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Abstract. In this paper, we present a new technique which can be used
to find better linear approximations in ARX ciphers. Using this tech-
nique, we present the first explicitly derived linear approximations for
3 and 4 rounds of ChaCha and, as a consequence, it enables us to im-
prove the recent attacks against ChaCha. Additionally, we present new
differentials for 3 and 3.5 rounds of ChaCha that, when combined with
the proposed technique, lead to further improvement in the complexity
of the Differential-Linear attacks against ChaCha.
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1 Introduction

Symmetric cryptographic primitives are heavily used in a variety of contexts.
In particular, ARX-based design is a major building block of modern ciphers
due to its efficiency in software. ARX stands for addition, word-wise rotation
and XOR. Indeed, ciphers following this framework are composed of those op-
erations and avoid the computation of smaller S-boxes through look-up tables.
The ARX-based design approach is used to design stream ciphers (e.g., Salsa20
[7] and ChaCha [6]), efficient block ciphers (e.g., Sparx [16]), cryptographic per-
mutations (e.g., Sparkle [3]) and hash functions (e.g., Blake [2]).

ARX-based designs are not only efficient but provide good security prop-
erties. The algebraic degree of ARX ciphers is usually high after only a very
few rounds as the carry bit within one modular addition already reaches al-
most maximal degree. For differential and linear attacks, ARX-based designs
show weaknesses for a small number of rounds. However, after some rounds the
differential and linear probabilities decrease rapidly. Thus, the probabilities of
differentials and the absolute correlations of linear approximations decrease very
quickly as we increase the number of rounds. In fact, this property led to the
long-trail strategy for designing ARX-based ciphers [16].

Ciphers and primitives based on Salsa20 and ChaCha families are heavily
used in practice. In 2005, Bernstein proposed the stream cipher Salsa20 [7] as
a contender to the eSTREAM [27], the ECRYPT Stream Cipher Project. As
outlined by the author, Salsa20 is an ARX type family of algorithms which can



be ran with several number of rounds, including the well known Salsa20/12 and
Salsa20/8 versions. Latter, in 2008, Bernstein proposed some modifications to
Salsa20 in order to provide better diffusion per round and higher resistance to
cryptanalysis. These changes originated a new stream cipher, a variant which
he called ChaCha [6]. Although Salsa20 was one of the winners of the eS-
TREAM competition, ChaCha has received much more attention through the
years. Nowadays, we see the usage of this cipher in several projects and applica-
tions.

ChaCha, along with Poly1305 [5], is in one of the cipher suits of the new TLS
1.3 [22], which has been used by Google on both Chrome and Android. Not only
has ChaCha been used in TLS but also in many other protocols such as SSH,
Noise and S/MIME 4.0. In addition, the RFC 7634 proposes the use of ChaCha
in IKE and IPsec. ChaCha has been used not only for encryption, but also as a
pseudo-random number generator in any operating system running Linux kernel
4.8 or newer [26, 29]. Additionally, ChaCha has been used in several applications
such as WireGuard (VPN) (see [19] for a huge list of applications, protocols and
libraries using ChaCha).

Related Work. Since ChaCha is so heavily used, it is very important to
understand its security. Indeed, the cryptanalysis of ChaCha is well understood
and several authors studied its security [1, 9, 11, 13–15, 17, 18, 20, 23–25, 28, 30]
which show weaknesses in the reduced round versions of the cipher.

The cryptanalysis of Salsa20 was introduced by Crowley [11] in 2005. Crow-
ley developed a differential attack against Salsa20/5, namely the 5-round version
of Salsa20, and received the $1000 prize offered by Bernstein for the most inter-
esting Salsa20 cryptanalysis in that year. In 2006, Fischer et al. [17] improved
the attack against Salsa20/5 and presented their attack against Salsa20/6.

Probably the most important cryptanalysis in this regard was proposed by
Aumasson et al. at FSE 2008 [1] with the introduction of Probabilistic Neutral
Bits (PNBs), showing attacks against Salsa20/7, Salsa20/8, ChaCha20/6 and
ChaCha20/7. After that, several authors proposed small enhancements on the
attack of Aumasson et al. The work by Shi et al. [28] introduced the concept
of Column Chaining Distinguisher (CCD) to achieve some incremental advance-
ments over [1] for both Salsa and ChaCha.

Maitra, Paul and Meier [23] studied an interesting observation regarding
round reversal of Salsa, but no significant cryptanalytic improvement could be
obtained using this method. Maitra [24] used a technique of Chosen IVs to obtain
certain improvements over existing results. Dey and Sarkar [14] showed how to
choose values for the PNB to further improve the attack.

In a paper presented in FSE 2017, Choudhuri and Maitra [9] significantly im-
proved the attacks by considering the mathematical structure of both Salsa and
ChaCha in order to find differential characteristics with much higher correlations.
Recently, Coutinho and Souza [10] proposed new multi-bit differentials using the
mathematical framework of Choudhuri and Maitra. In Crypto 2020, Beierle et al.
[4] proposed improvements to the framework of differential-linear cryptanalysis
against ARX-based designs and further improved the attacks against ChaCha.

2



Our Contribution. In this work, we provide a new framework to find lin-
ear approximations for ARX ciphers. Using this framework we provide the first
explicitly derived linear approximations for 3 and 4 rounds of ChaCha. Explor-
ing these linear approximations, we can improve the attacks for 6 and 7 rounds
of ChaCha. Additionally, we present new differentials for 3 and 3.5 rounds of
ChaCha . We summarize our findings along with other significant attacks for
comparison in Table 1. Also, we verified all theoretical results with random
experiments. We provide the source code to reproduce this paper in Github
https://github.com/MurCoutinho/cryptanalysisChaCha.git, which is, for
the best of our knowledge, the first implementation of cryptanalysis against
ChaCha available to the public. We should note that it is possible to find at-
tacks with less complexity for related key attacks, but we do not consider them
in this work.

Rounds Time Complexity Data Complexity Reference

4 26 26 [9]

4.5 212 212 [9]

5 216 216 [9]

2139 230 [1]
2136 228 [28]
2130 235 [9]

6 2127.5 237.5 [9]
2116 2116 [9]

2102.2 256 [10]
277.4 258 [4]
275 275 [10]
251 251 This work

2248 227 [1]
2246.5 227 [28]

7 2238.9 296 [24]
2237.7 296 [9]
2231.9 250 [10]
2230.86 248.8 [4]
2224 2224 This work

Table 1: The best attacks against ChaCha with 256-bit key.

Organization of the paper. In Section 2, we provide an overview of previ-
ous results, including a description of ChaCha, a summary of differential-linear
cryptanalysis and a review of the techniques developed by Choudhuri and Maitra
in [9]. In Section 3, we present a new technique which can be used to find better
linear approximations in ARX ciphers and theoretically develop new linear rela-
tions between bits of different rounds for ChaCha. Then, in Section 4, we show
that these new linear approximations lead to a better distinguishers for ChaCha
reduced to 6 and 7 rounds. Finally, Section 5 presents the conclusion and future
work.
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2 Specifications and Preliminaries

The main notation we will use throughout the paper is defined in Table 2. Next
we define the algorithm ChaCha.

Notation Description

X a 4× 4 state matrix of ChaCha

X(0) initial state matrix of ChaCha

X(R) state matrix after application of R round functions

Z output of ChaCha, Z = X(0) +X(R)

x
(R)
i ith word of the state matrix X(R) (words arranged in row major)

x
(R)
i,j jth bit of ith word of the state matrix X(R)

x
(R)
i [j0, j1, ..., jt] the sum x

(R)
i,j0
⊕ x(R)

i,j1
⊕ · · · ⊕ x(R)

i,jt

x+ y addition of x and y modulo 232

x− y subtraction of x and y modulo 232

x⊕ y bitwise XOR of x and y
x≪ n rotation of x by n bits to the left
x≫ n rotation of x by n bits to the right
∆x XOR difference of x and x′. ∆x = x⊕ x′

∆X(R) XOR difference of X(R) and X ′(R). ∆X(R) = X(R) ⊕X ′(R)

∆x
(R)
i differential ∆x

(R)
i = x

(R)
i ⊕ x′(R)

i

∆x
(R)
i,j differential ∆x

(R)
i,j = x

(R)
i,j ⊕ x

′(R)
i,j

Pr(E) probability of occurrence of an event E
ID input difference
OD output difference

Table 2: Notation

2.1 ChaCha

The stream cipher Salsa20 was proposed by Bernstein [7] to the eSTREAM
competition and later Bernstein proposed ChaCha [6] as an improvement of
Salsa20. ChaCha consists of a series of ARX (addition, rotation, and XOR)
operations on 32-bit words, being highly efficient in software and hardware.
Each round of ChaCha has a total of 16 bitwise XOR, 16 addition modulo 232

and 16 constant-distance rotations.

ChaCha operates on a state of 64 bytes, organized as a 4 × 4 matrix with
32-bit integers, initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1
and a 64-bit counter t0, t1 (we may also refer to the nonce and counter words as
IV words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
and c3 = 0x6b206574. For ChaCha, we have the following initial state matrix:
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X(0) =


x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

 . (1)

The state matrix is modified in each round by a Quarter Round Function

(QRF), denoted by QR
(
x
(r−1)
a , x

(r−1)
b , x

(r−1)
c , x

(r−1)
d

)
, which receives and up-

dates 4 integers in the following way:

x
(r−1)
a′ = x

(r−1)
a + x

(r−1)
b ; x

(r−1)
d′ = (x

(r−1)
d ⊕ x(r−1)a′ )≪ 16;

x
(r−1)
c′ = x

(r−1)
c + x

(r−1)
d′ ; x

(r−1)
b′ = (x

(r−1)
b ⊕ x(r−1)c′ )≪ 12;

x
(r)
a = x

(r−1)
a′ + x

(r−1)
b′ ; x

(r)
d = (x

(r−1)
d′ ⊕ x(r)a )≪ 8;

x
(r)
c = x

(r−1)
c′ + x

(r)
d ; x

(r)
b = (x

(r−1)
b′ ⊕ x(r)c )≪ 7;

(2)

One round of ChaCha is defined as 4 applications of the QRF. There is,
however, a difference between odd and even rounds. For odd rounds, i.e. r ∈
{1, 3, 5, 7, ...}, X(r) is obtained from X(r−1) by applying(

x
(r)
0 , x

(r)
4 , x

(r)
8 , x

(r)
12

)
= QR

(
x
(r−1)
0 , x

(r−1)
4 , x

(r−1)
8 , x

(r−1)
12

)(
x
(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13

)
= QR

(
x
(r−1)
1 , x

(r−1)
5 , x

(r−1)
9 , x

(r−1)
13

)(
x
(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14

)
= QR

(
x
(r−1)
2 , x

(r−1)
6 , x

(r−1)
10 , x

(r−1)
14

)(
x
(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15

)
= QR

(
x
(r−1)
3 , x

(r−1)
7 , x

(r−1)
11 , x

(r−1)
15

) .

