . . . , sk),w
)
∈ ({0, 1}t)k × {0, 1}p : ∃i ∈ [1, k] s.t. si < w

}
.(23)

2. “Prohibitive”: w is a legitimate message if and only if for every length-t
substring y of w and every si ∈ S, their Hamming distance is at least d. The
corresponding relation Rprohibit is defined as

Rprohibit =
{ (

(s1, . . . , sk),w
)
∈ ({0, 1}t)k × {0, 1}p :

dH(si,y) ≥ d, ∀i ∈ [1, k],∀y < w
}
. (24)

In the following, we will discuss our strategies for proving that message w
satisfies each of the above policies.

31

5.2 Zero-Knowledge for the Permissive and Prohibitive Relations

Let w = [w1| · · · |wp]>, and for each i ∈ [p− t+1], let w[i] = [wi| · · · |wi+t−1]> be
its i-th substring of length t. Our ideas for proving that

(
(s1, . . . , sk),w

)
∈ Rpermit

in ZK are as follows. First, we form matrices

W = [w[1] | · · · | w[p−t+1]] =


w1 w2 · · · wp−t+1
w2 w3 · · · wp−t+2
...

...
...

...
wt wt+1 · · · wp

 ∈ {0, 1}t×(p−t+1),

S = [s1 | · · · | sk] ∈ {0, 1}t×k, and denote permit(w) = (w[1]‖ · · · ‖w[p−t+1]) ∈
{0, 1}t(p−t+1). We note that

(
(s1, . . . , sk),w

)
∈ Rpermit if and only if there exist

a column w[i] of W and a column sj of S such that w[i] = sj . Then, we observe
that the task of the prover P is equivalent to proving the existence of W,g,h
such that

W · g = S · h ∧ g ∈ B(p− t+ 1, 1) ∧ h ∈ B(k, 1).

To this end, we employ techniques for proving linear relation and quadratic rela-
tion (specifically the variant of LPN relation), as well as, for fix-weight relations in
the framework of Stern’s protocols. In the process, we prove the well-formedness
of W. The resulting protocol has communication cost O(t · (p− t) + k) and is a
sub-protocol in our FDGE construction of Section 6, where we additionally prove
that w is the same as the plaintext encrypted in a given McEliece ciphertext.

The goal is to reduce the above relation Rpermit to an instance of Rabstract so
that conditions in (2) are fulfilled.

We observe that W · g⊕ S · h = 0 mod 2 is equivalent to

H′t,p−t+1 · expand′
(

permit(w), g
)
⊕ S · h = 0 mod 2. (25)

Denote Mpermit = [H′t,p−t+1|S] ∈ Zn×Lpermit
2 , wpermit = (z‖h) ∈ ZLpermit

2 with
z = expand′(permit(w),g) and Lpermit = 2t(p− t+ 1) + k. Hence equation (25)
can be written as Mpermit ·wpermit = 0 mod 2.

Now we specify the set VALIDpermit that contains of secret vector wpermit,
the set Spermit, and permutations {Γφ : φ ∈ Spermit} such that the equivalences
in (2) hold. To this end, let VALIDpermit contain all vectors ŵpermit = (ẑ‖ĥ) ∈
Z2t(p−t+1)+k

2 satisfying the following constraints:

– ẑ = expand′(σ̂(t)(permit(ŵ)), ĝ) for some ŵ ∈ Zp2, ĝ ∈ B(p − t + 1, 1), and
σ̂ ∈ Sp−t+1.

– ĥ ∈ B(k, 1).

It is easy to see that the secret vector wpermit belongs to VALIDpermit for σ̂ being
the identity of the group Sp−t+1. Let Spermit = {0, 1}p × Sp−t+1 × Sk. Then for

32

each φ = (t, σg, σh) ∈ Spermit, define the permutation Γφ that transforms vector
of the form ŵpermit = (ẑ ‖ ĥ) with ẑ ∈ Z2t(p−t+1)

2 , ĥ ∈ Zk2 to vector

Γφ(ŵpermit) = (Ψ ′permit(t),σg (ẑ) ‖σh(ĥ)).

We remark that, for ŵ ∈ Zp2, ĝ ∈ B(p− t+ 1, 1), σ̂ ∈ Sp−t+1, and φ = (t, σg) ∈
Zp2 × Sp−t+1, the following equivalence holds:

ẑ = expand′(σ̂(t)(permit(ŵ)), ĝ)⇐⇒
Ψ ′permit(t),σg (ẑ) = expand′(σ(t)

g (permit(ŵ⊕ t)), σg(ĝ)). (26)

In contrast to equivalence (21), Ψ ′permit(t),σ1
instead of Ψ ′d,σ1

for a random d ∈
{0, 1}t(p−t+1) is employed here. This is critical to prove the well-formedness of
permit(ŵ). Based on the equivalence observed in (26) and (3), it can be checked
that the conditions in (2) are satisfied and we have successfully reduced the
consider relation Rpermit to an instance of Rabstract. Now P and V can interact
as described in Figure 2. The resulting protocol is a statistical ZKAoK with
perfect completeness, soundness error 2/3, and communication costO(Lpermit) =
O(t · (p − t) + k) bits. It serves as a sub-protocol in our main zero-knowledge
argument in Section 7.2, where we additionally prove that w is the same as the
plaintext encrypted in a given McEliece ciphertext.

On the other hand, to prove that
(
(s1, . . . , sk),w

)
∈ Rprohibit, we consider

(p− t+ 1) ·k pairs (w[i], sj) and aim to prove that all the sums zi,j = w[i]⊕ sj ∈
{0, 1}t have Hamming weight at least d. In other words, we reduce the problem
to (p − t + 1) · k sub-problems, for each of which, we needs to prove that zi,j
contains at least d coordinates equal to 1. To this end, we perform the following
extension trick.

We append (t − d) coordinates to zi,j ∈ {0, 1}t to get z∗i,j ∈ {0, 1}2t−d such
that wt(z∗i,j) = t, i.e., z∗i,j ∈ B(2t−d, t). We note that such an extension is always
possible if wt(zi,j) ≥ d. Furthermore, the converse also holds: if z∗i,j ∈ B(2t−d, t),
then the original zi,j must have weight at least t− (t− d) = d. In addition, for
any σ ∈ S2t−d, the following equivalence holds:

wt(zi,j) ≥ d ⇐⇒ wt(z∗i,j) ∈ B(2t− d, t) ⇐⇒ σ(z∗i,j) ∈ B(2t− d, t). (27)

Let Q∗t = [It|0t×(t−d)] ∈ Zt×(2t−d)
2 , then zi,j = Q∗t · z∗i,j .

Let us now transform relation Rprohibit to an instance of Rabstract that satisfies
the conditions in (2). Towards the goal, we employ the aforementioned technique
as well as the one handling arbitrary binary vectors.

We first extend secret vectors in those (p − t + 1) · k equation. Let x =
Encode(w) ∈ Z2p

2 and z∗i,j ∈ B(2t− d, t) be extension of zi,j for i ∈ [1, p− t+ 1]
and j ∈ [1, k]. For i ∈ [1, p− t+ 1], let x[i] = Encode(w[i]) ∈ Z2t

2 . Then

w[i] ⊕ zi,j = sj ⇐⇒ I∗t · x[i] ⊕Q∗t · z∗i,j = sj ,∀ i ∈ [1, p− t+ 1], j ∈ [1, k]. (28)

Recall that I∗t ∈ Zt×2t
2 is obtained by inserting a zero-column 0t right be-

fore each column of It. Through basic algebra, we are able to form Mprohibit ∈

33

Zkt(p−t+1)×Lprohibit
2 , vprohibit = (s1‖ · · · ‖sk‖ · · · · · · ‖s1‖ · · · ‖sk)︸ ︷︷ ︸

p−t+1 times

∈ Zkt(p−t+1)
2 that

are public and

wprohibit = (x‖z∗1,1‖ · · · ‖z∗1,k ‖ · · · · · · ‖z∗p−t+1,1‖ · · · ‖z∗p−t+1,k) ∈ ZLprohibit
2

that is secret for Lprohibit = 2p + k · (2t − d) · (p − t + 1) such that (28) is
transformed to Mprohibit ·wprohibit = vprohibit mod 2.

Next, we specify the set VALIDprohibit that consists of wprohibit, the set
Sprohibit, and permutations {Γφ : φ ∈ Sprohibit}. Let VALIDprohibit be a set
that contains all vectors ŵprohibit = (x̂‖ẑ∗1,1‖ · · · ‖ẑ∗1,k‖ẑ∗p−t+1,1‖ · · · ‖ẑ∗p−t+1,k) ∈
ZLprohibit

2 such that

– There exists ŵ ∈ Zp2 so that x̂ = Encode(ŵ);
– ẑ∗i,j ∈ B(2t− d, t) for all i ∈ [1, p− t+ 1], j ∈ [1, k].

It is straightforward that wprohibit ∈ VALIDprohibit. Define Sprohibit = {0, 1}p ×
(S2t−d)k(p−t+1). Then for any φ = (b, σ1,1, . . . , σ1,k, . . . , σp−t+1,1, . . . , σp−t+1,k) ∈
Sprohibit, for any ŵprohibit = (x̂‖ẑ∗1,1‖ · · · ‖ẑ∗1,k‖ · · · ‖ẑ∗p−t+1,1| · · · ‖ẑ∗p−t+1,k) with
x̂ ∈ Z2p

2 and ẑ∗i,j ∈ Z2t−d
2 , Γφ permutes ŵprohibit to vector

Γφ(ŵprohibit) =
(
Fb(x̂) ‖ σ1,1(ẑ∗1,1) ‖ · · · ‖ σ1,k(ẑ∗1,k) ‖ · · ·

‖ σp−t+1,1(ẑ∗p−t+1,1)‖ · · · ‖σp−t+1,k(ẑ∗p−t+1,k)
)

Based on the equivalences (5) and (27), ŵprohibit ∈ VALIDprohibit if and only if
Γφ(ŵprohibit) ∈ VALIDprohibit. Moreover, if φ $←− Sprohibit, then Γφ(ŵprohibit) is
uniformly distributed in VALIDprohibit. Therefore, P and V interact as in Fig-
ure 2. The resulting protocol is a statistical ZKAoK with perfect completeness,
soundness error 2/3, and communication cost O(Lprohibit) = O(k · t · (p− t+ 1)).
Similarly to the case of Rpermit, this protocol can also be integrated into the
zero-knowledge argument in Section 7.2, allowing us to realize the “prohibitive”
filtering policy.

