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Abstract

The inherent difficulty of maintaining stateful environments over long periods of time
gave rise to the paradigm of serverless computing, where mostly-stateless components are
deployed on demand to handle computation tasks, and are teared down once their task
is complete. Serverless architecture could offer the added benefit of improved resistance
to targeted denial-of-service attacks, by hiding from the attacker the physical machines
involved in the protocol until after they complete their work. Realizing such protection,
however, requires that the protocol only uses stateless parties, where each party sends only
one message and never needs to speaks again. Perhaps the most famous example of this
style of protocols is the Nakamoto consensus protocol used in Bitcoin: A peer can win the
right to produce the next block by running a local lottery (mining), all while staying covert.
Once the right has been won, it is executed by sending a single message. After that, the
physical entity never needs to send more messages.

We refer to this as the You-Only-Speak-Once (YOSO) property, and initiate the formal
study of it within a new model that we call the YOSO model. Our model is centered
around the notion of roles, which are stateless parties that can only send a single message.
Crucially, our modelling separates the protocol design, that only uses roles, from the role-
assignment mechanism, that assigns roles to actual physical entities. This separation enables
studying these two aspects separately, and our YOSO model in this work only deals with
the protocol-design aspect.

We describe several techniques for achieving YOSO MPC; both computational and in-
formation theoretic. Our protocols are synchronous and provide guaranteed output delivery
(which is important for application domains such as blockchains), assuming honest major-
ity of roles in every time step. We describe a practically efficient computationally-secure
protocol, as well as a proof-of-concept information theoretically secure protocol.
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1 Introduction

A somewhat surprising feature of our networked world is just how hard it is to keep a working
stateful execution environment over long periods of time. Even in non-adversarial settings, it is
a major challenge to keep a server operational and connected through software updates, local
physical events, and global infrastructure interruptions. This becomes even harder in adversarial
environments. Consider for example a network adversary targeting a specific protocol, watching
the communication network and mounting a targeted denial of service (DoS) attack on any
machine that sends a message in this protocol. In high-stake environments, one also must
worry about near-instant malicious compromise, unleashed by well equipped adversaries with a
stash of zero-day exploits.

One approach for mitigating this issue is the paradigm of serverless computing, where mostly-
stateless components are deployed on demand to handle computation tasks, and are torn down
once their task is complete. In addition to economic benefits, a protocol built from such com-
ponents could offer better resistance against strong adversaries by hiding the physical machines
that play a role in the protocol, until after they complete their work and send their messages.
To realize this protection, however, the protocol must utilize only stateless components, making
it harder to design.

Perhaps the best-known example of this style of protocol is the Nakamoto consensus protocol
used in Bitcoin [23]. A salient property of the Bitcoin design is that a peer can win the right to
produce the next block by running a local lottery (mining), all while staying covert. Once the
right has been won, it is executed by sending a single message. After that, the physical entity
never needs to send more messages.1 Another example is the Algorand consensus protocol [8]
with its player-replaceability property.

In this work we initiate a formal study of protocols of this style, which we refer to as You-
Only-Speak-Once (YOSO). An important conceptual contribution of our work is the (relatively)
clean modeling of such protocols, centered around their use of roles (which is the name we use
for those one-time stateless parties). Crucially, our modeling separates the protocol design using
roles from the role-assignment functionality that assigns the roles to actual physical machines.

This separation lets us study the protocol design problem on its own, freeing us from having
to specify the role-assignment implementation which is necessarily very system dependent: a
proof-of-work blockchain will have very different role-assignment mechanisms from a proof-of-
stake blockchain, and a traditional cloud environment will use yet other mechanisms. However,
all these systems could use the same protocol for secure computation once the roles have been
properly assigned. On the technical side we make the following contributions:

• We present a formal model for defining and studying such protocols, called the YOSO
model, which in particular codifies the separation between role-assignment and protocol
execution and codifies the notion of only speaking once. The YOSO model is cast within
the UC framework [5] and therefore can draw on the existing body of research on UC
security. An overview of the model is provided in Section 2, and a more detailed treatment
can be found in Appendix A.

• We also devise tools for working in the YOSO model, and describe two different secure
MPC protocols. Our main solution presented in Section 3 is an information theoretic
proof-of-concept protocol that provides statistical security 2. Additionally, in Section 4

1The same entity may later win the right to produce another block, but no secret state has to be maintained
between the production of the two blocks, so the next winner might logically and physically be considered a
separate entity.

2As we explain below, the restrictions of working in the YOSO model are so severe that a priory it was not
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we also describe a computationally-secure protocol. Both protocols are synchronous and
provide guaranteed output delivery (which is important for our application domain), as-
suming an honest majority of roles in every protocol step.

• We show that an information theoretic secure YOSO MPC can be compiled into a natural
UC secure protocol running on a toy model of a blockchain with role assignment. This is
meant as a sanity check of the abstract role-based YOSO model. It shows that protocols
developed in this model can indeed be compiled to practice. We show that if we start
with a static-secure (analogously, adaptive-secure) YOSO protocol, we can get a static-
secure (analogously, adaptive-secure) UC protocol with essentially the same corruption
threshold.

1.1 The YOSO Model

We introduce the YOSO model to make it easy to start studying YOSO MPC independently
of blockchain and role assignment.

Role-based computation In the YOSO model, participants in protocols are called roles
rather than parties or nodes or machines. The reason for the name “roles” is that we usually
think of these one-time parties as playing some role in a protocol. Some examples of roles
include “Party #3 in the 2nd VSS protocol on the 8th round”, “the prover in the 6th NIZK”,
etc. Formally, a role is just a stateless party that can only send a single message before it is
destroyed, and a protocol is an interaction between roles. Throughout this manuscript we use
the following terminology:

Roles: are abstract formal entities that perform the protocol actions and communicate with
other roles.

Nodes/Machines: refer to stateful long-living entities that the adversary can identify and
target for corruption. These can be physical or virtual machines, that would typically
have some identifying characteristics such as an IP address that can be used by the
adversary to attack them.

We sometimes use the term parties, but only in informal discussions and in contexts where the
distinction between roles and machines is immaterial.

Importantly, roles are detached from machines, and mapping of machines to roles happens
at execution time. A protocol in the YOSO model will inevitably be executed alongside a role-
assignment functionality, and the security of the protocol will rely on the guarantees provided
by that functionality. Ideally, this assignment should be unknown to the attacker until after
the machine plays its role and sends a message, hence limiting the adversary’s ability to target
the role for corruption.

The YOSO model can be used with different role-assignment functionalities with different
guarantees. In this work we mainly consider a simple random-assignment functionality: it
assigns each role to a random machine from among a universe of available ones, and hides that
assignment from the adversary (unless the chosen machine is already corrupted). An adversary
that corrupts machines will therefore be unable to predict which roles will be corrupted; upon
corruption of a machine the adversary will be handed the random roles that are mapped to that
machine. This allows for a simplified view of the adversary where all corruptions are random.

clear to us that information-theoretical security is even possible in the “2t + 1 regime”. Indeed this work began
as an attempt to prove that no such protocols exist.

2



We note that when a YOSO protocol is executed (with some specific role-assignment func-
tionality), it is likely that over time the same machine can be assigned to different roles. But
its state of an already executed role will be erased at the end of each role execution, just before
it sends its only message in the protocol. Therefore a future corruption will not corrupt an
already executed role.

An adversary might, however, by corrupting a single machine corrupt several future roles.
If there are few machines compared to roles this will lead to a higher variance in how many
roles are corrupted. To mitigate this the level of tolerated corruption of roles needs to be set
higher than the tolerated level of corruption of machines.

1.2 MPC in the YOSO Model

Motivation One use-case of YOSO-style protocols was recently considered by Choudhuri et
al. [10]: it involves volunteer-based participation in a computation, where requiring that a party
only speaks once enables participation from parties who cannot commit their resources for long.
We note that such a context seems to require a closed system with known identities; otherwise
an adversary can volunteer enough malicious participants to form a corrupt majority, at least
for a brief window, which may suffice for endangering the security of the computation.

When it comes to open systems, a compelling motivation for these protocols is scalable
computation in the presence of an adaptive fail-stop adversary (a powerful DoS adversary, as
noted earlier). Imagine a large number — perhaps millions — of nodes that want to engage in
a secure computation in the presence of such an adversary. Assuming that the DoS adversary
cannot take down more than some threshold of the nodes, running an MPC protocol among all
of them would achieve the nodes’ goals. However, running classical MPC protocols among large
numbers of nodes is expensive. All of the nodes typically need to communicate with all of their
peers, creating a prohibitive communication load. YOSO MPC enables the computation to be
run by a small subset of the nodes, with an independent subset — or committee — participating
in every round. YOSO MPC thwarts an adaptive DoS adversary because the adversary is unable
to predict which fail-stops will be useful to foil the security; thus it creates the opportunity for
execution of the protocol with small committees resulting in communication that is sub-linear
in the number of nodes in the network.

As a more concrete example of a scenario where such scalable computation would be nec-
essary, consider “MPC as a service”. That is, an outsourced computation service where clients
submit inputs for a joint computation so that the privacy of the inputs and the correctness
of the output are guaranteed, even if a fraction of the provider’s servers are adversarially con-
trolled. However, while full corruption of servers is expensive, dedicated denial of service against
targeted servers is an easier attack to carry out, and the protocol should be able to withstand
it. YOSO MPC offers a solution that remains secure under these realistic conditions.

Role Assignment for YOSO MPC In order to reap the benefits of such scalable YOSO
MPC, it is important to assign YOSO MPC roles to machines in a scalable way without revealing
the role assignment before the roles need to speak. Furthermore, the assigned machines should
be able to receive secret messages (even while the message senders do not know their identities).
This is challenging since, being able to speak only once, the machine having won a role cannot
first make a public key available, and then receive messages and execute its role in the protocol.
This would involve speaking at least twice.

One solution that was recently proposed by Benhamouda et al. [3] involves the use of
nominating committees: each machine has a public key for an encryption scheme allowing
the rerandomization of public keys. For each role R there will be a delegator role D. (We

3



call R the delegate, and D the delegator.) First a machine is assigned a delegator role D
using, e.g., cryptographic sortition (or just by solving some puzzle). Then the delegator D
will pick, uniformly at random, another machine to play the delegate role R. It will take that
machine’s public key pki, rerandomize it into p̃ki, and publish p̃ki. Note that p̃ki does not reveal
the identity of the machine now assigned to R; however, it enables other roles to send secret
messages to the delegate R by encrypting to p̃ki. Finally, the delegate R will execute the role.
One drawback of this approach is that the role R will be corrupt if the delegator is corrupt or
if the delegate is corrupt. This essentially doubles the corruption budget of the adversary.

It is an interesting research direction to develop more practical and more secure role as-
signment mechanisms. However, this is orthogonal to the design of MPC protocols which will
be run by the roles, which is the focus of our work. In Section 5 we give a toy example of
compiling a YOSO protocol to run on top of a blockchain with role assignment to illuminate
this compelling use case.

Parameters of YOSO MPC Protocols When designing a YOSO MPC protocol there is
a number of interesting parameters to consider. In addition to the many “generic” aspects of
MPC (such as corruption type and threshold, hardness assumptions, trusted setup, security
guarantees, etc.) YOSO MPC protocols have some new parameters in their design.

• Future/Past Horizon: When a role speaks, it may send private messages to roles intended
to speak in future rounds. The future horizon describes how far into the future a role
may need to speak (similarly past horizon is how far back a role may need to listen).
The method of assigning roles impacts and is impacted by the future and past horizons
and should be taken into consideration. For example, for proof-of-stake systems it is
undesirable to assign roles in advance using the current stake distribution. Or if roles are
assigned on the fly parties would need to read the history of communication far into the
past. One should therefore try to use as short a future/past horizon as possible.

• Dynamic and Public Execution Time: Static execution time refers to the ability to know
ahead of time when a role would speak in the protocol, contrasted with the dynamic case
where the time to speak is only determined at run-time. As YOSO protocols are ideal
for serverless architectures where servers are only running when they need to act, static
execution time may save resources (e.g. cloud rental).
A related distinction (in the dynamic case) is whether only the role itself can determine
when it is going to speak, or whether it can be determined publicly. (This could make a
difference, e.g., in agreement protocols that must accumulate enough votes before moving
to the next phase, we may want to know if we still need to wait for the vote from the role
or can we assume that it crashed and will never vote.)