On the other hand, for even rounds, i.e. r ∈ {2, 4, 6, 8, , ...}, X(r) is calculated
from X(r−1) by applying(

x
(r)
0 , x

(r)
5 , x

(r)
10 , x

(r)
15

)
= QR

(
x
(r−1)
0 , x

(r−1)
5 , x

(r−1)
10 , x

(r−1)
15

)(
x
(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12

)
= QR

(
x
(r−1)
1 , x

(r−1)
6 , x

(r−1)
11 , x

(r−1)
12

)(
x
(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13

)
= QR

(
x
(r−1)
2 , x

(r−1)
7 , x

(r−1)
8 , x

(r−1)
13

)(
x
(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14

)
= QR

(
x
(r−1)
3 , x

(r−1)
4 , x

(r−1)
9 , x

(r−1)
14

) .

The output of ChaCha20/R is then defined as the sum of the initial state
with the state after R rounds Z = X(0) + X(R). One should note that it is
possible to parallelize each application of the QRF on each round and also that
each round is reversible. Hence, we can compute X(r−1) from X(r). For more
information on ChaCha, we refer to [6].

2.2 Differential-Linear Cryptanalysis

In this section, we describe the technique of Differential-Linear cryptanalysis as
used to attack ChaCha. Let E be a cipher and suppose we can write E = E2◦E1,
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where E1 and E2 are sub ciphers, covering m and l rounds of the main cipher,
respectively. We can apply an input difference ID ∆X(0) in the sub cipher E1

obtaining an output difference OD ∆X(m) (see the left side of Fig. 1). The
next step is to apply Linear Cryptanalysis to the second sub cipher E2. Using
masks Γm and Γout, we attempt to find good linear approximations covering the
remaining l rounds of the cipher E. Applying this technique we can construct a
differential-linear distinguisher covering all m + l rounds of the cipher E. This
is the main idea in Langford and Hellman’s classical approach [21].

Sometimes, however, it can be useful to divide the cipher E into three other
ciphers, i.e. E = E3 ◦E2 ◦E1. In this scenario, we can explore properties of the
cipher in the first part E1, and then apply a differential linear attack where we
divide the differential part of the attack in two (see the right side of Fig. 1).
Here, the OD from the sub cipher E1 after r rounds, namely ∆X(r), is the ID
for the sub cipher E2 which produces an output difference ∆X(m). For more
information in this regard, see [4].

It is important to understand how to compute the complexity of a differential-
linear attack. We denote the differential of the state matrix as ∆X(r) = X(r) ⊕
X ′(r) and the differential of individual words as ∆x

(r)
i = x

(r)
i ⊕ x

′(r)
i . Let x

(r)
i,j

denote the j-th bit of the i-th word of the state matrix after r rounds and let J
be a set of bits. Also, let σ and σ′ be linear combinations of bits in the set J

σ =

 ⊕
(i,j)∈J

x
(r)
i,j

 , σ′ =

 ⊕
(i,j)∈J

x
′(r)
i,j

 .

Then

∆σ =

 ⊕
(i,j)∈J

∆x
(r)
i,j


is the linear combination of the differentials. We can write

Pr
[
∆σ = 0|∆X(0)

]
=

1

2
(1 + εd), (3)

where εd is the differential correlation.
Using linear cryptanalysis, it is possible to go further and find new relations

between the initial state matrix and the state matrix after R > r rounds. To do
so, let L denote another set of bits and define

ρ =

 ⊕
(i,j)∈L

x
(R)
i,j

 , ρ′ =

 ⊕
(i,j)∈L

x
′(R)
i,j

 .

Then, as before,

∆ρ =

 ⊕
(i,j)∈L

∆x
(R)
i,j

 .
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We can define Pr[σ = ρ] = 1
2 (1 + εL), where εL is the linear correlation. We

want to find γ such that Pr
[
∆ρ = 0|∆X(0)

]
= 1

2 (1 + γ).
To compute γ, we write (to simplify the notation we make the conditional to

∆X(0) implicit):

Pr[∆σ = ∆ρ] = Pr[σ = ρ] · Pr [σ′ = ρ′] + Pr[σ = ρ̄] · Pr
[
σ′ = ρ′

]
=

1

2

(
1 + ε2L

)
.

Then,

Pr[∆ρ = 0] = Pr[∆σ = 0] · Pr[∆σ = ∆ρ] + Pr[∆σ = 1] · Pr[∆σ = ∆ρ]

=
1

2

(
1 + εd · ε2L

)
.

Therefore, the differential-linear correlation is given by γ = εd·ε2L, which defines a

distinguisher with complexityO
(

1

ε2dε
4
L

)
. For further information on differential-

linear cryptanalysis we refer to [8].

E1 E1

∆X(0)

E2 E2

∆X(m)

p

Γm Γm

Γout Γout

q q

E2

E1

E2

E1

∆X(r)

E3 E3

∆X(m)

p2

Γm Γm

Γout Γout

q q

∆X(0)

p1

Fig. 1: A classical differential-linear distinguisher (on the left) and a differential-
linear distinguisher with experimental evaluation of the correlation p2 (on the
right).

2.3 Multi-bit Differential for Reduced Round ChaCha

In this section, we review the work presented in [9] and in [10]. In these works,
the authors developed the theory for selecting specific combination of bits to give
high correlations for Chacha. To do that, in both papers the authors analyzed
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the QRF directly, representing each equation in its bit level. In the following, we
change the original notation of the referred papers in order to create a notation
that will be better for the purposes of this work.

Thus, let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function of the sum x + y.
Define Θi(x, y) as the i-th bit of Θ(x, y). By definition, we have Θ0(x, y) = 0.
We can write the QRF equations of ChaCha (Eq. 2) as

x
′(m−1)
a,i = x

(m−1)
a,i ⊕ x(m−1)b,i ⊕Θi(x(m−1)a , x

(m−1)
b )

x
′(m−1)
d,i+16 = x

(m−1)
d,i ⊕ x′(m−1)a,i

x
′(m−1)
c,i = x

(m−1)
c,i ⊕ x′(m−1)d,i ⊕Θi(x(m−1)c , x

′(m−1)
d )

x
′(m−1)
b,i+12 = x

(m−1)
b,i ⊕ x′(m−1)c,i

x
(m)
a,i = x

′(m−1)
a,i ⊕ x′(m−1)b,i ⊕Θi(x′(m−1)a , x

′(m−1)
b )

x
(m)
d,i+8 = x

′(m−1)
d,i ⊕ x(m)

a,i

x
(m)
c,i = x

′(m−1)
c,i ⊕ x(m)

d,i ⊕Θi(x
′(m−1)
c , x

(m)
d )

x
(m)
b,i+7 = x

′(m−1)
b,i ⊕ x(m)

c,i

(4)

Inverting these equations, we get:

x
′(m−1)
b,i = x

(m)
b,i+7 ⊕ x

(m)
c,i (5)

x
′(m−1)
c,i = x

(m)
c,i ⊕ x

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d ) (6)

x
′(m−1)
d,i = x

(m)
a,i ⊕ x

(m)
d,i+8 (7)

x
′(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕Θi(x

′(m−1)
a , x

′(m−1)
b ) (8)

x
(m−1)
b,i = L(m)

b,i ⊕Θi(x
′(m−1)
c , x

(m)
d ) (9)

x
(m−1)
c,i = L(m)

c,i ⊕Θi(x
′(m−1)
c , x

(m)
d )⊕Θi(x(m−1)c , x

′(m−1)
d ) (10)

x
(m−1)
d,i = L(m)

d,i ⊕Θi(x
′(m−1)
a , x

′(m−1)
b ) (11)

x
(m−1)
a,i = L(m)

a,i ⊕Θi(x
′(m−1)
a , x

′(m−1)
b )⊕

Θi(x
′(m−1)
c , x

(m)
d )⊕Θi(x(m−1)a , x

(m−1)
b )

(12)

where

L(m)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i (13)

L(m)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i (14)

L(m)
c,i = x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i ⊕ x

(m)
d,i+8 (15)

L(m)
d,i = x

(m)
a,i ⊕ x

(m)
a,i+16 ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕ x

(m)
d,i+24 (16)

Lemma 1. It holds that x
(m−1)
l,0 = L(m)

l,0 , for l ∈ {a, b, c, d}.

Proof. This result follows directly from Eqs. (9)-(12) by using the fact that
Θ0(x, y) = 0. �
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From this equations, we can derive the following lemma:

Lemma 2. (Lemma 3 of [9]) Let

∆A(m) = ∆x
(m)
α,0 ⊕∆x

(m)
β,7 ⊕∆x

(m)
β,19 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0

∆B(m) = ∆x
(m)
β,19 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0

∆C(m) = ∆x
(m)
δ,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
δ,8 ⊕∆x

(m)
α,0

∆D(m) = ∆x
(m)
δ,24 ⊕∆x

(m)
α,16 ⊕∆x

(m)
α,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
β,7

After m rounds of ChaCha, the following holds:∣∣ε(A(m))

∣∣ =

∣∣∣∣ε(x(m−1)
α,0

)∣∣∣∣ , ∣∣∣ε(B(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
β,0

)∣∣∣∣
∣∣∣ε(C(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
γ,0

)∣∣∣∣ , ∣∣∣ε(D(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
δ,0

)∣∣∣∣
The tuples (α, β, γ, δ) vary depending on whether m is odd or even.