6 A Code-Based Fully Dynamic Group Encryption

To build a code-based FDGE scheme, we require a key-private CCA2-secure en-
cryption scheme [6], a digital signature scheme, and a zero-knowledge proof
(argument) of knowledge protocol. In this paper, we work with the ZKAoK
within Stern’s framework [58]. In terms of the encryption scheme, we choose
to work with the McEliece cryptosystem [47], specifically the randomized vari-
ant from [54]. The latter indeed has pseudorandom ciphertexts, which implies
key-private CPA-security. To further achieve CCA2-security, we apply the Naor-
Yung double encryption technique [52]. Note that there are other CCA2-secure
variants of McEliece scheme like [24,21,35]. However, they either do not operate

34

well in the Stern’s framework or are completely impractical. Regarding the dig-
ital signature, we employ the Merkle-tree accumulator described in Section 3.1.
Precisely, when a user requests to join the group, it first generates its encryption
key pair (pk, sk), and sends pk and its non-zero hash value d to GM. The latter,
if accepts, then computes the Merkle tree root, where the leaf nodes are the
hash values of all users. The witness for d is the proof of user’s membership. To
achieve dynamicity, following [44], we use the updating algorithm described in
Section 3.2 to set up the system so that (1) the value of the leaf node associated
with a user who has not joined or who has been removed from the group is 0
(2) while it is updated to d when this user joins the group. When a sender en-
crypts messages to a user at some epoch, it has to show that the user’s non-zero
hash value is accumulated in the tree in this epoch. This mechanism effectively
distinguish active users who are valid recipients of ciphertexts from those who
are not.

As in the KTY model [34], we also require that user encryption keys are
valid (i.e., in the language Lpp

pk). One possible solution would be requiring a
proof of knowledge of the McEliece decryption key when a user joins the group.
This is however quite complicated and inefficient. Instead, GM encrypts random
messages under the user’s encryption key and asks the user to output the correct
messages. By choosing the parameters properly, the running time of guessing
correctly the messages if the user does not know the underlying decryption key
is exponential. This then enforces validity of user encryption keys.

6.1 Description of the Scheme

Our scheme allows encryption witness w ∈ {0, 1}p that satisfies the permis-
sive relation Rpermit and/or the prohibitive relation Rprohibit. For simplicity, we
present Rpermit in the following construction. The details are described below.

Setupinit(1λ) On input the security parameter 1λ, this algorithm proceeds as
follows.

– Specify an integer ` = `(λ) that determines the maximum expected number
N = 2` of potential users.

– Choose n = O(λ), c = O(1) such that c divides n, and set m = 2c · 2n
c .

Choose an integer tm < m.
– Choose t1 = t1(λ), k1 = k1(λ) and t2 = t2(λ), k2 = k2(λ) such that

(n, k1, t1), (n, k2, t2) are two sets of parameters for the McEliece encryp-
tion scheme (see Section 3.3).

– Sample a random matrix B $←− Zn×m2 that specifies a hash function hB as
in Definition 6.

– Pick a statistical hiding and computationally binding commitment scheme
COM : {0, 1}∗ → {0, 1}n like the one in [53, Section 3.1]. This will serve as
a building block for the argument systems in Section 7.2.

– Let HFS : {0, 1}∗ → {1, 2, 3}κ, where κ = ω(log λ), be a hash function that
will be modeled as a random oracle in the Fiat-Shamir transforms [26].

35

Output public parameters

pp = {N, `, n, c,m, tm, t1, k1, p, t2, k2, v,B,COM, κ,HFS}.

SetupOA(pp) This algorithm is run by the OA. Given the input pp, it triggers
the McEliece key generation algorithm KeyGenME(n, k1, t1) (see Section 3.3)
twice to obtain encryption key pairs (Goa,0, sk(oa,0)

ME) and (Goa,1, sk(oa,1)
ME). Set

pkOA = (Goa,0,Goa,1) and skOA = (sk(oa,0)
ME , sk(oa,1)

ME).

SetupGM(pp) This algorithm is run by the GM. It samples skGM
$←− B(m, tm),

then computes pkGM = B · skGM mod 2, and outputs (pkGM, skGM). It also
initializes the following.

– Let the registration table be reg := (reg[0], reg[1], . . . , reg[N−1]), where for
each i ∈ [0, N−1]: reg[i][1] = 0n, reg[i][2] = −1, and reg[i][3] = −1. Here,
reg[i][1] denotes the hash value of the public encryption key of a registered
user while reg[i][2], reg[i][3] represent the epoch at which the user joins and
leaves the group, respectively.

– Construct a Merkle tree T on top of reg[0][1], . . . , reg[N−1][1]. (Note that
T is an all-zero tree at this stage, when a new user joins the group, it will
affect the Merkle tree.)

– Initialize a counter of registered users j := 0.
Then, GM outputs its public key pkGM and announces reg and the initial
group information info = ∅ while keeping T and j for himself. We remark
that reg and info are visible to everyone but only editable by a party who
knows skGM. In addition, anyone is able to verify the well-formedness of reg
and info.

〈GR,SampleR〉 The algorithm GR(1λ, pp) proceeds by sampling parameters t, k
for the relation Rpermit (23). Let (pkR, skR) = ((p, t, k), ε). Given pkR, the
algorithm SampleR outputs a set of keywords S = {s1, . . . , sk}, w ∈ Zp2 such
that (S,w) ∈ Rpermit.

〈Join, Issue〉. This is an interactive protocol securely run between a user and the
GM. If a user requests to join the group at epoch τ , he will follow steps
below.
1. The user first generates its encryption key pair. It runs McEliece key gen-

eration KeyGenME(n, k2, t2) twice, obtaining (G0, sk(0)
ME) and (G1, sk(1)

ME).
Set encryption key pk′ = (G0,G1) and secret key sk = (sk(0)

ME, sk
(1)
ME).

2. It then computes the hash of its encryption key pk′. For b ∈ {0, 1},
write Gb = [gk2b| · · · |gk2b+k2−1]. Let D = {g0,g1, . . . ,g2k2−1}. It then
runs the accumulation algorithm AccuB(D) (see Section 3.1) to build a
(sub)-Merkle tree based on D and the hash function hB, obtaining an
accumulated hash value d ∈ Zn2 . We call d the hash of pk′. If there is no
ambiguity, we sometimes write AccuB(pk′) instead of AccuB(D).

3. If d = 0n, the user repeats Step 1 and 2. Otherwise, he sends (pk′,d) to
the GM.

36

Upon receiving the tuple (pk′,d) from the user, the GM first computes the
ranks r1, r2 of G0,G1, respectively, and d′ = AccuB(pk′). If r1 6= k2 or
r2 6= k2 or d′ 6= d or d′ = 0n, GM rejects. Otherwise, the two parties
proceed as follows.
1. First, GM encrypts two random messages by running the determinis-

tic McEliece encryption algorithm using the key pk′. It first samples
m0,m1

$←− Zk2
2 and e0, e1

$←− B(n, t2), then computes y0 = G0 ·m0 ⊕
e0,y1 = G1 ·m1 ⊕ e1, and sends y0,y1 to the user.

2. Upon receiving the ciphertexts, user runs the deterministic McEliece
decryption algorithm, obtaining m′0,m′1. The user then sends m′0,m′1 to
the GM.

3. If m′0 6= m0 or m′1 6= m1, GM rejects. Otherwise GM issues an identifier
to the user as uid = bin(j) ∈ {0, 1}`. The user then sets his public key
as pk = (pk′, bin(j)). From now on, we write pk′j = (Gj,0,Gj,1), skj =
(sk(j,0)

ME , sk(j,1)
ME) to distinguish keys of different users.

4. GM also performs the following updates:
– Update T by running the algorithm TUpdateB(bin(j),d).
– Register the user to table reg as reg[j][1] := d; reg[j][2] := τ .
– Increase the counter j := j + 1.

GUpdate(skGM,S, infoτcurrent , reg) This algorithm is run by GM to update the
group information while also advancing the epoch to τnew. It works as follows.
1. Let the set S contain all the identifiers of registered users to be revoked.

If S = ∅, then go to Step 2.
Otherwise, S = {i1, . . . , ir}, for some i1, . . . , ir ∈ [0, N−1]. Then, for all
t ∈ [r], GM runs TUpdateB(bin(it),0n) to update the tree T . Meanwhile,
GM updates reg[j][3] = τnew.

2. At this point, each of the zero leaves in the tree T corresponds to either
a revoked user or a potential user who has not yet registered. In other
words, only active users in the new epoch τnew have non-zero hashes of
their encryption keys, denoted by {dj}j , accumulated in the root uτnew

of the updated tree.
For each j, let w(j) ∈ {0, 1}`× ({0, 1}n)` be the witness for the fact that
dj is accumulated in uτnew . Then GM publishes the group information
of the new epoch as:

infoτnew =
(
uτnew , {w(j)}j

)
.

We remark that even though infoτnew can be as large as O(λ · 2` · `), it is
not necessary for the sender or verifier to download them all. In deed, the
sender when running the P algorithm only needs to download the respective
witness w(j) of size O(λ · `) bits. Meanwhile, the verifier who runs the V
algorithm only needs to download uτnew of size O(λ) bits. It is also worth

37

noting that one is able to verify the well-formedness of registration table reg
from group information infoτcurrent and infoτnew

10, and vice versa11.
Enc(pkGM, pkOA, infoτ ,w, pk, L) Parse pkOA = (Goa,0,Goa,1), pk = (pk′j , bin(j))

for some j ∈ [0, N − 1] and let L ∈ {0, 1}∗. This algorithm is run by a
sender who wishes to send a message w ∈ Zp2 such that (S,w) ∈ Rpermit
to a chosen user j with encryption key pk′j . If user j is an active user at
current epoch τ , the sender downloads the corresponding witness w(j) =
(bin(j), (w`, · · · ,w1)) from infoτ and performs the following steps.
1. It first encrypts the message w under the encryption key pk′j .

– Parse pk′j = (Gj,0,Gj,1).
– Sample randomnesses rw,0, rw,1

$←− Zk2−p
2 and noises ew,0, ew,1

$←−
B(n, t2).

– For b ∈ {0, 1}, compute

cw,b = Gj,b ·
(

rw,b
w

)
⊕ ew,b ∈ Zn2 . (29)

Let cw = (cw,0, cw,1) ∈ Zn2 × Zn2 .
2. Next, it encrypts the user’s identity j under the key pkOA = (Goa,0,Goa,1).

– Let bin(j) = [j1| . . . |j`]> ∈ {0, 1}`.
– Sample randomnesses roa,0, roa,1

$←− Zk1−`
2 and noises eoa,0, eoa,1

$←−
B(n, t1).