1.2.1 YOSO MPC from Additive Homomorphic Threshold Encryption

Our first technical contribution is a YOSO MPC in the computational setting with guaranteed
output delivery in a synchronous model, tolerating a dishonest minority of roles at any given
round. Specifically, in every round we will have some number n of roles that will form an
honest-majority committee. As stated, it falls to the role-assignment functionality to supply us
with committees with honest majority; in this work we allow ourselves to just assume that we
have them.

Given a supply of committees with honest majority, our construction is based on the CDN
protocol [11]. Informally, CDN requires a system-wide public key pk for an additively homo-
morphic threshold encryption scheme, where the secret key sk is shared among the committee
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members (with each member i holding ski). The participants then perform the entire computa-
tion using additive homomorphism, interspersed with public decryption of masked intermediate
values. The protocol uses Beaver triples that are generated on-the-fly to support multiplica-
tions; the secret key shares are used to open values in every round of Beaver triple use, and to
obtain the computation output at the end.

We note that CDN is already almost a YOSO protocol: the only state the participants need
is the secret key shares ski, and the only messages that they send are their decryption shares
(with the ciphertexts all being public). Providing the participants with shares of the global
secret key sk can be done, e.g., using the proactive handover protocol of Benhamouda et al. [3],
which is a YOSO protocol. In each protocol round, committee members get their decryption
shares, and then the committee decrypts the current batch of ciphertexts and reshares sk to the
next committee.

To get a YOSO protocol, we also need to generate the Beaver triples YOSO-style. We will use
two committees — CA and CB — to generate many triples of the form

(
Enc(a),Enc(b),Enc(ab)

)
,

which will be consumed by future committees during multiplications. We first have members Pi
of committee CA individually choose random ai’s and publish the ciphertexts ai = Enc(ai) along
with NIZK proofs that these are valid ciphertexts. All parties can use additive homomorphism
to obtain a, an encryption of the sum a of the ai’s. Then members Pj of committee CB will
individually choose random bj ’s and set bj = Enc(bj), then use additive homomorphism to
compute cj , an encryption of bja. Pj then publishes (bj , cj), along with proofs that they were
generated properly. All parties can use additive homomorphism to obtain b and c, encryptions
of the sums b of the bj ’s and c of the bja’s, respectively. (a, b, c) form a Beaver triple. Note that
as long as all the NIZK proofs are valid and there is at least one honest party in each committee
CA, CB, the triple is indeed a Beaver triple for the values a = ∑

i ai and b = ∑
j bj which are

unknown to the adversary.3
We note that another approach for achieving computational security would be to leverage

fully homomorphic encryption (FHE). This requires an FHE scheme with a one-message thresh-
old decryption procedure, and also one whose secret key could be maintained proactively using
a YOSO protocol. Proactive maintenance of the secret key can be achieved, e.g., using the
YOSO handover protocol of Benhamouda et al. [3], and one-round decryption can be achieved
using the techniques from Asharov et al. [1] and Mukherjee-Wichs [22] (after a one-time trusted
setup to generate the required evaluation key). In terms of complexity, an FHE-based solution
may be more efficient in number of rounds and total communication, but it requires much more
local computation, more per-round communication, and a more complicated trusted setup.

1.2.2 YOSO MPC from Information Theoretic Techniques.

Our second (and main) technical contribution is a proof-of-concept information theoretic YOSO
protocol with guaranteed output delivery in a synchronous model, tolerating any dishonest mi-
nority of roles at any given committee. This protocol does not need any trusted setup, but
it relies on secure point-to-point channels between roles,4 as well as a totally-ordered broad-
cast. One consequence of this protocol is statistically unbiased coin-flip in the YOSO model,
which (together with appropriate role-assignment) implies unbiased public randomness in public
blockchains via a YOSO protocol.

3If we have many honest parties in CA, CB (say m of them in each committee), then we can improve efficiency
and get Ω(m) triples at roughly the same bandwidth using standard techniques.

4We note again that such secure point-to-point channels would have to be implemented somehow, even though
the receiving role may not have been assigned yet to a machine. This task falls to the role-assignment functionality,
which we do not specify in this work.
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We begin by observing that YOSO is easy in the semi-honest model, in fact semi-honest
BGW [2] is basically already a YOSO protocol. The BGW protocol only uses secret sharing and
reconstruction: secret sharing can be done to a future committee (instead of the current one)
over point-to-point channels, and reconstruction can be done publicly. When implementing a
circuit, each multiplication gate has two committees, one for each round in the multiplication
protocol. For a gate with large fan-out, the gate committee will reshare their shares to the
committees of all the downstream gates.

It is only when switching to the malicious model when things get hard, as YOSO seems
to rule out many common information-theoretic techniques. In particular patterns such as
“committing” to a value and then being challenged on it, or even just using the same secret
value in many parts of the protocol, seem to inherently require a party to stick around and
speak more than once. The same can be said for cut-and-choose techniques that have a party
generating multiple values, being challenged to open (say) half of them, and if they are all valid
then the other half is used in the protocol.

It is also easy to see that simplistic solutions such as one party sending all its secret state to
another will not help: It would allow the adversary to get this secret value if either the sender or
the receiver are corrupted, hence amplifying the adversary’s power. A more promising avenue
is to let a party share its secret state with future committees (maybe more than one), and
have these committees emulate it in the future as needed. However, ensuring that a message
from one party is recoverable intact by future committees is challenging; this is essentially a
verifiable-secret-sharing (VSS) functionality. Ensuring that the party shares the same message
to multiple committees poses more challenges still. In Section 3 we address these challenges by
gradually developing stronger and stronger primitives that build on each other. Here we just
give a hint for some of the observations that enable these tools, and the various steps that go
into the construction.

Step 1, Future Broadcast (FBcast). In Section 3.2 we describe a Future Broadcast con-
struction that enables a party to prepare a message that should be broadcast in a future round.
This may be complicated in general, since we need to ensure that the message delivered in the
future is in fact the message of the party creating it, the kind of authenticity that often requires
VSS. But in our context we observe that we only need to ensure this authenticity for honest
party messages, as faulty parties can say whatever they want at any time. Hence we can assume
an honest dealer, which makes the design a lot easier.

Observe that in the computational setting this is straightforward to achieve. A party shares
its value using a Shamir secret sharing and also provides every share holder with a digital
signature on the share. When the value is reconstructed only shares with valid signatures are
taken into the interpolation, if they all lie on a degree-t polynomial polynomial then the constant
term is taken as the broadcasted message. In the IT setting we show that if the dealer is honest,
information theoretic MACs are sufficient to replace digital signatures in this construction.

Step 2, Distributed Commitment (DC). The construction of shares with digital signatures
in fact offers some guarantees also when the dealer is faulty. Even in that case, it fixes a value
at the time of sharing that the dealer is committed to, i.e., the constant term of the polynomial
of degree at most t interpolated through the honest parties’ shares (which might be null).
This is (roughly) what we call a Distributed Commitment functionality. We say that this is a
(distributed) commitment, because as with regular commitments, at the time when the value
is revealed a faulty dealer has the option not to expose its value at all and have the output be
null. Achieving distributed commitment in the IT setting is more complicated as we do not
have signatures.
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The next step is therefore fortifying the IT MACs into IT signatures (IT-SIG) to assure
that a value held by an honest party does in fact verify when presented. Our techniques build
on the VSS tools of Rabin and Ben-Or [26], but those techniques have to be adjusted to the
YOSO model as they are interactive. We transform the protocol from [26] into one where a
party knows in advance all the messages that it may need to send in the future. This makes it
possible to replace the multiple speaking rounds in the original protocol by having each party
share its future messages using FBcast to deliver the IT-SIG design (Section 3.3).

Thus, we create an IT-SIG that provides enough of the digital signature properties for the
purpose of realizing distributed commitments. See Section 3.4.

Step 3, Duplicate DC (DupDC) and VSS. Proceeding towards VSS, we again turn to
Rabin and Ben-Or [26], who utilize DC to achieve VSS via yet another cut-and-choose proof.
The complication in this proof is that one value needs to be used multiple times. In the YOSO
model, this requires creating duplicates of the same committed value, each to be used in a
different step of the proof. Letting the dealer run multiple DC’s does not work. It is a subtle
point to see why this is an issue. The first point is that we do not trust the honesty of any
single party. Thus, we would need the dealer to prove that all the committed values are the
same. This will create a problem because for the proof to go through the committee holding the
sharing would need to talk. Once they talk they have exhausted their one opportunity to speak
and now the duplicate of the value has been wasted. Thus, we need to create a mechanism that
duplicates values without “wasting” them. Surprisingly, we observe that our DC protocol allows
the share holders themselves to create duplicates of the commitment. This avoids the need for
additional proofs, the committee of shareholders is mostly honest so all the duplicates will be
the same by design (see Section 3.5). Here, yet again, we can make all elements of the proof
public, thus informing all parties of the result of the computation. This enables us to finalize
the design of the VSS (Section 3.6).

To eventually complete the design of the MPC we would also need duplicates of the VSS
as the same value might go into multiple gates and the committee holding the value can only
speak once. Luckily, we can derive the duplicates of the VSS directly from the duplicates of the
DC.

Step 4, Augmented VSS (AugVSS). We need one more level of sharing which we call
Augmented VSS. In this level of sharing we add the property that not only is a secret s shared
via VSS but also that all the shares that define the sharing of s are VSSed. This will enable
the MPC.

Step 5, Secure-MPC. Once we have AugVSS, getting information-theoretic secure-MPC can
be done using standard techniques that need to be adapted to the YOSO model. We maintain
the variant throughout the computation that the values on the wires are AugVSS. Hence we
prove:

Theorem. (informal) Any multiparty function F can be securely implemented by an information-
theoretic YOSO protocol in a network with broadcast and secret point-to-point channels, resilient
against a fraction τ < 1/2 of random Byzantine corruptions. The protocol additionally tolerates
any number of chosen, Byzantine corruptions of input roles and output roles.

It is crucial to practice that we can tolerate chosen corruptions of input roles and output
roles. Often the inputs and outputs are given by known clients that could more easily be
targeted with an attack.

7



Epilogue, Public Randomness. The cut-and-choose protocols in our design are described
using access to public randomness (which defines the challenges in those protocols). But where
can we get this public randomness? Producing true randomness in a distributed setting seems
to require MPC, creating a circular problem. Yet, we can show that our protocols remain secure
when using unpredictable (high min-entropy) values, rather than truly random ones. Producing
public unpredictable values in the honest-majority setting is much easier, and can even be done
in a YOSO fashion. Thus, we can complete the MPC without the need for true randomness.

Of course, once we are able to get full-blown MPC, we can use it to produce completely
uniform public randomness. This in particular solves the problem of obtaining public uniform
randomness on a public blockchain using a YOSO protocol, a problem that was explored by a
few previous works [6, 7].

On the impossibility of Garay et al. [15]. In [15] it was shown that any protocol in the
information theoretic model with a sublinear message complexity (in the number of parties)
cannot withstand adaptive corruptions of a fraction equal or greater than 1 −

√
0.5 of the

total number of parties. Yet, we claim that our IT protocol can withstand less than n/2
adaptive corruptions. This is not a contradiction. Our proof proceeds in two steps. In the
first we prove that our IT protocol is adaptively secure without the assumption of sublinear
message complexity. In the second part, when we prove the protocol that has sublinear message
complexity, we need to combine our IT protocol with some role-assignment mechanism. This
inevitably takes our protocol out of the IT model, making the lower bound of [15] not applicable.5

1.2.3 Compiling Abstract YOSO to Natural YOSO.

Our YOSO protocols are abstract in that they only consider abstract roles; we abstract away
role assignment and machines. To show that protocols designed in our abstract YOSO model
can be compiled in practice we give a simple UC functionality FRA modeling a blockchain
with role assignment. It will allow parties to post on the blockchain and it will spit out a
sequence of random public keys where the corresponding secret key is known by a random,
secret physical machine. Given a protocol π for the YOSO model using hybrid functionalities
FBC for broadcast and FSPP for secure point-to-point message transmission we can compile it
to the UC FRA-hybrid model. We use the blockchain for emulating FBC. We emulate FSPP by
encrypting under the public keys for future roles which occur on the blockchain.