– Case I. m is odd:

(α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}.

– Case II. m is even:

(α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

Proof. See [9]. �

Lemma 3. (Lemma 9 of [9]) For one active input bit in round m − 1 and
multiple active output bits in round m, the following holds for i > 0.

x
(m−1)
b,i = L(m)

b,i ⊕ x
(m)
d,i−1, w.p. 1

2

(
1 + 1

2

)
x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+6, w.p. 1

2

(
1 + 1

24

)
x
(m−1)
c,i = L(m)

c,i ⊕ x
(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

22

)
x
(m−1)
d,i = L(m)

d,i ⊕ x
(m)
c,i−1 ⊕ x

(m)
b,i+6, w.p. 1

2

(
1 + 1

2

)
Proof. See [9]. �

Finally, using Lemma 2 and Lemma 3, it is possible to find linear approxi-
mations for two rounds of ChaCha.

Lemma 4. (Lemma 10 of [9]) The following holds with probability 1
2

(
1 + 1

2

)
x
(3)
11,0 = x

(5)
0 [0, 8, 16, 24]⊕ x(5)1,0 ⊕ x

(5)
3,0 ⊕ x

(5)
4,7 ⊕ x

(5)
4 [14, 15]⊕ x(5)5 [7, 19]⊕

x
(5)
8 [0, 7, 8]⊕ x(5)9,12 ⊕ x

(5)
11,0 ⊕ x

(5)
12 [0, 24]⊕ x(5)13,0 ⊕ x

(5)
15 [0, 8].

9



Proof. See [9]. �

Recently, Coutinho and Souza [10] found linear approximations with fewer
terms using the same techniques.

Lemma 5. (Lemma 5 of [10]) When m is odd, each of the following also holds
with probability 1

2 (1 + 1
2 )

x
(m−2)
0,0 ⊕ x(m−2)5,0 = x

(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
4,7 ⊕ x

(m)
4,19 ⊕ x

(m)
5,26 ⊕ x

(m)
8,12 ⊕ x

(m)
9,7 ⊕

x
(m)
9,19 ⊕ x

(m)
10,0 ⊕ x

(m)
12,0 ⊕ x

(m)
13,6 ⊕ x

(m)
13,7 ⊕ x

(m)
14,0 ⊕ x

(m)
14,8

x
(m−2)
1,0 ⊕ x(m−2)6,0 = x

(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
5,7 ⊕ x

(m)
5,19 ⊕ x

(m)
6,26 ⊕ x

(m)
9,12 ⊕ x

(m)
10,7⊕

x
(m)
10,19 ⊕ x

(m)
11,0 ⊕ x

(m)
13,0 ⊕ x

(m)
14,6 ⊕ x

(m)
14,7 ⊕ x

(m)
15,0 ⊕ x

(m)
15,8

x
(m−2)
2,0 ⊕ x(m−2)7,0 = x

(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
6,7 ⊕ x

(m)
6,19 ⊕ x

(m)
7,26 ⊕ x

(m)
8,0 ⊕ x

(m)
10,12⊕

x
(m)
11,7 ⊕ x

(m)
11,19 ⊕ x

(m)
12,0 ⊕ x

(m)
12,8 ⊕ x

(m)
14,0 ⊕ x

(m)
15,6 ⊕ x

(m)
15,7

x
(m−2)
3,0 ⊕ x(m−2)4,0 = x

(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
4,26 ⊕ x

(m)
7,7 ⊕ x

(m)
7,19 ⊕ x

(m)
8,7 ⊕ x

(m)
8,19⊕

x
(m)
9,0 ⊕ x

(m)
11,12 ⊕ x

(m)
12,6 ⊕ x

(m)
12,7 ⊕ x

(m)
13,0 ⊕ x

(m)
13,8 ⊕ x

(m)
15,0

Proof. See [10]. �

In [9], the authors showed that using as ID a single bit at x
(0)
13,13 and OD at

x
(3)
11,0, it is possible to obtain εd = −0.0272 ≈ − 1

25.2 , experimentally. And from
Lemma 2 it is possible to extend to a 4-round differential-linear correlation with

εL = 1 when the OD is x
(4)
1,0⊕x

(4)
11,0⊕x

(4)
12,8⊕x

(4)
12,0. Further, it is possible to extend

to a 5-round differential-linear correlation using the last equation from Lemma
4 with probability 1

2

(
1 + 1

2

)
. This gives a total differential-linear 5th round cor-

relation of εd · ε2L ≈ −0.0068 = − 1
27.2 . This leads to a 5 round distinguisher with

complexity approximately 216.
Extending the linear approximation for 3 rounds comes at a cost. As discussed

prior to the above lemma, for ChaCha, setting i = 0 in Lemma 2 allows linear
approximation of probability 1 for LSB variables. The cost is thus determined
by the non LSB variables. A simple count of the non LSB variables in the form
(Variable Type, # non LSB occurrence) gives (xa, 3) , (xb, 5) , (xc, 3) , and (xd, 2) .
Now, using the probabilities of Lemma 3 and Lemma 4, the linear correlation
is εL = 1/21+3·4+5·1+3·2+2·1 = 2−26. This leads to a 6 round correlation of
ε2Lεd ≈ 1

257.2 . The distinguisher for this correlation has a complexity of 2116.
In [10], the authors used Lemma 5 to derive a distinguisher for 6 rounds.

To do that, they found a differential with correlation εd = 0.00048 for (a, b) =

(3, 4) when the input difference is given by ∆x
(0)
14,6 = 1, and 0 for all remaining

bits. Therefore, expanding for 6 rounds from Lemma 5 with weights 4, 1, 2, 1 for
xa, xb, xc and xd, respectively, they got εL = 1/21+0·4+3·1+3·2+3·1 = 2−13. Then
we have εdε

2
L ≈ 2−37.02, which leads to an attack against 6 rounds of ChaCha

with complexity 275. This is the currently best known 6 round attack on ChaCha.
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3 Improved Linear Approximations for ARX-Based
Ciphers

The challenge of finding good linear approximations in ARX-based designs comes
from the addition operation which is responsible for the non-linearity of the
design. In 2003, Wallén [31] published a very important paper where a math-
ematical framework for finding linear approximations of addition modulo 2n

was developed. Since then, several authors used these technique to find linear
approximations in ARX-based designs [9].

Therefore, as before, let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function
of the sum x + y. Define Θi(x, y) as the i-th bit of Θ(x, y). By definition, we
have Θ0(x, y) = 0. Using Theorem 3 of [31], we can generate all possible linear
approximations with a given correlation. In particular, we will use the following
linear approximations:

Pr(Θi(x, y) = yi−1) =
1

2

(
1 +

1

2

)
, i > 0. (17)

Pr(Θi(x, y)⊕Θi−1(x, y) = 0) =
1

2

(
1 +

1

2

)
, i > 0. (18)

In previous works of cryptanalysis of ARX ciphers, authors concentrated in
finding approximations for particular bits in one round and then repeating the
same equations to expand the linear approximation to further rounds (see [9] and
[10] for some examples). However, by combining Eqs. 17 and 18 when attacking
ARX ciphers we can create a strategy to improve linear approximations when
considering more rounds. The main idea is that when using Eq. 17 in one round
we will create consecutive terms that can be expanded together using Eq. 18.

For example, consider the sum z = x+ y. If we want a linear approximation
for the bit z7, we can use Eq. 17 to obtain z7 = x7 ⊕ y7 ⊕ Θ7(x, y) = x7 ⊕
y7 ⊕ y6 with probability 0.75. Since the XOR operation will not change the
indexes and the rotation will probably keep y6 and y7 adjacent, we can use
Eq. 18 in the subsequent round to cancel out the non-linear terms rather than
expanding them, leading to a linear equation with higher correlation and fewer
terms to be expanded further. Next, we will use this technique to find new linear
approximations for ChaCha.

3.1 Linear Approximations for the Quarter Round Function

The first step is to find linear approximations for the QRF of ChaCha. Of course,
we already know some of them from previous works (Section 2.3). However, here
we will consider adjacent bits and several other combinations that cancel out non-
linear terms or use Eq. (18). At first glance, these results may seem innocuous,
but latter they will prove themselves useful when deriving linear approximations
for multiple rounds of ChaCha.

We start with a better linear approximation for x
(m−1)
a,i .

11



Lemma 6. The following holds for i > 0

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

23

)
.

Proof. From Eq. (12) we have

x
(m−1)
a,i = L(m)

a,i ⊕Θi(x
′(m−1)
a , x

′(m−1)
b )⊕Θi(x′(m−1)c , x

(m)
d )⊕Θi(x(m−1)a , x

(m−1)
b ).

Using Eq. (17) and the Piling-up Lemma we can write

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕Θi(x′(m−1)c , x

(m)
d )⊕ x(m−1)b,i−1 ,

with probability 1
2

(
1 + 1

22

)
. Using Eq. (9) we get

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕Θi(x′(m−1)c , x

(m)
d )⊕ L(m)

b,i−1 ⊕Θi−1(x′(m−1)c , x
(m)
d ).

Using the approximation of Eq. (18) and the Piling-up Lemma we can write

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕ L(m)

b,i−1,

with probability 1
2

(
1 + 1

23

)
. Finally, using Eqs. (5) and (14) we get

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1,

which completes the proof. �

Lemma 7. For two active input bits in round m− 1 and multiple active output
bits in round m, the following holds for i > 0

x
(m−1)
λ,i ⊕ x(m−1)λ,i−1 = L(m)

λ,i ⊕ L
(m)
λ,i−1, w.p.

1

2

(
1 +

1

2σ

)
,

where (λ, σ) ∈ {(a, 3), (b, 1), (c, 2), (d, 1)}.

Proof. This proof follows directly from Eqs. (9)-(12) using the approximation of
Eq. (18) and the Piling-up Lemma. �

Lemma 8. Suppose that (λ, σ) ∈ {(i, i− 2), (i− 1, i− 1)}, i > 1. Then for three
active input bits in round m− 1 and multiple active output bits in round m, the
following holds

x
(m−1)
b,λ ⊕ x(m−1)c,i ⊕ x(m−1)c,i−1 = L(m)

b,i−1 ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕ x

(m)
d,σ , w.p.