– For b ∈ {0, 1}, compute

coa,b = Goa,b ·
(

roa,b
bin(j)

)
⊕ eoa,b ∈ Zn2 . (30)

Let coa = (coa,0, coa,1) ∈ Zn2 × Zn2 .
3. It then generates a proof showing that cw,0, cw,1 both encrypt w and

that coa,0, coa,1 both encrypt bin(j). This is done by running the protocol
in Section 7.1 on public input (Goa,0,Goa,1, cw, coa, L) and secret input
(Gj,0,Gj,1,w, bin(j), rw,0, rw,1, ew,0, ew,1, roa,0, roa,1, eoa,0, eoa,1). The pro-
tocol is repeated κ times to achieve negligible soundness error and made
non-interactive via Fiat-Shamir transform [26]. The resultant proof is a
triple of form πct = ({CMTct,i}κi=1,Chct, {RSPct,i}κi=1) such that

Chct = HFS({CMTct,i}κi=1,Goa,0,Goa,1, cw, coa, L).

Output the ciphertext ψ = (cw,0, cw,1, coa,0, coa,1, πct) and coins

coinsψ = (rw,0, rw,1, ew,0, ew,1, roa,0, roa,1, eoa,0, eoa,1). (31)
10 For instance, if w(j) does not appear in infoτcurrent but infoτnew then reg[j][2] = τnew.

On the other hand, if w(j) appears in infoτcurrent but not in infoτnew then reg[j][3] =
τnew.

11 It is easy to figure out all active users at specific time τ from reg, and thus enables
verification of well-formedness of infoτ .

38

P
(
pp, pkGM, pkOA, infoτ , S, ψ, L,w, pk, coinsψ

)
Let coinsψ be of the form (31) and

ψ = (cw,0,cw,1,coa,0,coa,1, πct). This algorithm is implemented by the sender
above who has encrypted a message w to a user j at time epoch τ . The
sender extracts B from pp. In addition to the witness w(j), he downloads
uτ as well from infoτ . The goal of the sender is to convince the verifier in
zero-knowledge that the following conditions hold.
1. The secret message w ∈ Zp2 is such that (S,w) ∈ Rpermit.
2. The user encryption key pk′j is correctly hashed to a non-zero value dj .

In other words, AccuB(pk′j) = dj and dj 6= 0n.
3. The non-zero hash value dj is honestly accumulated to value uτ at epoch
τ , i.e., the equation VerifyB(uτ ,dj , w(j)) = 1 holds.

4. (cw,0, cw,1), (coa,0, coa,1) are honest encryptions of w and bin(j), respec-
tively. In other words, for b ∈ {0, 1}, equations (29) and (30) hold.

5. The randomnesses rw,0, rw,1, roa,0, roa,1 are binary vectors while noises
ew,0, ew,1 and eoa,0, eoa,1 are in the sets B(n, t2) and B(n, t1), respectively.

This is done by running the interactive protocol in Section 7.2 on public
input

(
B, pkOA,uτ , S, ψ, L

)
and secret input (w, pk, coinsψ, w(j)). To achieve

negligible soundness error, the protocol is repeated κ times. To remove in-
teraction, the protocol is further applied Fiat-Shamir heuristic [26]. The
resulting proof is a triple πψ = ({CMTi}κi=1,Ch, {RSPi}κi=1) where

Ch = HFS({CMTi}κi=1,B, pkOA,uτ , S, ψ, L) ∈ {1, 2, 3}κ.

V
(
(pp, pkGM, pkOA, infoτ , S, ψ, L), πψ

)
This algorithm verifies the legitimacy of

the ciphertext label pair (ψ,L) with respect to epoch τ and the set of key-
words S by checking the validity of the proof πψ. It proceeds as follows.
1. Download uτ from infoτ .
2. Parse πψ = ({CMTi}κi=1,Ch, {RSPi}κi=1).
3. If Ch = [ch1| · · · |chκ]> 6= HFS({CMTi}κi=1,B, pkOA,uτ , S, ψ, L), return 0.

4. For i ∈ [1, κ], verify the validity of RSPi with respect to the commitment
CMTi and the challenge chi. If any of the verifications does not hold,
return 0. Else return 1.

Dec(infoτ , sk, ψ, L) This algorithm is run by a user j with secret key sk. Parse
sk = (sk(j,0)

ME , sk(j,1)
ME). It performs the following steps.

1. Parse ψ = (cw,0, cw,1, coa,0, coa,1, πct). It verifies the validity of πct as
follows.
– Let πct = ({CMTct,i}κi=1,Chct, {RSPct,i}κi=1).
– If Chct 6= HFS({CMTct,i}κi=1,Goa,0,Goa,1, cw,0, cw,1, coa,0, coa,1, L), re-

turn ⊥. Otherwise, let Chct = [chct,1| · · · |chct,κ]>.
– For i ∈ [1, κ], verify the validity of RSPct,i with respect to the com-

mitment CMTct,i and the challenge chct,i. If any of the verifications
does not hold, return ⊥.

39

2. If the above step does not return 0, it then runs the McElice decryption
algorithm DecME(sk(j,0)

ME , cw,0) (see Section 3.3), obtaining w′.
3. If (S,w′) ∈ Rpermit, return w′. Otherwise, return ⊥.

Open(infoτ , skOA, ψ, L) This algorithm is run by the OA who possesses the key
skOA = (sk(oa,0)

ME , sk(oa,1)
ME). It proceeds as follows.

1. Parse ψ = (cw,0, cw,1, coa,0, coa,1, πct). It verifies πct as in the algorithm
Dec. It πct is invalid, it returns ⊥.

2. Otherwise, it runs the decryption algorithm DecME(sk(oa,0)
ME , coa,0), ob-

taining [j′1| · · · |j′`]>.
3. If infoτ does not include a witness containing the string [j′1| · · · |j′`]>, then

return ⊥.
4. Let j′ ∈ [0, N−1] be the integer that has binary representation [j′1| · · · |j′`]>.

Output j′.

6.2 Asymptotic Efficiency, Correctness, and Security
Efficiency. We now analyze the efficiency of our construction with respect to
the security parameter λ.

– The public key and secret key of GM have bit size O(λ).
– The public key and secret key of OA and each user have bit size O(λ2).
– At each epoch, the sender who runs the P algorithm needs to download

data of bit size O(λ · `) while the verifier who runs the V algorithm needs to
download data of bit size O(λ).

– The size of ciphertext ψ is O(λ2). Regarding proof size, it is dominated
by that of witness wGE as in Section 7.2. The total cost is κ · O(LGE) =
ω(log λ) · O(λ2 + ` · λ), where LGE is the size of wGE.

Correctness. The above FDGE scheme is correct with all but negligible prob-
ability. It relies on the following three facts: (a) the correctness of the underly-
ing McEliece encryption scheme and (b) the perfect completeness of the zero-
knowledge argument used in the Enc algorithm and (c) the perfect complete-
ness of the zero-knowledge argument used in the P algorithm. Therefore, in
Exptcorr

A (1λ) defined in Section 2, the V algorithm will output 1 by fact (c), and
the Dec and Open algorithms will output w′ = w and pk′ = pk, respectively, by
fact (a) and (b).
Security. In Theorem 2, we state that the given FDGE satisfies the proposed
security requirements in Section 2.2.
Theorem 2. Assume the zero-knowledge argument used in the Enc algorithm is
simulation-sound and zero-knowledge, the zero-knowledge argument used in the
P algorithm is sound and zero-knowledge, the randomized McEliece encryption
schemes have pseudorandom ciphertexts, and the hash function hB is collision
resistant. Then, in the random oracle model, the above FDGE scheme satisfies
message secrecy, anonymity, and soundness.
Details of the security proofs are given in Section 8.

40

7 Supporting Zero-Knowledge Arguments for the
Code-Based FDGE Scheme

This section presents the zero-knowledge arguments invoked by the sender who
encrypts the message and who needs to show its honest behaviour of correct
encryption.

7.1 The Zero-Knowledge Argument for the Enc Algorithm

This section presents the zero-knowledge argument for the Enc algorithm, in
which we show that Gj,0,Gj,1 encrypt the same message w and that Goa,0,Goa,1
encrypt bin(j). This is to ensure the CCA2-security of the encryption schemes.
As a result, it is not required to show that (S,w) ∈ Rpermit or the user encryption
key is valid. The public inputs of this protocol are Goa,0,Goa,1 ∈ Zn×k1

2 , cw,0,
cw,1, coa,0, coa,1 ∈ Zn2 , and our goal is to prove knowledge of roa,0, roa,1 ∈ Zk1−`

2 ,
eoa,0, eoa,1 ∈ B(n, t1), bin(j) ∈ Z`2, Gj,0,Gj,1 ∈ Zn×k2

2 , rw,0, rw,1 ∈ Zk2−p
2 , and

ew,0, ew,1 ∈ B(n, t2), w ∈ Zp2 such that the following equations hold.

cw,0 = Gj,0 ·
(

rw,0
w

)
⊕ ew,0, cw,1 = Gj,1 ·

(
rw,1
w

)
⊕ ew,1; (32)

coa,0 = Goa,0 ·
(

roa,0
bin(j)

)
⊕ eoa,0, coa,1 = Goa,1 ·

(
roa,1

bin(j)

)
⊕ eoa,1. (33)

Note that Gj,0,Gj,1 should be kept secret since we would like to conceal the
identity of the receiver. We aim to transform the above relations to an instance
of Rabstract such that equivalences in (2) are fulfilled. To this end, we proceed
in three steps. We first rearrange each of equations in (32)–(33) to a form of
M · w′ = v mod 2 such that M,v are constructed from public inputs and w′
is constructed from secret inputs. Specifically, we aim for w′ whose constraints
are invariant under random permutations. Next, we combine equations obtained
from the first step to a unified form Mct ·wct = vct mod 2, where Mct,vct are
public and wct is a concatenation of the secret vectors obtained in the previous
step. Finally, we specify the set VALIDct that consists of our secret vector wct,
the set Sct, and permutations {Γφ : φ ∈ Sct} so that the equivalences in (2) hold.
The First Step-Equation (32). To convert the equations in (32), which incur
to prove quadratic statements about LPN relation, we follow the techniques
presented in Section 4.1. For b ∈ {0, 1}, denote Gj,b = [G(0)

j,b |G
(1)
j,b] such that

G(0)
j,b ∈ Zn×(k2−p)

2 and G(1)
j,b ∈ Zn×p2 . Following from (19), equations in (32) are

equivalent to

cw,0 = G(0)
j,0 · rw,0 ⊕G(1)

j,0 ·w⊕ ew,0
= Hn,k2−p · expand(G(0)

j,0 , rw,0)⊕Hn,p · expand(G(1)
j,0 ,w)⊕ ew,0, (34)

cw,1 = Hn,k2−p · expand(G(0)
j,1 , rw,1)⊕Hn,p · expand(G(1)

j,1 ,w)⊕ ew,1.

