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Abstract. This work introduces a new interactive oracle proof system based on the MPC-in-the-
Head paradigm. To improve concrete efficiency and offer flexibility between computation time and
communication size, a generic proof construction based on multi-round MPC protocols is proposed,
instantiated with a specific protocol and implemented and compared to similar proof systems.
Performance gains over previous work derive from a multi-party multiplication check optimized for
the multi-round and MPC-in-the-Head settings. Of most interest among implementation optimizations
is the use of identical randomness across repeated MPC protocol executions in order to accelerate
computation without excessive cost to the soundness error.
The new system creates proofs of SHA-256 pre-images of 43KB in 53ms with 16 MPC parties, or 23KB
in 188ms for 128 parties. As a signature scheme, the non-interactive variant produces signatures, based
on the AES-128 circuit, of 18KB in about 4ms; this is 20% faster and 32 % larger than the Picnic3
scheme (13kB in 5.3ms for 16 parties) which is based on the 90% smaller LowMC circuit.

1 Introduction

A zero-knowledge (ZK) proof is a cryptographic tool that allows a prover to convince a verifier
that a statement is true without leaking any information to the verifier other than the validity of
the assertion. Since their introduction by Goldwasser, Micali and Rackoff [GMR85] in the 1980s, ZK
proofs have become a fundamental tool for both cryptography theory and, more recently, practical
systems thanks to real-world applications such as distributed ledger technology and cryptocurren-
cies.

There have been many developments in the construction of highly efficient zero-knowledge sys-
tems in recent years, each of which offers different trade-offs between several efficiency measures
such as the number of interactions between prover and verifier (in particular distinguishing interac-
tive and non-interactive systems), communication complexity, proof length, and prover and verifier
computation complexity.

A common and useful way to simplify protocol construction in such a large design space is to
proceed in a modular way: first construct an information-theoretic protocol (also called a prob-
abilistically checkable proof or PCP) which makes use of idealised assumptions, and then com-
pile it to a ‘real’ world protocol, or more formally an argument system [BCC88], using cryp-
tographic tools. This approach is used for example to construct succint non-interactive argu-
ments [Kil92,Mic94,Kil95,BFM88,BBC+17,BBHR19,BCGT13]. Here, the term succinct usually
refers to systems with sub-linear proof size, but can additionally refer to efficient verification. The
extension of PCPs to interactive PCPs (IPCPs) [KR08] allows more interaction between prover
and verifier after the proof generation; the recent further extension to interactive oracle proofs
(IOPs) [BCS16,RRR16], which are effectively “multi-round PCPs”, achieves even better efficiency
than standard PCPs. Other related variants include linear PCPs [BCI+13] and their generaliza-
tion to fully linear PCPs and IOPs [BBC+19]. In particular, linear PCPs have been used to build
sub-linear arguments with preprocessing, with very efficient instantiations [GGPR13]. The main
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drawbacks of this approach usually include prover complexity, heavy use of public-key machinery
and requirement for trusted setup.

More generally, due to the modular approach, it is possible to combine different information-
theoretic proof systems with different cryptographic tools to obtain systems with very different
characteristics, especially in term of efficiency.

In 2007, Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS07] introduced a very powerful paradigm
to build (honest-verifier) ZKPCPs using secure multi-party computation (MPC), known as MPC-
in-the-Head (MPCitH). Recent efficient solutions for circuit satisfiability based on this approach
include ZKBoo [GMO16], KKW [KKW18], BN [BN20] and Ligero [AHIV17,BFH+20]. A com-
mon feature of these schemes is that the prover’s complexity is linear in the circuit size and their
overall concrete efficiency which makes these schemes very competitive, even for relatively large
statements. In particular, among MPCitH-based systems, KKW offers the best concrete computa-
tional performance, while Ligero notably achieves sub-linear communication complexity and hence
shortest proof lengths for large enough circuits.

Interestingly, the MPCitH approach has been successfully used to construct very efficient digital
signature schemes with post-quantum security, such as Picnic [CDG+17,KKW18,ZCD+20].

1.1 Our Contributions and Techniques

Motivated by the simplicity and flexibility of the MPCitH paradigm, in addition to the good
concrete performance of systems based on it, we construct Limbo, a new zero-knowledge MPCitH-
based argument for circuit satisfiability which works for both Boolean and arithmetic circuits.

Our construction offers linear communication and prover complexity, however our focus is on
concrete performance rather than asymptotic complexity, and Limbo achieves extremely good ef-
ficiency, both in terms of prover complexity and proof length. As common to all MPCitH-based
systems, it also achieves transparency (no need for trusted setup) and post-quantum security.

Concretely, our scheme offers computational performance comparable with KKW, but with
significantly shorter proofs, achieving the best overall performance among MPCitH-based schemes
for medium size circuits (i.e. with less than 500000 multiplication gates). For larger circuits, Ligero
has shorter proofs but is computationally more expensive than our protocol.

We also use the non-interactive variant of our construction (NILimbo) to design a post-quantum
signature scheme, in line with previous works such as Picnic [CDG+17], BBQ [dDOS19], LegRoast
[Bd20] and Banquet [BdSGK+21].

We furthermore provide an implementation of our protocols and compare its performance with
other MPCitH-based systems. We now detail our contributions and techniques.

MPCitH zk-IOP. We extend the general MPCitH zk-IOP constructions defined in Ligero and
Ligero++ [AHIV17,BFH+20], which in turn can be seen as an optimized version of the black-box
transformation introduced in IKOS [IKOS07], to work with MPC protocols with arbitrary number
of rounds. This allows for more freedom in the choice of the MPC components and hence for
zero-knowledge systems with different efficiency features.

After this, we instantiate this general system with a very simple MPC protocol with low com-
munication complexity in order to minimize both the proof length and prover complexity.

A common way to design concretely efficient MPCitH protocols is to instantiate the MPC com-
ponent with efficient MPC building blocks, as done in KKW [KKW18] and BN [BN20]. While this
approach can be seen as the most natural, it may not hold that efficient MPC protocols lead to
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the most efficient MPCitH counterpart. Instead, we use a protocol that is specifically designed to
fit in the MPCitH framework, i.e. with a single party knowing all inputs and with minimal com-
munication complexity. At a high level, we define a protocol with only one computing party, where
the role of the remaining parties is only to check that the circuit evaluation was done correctly.
Note that the underlying MPC component used in the Ligero family [AHIV17,BFH+20] respects
this same model, but with very different security guarantees and “checking method”. While the
goal of [AHIV17,BFH+20] was to achieve succinctness (still with competitive running times), we
aim to have a better concrete balance between proof size and prover complexity. When we com-
pile our zero-knowledge proof system to interactive and non-interactive zero-knowledge arguments,
we obtain better overall performance than previous related work for small and medium size circuits.

Post-quantum Signature Schemes. We use our zero-knowledge argument protocol to describe a
Picnic-like post-quantum signature scheme. Picnic is one of the alternate candidates in Round Three
of the NIST Post-quantum Standardization process and, as proved in a recent work by Cremers
et al. [CDF+20], is the one (together with CRYSTALS-Dilithium [LDK+20]) offering the strongest
security guarantees among the six finalists. Picnic uses an MPCitH zero-knowledge protocol to
prove knowledge of a secret key k such that Fk(x) = y, where Fk is a one-way function. In practice,
Picnic uses LowMC [ARS+15] as the underlying OWF, hence basing its security on non-standard
assumptions. Replacing LowMC with a more standard cipher, such as AES, increases the proof size
significantly. The BBQ protocol [dDOS19] shows how to reduce this overhead when AES is used
instead of LowMC, using the same underlying MPC protocol as in Picnic [KKW18], but basing the
computation on F28 rather than F2, i.e. focusing on S-boxes rather than individual AND gates. BBQ
signatures are however still at least two times larger than Picnic ones. The more recent proposal
of Banquet further reduces this gap using an underlying MPC protocol similar to the one used in
this work [BdSGK+21].

Assuming an additive secret-sharing scheme, our protocol first has an input and evaluation
phase where a single sender party performs the actual computation of the circuit, “injecting” the
values needed to evaluate non-linear gates to the remaining server parties, after distributing the
shares of the inputs. Given those values, all the server parties can then perform a local evaluation
of the circuit on their own shares to compute their shares of the circuit output. After this phase,
the server parties check that the injected values are correct, i.e. that the circuit has been correctly
evaluated. This phase also requires injected values from the sender party and does not require
any communication between the server parties, but only access to a random coin functionality.
The check protocol that we use is an adaptation from [BBC+19,BGIN19,GS20] and concretely
allows to test whether multiplication gates were correctly evaluated by checking the correctness of
the corresponding multiplicative triples. Roughly speaking, the main difference between our MPC
protocol and the one used in Banquet is in the way the correctness of the multiplication gates is
tested.

Overall, we achieve better running times compared to Banquet [BdSGK+21] and comparable
signature size. More importantly, our generalized approach offers a framework for MPCitH signa-
ture schemes that could hopefully lead to new improvements to Picnic-like signatures with different
instantiations of the main building blocks.

Optimizations. It is common practice to reduce the soundness error of a zero-knowledge proof
by repeating, either in parallel or sequentially, the protocol a certain number of times. However,
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Prover (ms) Verifier (ms)
Our SHA 256 n Reps. 1 thread 4 threads 1 thread 4 threads Communication (bytes)

16 11 53 25 47 21.1 42229
32 9 77 39 71 35 34604
64 7 113 50 104 44 26971
128 6 188 92 178 82 23157

Table 1: Performance of our system for proving knowledge of a SHA-256 pre-image with soundness 2−40 for various
number of parties n. Reps stands for the number of required repetitions.

this approach significantly increases the complexity of the system both computationally and in
communication. Instead, we improve the soundness of our general interactive construction by run-
ning the underlying MPC evaluation protocol multiple times in parallel and then checking these
evaluations using the same public coin functionality shared across all of them. We then apply this
general technique to our protocol. This approach allows for implementation optimizations and bet-
ter concrete performance. In particular, this improves prover time by roughly 7–10% compared to
näıvely repeating the protocol.

We can use this technique to also improve the performance in the multi-instance case. In Ap-
pendix A, we sketch different options to deal with this case efficiently.

Going beyond the gate-by-gate approach. We explore elements which enable our protocol
to move beyond the gate-by-gate paradigm. Already in the application to AES-based signatures,
similarly to BBQ and Banquet, our protocol considers S-box operations as the unit of computation
(1 inverse over F28 ; rather than 32 AND gates over F2). Taking this approach allows for greater
improvements than only improving binary circuits at the AND-gate level.