We prove two results. We show that we can compile a YOSO protocol using hybrid func-
tionalities FBC and FSPP and which IT YOSO implements a secure function evaluation of F
against τ random, static corruptions into a UC secure protocol for the FRA-hybrid model which
tolerate ρ chosen, static corruptions for any ρ < τ . We show the same for adaptive security.

We can get security against chosen corruptions from security against random corruptions
because the adversary does not know the role-to-machine association chosen by FRA. So cor-
rupting a machine corrupts random roles.

1.3 Related Work

Protocols built out of ephemeral one-time roles became popular over the last decade with the
emergence of public blockchains, whose defining feature is not relying on long-term participants
with fixed identities. In particular, starting with Nakamoto’s consensus protocol [23], these
protocols became popular for achieving agreement in different settings, e.g., [21, 24, 8, 4].

5Specifically, the implementation of our communication channels which are needed to enable the solution can
only be achieved in the computational setting (in our specific case we assume a PKI and more).
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Only very recently did we start seeing attempts at using this style of protocols for other
cryptographic tasks: Benhamouda et al. [3] described how to use such protocols for long-
term maintenance of secrets on public blockchains, and mentioned the possibility of using these
secrets for various tasks, including for general-purpose secure computation. Blum et al. [4]
described how to implement input-free protocols in this model (such as coin tossing), and also
described informally an FHE-based solution for functions with input (similar to the one sketched
in Section 1.2.1 above).

Choudhuri et al. [10] described general-purpose secure-MPC protocols of this style (that
they call fluid), but only achieving security with abort. The motivation of Choudhuri et al.
was participants that volunteer for roles (in our terminology we would call it a volunteer-based
role-assignment functionality). We note that this type of role assignment seems to be tailored
to closed systems that have participants with known identities; otherwise an attacker can run
a Sybil attack and get a majority of roles just by volunteering many times.

2 YOSO for the Working Cryptographer

The YOSO model can be cast within the UC framework [5] by identifying the roles in YOSO
protocols with the party identifiers of the UC framework. This means that the roles are executed
by the UC model, which completely abstracts away how these roles are actually assigned to
physical machines; in fact, there is not even a notion of physical machines left. We then
introduce a notion of random corruptions that are out of the control of the adversary. This can
be used to model a set of roles which, in the now abstracted away real world, are hidden inside
random physical machines, and the adversary can corrupt machines of its choosing.

Below we always use the term roles rather than parties, just to stress that we are in the
YOSO model. This terminology is for didactic purposes only; a role in our formal model is
identical to a party in the normal UC framework. The “speak once” aspect is enforced by our
execution model, as we now explain.

2.1 YOSO Wrappers

To force roles to only speak once, we are explicitly “yosofying” them with a YOSO wrapper.
Namely, our execution model postulates a wrapper around each role, that kills it immediately
after the first time that it speaks. When that happens, the wrapper sends a Spoke token to
the environment, the adversary and all its sub-routines (sub-protocols and ideal functionalities).
Thereafter it responds with a Spoke token to the environment whenever activated, and only
sends Spoke to the sub-routines that it is connected to.

Defining what it means for a role to “speak for the first time” is somewhat nontrivial. The
main issue to tackle is whether sending messages to functionalities constitute speaking. To see
the issue, consider a protocol Π (that implements some functionality F), in which a role R must
listen for many incoming messages before deciding to send a message. In this case, the F-hybrid
model could have the role R sending its input to F very early, but the implementation would
have R actually speaking much later.

To account for that, we let functionalities reply to parties with a special Spoke token. The
functionality can freely choose when to send this token, and the YOSO wrapper will kill the role
as soon as it receives a Spoke token from any functionality. For example, a communication-
channel functionality will reply with a Spoke token as soon as a party sends anything on it,
while a higher-level functionality may trigger a Spoke token based on some input from the
adversary. Note that when a communication channel outputs Spoke to a role, the role will
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pass it on to all its sub-routines and then its environment/outer protocol. Hence the entire
composed role will be crashed.

We denote the “yosofied” role R by YoS(R), and the protocol that we get by yosofying all
the roles in Π is denoted by YoS(Π).

2.2 Random Corruptions

In addition to the usual corruptions of the UC model we also model random corruptions in the
YOSO model — that is, corruptions out of the control of the adversary.

We do this without changing the UC framework itself. Recall that in UC a corruption is
implemented by the adversary just writing (corrupt, cp) on the backdoor tape of the party,
where cp is some auxiliary information like the type of corruption: Byzantine, semi-honest, et
cetera. There is no explicit mechanism in UC for limiting how many parties are corrupted or with
which flavor. However, we often choose to analyze protocols under a restricted set of corruptions.
This is simple to do by only quantifying over adversaries adhering to this restriction. This is
easy to formulate for settings like “only semi-honest corruptions” or “at most a minority of the
parties”. However, it seems to be trickier for random corruptions: if the adversary corrupts a
role R, how can we know that R was chosen at random? We need a precise meaning for this in
order to be able to make precise security claims. For this purpose, we introduce a simple notion
called the corruption controller (CC), that runs as part of the environment. If an adversary
wants to do a random corruption, it asks the environment, which will pass the request to the
CC. Then, the CC will sample the corruption and inform the adversary which role was corrupted
(via the environment). If the environment sees the adversary is not respecting the decision of
the CC, then the environment will make a random guess in the security game. This enforces
that no distinguishing advantage comes from executions violating the will of the CC. We then
only prove security under the class of environments having such a CC and using it as intended.
We call this the class of controlled environments.

These random corruptions can be mixed freely with other corruption types, but it is illus-
trative to consider a generalization of the usual adversary structures to random corruptions.
We codify the corruption power of the adversary by means of corruption structure.

Let Role be the set of (names of) roles in the system. A corruption structure on Role is a set
of probability distributions over 2|Role|. A static adversary would choose at the beginning of the
execution a specific corruption distribution C ∈ C and give it to the CC via the environment.
Then the CC samples c ← C and give it to the adversary via the environment, and each
role R ∈ Role can now be corrupted if R ∈ c. Note that a corruption structure with only
point distributions (i.e. with a single probability-one pattern c ∈ C) corresponds exactly to
standard static corruptions with these allowed patterns, coinciding with the notion of general
adversary structure of Hirt and Maurer [19]. We stress that corruption structure represents
our assumption about the corruption power of the adversary when designing the protocol. It
is up to the role-assignment functionality to ensure that realistic adversaries will be unlikely to
exceed this power.

When considering adaptive corruptions several choices are possible. We consider two in this
work called sample corruptions and point corruptions. In sample corruptions the adversary
gives a distribution on a set of roles and gets one of them corrupted, within some bound. In
point corruptions the adversary can ask permission to corrupt a given role with some limited
probability. If the corruption fails the role stays honest forever after. It is interesting future
work to explore the relation between different notions of random corruptions.
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On the first input Tick sample (pkR, skR)← Gen for all R ∈ Correct∪Crash. Output pk to O. For all
R ∈ Leaky output skR to O. For each R ∈ Malicious query O to get the keys (pkR, skR) for R. Then
for each R ∈ Correct output (skR, { pkR′}R′∈Role) to R.

Figure 1: The ideal functionality FGen for a very simple PKI setup with key generator Gen.

2.3 YOSO Security

The notion of a protocol realizing a functionality is borrowed from the UC model. Namely, we
say that Π YOSO-realises F for some class of environments (possibly using random corruptions)
if YoS(Π) UC-realises F . The considered class of environments should be a subset of the
controlled environments.

It is easy to see that UC composition still holds for controlled environments. If an environ-
ment is composed with a protocol or simulator to define a new environment, as happens in the
proof of the UC theorem, then this composed environment still uses the CC of the original one.
The same holds when one composes an environment with a simulator. Therefore we get UC
composition also for controlled environments.

YOSO composition then follows directly from UC composition. Let Π be a protocol for the
G-hybrid model and assume that Π YOSO-realises F . Assume that Γ YOSO-realises G. As
usual in the UC framework let ΠG→Γ be the protocol Π with calls to G replaced by calls to
Γ. It follows that ΠG→Γ YOSO-realises F . To see this, note that the premises give us that
YoS(Π) UC-realises F and that YoS(Γ) UC-realises G. By the usual UC theorem we get that
YoS(Π)G→YoS(Γ) UC-realises F . Then use that by construction YoS(Π)G→YoS(Γ) = YoS(ΠG→Γ).
This follows by the way the YoS wrapper passes around the Spoke token to shut down entire
composed parties.

2.4 Common Features, Functionalities, and Models

Synchrony. To simplify the treatment of synchronous clocks, we assume that in every round
the environment sends a Tick message to all the roles and also to all the functionalities and
the adversary, in addition to any other inputs that it wants to provide them. We use the model
in [20] for this.
Communication channels and PKI. We assume at least an authenticated broadcast channel
denoted FBC, and usually also secure point-to-point channels FSPP (or at least authenticated
channels FPP). These functionalities are defined more or less as usual in the UC framework,
except that in our case they return a Spoke token to any role immediately in the step following
the receipt of message from it.6 These functionalities are formally presented in Appendix A.
We also sometimes use a PKI functionality, which is specified in Figure 1.
YOSO Secure Function Evaluation. We consider secure function evaluation in the YOSO
model. We assume that the roles of a protocol Π are divided into input roles, output roles
and computation roles. The input roles receive inputs from the environment and the output
roles will deliver the outputs back. The computation nodes carry out intermediary steps of the
computation and do not interact with the environment.

As usual for UC-like models, to formulate the assertion that a function F could be computed
securely we need to wrap that function by a compatible functionality FFMPC, as described in
Appendix A (cf. Figure 13). Importantly, we assume that the roles receiving the output do not

6We allow a role to send messages on multiple channels in the same step, then it will receive Spoke tokens
from all of them in the next step.

11



speak in an implementation (so FFMPC never sends Spoke tokens to the output roles). Otherwise
these output roles would not be able to contribute the result to the higher-level protocol.

By default, we assume that the roles receiving the inputs and the roles giving the outputs
can be corrupted using the usual chosen corruptions. This is reasonable since in most of the
meaningful high-level protocols, like elections, the inputs to the protocol are given by known
machines that might be subject to targeted DoS attacks. Computation nodes however, are
only subject to random corruptions; when running in the “real world” with a concrete role
assignment mechanism, we get to execute computation roles on random machines.

We then say that Π YOSO securely implements F with a fraction τ random corruptions if
Π implements FFMPC against any number of chosen corruptions of input roles and output roles
and random corruptions of up to a fraction τ of the computation roles.
The IT YOSO Model. We define the standard IT YOSO model to be the model with broad-
cast and secure point-to-point channels, unbounded environments, and poly-time protocols,
ideal functionalities and simulators.
The Computational YOSO Model. The computational YOSO model is equipped with an
authenticated broadcast channel, perhaps authenticated point-to-point channels, a PKI func-
tionality (such as the one from Figure 1), and poly-time environments, protocols, ideal func-
tionalities and simulators.

3 The Information-Theoretic t < n
2 MPC Protocol

In this section we describe an MPC protocol in the information theoretic YOSO model for
τ < 1/2 random Byzantine corruptions.

Theorem 1. For any multiparty function F , there exists a poly-time protocol Π described below
running with the network (FBC,FSPP) which YOSO-realizes the ideal functionality FFMPC in the
information theoretic YOSO model. The protocol tolerates any number of chosen, Byzantine
corruptions of input roles and output roles, and for any τ < 1/2 it tolerates adaptive, Byzantine,
random τ -point-corruptions of computation nodes.

Recall that the reason we allow chosen corruptions of input roles and output roles is that
in a real-life setting we cannot reasonably assume that it is unknown which machines will give
input or get the outputs. So input and output roles could be targeted. On the other hand, we
want to model that computation roles are run on random, secret machines, so we only allow
random corruptions of computation nodes. Recall that τ -point corruptions just means that the
adversary can point to a role R and ask for a corruption. Then the role is made corrupted
with probability τ , and with probability 1 − τ it will remain honest forever after. The type
of random corruption it not essential for our proof. The reason why we prove security against
point corruptions is that this is the type of corruption needed for the compilation result in
Section 5.