41

To simplify the notation, denotek(0)
j,b = expand(G(0)

j,b , rw,b) ∈ Z4n(k2−p)
2 for b ∈ {0, 1};

k(1)
j,b = expand(G(1)

j,b ,w) ∈ Z4np
2 for b ∈ {0, 1}.

According to basic algebra, we can form public matrix Mquad ∈ Z2n×Lquad
2 and

vquad = (cw,0‖cw,1) ∈ Z2n
2 with Lquad = 8nk2 + 2n such that equations in (34)

can be written as

Mquad ·wquad = vquad mod 2, (35)

where wquad ∈ ZLquad
2 is of the following form:

wquad = (k(0)
j,0‖k

(1)
j,0‖k

(0)
j,1‖k

(1)
j,1‖ew,0‖ew,1).

The First Step-Equation (33). Next, to transform equations in (33) which
simply require proving linear statements, we utilize the techniques in Section 3.5.
Let bin(j) = [j1| · · · |j`]>, f = Encode(bin(j)) ∈ Z2`

2 , and hoa,b = Encode(roa,b) ∈
Z2(k1−`)

2 for b ∈ {0, 1}. Following (4), equations in (33) are equivalent to

coa,0 = Goa,0 · I∗k1
·
(

hoa,0
f

)
⊕ eoa,0, coa,1 = Goa,1 · I∗k1

·
(

hoa,1
f

)
⊕ eoa,1. (36)

We further transform equations in (36) to the following equivalent form

Moa ·woa = voa mod 2, (37)

where Moa ∈ Z2n×Loa
2 and voa = (coa,0‖coa,1) ∈ Z2n

2 are public, and woa ∈ ZLoa
2

is secret with Loa = 4k1 − 2`+ 2n and woa being the following form:

woa = (hoa,0‖hoa,1‖f‖eoa,0‖eoa,1).

The Second Step. We now combine the equations (35) and (37) into a unified
form. To this end, denote

Mct =
(

Mquad
Moa

)
∈ Z4n×Lct

2 ; wct = (wquad‖woa) ∈ ZLct
2 ;

vct = (vquad‖voa) ∈ Z4n
2 ;Lct = Lquad + Loa = 8nk2 + 4n+ 4k1 − 2`.

Then Mct ·wct = vct mod 2.

The Third Step. We now specify the set VALIDct,Sct and the associated per-
mutations {Γφ : φ ∈ Sct}. Let VALIDct be the set that contains vector

ŵct =
(
k̂(0)
j,0‖k̂

(1)
j,0‖k̂

(0)
j,1‖k̂

(1)
j,1‖êw,0‖êw,1‖ĥoa,0‖ĥoa,1‖f̂‖êoa,0‖êoa,1

)
∈ ZLct

2 (38)

such that

42

(a) There exists ŵ ∈ Zp2, êw,0, êw,1 ∈ B(n, t2), êoa,0, êoa,1 ∈ B(n, t1).
(b) For b ∈ {0, 1}, there exists r̂w,b ∈ Zk2−p

2 , p̂(0)
b ∈ Zn(k2−p)

2 , p̂(1)
b ∈ Znp2 such

that

k̂(0)
j,b = expand(p̂(0)

b , r̂w,b) ∈ Z4n(k2−p)
2 , and k̂(1)

j,b = expand(p̂(1)
b , ŵ) ∈ Z4np

2 .

(c) For b ∈ {0, 1}, there exits r̂oa,b ∈ Zk1−`
2 such that ĥoa,b = Encode(r̂oa,b) ∈

Z2(k1−`)
2 .

(d) There exists ĵ = [ĵi| · · · |ĵ`]> ∈ Z`2 such that f̂ = Encode(̂j) ∈ Z2`
2 .

One can check that our secret vector wct belongs to VALIDct. Let Sct = Zp2 ×
(Sn)4 × (Zk2−p

2)2 × (Zn(k2−p)
2)2 × (Znp2)2 × (Zk1−`

2)2 × Z`2. Then for each φ =
(t, σw,0, σw,1, σoa,0, σoa,1, tw,0, tw,1, t(0)

0 , t(0)
1 , t(1)

0 , t(1)
1 , toa,0, toa,1, tf) ∈ Sct, define

a permutation that transforms ŵct of form (38) to a vector Γφ(ŵct) of the
following form

Γφ(ŵct) =
(
k(0)?
j,0 ‖k

(1)?
j,0 ‖k

(0)?
j,1 ‖k

(1)?
j,1 ‖e

?
w,0‖e?w,1‖h?oa,0‖h?oa,1‖f?‖e?oa,0‖e?oa,1

)
such that

(a) For b ∈ {0, 1}, e?w,b = σw,b(êw,b) and e?oa,b = σoa,b(êoa,b).
(b) For b ∈ {0, 1}, k(0)?

j,b = T ′
t(0)
b
,tw,b

(k̂(0)
j,b) and k(1)?

j,b = T ′
t(1)
b
,t

(k̂(1)
j,b).

(c) For b ∈ {0, 1}, h?oa,b = Ftoa,b,(ĥoa,b).
(d) f? = Ftf (f̂).

It is implied by the equivalences observed in (3), (5) and (18) that, for all φ ∈ Sct,
ŵct ∈ VALIDct ⇐⇒ Γφ(ŵct) ∈ VALIDct. Moreover, if φ is uniformly random in
Sct and ŵct ∈ VALIDct, then Γφ(ŵct) is uniformly random in VALIDct. Therefore,
we have successfully reduced the considered statement to an instance of Rabstract.
Now P and V interacts as in Figure 2. The protocol is a statistical ZKAoK with
perfect completeness, soundness error 2/3, and communication cost O(Lct) =
O(λ2) bits.

7.2 The Zero-Knowledge Argument for the P Algorithm

In this section, we present the zero-knowledge protocol that will be invoked by
the sender who has encrypted a message w to a user j in the group at epoch τ
and now has to show its honest behavior. This protocol is an extension of the
one in Section 7.1, for which the prover has to show additionally the following
three facts.

(I) The secret message w ∈ Zp2 is such that (S,w) ∈ Rpermit.
(II) The secret hash value dj ∈ Zn2 \{0n} is properly accumulated into the root uτ

of the (main)-Merkle tree. Equivalently, there exists witness w(j) ∈ Z`2×(Zn2)`
such that

VerifyB(uτ ,dj , w(j)) = 1. (39)

43

(III) The user key (Gj,0,Gj,1), which should be kept hidden, is honestly hashed
to the (non-zero) root dj of a (sub)-Merkle tree. In other words,

AccuB
(
(Gj,0,Gj,1)

)
= dj . (40)

Following the same strategy in Section 7.1, we proceed in three steps. we first
rearrange each statement in case (I) – (III) to a form of M ·w′ = v mod 2 such
that the constraints of secret vector w′ are invariant under some permutations.

The First Step-Case (I). This relation has been proved in Section 5.2, in
which we obtain an equivalent form

Mpermit ·wpermit = 0n mod 2, (41)

where Mpermit ∈ Zn×Lpermit
2 , wpermit = (expand′(permit(w),g)‖h) ∈ ZLpermit

2
with g ∈ B(p− t+ 1, 1), h ∈ B(k, 1), and Lpermit = 2t(p− t+ 1) + k.

The First Step-Case (II). In this equation, we have to prove knowledge
of (dj , w(j)). This is indeed what we have done in Section 3.6. Let w(j) =(
[j1| · · · |j`]>,w`, . . . ,w1

)
and v` = dj ,v`−1, . . . ,v1 be computed from the Verify

algorithm as explained in Section 3.1. Following Section 3.6, equation (39) is
equivalent to

Macc ·wacc = vacc mod 2, (42)

where Macc ∈ Z`n×Lacc
2 and vacc ∈ Z`n2 are public and wacc ∈ {0, 1}Lacc is secret

with Lacc = 2`m+ 2(`− 1)n. Concretely, wacc ∈ {0, 1}Lacc is of the form

wacc = (y1‖ · · · ‖y`‖z1‖ · · · ‖z`‖x1‖ · · · ‖x`−1)

such that 
yi = Ext(ji,RE(vi)) for i ∈ [1, `];
zi = Ext(ji,RE(wi)) for i ∈ [1, `];
xi = Encode(vi) for i ∈ [1, `− 1].

The First Step-Case (III). Now let us look at equation (40), in which we
have to prove knowledge of (Gj,0,Gj,1,dj). Recall that for b ∈ {0, 1}, Gj,b =
[gj,k2b+0| · · · |gj,k2b+k2−1], Dj = {gj,0 . . . ,gj,2k2−1}, and 2k2 = 2v. Intuitively,
this would require proving knowledge of (dj ,gj,i, w

′(i)) ∈ Zn2 ×Zn2 ×
(
Zv2×(Zn2)v

)
such that VerifyB(dj ,gj,i, w

′(i)) = 1 for each i ∈ [0, 2k2−1]. However, this would
incur 2k2 ·log(2k2) = 2k2v equations. We show that, however, 2k2−112 equations
suffice. Recall that dj = v` ∈ {0, 1}n \ {0n} is computed bottom-up starting
from the set Dj . Rewrite Dj = {pjv,0,p

j
v,1, . . . ,p

j
v,2v−1}. Then equation (40) is

12 It is actually 2k2 since we add one more equation to handle v`.

44

equivalent to

B0 · RE(pj1,0)⊕B1 · RE(pj1,1)⊕ v` = 0n;
B0 · RE(pj2,2i)⊕B1 · RE(pj2,2i+1)⊕ pj1,i = 0n, ∀ i ∈ [0, 21 − 1];

.

B0 · RE(pjv−1,2i)⊕B1 · RE(pjv−1,2i+1)⊕ pjv−2,i = 0n, ∀ i ∈ [0, 2v−2 − 1];
B0 · RE(pjv,2i)⊕B1 · RE(pjv,2i+1)⊕ pjv−1,i = 0n, ∀ i ∈ [0, 2v−1 − 1];

(43)

in which we have to prove knowledge of(
v`,pj1,0,p

j
1,1,p

j
2,0, . . . ,p

j
2,3, . . . ,p

j
v−1,0, . . . ,p

j
v−1,2v−1−1,p

j
v,0, . . . ,p

j
v,2v−1

)
.

To transform all the secret vectors in (43) so that their constraints are invariant,
we apply the Encode function to the following secret input(

pj1,0,p
j
1,1,p

j
2,0, . . . ,p

j
2,3, . . . ,p

j
v−1,0, . . . ,p

j
v−1,2v−1−1

)
.

