
A New Twofold Cornacchia-Type Algorithm

1Bei Wang, 2Yi Ouyang, 3Songsong Li and 1Honggang Hu

1Key Laboratory of Electromagnetic Space Information, CAS

University of Science and Technology of China

Email: hghu2005@ustc.edu.cn,wangbei@mail.ustc.edu.cn
2CAS Wu Wen-Tsun Key Laboratory of Mathematics,

School of Mathematical Sciences,

University of Science and Technology of China

Email: yiouyang@ustc.edu.cn
3School of Cyber Science and Engineering

Shanghai Jiao Tong University

Email: songsli@mail.ustc.edu.cn

Abstract

We focus on exploring more potential of Longa and Sica’s algorithm (ASIACRYPT 2012), which
is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompo-
sitions. The algorithm consists of two sub-algorithms, the first one in the ring of integers Z and
the second one in the Gaussian integer ring Z[i]. We observe that Z[i] in the second sub-algorithm

can be replaced by another Euclidean domain Z[ω] (ω = −1+
√
−3

2
). As a consequence, we design

a new twofold Cornacchia-type algorithm with a theoretic upper bound of output C · n1/4, where

C = 3+
√
3

2

√
1 + |r|+ |s| with small values r, s given by the curve. Besides, we give some applications

of our new algotithm in some cuvres not considered in Longa and Sica’s algorithm.

Keywords. Elliptic curves · 4-GLV decompositions · Twofold Cornacchia-type algorithm
Mathematics Subject Classification (2010) 14H52 · 14G50

1 Introduction

The 2-GLV method, introduced by Gallant, Lambert and Vanstone [1] in 2001, is a generic approach

to speed up the computation of scalar multiplication on certain elliptic curves (GLV curves) defined

over fields with large prime characteristic by using endomorphisms of the curves to decompose the

scalar multiplication. The GLV curves, however, are special curves with special j-invariants, one might

wonder whether it matters in practice. In 2002, for elliptic curves over Fp2 with j-invariant in Fp,

Iijima, Matsuo, Chao and Tsujii [2] constructed an efficient computable homomorphism arising from

1

the Frobenius map on a twist of E. In 2009, Galbraith, Lin and Scott [3] generalized the construction

of [2] to a large class of elliptic curves over Fp2 so that the GLV method is applicable. In 2012, Longa

and Sica [5] introduced a 4-GLV method by combining GLV and GLS methods (GLV+GLS), which is

a natural extension of Zhou et al. idea [4] of constructing 3-GLV decompositions. When E is a GLV

curve with an efficient complex multiplication, then two endomorphisms φ and ψ can be constructed

on the GLS curve E′/Fp2 . Let G ⊂ E′(Fp2) be a cyclic subgroup of large prime order n. The two

endomorphisms satisfying φ2 + rφ + s = 0 and ψ2 + 1 = 0 were used to get the 4-GLV decomposition

[k]P = [k1]P + [k2]φ(P) + [k3]ψ(P) + [k4]φψ(P) for integers ki bounded by n1/4, and any P ∈ G. The

GLV method can also be extended to genus 2 curves, one can refer [6] for the 4-GLV decomposition

and [10] for the 8-GLV decomposition.

Scalar decomposition is the crucial step to make the GLV method successful, and it can be reduced

to solving the closest vector problem (CVP), as a result the LLL algorithm [12] is used. For the 2-GLV

decomposition, Gallant et al. [1] exploited the efficient Cornacchia’s algorithm, an application of the

extended Euclidean algorithm. For the 4-GLV decomposition on the special class of elliptic curves with

j-invariant 0, Hu, Longa and Xu [7] proposed an explicit lattice-based decomposition method with an

almost optimal upper bound of coefficients O(2
√

2n1/4). For the general 4-GLV decompositions, Longa

and Sica [5] designed a specific and more efficient reduction algorithm called the twofold Cornacchia-

type algorithm, which consists two parts, the first part in the ring of integers Z and the second part in

the Gaussian integer ring Z[i].

We focus on exploring more potential of Longa and Sica’s algorithm, which is an easy-to-implement

and very efficient algorithm with complexity O(log2(n)). It is our observation that the second part

of Longa and Sica’s algorithm can be implemented not only in Z[i] but also in the ring of integers

Z[ω] = Z[−1+
√
−3

2] of Q(
√
−3). We construct a new twofold Cornacchia-type algorithm for scalar

decomposition, the first part in Z and the second part in Z[ω]. Moreover, our new algorithm gain a

theoretic upper bound of output C · n1/4, where C = 3+
√
3

2

√
1 + |r|+ |s| with small values r, s given

by the curve. The upper bound is very close to Hu et al.’s [7] and better than Longa and Sica’s [5] and

Yi et al.’s [8].

This paper is organized as follows. In §2, we give an overview of previous work on the GLV decom-

position. §3 contains the main work of this paper, the construction of the new twofold Cornacchia-type

algorithm. In §4 we give applications of our new twofold Cornacchia-type algorithm. In §5, we give

some examples and experimental results. Finally, in §6 we make a conclusion.

2

2 An overview of previous work

2.1 The GLV elliptic curves

Let E be an elliptic curve defined over a finite field Fq with infinity point denoted by OE . Suppose n

is a large prime such that n‖#E(Fq) and so there is only one subgroup G ⊂ E(Fq) of order n. Assume

P ∈ G is a point of order n and ρ is a fast endomorphism of E defined over Fq with the characteristic

polynomial x2 +rx+s. By hypothesis ρ(P) = [λ]P ∈ E(Fq)[n] and λ is a root of x2 +rx+s = 0 mod n.

For k ∈ [1, n− 1], the 2-GLV decomposition of [k]P is

[k]P = [k1]P + [k2]ρ(P), (1)

where k1 and k2 ∈ Z are bounded by c
√
n for some constant c > 0. To compute the coefficients k1 and

k2, Gallant et al. [1] constructed the reduction map f : Z×Z→ Z/nZ, (i, j) 7→ i+ λj mod n. Since

f is of finite image, its kernel K := {(i, j) | i + λj = 0 mod n} is a sublattice of Z × Z of full rank.