Below we will phrase the protocol in terms of disjoint committees of size n. We call the
roles in a committee parties. Let c be the number of committees that we need. We then
start with N = cn computation roles R1, . . . ,RN . We call the committees C1, . . . ,Cc where
Cj = {Pj1, . . . ,Pjn} and Pji = Ri+(j−1)n. We call Pji party i in committee j. Notice that this
grouping of roles into committees is static. This does not affect security as the adversary
cannot bias corruption towards a specific committee. Each party is still subject only to τ -point
corruption. If we set τ < 1/2 then we can clearly pick n large enough that we can conclude from
a tail bound that all committees have at most t < n/2 corrupted parties except with negligible
probability. For the rest of the section we then assume that this has been done. From this point
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on the only assumption we need for security is that each committee has t < n/2 corrupted
parties.

Note that we allow any number of corruptions among input roles and output roles. However,
input roles and output roles are not part of committees, so this does not violate the honest
majority assumption for committees.

Our protocol is adaptive secure. We will, however, below mainly prove static security and
only briefly discuss adaptive security. The reason is that for point corruptions, the distinction
between adaptive corruptions and static corruptions is minimal. An adaptive point corruption
just means that the adversary chooses to be oblivious to whether a party is corrupt or not until
the point corruption. This gives it no new powers over static corruptions. Note, in particular,
that corruption control component CC could sample before the UC execution starts for each role
Ri a bit bi which is 1 with probability τ . If later the adversary does a point corruption of Ri it will
become corrupted if and only if bi = 1. Therefore, even in the adaptive case, the corruptions
can be thought of as being static: they were chosen before the execution started. The only
complication in proving adaptive security compared to proving static security is then that in
the adaptive case, the simulator will not know bi until the adversary does a point corruption
of Ri. Below we phrase the proof in terms of static security. The proof can be adapted to the
adaptive case using standard techniques.

The challenge in designing an information-theoretic MPC protocol in the YOSO model is in
replacing the actions of parties that interact and speak multiple times in regular MPC protocols
with parties (more precisely, roles) that speak only once. For this we introduce several tools and
components for YOSO adaptation that may be useful for other protocols as well. A first such
tool is Future Broadcast (FBcast) that allows a party P , that in the standard model would speak
in several rounds, to send its future messages to future roles that will transmit the messages
(either privately or through broadcast) when the time for those messages to be delivered comes.
For example, consider a non-YOSO protocol where a party P transmits a message m at round i
and a message m′ at round i+ 3. In the YOSO adaptation, the role representing the actions of
P in round i will transmit m at round i and also, in the same round, apply FBcast(m′) to pass
message m′ to a role that will speak m′ in round i+3. Note that this procedure is possible only
in cases where the future message is known in advance. An interesting point to observe is that
correctness of FBcast (in particular, in terms of correctness of messages sent “into the future”),
needs only be guaranteed for original senders of m′ which are honest as faulty ones can choose
to speak any message of their choice whenever they speak. The sender Pji uses FBcast(m′) to
replace its own sending of m′ in the future. In the emulated protocol a corrupt Pji could send
m′′ 6= m′ at this future point. So it is tolerable that FBcast(m′) may open to m′′ 6= m′ in the
future when Pji is corrupt.

As a first application of FBcast, we use it to adapt the IT-SIGs of [26, 25] to the YOSO
model and then use this YOSOfied primitive to build a Distributed Commitment (DC) protocol
in the YOSO model. In it, a party (honest or faulty) commits to a value that it can later choose
to reveal or not, but it cannot change the committed value. Furthermore, it is guaranteed
that values committed by honest parties are always revealed correctly. We then use DC as an
essential ingredient in the design of a YOSO Verifiable Secret Sharing (VSS) scheme which in
turn is a central component of our YOSO information-theoretic MPC solution.

In various steps in our protocol we need access to some form of randomness and for clarity
of presentation we will assume the presence of a beacon functionality. However, in actuality we
need something much weaker than a truly random source to deliver our results, it is enough
that the challenge cannot be guessed. Thus, we can have a very simple implementation of
the beacon (see Section 3.11). We denote this functionality as FUPBeacon to reflect that it is
an unpredictable beacon. During the analysis we at first assume it returns uniformly random
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elements. At the end we then return to why it is enough that it is unpredictable and how to
implement it.

On (t, n)-Shamir secret sharing and honest majority. The solutions presented in this
section make essential and repeated use of secret sharing techniques. In all cases, the underlying
scheme is Shamir’s scheme over a given field, and we assume all committees into which secrets
are shared to have at least t + 1 honest parties where t + 1 > n/2. Thus, the polynomials
defining shares are of degree t.

3.1 Information Theoretic and Homomorphic MAC

Message authentication codes (MAC) are used for verifying the authenticity of messages between
a sender and receiver that share a secret key. Following the construction of [26] we have the
following two protocols.

Three-party Setting. There exists (i) a sender S holding a message m, it chooses a key K
and generates its corresponding MAC tag M computed under a key K; (ii) S sends the pair
(m,M) to a receiver R; (iii) S sends the key K to a verifier V . The verification procedure
combines the pair (m,M) held by R with the key K held by V .

For our purposes, we consider an information theoretic MAC function with the following
properties: (i) producing a correct MAC without knowing the key succeeds with negligible
probability even for an unbounded attacker; (ii) message hiding: nothing is learned about the
message m from the key K; (iii) homomorphic: the MAC function is homomorphic with respect
to appropriate group operations in the following sense. If Mi = MACKi(mi), i = 1, 2, and
the keys K1,K2 were computed by the same party (they might need to be correlated) then
M1 +M2 = MACK1+′K2(m1 +m2).

Such a MAC can be implemented as follows (all elements and operations are over a finite
field, e.g., Zp): Ki = (a, bi), Mi = ami + bi and Ki +′ Kj = (a, bi + bj). In the sequel, we will
say that keys that share the same coefficient a but differ in bi are correlated.

MAC with Distributed Public Verification. In the above setting, to verify a MAC one
has to trust V to provide the correct key. In the scenarios in this paper, we often do not trust
any single party individually, but rather can only count on committees with a majority of honest
participants. Thus, we extend the basic 3-party scheme to one where the role of V is instantiated
by an n-party committee V = {V1, . . . , Vn}. Given a message m that S hands to R, S creates
a MAC for m as follows. For i = 1, . . . , n, S chooses keys Ki, computes Mi = MACKi(m), and
provides all Mi to R and Ki to Vi. When m needs to be verified, R first broadcasts m and the
values Mi. Then, each Vi broadcasts Ki and the value m is accepted (i.e., the MAC validates)
if and only if it holds that Mi = MACKi(m) for at least t+ 1 values of i.

The scheme guarantees that if S follows the protocol and t + 1 > (n − 1)/2 members of V
are honest, then only a message m originating from S will be accepted. Note that the validation
of m is public once R and members of V broadcast their values.

When the MAC in use is homomorphic, we have that if S MACs messages m1,m2 in the
above way, with the same R and same committee V, then the message m = m1 + m2 can be
validated as follows. R outputs m and Mi = M

(1)
i + M

(2)
i , i = 1, . . . , n, and each Vi outputs

K
(1)
i +′K(2)

i . Here, M (1)
i ,M

(2)
i are the MAC values received by R for m1 and m2, respectively,

and K
(1)
i ,K

(2)
i are the keys received by Vi for m1 and m2, respectively. We therefore say that

this MAC procedure is homomorphic.
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FBcast.Share (Executed by S on input m) FBcast.Reveal(with public verification)
Set two n-party committees, ShareHolder and
ShareVerifier.

1. Compute a (t, n)-secret sharing
(m1, . . . ,mn) of m for t = (n− 1)/2.

2. Generate keys Ki,j , 1 ≤ i, j ≤ n and
compute Mi,j = MACKi,j (mi).

3. For i = 1, . . . , n:
Send mi,Mi,1, . . . ,Mi,n to ShareHolderi;
Send K1,i, . . . ,Kn,i to ShareVerifieri.

1. ShareHolderi bcasts mi,Mi,1, . . . ,Mi,n.

2. ShareVerifieri bcasts K1,i, . . . ,Kn,i .

3. Accept mi iff Mi,j = MACKi,j (mi) for at
least t+ 1 of the keys.

4. If there are at least t+ 1 accepted shares
and they all define a single polynomial of
degree t then output the constant term.
Otherwise, output ”fail”.

Figure 2: Future Broadcast Protocol

This protocol is inherently YOSO as each party speaks only once and we refer to it in the
following as IT-MAC.

3.2 Future Broadcast

We introduce Future Broadcast (FBcast), a fundamental primitive in the YOSO setting that
allows an honest party P that speaks at time t to prepare a message m for broadcasting at a
future time t′. This is accomplished by having P simply secret share m to a committee that
will broadcast m at time t′, hence bypassing the limitation of speaking only once. To guarantee
that the message can be reconstructed (in the case that P is honest and the committee has
an honest majority), FBcast implements a robust secret sharing scheme. Namely, a scheme
where correct reconstruction is guaranteed as long as the sharing was done correctly and at
least t + 1 honest parties provide their shares (i.e., bad shares from corrupt parties can be
identified and eliminated). In settings where digital signatures are available, robust secret
sharing is implemented by having the dealer sign its shares. In our information-theoretic setting,
we achieve a similar effect using the IT-MAC procedure from Section 3.1 for verifying share
integrity.

The FBcast protocol is presented in Figure 2. Its first phase, FBcast.Share, is executed by a
party S on input message m. It consists of S secret sharing m with a committee ShareHolder
where in addition to its share, each ShareHolderi receives a IT-MAC of the share computed by
S using the above distributed MAC procedure. An additional committee, ShareVerifier, receives
the MAC keys from S. When the value m needs to be broadcast in the future, FBcast.Reveal
is performed following the distributed verification procedure: the ShareHolder members first
broadcast their shares together with their MAC values, followed by a broadcast of keys held by
ShareVerifier (note that ShareVerifier must speak after ShareHolder hence requiring two separate
committees). Shares that do not pass verification are discarded and if those that remain inter-
polate to a single polynomial of degree t, the secret is reconstructed, otherwise reconstruction
fails.

We denote by FBcast.ShareS(m) the sharing by S of a value m for future revealing and
FBcast.RevealS(m) the revealing of m (executed by two committees), and refer to the whole
protocol execution as FBcastS(m).

Analysis.

We show that FBcast satisfies the requirement that if S is honest and used m as input to
FBcast.Share then m will be reconstructed when FBcast.Reveal is executed. For this we need to
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show that only mi’s that originated from S are accepted and that there are sufficiently many
accepted shares to interpolate the polynomial. If mi is accepted then the MAC was verified by
a key broadcast by at least one honest ShareVerifier. As S is honest, only mi’s created by S are
accepted by an honest party. Furthermore, each share broadcasted by an honest ShareHolder is
accepted as there will be at least t+ 1 honest ShareVerifiers whose broadcasted keys satisfy the
MAC. By construction, no party speaks twice.

Homomorphism of FBcast.

Note that when used with a homomorphic MAC, FBcast inherits the homomorphic property of
the distributed MAC scheme from Section 3.1. We denote this fact as FBP (m1) + FBP (m2) =
FBP (m1 + m2) for any messages m1 and m2 shared by the same party P . Yet, as the keys
need to be correlated the creator of the MAC needs to know in advance what two values will
be added. This is easily achievable in our protocols.

3.3 Homomorphic IT-SIG

Our protocols would benefit from a signature functionality in order to construct a VSS protocol.
Of course in the information theoretic setting we cannot achieve the full properties of a signature,
but we can achieve enough of the functionality to deliver the result. The property which we
need is the following. Assume again the setting from the IT-MAC (Section 3.1). We would want
to assure R that the message that it holds will be accepted by the committee V. In essence,
that it has a “signature” on the message that it holds.

Unlike the transformation of the basic IT-MAC from [27] that did not require modification
to comply with the YOSO model, the IT-SIG construction from that paper does require changes
as it has interaction. Our protocol IT-SIG is described in Figure 3. It consists of two phases,
IT-SIG.Setup and IT-SIG.Reveal. In IT-SIG.Setup, a sender S provides a receiver R with a value
m and also provides verification information to a committee V of n verifiers V1, . . . , Vn. The
goal is for R to disclose m in the IT-SIG.Reveal phase in a way that allows to publicly verify
the correctness of m with the help of committee V and with the following guarantees, assuming
that V contains an honest majority:

• If S andR are honest then the correct valuem is disclosed and verified during IT-SIG.Reveal
and no information on m is revealed prior to that.