For u ∈ [1, v−1] and i ∈ [0, 2u−1], let xju,i = Encode(pju,i) ∈ Z2n
2 , which implies

pju,i = I∗n · x
j
u,i. For ease of notation, we also let qju,i = RE(pju,i) ∈ Zm/2

2 for
u ∈ [1, v] and i ∈ [0, 2u − 1].

In terms of v`, we cannot simply apply Encode function since the permutation
F applied to Encode(v`) does not preserve the constraint that v` is non-zero.
However, we cannot simply extend it to v∗` ∈ B(2n − 1, n) as well since v`
appears in equation (42) in the form of RE(v`). Note that the constraint of
v∗` is invariant for a permutation π ∈ S2n−1 while that of RE(v`) is invariant
for a permutation E′b` for some b` ∈ {0, 1}n. To solve this issue, we come
up with the following novel yet simple approach. We apply Encode function
to v` to obtain x` in the first equation of (43) and add one more equation
B0 ·RE(pj1,0)⊕B1 ·RE(pj1,1)⊕v`+1 = 0n and extend v`+1 to v∗`+1 ∈ B(2n−1, n).
It is obvious that v` = v`+1. With this additional equation (and hence a slightly
larger cost), we are able to prove that v` satisfies multiple constraints. Note that
we have v` = I∗n · x` and v`+1 = P∗n · v∗`+1.

To this end, we obtain equations below that are equivalent to those in (43).

B0 · qj1,0 ⊕B1 · qj1,1 ⊕ I∗n · x` = 0n;
B0 · qj1,0 ⊕B1 · qj1,1 ⊕P∗n · v∗`+1 = 0n;
B0 · qj2,2i ⊕B1 · qj2,2i+1 ⊕ I∗n · x

j
1,i = 0n, ∀ i ∈ [0, 21 − 1];

.

B0 · qjv−1,2i ⊕B1 · qjv−1,2i+1 ⊕ I∗n · x
j
v−2,i = 0n, ∀ i ∈ [0, 2v−2 − 1];

B0 · qjv,2i ⊕B1 · qjv,2i+1 ⊕ I∗n · x
j
v−1,i = 0n, ∀ i ∈ [0, 2v−1 − 1].

(44)

Through careful algebra transformation, equations in (44) are equivalent to

Mvacc ·wvacc = vvacc mod 2, (45)

45

for some properly formed public matrix Mvacc ∈ Z2k2n×Lvacc
2 and vvacc = 02k2n

with Lvacc = (2n− 1) + (2v − 1) · 2n+ (2v+1 − 2) ·m/2 = 2k2m+ 4k2n−m− 1
and wvacc being the following form:

wvacc =
(

x`‖v∗`+1‖x
j
1,0‖x

j
1,1‖x

j
2,0‖ · · · ‖x

j
2,3‖ · · · ‖x

j
v−1,0‖ · · · ‖x

j
v−1,2v−1−1‖

qj1,0‖q
j
1,1‖q

j
2,0‖ · · · ‖q

j
2,3‖ · · · ‖q

j
v−1,0‖ · · · ‖q

j
v−1,2v−1−1‖

qjv,0‖q
j
v,1‖ · · · ‖q

j
v,2v−1

)
.

The Second Step. Following Section 7.1, we combine the equations (41), (42),
(45) together with (35), (37) into a unified form. To this end, denote

MGE =


Mpermit

Macc
Mvacc

Mquad
Moa

 ∈ Z(2k2+`+5)n×LGE
2 ;

wGE = (wpermit‖wacc‖wvacc‖wquad‖woa) ∈ ZLGE
2 ;

vGE = (0n‖vacc‖vvacc‖vquad‖voa) ∈ Z(2k2+`+5)n
2 ;

LGE = Lpermit + Lacc + Lvacc + Lquad + Loa;
= 2t(p− t+ 1) + k + 2k2m+ 12k2n+ 2`(m+ n) + 4k1 + 2n−m− 2`− 1.

Then MGE ·wGE = vGE mod 2.

The Third Step. Lastly, we specify the set VALIDGE, SGE and the associated
permutations {Γφ : φ ∈ SGE}. Let VALIDGE be the set that consists of vector
ŵGE ∈ ZLGE

2 of the following form

ŵGE =
(
ẑ‖ĥ‖ŷ1‖ · · · ‖ŷ`‖ẑ1‖ · · · ‖ẑ`‖x̂1‖ · · · ‖x̂`‖v̂∗`+1‖

x̂j1,0‖x̂
j
1,1‖x̂

j
2,0‖ · · · ‖x̂

j
2,3‖ · · · ‖x̂

j
v−1,0‖ · · · ‖x̂

j
v−1,2v−1−1‖

q̂j1,0‖q̂
j
1,1‖q̂

j
2,0‖ · · · ‖q̂

j
2,3‖ · · · ‖q̂

j
v−1,0‖ · · · ‖q̂

j
v−1,2v−1−1‖

q̂jv,0‖q̂
j
v,1‖ · · · ‖q̂

j
v,2v−1‖ (46)

k̂(0)
j,0‖k̂

(1)
j,0‖k̂

(0)
j,1‖k̂

(1)
j,1‖

êw,0‖êw,1‖ĥoa,0‖ĥoa,1‖f̂‖êoa,0‖êoa,1
)

such that the following conditions are satisfied.

(i) ẑ = expand′(σ̂(t)(permit(ŵ)), ĝ) ∈ Z2t(p−t+1)
2 for some σ̂ ∈ Sp−t+1, ŵ ∈ Zp2,

and ĝ ∈ B(p− t+ 1, 1). ĥ ∈ B(k, 1).
(ii) v̂∗`+1 ∈ B(2n− 1, n), êw,0, êw,1 ∈ B(n, t2), êoa,0, êoa,1 ∈ B(n, t1).

(iii) For i ∈ [1, `], there exists ĵi ∈ {0, 1}, v̂i, ŵi ∈ Zn2 such that

ŷi = Ext(ĵi,RE(v̂i)), ẑi = Ext(ĵi,RE(ŵi)) ∈ Zm2 , and x̂i = Encode(v̂i) ∈ Z2n
2 .

46

(iv) For all u ∈ [1, v − 1], i ∈ [0, 2u − 1], there exists p̂ju,i ∈ Zn2 such that

x̂ju,i = Encode(p̂ju,i) ∈ Z2n
2 , and q̂ju,i = RE(p̂ju,i) ∈ Zm/2

2 .

(v) For i ∈ [0, 2v − 1], there exists p̂jv,i ∈ Zn2 such that q̂jv,i = RE(p̂jv,i) ∈ Zm/2
2 .

(vi) Denote

p̂(0)
0 = (p̂jv,0‖ · · · ‖p̂

j
v,k2−p−1), p̂(1)

0 = (p̂jv,k2−p‖ · · · ‖p̂
j
v,k2−1),

p̂(0)
1 = (p̂jv,k2

‖ · · · ‖p̂jv,2k2−p−1), p̂(1)
1 = (p̂jv,2k2−p‖ · · · ‖p̂

j
v,2k2−1).

For b ∈ {0, 1}, there exists r̂w,b ∈ Zk2−p
2 such that

k̂(0)
j,b = expand(p̂(0)

b , r̂w,b) ∈ Z4n(k2−p)
2 , and k̂(1)

j,b = expand(p̂(1)
b , ŵ) ∈ Z4np

2 .

(vii) For b ∈ {0, 1}, there exits r̂oa,b ∈ Zk1−`
2 such that ĥoa,b = Encode(r̂oa,b).

(viii) Denote ĵ = [ĵi| · · · |ĵ`]>. Then f̂ = Encode(̂j) ∈ Z`2.

Remark 1. If a variable appears multiple times, it is critical that we employ
the same permutation for those places. To enhance the understanding, we mark
those places in the same color. For example, v̂i appears both in variables ŷi and
x̂i, we mark those two places in blue.

It is verifiable that our secret vector wGE is included in the set VALIDGE. Let

SGE = Zp2 × Sp−t+1 × Sk × S2n−1 × (Sn)4 × Z`2 × (Zn2)` × (Zn2)` ×
(Zn2)2v+1−2 × (Zk2−p

2)2 × (Zk1−`
2)2.

Then for each φ ∈ SGE of the following form

φ = (t, σg, σh, σv, σw,0, σw,1, σoa,0, σoa,1, [tf,1| · · · |tf,`]>,b1, . . . ,b`, c1, . . . , c`,
t1,0, t1,1, t2,0, . . . , t2,3, . . . , tv−1,0, . . . , tv−1,2v−1−1,

tv,0, . . . , tv,2v−1, tw,0, tw,1, toa,0, toa,1),

define an associated permutation Γφ as below. It transforms a vector ŵGE ∈
ZLGE

2 of the form (46) to a vector Γφ(ŵGE) of the following form

Γφ(ŵGE) =
(
z?‖h?‖y?1‖ · · · ‖y?`‖z?1‖ · · · ‖z?`‖x?1‖ · · · ‖x?`‖v∗?`+1‖

xj?1,0‖x
j?
1,1‖x

j?
2,0‖ · · · ‖x

j?
2,3‖ · · · ‖x

j?
v−1,0‖ · · · ‖x

j?
v−1,2v−1−1‖

qj?1,0‖q
j?
1,1‖q

j?
2,0‖ · · · ‖q

j?
2,3‖ · · · ‖q

j?
v−1,0‖ · · · ‖q

j?
v−1,2v−1−1‖

qj?v,0‖q
j?
v,1‖ · · · ‖q

j?
v,2v−1‖ (47)

k(0)?
j,0 ‖k

(1)?
j,0 ‖k

(0)?
j,1 ‖k

(1)?
j,1 ‖

e?w,0‖e?w,1‖h?oa,0‖h?oa,1‖f?‖e?oa,0‖e?oa,1
)
,

such that

47

(i) z? = Ψ ′permit(t),σg (ẑ) and h? = σh(ĥ).
(ii) v∗?`+1 = σv(v̂∗`+1). For b ∈ {0, 1}, e?w,b = σw,b(êw,b) and e?oa,b = σoa,b(êoa,b).
(iii) For i ∈ [1, `], y?i = Φtf,i,bi(ŷi), z?i = Φtf,i,ci(ẑi), and x?i = Fbi(x̂i).

(iv) For u ∈ [1, v − 1], i ∈ [0, 2u − 1], xj?k,i = Ftu,i(x̂
j
u,i) and qj?u,i = E′tu,i(q̂

j
u,i).

(v) For i ∈ [0, 2v − 1], qj?v,i = E′tv,i(q̂
j
v,i).

(vi) Denote

t(0)
0 = (tv,0‖ · · · ‖tv,m−p−1), t(1)

0 = (tv,m−p‖ · · · ‖tv,m−1),

t(0)
1 = (tv,m‖ · · · ‖tv,2m−p−1), t(1)

1 = (tv,2m−p‖ · · · ‖tv,2m−1).