1

2

(
1 +

1

22

)
.

Proof. Using Eq. (9) and Eq. (10) we get

x
(m−1)
b,λ ⊕ x(m−1)c,i ⊕ x(m−1)c,i−1 = L(m)

b,λ ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕Θλ(x

′(m−1)
c , x

(m)
d )⊕

Θi(x
′(m−1)
c , x

(m)
d )⊕Θi(x(m−1)c , x

′(m−1)
d )⊕

Θi−1(x
′(m−1)
c , x

(m)
d )⊕Θi−1(x

(m−1)
c , x

′(m−1)
d ).
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Canceling out common factors and using the approximation of Eq. (18) we can
write

x
(m−1)
b,λ ⊕ x(m−1)c,i ⊕ x(m−1)c,i−1 = L(m)

b,i ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕Θσ+1(x

′(m−1)
c , x

(m)
d ).

with probability 1
2

(
1 + 1

2

)
. Using Eq. (17) we get

x
(m−1)
b,λ ⊕ x(m−1)c,i ⊕ x(m−1)c,i−1 = L(m)

b,i ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕ x

(m)
d,σ ,

with probability 1
2

(
1 + 1

22

)
. �

Lemma 9. For multiple active input bits in round m − 1 and multiple active
output bits in round m, the following linear approximations hold for ChaCha
with probability 1

2

(
1 + 1

2k

)
:

x
(m−1)
b,i ⊕ x(m−1)c,i = L(m)

b,i ⊕ L
(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 k = 1, i > 0 (19)

x
(m−1)
a,i ⊕ x(m−1)b,i =

L(m)
a,i ⊕ L

(m)
b,i−1 ⊕ L

(m)
b,i ⊕

x
(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ x

(m)
d,i−2

k = 3, i > 1 (20)

x
(m−1)
a,1 ⊕ x(m−1)b,1 = L(m)

a,1 ⊕ L
(m)
b,0 ⊕ L

(m)
b,1 ⊕ x

(m)
b,7 ⊕ x

(m)
c,0 k = 2 (21)

x
(m−1)
a,i ⊕ x(m−1)c,i =

L(m)
a,i ⊕ L

(m)
b,i−1 ⊕ L

(m)
c,i ⊕ x

(m)
a,i−1⊕

x
(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+7

k = 4, i > 1 (22)

x
(m−1)
a,1 ⊕ x(m−1)c,1 =

L(m)
a,1 ⊕ L

(m)
b,0 ⊕ L

(m)
c,1 ⊕ x

(m)
a,0 ⊕

x
(m)
b,7 ⊕ x

(m)
c,0 ⊕ x

(m)
d,8

k = 3 (23)

x
(m−1)
a,i ⊕ x(m−1)d,i = L(m)

a,i ⊕ L
(m)
d,i ⊕ L

(m)
b,i−1 k = 2, i > 1 (24)

x
(m−1)
a,i−1 ⊕

x
(m−1)
a,i ⊕ x(m−1)c,i

=
L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i ⊕

x
(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

k = 4, i > 1 (25)

x
(m−1)
a,i ⊕

x
(m−1)
a,i−1 ⊕ x

(m−1)
b,i

= L(m)
a,i ⊕ L

(m)
a,i−1 ⊕ L

(m)
b,i ⊕ x

(m)
d,i−2, k = 3, i > 1 (26)

x
(m−1)
b,i−1 ⊕

x
(m−1)
a,i ⊕ x(m−1)d,i

= L(m)
a,i ⊕ L

(m)
d,i ⊕ x

(m)
d,i−1, k = 2, i > 1 (27)

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕

x
(m−1)
c,i−1 ⊕ x

(m−1)
c,i

=
L(m)
b,i−1 ⊕ L

(m)
b,i ⊕

L(m)
c,i−1 ⊕ L

(m)
c,i ,

k = 1, i > 1 (28)

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕
x
(m−1)
b,i ⊕ x(m−1)c,i−1

=
L(m)
a,i ⊕ L

(m)
a,i−1 ⊕ L

(m)
b,i ⊕

L(m)
c,i−1 ⊕ x

(m)
a,i−2 ⊕ x

(m)
d,i+6,

k = 3, i > 1 (29)

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕
x
(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕

x
(m−1)
d,i−1

=

L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕ x

(m)
d,i−1⊕

x
(m)
a,i−2 ⊕ x

(m)
d,i+6,

k = 3, i > 2 (30)

13



Proof. The proof for each equation follows the same basic steps: (1) cancel com-
mon factors; (2) cancel adjacent non-linear terms using Eq. (18), updating the
probability using the Piling-Up Lemma; (3) substitute the remaining non-linear
terms using Eq. (17), updating the probability using the Piling-Up Lemma. For
completeness, we list all proofs in Appendix 1. �

3.2 Linear Approximations for Multiple Rounds of ChaCha

In this section, we use the proposed technique to construct several new lin-
ear approximations for the stream cipher ChaCha which will prove useful to
construct better distinguishers. We developed a program (available in https:

//github.com/MurCoutinho/cryptanalysisChaCha.git) that makes the pro-
cess of finding linear approximations partly automatic. Our program is capable
of expanding the equations and, after statistically verifying the correlation, it
outputs the resulting linear approximation in LATEXcode.

We start using the result of Coutinho and Souza [10]. We will only consider

the equation for x
(3)
3,0⊕x

(3)
4,0 of Lemma 5 but the same reasoning could be applied

to any other equation in that lemma. Then, we have

x
(3)
3,0 ⊕ x

(3)
4,0 = x

(5)
1,0 ⊕ x

(5)
3,0 ⊕ x

(5)
4,26 ⊕ x

(5)
7,7 ⊕ x

(5)
7,19 ⊕ x

(5)
8,7 ⊕ x

(5)
8,19⊕

x
(5)
9,0 ⊕ x

(5)
11,12 ⊕ x

(5)
12,6 ⊕ x

(5)
12,7 ⊕ x

(5)
13,0 ⊕ x

(5)
13,8 ⊕ x

(5)
15,0

(31)

with probability 1
2

(
1 + 1

2

)
.

As presented in Section 2.3, to expand the equation to the 6-th round, we
could use only Lemma 3 as proposed in [9]. In this case, we have weights 4, 1, 2, 1
for xa, xb, xc and xd, respectively, and a count of (xa, 0), (xb, 3), (xc, 3) e (xd, 3).
Thus, the linear correlation is εL = 1/21+0·4+3·1+3·2+3·1 = 2−13. However, we
can do better with the new technique proposed in Section 3. This will lead us to
the following lemma

Lemma 10. The following linear approximation holds with probability 1
2

(
1 + 1

28

)
x
(3)
3,0 ⊕ x

(3)
4,0 = x

(6)
0 [0, 16]⊕ x(6)1 [0, 6, 7, 11, 12, 22, 23]⊕ x(6)2 [0, 6, 7, 8, 16, 18,

19, 24]⊕ x(6)4 [7, 13, 19]⊕ x(6)5 [7]⊕ x(6)6 [7, 13, 14, 19]⊕
x
(6)
7 [6, 7, 14, 15, 26]⊕ x(6)8 [0, 7, 8, 19, 31]⊕ x(6)9 [0, 6, 12, 26]⊕
x
(6)
10 [0]⊕ x(6)11 [6, 7]⊕ x(6)12 [0, 11, 12, 19, 20, 30, 31]⊕
x
(6)
13 [0, 14, 15, 24, 26, 27]⊕ x(6)14 [8, 25, 26]⊕ x(6)15 [24].

Proof. First, from Eq. (31) we can use Lemma 1 to replace x
(5)
1,0, x

(5)
3,0, x

(5)
9,0, x

(5)
13,0,

x
(5)
15,0 by L(6)

1,0, L(6)
3,0, L(6)

9,0, L(6)
13,0, L(6)

15,0 with probability 1. Next, note that, since
we are transitioning from round 5 to 6, we have

(a, b, c, d) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

We have already considered the case (a, b, c, d) = (0, 5, 10, 15). Then we still have
3 cases left to consider.
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– Case 1: When (a, b, c, d) = (1, 6, 11, 12), we have the factors x
(5)
11,12, x

(5)
12,6,

x
(5)
12,7. Then we can use Lemma 3 and Lemma 7 in order to get

Pr
(
x
(5)
11,12 = L(6)

11,12 ⊕ x
(6)
1,11 ⊕ x

(6)
12,19 ⊕ x

(6)
12,11

)
=

1

2

(
1 +

1

22

)
and

Pr
(
x
(5)
12,7 ⊕ x

(5)
12,6 = L(6)

12,7 ⊕ L
(6)
12,6

)
=

1

2

(
1 +

1

2

)
.

– Case 2: If (a, b, c, d) = (2, 7, 8, 13), we have the factors x
(5)
7,7, x

(5)
7,19, x

(5)
8,7,

x
(5)
8,19, x

(5)
13,8 and we can use Lemma 3 and Eq. (19) of Lemma 9 to get

Pr
(
x
(5)
13,8 = L(6)

13,8 ⊕ x
(6)
8,7 ⊕ x

(6)
7,14

)
=

1

2

(
1 +

1

2

)
,

Pr
(
x
(5)
7,7 ⊕ x

(5)
8,7 = L(6)

7,7 ⊕ L
(6)
8,7 ⊕ x

(6)
2,6 ⊕ x

(6)
13,14

)
=

1

2

(
1 +

1

2

)
,

Pr
(
x
(5)
7,19 ⊕ x

(5)
8,19 = L(6)

7,19 ⊕ L
(6)
8,19 ⊕ x

(6)
2,18 ⊕ x

(6)
13,26

)
=

1

2

(
1 +

1

2

)
.

– Case 3: When considering (a, b, c, d) = (3, 4, 9, 14), we have x
(5)
4,26 and we

can use Lemma 3 to obtain

Pr
(
x
(5)
4,26 = L(6)

4,26 ⊕ x
(6)
14,26

)
=

1

2

(
1 +

1

2

)
.

By the Piling-up Lemma, we have that all these changes result in a prob-
ability of 1

2

(
1 + 1

28

)
. Expanding the linear terms using Eqs. (13)-(16) and

canceling out common factors completes the proof. �

Computational Result 1 The linear approximation of Lemma 10 holds com-
putationally with εL0 = 0.006942 ≈ 2−7.17. This correlation was verified using
238 random samples.