• If both S and R are corrupt we make no requirement at all.

• If only S is corrupt, at the end of IT-SIG.Setup, R holds a valuem′ that will pass verification
in IT-SIG.Reveal.

• If only R is corrupt, no value other than the m that originated with S in IT-SIG.Setup
can pass verification in IT-SIG.Reveal.

In addition, the protocol needs to satisfy the YOSO model where parties speak only once.
We build it so that R speaks only once (either in IT-SIG.Setup or in IT-SIG.Reveal) while in
the case of S and the parties in V, from which the logic of the protocol requires more than one
message, we resort to FBcast for distributing their future messages so that a different committee
broadcasts them when needed, and all parties speak only once.

16



IT-SIG.Setup IT-SIG.Reveal

1. On input m, the sender S:

(a) Generates keys Ki,j , 1 ≤ i ≤ n, 1 ≤
j ≤ κ (for security parameter κ),
and computes Mi,j = MACKi,j (m).

(b) Transfers (m, {Mi,j}1≤i≤n,1≤j≤κ) to
receiver R and {Ki,j}1≤j≤κ to Vi.

(c) Executes FBcast.ShareS(m), and
FBcast.ShareS(Ki,j), 1≤ i≤ n, 1 ≤
j ≤ κ.

2. Party Vi:

(a) Chooses half of the indices at ran-
dom, denoted by INXi.

(b) Broadcasts Ki,j for j ∈ INXi.
(c) Executes FBcast.ShareVi(Ki,j), j /∈

INXi.

3. Execute FBcast.RevealS(Ki,j) j ∈ INXi

for all i; denote by K̄i,j the reconstructed
values.

4. If there exist indexes i and j for which
MACK̄i,j (m) 6= Mi,j then R asks that
FBcast.RevealS(m) be executed to reveal
m̄. If m̄ = ⊥ set m̄ to a default value.

1. If m̄ was revealed in IT-SIG.Setup output
this as S’s message.

2. R broadcasts (m, {Mi,j}1≤i≤n,j /∈INXi).

3. Set the number of votes for m to be the
number of i’s for which K̄i,j 6= Ki,j for
some j ∈ INXi from the setup.

4. For all i’s not counted in the previous
step, execute FBcast.RevealVi(Ki,j) for
j /∈ INXi. If MACKi,j (m) = Mi,j for
any one of the recovered values then in-
crement the vote by ”1”.

5. If vote is at least t+ 1 then output m as
S’s message. Otherwise, output ⊥.

Figure 3: Information Theoretic SIG

Analysis

The following assumes an honest majority in committee V and that at most one of R and S is
corrupted.

• Corrupt S: We need to show that at the end of IT-SIG.Setup, R holds a value m′ that
can pass verification in IT-SIG.Reveal. We set m′ to the value m received from S except
if a value m̄ is revealed during Step 4 of IT-SIG.Setup in which case we set m′ to m̄. We
first consider the case where R did not ask for the message to be revealed in step 4 and
show that m will have at least t + 1 votes in IT-SIG.Reveal. Indeed, for each honest Vi,
either K̄i,j 6= Ki,j for some j ∈ INXi and thus their vote is counted; otherwise, it holds
that MACKi,j (m) = Mi,j for all j ∈ INXi. Thus, with overwhelming probability, there
exists a j 6∈ INXi such that MACKi,j (m) = Mi,j , and a vote for i will be counted. This
guarantees at least t+ 1 votes for the value m.

• Corrupt R: In this case we show that only the m that originated with S will pass ver-
ification in IT-SIG.Reveal. If the message associated with S is set to the value derived
from FBcast.RevealS(m), it is certainly a message that originated with S. If it is set to the
message published by R, then that message must get t+1 “votes”. Votes can be generated
by corrupt Vi publishing incorrect keys in Step 2b of IT-SIG.Setup; however, there are at
most t such corrupt Vi. The only other way to generate a vote for an incorrect m is to
forge a MAC M , which happens with negligible probability.

• If S and R are honest, then due to the message hiding property of the MAC function (that
we assume), no information on m is revealed until IT-SIG.Reveal is executed. Indeed,
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DC.Commit (executed by C on input m) DC.Reveal
Let ShareHolder and ShareVerifier be two n-
party committees.

1. Committer C computes a t-secret sharing
of m, (m1, . . . ,mn) for t ≥ (n− 1)/2.

2. For i = 1, . . . , n: C executes IT-SIG.Setup
on input mi with ShareHolderi as receiver
R and the set ShareVerifier acting as the
set of verifiers V (same ShareVerifier com-
mittee is used in all the invocations).

1. For i = 1, . . . , n, set m̄i to the output of
IT-SIG.Reveali.

2. Take all m̄i that are not ⊥ and interpo-
late a polynomial through these points. If
the polynomial is of degree t or less out-
put its constant term, otherwise output
⊥.

Figure 4: Distributed Commitment

the only case where R requests to broadcast m prior to IT-SIG.Reveal is when the keys
broadcasted by S do not verify the MACs; this cannot be the case when S and R are both
honest.

Homomorphism of IT-SIGs

The homomorphic properties of the MAC construction from Section 3.1, imply similar properties
for IT-SIG in Figure 3 when the underlying MAC function is homomorphic. Namely, if m,m′
are messages on which the (same) sender S runs IT-SIG.Setup with the same set V of verifiers
and with correlated keys (i.e., corresponding keys use the same coefficient a in the scheme from
Section 3.1), then an IT-SIG on m+m′ can be verified with committee V using the MAC keys
held by V for m and for m′. This homomorphic property is used in an essential way when
performing additions (also used for multiplications) in an arithmetic circuit as described in
Section 3.10. A consequence of the need for correlated keys is that if two messages may need
to be added in the future, this fact needs to be known at the time of generating the IT-SIG
for both m1 and m2. In our application this is always the case as the need for additions is
determined by the specific circuit being computed.

3.4 Distributed Commitment (DC)

The FB protocol does not offer any guarantees in the case when the dealer is faulty. Thus,
we need to create a new primitive with slight better assurances. We present the distributed
commitment protocol DC consisting of two phases, DC.Commit and DC.Reveal. In DC.Commit, a
committer C commits to a value m that may later be revealed in DC.Reveal. More precisely, if
C is honest, the revealed value is m, and m is hidden until it is revealed (which is exactly as in
the case of FB). However, if C is corrupt, the execution of DC.Commit determines a single value
m such that the output of DC.Reveal is guaranteed to be either ⊥ or m (where m itself can be
⊥). In other words, C can choose to prevent reconstruction, but if it allows for it to happen
then it can only be to a value it is committed to at the end of DC.Commit. Reconstruction is
public, namely, there will be public agreement on the output of DC.Reveal.

Protocol DC uses the scheme from Figure 3 in an essential way. In particular, in Step 3 of
DC.Commit, for each mi, C executes IT-SIG.Setup(mi) with ShareHolderi acting as the receiver
and with ShareVerifier as the set V of verifiers. The n executions (one for each mi) are performed
in parallel using the same set ShareVerifier in all these executions.

Observe that DC is a stronger primitive than FBcast. In FBcast, when the sender is corrupt,
there is no guarantee about the reconstructed value (if any). In DC, at the end of DC.Commit, a
single value m is determined so that in DC.Reveal, C only gets the choice between outputting m
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or ⊥. This is similar to a regular commitment in the computational setting where the committer
is bound to the value but has the option not to reveal it.

Analysis

We show that at the end of DC.Commit a value m (or ⊥) is determined, and during DC.Reveal,
if C is honest m will be revealed, and if C is corrupt, either m or ⊥ will be revealed.

In DC.Commit, C executes IT-SIG.Setup with at least t+ 1 honest parties acting as receivers
R. For these honest parties, due to the properties of IT-SIG.Setup, it is guaranteed that the
value they hold will be accepted in IT-SIG.Reveal. We claim that at the end of DC.Commit, a
single value m is committed to, such that the output in DC.Reveal is either m or ⊥ (where m
itself can be ⊥). To show this, we define m as the constant term of a polynomial of degree at
most t interpolated through the set of shares held by the honest parties (this value might be ⊥
if the set of points does not interpolate to such polynomial). We now show that this value m is
the one to be output in DC.Reveal. When C is honest then only shares that were created by C
are accepted and thus the polynomial will interpolate properly during DC.Reveal. If C is faulty
we know that at least the shares of the honest parties will be included in the set of shares being
interpolated and this is a set of at least t + 1 shares. Thus, the message which is opened can
only be m or ⊥ if there is not a polynomial of degree at most t.
We denote by DCP (m) the output of the execution of DC.Commit by party P on message m.

Homomorphism of DC.

Due to the homomorphic properties of the IT-SIG and FBcast, we have that for any two values m
andm′ committed by the same honest party P , it holds that DCP (m)+DCP (m′) = DCP (m+m′).
The same considerations for ensuring the homomorphism of IT-SIG described in Section 3.3 hold
here too (i.e., the DC operations need to be performed by the same committer using correlated
keys). In particular, if this property may be required in the future for two messages m,m′, then
this fact needs to be known at the time of running DC.Commit on these values (fortunately, for
our application this requirement does hold). The question might be raised if we know that m
and m′ will be added why compute individual DC.Commit for both rather than the sum. The
answer is that we will in fact need to utilize all three values.

3.5 Duplicate Commitments

In our protocols, we often need to use a committed value multiple times, thus requiring the
decommitting parties to act in more than one round, a violation of the YOSO model. One
possible solution is for the committer C to commit twice (or more) onto different committees
to the same value and provide a proof of equality for the committed values; yet this proof of
equality will “waste” the sharing, which is what we need to prevent. Instead, our approach is
based on the observation that d duplicates can be achieved by having the parties in ShareHolder
reshare the shares mi received from C during DC (see Figure 4) with d different committees.
Proofs of equality of committed values are not needed; it suffices that honest shareholders
duplicate their shares correctly to guarantee that all duplicates commit to the same value. Here
we are using in an essential way the fact that it is the shareholders that reshare their shares
rather than C, and that we can rely on a majority of honest shareholders.

We define protocol DupDC that allows for the duplication of a DC-committed value m. Let d
be the number of duplicates needed. In a first committing phase, DupDC.Commit, committer C
runs DC.Commit with a committee ShareHolder, sharing its input m so that ShareHolderi receives
a share mi on which IT-SIG.Setup of Figure 3 is performed. To generate d duplicates, for each
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i, 1 ≤ i ≤ n, C runs d copies of IT-SIG.Setup on mi, each copy with an independent set of MAC
keys and a dedicated ShareVerifier committee. The d copies are verified by ShareHolderi, acting
as receiver R, as specified by IT-SIG.Setup. Finally, at the end of DupDC.Commit, ShareHolderi
executes FBcast.Share for all the values that it holds, and executes d independent sharings of
mi into d separate ShareHolder committees.

The DupDC.Reveal phase follows DC.Reveal where the opening of mi is implemented via
share reconstruction by one of the d ShareHolder committees to which mi was shared. Additional
information that needs to be broadcast and verified as specified by IT-SIG.Reveal is performed
via FBcast.Reveal by the FBcast committees created by ShareHolderi during DupDC.Commit.

It is straightforward to check that if the original committer C was honest, all duplicated
values are correct DC commitments and they will open to the same committed value dur-
ing DupDC.Reveal. If C is dishonest, but ShareHolderi is honest, and verification against a
ShareVerifier committee fails during the IT-SIG.Setup actions, then the committed value is set
to the one that is FBcast.Reveal as part of Step 4 in IT-SIG.Setup. Otherwise, the value mi can
be reconstructed correctly by any of the d sharings of mi shared by ShareHolderi. Since there
is a majority (t+ 1 or more) of honest shareholders in each of the d ShareHolder committees, it
is guaranteed that only the committed value or ⊥ will be reconstructed in each of the d copies.

Analysis.

It follows from the properties of the DC and FBcast protocols. We note that C still has the
option of not opening any subset of these duplicate commitments, but all those that will be
open will be open to the same value.