Gallant et al. exploited an efficient algorithm, the Cornacchia’s algorithm, to compute a short basis

of K. Assume that υ1, υ2 are two linearly independent vectors of K satisfying max{|υ1|, |υ2|} < c
√
n

for some positive constant c, where | · | denotes the maximum norm. Express (k, 0) = β1υ1 + β2υ2

where βi ∈ Q and then round βi to the nearest integer bi. Then (k1, k2) = (k, 0)− (b1, b2) satisfies the

decomposition condition. By further analysis in [9], one can choose the constant c =
√

1 + |r|+ s.

Remark 1. Gallant et al. provided examples of curves with a fast endomorphism φ given by complex

multiplication by
√
−1 (j = 1728), −1+

√
−3

2 (j = 0),
√
−2 (j = 8000),

√
−3 (j = 54000), 1+

√
−7

2 (j =

−3375) and 1+
√
−11
2 (j = −32768). These curves are called GLV curves.

2.2 The GLS elliptic curves

Galbraith, Lin and Scott [3] implemented the 2-GLV method by using an efficiently computable endo-

morphism on a large class of elliptic curves. Let E be an elliptic curve defined over Fp and E′/Fp2 be

a twist of E/Fp. By the definition of twist in [11], E and E′ are isomorphic over Fp2d with the degree

of twist d ∈ {2, 3, 4, 6}. Galbraith, Lin and Scott described how to obtain the 2-GLV decomposition on

E′(Fp2) for d = 2 and the 4-GLV decompositions on E′(Fp2) for d = 4 and 6.

Theorem 1 ([3]). Let p > 3 be a prime and E an elliptic curve defined over Fp. Let π0 be the p-power

Frobenius map on E and tπ0
the trace of π0. Let E′/Fp2 be the quadratic twist of E(Fp2) and τ : E → E′

be the twist isomorphism defined over Fp4 . Let n | #E′(Fp2) such that n > 2p and ψ = τπ0τ
−1. The

characteristic equation of ψ is ψ2 − tπ0ψ + p = 0. ψ2(P) + P = OE′ for P ∈ E′(Fp2). Moreover, for

P ∈ E′(Fp2)[n], we have ψ(P) = [µ]P where µ ≡ t−1π0
(p− 1) mod n.

3

To construct a 4-GLV decomposition, it is necessary to use twists of degree 4 or 6. Hence the only

two examples of interest are y2 = x3 + b (having a sextic twist) and y2 = x3 + ax (having a quartic

twist) with a, b ∈ F∗p. Here we only recall the case of constructing a 4-GLV decomposition on the sextic

twist of a curve with j-invariant 0.

Theorem 2 ([3]). Let p ≡ 1 mod 6 and E : y2 = x3 + b (b ∈ F∗p). Choose ω ∈ F∗p12 such that ω6 ∈ Fp2

and set E′ : y2 = x3 + ω6b. Then E′/Fp2 is a sextic twist of E(Fp2) with the twist isomorphism

τ : E → E′, τ(x, y) = (ω2x, ω3y). Then ψ = τπ0τ
−1 is an endomorphism of E′ given by ψ(x, y) =

(ω2xp/ω2p, ω3yp/ω3p), which is defined over Fp2 . The characteristic equation of ψ is ψ2− tπ0ψ+p = 0.

For P ∈ E′(Fp2), we have ψ4(P)− ψ2(P) + P = OE′ .

Hence, the 4-GLV decomposition can be efficiently applied to these curves. Let n > 2p be a prime

factor of #E′(Fp2). For P ∈ E′(Fp2)[n] and k ∈ [1, n− 1], [k]P can be decomposed as

[k]P = [k1]P + [k2]ψ(P) + [k3]ψ2P + [k4]ψ3(P). (2)

Hu et al. [7] described the complete implementation of the 4-GLV method on GLS curves with j-

invariant 0. They essentially exploited a specific way and led to an almost optimal upper bound of

coefficients 2
√

2p = O(2
√

2n1/4).

Remark 2. The characteristic equation of ψ is ψ2 − tπ0
ψ + p = 0, for any point Q ∈ E′(F̄p2), we

have ψ2(Q) − tπ0
ψ(Q) + [p]Q = OE′ . Furthermore, when ψ acts on points in E′(Fp2), it also satisfies

ψ2 + 1 = 0 or a quartic equation for the degree of twist 2 or 4,6. Here, we call the endomorphism

restricted to points in E′(Fp2) the “restricted” endomorphism. The curve E′/Fp2 which is a twist of

E(Fp2) is called the GLS curve and the 2-GLV decomposing method using the “restricted” endomorphism

ψ with ψ2 + 1 = 0 is called the GLS method.

2.3 Combining GLV and GLS (GLV+GLS)

Longa and Sica [5] showed how to get a 4-GLV decomposition for twists of any GLV curve over Fp2 . Let

E/Fp be a GLV curve. As in §2.2, let E′/Fp2 be a quadratic twist of E via the twist map τ : E → E′. Let

ρ be the GLV endomorphism coming with the definition of a GLV curve. Then ρ satisfies the equation

ρ2 + rρ+ s = 0. We thus get two endomorphisms φ = τρτ−1 and ψ = τπ0τ
−1 of E′, both defined over

Fp2 . For P ∈ E′(Fp2) of a large prime order n, then φ and ψ satisfy φ2(P) + rφ(P) + sP = OE′ and

ψ2(P) + P = OE′ respectively. For any scalar k ∈ [1, n− 1], we obtain a 4-GLV decomposition

[k]P = [k1]P + [k2]φ(P) + [k3]ψ(P) + [k4]φψ(P) with max
i

(|ki|) < 2Cn1/4 (3)

for some constant C.