In Section 7 we further continue in this direction by adapting our protocol to the verification
of inner products and matrix multiplications. Considering these larger operations again allows for
specific optimizations to be made which provide significant improvements over their gate-by-gate
implementation. Using this approach we can prove multiplication of two 256 × 256 matrices in
20sec (resp. 11 sec) with one thread (resp. 4 threads); this requires only 340KB of total commu-
nication: a 38x improvement compared to the näıve approach which would require 2563 AND gates.

Concrete Efficiency. We present a detailed concrete analysis of both the communication and the
computational cost of our protocols, and measure the concrete efficiency of our construction and
compare it with other MPCitH-based systems.

Both our interactive and non-interactive variants work for arithmetic and Boolean circuits,
however, since the checking phase of our protocol requires a large field, our construction is inherently
more efficient when used for arithmetic circuits over such large finite fields. Nevertheless, to better
compare our protocols with systems such as KKW, and use it for post-quantum signatures, we run
most of our tests over very small fields, namely F2 and F28 .

Our system depends on many parameters and is very flexible; we can trade communication
for computation in a significant way by changing the number of parties in the MPC protocol, the
extension field or other settings in the checking phase.

Concretely, to verify one instance of SHA-256 preimage, with 40 bits of security, our system
requires 53ms for the prover and 43KB of communication when the number of parties is n = 16,
and 188ms and 23 KB, respectively, when n = 128 (see Table 1). This represents a 3x improvement
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in computation time (with comparable communication) over the Ligero system (44KB of commu-
nication and 140ms of running time for the same circuit). Using 4 threads we further reduce prover
computation time to 25ms.

We also compare the performance of our protocol with KKW and its recent highly optimized im-
plementation, Reverie [MHA]. Although our current implementation is incomparable with Reverie,
we show that our performance are already very close to those of Reverie. We plan to apply some of
the techniques used in Reverie to improve our implementation in future works. Overall, we improve
KKW in both proof size and run times.

Our implementation also shows that our signature scheme has signing/verification run times
comparable with those of Picnic and signature size only 30% larger (for a 10x bigger circuit), as-
suming the same number of parties. We can reduce the signature size by running the protocol
with larger number of parties at the cost of slower signing and verification. More details about our
concrete measures can be found in Section 7.

Other related works. A recent line of work [WYKW20,BMRS20,DIO20,YSWW21], based on
subfield vector oblivious linear evaluation (sVOLE), provides ZK proofs with very small memory
footprint and extremely good efficiency. Our system, like other MPCitH protocols, allows streaming
and can potentially achieve small memory overhead. Although we cannot accomplish the same
performance of sVOLE-based protocols, our approach does not require an interactive preprocessing.
Moreover, LPZK [DIO20] and Mac’n’Cheese [BMRS20] are currently designed only for large fields,
whereas our protocol naturally works for both arithmetic and Boolean circuits.

2 Preliminaries

We denote by κ (resp. λ) the computational (resp. statistical) security parameter. We say that
a function µ : N → N is negligible if, for every positive polynomial p(·) and all sufficiently large
integer k, it holds that µ(k) < 1

p(k) . We also use the abbreviation PPT to denote probabilistic
poly-nomial-time algorithms. We use bold letters to denote vectors, e.g. a, and use brackets to
denote entries, e.g. (a)i; the operator ∗ denotes the inner product of two vectors. We denote by [d]
the set of integers {1, . . . , d}, and by [e, d] the set of integers {e, . . . , d} with 1 < e < d.

MPC notation. The notation 〈·〉 stands for additively secret-shared values with full threshold,
and 〈·〉i for the share held by party Pi.

Languages and relations. We denote by R a relation consisting of pairs (x,w), where x is the
instance and w is the witness. We denote by L(R) the language corresponding to R.

2.1 Zero-knowledge Arguments of Knowledge

An argument of knowledge for an NP relation R is a protocol between a prover P and a verifier
V. We let view(〈P(x,w),V(x)〉) denote the transcript generated by P and V when interacting on
inputs (x,w) and x, respectively. Also, we say that 〈P(x,w),V(x)〉 = b ∈ {0, 1} depending on
whether V accepts, b = 1, or rejects b = 0.

Definition 1. The pair (P,V) is called an argument of knowledge for the relation R if the following
properties are satisfied.
Completeness: ∀(x,w) ∈ R, 〈P(x,w),V(x)〉 = 1.
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Soundness: For any PPT prover P∗, there exists a PPT extractor E such that, for any x, the
probability

Pr[〈P(x,w),V(x)〉 = 1 ∧ (x,w) 6∈ R |w ← EP∗(x)]

is negligible, where the extractor EP∗ has access to the entire execution, including the randomness
of P∗.

Definition 2. An argument of knowledge (P,V) is public coin if the verifier samples its messages
uniformly at random and independently of the messages sent by P. This is equivalent to say that
V’s messages correspond to V’s randomness.

Definition 3. A public coin argument of knowledge is (honest verifier) zero-knowledge for a rela-
tion R if there exists a simulator S such that, for any (x,w) ∈ R, the view of an honest verifier in
the interaction 〈P,V〉 and the output of S are indistinguishable, i.e.

view(〈P(x,w),V(x)〉) ≈ SV(x),

where SV denotes access to the public coin randomness used by the verifier.

2.2 Interactive Oracle Proofs

Interactive oracle proofs (IOPs) simultaneously extend probabilistic checkable proofs (PCPs)
and interactive proofs (IPs) by allowing more rounds of interaction and using point-wise queries
from the verifier to the oracles, instead of linear queries. IOPs also differ from IPCPs which can be
viewed as special IOPs where the verifier has oracle access to the first prover messages, but must
read in full subsequent prover’s messages.

Definition 4. A ρ-round public-coin IOP for the relation R consists of a ρ-round interactive pro-
tocol between P and V, with ρ ≥ 2, such that in each round i ≥ 2, after an initial π1 created by
P, the verifier V sends a uniformly random message vi−1 to P and the prover replies with πi. The
verifier has oracle access to π = {π1, . . . , πρ} and P’s last message in response to vρ and, based on
the responses from the oracles, either accepts or rejects. It satisfies the following two properties:
Completeness: As in Definition 1.
Soundness: For all x 6∈ L, and for all (computationally unbounded) P∗

Pr[〈P(x,w),Vπ(x)〉 = 1] is negligible.

This definition can be extended with the knowledge and honest verifier zero-knowledge properties
[BCS16]. Beyond soundness we can consider other complexity measures, in particular the query
complexity , i.e. the number of queries asked by V to any of the oracles during the ρ rounds, and
the proof complexity , i.e. the number of bits communicated during the interactions.

2.3 MPC-in-the-Head

In [IKOS07], Ishai, Kushilevitz, Ostrovsky and Sahai introduced the MPC-in-the-Head (MPCitH)
paradigm that uses any MPC protocol with honest majority to construct a zero-knowledge proof
for an arbitrary NP relation R. The high level idea of this powerful technique is as follows. A
zero-knowledge protocol can be viewed as an instance of secure function evaluation, and hence as
two-party computation between a prover P and a verifier V, with common input the statement x,
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and P’s private input w, which is a witness to the assertion that x belongs to a given NP language
L. The function they want to compute is then fx(w) = R(x,w), which checks if w is a valid witness
or not. The verifier V will accept the proof if fx(w) = R(x,w) = 1.

In the MPCitH paradigm the zk-PCP prover P emulates an n-party MPC protocol Π in “its
head”: P generates a sharing 〈w〉 of the witness and distributes the corresponding shares as private
inputs to the parties, and then simulates the evaluation of fx(〈w〉) = R(x, 〈w〉) by choosing uni-
formly random coins ri for each party Pi, i ∈ [n]. Once the inputs and random coins are fixed, for
each round j of communication of the protocol Π and for each party Pi, the messages sent by Pi
at round j are deterministically specified as a function of the internal state of Pi, i.e. Pi’s private
inputs and randomness, and the messages that Pi received in previous rounds. The set with the
state and all messages received by party Pi during the execution of the protocol constitutes the
view of Pi, denoted as viewi.

After the evaluation, the prover sets π = (view1, . . . , viewn) and sends it to an oracle O. At
this point, the verifier queries π on some points and finally verifies that the computation was done
correctly by checking that the opened views are all consistent with each other and that the protocol
outputs a positive result.

3 MPC-in-the-Head based IOP—General Construction

In this section we describe a general interactive proof system based on the MPC-in-the-Head
paradigm which can be instantiated with different MPC protocols that respect a specific network
topology. While IKOS [IKOS07] presents a general transformation of information-theoretic MPC
protocols to a ZK proof in a “black-box” way, we follow Ligero’s blueprint and precisely define the
MPC model we use to build our system. We extend the general proof system defined in [AHIV17]
by allowing arbitrary number of rounds. Then, we instantiate the MPC component with a different
and yet very simple protocol which will allow the verifier to open a bigger number of views (or,
equivalently, to query the oracles at a larger number of points).

3.1 MPC Model

Here we describe the MPC model that can be used to implement our general interactive proof
system. This model can in turn be instantiated with MPC protocols with different security prop-
erties, leading to systems with different soundness, communication and computational complexity.

First we recall the following basic definition.

Definition 5 (Correctness, privacy and robustness [IKOS07]). Let Πf be an MPC protocol
for a functionality f .

- We say that the protocol Πf realizes f with perfect (resp. statistical) correctness if for all inputs
x, the probability that the output of some party is different from f(x) is 0 (resp. negligible in
λ), where the probability is over the random inputs of each party.

- Let 1 ≤ t < n, the protocol Πf has t-privacy if it is correct and for all I ⊆ [n] such that
|I| ≤ t, there exists a PPT algorithm S such that the joints views (viewI(x)) of parties in I
has the same distributions of S(I, xI , fI(x)). We will talk of perfect, statistical or computational
t-privacy accordingly.
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- Let 0 ≤ r < n, the protocol Πf has perfect (resp. statistical) r-robustness if it is correct and
for all I ⊆ [n] such that |I| ≤ r, even assuming that all the parties in I have been adaptively
corrupted, if there does not exists any random input such that f(x) = 1, the probability that Πf

outputs 1 and the views of honest parties are consistent is zero (resp. negligible in λ).

We now describe our MPC model.

Definition 6 (Client-server ρ-phase protocol). Let Πf be an MPC protocol for a functional-
ity f . We say that Πf is in the client-server model if its parties can be divided into a distinguished
“input (or sender) client” PS, n “computation servers” P1, . . . , Pn, and (optionally) a distinguished
“output (or receiver) client” PR. Additionally, PS receives the entire input x and only sends at most
one message to each of the computation servers at the beginning of each phase,1 and PR only re-
ceives a single message from each of the servers at the end of the protocol. The servers can only
communicate with each other via a broadcast.