3.6 Verifiable Secret Sharing Scheme

The distributed commitment DC functionality ensures that the committer, even a corrupt one,
cannot change a value committed at the end of DC.Commit; however, a corrupt committer
can prevent reconstruction of the committed value during DC.Reveal. In our applications, we
need a commitment scheme with the property that if the commitment phase is successful then
reconstruction of the committed value is guaranteed. We achieve this via Verifiable Secret
Sharing (VSS), a protocol where a dealer secret shares a value s during a VSS.Share phase so
that s is guaranteed to be reconstructed during VSS.Reveal from any subset of shareholders
that includes t + 1 honest ones. This is the case even for a corrupt dealer, as long it is not
disqualified during VSS.Share. Technically, VSS is similar to DC where the dealer proves all the
shares to be on a polynomial of degree at most t.

Protocol VSS.Share proceeds as follows.

1. The dealer D chooses a random polynomial f(x), s.t. f(0) = s and an additional random
polynomial r(x), both of degree t. Let the coefficients of f(x) and r(x) be, respectively,
fj , rj for 0 ≤ j ≤ t.

2. Given a set ShareHolder = {P1, . . . , Pn}, D computes si = f(i), ρi = r(i) for 1 ≤ i ≤ n
and transfers these values to Pi.

3. In the same step as above, D DupDC.Commits (a minimum of two duplicates; the ex-
act number of duplicates is application-dependent) to all the values fi, ri. Due to the
homomorphic properties of DC, this results in implicit DCD(si) and DCD(ρi)

4. Pi uses DupDC.Commit to commit to si (a minimum of two duplicates; the exact number
of duplicates is application-dependent) and DC.Commit to commit to ρi. Thus, creating
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DCPi(si) and DCPi(ρi). It shares the ρi to one of the committees to which it duplicates
the si.

5. Receive r from FUPBeacon

6. To prove that Pi shared the same value as D, the values DCD(si+r ·ρi) and DCPi(si+r ·ρi)
are reconstructed using DC.Reveal.

7. For any i where the reconstruction DCD(si + r · ρi) and DCPi(si + r · ρi) return ⊥ or the
values are not equal execute DC.Reveal of D’s sharing of si. If it returns ⊥ disqualify the
dealer.

Protocol VSS.Reveal proceeds as follows.

1. Execute DC.Reveal for all si shared by Pi

2. Interpolate a polynomial using all these share and output the constant term.

3.6.1 Analysis.

For the construction to be a VSS we need to ensure that the points shared using DC by Pi are
in fact the points on the polynomial shared by D. This is achieved by testing equality of the
sharings of Pi against the sharings of D. This is enabled by revealing a random blinding of the
shares and testing for equality. It follows using a standard argument that if si 6= s′i then there
is at most a single challenge r that will make the proof pass, showing that there is security
except with probability |F|−1. Furthermore, the adversary can compute the r′ that would make
the proof pass before the beacon samples r, so it is enough that r cannot be guessed with non-
negligible probability. Namely, then the proof passes then r′ was a correct guess at the r which
the beacon returned. We therefore later only have to implement FUPBeacon to be unpredictable.

Homomorphism of VSS.

VSS inherits the homomorphic properties of DC, Importantly, in the case of VSS, these prop-
erties hold even if the VSS was performed by two different dealers as long as it was done into
the same set of shareholders. Namely, for two secrets m1 and m2, and two dealers D1 and D2,
we have VSSD1(m1) + VSSD2(m2) = VSS(m1 +m2). Note that the right-hand side VSS is not
associated to a specific dealer as it combines sharings of D1 and D2. The reason the homomor-
phism holds across dealers is due to the homomorphic properties of DCPi(·) (that only hold for
same committer) and the fact that the same Pi’s act in both VSS dealings as shareholders.

3.7 Duplicate VSS

As in the case of DC, we also need duplicates of VSS values, e.g., when creating values on an
arithmetic circuit that need to go into multiple gates. Recall that a VSS is a sharing of a value
s where each share si of the sharing is shared as DCPi(si). It is easy to see that duplicating the
DCPi(si) commitments results in duplicate VSSs.

3.8 Augmented VSS

In our application, particularly for the multiplication protocol, we need an Augmented VSS
(AugVSS), where not only the secret given as input is shared with VSS but also the shares
resulting from VSS(s) are shared with VSS.
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AugVSS is achieved via the following computation. The dealer D holding a value s defines a
polynomial f(x) = atx

t+...+a1x+a0 where a0 = s. It carries out VSS(ai) for 0 ≤ i ≤ t. Denote
the polynomial sharing the ai coefficient by fai(x). Then the parties carry out a computation
to deliver to each party its share on the polynomial f(x) by computing for party Pj the value
Σt
i=0 j

ifai(0). This delivers the desired properties. There is both a VSS of the value s and
a VSS of all the shares of the parties on the polynomial f(x). These VSS’s are created via a
computation of the linear combination of the VSSs of the coefficients of the polynomial f(x).
It is clear that AugVSS is also additively homomorphic.

3.9 Proof of Local Multiplication (PLM)

The following protocol assumes a duplicate VSS sharings for values a, b, c with the same two
sets of committees, PLM Verification 1 and PLM Verification 2, for brevity, C and C ′. There is
no need to assume any knowledge on how these VSS’s were created, the only assumption that
is needed is that party P that is proving that c = a · b knows all three values a, b, c.

1. P chooses a random value b′ and executes duplicate VSSP (b′) onto both committees C
and C ′ and VSSP (a · b′) with shareholder set C ′.

2. Receive random e from FUPBeacon;

3. Committee C reconstructs using VSS.Reveal the value r = e · b+ b′;

4. Committee C ′ reconstructs using VSS.Reveal the value d = r·a− e·c− a·b′

5. Accept the proof if d = 0. Otherwise, determine that the proof has failed.

It follows using a standard argument that if if c 6= ab then d 6= 0 except with probability
|F|−1. In particular, there is a single e which will let the proof pass. Hence it is enough that e
cannot be guessed with non-negligible probability. The rest of the argument for the correctness
of the proof follows from the properties of the VSS.

3.10 YOSO MPC

Using the tools developed up to now we can show how to do secure function evaluation (or
MPC) in the YOSO model. That is, we are given an arithmetic circuit C, with m secret inputs
provided by m parties (roles), and we show how to privately compute the circuit on the inputs,
in the YOSO model.

Let C be a given arithmetic circuit with m inputs x1, . . . , xm and gates g1, . . . , g`. In the
YOSO computation of C we maintain the following invariant. For each gate gi with input
values vi1, vi2, there is a gate input committee Ci that contains an AugVSS sharing of vi1 and
an AugVSS sharing of vi2. For each gate gi, there will be a gate output committee that will
hold the AugVSS sharing of vi3 (where vi3 represents the output of the computation of the gate
on the two inputs). The gate output committee will create a collection of d duplicates of the
AugVSS of v13, where d is the number of gates to which v13 enters as an input.

The top level AugVSS sharing held by the input committee will be backed-up by lower
level sharings committees for each of the sharings, i.e. VSS, DC, FB and so on. Assume that
committee C holds the DC of the AugVSS of a, then that same committees will hold the DC of
AugVSS of b, etc.

The multiplication operation require closer attention to the details of the committees. The
gate input committee of a multiplication gate will duplicate the inputs onto three committees,
the computing committee and two verification committees. Other sharings required in the
computation will be shared onto these committees as well. Details appear below.
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Addition Addition simply uses the homomorphic property of AugVSS.

Multiplication 1. The input committee duplicates the sharing of a and b to the two PLM
verification committees (see Section 3.9).

2. In the same step as above, each Pi from the input committee that hold shares ai
and bi of a and b, respectively, performs AugVSS(γi) for γi = ai · bi onto the com-
puting committee and the two PLM verification committees and performs the first
sharing step of the PLM protocol, to prove that γi = ai · bi. Note that AugVSS(γi)
results in VSSPi(γi) and sharings of all the shares of this polynomial, denote those
by VSSPi(γi,j).

3. For any i for which the AugVSS or the PLM procedures fail, the committee that
holds ai and bi uses VSS.Reveal to publicly reconstruct these values. Going forward,
when the protocol uses the value γi, its value is set to the product ai · bi of the
reconstructed values.

4. The computing committee holds the AugVSS of all γi’s. Let VSS(c) = Σ2t+1
i=1 λiVSSPi(γi)

and let VSS(ci) = Σ2t+1
j=1 λjVSSPj (γj,i) for the appropriate Lagrange coefficients λi (see

below).
5. The computing committee transfers the value to the output committee of the gate.

In practice, these two committees can be the same as the computing committee never
speaks.

The multiplication protocol follows the design of [16]. The correctness of the AugVSS sharing
of the multiplication c = a · b follows from: (i) the verified correctness of VSS(γi) and PLM; (ii)
the public availability of γi values for those i where verification failed (these values are available
because in AugVSS, not only the secret is shared but also its shares). (iii) the existence of
Lagrange coefficients λi for which c = a · b = Σ2t+1

i=1 λi(ai · bi). These Lagrange coefficients λi are
defined as follows. Let fγi(x) be the degree-t polynomial shared by Pi in the input committee
with fγi(0) = γi. The coefficients λi are those that interpolate the polynomials fγi(x) into
a degree-t polynomial F (x) of degree t such that F (0) = c, namely, F (x) = Σ2t+1

i=1 λifγi(x).
The share sj computed by party Pj in the computing committee satisfies sj = Σ2t+1

i=1 λisij =
Σ2t+1
i=1 λifγi(j) = F (j), hence a correct sharing of c with corresponding polynomial F (x).

Security argument

Security follows using standard arguments. In particular, the simulator proceeds as follows. Use
the AugVSS’s to reconstruct the inputs of the corrupted parties. Input these to FFMPC where F
denotes the function computed by C. Use dummy inputs of the honest parties in the simulation.
Run the simulated protocol honestly with these dummy inputs. When processing an output
gate, learn the correct output from FFMPC. Then from the t simulated shares of the corrupted
parties and the output acting as share t+ 1 compute the matching shares of the honest parties.
Then send these in the simulation. Furthermore, the simulation of the IT-MAC and IT-SIG are
straightforward.

To prove adaptive security the simulator will for each committee Cj start out with a set Cj
of size t playing the role of the corrupted parties and will simulate as in the static case with
Cj being corrupted. If party Pji in Cj becomes corrupted and Pji 6∈ Cj then the simulator will
swap Pji with an honest party in Cj and then patch the view of the party to get a simulated
state of Pji . If Pji holds a share on a random, unknown polynomial of degree at most t, the
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share will just be simulated by a random field element. If Pji holds a share on a random, known
polynomial of degree at most t, as is the case for a reconstructed output of the computation,
then the simulator will know the output and will with the additional t simulated shares of Cj
have t + 1 simulated shares. From these it can compute the corresponding simulated share of
Pji and claim this as the state of Pji . In general the adaptive patching follows using standard
techniques from MPC and can be done along the lines in [14] where the patching technique is
used to prove [2] adaptive secure in the UC model.

3.11 Implementing FUPBeacon

We now return to implementing FUPBeacon.
By inspection we did not use FUPBeacon to implement our commitments. We only used it

in VSS and proofs of local multiplication. We can therefore use the commitment to implement
FUPBeacon without any circularity problems. We discuss how to flip a an L-bit string e. If we
flip a field element then L = log2(|F|). Select k coin roles C1, . . . ,Ck. Each of them commit
to a uniformly random L-bit string ei. Then in sequence they open e1, . . . , ek. Then they
sum the values which were opened correctly. Notice that corrupt parties can choose to open
or not open their commitment which biases the coin. We consider the probability of guessing
e. With probability 1/2 the role Ck is honest and then the coin is uniform. In this case the
guessing probability is 2−L. To the total guessing probability this contributes with 2−L−1.
With probability 1/22 the role Ck−1 is honest and Ck is corrupt. In this case Ck can remove one
bit of min entropy and the guessing probability is 2−L+1. To the total guessing probability this
contributes with 2−L−1. Summing over all L possible positions of the last honest Ci we get a
total guessing probability of L2−L−1. On top of that comes the case where all Ci are corrupt
where the guessing probability of 1. This gives a total of L2−L−1 + 2−L = (1/2L + 1)2−L. So,
if we pick a finite field F of sufficiently super-polynomial size, for instance exponential, we can
flip unguessable field elements.