4

Similar to the 2-GLV method, we consider the 4-GLV reduction map F : Z4 → Z/nZ with respect

to {1, φ, ψ, φψ}. It is easy to know L := kerF is a full sublattice of Z4. To compute a short basis

of L, Longa and Sica proposed the twofold Cornacchia-type algorithm under the assumption that the

“restricted” endomorphisms φ and ψ are Z-linearly independent. Review the implementation of the

algorithm: the “restricted” endomorphism ψ satisfies ψ2 + 1 = 0, then Q(ψ) = Q(i) and Q(φ, i) is a

biquadratic (Galois of degree 4, with Galois group Z/2Z×Z/2Z) number field. They considered the ring

Z[φ, i] of Q(φ, i) to factor the reduction map F and constructed the twofold Cornacchia-type algorithm,

which is an easy-to-implement algorithm in two parts, the first part in Z and the second part in Z[i]. In

particular, for the case E/Fp with j-invariant 1728, this can be treated separately with a quartic twist

as described in [5, Appendix B].

The twofold algorithm is efficient, but more importantly, it gives a better and uniform upper bound

with constant C = 51.5
√

1 + |r|+ s. Recently, Yi et al. [8] obtained an improved twofold Cornacchia-

type algorithm and showed that it possesses a better theoretic bound of output Cn1/4 with C =

3.41
√

1 + |r|+ s. In particular, their proof is much simpler than Longa and Sica’s.

3 A new twofold Cornacchia-type algorithm

3.1 Analysis of the new twofold algorithm

First, we consider a curve which has two fast endomorphisms φ, ψ with minimal polynomials x2 +x+ 1

and x2 + rx+ s respectively. Let λ and µ be the eigenvalues of φ and ψ on a cyclic subgroup of order n,

respectively, λ, µ ∈ [0, n− 1]. Viewing φ and ψ as algebraic integers, then Q(φ) = Q(
√
−3). Moreover,

Changing φ to −φ if necessary, then we may identify φ with ω = −1+
√
−3

2 . Assume Q(ψ) 6= Q(
√
−3),

then K = Q(φ, ψ) is a biquadratic number field. Let OK be its ring of integers.

The existence of λ and µ above means that n splits in Q(φ) and Q(ψ), thus n splits completely in K.

Hence there exists a prime ideal n of OK of norm n dividing nOK . Let n′ = n∩Z[φ, ψ] and n′′ = n∩Z[ω].

The inclusions Z ↪→ Z[ω] ↪→ Z[φ, ψ] ↪→ OK induce isomorphisms Z/nZ ∼= Z[ω]/n′′ ∼= Z[φ, ψ]/n′ ∼= OK/n.

In particular we can suppose φ ≡ λ mod n′ and ψ ≡ µ mod n′. Consider the map F :

F : Z4 → Z/nZ ∼= Z[φ, ψ]/n′, (x1, x2, x3, x4) 7→ x1 + x2λ+ x3µ+ x4λµ mod n. (4)

Then F is a surjective homomorphism and kerF = f−1(n′) is a full sublattice of Z4 of index n where

f is the isomorphism Z4 → Z[φ, ψ], (x1, x2, x3, x4) 7→ x1 + x2φ+ x3ψ + x4φψ.

We identify Z[φ, ψ] with the free Z[ω]-module of rank 2 with basis {e1, e2} = {1, ψ}. To find a

short Z-basis of n′, we first find out a generator ν = a+ bω of n′′ in the Euclidean domain Z[ω], which

is equivalent to finding a, b ∈ Z such that a2 − ab + b2 = n. This can be achieved by using the first

Cornacchia’s algorithm in Z (see §3.2 Algorithm 1). Then ν = νe1 and ψ − µ = −µe1 + e2 are both in

5

n′, and {νe1,−µe1 + e2} generates a sub-Z[ω]-module of Z[φ, ψ] of index n, so this submodule must be

n′, i.e.,

n′ = νZ[ω] + (ψ − µ)Z[ω]. (5)

We now use the second Cornacchia’s algorithm in Z[ω] to find a short Z[ω]-basis {υ1, υ2} of n′ (see

§3.2 Algorithm 2) with maxi(|υi|) ≤ Cn1/4 for some constant C > 0. Thus we get a short Z-basis

{υ1, υ1ω, υ2, υ2ω} of n′. Moreover, write υ1 = (a1+b1ω)+(c1+d1ω)ψ and υ2 = (a2+b2ω)+(c2+d2ω)ψ,

then

n′ = (a1 + b1ω + (c1 + d1ω)ψ)Z[ω] + (a2 + b2ω + (c2 + d2ω)ψ)Z[ω]. (6)

By kerF = f−1(n′), we get a short basis of kerF , which are the rows of the following matrix.


a1 b1 c1 d1

−b1 a1 − b1 −d1 c1 − d1
a2 b2 c2 d2

−b2 a2 − b2 −d2 c2 − d2

 . (7)

Let {υ̃1, υ̃2, υ̃3, υ̃4} be the row vectors of the matrix (7) with maxi(|υ̃i|) ≤ Cn1/4. For any k ∈ [1, n−

1], write (k, 0, 0, 0) =
4∑
j=0

βj υ̃j with βj ∈ Q. Then υ :=
4∑
j=0

bβjeυ̃j ∈ kerF . Let κ = (k1, k2, k3, k4) =

(k, 0, 0, 0)−υ. By the triangle inequality, |κ| = |
∑4
i=1(bβie−βi)υ̃i| ≤ 4× 1

2 maxi(|υ̃i|) ≤ 2Cn1/4. Then

[k]P = [k1]P + [k2]φ(P) + [k3]ψ(P) + [k4]φψ(P) with max
i

(|ki|) ≤ 2Cn1/4.