We then say that Πf is a client-server ρ-phase protocol if the computation of the n servers can
be divided into ρ consecutive phases each separated by the sampling of a public random string via a
call to RandomCoin from all the servers.

The following three stages summarise the execution of a client-server ρ-phase protocol.

1. In the first phase, the servers receive the input message m1 from PS and start their local
computation of the circuit. More precisely, m1 is a vector of messages, where each server gets
one entry of the vector.

2. For each phase j ∈ [2, ρ− 1]:
(a) The servers call RandomCoin and obtain a public random string Rj−1, along with at most a

single message mj from PS . Again, each party Pi only receives (〈mj〉)i, for i ∈ [n].
(b) The servers use the random string (and mj) to continue their local computation.

3. In phase ρ, the servers obtain a public random string Rρ and each sends a single message to
the receiver client PR.

In our model we consider a threshold (Pc, ts)-adversary which corrupts at most one client Pc,
up to ts servers, or both. In particular, we extend Definition 5 as follows.

Definition 7. We say that a protocol Πf realizes f with (Pc, ts,p)-privacy (resp. (Pc, ts,r)-robustness)
if the properties in Definition 5 hold with respect to a semi-honest (resp. adaptive malicious) ad-
versary A that corrupts all the parties in I = {Pc}× Is ⊂ {PS , PR}×{Pi}i∈[n], such that |{Pc}| ≤ 1
and |Is| ≤ ts,p (resp. ts,r).

Note that this definition allows (∅, ts)-adversaries that only corrupt server parties.

3.2 Interactive Proof System - General Description

Given an MPC protocol Πf as described in Definition 6, we show a ρ-round interactive protocol,
Πρ−ZKIOP (Figure 1), verifying the properties in Definition 4.

Let L(R) be an NP-language with relation R, and let fx(w) = R(x,w). Our ρ-round systems
starts with the prover P emulating a ρ-round MPC protocol Πf (meeting Definition 6 ) that realizes

1 Ligero allows only one message from PS to the servers in the entire computation, i.e. it cannot send another
message even after the public coin sampling that takes place between the two phases.

8



Protocol Πρ−ZKIOP

Let Πf a ρ-phase MPC protocol in the client/server model. Common Input: A statement x and a circuit
description Cf that realizes the relation R.
Private Input: P holds the witness w such that R(x,w) = 1
First Oracle π1. P runs the MPC protocol Πf in its head: it samples a random rS , {ri}i∈[n] ∈ {0, 1}∗ ∪ ∅ and
invoke the sender client PS on input (x,w; rS). and the servers on random input ri. The prover computes the
views (view1

1, . . . , view
1
n) of the servers in phase 1.

It sets the oracle π1 = (view1
1, . . . , view

1
n)

Interactive protocol.

- For j ∈ [2, ρ]:
- V picks a random challenge Rj−1 and sends to P
- P continues to run the protocol in its head.

It invokes the sender client and the servers on input Rj−1 obtained in the previous step and produces
views (viewj1, . . . , view

j
n). It sets the oracle πj(Rj−1) = (viewj1, . . . , view

j
n).

- V picks a random challenge Rρ and sends to P.
- P computes and sends viewR of the receiver client
- V rejects if PR outputs Cf = 0; if not, V asks to open a subset of server views. More precisely V picks

random subsets Vj ⊂ [n], j ∈ [ρ], such that | ∪j V | ≤ ts,p.
- P open the views in ∪jVj
- Final verification: V aborts if the views in Vj are inconsistent with each other and/or with viewR, otherwise

it accepts.

Figure 1: General description of the ρ-round IOP

the functionality f . As done in Ligero, we further restrict the MPC model and assume that the
servers Pi never communicate with each other. The first round of Πρ−ZKIOP provides to an oracle O
the string π1 = (view1

1, . . . , view
1
n) , corresponding to the views of the n servers at the end of the first

round. After this, we have the interactive steps, which exactly correspond to the rounds [2, ρ] of the
underlying MPC protocol, with the randomness obtained by the RandomCoin functionality being
replaced by the verifier’s challenges R1, . . . , Rρ. We can pictorially represent the oracles π1, . . . , πρ
as a ρ× n matrix Q, where the rows are Qj = πj , j ∈ [ρ], and the columns, Qi, i ∈ [n], correspond
to the “global” view of the parties, i.e. Qi = {view1

i , . . . , view
ρ
i }, for i ∈ [n].

Note that if we instantiate Πρ−ZKIOP with ρ = 1, we obtain the system described in [AHIV17],
which only allows one single message from PS to the servers Pi, i ∈ [n].

Restricting the model. We now specialize the MPC model Πf used in Πρ−ZKIOP with a protocol
achieving (PR, n − 1)-privacy in the semi-honest model and (PS , 0)-robustness in the malicious
model. In particular, this latter property means that the MPC protocol does not allow any collusion
between a malicious client sender and servers.

Moreover, we restrict V’s queries (and hence also our IOP system) to the columns of the matrix
Q, assuming that the verifier only opens up to n− 1 of these “global” views.

If we now consider the security of our construction, it is very important to distinguish between
the randomness used to ensure privacy and that used for robustness. The former is generated by
P when it samples the randomness for the MPC parties. The latter is given by V and the crucial
point is that each string generated in the middle of the protocol must be unpredictable for P during
previous phases. Intuitively, the prover P can cheat either by “corrupting PS” and computing the
mj messages wrongly, or by “corrupting” one or more of the servers Pi, i ∈ [n], and computing
their message to PR wrongly.
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More formally, we obtain the following result.

Theorem 1. Let x be a public statement and w an additional input, let f be the functionality
for PS , P1, . . . , Pn and PR that outputs R(x,w) to PR. Let Πf be a ρ-phase MPC protocol in the
client/server model that correctly realizes f with (PR, (n − 1))-privacy in the semi-honest model
and (PS , 0)-robustness (in the malicious model) with robustness error δ. The protocol Πρ−ZKIOP

described in Fig. 1 is a ZKIOP for NP relation R, with soundness error

ε =
1

n
+ δ

(
1− 1

n

)
.

Proof: (Completeness) As Πf correctly realizes f which outputs R(x,w) to PR, every honestly
computed proof for valid pair (x,w) will cause V to output accept.

(Honest verifier zero-knowledge) An honest verifier V will always choose the random challenges
Rρ according to the correct distribution thus emulating the calls to the functionality RandomCoin
perfectly. Zero-knowledge of the proof then follows from the (PR, n− 1)-privacy of Πf .

(Soundness) Let P∗ be a malicious prover attempting to convince V of a false statement x∗.
Considering that the output of P∗ is exactly the views of the server parties {Pi} and of the receiver
client PR, we study the cheating strategies of P∗ in terms of corruption strategies against the
MPC protocol. As PR never communicates with the other parties, it cannot be corrupted against
robustness. Furthermore, as we assume that n− 1 server views are seen by the verifier, in addition
to the view of PR, the malicious prover can corrupt at most 1 server, i.e. cheat on the messages it
sends to PR, while retaining a non-zero chance of convincing V. Therefore the possible strategies
for PS are to corrupt PS , at most one server Pi, or both.

If P∗ does not corrupt PS , then the correctness of Πf implies that the outputs of an honest
execution will cause PR, and therefore V, to reject. In this case, if P∗ corrupts one of the servers,
then it breaks the (∅, 0)-robustness of Πf (implied by its (PS , 0)-robustness), and can cause PR to
accept with certainty. The success probability of this strategy is then exactly 1/n.

If P∗ does corrupt PS , then the (PS , 0)-robustness of Πf implies that PR will accept with
probability δ over the random outputs of RandomCoin; if this happens, then no inconsistency
between the servers and the receiver is visible, and V accepts the proof. With probability 1− δ, PR
rejects an honest execution and P∗ must corrupt one of the servers to break the (PS , 0)-robustness
of Πf which causes V to accept with probability 1/n as in the previous strategy. The final success
probability here is therefore

δ + (1− δ) · 1

n
, (1)

which is the best of the two and therefore the maximum cheating probability for P∗. Rearranging
(1) yields ε. �

A very common solution to achieve the desired soundness in zero-knowledge systems, is to run
the base protocol a certain number of times τ . Obviously, this approach increases the complexity
of the system both computationally and in communication by a multiplicative factor τ . In the next
section we describe a better strategy that allows to reach better soundness with less overhead.

3.3 Improving Soundness—More MPC Evaluations

We improve the soundness of the IOP construction of Figure 1 by having multiple sets of server
parties execute the underlying MPC protocol in parallel. This improvement comes from the ability
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to open multiple sets of n − 1 views to the verifier, each picked independently at random thus
reducing the limiting 1/n term of Theorem 1.

By having the public randomness of RandomCoin shared across the executions, we limit the
corruption strategies that are available against robustness. While independent challenges would
possibly reduce the robustness error further, using identical ones also allows for implementation
optimizations and we therefore establish a theoretical basis for this practice.

Definition 8 (τ-parallel execution). Let Πf be a client-server ρ-phase MPC protocol for a
functionality f with n server parties. For an integer τ , Πτ

f is the τ -fold parallel execution of Πf

as a client-server ρ-phase protocol where there is only one sender PS, one receiver PR, but τ
independent sets of n server parties.

The client parties PS and PR independently run an execution of Πf with each set of servers who
also do not communicate across sets, excepted for the calls to RandomCoin which are shared across
the τ executions; i.e. the τ ·n servers receive the same output from RandomCoin. If the τ executions
output the same result, then PR outputs the same; if any one of the executions dissents, PR aborts
the protocol.

We first argue that privacy and robustness properties of the underlying protocol are maintained
by the one run in parallel.

Proposition 1. If Πf is (PR, n−1)-private in the semi-honest model, then Πτ
f is (PR, τ(n−1))-

private in the semi-honest model with the restriction that at most n − 1 servers are corrupted for
each of the τ executions.

Proof: The (PR, n − 1)-privacy of Πf implies the existence of a simulator S which, on input
(I, xI , fI(x)), produces simulated views which are indistinguishable from the joint views (viewI(x))
of an honest execution.

When receiving Iτ from the (PR, τ(n−1))-adversary against privacy, the simulator Sτ invokes τ
parallel copies of S, using identical randomness for calls to RandomCoin but independent randomness
otherwise. For the simulated view of PR, Sτ outputs the concatenation of the views of PR produced
by the parallel executions of S. As the output of RandomCoin is public, this identical randomness
does not leak private information and Sτ simulates the τ independent executions with the same
privacy error as S. �

Proposition 2. If Πf is (PS , 0)-robust in the malicious model with error δ, then Πτ
f is (PS , 0)-

robust in the malicious model with error at most δ.