For b ∈ {0, 1}, k(0)?
j,b = T ′

t(0)
b
,tw,b

(k̂(0)
j,b) and k(1)?

j,b = T ′
t(1)
b
,t

(k̂(1)
j,b).

(vii) For b ∈ {0, 1}, h?oa,b = Ftoa,b,(ĥoa,b).
(viii) Denote tf = [tf,1| · · · |tf,`]>. Then f? = Ftf (f̂).

Based on the equivalences observed in (3), (5), (7), (9), (10), (18) and (26), one
can verify that for φ ∈ SGE, the equivalence ŵGE ∈ VALIDGE ⇐⇒ Γφ(ŵGE) ∈
VALIDGE holds. In addition, if φ is uniformly chosen from SGE and ŵGE ∈
VALIDGE, then Γφ(ŵGE) is uniformly distributed in VALIDGE. In other words,
the equivalences in (2) are satisfied and we have managed to convert the con-
sidered statements to an instance of Rabstract. Now P and V can interact as
described in Figure 2. The resulting protocol is a statistical ZKAoK with per-
fect completeness, soundness error 2/3, and communication cost O(LGE) =
O(λ2 + ` · λ) bits.

8 Security Proofs of Our Group Encryption Scheme

In this section, we prove that our fully dynamic group encryption satisfies mes-
sage secrecy, anonymity and soundness as defined in Section 2.2.

Theorem 3. Assume that the DMcE(n, k2, t2) and the DLPN(n, k2−p,B(n, t2))
problems are hard, the argument protocol in Section 7.1 is zero-knowledge and
simulation-sound, and the argument protocol in Section 7.2 is zero-knowledge,
then the given FDGE scheme satisfies message secrecy in the random oracle
model.

Proof. We prove the theorem using a sequence of indistinguishable games. The
first game corresponds to the experiment Exptsec−1

A (1λ) as in Definition 2 while
the last game corresponds to Exptsec−0

A (1λ). In the former experiment, the ad-
versary obtains a ciphertext that is an encryption of the real witness w ∈ Zp2
such that (S,w) ∈ Rpermit and a real proof at each invocation of the oracle
PROVE1

P,P′(·). In the latter one, the adversary receives a ciphertext that encrypts
a random plaintext in Zp2 and a simulated proof produced by the zero-knowledge
simulator of the argument protocol in Section 7.2 each time it invokes the oracle
PROVE0

P,P′(·). In Game i, Wi denotes the event that the challenger outputs 1.

48

Game 0: This is the experiment Exptsec−1
A (1λ). The challenger sends A pub-

lic parameters pp, who in turn generates pkOA = (Goa,0,Goa,1) and pkGM
on behalf the OA and GM who are both fully corrupted by A. Meanwhile,
A controls the table reg and updates group information info at its will.
However, if either reg or info is not well-formed, the experiment aborts and
outputs 0. A is able to register honest users to the group by interacting
with oracle USER and to learn secret key of honest users by querying the
oracle RevealU. The challenger maintains two lists HUL and BUL accord-
ingly. At some point, A targets a receiver bin(j∗) with public encryption key
(Gj∗,0,Gj∗,1). It then can make a polynomial number of decryption queries
which are faithfully replied using the secret key sk(j∗,0)

ME of user bin(j∗). Next,
A specifies a tuple (τ∗, S∗,w∗, L∗) such that (1) user j∗ is active at epoch
τ∗; and (2) (S∗,w∗) ∈ Rpermit, where S∗ = {s∗1, . . . , s∗k} and s∗i ∈ {0, 1}t for
i ∈ [1, k]. If any of the conditions is not satisfied, the experiment aborts and
output 0. Upon receiving the tuple, the challenger sends back to A a chal-
lenge ciphertext ψ∗ = (c∗w,0, c∗w,1, c∗oa,0, c∗oa,1, π

∗
ct) computed by running the

encryption algorithm Enc(pkGM, pkOA, infoτ∗ ,w∗, (Gj∗,0,Gj∗,1, bin(j∗)), L∗).
Specifically, for i ∈ {0, 1}, c∗w,i = Gj∗,i ·(r∗w,i‖w∗)⊕e∗w,i for r∗w,i ∈ Zk2−p

2 and
e∗w,i ∈ B(n, t2). Then, A is further allowed to query a polynomial number of
proof πψ∗ of validity of the ciphertext πψ∗ . In addition, A can still query the
oracle DEC(skj∗ , ·) under the restriction specified in Definition 2. Finally, A
halts and outputs b′. The game returns whatever A outputs. By definition,
Pr[Exptsec−1

A (1λ) = 1] = Pr[W0].
Game 1: This game changes the way we answer the DEC oracle. Let (ψ, τ, L)

be a tuple queried to DEC(skj∗ , ·), parse ψ = (cw,0, cw,1, coa,0, coa,1, πct) and
let skj∗ = (sk(j∗,0)

ME , sk(j∗,1)
ME). Instead of using sk(j∗,0)

ME to decrypt cw,0, it now
employs sk(j∗,1)

ME to decrypt cw,1. The view of A is the same as in Game 0 until
event F1, in which πct is a valid proof yet cw,0 and cw,1 encrypt distinct mes-
sages, occurs. Since event F1 breaks the soundness of the argument system in
Section 7.1, we have |Pr[W1]− Pr[W0]| ≤ Pr[F1] ≤ Advsound(λ) ≤ negl(λ).

Game 2: This game is the same as Game 1 except that we substitute π∗ct with
a simulated proof by running the zero-knowledge simulator of the argu-
ment system in Section 7.1. Since the argument system is statistical zero-
knowledge, this modification does not change the view of A non-negligibly.
We then have |Pr[W2]− Pr[W1]| ≤ negl(λ).

Game 3: This game changes Game 2 in a similar way Game 2 does. It produces
a simulated proof by resorting to the zero-knowledge simulator of the argu-
ment system in Section 7.2 each time A queries the oracle PROVE1

P,P′(·).
Due to the statistical zero-knowledge property of the argument system, the
view of the adversary in Game 3 and Game 2 are statistically indistinguish-
able, implying |Pr[W3]− Pr[W2]| ≤ negl(λ).

Game 4: This game modifies Game 3 by changing the challenge ciphertext ψ∗.
Specifically, this game samples a random element w′∗ ∈ Zp2 and compute c∗w,0
as an encryption of w′∗. By the CPA-security of McEliece’s cryptosystem,

49

which relies on the hardness of the problem DMcE(n, k2, t2) and problem
DLPN(n, k2 − p,B(n, t2)), we have |Pr[W4]− Pr[W3]| ≤ negl(λ).

Game 5: This game is identical to Game 4 except that we switch back to sk(j∗,0)
ME

for DEC(skj∗ , ·) queries. We remark that in Game 4 and this game c∗w,0 is an
encryption of w′∗ while c∗w,1 is an encryption of the real witness w∗. As a
result, π∗ct is a simulated proof of a false statement (since c∗w,0, c∗w,1 encrypt
different messages). This modification remains unnoticed unless event F2,
when A queries a tuple in which πct is valid yet cw,0, cw,1 encrypt different
messages, occurs. However, event F2 violates the simulation-soundness of the
argument system in Section 7.1. Therefore, |Pr[W5] − Pr[W4]| ≤ Pr[F2] ≤
Advsim−sound(λ) ≤ negl(λ).

Game 6: This game is like Game 5 other than that c∗w,1 is an encryption of w′∗
as c∗w,0. This change is negligible to A due to the CPA-security of McEliece’s
encryption scheme and that only the key sk(j,∗0)

ME is used in the DEC(skj∗ , ·)
oracle. Hence, |Pr[W6]− Pr[W5]| ≤ negl(λ).

Game 7: When generating the challenge ciphertext ψ∗, this game switches back
to a real proof π∗ct. The distance of Game 7 and Game 6 is negligible based
on the statistical zero-knowledge of the argument protocol in Section 7.1.
Therefore, |Pr[W7]− Pr[W6]| ≤ negl(λ).

In the last game, A receives a challenge ciphertext that encrypts a random ele-
ment and sees simulated proofs of ciphertext validity. This is exactly Exptsec−0

A (1λ).
Therefore, Pr[W7] = Pr[Exptsec−0

A (1λ) = 1]. Putting everything together, we have

Advsec
A = |Pr[Exptsec−1

A (1λ) = 1]− Pr[Exptsec−0
A (1λ) = 1]|

= |Pr[W0]− Pr[W7]|
≤ negl(λ).

This proves the theorem.

Theorem 4. Assume that the problems DMcE(n, k1, t1), DMcE(n, k2, t2), and
DLPN(n, k1 − `,B(n, t1)), DLPN(n, k2 − p,B(n, t2)) are hard, the argument pro-
tocol in Section 7.1 is zero-knowledge and simulation-sound, and the argument
protocol in Section 7.2 is zero-knowledge, then the given fully dynamic group
encryption scheme is anonymous in the random oracle model.

Proof. We proceed via a series of games where the first is Exptanon−b
A (1λ) while

the last game does not depend on b at all. In Game i, Wi denotes the event that
the output of Game i is 1.

Game 0: This is the experiment Exptanon−b
A (1λ). The challenger generates public

parameters pp and key pair pkOA = (Goa,0,Goa,1), skOA = (sk(oa,0)
ME , sk(oa,1)

ME)
on behalf of OA. The adversary A, given (pp, pkOA), produces pkGM in the
name of GM that is completely corrupted. By interacting with the oracles
USER,RevealU, A is able to register honest receivers to the group and cor-
rupt some of them. It also has access to the OPEN oracle. At some point, A

50

chooses two receivers (Gj∗0 ,0,Gj∗0 ,1, bin(j∗0)), (Gj∗1 ,0,Gj∗1 ,1, bin(j∗1)) as chal-
lenged users. It can make a polynomial number of DEC(skj∗0 , ·),DEC(skj∗1 , ·)
queries, where skj∗0 , skj∗1 are the secret keys of bin(j∗0), bin(j∗1), respectively.
After a while, A decides a tuple (τ∗, S∗,w∗, L∗) such that (1) both chal-
lenged users are active at epoch τ∗ and (2) (S∗,w∗) ∈ Rpermit, where
S∗ = {s∗1, . . . , s∗k} and s∗i ∈ {0, 1}t for i ∈ [1, k]. If any of the conditions
is not satisfied, the experiment aborts and output 0. The challenger com-
putes ψ∗ = Enc(pkGM, pkOA, infoτ∗ ,w∗, (Gj∗

b
,0,Gj∗

b
,1, bin(j∗b)), L∗) and sends

ψ∗ = (c∗w,0, c∗w,1, c∗oa,0, c∗oa,1, π
∗
ct) to A. The latter obtains proofs πψ∗ for ψ∗

and makes further decryption queries and opening queries with the obvi-
ous restrictions. Note that for i ∈ {0, 1}, c∗w,i and c∗oa,i are encryption of
w∗ and bin(j∗b) under the key Gj∗

b
,i and Goa,i, respectively. When A halts

and outputs b′, this game outputs 1 if and only if b′ = b. By definition,
Pr[Exptanon−b

A (1λ) = b] = Pr[W0].