Second, we consider a curve which has an endomorphism ψ satisfing ψ4 − ψ2 + 1 = 0. Hence the

4-GLV decomposition can be implemented on the curve as described as in (2). View ψ as an algebraic

integer satisfying x4 − x2 + 1 = 0. Let K = Q(ψ) be the quartic extension over Q and OK be the

ring of integers of K. Since ψ is a primitive 12-th root of unity, then K/Q is a Galois extension and

OK = Z[ψ]. Let µ be the eigenvalue of ψ on a cyclic subgroup of order n, then ±µ and ±µ−1 are the

roots of x4 − x2 + 1 = 0 in Fn, which means that n splits completely in OK . Denote by n′ the prime

ideal lying over n which contains n and ψ − µ. We also get a map

F : Z4 → Z/nZ ∼= OK/n
′, (x1, x2, x3, x4) 7→ x1 + x2µ+ x3µ

2 + x4µ
3 mod n. (8)

To compute a short basis of kerF is equivalent to computing a short basis of n′. Note that φ := −ψ2

satisfies x2 + x + 1 = 0, hence Z[φ] = Z[ω] ⊂ OK . Let λ := −µ2 mod n, using Algorithm 1 on input

n, λ, we can get a generator ν = a+ bω of n′ ∩ Z[ω]. Subsequently, n′ = νZ[ω] + (ψ − µ)Z[ω], then we

use Algorithm 2 on input ν, µ to find a short Z[ω]-basis {υ1, υ2} of n′. Moreover, in this case, the new

twofold Cornacchia-type algorithm can be used for scalar decomposition as well.

6

Remark 3. Our method is a variation of the method by Longa and Sica [5] and Yi et al. [8]. In the

second Cornacchia’s algorithm we use the extended Euclidean algorithm on the Euclidean domain Z[ω]

instead of Z[i].

3.2 Specific algorithm

We now describe our new twofold Cornacchia-type algorithm to compute 4-GLV decomposition coeffi-

cients. The first part is to find ν = a+ bω ∈ Z[ω] such that Norm(ν) = a2 − ab+ b2 = n. We can find

ν by Cornacchia’s algorithm in Z, which is a truncated form of the extended Euclidean algorithm.

Algorithm 1: The first part of the new algorithm

Input: n, 1 < λ < n such that λ2 + λ+ 1 ≡ 0 mod n, i.e, λ ≡ ω mod n.

Output: ν = a+ bω dividing n.

1. initialize

r0 ← n, r1 ← λ, r2 ← n,

t0 ← 0, t1 ← 1, t2 ← 0,

q ← 0.

2. main loop

while r22 ≥ n do

q ← br0/r1c,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,

t2 ← t0 − qt1, t0 ← t1, t1 ← t2.

return: ν = r1 − ωt1, a = r1, b = −t1

Lemma 1. Algorithm 1 is valid and the output ν = r1 − ωt1 is really lying over n.

Proof. Let λ ∈ [1, n− 1] such that λ ≡ ω mod n, with ω being defined by φ(P) = ωP . To compute the

g.c.d of n and λ, the extended Euclidean algorithm produces three terminating sequences of integers

(rj)j≥0, (sj)j≥0 and (tj)j≥0 such that

(
rj+2 sj+2 tj+2

rj+1 sj+1 tj+1

)
=

(
−qj+1 1

1 0

)(
rj+1 sj+1 tj+1

rj sj tj

)
, (9)

for some integers qj+1 > 0 and the initial data

(
r1 s1 t1

r0 s0 t0

)
=

(
λ 0 1

n 1 0

)
. (10)

This means that at step j ≥ 0,

rj = qj+1rj+1 + rj+2, sj = qj+1sj+1 + sj+2, tj = qj+1tj+1 + tj+2.

7

The sequences (rj), (sj) and (tj) with qj+1 = brj/rj+1c satisfy the following properties, valid for all

j ≥ 0:

P1 rj > rj+1 ≥ 0 and qj+1 ≥ 1,

P2 (−1)jsj ≥ 0 and |sj | < |sj+1| (this last inequality valid for j ≥ 1),

P3 (−1)j+1tj ≥ 0 and |tj | < |tj+1|,

P4 sj+1rj − sjrj+1 = (−1)j+1λ,

P5 tj+1rj − tjrj+1 = (−1)jn,

P6 nsj + λtj = rj .

P4 and P5 can be reformulated as

|sj+1rj |+ |sjrj+1| = λ and |tj+1rj |+ |tjrj+1| = n. (11)

The algorithm stops at m when rm ≥
√
n and rm+1 <

√
n. For j = m in (11), this yields |tm+1rm| < n

or |tm+1| <
√
n. Since by P6, we have rm+1 − λtm+1 = nsm+1 ≡ 0 mod n, we deduce that

r2m+1 + rm+1tm+1 + t2m+1 = (rm+1 − λtm+1)(rm+1 + λtm+1 + tm+1) ≡ 0 mod n.

Moreover, since tm+1 6= 0 by P3,

0 < r2m+1 + rm+1tm+1 + t2m+1 = (rm+1 +
1

2
tm+1)2 +

3

4
t2m+1 <

9

4
n+

3

4
n = 3n,

which implies that r2m+1 + rm+1tm+1 + t2m+1 = n or 2n. Since r2m+1 + rm+1tm+1 + t2m+1 6≡ 2 mod 4 but

2n ≡ 2 mod 4 (n is a prime), r2m+1 + rm+1tm+1 + t2m+1 6= 2n. Therefore r2m+1 + rm+1tm+1 + t2m+1 = n.

For ν = rm+1 − ωtm+1, νν = n.

We have seen how to construct ν by the Cornacchia’s algorithm in Z. From the analysis in §3.1,

n′ is the sub-Z[ω]-module of Z[φ, ψ] or Z[ψ] generated by (ν, 0) and (−µ, 1) under the basis {1, ψ} if

ψ2 + rψ + s = 0 or ψ4 − ψ2 + 1 = 0. Similar to the GLV original paper [1], we can use the extended

Euclidean algorithm to the pair (ν, µ) on Z[ω] to get a short basis of n′.

For the Cornacchia’s algorithm in Z[ω], we also have three such sequences. In the j-th step with

rj = qj+1rj+1 + rj+2, positive quotient qj+1 and nonnegative remainder rj+2 are not available in Z[ω].

We will choose qj+1 as the closest integer to rj/rj+1 denoted by brj/rj+1e (see the following Lemma

2). Let us note that P4-P6 of Lemma 1 still hold and P1 holds in modulus (in particular, the algorithm

terminates). Hence the (11), which plays a crucial role in the analysis of Cornacchia’s algorithm in Z,

8

becomes invalid in Z[ω]. For controlling {|sj |}, we give a neater and shorter argument (see the following

Lemma 3), which is similar to the improved analysis in [8, Lemma 1]. By some deduction we obtain an

optimized terminal condition of the sequence {|rj |}, which is an absolute constant independent of the

curve.