Proof: As there does not exist any random input such that f(x) = 1 (Definition 5), and as the
calls to RandomCoin are shared between the τ executions, the best strategy for a corrupt sender P ∗S
is to deviate from the protocol in the same way across all executions. If not, the probability that a
call to RandomCoin can satisfy two or more constraints created by a cheating sender can only be
less than or equal to that of satisfying a single one. Therefore Πτ

f is also (PS , 0)-robust with error
at most δ. �

We then argue that the IOP construction equivalent to that of Figure 1 using Πτ
f instead of Πf

is also a ZKIOP with improved soundness error.
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Theorem 2. Let x be a public statement, and w an additional input, let f be the functionality for
PS , P1, . . . , Pn, PR that outputs R(x,w) to PR. Let Πf be a ρ-phase MPC protocol in the client-
server model that correctly realizes f with (PR, (n−1))-privacy in the semi-honest model and (PS , 0)-
robustness in the malicious model with robustness error δ.

With Πτ
f constructed from Πf as in Definition 8, the protocol Πρ−ZKIOP as described in Figure

1 using Πτ
f is a ZKIOP for R with soundness error

ε =
1

nτ
+ δ

(
1− 1

nτ

)
.

Proof: (Completeness) This follows from the completeness of Πf and the construction of Πτ
f .

(Honest verifier zero-knowledge) This follows from the (PR, τ(n − 1))-privacy of Πτ
f given by

Proposition 1.

(Soundness) The same strategy for a malicious prover P∗ applies as for the first protocol: by
first corrupting only PS , it has a probability of at most δ of causing Πτ

f to output accept; if this
fails, it can then corrupt at most one server for each of the τ independent executions to make PR
accept, this is not detected by V with probability 1/nτ . �

4 Multiplications Check

In this section we describe an efficient MPC protocol in the client-server model for checking
multiplication triples. This protocol is an adaptation of previous protocols described in recent works
[BBC+19,BGIN19,GS20], and constitutes one of the main building block of our MPC component.

More concretely, the goal is for the server parties to verify the correctness of m multiplication
tuples {x`, y`, z`}`∈[m] given by the sender client; i.e. that x` · y` = z`, for each ` ∈ [m]. We describe
two different MPC checking protocols; the first, ΠMultCheck, presents how to check multiplications
using inner-products, the second, ΠCompressedMC extends this idea by repeating several compression
rounds to reduce the communication between the servers and the recipient. While we do not prove
the MPC security of these protocols, we present several properties which we will use in the next
section.

4.1 First Multiplication Check Protocol

The first protocol, presented in Figure 2, checks the correctness of m secret-shared multuplica-
tion tuples by testing the correctness of a single secret-shared inner product tuple of size m.

It proceeds in two steps: first, given {〈xi〉, 〈yi〉, 〈zi〉}i∈[m], the parties call a random coin func-
tionality, RandomCoin, to obtain a random value R in an extension field G of F. Using R, the parties
construct the inner-product tuple 〈x〉 ∈ Gm, 〈y〉 ∈ Gm, and 〈z〉 ∈ G, such that x ∗ y = z. In the
second step, parties test the correctness of this tuple using an auxiliary random inner-product tuple
(〈a〉, 〈b〉, 〈c〉) and a random field element s ∈ G.

The idea here is that both steps will maintain the “incorrectness”, if any, of the input tuples
with high probability.

We note that the parties make use of a broadcast channel in the second phase, which does not
respect our restriction to servers which communicate only with PR in Phase ρ of the protocol. This
broadcast channel will not be required by the next protocol.
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Protocol ΠMultCheck

We consider an extension field G ⊇ F. We assume access to a random coin functionality, RandomCoin.

Phase 1 PS sends the shares 〈x`〉i, 〈y`〉i, 〈z`〉i for ` ∈ [m], and the shares 〈a〉i, 〈b〉i, 〈c〉i of a random inner-
product tuple to each server Pi .

Sampling The parties call RandomCoin to obtain R ∈ G and s ∈ G.
Phase 2 The servers parties proceed as follows:

1. Lift {〈x`〉, 〈y`〉, 〈z`〉}`∈[m] to G.
2. Set
〈x〉 = (〈x1〉, R · 〈x2〉, . . . , Rm−1 · 〈xm〉),
〈y〉 = (〈y1〉, 〈y2〉, . . . , 〈ym〉)
〈z〉 =

∑
`∈[m]R

`−1 · 〈z`〉
3. Compute 〈σ〉 = s · 〈x〉 − 〈a〉 and 〈ρ〉 = 〈y〉 − 〈b〉.
4. Open 〈σ〉 and 〈ρ〉 using a broadcast channel.
5. Compute 〈v〉 = s · 〈z〉 − 〈c〉 − 〈b〉 ∗ σ − 〈a〉 ∗ ρ− ρ ∗ σ.
6. Send 〈v〉 to PR.

The receiver party PR accepts if v = 0 and rejects if not.

Figure 2: Protocol ΠMultCheck

Lemma 1. If at least one multiplication triple is incorrect, the resulting inner-product tuple ob-
tained in Step 2. of protocol ΠMultCheck is correct with probability at most m−1

|G| .

Proof: We show that if at least one triple is incorrect then 〈x〉, 〈y〉, 〈z〉 is an incorrect inner-
product tuple except with probability at most m−1

|G| . We construct three polynomials F (t) = x1 ·
y1 + t · x2 · y2 + · · ·+ tm−1 · xm · ym, G(t) = z1 + t · z2 + · · ·+ tm−1 · zm and H(t) = F (t)−G(t). If
there was at least one incorrect tuple, then F (·) 6= G(·) and, since H(t) is a non-zero polynomial of
degree m− 1, there are at most m− 1 values R such that H(R) = 0. Therefore, since R is sampled
uniformly at random in G, the probability that incorrect triples lead to a correct inner-product
tuple is at most m−1

|G| . �

Lemma 2. If at least one of the two inner-product tuples (x,y, z) and (a,b, c) is incorrect, the
probability that the check passes is 2/|G|.

Proof: First we show that if the two inner product tuples 〈x〉, 〈y〉, 〈z〉 and 〈a〉, 〈b〉, 〈c〉 are correct,
then the sacrifice will pass:

v = s · z − c− b ∗ σ − a ∗ ρ− ρ ∗ σ

= s · z − c−
∑
i∈[m]

bi · (Rixi − ai)−
∑
i∈[m]

ai · (yi − bi)

−
∑
i∈[m]

(Rixi − ai) · (yi − bi)

= s · z − c− s ·
∑
i∈[m]

Ri−1xi · yi +
∑
i∈[m]

ai · bi = 0
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We compute now the probability that incorrect tuples pass the sacrifice. Let ∆z = z − x ∗ y and
∆c = c− a ∗ b we have :

v = s · z − c− b ∗ σ − a ∗ ρ− ρ ∗ σ
= s · (x ∗ y +∆z)− (a ∗ b +∆c)− b ∗ σ − a ∗ ρ− ρ ∗ σ
= s ·∆z −∆c

The check will pass if the condition s ·∆z −∆c = 0 holds. If ∆z = 0, then the condition is verified
if ∆c = 0 which contradicts the assumption; if ∆z 6= 0 and ∆c = 0, the condition is verified if and
only is s = 0 which happens with probability 1/|G|; finally, if both ∆z 6= 0 and ∆c 6= 0 the condition
holds iff s = ∆c/∆z that happens with probability 1/|G|. Combining the cases we conclude proof.

�
Combining the two previous lemma we obtain.

Proposition 3. We have that if at least one of the m triples {(〈xi〉, 〈yi〉, 〈zi〉)}i∈[m] is incorrect,

the probability that the protocol ΠMultCheck outputs accept is at most m−1
|G| + (1− m−1

|G| ) · 2
|G| .

4.2 Second Multiplication Check Protocol

Here we describe a more efficient protocol which allows to compress the size of the inner-product
to be tested in order to reduce the communication complexity at the expense of (potentially) more
interactions. The protocolΠCompressedMC, described in Figure 3, uses two core subroutines,ΠCompress

and ΠCompressRand given in Figure 4, which compress a set of k inner-product tuples down to only
one (of the same dimension) in such a way that, with high probability, the output tuple is incorrect
if one of the inputs is. The difference between the two subroutines is that the second introduces
randomness in such a way that the compressed tuple can be opened without leaking information
about the input tuples. This also enables the protocol to dispense with the broadcast channel used
in ΠMultCheck.

The protocol assumes access to a RandomCoin functionality and to two untrusted subroutines
ΠInnerProd and ΠRand, which we don’t instantiate. On input of two vectors 〈a〉 and 〈b〉, ΠInnerProd out-
puts a possibly incorrect 〈c〉, with a∗b = c. When queried by the servers, ΠRand outputs a possibly
biased random value. At a high level, ΠCompressedMC proceeds as follows. The first step is similar to
the first step in ΠMultCheck, where parties produce the inner-product tuple (〈x〉, 〈y〉, 〈z〉) of dimen-
sion m. To reduce the dimension of this tuple, parties divide the vectors 〈x〉 and 〈y〉 into k smaller
vectors of dimension ` and perform ΠCompress. In this way parties obtain a single inner-product
tuple, but this time of dimension ` = m/k, for any divisor k of m. This step can then be repeated
with identical or different values of k until a final inner-product tuple (potentially of dimension 1)
needs to be checked. (For identical values of k, these steps need to be repeated logkm times to
check a single multiplication triple at the end).

Lemma 3. If one of the k input inner-product tuples is incorrect, or if any of the the h(u) val-
ues is incorrectly computed by ΠInnerProd, then the inner-product tuple output by ΠCompress, resp.
ΠCompressRand, is also incorrect, except with probability at most

2(k − 1)

|G| − k
, resp.

2k

|G| − k
.
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Compressed multiplication check, ΠCompressedMC

We consider an extension field G ⊇ F. We assume access to a random coin functionality, RandomCoin.

Phase 1 PS sends the shares 〈x`〉i, 〈y`〉i, 〈z`〉i in F to each server Pi for ` ∈ [m].
Sampling The parties call RandomCoin to obtain R ∈ G.
Phase 2 The server parties proceed as follows:

1. Lift {〈x`〉, 〈y`〉, 〈z`〉}`∈[m] to G.
2. Set
〈x0〉 = (〈x1〉, R · 〈x2〉, . . . , Rm−1 · 〈xm〉),
〈y0〉 = (〈y1〉, 〈y2〉, . . . , 〈ym〉)
〈z0〉 =

∑
`∈[m]R

`−1 · 〈z`〉

For each compression round j ∈ [blogk(m)c]:

Phase 3 + (j − 1) The server parties proceed as follows:
1. Parse 〈xj−1〉 and 〈yj−1〉 as

〈xj−1〉 = (〈aj1〉, . . . , 〈a
j
k〉),

〈yj−1〉 = (〈bj1〉, . . . , 〈b
j
k〉), aju,b

j
u ∈ Gm/k

j

.