Game 1: We modify Game 0 by utilizing sk(oa,1)
ME to decrypt coa,1 whenA invokes

OPEN(skOA, ·) on (ψ, τ, L) with ψ = (cw,0, cw,1, coa,0, coa,1, πct). Note that in
Game 0, OPEN(skOA, ·) oracle employs sk(oa,0)

ME to decrypt coa,0. The view of
A will remain unchanged unless A comes up with a tuple (ψ, τ, L) such that
πct is valid yet coa,0, coa,1 are encryptions of different strings. However, this
would breach the soundness of the argument system in Section 7.1. We thus
have |Pr[W1]− Pr[W0]| ≤ Advsound ≤ negl(λ).

Game 2: In this game, we appeal to the zero-knowledge simulator of the ar-
gument system in Section 7.1, obtaining a simulated proof π∗ct. The statis-
tical zero-knowledge of the argument ensures that the view of A in this
game is statistically close to that in Game 1. In other words, we have
|Pr[W2]− Pr[W1]| ≤ negl(1λ).

Game 3: This game modifies Game 2 by relying on the zero-knowledge simu-
lator of the argument system in Section 7.2 when A asks for πψ∗ . Since this
argument system is statistical zero-knowledge, we obtain |Pr[W3]−Pr[W2]| ≤
negl(1λ).

Game 4: We now change the challenge ciphertext ψ∗ by replacing c∗oa,0 with a
random string c′∗oa,0 sampled from the space Zn2 . Since sk(oa,0)

ME is no longer
employed for opening queries, any noticeable change in A’s output implies
another adversary B distinguishing a McEliece ciphertext from random. Due
to the hardness of the DMcE(n, k1, t1) and DLPN(n, k1−`,B(n, t1)) problems,
the advantage of B is negligible, so is |Pr[W4 − Pr[W3]|.

Game 5: This game switches back to sk(oa,0)
ME when replying the OPEN(skOA, ·)

oracle. This change will remain unnoticed unless A queries a tuple (ψ, τ, L)
such that πct is valid yet coa,0, coa,1 are encryptions of different strings. This,
however, will break the simulation-soundness of the argument system in
Section 7.1 as A sees a simulated proof π∗ct for a false statement (since c′∗oa,0
is random while c∗oa,1 is an encryption of bin(j∗b)). As a result, |Pr[W5] −
Pr[W4]| ≤ Advsim−sound ≤ negl(λ).

51

Game 6: We further change the challenge ciphertext ψ∗ in this game. Instead
of being an encryption of bin(j∗b), c∗oa,1 is replaced with a random string
c′∗oa,1 ∈ Zn2 . As sk(oa,1)

ME is not employed for opening queries, the pseudorandom
ciphertexts of the McEliece scheme imply that |Pr[W6]−Pr[W5]| ≤ negl(λ).

Game 7: This game makes a last modification to ψ∗. It replaces (c∗w,0, c∗w,1)
with two random strings (c′∗w,0, c

′∗
w,1) ∈ Zn2 ×Zn2 by switching between sk(j∗b ,0)

ME

and sk(j∗b ,1)
ME . Based on the hardness of the problems DMcE(n, k2, t2) and

DLPN(n, k2− p,B(n, t2)), and simulation-soundness of the argument system
in Section 7.1, it is not hard to see that the view of A in Game 7 is indistin-
guishable from that in Game 6. In other words, |Pr[W7]−Pr[W6]| ≤ negl(λ).

In the last game, we see that A’s view does not depend on b any more. Therefore,
Pr[W7] = 1

2 . Putting everything together, we obtain |Pr[Exptanon−b
A (1λ) = b] −

1
2 | ≤ negl(λ). In addition,

Advanon
A = |Pr[Exptanon−1

A (1λ) = 1]− Pr[Exptanon−0
A (1λ) = 1]|

= |Pr[Exptanon−1
A (1λ) = 1] + Pr[Exptanon−0

A (1λ) = 0]− 1|

≤ |Pr[Exptanon−1
A (1λ) = 1]− 1

2 |+ |Pr[Exptanon−0
A (1λ) = 0]− 1

2 |

≤ negl(λ).

This ends the proof.

Theorem 5. Assume that the 2-RNSDn,2n,c problem is hard, and the argument
system in Section 7.2 is sound, then the given fully dynamic group encryption
scheme provides soundness in the random oracle model.

Proof. If an adversary A breaks soundness as in definition 4 with non-negligible
advantage ε, then we construct a PPT algorithm B that uses A as a subroutine to
either break an instance of the 2-RNSDn,2n,c problem or to break the soundness
of the argument system in Section 7.2 with non-negligible probability as well.

Given a matrix B ∈ Zn×m2 , B simulates the experiment Exptsound
A (1λ) as fol-

lows. It first generates other parameters except B as specified in the algorithm
Setupinit, produces the key pairs (pkOA, skOA) and (pkGM, skGM) on behalf of OA
and GM, and initializes the reg table and group information info. Next, it invokes
A by sending over public parameters, pkGM, pkOA, skOA. It then interacts with
A by answers oracle queries REG and GUp honestly. When A queries the hash
function HFS, B replies random elements from the set {1, 2, 3}κ. In the end,
A outputs a tuple (τ∗, S∗, ψ∗, L∗, πψ∗). Parse ψ∗ = (c∗w,0, c∗w,1, c∗oa,0, c∗oa,0, π

∗
ct)

and πψ∗ = ({CMT∗i }κi=1,Ch∗, {RSP∗i }κi=1). If A breaks soundness, then πψ∗ is
a valid proof. Let δ∗ = ({CMT∗i }κi=1,B, pkOA,uτ∗ , S∗, ψ∗, L∗). We claim that A
has queried δ∗ to the hash oracle HFS with overwhelming probability. Otherwise,
the probability of guessing a value Ch∗ equal to HFS(δ∗) is at most 3−κ, which
is negligible. Therefore, with probability at least ε′ = ε− 3−κ, A has queried δ∗

to the hash function. Denote t∗ ∈ {1, 2, · · · , QH} the index of this hash query,

52

where QH is the total number of hash queries. Then B replays A for at most
32QHε′ times. For each replay, A is given the same random tape and input as in
the original invocation. When it queries the hash function, B replies the same
random strings as in the original invocation for the first t∗ − 1 queries, and in-
dependent random strings for the remaining queries. This ensures that for each
replay, the input to the t∗-th hash query is the same as the original run yet the re-
ply is an independent random string. By the forking lemma [18], with probability
at least 1

2 , B obtains a 3-fork involving the same tuple δ∗ with pairwise distinct
hash value Ch(1)

t∗ ,Ch(2)
t∗ ,Ch(3)

t∗ ∈ {1, 2, 3}κ. With probability 1− (7
9)κ, there exists

an index j ∈ [1, κ] such that {Ch(1)
t∗,j ,Ch(2)

t∗,j ,Ch(3)
t∗,j} = {1, 2, 3}. In other words,

with probability 1
2 (1− (7

9)κ), B obtains a commitment CMT∗j and three valid re-
sponses RSP(1)

t∗,j ,RSP(2)
t∗,j ,RSP(3)

t∗,j for all possible challenges 1, 2, 3. The soundness
of the argument system in Section 7.2 implies that B can extract witness ξ∗ =
(w∗, bin(j∗),G∗j∗,0,G∗j∗,1,d∗j∗ , w(j∗), r∗w,0, r∗w,1, r∗oa,0, r∗oa,1,e∗w,0,e∗w,1,e∗oa,0,e∗oa,1), in
which w∗ ∈ Zp2, d∗j∗ 6= 0, and

(1) (S∗,w∗) ∈ Rpermit, VerifyB(uτ∗ ,d∗j∗ , w(j∗)) = 1 and AccuB
(
(G∗j∗,0,G∗j∗,1)

)
=

d∗j∗ ;
(2) The ciphertexts c∗w,0, c∗w,1 are encryption of w∗ under the keys G∗j∗,0 and

G∗j∗,0, respectively;
(3) The ciphertexts c∗oa,0, c∗oa,1 are encryption of bin(j∗) under the keys Goa,0

and Goa,0, respectively.

From the correctness our the underlying encryption scheme, we know that c∗oa,0
will be decrypted to bin(j∗). At this point, we distinguish the following cases.
Case 1: IsActive(infoτ∗ , bin(j∗)) = 0. This implies that the real leaf value dj∗
of the leaf node bin(j∗) of the (main-)Merkle tree is 0n. Therefore, we have two
different paths from the leaf node bin(j∗) to the root uτ∗ . Hence, one is able
to find a vector z ∈ 2-regular(2n, c) such that B · z = 0 mod 2. This solves the
2-RNSDn,2n,c problem.
Case 2: IsActive(infoτ∗ , bin(j∗)) = 1 and (G∗j∗,0,G∗j∗,1) 6= (Gj∗,0,Gj∗,1), where
(Gj∗,0,Gj∗,1) is the real encryption key of user bin(j∗). This, however, would
solve the 2-RNSDn,2n,c problem as in Case 1.
Case 3: IsActive(infoτ∗ , bin(j∗)) = 1 and (G∗j∗,0,G∗j∗,1) = (Gj∗,0,Gj∗,1) yet
(Gj∗,0,Gj∗,1) /∈ Lpp

pk. In other words, there is no corresponding secret keys for
(Gj∗,0,Gj∗,1). As GM issues an identifier bin(j∗) for this user, then Gj∗,0 and
Gj∗,1 are full rank. If the user does not know the corresponding secret keys, then
outputting correctly the random messages m0,m1 encrypted by GM would re-
quire running time at least k3

2 ·
(
n
k2

)
/
(
n−t2
k2

)13. This is exponential by the choices of
our parameters. In other words, this case only occurs with negligible probability.
Case 4: IsActive(infoτ∗ , bin(j∗)) = 1 and (G∗j∗,0,G∗j∗,1) = (Gj∗,0,Gj∗,1) ∈ Lpp

pk

yet ψ∗ /∈ LpkGM,pkOA,τ
∗,pk∗R,S

∗,L∗,bin(j∗)
ciphertext . However, the soundness of the argument

system already eliminates this case.
This ends the proof.