We give the pseudo-code of Cornacchia’s Algorithm in Z[ω] in two forms, working with complex

numbers (see Algorithm 2) and separating real and imaginary parts (see Algorithm 3 in Appendix).

The outputs of Algorithm 3 are a short basis of kerF as the rows in matrix (7) in §3.1. Note that the

imaginary part in the Algorithm 3 denotes the coefficient of ω, i.e. the imaginary part of a + bω is b.

The running time of Algorithm 2, 3, similar to that of Cornacchia’s Algorithm in Z[i], that is O(log2 n).

One may refer to [5].

Algorithm 2: The second part of the new algorithm—compact form

Input: ν ∈ Z[ω] prime dividing n rational prime, 1 < µ < n such that µ2 + rµ+ s ≡ 0 mod n.

Output: Two vectors in Z[ω]2: υ1, υ2.

1. initialize:

r0 ← µ, r1 ← ν, r2 ← n,

s0 ← 1, s1 ← 0, s2 ← 0, q ← 0.

2. main loop:

while 2|r1|2 ≥ (3 +
√

3)n1/2 do

q ← br0/r1e,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,

s2 ← s0 − qs1, s0 ← s1, s1 ← s2.

3. compute:

q ← br0/r1e, r2 ← r0 − qr1, s2 ← s0 − qs1.

4. return: υ1 = (r1,−s1),

υ2 = (r0,−s0) if max {|r0|, |s0|} ≤ max {|r2|, |s2|}
= (r2,−s2) otherwise.

3.3 Proof of the upper bound

Theorem 3. The two vectors υ1, υ2 output by Algorithm 2 are Z[ω]-linearly independent. They belong

to n′ and satisfy |υ1|∞ ≤
√

3 +
√

3

2
n

1
4 , |υ2|∞ ≤

3 +
√

3

2
(
√

1 + |r|+ |s|)n 1
4 .

Before proving the Theorem 3, we need the following lemmas. Since in the Algorithm 2, qj+1 ∈ Z[ω]

is the closest integer to rj/rj+1. Here, we define a lattice diamond that a diamond of side length one

with vertices in Z[ω], also a fundamental regin of the lattice Z[ω]. We single out a lattice diamond with

a vertex of modulus 1 (such as, ±1 or ±ω) but not containing the origin as a vertex (since qj+1 6= 0).

9

First, we discuss a property that the closest lattice point to a point in the fundamental parallelogram

of the lattice Z[ω] .

Lemma 2. For any point P of a lattice diamond, different from the vertices, there exists a vertex V1

which is the closest vertex to P , and satisfy V1P ≤
√

3

2
.

Proof. This is one case where a picture is worth one thousand words. Refer to Fig. 1, we can easily give

an explanation of why the distance works. The dashed circle arcs are centered on the vertices and have

radius

√
3

2
. Since the dashed disks cover everything, for any point P , by choosing the closest vertex V1

to P , we have V1P ≤
√

3

2
.

Figure 1: An lattice diamond in Z[ω]

Let V1 := qj+1 corresponds to the vertice of the lattice diamond, which is the one closest to the

point P of affix rj/rj+1 lies in the lattice diamond. When applying Lemma 2, it is essential that we be

able to choose from the set of all vertices of the lattice diamond which one is the adequate V1. Since

qj 6= 0, it means that we must be careful to avoid all four diamonds which have the origin as a vertex.

So, at all steps j ≥ 0 we always have |rj/rj+1| ≥
√

3.

Lemma 3. If | sj
sj+1

| < 1, then we have

|sj+1rj | ≤
3 +
√

3

2
|ν|, |sjrj+1| ≤

5 +
√

3

2
|ν|.

Proof. First we have sj+1rj − sjrj+1 = (−1)j+1ν. If the condition | sj
sj+1

| < 1 holds, and noticing that

10

|rj/rj+1| ≥
√

3, then | sj
sj+1

· rj+1

rj
| < 1√

3
. We can get

∣∣∣∣1− sjrj+1

sj+1rj

∣∣∣∣ ≥ 1−
∣∣∣∣sjrj+1

sj+1rj

∣∣∣∣ ≥ 1− 1√
3

Together with sj+1rj − sjrj+1 = (−1)j+1ν we have

|ν| = |sj+1rj − sjrj+1| >
(

1− 1√
3

)
|sj+1rj |,

which implies

|sj+1rj | ≤
1

1− 1√
3

|ν| = 3 +
√

3

2
|ν|.

By |sjrj+1| = |sj+1rj + (−1)jν|, then |sjrj+1| ≤
5 +
√

3

2
|ν|.

Lemma 4. For any nonzero (υ1, υ2) ∈ n′ ⊂ Z[ω]2, we have

max(|υ1|, |υ2|) ≥
√
|ν|√

1 + |r|+ |s|
.

Proof. If (0, 0) 6= (υ1, υ2) ∈ n′, then υ1 + µυ2 ≡ 0 mod ν. If µ′ is the other root of x2 + rx+ s mod n,

we get that

υ21 − rυ1υ2 + sυ22 ≡ (υ1 + µυ2)(υ1 + µ′υ2) ≡ 0 mod ν

Since x2+rx+s is irreducible in Q(ω) because the two quadratic fields are linearly disjoint, we therefore

have |υ21 − rυ1υ2 + sυ22 | ≥ |ν|. On the other hand, if

max(|υ1|, |υ2|) <
√
|ν|√

1 + |r|+ |s|
,

then

|υ21 − rυ1υ2 + sυ22 | ≤ |υ1|2 + |r||υ1||υ2|+ s|υ2|2| < |ν|,

a contradiction. This proof uses an argument already appearing in the proof of the original GLV

algorithm [9].

Proof. (Proof of Theorem 3). According to the property P4: sj+1rj − sjrj+1 = (−1)j+1ν and the

property P6: (rj ,−sj) = tj(ν, 0) + (−sj)(−µ, 1), the vectors υ1, υ2 belong to kerF .