In [9], the authors remarked that an expansion of this method to 7 rounds
would be unlikely to be useful. Indeed, if we only apply Lemma 3 (which are
the linear approximations proposed by Choudhuri and Maitra) we would have
(xa, 14), (xb, 13), (xc, 9), (xd, 15). Therefore, the aggregated correlation would
be εL = 1/27+14·4+13·1+9·2+15·1 = 2−109. Thus, using this linear expansion in a
differential-linear attack would lead to a distinguisher with complexity no less
then 2436. However, using our new linear approximations we can get a much
better result.
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Lemma 11. The following linear approximation holds with probability 1
2

(
1 + 1

255

)
x
(3)
3,0 ⊕ x

(3)
4,0 = x

(7)
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28]⊕ x(7)1 [0, 5, 7, 8, 10,

11, 14, 15, 16, 22, 23, 24, 25, 27, 30, 31]⊕ x(7)2 [6, 7, 9, 10, 16, 18, 19,

25, 26]⊕ x(7)3 [6, 7, 8, 24]⊕ x(7)4 [0, 2, 3, 5, 18, 22, 23, 27]⊕ x(7)5 [1, 2,

9, 10, 13, 14, 18, 21, 22, 25, 29, 30]⊕ x(7)6 [2, 3, 5, 7, 10, 11, 13, 14, 19,

22, 23, 27, 30, 31]⊕ x(7)7 [1, 2, 13, 25, 26, 30, 31]⊕ x(7)8 [8, 11, 13, 20,

25, 27, 28, 30, 31]⊕ x(7)9 [2, 3, 6, 7, 14, 15, 18, 27]⊕ x(7)10 [0, 3, 4, 8, 12,

13, 14, 18, 20, 27, 28, 30]⊕ x(7)11 [6, 14, 15, 18, 19, 23, 24, 27]⊕
x
(7)
12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31]⊕ x(7)13 [1, 2, 6, 7, 8, 10,

11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26]⊕ x(7)14 [0, 6, 13, 14, 15, 16,

23, 24]⊕ x(7)15 [16, 25, 26].

Proof. If we start from Lemma 10 then we want to expand the equation one more
round. To do so, first note that since we are transitioning from round 6 to 7, we
have (a, b, c, d) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}. Therefore,
we can divide the factors of the equation in 4 distinct groups:

– Group I - x
(6)
0 [0, 16], x

(6)
4 [7, 13, 19], x

(6)
8 [0, 7, 8, 19, 31], x

(6)
12 [0, 11, 12, 19, 20,

30, 31].

– Group II - x
(6)
1 [0, 6, 7, 11, 12, 22, 23], x

(6)
5 [7], x

(6)
9 [0, 6, 12, 26], x

(6)
13 [0, 14, 15,

24, 26, 27].

– Group III - x
(6)
2 [0, 6, 7, 8, 16, 18, 19, 24], x

(6)
6 [7, 13, 14, 19], x

(6)
10 [0], x

(6)
14 [8, 25,

26].

– Group IV - x
(6)
7 [6, 7, 14, 15, 26], x

(6)
11 [6, 7], x

(6)
15 [24].

The procedure to expand and compute the correlation is similar to that in the
proof of Lemma 10. To simplify the notation we will compute the probability
given by the Piling-up Lemma by summing values k where the probability of a
particular linear equation will be given by 1

2

(
1 + 1

2k

)
.

In Group I, the factors x
(6)
0,0, x

(6)
8,0, x

(6)
12,0 can be expanded using Lemma 1 with

probability 1. Next, we can combine the following factors: x
(6)
4,7, x

(6)
8,7, x

(6)
8,8 using

Lemma 8 (k = 2); x
(6)
4,19, x

(6)
8,19 using Eq. (19) of Lemma 9 (k = 1); x

(6)
12,11, x

(6)
12,12

using Lemma 7 with (k = 1); x
(6)
12,19, x

(6)
12,20 using Lemma 7 with (k = 1);

x
(6)
12,30, x

(6)
12,31 using Lemma 7 with (k = 1). Finally, it remains some single terms

to be expanded: x
(6)
0,16 using Lemma 6 (k = 3); x

(6)
4,13 using Lemma 3 (k = 1);

x
(6)
8,31 using Lemma 3 (k = 2). By the Piling-up Lemma, we can combine these

linear relations to obtain

x
(6)
0 [0, 16]⊕ x(6)4 [7, 13, 19]⊕ x(6)8 [0, 7, 8, 19, 31]⊕ x(6)12 [0, 11, 12, 19, 20, 30, 31] =

x
(7)
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28]⊕ x(7)4 [0, 2, 3, 5, 18, 22, 23, 27]⊕
x
(7)
8 [8, 11, 13, 20, 25, 27, 28, 30, 31]⊕ x(7)12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31]

(32)
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with probability 1
2

(
1 + 1

212

)
.

In Group II, the factors x
(6)
1,0, x

(6)
9,0, x

(6)
13,0 can be expanded using Lemma 1 with

probability 1. Next, we can combine the following factors: x
(6)
1,6, x

(6)
1,7, x

(6)
5,7, x

(6)
9,6

using Eq. (29) of Lemma 9 (k = 3); x
(6)
1,11, x

(6)
1,12, x

(6)
9,12 using Eq. (25) of Lemma 9

(k = 4); x
(6)
1,22, x

(6)
1,23 using Lemma 7 (k = 3); x

(6)
13,14, x

(6)
13,15 using Lemma 7 (k = 1);

x
(6)
13,26, x

(6)
13,27 using Lemma 7 (k = 1). Finally, it remains some single terms to be

expanded: x
(6)
9,26 using Lemma 3 (k = 2); x

(6)
13,24 using Lemma 3 (k = 1). By the

Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
1 [0, 6, 7, 11, 12, 22, 23]⊕ x(6)5 [7]⊕ x(6)9 [0, 6, 12, 26]⊕ x(6)13 [0, 14, 15, 24, 26,

27] = x
(7)
1 [0, 5, 7, 8, 10, 11, 14, 15, 16, 22, 23, 24, 25, 27, 30, 31]⊕ x(7)5 [1, 2, 9, 10,

13, 14, 18, 21, 22, 25, 29, 30]⊕ x(7)9 [2, 3, 6, 7, 14, 15, 18, 27]⊕ x(7)13 [1, 2, 6, 7, 8, 10,
11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26]

(33)
with probability 1

2

(
1 + 1

215

)
.

In Group III, the factors x
(6)
2,0 and x

(6)
10,0 can be expanded using Lemma 1

with probability 1. Next, we can combine the following factors: x
(6)
2,6, x

(6)
2,7 using

Lemma 7 (k = 3); x
(6)
6,13, x

(6)
6,14 using Lemma 7 (k = 1); x

(6)
14,25, x

(6)
14,26 using Lemma

7 (k = 1); x
(6)
2,18, x

(6)
2,19, x

(6)
6,19 using Eq. (26) of Lemma 9 (k = 3); x

(6)
2,8, x

(6)
6,7, x

(6)
14,8

using Eq. (27) of Lemma 9 (k = 2). Finally, it remains some single terms to be

expanded: x
(6)
2,16 using Lemma 6 (k = 3); x

(6)
2,24 using Lemma 6 (k = 3). By the

Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
2 [0, 6, 7, 8, 16, 18, 19, 24]⊕ x(6)6 [7, 13, 14, 19]⊕ x(6)10 [0]⊕ x(6)14 [8, 25, 26] =

x
(7)
2 [6, 7, 9, 10, 16, 18, 19, 25, 26]⊕ x(7)6 [2, 3, 5, 7, 10, 11, 13, 14, 19, 22, 23, 27, 30,

31]⊕ x(7)10 [0, 3, 4, 8, 12, 13, 14, 18, 20, 27, 28, 30]⊕ x(7)14 [0, 6, 13, 14, 15, 16, 23, 24]
(34)

with probability 1
2

(
1 + 1

216

)
.

In Group IV, we can combine the following factors: x
(6)
7,14, x

(6)
7,15 using Lemma

7 (k = 1); x
(6)
7,6, x

(6)
7,7, x

(6)
11,6, x

(6)
11,7 using Eq. (28) of Lemma 9 (k = 1). It remains

some single terms to be expanded: x
(6)
7,26 using Lemma 3 (k = 1); x

(6)
15,24 using

Lemma 3 (k = 1). By the Piling-up Lemma, we can combine these linear relations
to obtain

x
(6)
7 [6, 7, 14, 15, 26]⊕ x(6)11 [6, 7]⊕ x(6)15 [24] = x

(7)
3 [6, 7, 8, 24]⊕ x(7)7 [1, 2,

13, 25, 26, 30, 31]⊕ x(7)11 [6, 14, 15, 18, 19, 23, 24, 27]⊕ x(7)15 [16, 25, 26]
(35)

with probability 1
2

(
1 + 1

24

)
.

Finally, using the Piling-up Lemma we can combine the results from Lemma
10 and Eqs. (32)-(35), which leads to a correlation of εL = 1/28+12+15+16+4 =
2−55. �
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Computational Result 2 The linear approximation of Eq. (32) holds compu-
tationally with εL1

= 0.000301 ≈ 2−11.70. This correlation was verified using 242

random samples.

Computational Result 3 The linear approximation of Eq. (33) holds compu-
tationally with εL2

= 0.000100 ≈ 2−13.29. This correlation was verified using 242

random samples.

Computational Result 4 The linear approximation of Eq. (34) holds compu-
tationally with εL3

= 0.000051 ≈ 2−14.26. This correlation was verified using 242

random samples.

Computational Result 5 The linear approximation of Eq. (35) holds com-
putationally with εL4

= 0.0625 ≈ 2−4. This correlation was verified using 238

random samples.