2. Call ΠInnerProd(〈aju〉, 〈bju〉) to obtain 〈cju〉, for u ∈ [k − 1].
3. Set 〈cjk〉 = 〈zj−1〉 −

∑
u∈[k−1]〈c

j
us〉.

4. If j 6= blogkmc, begin ΠCompress on (〈aji 〉, 〈b
j
i 〉, 〈c

j
i 〉)i∈[k]; if j = blogkmc, begin ΠCompressRand instead.

Sampling Within ΠCompress or ΠCompressRand.
Phase 3 + j Complete ΠCompress or ΠCompressRand to obtain (〈xj〉, 〈yj〉, 〈zj〉) of dimension m/kj .

After the last compression round:

Phase 3 + blogk(m)c cont. Servers open the last tuple to PR which outputs either accept if it is correct, or
abort if not.

Figure 3: Compressed multiplication check

Proof: Suppose that one of the k inner-product tuples (〈xi〉, 〈yi〉, 〈zi〉)i∈[k] is incorrect, i.e. there
exists i ∈ [k] such that zi 6= xi ∗ yi. For this i, it then holds that h(i) 6= f(i) ∗ g(i) and hence that
h(·) 6= f(·)∗g(·). (This holds even if one or more of the k−1, resp. k+1, computed evaluation points
of h(·) is maliciously altered in an effort to correct for the incorrect tuple.) By the Schwartz–Zippel
lemma, the probability that the output tuple is correct, i.e. that h(s) = f(s) ∗ g(s) for a randomly

sampled s ∈ G \ [k], is bounded above by deg h(·)
|G\[k]| = 2(k−1)

|G|−k , resp. 2k
|G|−k . �

Proposition 4. If at least one of the m multiplication triples {(〈xi〉, 〈yi〉, 〈zi〉)}i∈[m] is incorrect,
the probability that protocol ΠCompressedMC outputs accept is at most

m− 1

|G|
+

(
1− m− 1

|G|

)
·
(

2k

|G| − k
· (1−B)blogk(m)c−1

)

+

(
1− m− 1

|G|

)
·

B · blogk(m)c−2∑
i=0

(1−B)i


where k is the compression parameter and B = 2(k−1)

|G|−k

15



Sub-protocols ΠCompress and ΠCompressRand

ΠCompressRand is identical to ΠCompress except where highlighted below.
Input: k inner-product tuples (〈xi〉, 〈yi〉, 〈zi〉)i∈[k], of dimension `.

1. Define two dimension-` vectors of degree-(k − 1) polynomials 〈f(·)〉, 〈g(·)〉 such that:

f(u) =

f1(u)
...

f`(u)

 = xu, g(u) =

g1(u)
...

g`(u)

 = yu, ∀u ∈ [k].

In ΠCompressRand, for j ∈ [`], the fj and gj polynomials are of degree k and are defined by the additional points
〈fj(k + 1)〉 = 〈vj〉 and 〈gj(k + 1)〉 = 〈wj〉 where the shares of vj and wj are given by ΠRand.

2. Define the polynomial h(·) of degree 2(k − 1) such that:

〈h(u)〉 = 〈zu〉, ∀u ∈ [k],
〈h(u)〉 = ΠInnerProd(〈f(u)〉, 〈g(u)〉), ∀i ∈ [k + 1, 2k − 1].

In ΠCompressRand, h is of degree 2k and is defined by the two additional points 〈h(2k)〉 and 〈h(2k + 1)〉 defined
as the other points 〈h(i)〉 for i ∈ [k + 1, 2k − 1].

Sampling Call RandomCoin to obtain s ∈ G \ [k],

3. Compute 〈f(s)〉, 〈g(s)〉, 〈h(s)〉.

Output: One tuple (〈f(s)〉, 〈g(s)〉, 〈h(s)〉) of dimension `.

Figure 4: Compressing inner products

Proof: We express the probability that the inner-product tuples are randomly “corrected” by the
public coins at some point in the protocol (after which the protocol always outputs accept). Denote
by A the event that “ΠCompressedMC outputs accept when at least one of the m triples is incorrect.”

First, denote by A1 the event that the tuple (〈x0〉, 〈y0〉, 〈z0〉) produced at step 2 of ΠCompressedMC

is correct after randomizing by R; Lemma 1 implies that Pr[A1] = m−1
|G| . We then have that

Pr[A] = Pr[A1] + Pr[¬A1] · Pr[A | ¬A1]

=
m− 1

|G|
+

(
1− m− 1

|G|

)
· Pr[A | ¬A1].

Next, denote by Aj2 the event that the tuple output by ΠCompress or ΠCompressRand in the j-th
compression round is correct after the random sampling of s; we note that A0

2 is the same event as

A1. Lemma 3 implies that, for j = 1, . . . , blogk(m)c−1, Pr[Aj2] = 2(k−1)
|G|−k , and that, for j = blogk(m)c,

Pr[Aj2] = 2k
|G|−k . For j = 0, . . . , blogk(m)c − 2, we then have that

Pr[A | ¬Aj2] = Pr[Aj+1
2 ] + Pr[¬Aj+1

2 ] · Pr[A | ¬Aj+1
2 ]

=
2(k − 1)

|G| − k
+

(
1− 2(k − 1)

|G| − k

)
· Pr[A | ¬Aj+1

2 ],

and for j = blogk(m)c − 1:

Pr[A | ¬Aj2] =
2k

|G| − k
+

(
1− 2k

|G| − k

)
· Pr[A | ¬Aj+1

2 ].
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Finally, if the last compression round using ΠCompressRand does not correct the tuple, then PR

will cause ΠCompressedMC to output reject. This implies that Pr[A | ¬Ablogk(m)c
2 ] = 0.

Putting everything together, the protocol outputs accept with at most

Pr[A] =
m− 1

|G| +

(
1− m− 1

|G|

)
·(

2k

|G| − 2
·
(

1− 2(k − 1)

|G| − k

)blogk(m)c−1

+
2(k − 1)

|G| − k

blogk(m)c−2∑
i=0

·
(

1− 2(k − 1)

|G| − k

)i)

�

5 Our Zero-knowledge Argument for Arithmetic and Boolean Circuits

We describe now our ZK system for circuit satisfiability based on the MPCitH paradigm. We
combine a concrete MPC protocol which verifies all the properties defined in Definition 6 and the
general ρ-phase ZK interactive oracle protocol Πρ−ZKIOP defined in Section 6. Given an NP relation
R, we consider a circuit C over a finite field F such that C(w) = 1 if and only if (x,w) ∈ R.
Without loss of generality we assume that C only contains linear and multiplication gates.

Our MPC instantiation Concretely, our MPC protocol Πf can be divided in two phases. First,
we have an input and evaluation phase where the sender client PS generates and distributes to the
servers Pi, i ∈ [n], an additive sharing of the input and sharings of the output of each multiplication
gate in the circuit. Given those, the servers locally evaluate the circuit. In the second phase, parties
run the protocol ΠCompressedMC described in the previous section where PS further plays the role of
ΠInnerProd and ΠRand.

Looking ahead, the protocol Πf , and therefore the MPCitH protocol based on it, will depend on
several parameters: the size of the circuit C, m, i.e. the number of multiplication gates, the number
n of servers parties in Πf , the size of the fields F and G, with |G| > m − 1, and the compression
parameter k used in ΠCompressedMC.

Proposition 5. The Πf protocol derived from ΠCompressedMC is correct, (PR, n−1)-private, (PS , 0)-
robust with robustness error

δk =
m− 1

|G|
+

(
1− m− 1

|G|

)
·(

2k

|G| − 2
·
(

1− 2(k − 1)

|G| − k

)blogk(m)c−1

+
2(k − 1)

|G| − k

blogk(m)c−2∑
i=0

·
(

1− 2(k − 1)

|G| − k

)i)
,

and a client-server ρ-phase protocol, with ρ = blogk(m)c.

Proof sketch: (Privacy) When given the set I of opened servers, S first simulates the calls to
RandomCoin to obtain the public randomness used by the protocol and then generates random
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ΠInt ZKP—Part 1

Inputs: Public circuit C over F with m MULT gates. Extension field G. Public input x. Private input w for P.
Outputs: Public proof oracles (π1, . . . , πρ) from P. Private output b ∈ {0, 1} from V.
First Oracle π1

Prover Execute phase 1 of ΠCompressedMC.
- Client party PS executes the following for each evaluation t ∈ [τ ]:

1. Generate a sharing of the witness 〈wt〉
$← Fn and add 〈wt〉i to (mt,1)i.

2. For each multiplication gate ` ∈ [m]:
(a) Compute the multiplication result: zt,` ← xt,` · yt,`.
(b) Generate a sharing of the result 〈zt,`〉

$← Fn and add 〈zt,`〉i to (mt,1)i.
3. Send (mt,1)i to Pi.

- The server parties execute the following, also for each evaluation t ∈ [τ ]:
1. Append (mt,1)i to viewit,1.
2. Compute the input shares 〈xt,`〉i and 〈yt,`〉i for each multiplication gate ` ∈ [m] using the shares

from (mt,1)i.
Set (π1)t,i = view1

t,i.

Interactive Protocol—First Round.

Verifier Sample a random challenge R
$← G and send it to P as the output of RandomCoin.

Prover Continue the τ executions of ΠCompressedMC by running PS and the servers {Pi} on input R as follows:
1. Each server Pi lifts 〈xt,`〉i, 〈yt,`〉i, 〈zt,`〉i from F to G.
2. Each server computes their share of 〈x0

t 〉, 〈y0
t 〉 and 〈z0t 〉 such that:

〈(x0
t )`〉 = R`−1〈xt,`〉, 〈(y0

t )`〉 = 〈yt,`〉, and 〈z0t 〉 =
∑
`∈[m]R

`−1〈zt,`〉.

Interactive Protocol—Compression Rounds. For each compression round j ∈ [blogk(m)c]:

Prover Before creating the next oracle, emulate the following computation.
- For the client PS , for each t ∈ [τ ]:

1. Parse xj−1
t → (ajt,1, . . . ,a

j
t,k) and yj−1

t → (bjt,1, . . . ,b
j
t,k).

2. For each u ∈ [k − 1]: Compute inner-products: cjt,u ← ajt,u ∗ bjt,u, generate sharing 〈cjt,u〉
$← Gn and

add 〈cjt,u〉i to (mt,j+1)i.