Then simply note that in all cases where we used FUPBeacon we only needed to flip unguessable
field elements.

3.12 Unbiased Randomness YOSO Style

A number of works have explored how to generate random beacons in a blockchain setting
[6, 7]. Using our MPC protocol we can proceed to develop the first completely uniform beacon,
FBeacon, on the blockchain implemented by a YOSO protocol. In the above section we proved
how to get FFMPC from FBC,FSPP under 49% Byzantine corruptions. Note the we can in turn
implement FBeacon given FFMPC. Have k computation roles act as input roles and let each of
them input a uniformly random field elements. Sum them and output the sum to all parties.
Except with negligible probability there will be an honest input role and the output is uniform.
This show how to get statistically unbiased coin-flip from FBC and FSPP.

4 The Computational t < n
2 MPC Protocol

In this section we build a computationally secure YOSO MPC protocol. This is the first YOSO
protocol to achieve guaranteed output delivery and require only an honest majority in each
committee; Benhamouda et al. [3] require an honest supermajority, while Choudhuri et al. [10]
only achieve security with abort.

Our protocol is heavily based on the CDN protocol [11]. CDN uses threshold linearly
homomorphic encryption, where n parties have shares ski of a decryption key sk. The input
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values to the computation are encrypted under the corresponding encryption key pk; the linear
operations are performed using the homomorphism, and the multiplications are done using
Beaver triples (encryptions of random a and b, and of their product ab).

CDN is naturally almost entirely YOSO. The only technical challenge in making it entirely
YOSO is passing the shared secret key, which is used for the decryption of masked intermediate
values during Beaver triple use and for the recovery of the output, from committee to committee.
This can be achieved by using key rerandomizable threshold encryption, a linearly homomorphic
version of which can be instantiated as a variant of Paillier encryption with a Shamir shared
secret key. Passing (rerandomized shares of) the secret key from committee to committee is
done in a way similar to the YOSO handover protocol of Benhamouda et al. [3].

CDN does require some setup — shares of the decryption key sk must be distributed to the
first committee by a trusted third party, or generated in a secure distributed way. However,
this setup is fairly minimal. In contrast, the Beaver triples can be generated on-the-fly, by two
consecutive committees CA and CB. These committees are different from the committees who
hold shares of the decryption key in two ways. Committees C holding decryption key shares
should (a) have an honest majority (to balance our need for guaranteed output delivery with
our need for privacy against the adversary), and (b) be able to receive private messages from
the previous committee. In contrast, the committees CA and CB generating our Beaver triples
(a) can tolerate a dishonest majority, requiring only one honest party, and (b) do not need to be
able to receive any private messages. The fact that the Beaver triple committees can tolerate a
dishonest majority means that they can be smaller than our key-holding committees; the fact
that they do not need to receive any private messages means that the role-assignment mechanism
for selecting them can be simpler. We do not elaborate on either of these observations, especially
since the latter is a property of the underlying role-assignment functionality, which we do not
study in this work. However, these two observations together lead us to believe that the overhead
for generating Beaver triples for our CDN protocol is minimal.

In Section 4.1we introduce the building blocks our protocol needs. In Section 4.2, we give a
detailed description of the protocol, and in Section 4.3, we show the security of the protocol.

4.1 Building Blocks

The building blocks we leverage are non-interactive zero-knowledge arguments of knowledge
(Section 4.1.1), and a linearly homomorphic key rerandomizable threshold encryption scheme
(Section 4.1.2).

4.1.1 Non-Interactive Zero-Knowledge Arguments of Knowledge

Syntax A non-interactive zero-knowledge argument of knowledge (NIZKAoK ) scheme has the
following algorithms, as described by Groth and Maller [18]:

Setup(1κ,R)→ (crs, td): An algorithm that, given the security parameter, sets up the global
common reference string crs and the trapdoor td for the NIZKAoK system.

P(crs, φ, w)→ π: An algorithm that, given the common reference string crs for a relation R,
a statement φ and a witness w, returns a proof π that (φ,w) ∈ R.

V(crs, φ, π)→ accept/reject: An algorithm that, given the common reference string crs for
a relation R, a statement φ and a proof π, checks whether π proves the existence of a
witness w such that (φ,w) ∈ R.
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Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← Setup(1κ)

b← {0, 1}

Repeat poly(κ) times{
φ,w

−−−−−−−−−−−−−−−−−−−−−−−−−−B
if b = 0: π ← P(crs, φ, w)
if b = 1: π ← SimP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Figure 5: Security game for the zero knowledge property of the NIZKAoK.

SimP(crs, td, φ)→ π: An algorithm that, given the common reference string crs for a relation
R, the trapdoor td and a statement φ, simulates a proof of the existence of a witness w
such that (φ,w) ∈ R.

Security Properties Of course, a NIZKAoK scheme must be correct (that is, verification
using an honestly produced proof must return accept). The important security properties of
a NIZKAoK scheme are zero knowledge, knowledge soundness, and simulation extractability,
described below.

Definition 1 (Zero Knowledge for NIZKAoK ). Informally, a NIZKAoK scheme has zero
knowledge if a proof does not leak any more information than the truth of the statement.

More formally, let κ ∈ N be the security parameter, and let NIZKAoK = (Setup,P,V, SimP)
be a NIZKAoK scheme. Consider the game between a probabilistic polynomial-time adversary
A and a challenger C described in Figure 5.

NIZKAoK has zero knowledge if for any sufficiently large security parameter κ, for any
probabilistic polynomial-time adversary A, there exists a negligible function negl in the security
parameter κ such that the probability that A wins the game is less than 1

2 + negl(κ).

Informally, knowledge soundness is the property that guarantees that it is always possible
to extract a valid witness from a proof that verifies. Simulation extractability is a stronger
version of knowledge soundness, where it is always possible to extract a valid witness from a
proof that verifies even if the adversary has access to a simulation oracle. This is a flavor of
non-malleability; an adversary should not even be able to modify a simulated proof in order to
forge a proof.

Definition 2 (Simulation Extractability for NIZKAoK ). Informally, a NIZKAoK scheme has
simulation extractability if it is always possible to extract a valid witness from a proof that
verifies.

More formally, let κ ∈ N be the security parameter, and let NIZKAoK = (Setup,P,V, SimP)
be a NIZKAoK scheme. Consider the game between a probabilistic polynomial-time adversary A
and a challenger C described in Figure 6, where τA denotes the adversary’s inputs and outputs,
including its randomness:

NIZKAoK has simulation extractability if for any sufficiently large security parameter κ, for
any probabilistic polynomial-time adversary A, there exists an extraction algorithm ExtractA
and a negligible function negl in the security parameter κ such that the probability that A wins
the game is less than negl(κ).
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Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← Setup(1κ)

Qsim = ∅

Repeat poly(κ) times{
φ

−−−−−−−−−−−−−−−−−−−−−−−−−−B
π ← SimP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−− add π to Qsim

φ∗, π∗
−−−−−−−−−−−−−−−−−−−−−−−−−−B

w∗ ← ExtractA(crs, td, τA)
If all of the following checks pass, A wins:

(φ∗, w∗) 6∈ R
V(crs, φ∗, π∗) = accept
π∗ 6∈ Qsim

Figure 6: Security game for the simulation extractability property of the NIZKAoK.

4.1.2 Linearly Homomorphic Key Rerandomizable Threshold Encryption

Syntax A linearly homomorphic (over ring R) key rerandomizable threshold encryption scheme
has the following algorithms:

TKGen(1κ)→ (tpk, tsk1, . . . , tskn): An algorithm that, given the security parameter, sets up
the public key tpk and the shares tsk1, . . . , tskn of the secret key.

TEnc(tpk,m; ρ)→ β: An algorithm that, given the public key, a messagem ∈ R and randomness
ρ, outputs an encryption β of m.

TPDec(tpk, tski, β)→ di: An algorithm that, given the public key, a share tski of the secret key
and a ciphertext β, outputs a partial decryption di.

TDec(tpk, {di}i∈S,|S|≥t)→ m: An algorithm that, given sufficiently many partial decryptions,
returns the decrypted message m.

TEval(tpk, β1, . . . , βk, λ1, . . . , λk)→ β: A deterministic algorithm that, given the public key, ci-
phertexts β1, . . . , βk corresponding to messagesm1, . . . ,mk ∈ Rk and coefficients λ1, . . . , λk ∈
Rk, outputs a ciphertext β that encrypts ∑k

i=1 λimi ∈ R.

TKRes(tpk, tski; ρi)→ (mi,1, . . . ,mi,n): An algorithm that, given the public key and a share
of a secret key, produces n messages to help with the rerandomization of the secret key
sharing.

TKRec(tpk, {mj,i}j∈S,|S|≥t)→ tski: An algorithm that, given sufficiently many messages for the
rerandomization of the secret key sharing, outputs a share of the secret key.

SimTPDec(tpk, β,m, {tski}i∈{1,...,n}\S , {di}i∈S,|S|≥t)→ {di}i∈{1,...,n}\S: A simulation algorithm
that, given a ciphertext, a target message, and partial decryptions belonging to corrupt
parties, simulates partial decryptions belonging to honest parties that cause TDec to
output the desired message.

Security Properties Of course, a linearly homomorphic key rerandomizable threshold en-
cryption scheme must be correct in several ways:

• Decryption on honestly produced ciphertext and keys must return the appropriate mes-
sage.
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Adversary A Challenger C

S ∈ {1, . . . ,n}, |S| < t
−−−−−−−−−−−−−−−−−−−−−−−−−−B

tpk, {tski}i∈S
C−−−−−−−−−−−−−−−−−−−−−−−−−− (tpk, tsk1, . . . , tskn)← TKGen(1κ)

Repeat poly(κ) times{
S ∈ {1, . . . ,n}, |S| < t

−−−−−−−−−−−−−−−−−−−−−−−−−−B
For i ∈ [1, . . . , n]:

(mi,1, . . . ,mi,n)← TKRes(tpk, tski; ρi)
For i ∈ [1, . . . , n]:

{tski}i∈S
C−−−−−−−−−−−−−−−−−−−−−−−−−− tski ← TKRec(tpk, {mj,i}j∈S,|S|≥t)

b← {0, 1}
m0,m1 s.t. |m0| = |m1|

−−−−−−−−−−−−−−−−−−−−−−−−−−B
β ← Enc(tpk,mb)
di ← TPDec(tpk, tski, β) for i ∈ S
if b = 0:
di ← TPDec(tpk, tski, β) for i ∈ {1, . . . , n}\S

if b = 1:
{di}i∈{1,...,n}\S ← SimTPDec(

tpk, β,m0, {tski}i∈{1,...,n}\S , {di}i∈S)
β, {di}i∈{1,...,n}\S

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′−−−−−−−−−−−−−−−−−−−−−−−−−−B

A wins if b = b′

Figure 7: Security game for the partial decryption simulatability property of the TE.

• Decryption must remain correct after homomorphic evaluation.

• Decryption must remain correct after a rerandomization of the secret key sharing.

These correctness properties are intuitive, and we do not formalize them here. The important
security property of a TE scheme is partial decryption simulatability, described below. Note
that it trivially implies chosen plaintext security.

Definition 3 (Partial Decryption Simulatability for TE ). Informally, a TE scheme has partial
decryption simulatability if for any honestly produced ciphertext, desired message m and fewer
than t partial decryptions, the algorithm SimTPDec produces remaining partial decryptions which
cause TDec to return m.

More formally, let κ ∈ N be the security parameter, and let TE = (TKGen,TEnc,TPDec,
TDec,TEval,TKRes,TKRec,SimTPDec) be a TE scheme. Consider the game between a proba-
bilistic polynomial-time adversary A and a challenger C described in Figure 7.

TE has partial decryption simulatability if for any sufficiently large security parameter κ,
for any probabilistic polynomial-time adversary A, there exists a negligible function negl in the
security parameter κ such that the probability that A wins the game is less than 1

2 + negl(κ).