We denote the output {r, s} of the j-th step in the loop of Algorithm 2 by {rj+1, sj+1}, and assume

Algorithm 2 stops at the m-th step. Then υ1 = (rm+1,−sm+1) and |rm| ≥
√

3+
√
3

2 n
1
4 and |rm+1| <

11

√
3+
√
3

2 n
1
4 . We need to consider two cases. For brevity, we denote two constants

√
1 + |r|+ |s|,

√
3+
√
3

2

by c1, c2 respectively.

Case 1:

∣∣∣∣ smsm+1

∣∣∣∣ < 1. Using Lemma 3 we have |sm+1| ≤ c2
√
|ν|, together with |rm+1| < c2

√
|ν| we

can easily deduce

|υ1|∞ ≤ c2n
1
4 .

Moreover, if |rm+1| <
√
|ν|
c1

, by Lemma 4 we have a lower bound |sm+1| ≥
√
|ν|
c1

which implies

|rm| ≤ c1
3+
√
3

2

√
|ν| using again Lemma 3. Together with the restricted condition |sm| < |sm+1| ≤

c2
√
|ν| < c1

3+
√
3

2

√
|ν| we can obtain

|(rm,−sm)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

If |rm+1| ≥
√
|ν|
c1

, when |sm+1| ≥ |sm+2| we have |sm+2| ≤ c2
√
|ν|, |rm+2| ≤ |rm+1| < c2

√
|ν|. When

|sm+1| < |sm+2|, by the Lemma 3 we can deduce |sm+2| ≤ c1 3+
√
3

2

√
|ν|. Hence in both cases we have

|(rm+2,−sm+2)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Finally by the definition of v2 we always have

|υ2|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Case 2:

∣∣∣∣ smsm+1

∣∣∣∣ ≥ 1. Let k ≤ m be the index satisfying

|sk| ≥ |sk+1| ≥ · · · ≥ |sm| ≥ |sm+1| and |sk−1| < |sk|.

Applying Lemma 3 to the (k − 1)-th step we have |skrk−1| ≤ 3+
√
3

2

√
|ν|. Since |rk−1| ≥ |rk| ≥ · · · ≥

|rm| ≥ c2
√
|ν| we can easily deduce |sk| ≤ c2

√
|ν| and then |sm+1| ≤ |sk| ≤ c2

√
|ν|. Together with

|rm+1| < c2
√
|ν| we obtain

|υ1|∞ ≤ c2n
1
4 .

Similarly, if |rm+1| <
√
|ν|
c1

we have |sm+1| ≥
√
|ν|
c1

by Lemma 4. which implies |sk| ≥
√
|ν|
c1

and then

|rk−1| ≤ c1
3+
√
3

2

√
|ν| by Lemma 3. Hence |rm| ≤ c1

3+
√
3

2

√
|ν|. Together with |sm| ≤ |sk| ≤ c2

√
|ν| <

12

c1
3+
√
3

2 n
1
4 we have

|(rm,−sm)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

On the other hand, if |rm+1| ≥
√
|ν|
c1

, following the same argument described in the case |sm| < |sm+1|

we also have

|(rm+2,−sm+2)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Therefore,

|υ2|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Following Theorem 3 and the argument in §3.1, we can easily obtain the conclusion.

Theorem 4. In the 4-dimensional GLV scalar multiplication using the combination of GLV and GLS,

the new twofold Cornacchia-type algorithm will result in a decomposition of any scalar k ∈ [1, n) into

integers k1, k2, k3, k4 such that

[k]P = [k1]P + [k2]φ(P) + [k3]ψ(P) + [k4]φψ(P),

with ki ∈ Z bounded by 4.74(
√

1 + |r|+ |s|)n1/4.

Remark 4. Note that maxi(|ki|) was bound by the form 2C(
√

1 + |r|+ s)n1/4 in the original paper

[5, 8], since the endomorphism φ is always separable with s = deg(φ). However, in this paper, we use a

“restricted” endomorphism satisfying x2 + rx+ s = 0 with s may negative, see the example: the 4-GLV

decomposition (13) on Curve 3 in §5. This change doesn’t affect the proof. The new twofold Cornacchia-

type algorithm possesses a upper bound of decomposition coefficients 4.74(
√

1 + |r|+ |s|)n1/4, which is

very close to Hu et al.’s [7] and better than Longa and Sica’s [5] and Yi et al.’s [8].

4 Experimental results

In the following, we mainly describe the implementation of our methods. Note that our new algorithm

can be used to compute all 4-GLV decompositions on GLS curves with j-invariant 0 and on Jacobians

of a family of hyperelliptic curves defined over Fp.

We describe an efficient parameter selection, the count of corresponding operation when computing

scalar multiplications at the 128-bit security level on representative x86-64 processors. If computing

endomorphisms is more expensive than point addition then we use precomputation. For the remainder,

13

we use M and S, to denote the cost of multiplication and squaring over field Fp2 , respectively, and m

and s represent the same operations over Fp. In order to give global estimates, we will assume that

m ∼ s and that M ∼ 3m and S ∼ 3s. For all implementations using the curves following, we just

apply the width-ω non-adjacent form (ω-NAF) method [15, Alg. 3.36] for the case ω = 2 to perform

the scalar multiplication with dimension 4.

Curve 1. E1/Fp21 : y2 = x3 + 9u6, p1 = 2127 − 58309. #E1(Fp21) = n1, where n1 is a 254-bit prime.

We use Fp21 = Fp1 [X]/(X2 + 1) and u6 = 1 +
√
−1 ∈ Fp21 . E1 is the quadratic twist of the

curve y2 = x3 + 9. φ1(x, y) = [λ1]P = (ξx, y) (ξ3 = 1 mod p1) and ψ1(x, y) = [µ1]P =

(u2(1−p1)xp1 , u3(1−p1)yp1). We have that φ21 + φ1 + 1 = 0 and ψ2
1 + 1 = 0.

n3 = 28948022309329048855892746252171957122115446880342562205022587026009317092613.