3. Compute last inner-product: cjt,u ← zj−1
t −

∑
u∈[k−1] c

j
t,u.

4. Construct f jt ,g
j
t ∈ (G[X])m/k as in ΠCompress if j 6= blogk(m)c, or as in ΠCompressRand otherwise.

5. For each u ∈ [k+1, 2k−1] if j 6= blogk(m)c, or u ∈ [k+1, 2k+1] otherwise: Compute inner-product

hjt(u) = f jt (u) ∗ gjt (u), generate sharing 〈hjt(u)〉 $← Gn and add 〈hjt(u)〉i to (mt,j+1)i.
6. Send (mt,j+1)i to Pi.

- For each server party Pi, for each evaluation t ∈ [τ ]:
1. Append (mt,j+1)i to viewj+1

t,i . and compute 〈f jt 〉i, 〈g
j
t 〉i, 〈h

j
t〉i using the shares from (mt,j+1)i.

Set (πj+1)t,i = viewj+1
t,i .

Verifier Sample a random challenge sj
$← G \ [k] and send it to P as the output of RandomCoin.

Prover Continue the τ executions of ΠCompressedMC by running PS and the servers {Pi} on input sj as follows:
1. Each server computes their own share of 〈f jt (sj)〉, 〈gjt (sj)〉 and 〈hjt(sj)〉 and labels them as 〈xjt〉, 〈y

j
t 〉

and 〈zjt 〉.
2. The sender PS computes xjt ,y

j
t and zjt in the same way.

Figure 5: Interactive (Zero-knowledge) proof (of knowledge) protocol—Part 1
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ΠInt ZKP—Part 2

Interactive Protocol—Final Rounds.

Prover After computation of the final compressed tuple, for each t ∈ [τ ] the server parties {Pi} each send their
shares 〈f jt (sj)〉i, 〈gjt (sj)〉i, 〈h

j
t(sj)〉i, with j = blogk(m)c, to PR, together with their shares 〈o〉i of the values

of the output wires of C; all of these form viewt,R, which P sends to V in full.
Verifier Upon receiving viewt,R, for each t ∈ [τ ], check that the tuple is correct, i.e. that hjt(sj) = f jt (sj)∗gjt (sj),

with j = blogk(m)c, and check that the output of the circuit is valid, i.e. that
∑
i〈o〉i = 1. If one of these

fails, reject.
Oracle query The verifier picks a subset Qt ⊂ [n] of size n−1 uniformly at random for each t ∈ [τ ] and queries
{Qt}.

Verifier Upon receiving {viewt,q}q∈Qt for each t ∈ [τ ] (where viewt,i = view1
t,i‖ . . . ‖viewρt,i), recompute the

operations of each opened server Pq to check for inconsistencies with viewt,R. If an inconsistency is found,
reject. If not, accept.

Figure 6: Interactive (Zero-knowledge) proof (of knowledge) protocol—Part 2

shares for all the sharings that PS provides to the servers. Finally, it edits the communication
of the last hidden party with PR so that the circuit appears to output 1 and the final checking
tuple appears to be correct. As the sharings of the wire values are sampled independently, and as
ΠCompressRand introduces uniform randomness into the last tuple, the above sampling strategy is
indistinguishable from an honest execution of Πf .

(Robustness) The only actions a corrupt sender P ∗S can take are to send incorrect tuples as
the multiplication results of the circuit or incorrect results as the output of ΠInnerProd during the
compression rounds. Should any of these happen, Proposition 4 gives us that the protocol accepts
with probability at most δk as in the statement.

�
Putting Everything Together. We describe our MPCitH ZK-IOP for arithmetic and Boolean circuit
in Figures 5 and 6. The protocol ΠInt ZKP is derived directly from the parallel execution variant
of Πρ−ZKIOP, instantiating Πτ

f with the MPC protocol described above. Combining results from
previous sections, we obtain the following theorem.

Theorem 3. Let n,m, k be integers and F ⊆ G finite fields. Let C be a circuit over F of multi-
plicative size m and |G| > m. The protocol ΠInt ZKP satisfies completeness, soundness and (honest-
verifier) zero-knowledge as in Definition 4 with soundness error ε = 1/nτ +(1−1/nτ ) ·δk and round
complexity blogk(m)c+ 2.

From ZK-Interactive MPCitH Proof to ZK Arguments We can compile the interactive
ZK proof described in Figures 5 and 6 to an interactive argument, with standard techniques us-
ing collision-resistant hash functions. In particular, as described [KKW18], we can achieve better
efficiency using collision-resistant hash functions based on Merkle trees [Mer90].

Setting the Parameters. Notice the parameters of our zero-knowledge argument protocol greatly
depends on the size of the base field F and extension field G, other than the compression factor
k. In general, for small values of k we have smaller proof size, but larger running times. In Table
2 we show the number of repetitions and estimated proof when the base field F = F2 with k = 8.
Notice that since we choose a big extension filed, G = F264 , the number of repetitions is the same
for different circuit size, but it varies depending on the number of parties.
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Circuit size (n = 16, τ = 11) (n = 64, τ = 7) (n = 128, τ = 6)

103 4.9 3.5 2.5
104 18.5 11.7 10
105 143 91 78
106 1382 879.5 753.8

Table 2: Number τ of parallel repetitions and proof size (in kB) needed to achieve interactive proof soundness of
2−40 with compression k = 8 and extension field G = F264 , depending on number n of parties and circuit size.

6 Non-interactive Zero-knowledge Arguments

Using the Fiat-Shamir paradigm [FS87,PS96], we can transform our public coin interactive pro-
tocol to a corresponding non-interactive zero-knowledge protocol. Roughly, the prover will compute
the first-round message as in the interactive variant and then continue the protocol by setting the
verifier’s next message to be the output of a hash function H modelled as a random oracle on input
the transcript of previous messages.

While the zero-knowledge property directly follows from the corresponding property of the
interactive variant, soundness requires more careful analysis. In [BCS16], the authors prove that
for IOP systems the soundness of the transformed non-interactive protocol can be derived form
the soundness of the IOP verifier against “state restoration attacks”. This section presents a better
estimation of the soundness of our non-interactive protocol.

6.1 Soundness with independent challenges

This first analysis applies to the non-optimised variant of the protocol where each of the τ
parallel executions receives a random challenge from RandomCoin, independently of the other exe-
cutions. When producing a non-interactive proof, before proceeding to the next round, the prover
can re-randomize the commitments they make to the random oracle in order to sample different
public coins for the checks. Here the best cheating strategy is to attack different executions at each
round of interaction so that, by the end of the protocol, all executions will cause the verifier to
accept.

Assuming that the final ZK protocol has r rounds of interaction between prover P and verifier
V, we let Xi, for i ∈ [r], be the random variable of the maximum number (out of the remaining
incorrect executions) of “good” challenges received by the prover during all its queries to the i-th
random oracle. (By “good” challenge we mean one which corrects and “hides” any cheating in that
execution.)

As demonstrated in previous work on this kind of non-interactive protocol [Bd20,BdSGK+21],
the number of “good” challenges received for each call to the random oracle follows a binomial
distribution with parameters (τi, pi), where τi denotes the number of parallel executions for which
this challenge is “good” and pi denotes the probability that a random challenge is “good” for one
execution.

The prover’s goal is to receive a “good” challenge in one of the interaction rounds for each of
the τ parallel executions. This means that the soundness error is the probability that this strategy
succeeds, namely Pr [

∑r
i=1Xi = τ ] .

Specifically to our protocol ΠInt ZKP, we identify the following interactions between the prover
and the verifier in the interactive variant:
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1. P commits to the injections of the m values; V responds with challenge R ∈ G.
2. For each j ∈ [blogkmc]: the prover commits to the cji injections (i.e. to the values PS sends to

the server parties Pi), for i ∈ [k−1], and the 〈h(i)〉 injections (in ΠCompress), for i ∈ [k+1, 2k−1];
V responds with challenge sj ∈ G.

3. At step j = blogkmc, the prover also commits to the additional points required by ΠCompressRand.

In the non-interactive setting, we therefore have the following probabilities of obtaining a “good”
challenge correctly for each of the interaction rounds:

First round. Probability that R makes the tuple correct: pR = m−1
|G| .

Intermediary rounds. For j ∈ [blogkmc − 1] (last round is special as it has polynomials of
different degrees), probability that the Schwartz–Zippel test fails to catch a non-zero polynomial,

i.e. ΠCompress outputs a correct tuple: pint = 2(k−1)
|G|−k

Final round. Probability that the last Schwartz–Zippel test fails, i.e. that ΠCompressRand outputs
a correct tuple: pfin = 2k

|G|−k .

The soundness of the non-interactive protocol, with the independent challenges variant, is there-
fore given by

εindep
ni = Pr

W +

blogkmc−1∑
j=1

Xj + Y + Z = τ

 ,
where

W = max
q1
{Wq1} Wq1 ∼ B (τ, pR)

Xj = max
qj,2
{Xqj,2} Xj,q2 ∼ B

(
τ −W −

j−1∑
i=1

Xi, pint

)

Y = max
q3
{Yq3} Yq3 ∼ B

τ −W − blogk mc−1∑
i=1

Xi, pfin


Z = max

q4
{Zq4} Zq4 ∼ B

τ −W − blogk mc−1∑
i=1

Xi − Y,
1

N


with qi denoting the queries to the i-th random oracle and B denoting the binomial mass function.

6.2 Soundness with identical challenges

The optimised protocol presented in Section 5, where the challenges output by RandomCoin are
shared across the τ executions, has a different distribution of “good” challenges.

Considering the first round, a malicious prover can commit to τ cheating strategies each rep-
resented by the values of {mt}t∈[τ ]; these are namely the sharings of the witness wt and of each
multiplication output zt,`, for ` ∈ [m]. Using the notation of the proof of Lemma 1, each of these
strategies defines a polynomial H(t) whose zeroes define a “good” first-round challenge. Indeed,
recall from Lemma 1 that a challenge R ∈ G corrects a set of incorrect multiplication triples if and
only if H(t)(R) = 0 when H(t) is not the zero polynomial (due to the error in at least one of the
triples). Denote by H(t) the set {r ∈ G : H(t)(r) = 0} of “good” challenges.

As the first round challenge R is shared across executions, if the malicious prover wishes to
correct τ1 out of τ executions, then the probability of this happening is highest when at least τ1 of
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the zero sets H(t) are identical. In this case, the probability that R is a “good” challenge for these
τ1 executions is exactly

m− 1

|G|
,

independently of τ1. This implies that, here, the distribution W of εindep
ni can take any value between

1 and τ with this probability, depending on the prover’s strategy, and is 0 otherwise.
Following the same reasoning, we have that the probability of sampling a “good” challenge for

τ ′ executions in the intermediary rounds or the final rounds can be as high as

2(k − 1)

|G| − k
or

2k

|G| − k
,

respectively, when the prover cheats identically across these τ ′ executions. Indeed, even in the final
round when the h polynomial is randomised, since the prover also controls ΠRand,the sets of zeros
can still be made identical. Similarly, this implies that the Xj and Y distributions can here also
take any value between 1 and τ with the above fixed probabilities.