13 Note that this user can generate Gj∗,b honestly and then only needs to guess m1−b.

53

Acknowledgments

Khoa Nguyen and Huaxiong Wang were supported by Singapore Ministry of
Education under Research Grant MOE2019-T2-2-083 and by A∗Star, Singapore
under research grant SERC A19E3b0099. Reihaneh Safavi-Naini and Yanhong
Xu were in part supported by Natural Sciences and Engineering Research Coun-
cil of Canada Discovery Grant Program and Alberta Innovates Strategic Chair
in Information Security Research Program. Neng Zeng was supported by the
Singapore Ministry of Education under MOE AcRF Tier 2 grant (MOE2018-
T2-1-111).

References

1. L. E. Aimani and M. Joye. Toward practical group encryption. In M. J. J. Jr.,
M. E. Locasto, P. Mohassel, and R. Safavi-Naini, editors, ACNS 2013, volume 7954
of LNCS, pages 237–252. Springer, 2013.

2. Q. Alamélou, O. Blazy, S. Cauchie, and P. Gaborit. A code-based group signature
scheme. Des. Codes Cryptography, 82(1-2):469–493, 2017.

3. B. Applebaum, N. Haramaty, Y. Ishai, E. Kushilevitz, and V. Vaikuntanathan.
Low-complexity cryptographic hash functions. In ITCS 2017, volume 67 of LIPIcs,
pages 7:1–7:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

4. D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash
function. IACR Cryptol. ePrint Arch., 2003:230, 2003.

5. D. Augot, M. Finiasz, and N. Sendrier. A family of fast syndrome based cryp-
tographic hash functions. In Mycrypt 2005, volume 3715 of LNCS, pages 64–83.
Springer, 2005.

6. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
566–582. Springer, 2001.

7. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 614–629. Springer, 2003.

8. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,
pages 136–153. Springer, 2005.

9. J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In T. Helleseth, editor, EUROCRYPT
1993, volume 765 of LNCS, pages 274–285. Springer, 1993.

10. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Better
zero-knowledge proofs for lattice encryption and their application to group sig-
natures. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, volume 8873 of
LNCS, pages 551–572. Springer, 2014.

11. D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Faster 2-regular information-
set decoding. In IWCC 2011, volume 6639 of LNCS, pages 81–98. Springer, 2011.

12. D. Boneh, A. Sahai, and B. Waters. Functional encryption: a new vision for public-
key cryptography. Commun. ACM, 55(11):56–64, 2012.

54

13. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In
V. Atluri, B. Pfitzmann, and P. D. McDaniel, editors, CCS 2004, pages 168–177.
ACM, 2004.

14. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully
dynamic group signatures. In M. Manulis, A. Sadeghi, and S. A. Schneider, editors,
ACNS 2016, volume 9696 of LNCS, pages 117–136. Springer, 2016.

15. P. Branco and P. Mateus. A code-based linkable ring signature scheme. In J. Baek,
W. Susilo, and J. Kim, editors, ProvSec 2018, volume 11192 of LNCS, pages 203–
219. Springer, 2018.

16. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci., 37(2):156–189, 1988.

17. E. Bresson and J. Stern. Efficient revocation in group signatures. In K. Kim,
editor, PKC 2001, volume 1992 of LNCS, pages 190–206. Springer, 2001.

18. E. F. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validations for
discrete logarithm based signature schemes. In H. Imai and Y. Zheng, editors,
PKC 2000, volume 1751 of LNCS, pages 276–292. Springer, 2000.

19. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, 2002.

20. J. Cathalo, B. Libert, and M. Yung. Group encryption: Non-interactive realization
in the standard model. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 179–196. Springer, 2009.

21. P. Cayrel, G. Hoffmann, and E. Persichetti. Efficient implementation of a cca2-
secure variant of mceliece using generalized srivastava codes. In M. Fischlin, J. A.
Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
138–155. Springer, 2012.

22. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, EURO-
CRYPT 1991, volume 547 of LNCS, pages 257–265. Springer, 1991.

23. L. Dallot and D. Vergnaud. Provably secure code-based threshold ring signatures.
In M. G. Parker, editor, IMACC 2009, volume 5921 of LNCS, pages 222–235.
Springer, 2009.

24. N. Döttling, R. Dowsley, J. Müller-Quade, and A. C. A. Nascimento. A CCA2
secure variant of the mceliece cryptosystem. IEEE Trans. Inf. Theory, 58(10):6672–
6680, 2012.

25. M. F. Ezerman, H. T. Lee, S. Ling, K. Nguyen, and H. Wang. A provably secure
group signature scheme from code-based assumptions. In T. Iwata and J. H. Cheon,
editors, ASIACRYPT 2015, volume 9452 of LNCS, pages 260–285. Springer, 2015.

26. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO 1986, volume 263 of
LNCS, pages 186–194. Springer, 1986.

27. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, STOC 2009, pages 169–178. ACM, 2009.

28. O. Goldreich, S. Micali, and A. Wigderson. How to prove all np-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In A. M.
Odlyzko, editor, CRYPTO 1986, volume 263 of LNCS, pages 171–185. Springer,
1986.

29. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

30. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In A. Juels, R. N. Wright, and S. D. C.
di Vimercati, editors, CCS 2006, pages 89–98. ACM, 2006.

55

31. M. Izabachène, D. Pointcheval, and D. Vergnaud. Mediated traceable anonymous
encryption. In M. Abdalla and P. S. L. M. Barreto, editors, LATINCRYPT 2010,
volume 6212 of LNCS, pages 40–60. Springer, 2010.

32. A. Jain, S. Krenn, K. Pietrzak, and A. Tentes. Commitments and efficient zero-
knowledge proofs from learning parity with noise. In X. Wang and K. Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 663–680. Springer, 2012.

33. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and
J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 571–589.
Springer, 2004.

34. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. In K. Kurosawa, editor,
ASIACRYPT 2007, volume 4833 of LNCS, pages 181–199. Springer, 2007.

35. K. Kobara and H. Imai. Semantically secure mceliece public-key cryptosystems-
conversions for mceliece PKC. In K. Kim, editor, PKC 2001, volume 1992 of LNCS,
pages 19–35. Springer, 2001.

36. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions. In
J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, volume 10032 of LNCS,
pages 373–403, 2016.

37. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. Theor.
Comput. Sci., 759:72–97, 2019.

38. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In M. Fischlin and J. Coron, editors, EUROCRYPT 2016, volume 9666
of LNCS, pages 1–31. Springer, 2016.

39. B. Libert, T. Peters, and M. Yung. Group signatures with almost-for-free revoca-
tion. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 571–589. Springer, 2012.

40. B. Libert, T. Peters, and M. Yung. Scalable group signatures with revocation.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 609–627. Springer, 2012.

41. B. Libert, M. Yung, M. Joye, and T. Peters. Traceable group encryption. In
H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 592–610. Springer,
2014.

42. S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In K. Kurosawa and G. Hanaoka,
editors, PKC 2013, volume 7778 of LNCS, pages 107–124. Springer, 2013.

43. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Accountable tracing signatures from
lattices. In M. Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 556–
576. Springer, 2019.

44. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-based group signatures: Achiev-
ing full dynamicity (and deniability) with ease. Theor. Comput. Sci., 783:71–94,
2019.

45. V. Lyubashevsky and D. Micciancio. Asymptotically efficient lattice-based digital
signatures. J. Cryptology, 31(3):774–797, 2018.

46. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. J. ACM, 60(6):43:1–43:35, 2013.

47. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Coding Thv, 4244:114–116, 1978.

56

48. C. A. Melchor, P. Cayrel, and P. Gaborit. A new efficient threshold ring signature
scheme based on coding theory. In J. A. Buchmann and J. Ding, editors, PQCrypto
2008, volume 5299 of LNCS, pages 1–16. Springer, 2008.

49. C. A. Melchor, P. Cayrel, P. Gaborit, and F. Laguillaumie. A new efficient thresh-
old ring signature scheme based on coding theory. IEEE Trans. Inf. Theory,
57(7):4833–4842, 2011.

50. K. Morozov and T. Takagi. Zero-knowledge protocols for the mceliece encryption.
In W. Susilo, Y. Mu, and J. Seberry, editors, ACISP 2012, volume 7372 of LNCS,
pages 180–193. Springer, 2012.

51. T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki. Revocable group signature
schemes with constant costs for signing and verifying. In S. Jarecki and G. Tsudik,
editors, PKC 2009, volume 5443 of LNCS, pages 463–480. Springer, 2009.

52. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In H. Ortiz, editor, STOC 1990, pages 427–437. ACM, 1990.

53. K. Nguyen, H. Tang, H. Wang, and N. Zeng. New code-based privacy-preserving
cryptographic constructions. In S. D. Galbraith and S. Moriai, editors, ASI-
ACRYPT 2019, volume 11922 of LNCS, pages 25–55. Springer, 2019.

54. R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the mceliece
cryptosystem without random oracles. Des. Codes Cryptogr., 49(1-3):289–305,
2008.

55. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

56. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, 2001.

57. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

58. J. Stern. A new paradigm for public key identification. IEEE Transactions on
Information Theory, 42(6):1757–1768, 1996.

59. M. Trolin and D. Wikström. Hierarchical group signatures. In L. Caires, G. F.
Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP 2005, volume
3580 of LNCS, pages 446–458. Springer, 2005.

57

	Group Encryption: Full Dynamicity, Message Filtering and Code-Based Instantiation
	Introduction
	Fully Dynamic Group Encryption: Model and Security Requirements
	Syntax
	Formulation of the Security Requirements

	Some Background on Code-Based Cryptography and Stern-like Zero-Knowledge Protocols
	Code-Based Merkle-tree Accumulators
	An Efficient Updating Algorithm
	The Randomized McEliece Encryption Scheme
	Zero-Knowledge Arguments and Stern-like Protocols
	Previous Extension and Permutation Techniques
	Code-Based Zero-Knowledge Arguments of Set Membership

	Zero-Knowledge Arguments for Quadratic Relations
	Proving the LPN Relation with Hidden Matrix
	Proving A Variant of LPN Relation with Hidden Matrix

	Message Filtering in Zero-Knowledge
	Formulation
	Zero-Knowledge for the Permissive and Prohibitive Relations

	A Code-Based Fully Dynamic Group Encryption
	Description of the Scheme
	Asymptotic Efficiency, Correctness, and Security

	Supporting Zero-Knowledge Arguments for the FDGE Scheme
	The Zero-Knowledge Argument for the Enc Algorithm
	The Zero-Knowledge Argument for the P Algorithm

	Security Proofs of Our Group Encryption Scheme