Curve 2. E2/Fp22 : y2 = x3 + 4u6, p2 = 2127 − 10711. #E2(Fp22) = n2, where n2 is a 254-bit prime.

We use Fp22 = Fp2 [X]/(X2 − 5) and u6 =
√

5 ∈ Fp22 , u ∈ Fp122 . E2 is the sextic twist of the

curve y2 = x3 + 4. φ2(x, y) = [λ2]P = (ξx, y) with ξ3 = 1 mod p2, ψ2(x, y) = [µ2]P =

(u2(1−p2)xp2 , u3(1−p2)yp2) and φ̃2(x, y) = [ν2]P =
(

1
3

(
xp2 + 16u6

x2p2

)
, y

p2

3
√
3

(
1 + 32u6

x3p2

))
for all points

in E2(Fp22). We have that φ22 + φ2 + 1 = 0, ψ4
2 − ψ2

2 + 1 = 0 and φ̃22 − 3 = 0.

n2 = 28948022309329048855892746252171973318400655407372347811649309465013411860897.

Hyperellitic Curve. C/Fp : y2 = x6 − 3x3 − 92, a = −3 and b = −92 which is neither a square nor a

cube, p = 2127−1. Let Fp2 = Fp[x]/(x2+1) = Fp[i], c = a√
b
∈ Fp2\Fp and Ec/Fp2 : y2 = x3+3(2c−

5)x+c2−14c+22. A few seconds computation gives us tp2 = 0x6089c0341e5414a24bef1a1a93c54fd2

and 2p − tp2 = 3n2 as expected with n = ±0x74a69cde5282dbb6 and 2p + tp2 = m2D′ with

m = 4, D′ = 0x16089c0341e5414a24bef1a1a93c54fd. Hence #JC(Fp) = p2+p+1+3n(p+1)+3n2.

Using few random points on the Jacobian, we find n < 0 and that #JC(Fp) has a 250-bit prime

factor: r = 0x25ed097b425ed0974c75619931ea7f1271757b237c3ff3c5c00a037e7906557.

Two endomorphisms φ and ψ on JC satisfy φ2 + φ+ 1 = 0 and ψ2 + 2D′mψ + 4D′p = 0.

Remark 5. The endomorphism φ̃2 in Curve 2 satisfies φ̃2 = I3 ◦πp, where I3 is an isogeny with degree

3 and constructed by Vélu’s formula [13, 14] with kernel H = {O, (0, 2u3), (0,−2u3)}. More details can

be found in [6]. From the endomorphisms of curve E2, we can get [Q(ψ2) : Q] = [Q(φ̃2, φ2) : Q] = 4.

For P ∈ E2(Fp22)[n2] and any integer k ∈ [1, n2 − 1], two 4-GLV decompositions are constructed as

follows:

[k]P = [k1]P + [k2]ψ4(P) + [k3]ψ2
4(P) + [k4]ψ3

4(P); (12)

= [k1]P + [k2]φ4(P) + [k3]φ̃4(P) + [k4]φ4φ̃4(P). (13)

14

In Table 1, we give operation counts for 4-GLV decompositions on these curves. For the curves E1

and E2 we use Jacobian coordinates. A state-of-the-art formulas can be found in [16, formula (6.7)],

which a doubling costs 3M + 4S and an addition costs 12M + 4S. For genus 2 arithmetic on curves of

the form y2 = x6 +ax3 + b, we used formule given by Costello and Lauter [17] in projective coordinates.

An addition costs 43M + 4S and a doubling costs 30M + 9S.

Table 1. Total cost of scalar multiplication at a 128-bit security level.

Curve Method Operation counts Global estimation

E1(Fp21)
4-GLV(Algorithm in [5, 8])

4-GLV (Our algorithm)
885M + 580S 4395m

E2(Fp22)− (12)
4-GLV(Algorithm in [7])

4-GLV (Our algorithm)
834M + 560S 4182m

E2(Fp22)− (13) 4-GLV (Our algorithm) 834M + 556S 4170m

JC(Fp) 4-GLV(Our algorithm) 1623m+ 300s 1923m

First, we focus on 4-GLV decompositions on the curves E1 and E2 with j-invariant 0 and compare

our method with two previous methods in [7, 5, 8]. We can see that the two previous methods can only

compute 4-GLV decompositions under specific conditions. Hu et al.’s method [7] can only compute 4-

GLV decomposition on GLS curves which are sextic twists, Longa and Sica’s method is only applicable

to those curves with the “restricted” endomorphism ψ satisfying ψ2 + 1 = 0. Also, for these two 4-

GLV decompositions on curve E2, the method in [7] can compute the decomposition (12) but not the

decomposition (13), and the method in [5, 8] can not compute the decompositions either. Secondly,

our algorithm can be used to calculate the 4-GLV decomposition on JC(Fp), while the methods in

[7, 5, 8] can not to do. In Table 1, our method is the only one that can be used to calculate all 4-GLV

decompositions on these curves and gives a new and unified method for the 4-GLV on GLS curves with

j-invariant 0.

5 Conclusion

We have constructed a new twofold Cornacchia-type algorithm, the first part in Z and the second part

in the Euclidean domain Z[ω] (ω = −1+
√
−3

2), with a theoretic upper bound of output C · n1/4, where

C = 3+
√
3

2

√
1 + |r|+ |s| with r, s given by the curve. It is a variation of the twofold Cornacchia-type

algorithm [5, 8]. In the future, we will explore more twofold Cornacchia-type algorithms with the second

Cornacchia’s algorithm implemented on some orders of imaginary quadratic fields except Z[i].

15

References

[1] Gallant, R., Lambert, R., Vanstone, S.: Faster pointmultiplication on elliptic curves with efficient

endomorphisms. In: Kilian, J. (ed.) CRYPTO. LNCS, vol. 2139, pp. 190–200. Springer (2001)

[2] Iijima T., Matsuo K., Chao J., et al.: Construction of Frobenius maps of twists elliptic curves

and its application to elliptic scalar multiplication. In: Proc. of SCIS, pp. 699-702 (2002).