Only the Z distribution of εindep
ni remains the same due to the independent sampling of the τ

challenges for the opening of the views of n− 1 parties in each execution. Putting this all together
implies that the soundness of the non-interactive protocol, with identical RandomCoin challenges
for all τ parallel executions is given by

εident
ni = max

(τ1,...,τr−1)
Pr

[
W +

∑
Xj + Y + Z = τ

∣∣∣ r−1∑
i=1

τi ≤ τ

]
,

where

W = max
q1
{Wq1}, Wq1 ∈ {0, τ1} and Pr[Wq1 = τ1] = pR;

Xj = max
qj,2
{Xqj,2}, Xj,q2 ∈ {0, τj+1} and Pr[Xj,q2 = τj+1] = pint;

Y = max
q3
{Yq3}, Yq3 ∈ {0, τr−1} and Pr[Yq3 = τr−1] = pfin;

Z = max
q4
{Zq4}, Zq4 ∼ B

τ −W − blogk mc−1∑
j=1

Xj − Y,
1

N

 .

7 Parameters and Performance

We describe our implementation and then present the performance of our system and compare
them with other related works. Finally, we compare our signature scheme with Picnic and Banquet.

7.1 Parameters

We first describe how we choose parameters for our tests. The soundness of our scheme depends
on many parameters, namely the number of parties n, the compression factor k, the extension
field ` and the number of repetition τ . We already observed that we can trade off computation
and communication using different values for n, so that increasing the number of parties will
increase prover and verifier running times but it will decrease the proof size. The compression
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|C| = 210 |C| = 214 |C| = 216 |C| = 220

n k τ size tP tV k τ size tP tV k τ size tP tV k τ size tP tV
(KB) (ms) (ms) (KB) (ms) (ms) (KB) (ms) (ms) (KB) (s) (s)

16 8 11 6 2.4 2.3 16 11 32 39 32 16 11 102 163 159 32 11 1464 3.08s 2.91s
16 16 11 8 2.6 2.4 32 11 37 43 36 32 11 108 172 167 64 11 1476 3.01s 2.82s

32 8 9 5 3.8 3.6 16 9 26 60 58 16 9 334 83 258 32 9 1198 4.91s 4.71s
32 16 9 7 4.0 3.8 32 9 30 67 64 32 9 333 88 269 64 9 1208 4.76s 4.55s

64 8 7 4 6.7 6.5 16 7 20 92 89 16 7 297 65 394 32 7 932 7.48s 7.20s
64 16 7 5 6.9 6.6 32 7 24 102 99 32 7 294 69 413 64 7 940 7.24s 6.93s

128 8 6 3 11.0 10.6 16 6 17 155 150 16 6 55 707 677 32 6 799 13.4s 12.9s
128 16 6 4 9.7 9.3 32 6 20 162 156 32 6 58 732 701 64 6 805 12.9s 12.2s

Table 3: Performance of our interactive system for different choice of parameters to achieve 40-bit of security. n is
the number of parties in the MPC protocol, the extension field is G = F264 , k is the compression parameter and τ
the number of repetitions.

|C| = 210 |C| = 212 |C| = 214 |C| = 216 |C| = 218 |C| = 220

n k τ size tP tV k τ size tP tV k τ size tP tV k τ size tP tV k τ size tP tV k τ size tP tV
(KB) (ms) (ms) (KB) (ms) (ms) (KB) (ms) (ms) (KB) (ms) (ms) (KB) (s) (s) (KB) (s) (s)

16 8 40 24 9 8 8 42 45 35 32 16 40 117 130 130 16 42 389 616 603 16 43 1423 2.5s 2.4s 32 43 5726 11s 11s
16 16 38 29 8 8 16 40 54 31 30 32 38 128 131 130 32 40 392 604 597 32 41 1379 2.4s 2.4s 64 41 5504 10s 9s

32 8 34 20 15 14 8 36 39 65 64 16 34 100 218 218 16 36 334 1015 1015 16 37 1220 4.2s 4.1s 32 37 4927 19s 18s
32 16 32 24 13 13 16 34 46 57 57 32 32 108 210 209 32 34 333 1004 998 32 35 1172 4.1s 4.0s 64 35 4698 17s 17s

64 8 30 18 32 32 8 32 35 112 110 16 30 88 382 381 16 32 297 1798 1796 16 33 1084 7.4s 7.2s 32 33 4394 34s 33s
64 16 28 21 24 24 16 30 40 100 98 32 28 94 360 359 32 30 294 1734 1744 32 31 1034 7.3s 7.2s 64 31 4162 31s 29s

128 8 27 16 48 48 8 29 32 202 201 16 27 79 654 670 16 29 269 3176 3220 16 30 983 14s 14s 32 30 3995 62s 62s
128 16 25 19 42 43 16 27 36 173 171 32 25 84 608 621 32 27 265 3063 3133 32 28 931 13.7s 13.8s 64 28 3759 56s 56s

Table 4: Performance of NILimbo for different choice of parameters to achieve 128-bit of security. n is the number
of parties in the MPC protocol, the extension field is G = F264 , k is the compression parameter and τ the number of
repetitions.

factor determines the round complexity of the protocol according to Theorem 3 and its soundness.
In general, large values of k will allow better running times and larger proof size. The extension
field greatly impact on the proof size, but not that much on the computation. We noticed that
computation on F264 were slightly faster, and we prevalently chose this extension field to run the
checking step of our protocol.

Finally, in our experiments we only used fixed values of k, but the implementation can be
optimized allowing different values of k, for example by considering divisors of m, where m is the
number of multiplication gates. Since we chose k independently of m, we need to create random
public triple values in order to perform the compression step.

7.2 Implementation

We implemented our protocol in C++ using the same dedicated field arithmetic implementation
as Banquet [BdSGK+21], which we extended by adding support for computing in GF (264). We
also reduced as much as possible the number of polynomial interpolations that are computed.
In particular, when the prover needs to compute the polynomials f, g, h during the first part of
the compression rounds, we first reconstruct the plain value from the shares and then do the
interpolations.

In addition to the above, when we want to evaluate a binary circuit, we pack the parties’ shares
by chunks of 64 in a machine word. Therefore, instead of repeating the evaluation of the circuit
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tP (ms) tV (ms) Size
(n, k, τ) 1 thread 4 threads 1 thread 4 threads (KB)

(8,16,48) 143 83 142 64 180
(16,32,36) 195 100 194 79 150
(32,16,33) 296 144 290 114 121
(64,16,29) 505 229 498 181 110

Table 5: NI SHA-256: Performance of our system for proving knowledge of a SHA-256 pre-image in the non-interactive
setting for various number of parties n

for each party independently, a single gate can be computed for 64 parties at once using bitwise
operations.

7.3 Performance

All the benchmarks were done on a desktop computer with an Intel i9-9900 (3.1GHz) CPU
and 128GB of RAM. All experiments were run locally. For each experiment, we run it either on a
single thread or on 4 threads, and we give the average over 100 runs in milliseconds. Although it
may slightly vary depending on the parameters used for generating the proof, we try to give some
insight on the computational complexity of each of the steps described in Figures 5 and 6. Thanks
to the packing technique we use in the binary case, the evaluation of the circuit in MPC, which
corresponds to creating the first oracle, is fast and requires less than 10% of the running time.
Then, the most computationally heavy task is to lift the shares of each party and to transform
them to share of an inner product, this step requires 60% of the total running time. Eventually,
about 40% of the prover time is spent doing the compression rounds.

We run all the experiments in the interactive setting using the same challenge across all the τ
repetitions, but we used independent challenges for the non-interactive case. This is because in the
non-interactive case we need very large extension fields to achieve the desired soundness, as shown
in Section 6.2. We plan to further investigate on this direction in future works.

In our experiments we set the computational security parameter κ = 128 and the statistical
security parameter λ = 40.

SHA-256. Verifying a SHA-256 pre-image in zero knowledge with 2−40 soundness error, the size
of the proof is about 42KB, with a prover running time of 53ms and a verifier running time of
47ms (Table 1) on a single threads. For Table 1 we used the Bristol Fashion circuit available
here2. The circuit is made of 22573 AND gates and 135073 gates in total. As a comparison, for the
same soundness error Ligero’s proof size is about 44KB, with a verifier and prover running time
of respectively 140ms and 62ms. We also increased the number of threads to increase prover’s and
verifier’s performance. Performance of NILimbo for verifying SHA-256 is given in Table 5.

Binary circuits. We tested Limbo (Table 3) and NILimbo (Table 4) on random binary circuits of
different size. In Table 6, we report the performance of our system on 4 threads with n = 16 and
n = 8 and different circuit size. Our protocol can evaluate 220 AND gates in about 8.7 (resp. 4.7
sec) in the non-interactive setting with a proof size of 6.5MB with 8 parties with one thread (resp.
4 threads), and 3 sec (resp. 0.987 sec) in the interactive setting with 6 rounds of communication
and total communication of 1.2MB with one thread (resp. 4 threads).

2 https://homes.esat.kuleuven.be/˜nsmart/MPC/sha256.txt
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n = 8 n = 16
|C| size tP (s) tV(s) size tP (s) tV (s)

214 140(KB) 0.052 0.039 117 (KB) 0.069 0.052
218 1.6 (MB) 1.06 0.7 1.4 (MB) 1.47 1.04
220 6.5 (MB) 4.7 2.9 5.5 (MB) 6.4 4.32
221 13 (MB) 9.49 5.8 10 (MB) 13.9 9.5

Table 6: Performance of NILimbo for n = 16 and n = 8 to achieve 128-bit of security with 4 threads.

tP (s) tV (s) Comm
M 1 thread 4 threads 1 thread 4 threads (KB)

64 0.26 0.17 0.23 0.14 34
96 0.79 0.53 0.73 0.48 61
128 2.3 1.41 2.1 1.29 97
256 20 11 19 10.7 340
324 34 21 32 19 545
400 62 38 57 32 834

Table 7: Performance for proving matrix multiplication with soundness 2−40 with n = 8

Matrix multiplication. We also tested Limbo for verifying matrix multiplications. Instead of using
the naive O(n3) multiplication algorithm, we use an inner product based protocol. In particular,
given two M ×M matrices, during the MPC evaluations the sender parties PS directly injects the
M2 values corresponding to the resulting matrix, while in the checking phase parties verify that
these M2 inner products are correctly computed. Note that this approach only requires a minor
modification to the our basic protocol and soundness analysis, however it does not consider the
special structure of these inner products (e.g., some of them are correlated), so it can be further
optimized. In Table 7, we show the performance of Limbo for different values of M . We note that,
even with this simple variant of the protocol, there is a big advantage of going beyond the gate-
by-gate approach both in term of computation and communication. For example, if M = 128 the
protocol based on inner products is about 30% faster and uses about 38x less communication than
the one based on multiplication gates.