Next, we will only work with a linear approximation for the bit x
(3.5)
5,0 (as in-

troduced in [9], half a round of ChaCha consists in applying half the operations

of the QRF. Thus, from Eq. (2) we can write x
(r−1/2)
a = x

(r−1)
a′ , . . . x

(r−1/2)
d =

x
(r−1)
d′ ). Using Eq. (5) it is easy to see that we have x

(3.5)
5,0 = x

(4)
5,7 ⊕ x

(4)
10,0. Addi-

tionally, using Lemma 3 we can expand one more round and we get

x
(3.5)
5,0 = x

(5)
2,0 ⊕ x

(5)
5,26 ⊕ x

(5)
9,7 ⊕ x

(5)
9,19 ⊕ x

(5)
10,0 ⊕ x

(5)
13,6 ⊕ x

(5)
13,7 ⊕ x

(5)
14,0 ⊕ x

(5)
14,8, (36)

with probability 1
2

(
1 + 1

2

)
.

Lemma 12. The following linear approximation holds with probability 1
2

(
1 + 1

28

)
x
(3.5)
5,0 = x

(6)
0 [0]⊕ x(6)2 [0, 6, 7, 22, 23]⊕ x(6)3 [0, 6, 7, 8, 16, 18, 19, 24]⊕
x
(6)
4 [7, 14, 15]⊕ x(6)5 [13]⊕ x(6)7 [7, 13, 14, 19]⊕ x(6)8 [6, 7, 12]⊕
x
(6)
9 [0, 8, 19]⊕ x(6)10 [0, 6, 26]⊕ x(6)13 [0, 30, 31]⊕
x
(6)
14 [0, 6, 7, 14, 15, 18, 19, 24, 26, 27]⊕ x(6)15 [0, 8, 25, 26].

Proof. We start from Eq. (36) and we can use Lemma 1 x
(5)
2,0, x

(5)
10,0, x

(5)
14,0 by

L(6)
2,0,L

(6)
10,0,L

(6)
14,0 with probability 1. Next, note that, since we are transitioning

from round 5 to 6, we have (a, b, c, d) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13),

(3, 4, 9, 14)}. Considering (a, b, c, d) = (0, 5, 10, 15), we have the factor x
(5)
5,26 and

we can apply Lemma 3 to get

Pr
(
x
(5)
5,26 = L(6)

5,26 ⊕ x
(6)
15,25

)
=

1

2

(
1 +

1

2

)
.

Considering (a, b, c, d) = (2, 7, 8, 13), we have the factors x
(5)
13,6 and x

(5)
13,7. Then

we can use Lemma 7 to get

Pr
(
x
(5)
13,6 ⊕ x

(5)
13,7 = L(6)

13,6 ⊕ L
(6)
13,7

)
=

1

2

(
1 +

1

2

)
.
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Considering (a, b, c, d) = (3, 4, 9, 14) we have x
(5)
9,7, x

(5)
9,19 and x

(5)
14,8, and then we

can apply Lemma 3 to obtain

Pr
(
x
(5)
9,7 = L(6)

9,7 ⊕ x
(6)
3,6 ⊕ x

(6)
14,14 ⊕ x

(6)
14,6

)
=

1

2

(
1 +

1

22

)
,

Pr
(
x
(5)
9,19 = L(6)

9,19 ⊕ x
(6)
3,18 ⊕ x

(6)
14,26 ⊕ x

(6)
14,18

)
=

1

2

(
1 +

1

22

)
,

Pr
(
x
(5)
14,8 = L(6)

14,8 ⊕ x
(6)
9,7 ⊕ x

(6)
4,14

)
=

1

2

(
1 +

1

2

)
.

By the Piling-up Lemma, we have that all these changes result in a probability
of 1

2

(
1 + 1

28

)
. Expanding the linear terms using Eqs. (13)-(16) and canceling out

common factors completes the proof. �

Computational Result 6 The linear approximation of Lemma 12 holds com-
putationally with εL0 = 0.00867 ≈ 2−6.85.

Lemma 13. The following linear approximation holds with probability 1
2

(
1 + 1

247

)
x
(3.5)
5,0 = x

(7)
0 [0, 6, 7, 11, 12]⊕ x(7)1 [7, 8, 14, 15, 16, 18, 19, 30, 31]⊕
x
(7)
2 [0, 2, 3, 5, 6, 8, 10, 11, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31]⊕
x
(7)
3 [6, 7, 9, 10, 18, 19, 25, 26]⊕ x(7)4 [1, 2, 7, 19, 26]⊕ x(7)5 [0, 5, 6, 7]⊕
x
(7)
6 [1, 2, 9, 10, 19, 21, 22, 29, 31]⊕ x(7)7 [2, 3, 5, 10, 11, 13, 14, 19, 22, 23,

27, 30, 31]⊕ x(7)8 [6, 14, 15, 19, 26, 27]⊕ x(7)9 [8, 13, 19, 25, 30, 31]⊕
x
(7)
10 [2, 3, 7, 12, 14, 15, 23, 24, 27]⊕ x(7)11 [0, 3, 4, 8, 12, 13, 14, 18, 20, 27,

28, 30]⊕ x(7)12 [0, 5, 6, 11, 12, 19, 20]⊕ x(7)13 [0, 7, 12, 13, 15, 16, 18, 19, 22,

23, 24, 26, 27]⊕ x(7)14 [1, 2, 8, 10, 11, 13, 14, 16, 18, 19, 22, 23, 24, 25, 26,

30, 31]⊕ x(7)15 [5, 6, 7, 8, 13, 14, 15, 16, 23].

Proof. If we start from Lemma 12 we want to expand the equation one more
round. To do so, first note that since we are transitioning from round 6 to 7, we
have (a, b, c, d) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}. Therefore,
we can divide the factors of the equation in 4 distinct groups:

– Group I - x
(6)
0 [0], x

(6)
4 [7, 14, 15], x

(6)
8 [6, 7, 12].

– Group II - x
(6)
5 [13], x

(6)
9 [0, 8, 19], x

(6)
13 [0, 30, 31].

– Group III - x
(6)
2 [0, 6, 7, 22, 23], x

(6)
10 [0, 6, 26], x

(6)
14 [0, 6, 7, 14, 15, 18, 19, 24, 26, 27].

– Group IV - x
(6)
3 [0, 6, 7, 8, 16, 18, 19, 24], x

(6)
7 [7, 13, 14, 19], x

(6)
15 [0, 8, 25, 26].

Here, we follow the same strategy as in the proof of Lemma 11. In Group I, the

factor x
(6)
0,0 can be expanded using Lemma 1 with probability 1. Next, we can

combine the following factors: x
(6)
4,7, x

(6)
8,6, x

(6)
8,7 using Lemma 8 (k = 2); x

(6)
4,14, x

(6)
4,15
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using Lemma 7 with (k = 1). Finally, we expand x
(6)
8,12 using Lemma 3 (k = 2).

By the Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
0 [0]⊕ x(6)4 [7, 14, 15]⊕ x(6)8 [6, 7, 12] = x

(7)
0 [0, 6, 7, 11, 12]⊕

x
(7)
4 [1, 2, 7, 19, 26]⊕ x(7)8 [6, 14, 15, 19, 26, 27]⊕ x(7)12 [0, 5, 6, 11, 12, 19, 20]

(37)

with probability 1
2

(
1 + 1

25

)
.

In Group II, the factors x
(6)
9,0, x

(6)
13,0 can be expanded using Lemma 1 with

probability 1. Next, we can combine x
(6)
13,30, x

(6)
13,31 using Lemma 7 (k = 1). The

remaining terms can be expanded with Lemma 3: x
(6)
9,8 (k = 2); x

(6)
9,19 (k = 2);

x
(6)
5,13 (k = 1). By the Piling-up Lemma, we can combine these linear relations

to obtain

x
(6)
5 [13]⊕ x(6)9 [0, 8, 19]⊕ x(6)13 [0, 30, 31] = x

(7)
1 [7, 8, 14, 15, 16, 18, 19, 30, 31]⊕

x
(7)
5 [0, 5, 6, 7]⊕ x(7)9 [8, 13, 19, 25, 30, 31]⊕ x(7)13 [0, 7, 12, 13, 15, 16, 18, 19, 22,

23, 24, 26, 27]
(38)

with probability 1
2

(
1 + 1

26

)
.

In Group III, the factors x
(6)
2,0, x

(6)
10,0 and x

(6)
14,0 can be expanded using Lemma

1 with probability 1. Next, we can combine the following factors: x
(6)
2,6, x

(6)
2,7, x

(6)
10,6,

x
(6)
14,6, x

(6)
14,7 using Eq. (30) of Lemma 9 (k = 3); x

(6)
2,22, x

(6)
2,23 using Lemma 7

(k = 3); x
(6)
14,14, x

(6)
14,15 using Lemma 7 (k = 1); x

(6)
14,18, x

(6)
14,19 using Lemma 7

(k = 1); x
(6)
14,26, x

(6)
14,27 using Lemma 7 (k = 1). Finally, it remains some single

terms to be expanded: x
(6)
10,26 using Lemma 3 (k = 2); x

(6)
14,24 using Lemma 6

(k = 1). By the Piling-up Lemma, we can combine these linear relations to
obtain

x
(6)
2 [0, 6, 7, 22, 23], x

(6)
10 [0, 6, 26], x

(6)
14 [0, 6, 7, 14, 15, 18, 19, 24, 26, 27] =

x
(7)
2 [0, 2, 3, 5, 6, 8, 10, 11, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31]⊕
x
(7)
6 [1, 2, 9, 10, 19, 21, 22, 29, 31]⊕ x(7)10 [2, 3, 7, 12, 14, 15, 23, 24, 27]⊕
x
(7)
14 [1, 2, 8, 10, 11, 13, 14, 16, 18, 19, 22, 23, 24, 25, 26, 30, 31]

(39)

with probability 1
2

(
1 + 1

212

)
.