[3] Galbraith S.D., Lin X.B., Scott M.: Endomorphisms for faster elliptic curve cryptography on a

Large class of curves. J. Cryptol. 24(3), 446–469 (2011).

[4] Zhou Z., Hu Z., Xu M., et al.: Efficient 3-dimensional GLV method for faster point multiplication

on some GLS elliptic curves. Information Processing Letters. 110(22), 1003-1006 (2010).

[5] Longa P., Sica F.: Four-Dimensional Gallant-Lambert-Vanstone Scalar Multiplication. J. Cryptol.

27(2), 248-283 (2014).

[6] Guillevic A., Ionica S.: Four-dimensional GLV via the Weil restriction. In: International Confer-

ence on the Theory and Application of Cryptology and Information Security. pp. 79-96, Springer,

Berlin, Heidelberg (2013).

[7] Hu Z., Longa P., Xu M.: Implementing the 4-dimensional GLV method on GLS elliptic curves

with j-invariant 0. Designs, Codes and Cryptography. 63(3), 331-343 (2012).

[8] Yi H., Zhu Y., Lin D.: Refinement of the Four-Dimensional GLV Method on Elliptic Curves. In:

International Conference on Selected Areas in Cryptography. pp. 23-42. Springer, Cham (2017).

[9] Sica F., Ciet M., Quisquater J.J.: Analysis of the Gallant-Lambert-Vanstone method based on

efficient endomorphisms: Elliptic and hyperelliptic curves. In: International Workshop on Selected

Areas in Cryptography. pp. 21-36. Springer, Berlin, Heidelberg (2002).

[10] Bos J.W., Costello C., Hisil H., et al.: High-performance scalar multiplication using 8-dimensional

GLV/GLS decomposition. In: International Workshop on Cryptographic Hardware and Embed-

ded Systems. pp. 331-348. Springer, Berlin, Heidelberg (2013).

[11] Silverman J.H.: The arithmetic of elliptic curves. GTM 106. Springer, New York (2009).

[12] Cohen, H.: A Course in Computational Algebraic Number Theory. GTM 138. Springer, Heidelberg

(2000).

[13] Miret J.M., Moreno Chiral R., Rio A.: Generalization of Vélu’s formulae for isogenies between

elliptic curves. Publicacions matemàtiques, Extra, 147-163 (2007).

16

[14] Vélu, J.: Isogenies entre courbes elliptiques. Comptes Rendus De lAcadémie Des Sciences Paris,

Série IMath‘ematique, Série A. 273, 238-241 (1971).

[15] Hankerson D., Menezes A.J., Vanstone S.: Guide to Elliptic Curve Cryptography. Springer, Hei-

delberg (2004).

[16] Longa P.: High-speed elliptic curve and pairing-based cryptography. Ph.D Thesis, University of

Waterloo (2011). http://hdl.handle.net/10012/5857.

[17] Costello, C., Lauter, K.: Group Law Computations on Jacobians of Hyperelliptic Curves. In: Miri,

A., Vaudenay, S. (eds.) Selected Areas in Cryptography. LNCS, vol. 7118, pp. 92-117. Springer

(2011)

17

Appendix

Algorithm 3: The second part of the new algorithm—real & imaginary parts

Input: ν prime dividing n rational prime, 1 < µ < n such that µ2 + rµ+ s ≡ 0 mod n.

Output: A short basis of kerF ⊂ Z4: υ̃1, υ̃2, υ̃3, υ̃4

1. initialize:

r0(R) ← µ, r0(I) ← 0, r1(R) ← a, r1(I) ← b, r2(R) ← n, r2(I) ← 0,

s0(R) ← 1, s0(I) ← 0, s1(R) ← 0, s1(I) ← 0, s2(R) ← 0, s2(I) ← 0, qR ← 0, qI ← 0.

2. main loop:

while 2(r21(R) − r1(R)r1(I) + r21(I)) ≥ (3 +
√

3)n1/2 do

qR ← d
r0(R)r1(R)−r0(R)r1(I)+r0(I)r1(I)

r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

qI ← d
r0(I)r1(R)−r0(R)r1(I)
r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

r2(R) ← r0(R) − (qRr1(I) − qIr1(I)),
r2(I) ← r0(I) − (qRr1(I) + qIr1(R) − qIr1(I)),
r0(R) ← r1(R), r0(I) ← r1(I), r1(R) ← r2(R), r1(I) ← r2(I),

s2(R) ← s0(R) − (qRs1(R) − qIs1(I)),
s2(I) ← s0(I) − (qRs1(I) + qIs1(R) − qIs1(I)),
s0(R) ← s1(R), s0(I) ← s1(I), s1(R) ← s2(R), s1(I) ← s2(I),

3. compute:

qR ← d
r0(R)r1(R)−r0(R)r1(I)+r0(I)r1(I)

r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

qI ← d
r0(I)r1(R)−r0(R)r1(I)
r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

r2(R) ← r0(R) − (qRr1(I) − qIr1(I)), r2(I) ← r0(I) − (qRr1(I) + qIr1(R) − qIr1(I)),
s2(R) ← s0(R) − (qRs1(R) − qIs1(I)), s2(I) ← s0(I) − (qRs1(I) + qIs1(R) − qIs1(I)),

4. return:

υ̃1 = (r1(R), r1(I),−s1(R),−s1(I)), υ̃2 = (−r1(I), r1(R) − r1(I), s1(I), s1(I) − s1(R)),

a := max
{

(r20(R) − r0(R)r0(I) + r20(I)), (s
2
0(R) − s0(R)s0(I) + s20(I))

}
b := max

{
(r22(R) − r2(R)r2(I) + r22(I)), (s

2
2(R) − s2(R)s2(I) + s22(I))

}
If a ≤ b then

υ̃3 = (r0(R), r0(I),−s0(R),−s0(I)), υ̃4 = (−r0(I), r0(R) − r0(I), s0(I), s0(I) − s0(R)).

otherwise

υ̃3 = (r2(R), r2(I),−s2(R),−s2(I)), υ̃4 = (−r2(I), r2(R) − r2(I), s2(I), s2(I) − s2(R)).

18