7.4 Comparison with related works

We compare the performance of our scheme with the most efficient MPCitH schemes for circuit
satisfiability, namely Ligero, which has the best communication complexity, and KKW, which offers
the best run times. Ligero [AHIV17] reports figures for soundness error 2−40, so we compare it with
our interactive zero-knowledge argument. Table 3 gives the performance of our interactive system
for different choice of parameters to achieve 40-bit of security. Comparing these figures with Ligero,
our system gives both better run times and proof size for circuit up to roughly 218 multiplication
gates. For a circuit of size 220 AND gates, Ligero requires more than 10 sec, whereas for the
same circuit, Limbo only needs 3 sec; Ligero++, which supports R1CS, reported prover’s running
times about 2x slower than Ligero. For larger circuits the communication complexity of Ligero and
Ligero++ is smaller than that of our protocol.

We also compare with KKW [KKW18], which has better computational performance than
Ligero. For the range of parameters given in [KKW18], we observe (Table 3) that our protocol
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offers shorter proofs (up to 2x shorter for large circuits), and faster proof generation (up to 2x)
assuming the same number of parties and security parameter. KKW implementation has been
recently heavily optimized so to handle the verification of 100 SHA-256 verification (i.e. 2227200
multiplication gates) in 4.76s. Our current implementation is incomparable with Reverie as it can
be potentially optimised in many ways, however NILimbo can already prove 221 AND gates in
9.49 sec (Table 6) with 4 threads. This is only 2.2 times slower than running times reported for the
optimized Reverie implementation on a 32 cores machine, which has a proof size of 22MB compared
to 14MB of NILimbo. We plan to further optimise our implementation in future works.

We also stress that our system is, in theory, more efficient when used for arithmetic circuits,
and that we could further improve our run times by choosing different values for the compression
parameter k, for example larger for larger circuits. We also plan to perform more tests in these
directions.

7.5 Limbo Signature

Scheme n Rep. Prover (ms) Verifier (ms) Communication (bytes)

Banquet 16 11 2.79 1.78 4484
32 9 3.51 2.66 3836
64 7 4.61 3.85 3124
128 6 7.17 6.39 2792

Picnic3 16 (72, 12) 1.73 1.33 4070
16 (48, 16) 1.16 0.92 4750

Our 16 10 1.09 0.99 3967
32 8 1.69 1.57 3195
64 7 2.89 2.71 2811
128 6 4.93 4.65 2425

Table 8: Benchmarks of interactive identification schemes at L1 security. We used a compression factor k = 4 and
extension field F28` , with ` = 4.

Banquet AES-128 Limbo-Sign AES-128
N (`, τ) tS tV size (k, `, τ) tS tV size

(ms) (ms) bytes (ms) (ms) bytes

16 (4, 41) 6.34 4.84 19776 (6, 6, 40) 2.7 2 21520

31 (4,35) 9.11 7.53 17456 (6,6,33) 4.6 4.2 18310

57 (6, 27) 12.47 10.77 16188 (6,6,29) 7.3 6.7 16574

107 (4,28) 24.19 21.73 14880 (6,8, 28) 11.1 10 15216

255 (4, 25) 50.95 46.80 13696 (6,6,24) 29 27 14512
Table 9: Comparison between the communication cost of Banquet and the new protocol for AES-128. Picnic for the
same security level reports tS = 5.33ms, tV = 4.03ms and size 12466 bytes.

We use our zero-knowledge protocol to build a Picnic-like post-quantum signature scheme based
on AES using the same methodology as BBQ [dDOS19] and Banquet [BdSGK+21]. More precisely,
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Banquet AES-192 Limbo-Sign AES-192
N (`, τ) tS tV size (k, `, τ) tS tV size

(ms) (ms) bytes (ms) (ms) bytes

16 ( 4, 62) 17.23 13.16 51216 (8,6,62) 7.1 6.4 50876

31 (4,53) 25.86 21.72 45072 (8,6,51) 12 11.6 42694

64 (6, 40) 39.07 34.16 39808 (8,6,45) 21.4 19.8 37287

116 (6, 36) 62.07 55.56 36704 (8,6,38) 33.6 30 33068

255 (6 , 32) 119.07 108.50 33408 (6,6,35) 80 76.3 29596
Table 10: Comparison between the communication cost of Banquet and the new protocol for AES-192. Picnic for
the same security level reports tS = 11.01ms, tV = 8.49ms and size 27405 bytes.

Banquet AES-256 Limbo-Sign AES-256
N (`, τ) tS tV size (k, `, τ) tS tV size

(ms) (ms) bytes (ms) (ms) bytes

16 (4, 84) 27.63 21.54 83488 (8, 6, 82) 11.3 9.9 83764

31 (6, 63) 37.67 31.77 73114 (8,6,70) 19.1 17.5 73788

62 (6, 54) 60.71 53.47 64420 (8,6,58) 36.2 30.6 63044

119 (6, 48) 100.41 90.58 58816 (8,6,52) 58.2 54.2 58216

256 (6, 43) 190.73 174.54 54082 (6,8,46) 125 117 53004
Table 11: Comparison between the communication cost of Banquet and the new protocol for AES-256.Picnic for
the same security level reports tS = 18.82ms, tV = 13.56ms and size 48437 bytes.

the scheme works as follows. Given a private key k and public values (x, y), such that AESk(x) = y, a
signature on a message µ is generated by binding together µ with a non-interactive zero-knowledge
proof of knowledge of k.

We compare our resulting signature scheme with Picnic and Banquet, which is, as far as we
know, the fastest MPCitH-based signature using AES, for security levels L1,L3,L5 as specified by
NIST [oST20]. In Tables 9, 10 and 11 we show this comparison for different sets of parameters.
Across all three security levels, Limbo not only provides a significant speed-up over Banquet in both
Prover and Verifier running time but also produces consistently shorter signatures. These are also
much closer to (and sometimes better than) the performance of Picnic both in running times (for
n = 16) and in signature size (for n = 255).

In Table 8 we compare Limbo used as an interactive identification scheme with the equivalent
variant of Picnic. Note that for Picnic, which is based on KKW, when we show the number of repe-
titions we consider the total number of repetitions and the online executions, because the underline
MPC protocol is in the preprocessing model. As before, using more parties, this communication
can be further reduced (down to 2.43KB) at the expense of slightly longer computation time (still
under 5ms for both Prover and Verifier).
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berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 536–547. Springer, Heidelberg, July 2008.

LDK+20. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien
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A Amortized Evaluations for the Multi-instance case

While our MPC and ZK protocols work over fields of any size, the multiplications check requires
large fields to obtain a reasonable soundness error. So, when the evaluation field F is small, for
example when F = F2, this step seems to be wasteful. For this reason, it would be convenient to
batch several checks into a single one. Ideally, when we prove the satisfiability of a certain circuit, it
would be helpful to perform the check of all the τ repetitions needed to obtain the desired soundness,
in one go. Unfortunately, since in the ZK protocol the verifier opens different sets of parties across
the τ MPC evaluations, packing these checks together seems difficult, if not impossible. However,
we can apply the same idea to batch together the checking phases in the case of multiple evaluations
of the same circuit.

More precisely, if we want to prove satisfiability of a certain circuit multiple times, say h, we can
amortized these instances using the reverse multiplication-friendly embedding (RMFE) [BMN18,CCXY18],
which provides a way to embed the ring Fhq , for some h > 1, into a field Fqs , for some s > h, so that
coordinate-wise products “map” to multiplications in the extension field. More formally, we recall
the following definition.

Definition 9. Given a prime power q and h, s ∈ N, let us consider two Fq-linear maps φ : Fhq →
Fqs, and ψ : Fqs → Fhq . A pair (φ, ψ)q is called an (h, s)-reverse multiplication-friendly embedding

(RMFE) if ∀x,y ∈ Fhq it holds:

x� y = ψ(φ(x) · φ(y)),

where � is the component-wise product.

Note that φ is an injective map. In the following, we only focus on the case q = 2 and leave
other cases to future works. In [CCXY18], the authors give both asymptotic and concrete results
on the existence of RMFE. In particular:

Lemma 4. For all u ≤ 33, there exists a (3u, 10u − 5)2-RMFE. For any u ≤ 16, there exists a
(2u, 8u)2-RMFE.
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Different Options to Improve Efficiency We explore different options in order to deal with
the multi-instance case with better efficiency. For each of these alternatives we briefly discuss ad-
vantages and disadvantages.

Check with identical challenges. The first approach simply consists of τ ·h MPC evaluations of
the circuit over F2, followed by a checking phase. We can apply the optimization described in the
previous section and use the some challenge across all the evaluations. This option will require, at
least in the non-interactive case, bigger τ , but this can be mitigated in part by using larger exten-
sion fields for the check. We expect in this case an improvement in prover run times comparable to
that observed for the single instance case.

Evaluations in extension fields. Alternatively, we can use a RMFE and “pack” h MPC evalua-
tions over F2 into a single evaluation over F2s , and hence perform the entire proof and verification
in this extension field. The advantage of this approach is to perform the computation only one, but
over a larger field. In term of communication this approach will be roughly 2/3 times more costly.

Check in extension fields. Our third option works as follows. In Phase 1, the prover runs h MPC
evaluations over F2 in its head, exactly as described in the previous sections. Before the next phases,
P, using a (h, s)2 (φ, ψ)-RMFE, consistently maps all the h · m multiplication triples in F2 that
need to be checked to m triples in F2s , and proceeds to the next phases. In more details, given 〈xi〉,
〈yi〉, 〈zi〉 ∈ Fh2 , we can apply φ to these m vectors and obtains φ(xi) = xi, φ(yi) = yi, φ(zi) = zi.
Note that if x� y = z� 1, then

ψ(φ(xi) · φ(yi)− φ(zi) · φ(1)) = 0. (2)

Setting zi · φ(1) = ξi, the prover needs to prove that the relation above holds. The analysis of the
soundness of this option differs from that done in the previous sections, so we leave it for future
works. However, we note that, if the maps φ, ψ are efficiently implemented, this approach can lead
potentially to better prover run times.
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