In Group IV, the factors x
(6)
3,0 and x

(6)
15,0 can be expanded using Lemma 1

with probability 1. Then we can combine the following factors: x
(6)
3,6, x

(6)
3,7, x

(6)
7,7

using Eq. (26) of Lemma 9 (k = 3); x
(6)
3,18, x

(6)
3,19, x

(6)
7,19 using Eq. (26) of Lemma 9

(k = 3); x
(6)
3,8, x

(6)
15,8 using Eq. (24) of Lemma 9 (k = 2); x

(6)
15,25, x

(6)
15,26 using Lemma

7 (k = 1); x
(6)
7,13, x

(6)
7,14 using Lemma 7 (k = 1). It remains some single terms to

be expanded: x
(6)
3,16 using Lemma 6 (k = 3); x

(6)
3,24 using Lemma 6 (k = 3). By
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the Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
3 [0, 6, 7, 8, 16, 18, 19, 24], x

(6)
7 [7, 13, 14, 19], x

(6)
15 [0, 8, 25, 26] =

x
(7)
3 [6, 7, 9, 10, 18, 19, 25, 26]⊕ x(7)7 [2, 3, 5, 10, 11, 13, 14, 19, 22, 23, 27, 30, 31]⊕
x
(7)
11 [0, 3, 4, 8, 12, 13, 14, 18, 20, 27, 28, 30]⊕ x(7)15 [5, 6, 7, 8, 13, 14, 15, 16, 23]

(40)
with probability 1

2

(
1 + 1

216

)
.

Finally, using the Piling-up Lemma we can combine the results from Lemma
12 and Eqs. (37)-(40), which leads to a correlation of εL = 1/28+5+6+12+16 =
2−47. �

Computational Result 7 The linear approximation of Eq. (37) holds compu-
tationally with εL1

= 0.0416 ≈ 2−4.59. This correlation was verified using 238

random samples.

Computational Result 8 The linear approximation of Eq. (38) holds compu-
tationally with εL2

= 0.0278 ≈ 2−5.19. This correlation was verified using 238

random samples.

Computational Result 9 The linear approximation of Eq. (39) holds compu-
tationally with εL3

= 0.000398 ≈ 2−11.29. This correlation was verified using 242

random samples.

Computational Result 10 The linear approximation of Eq. (40) holds com-
putationally with εL4

= 0.000047 ≈ 2−14.38. This correlation was verified using
242 random samples.

It is interesting to note that the experimental correlation is higher than
expected in several cases. Of course, since the hypothesis of independence for the
Piling-Up Lemma does not hold, it is expected to see deviations between what is
predicted theoretically and what we see in practice. The fact that the correlation
is usually higher indicates a positive correlation between some equations. In
future works, it may be interesting to try to understand why ChaCha has this
behavior.

4 Improved Differential-Linear Attacks Against ChaCha

4.1 New Differentials

In this section, we present new differentials for 3.5 rounds of ChaCha. As in
previous works, these differential correlations were found experimentally. To find
these correlations we used the technique proposed by Beierle et al. at Crypto
2020 [4], and described in Section 2.2. Here, the cipher is divided into the sub
ciphers E1 covering 1 round and E2 covering 2.5 rounds to find a differential
path for 3.5 rounds. Thus we want a particular differential characteristic of the
form

∆X(0) 1 round−−−−−−→ ∆X(1) 2.5 rounds−−−−−−−−→ ∆X(3.5).
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The idea is to generate consistent ∆X(1) whose Hamming weight is minimized.
In [4], the authors showed that the following differential characteristic occurs
with probability 2−5 on average for the QRF of ChaCha

∆X(0) = (([]), ([]), ([]), ([i]))→ ∆X(1) = (([i+ 28]), ([i+ 31, i+ 23, i+ 11,
i+ 3]), ([i+ 24, i+ 16, i+ 4]),
([i+ 24, i+ 4])).

(41)
From there we computed ∆X(3.5) by generating random states X(1) and

X ′(1) and statistically testing for correlations in particular bits of ∆X(3.5). We
note that this procedure is computationally intensive as some of the correlations
are very small. For some bits, we executed this procedure up to 250 pairs of
random states in the first round. To achieve this amount of computation we
used 8 NVIDIA GPUs (RTX 2080ti). As in the referred paper, we used i = 6.
Also, we fixed the differential of Eq. (41) in the third column of the state matrix.
Table 3 shows the results1.

OD |εd|
∆x

(3.5)
0,0 0.00002797

∆x
(3.5)
13,0 0.000003032

Table 3: New differentials after 3.5 rounds, starting from ∆X(1) in the third
column of the state matrix with i = 6 in Eq. (41).

4.2 Distinguishers

Using the linear approximations of Lemma 10 and Lemma 11, the differential
correlation εd = 0.00048 for (a, b) = (3, 4) described in [10], and the estimated
correlations from the Computational Results 1-5, we get εdε

2
L0
≈ 2−25.37 which

gives us a distinguisher for 6 rounds of ChaCha with complexity less than 251.
Also, we get εd(εL0εL1εL2εL3εL4)2 ≈ 2−111.86 which gives us a distinguisher for
7 rounds of ChaCha with complexity less than 2224.

1 Since the first version of this paper was published, several independent researches
reviewed our results and code. We would like to thank Juan C. G. Vásquez
(juan.grados@tii.ae) for identifying an error in the code we made publicly avail-
able. That error affected the results of this table in the first version of the paper.
Dey et al. [12] independently noticed that the results reported were not accurate
and computed an alternative version of this table. However, we were only able to
reproduce the results reported for ∆x

(3.5)
0,0 and ∆x

(3.5)
13,0 . More precisely, it seems that

Dey et al. had inaccuracies of their own, caused by a small number of samples (237)
which is not enough to compute the true correlation for these bits. After correcting
the code, we could not find significant results for ∆x

(3.5)
1,0 , ∆x

(3.5)
12,0 and ∆x

(3.5)
5,0 as

previously reported, even considering 252 samples.
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4.3 New Attack using Probabilistic Neutral Bits (PNBs)

One of the most important attacks against ChaCha is the proposal of Aumasson
[1]. The attack first identifies good choices of truncated differentials, then it uses
probabilistic backwards computation with the notion of PNBs, estimating the
complexity of the attack. This attack is described in several previous works [1,
24, 23], thus, in our description, we skip several details.

The PNB-based key recovery is a fully experimental approach. We summarize
the technique as follows:

– Let the correlation in the forward direction (a.k.a, differential-linear distin-
guisher) after r rounds be εd.

– Let n be the number of PNBs given by a correlation γ. Namely, even if we
flip one bit in PNBs, we still observe correlation γ.

– Let the correlation in the backward direction, where all PNB bits are fixed
to 0 and non-PNB bits are fixed to the correct ones, is εa

Then, the time complexity of the attack is estimated as 2256−nN+2256−α, where
the data complexity N is given as

N =

(√
α log(4) + 3

√
1− ε2aε2d

εaεd

)2

,

where α is a parameter that the attacker can choose.
We can implement new attacks for 7 rounds of ChaCha using this technique

by considering the new differential correlation for ∆
(3.5)
13,0 presented in Table 3.

Using Eq. (7) it is easy to see that we have x
(3.5)
13,0 = x

(4)
2,0 ⊕ x

(4)
13,8. Therefore, we

consider ID given by Eq. (41) with i = 6 and OD x
(4)
2,0 ⊕ x

(4)
13,8. Using γ = 0.35

we found 83 PNBs, and we obtained εa = 0.000509. From that, we get an attack
with data complexity of 264.59 and time complexity 2237.59. As in [4], we have to
repeat this attack 25 times on average. Thus, the final attack has data complexity
of 269.58 and time complexity 2242.59, which does not improve previous results.
Bellow we list all PNBs:

PNB = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 20, 21, 31, 32, 33, 34, 35, 36, 39, 43, 47, 48,
49, 53, 54, 55, 59, 63, 67, 68, 69, 70, 71, 72, 73, 89, 90, 95, 99, 100, 103,
104, 105, 123, 124, 125, 126, 127, 128, 129, 130, 140, 141, 142, 152, 153, 154,
155, 156, 157, 158, 159, 168, 169, 170, 174, 175, 176, 184, 185, 186, 187, 188,
189, 190, 191, 192, 193, 210, 223, 248, 255).

5 Conclusion

In this paper, we presented a new technique to find linear approximations for
ARX ciphers. Applying this technique we presented new linear approximations
to the stream cipher ChaCha which gave us new and improved distinguishers. In
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addition, we presented new differential characteristics for 3.5 rounds of ChaCha
and use them to create new attacks based on Probabilistic Neutral Bits. For
future works, we expect that the proposed technique can be used to improve
attacks against similar ARX-based designs, as the stream cipher Salsa and the
hash function Blake. Additionally, Lemma 13 shows that it is possible to improve
further the linear correlation used in our distinguisher for 7 rounds. Thus, it
may be possible to further improve attacks to ChaCha given a better differential
correlation.

Acknowledgements. The authors would like to thank the anonymous re-
viewers for their valuable comments and suggestions which helped us to improve
our work.
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A Proofs

In this appendix, we expand the proof of Lemma 9 for each individual linear
approximation.
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A.1 Eq. (19)

Proof. Using Eqs. (9) and (10) we can write

x
(m−1)
b,i ⊕ x(m−1)c,i = L(m)

b,i ⊕Θi(x
′(m−1)
c , x

(m)
d )⊕

L(m)
c,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕Θi(x(m−1)c , x

′(m−1)
d ).

Using the approximation of Eq. (17) we can write Θi(x
(m−1)
c , x

′(m−1)
d ) = x

′(m−1)
d,i−1

with probability 1
2

(
1 + 1

2

)
. Thus, using Eq. (7) and canceling out common factors

we get

x
(m−1)
b,i ⊕ x(m−1)c,i = L(m)

b,i ⊕ L
(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7,

with probability 1
2

(
1 + 1

2

)
, which concludes the proof. �

A.2 Eqs. (20) and (21)

Proof. Using Eqs. (9) and (12) we can write

x
(m−1)
a,i ⊕ x(m−1)b,i = L(m)

a,i ⊕ L
(m)
b,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕Θi(x′(m−1)c , x

(m)
d )⊕

Θi(x
′(m−1)
a , x

′(m−1)
b )⊕Θi(x(m−1)a , x

(m−1)
b ).

Cancelling out common factors, using the approximation of Eq. (17) and the
Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x(m−1)b,i = L(m)

a,i ⊕ L
(m)
b,i ⊕ x

′(m−1)
b,i−1 ⊕ x(m−1)b,i−1

with probability 1
2

(
1 + 1

22

)
. Now we can replace x

′(m−1)
b,i−1 using Eq. (5) and x

(m−1)
b,i−1

using Lemma 3, which leads to

x
(m−1)
a,i ⊕ x(m−1)b,i = L(m)

a,i ⊕ L
(m)
b,i ⊕ x

(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ L

(m)
b,i−1 ⊕ x

(m)
d,i−2,

with probability 1
2

(
1 + 1

23

)
by the Piling-up Lemma. We can also use Lemma 1

in order to obtain

x
(m−1)
a,1 ⊕ x(m−1)b,1 = L(m)

a,1 ⊕ L
(m)
b,1 ⊕ x

(m)
b,7 ⊕ x

(m)
c,0 ⊕ L

(m)
b,0 ,

with probability 1
2

(
1 + 1

22

)
. �

A.3 Eqs. (22) and (23)

Proof. Combining Eq. (10) and Eq. (12) we have

x
(m−1)
a,i ⊕ x(m−1)c,i = L(m)

a,i ⊕ L
(m)
c,i ⊕Θi(x

(m−1)
c , x

′(m−1)
d )⊕

Θi(x
′(m−1)
a , x

′(m−1)
b )⊕Θi(x(m−1)a , x

(m−1)
b ).

Using the approximation of Eq. (17) and the Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x(m−1)c,i = L(m)

a,i ⊕ L
(m)
c,i ⊕ x

′(m−1)
d,i−1 ⊕ x

′(m−1)
b,i−1 ⊕ x(m−1)b,i−1
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with probability 1
2

(
1 + 1

23

)
. Now we can replace x

′(m−1)
d,i−1 using Eq. (7), x

′(m−1)
b,i−1

using Eq. (5) and x
(m−1)
b,i−1 using Lemma 3 if i > 1 or 1 if i = 1, which leads to

x
(m−1)
a,i ⊕ x(m−1)c,i = L(m)

a,i ⊕ L
(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
b,i+6

⊕x(m)
c,i−1 ⊕ L

(m)
b,i−1 ⊕ x

(m)
d,i−2,

with probability 1
2

(
1 + 1

24

)
by the Piling-up Lemma or

x
(m−1)
a,1 ⊕ x(m−1)c,1 = L(m)

a,1 ⊕ L
(m)
c,1 ⊕ x

(m)
a,0 ⊕ x

(m)
d,8 ⊕ x

(m)
b,7

⊕x(m)
c,0 ⊕ L

(m)
b,0 ,

with probability 1
2

(
1 + 1

23

)
. �

A.4 Eq. (24)

Proof. Using Eq. (11) and Eq. (12) we can write

x
(m−1)
a,i ⊕ x(m−1)d,i = L(m)

a,i ⊕ L
(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕Θi(x(m−1)a , x

(m−1)
b ).

Using Eq. (17) we get

x
(m−1)
a,i ⊕ x(m−1)d,i = L(m)

a,i ⊕ L
(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕ x(m−1)b,i−1 ,

and from Eq. (9)

x
(m−1)
a,i ⊕ x(m−1)d,i = L(m)

a,i ⊕ L
(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕

L(m)
b,i−1 ⊕Θi−1(x

′(m−1)
c , x

(m)
d ),

with probability 1
2

(
1 + 1

2

)
. Thus, using the approximation of Eq. (18) and the

Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x(m−1)d,i = L(m)

a,i ⊕ L
(m)
d,i ⊕ L

(m)
b,i−1,

with probability 1
2

(
1 + 1

22

)
. �

A.5 Eq. (25)

Proof. Using Eq. (12) and Eq. (10) and canceling out common factors we get

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)c,i = L(m)

a,i−1 ⊕ L
(m)
a,i ⊕ L

(m)
c,i ⊕

Θi−1(x
′(m−1)
a , x

′(m−1)
b )⊕Θi−1(x

′(m−1)
c , x

(m)
d )⊕

Θi−1(x
(m−1)
a , x

(m−1)
b )⊕Θi(x′(m−1)a , x

′(m−1)
b )⊕

Θi(x
(m−1)
a , x

(m−1)
b )⊕Θi(x(m−1)c , x

′(m−1)
d )
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Using the approximation of Eq. (18) and the Piling-up Lemma we obtain

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)c,i = L(m)

a,i−1 ⊕ L
(m)
a,i ⊕ L

(m)
c,i ⊕

Θi−1(x
′(m−1)
c , x

(m)
d )⊕Θi(x(m−1)c , x

′(m−1)
d )

with probability 1
2

(
1 + 1

22

)
. Using Eq. (17) and Eq. (7) we get

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)c,i = L(m)

a,i−1 ⊕ L
(m)
a,i ⊕ L

(m)
c,i ⊕

x
(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

with probability 1
2

(
1 + 1

24

)
. �

A.6 Eq. (26)

Proof. Using Eq. (9) and Eq. (12) and canceling out common factors we can
write

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L
(m)
a,i−1 ⊕ L

(m)
b,i ⊕

Θi−1(x
′(m−1)
a , x

′(m−1)
b )⊕Θi−1(x

′(m−1)
c , x

(m)
d )⊕Θi−1(x

(m−1)
a , x

(m−1)
b )⊕

Θi(x
′(m−1)
a , x

′(m−1)
b )⊕Θi(x(m−1)a , x

(m−1)
b ).

Using the approximation of Eq. (18) and the Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L
(m)
a,i−1

⊕L(m)
b,i ⊕Θi−1(x

′(m−1)
c , x

(m)
d ).

with probability 1
2

(
1 + 1

22

)
. Using the approximation of Eq. (17) we get

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L
(m)
a,i−1 ⊕ L

(m)
b,i ⊕ x

(m)
d,i−2.

with probability 1
2

(
1 + 1

23

)
. �

A.7 Eq. (27)

Proof. Using Eq. (11) and Eq. (12), and canceling out common factors we have

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)d,i = x

(m−1)
b,i−1 ⊕ L

(m)
a,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕

Θi(x
(m−1)
a , x

(m−1)
b )⊕ L(m)

d,i .

Using the approximation of Eq. (17) we have Θi(x
(m−1)
a , x

(m−1)
b ) = x

(m−1)
b,i−1 oc-

curring with probability 1
2

(
1 + 1

22

)
. Then

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)d,i = L(m)

a,i ⊕ L
(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d ).

with probability 1
2

(
1 + 1

2

)
. Finally, using the approximation of Eq. (17) and the

Piling-up Lemma we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)d,i = L(m)

a,i ⊕ L
(m)
d,i ⊕ x

(m)
d,i−1.

with probability 1
2

(
1 + 1

22

)
. �

28



A.8 Eq. (28)

Proof. Using Eq. (9) and Eq. (10), we can write

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)c,i−1 ⊕ x

(m−1)
c,i = L(m)

b,i−1 ⊕Θi−1(x
′(m−1)
c , x

(m)
d )⊕ L(m)

b,i ⊕
Θi(x

′(m−1)
c , x

(m)
d )⊕ L(m)

c,i−1 ⊕Θi−1(x
′(m−1)
c , x

(m)
d )⊕Θi−1(x

(m−1)
c , x

′(m−1)
d )⊕

L(m)
c,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕Θi(x(m−1)c , x

′(m−1)
d ).

Canceling out common factors we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)c,i−1 ⊕ x

(m−1)
c,i = L(m)

b,i−1 ⊕ L
(m)
b,i ⊕ L

(m)
c,i−1 ⊕ L

(m)
c,i ⊕

Θi−1(x
(m−1)
c , x

′(m−1)
d )⊕

Θi(x
(m−1)
c , x

′(m−1)
d ).

Thus, using the approximation of Eq. (18) we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)c,i−1 ⊕ x

(m−1)
c,i = L(m)

b,i−1 ⊕ L
(m)
b,i ⊕ L

(m)
c,i−1 ⊕ L

(m)
c,i .

with probability 1
2

(
1 + 1

2

)
. �

A.9 Eq. (29)

Proof. Using equations (9), (10) and (12)

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)c,i−1 = L(m)

a,i ⊕ L
(m)
a,i−1 ⊕ L

(m)
b,i ⊕ L

(m)
c,i−1⊕

Θi(x
′(m−1)
a , x

′(m−1)
b )⊕Θi(x(m−1)a , x

(m−1)
b )⊕Θi−1(x

′(m−1)
a , x

′(m−1)
b )⊕

Θi−1(x
(m−1)
a , x

(m−1)
b )⊕Θi−1(x

(m−1)
c , x

′(m−1)
d ).

Using the approximation of Eq. (18) and the Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)c,i−1 = L(m)

a,i ⊕ L
(m)
a,i−1 ⊕ L

(m)
b,i ⊕ L

(m)
c,i−1⊕

Θi−1(x
(m−1)
c , x

′(m−1)
d ).

with probability 1
2

(
1 + 1

22

)
. Therefore, equations (17) and (7) give us

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)c,i−1 = L(m)

a,i ⊕ L
(m)
a,i−1 ⊕ L

(m)
b,i ⊕ L

(m)
c,i−1⊕

x
(m)
a,i−2 ⊕ x

(m)
d,i+6.

with probability 1
2

(
1 + 1

23

)
. �

A.10 Eq. (30)

Proof. Using equations (10), (11) and (12), we can write

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x(m−1)d,i−1 = L(m)

a,i−1 ⊕ L
(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕Θi−1(x

(m−1)
a , x

(m−1)
b )⊕Θi(x′(m−1)c , x

(m)
d )⊕

Θi(x
(m−1)
a , x

(m−1)
b )⊕Θi−1(x

(m−1)
c , x

′(m−1)
d ).

29



Using the approximation of Eq. (18) we have

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x(m−1)d,i−1 = L(m)

a,i−1 ⊕ L
(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d )⊕Θi−1(x

(m−1)
c , x

′(m−1)
d )

with probability 1
2

(
1 + 1

2

)
. Finally, by the Piling-up Lemma and using the ap-

proximation of Eq. (17) and Eq. (7), we get

x
(m−1)
a,i ⊕ x(m−1)a,i−1 ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x(m−1)d,i−1 = L(m)

a,i−1 ⊕ L
(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕ x

(m)
d,i−1 ⊕ x

(m)
a,i−2 ⊕ x

(m)
d,i+6

with probability 1
2

(
1 + 1

23

)
. �
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