Instantiation We can instantiate such a linearly homomorphic key rerandomizable threshold
encryption scheme by Shamir sharing a Paillier decryption key [12]. Recall that Paillier encryp-
tion works modulo n2 where n = pq and p = 2p′+ 1, and q = 2q′+ 1 (for prime p, q, p′, q′). The
plaintext space is Zn and the ciphertext space is Z∗n2 . Encryption of x is given by

β = Enc(pk,m) = (n+ 1)mrn mod n2,
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for pk = n and uniformly random r ∈ Z∗n2 . Let n′ = p′q′. The secret key d is a number such
that d mod n = 1 and d mod n′ = 0.7 The element n + 1 has order n in Z∗n2 . Any element rn
is in a sub-group of order φ(n) = (p′ − 1)(q′ − 1), and (rn)2 is in a sub-group of order n′ = p′q′.
Therefore, we can decrypt as

Dec(d, β) = β2d mod n2 − 1
2n = (n+ 1)2m mod n2 − 1

2n = (2mn+ 1)− 1
2n = m.

This allows a very simple threshold decryption by interpolation in the exponent. The secret
key d is initially secret shared using a Shamir secret sharing modulo nn′. Party i has share
i. Partial decryption will basically consist of β2di with some subtle extra details described in
the cited papers. When resharing, the parties cannot reshare tski modulo nn′, since they do
not know this modulus (this knowledge would leak the secret key, and the factorization of n).
Instead, they will sample a sufficiently large secret sharing of tski over the integers using a
polynomial pi.

Given t + 1 shares pi(j) the next party j can compute via Lagrange interpolation its new
key share d′j = ∑

i λipi(j). The party cannot reduce its key share modulo nn′, since it still does
not know the modulus. This, however, will not matter as dj is later used to compute β2d′j , and
β2 has an order which divides the modulus.

More troublesome are the Lagrange coeficients λi, which should also be computed modulo
the unknown nn′. It can, however, be seen that the computation of these only involves division
by numbers between 2 and n − 2. So, if we let ∆ = (n − 1)!, then we can compute ∆λi over
the integers. This will allow us to interpolate a fresh sharing of ∆d. The next decryption will
yield ∆x mod n as opposed to x, but ∆ is invertible modulo n, so the parties can still retrieve
x. After l key refreshings, the parties have to divide out ∆l. See [12] for the details.

Damg̊ard and Koprowski [13] show how to generate the setup necessary for this scheme,
but their protocol is not YOSO. It is an interesting open problem to design a practical YOSO
protocol for setting up the threshold decryption material.

4.2 Protocol Description

In this section we describe in detail our MPC protocol ΠCDN. The roles R ∈ ΠCDN.Role (i.e.,
the parties in the protocol ΠCDN) are initially divided into a sequence of committees C of a size
n large enough that each of them have honest majority except with negligible probability; we
denote the committee of a round l by Cl, and the i-th committee member of Cl by Cl[i].

We describe our protocol in terms of individual operations. Some operations (e.g. Input)
are executed by a single role R; others (e.g. Add) are public operations executed by all roles;
yet others (e.g. Mult or MakeBeaver) are executed by one or more committees. We subscript
each operation with the roles executing it.

Note that several functions could be evaluated given the same setup. However, we focus on
a single function evaluation for simplicity.

Let TE = (TKGen,TEnc,TPDec,TDec,TEval,TKRes,TKRec) be a linearly homomorphic
key rerandomizable threshold encryption scheme, let PKE = (KGen,Enc,Dec) be a public key
encryption scheme, and let NIZKAoK = (Setup,P,V,SimP) be a simulation extractable non-
interactive zero-knowledge argument of knowledge. We use NIZKAoK for the following relations:

7Typically, d is chosen such that d mod φ(n) = 0; however, in order to get the threshold case to work, we use
n′ instead of φ(n) to avoid factors of two which cause complications.
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RDec =


φ = (pk, tpk, {pk′j}j∈[n], {mj}j∈[n], {m′j}j∈S , d, β)
w = (sk, tsk, ρ, {ρ′j}j∈[n])

sk is the secret key corresp. to pk
∧ m′j ← Dec(sk,m′j) for j ∈ S
∧ tsk ← TKRec(tpk, {m′j}j∈S)
∧ {mj}j∈[n] ← TKRes(tpk, tsk; ρ)
∧ mj ← Enc(pk,mj ; ρj) for j ∈ [n]
∧ d← TPDec(tpk, tsk, β).


,

RBeaver =
{

φ = (a, b, c)
w = (b, ρ)

b = TEnc(tpk, b; ρ)
∧ c = TEval(tpk, a, b)

}
.

We assume that in our encryption scheme PKE, the public key commits to a single decryption
key; so, given a ciphertext, an adversary should not be able to come up with an alternative
decryption key which can decrypt this ciphertext to an incorrect message.

Protocol ΠCDN

Setup(1κ): • The ideal functionality FGen initializes a PKI for Π such that each role R ∈ ΠCDN.Role is assigned
a key pair (pkR, skR) for the PKE scheme.

• Run (tpk, tsk1, . . . , tskn) ← TKGen(1κ). The public key tpk is published and each share tski of the
secret key is given to the corresponding committee member C0[i] of the initial committee C0.

• Initialize the NIZKs by running (crsDec, td)← Setup(1κ,RDec), and (crsBeaver, td)← Setup(1κ,RBeaver).
Publish crsDec, crsBeaver.

InputR(x): The role R samples randomness ρ, computes an encryption of its secret input x as x ← TEnc(tpk, x; ρ),
amd broadcast it by sending the message (Input,R, x) to FBC.

DecryptCl
(β): Each member Cl[i] of the current committee Cl does the following:

• Reconstructs its key share.
– Let S ⊆ {1, . . . , n} include j if and only if the proof πDec,l−1,j verifies.
– Cl[i] decrypts key shares received from the Cl−1[j], j ∈ S as
ml−1,j,i ← Dec(skCl[i],ml−1,j,i), and

– Reconstructs its key share as tski ← TKRec(tpk, {ml−1,j,i}j∈S).
• Reshares its key share.

– Cl[i] samples randomness ρl,i and computes a re-sharing of its key share as (ml,i,1, . . . ,ml,i,n)←
TKRes(tpk, tski; ρl,i), and

– For each j ∈ [n] it samples randomness ρl,i,j and encrypts each share to the next committee as
ml,i,j ← Enc(pkCl+1[j],ml,i,j ; ρl,i,j).

• Computes the partial decryption di ← TPDec(tpk, tski, β).
• Proves that it did everything correctly.

πDec,l,i ← P

(
crsDec,
φ = (tpk, pkCl[i], {pkCl+1[j]}j∈[n], {ml−1,j,i}j∈S , {ml,i,j}j∈[n], di, β),
w = (skCl[i], tski, ρl,i, {ρl,i,j}j∈[n])

)

• Broadcast by sending the message
(

Input, C[i], (di, {ml,i,j}j∈[n], πDec,l,i)
)

to FBC.

• Let S ⊆ {1, . . . , n} include i if and only if the proof πDec,l,i verifies.
• All roles R ∈ ΠCDN.Role compute the final decryption x← TDec(tpk, {di}i∈S , β).

Note that if multiple ciphertexts are to be decrypted in round l, the same committee can decrypt them all in
parallel.

Add(a, b): All roles R ∈ ΠCDN.Role compute TEval(tpk, (a, b), (1, 1)).

MakeBeaverCA,CB
: Committees CA and CB together produce a Beaver triple. (Multiplication then reduces to a

linear operations and decryptions, described below.)

• Each member CA[i] of CA does the following:
– Picks a random value ai,
– Encrypts it as ai ← TEnc(tpk, ai), and
– Broadcast by sending the message (Input, CA[i], ai) to FBC.

• All roles R ∈ ΠCDN.Role compute a← TEval(tpk, {ai}i∈Cl
, (1)n).
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• Each member CB [j] of CB does the following:
– Picks a random value bj .
– Encrypts it as bj ← TEnc(tpk, bj ; ρb,j).
– Computes cj ← TEval(tpk, a, bj).
– Proves that it did everything correctly.

πBeaver,j ← P

(
crsBeaver,
φ = (a, bj , cj),
w = (bj , ρb,j)

)

– Broadcast by sending the message
(

Input, CB [j], (bi, cj , πBeaver,j)
)

to FBC.

• Let S ⊆ {1, . . . , n} include j if and only if the proof πBeaver,j verifies.

• All roles R ∈ ΠCDN.Role compute b← TEval(tpk, {bj}j∈S , (1)|S|), and c← TEval(tpk, {cj}j∈S , (1)|S|).

Note that the entirety of Beaver triple generation can be carried out without the use of tsk, and without the
committee members needing to receive any private messages. Additionally, note that Beaver triple generation
committees can have a dishonest majority, and can therefore be smaller.

MultCl,Cl+1 (x, y, a, b, c): Let x and y be the ciphertexts corresponding to the values being multiplied, and a, b, c be
a Beaver triple previously produced (and verified).

• All roles R ∈ ΠCDN.Role compute ε← TEval(tpk, (x, a), (1, 1)), and δ ← TEval(tpk, (y, b), (1, 1)).

• The roles in committee Cl execute ε = DecryptCl
(ε) and (in parallel) δ = DecryptCl

(δ).
• All roles R ∈ ΠCDN.Role compute z = xy = TEval(tpk, (y, a, c), (ε,−δ, 1)).
• The roles in committee Cl+1 execute z = DecryptCl+1

(z).

4.3 Security Analysis

Next, we state the theorem claiming that the protocol ΠCDN described above securely imple-
ments MPC in the YOSO model.

Theorem 2. For any multiparty function F , the protocol ΠCDN described above running with
the network (FGen,FBC,FPP) and with t < N/2 · (1− ε) random Byzantine corruptions, YOSO-
securely implements the ideal functionality FMPCF .

sketch. We describe several hybrid games leading to a full simulator for ΠCDN . By the last
game, the simulator no longer requires the honest input roles’ inputs.

Game 0: During Setup, the simulator stores the NIZKAoK trapdoor td. The simulator executes
all honest roles honestly.

Game 1: The simulator simulates the honest roles’ proofs using SimP. This is indistinguishable
from the previous game by the zero knowledge property of NIZKAoK (Definition 1).

Game 2: The simulator extracts witnesses from all proofs produced by malicious parties. If
any of the proofs verify but fail to produce a valid witness, the simulator aborts. By
the simulation extractability property of the NIZKAoK (Definition 2), the simulator only
aborts with negligible probability. Notice that, at this point, thanks to the information it
extracts, the simulator

• Always knows all decryption key shares tsk1, . . . , tskn;
• Always knows all plaintexts corresponding to ciphertexts.
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Game 3: Let S be the set of corrupt roles in this round. During Decrypt(β), if this is the
decryption of the output, the simulator . . .

• Lets m be the plaintext corresponding to β.
• Computes corrupt roles’ decryption shares as di ← TPDec(tpk, tski, β) for i ∈ S, and
• Computes the honest roles’ decryption shares as {di}i∈{1,...,n}\S ← SimTPDec(tpk,
β,m, {tski}i∈{1,...,n}\S , {di}i∈S,|S|≥t).

This is indistinguishable from the previous game because plaintexts obtained during mul-
tiplication are randomly distributed, and by the partial decryption simulatability property
of TE (Definition 3).

Game 4: During Decrypt(β), if this is the decryption of the output, the simulator sets m to
be the MPC output given by FMPCF . This is indistinguishable from the previous game
because, by inspection, all steps of the computation were correct, so the output obtained
from FMPCF is the same as the plaintext corresponding to the output ciphertext.

Game 5: Let S be the set of corrupt roles in this round. During Mult, the simulator picks a
different xi’ (and, similarly, yi’) on behalf of one of the honest roles. However, during the
corresponding Decrypt, the simulator . . .

• lets m be the plaintext corresponding to the a + x using to the original xi (or,
similarly, the plaintext corresponding to the b+ y using the original yi).

• computes corrupt roles’ decryption shares as di ← TPDec(tpk, tski, β) for i ∈ S, and
• computes the honest roles’ decryption shares as {di}i∈{1,...,n}\S ← SimTPDec(tpk,
β,m, {tski}i∈{1,...,n}\S , {di}i∈S,|S|≥t).

This is indistinguishable from the previous game by the partial decryption simulatability
property of TE (Definition 3).

Game 6: During Decrypt(β), if this is a decryption done during multiplication, the simulator
sets m to be a uniform random value. This is indistinguishable from the previous game
because the distributions are identical; there is now no information about the original xi
and yi in the view of the adversary.

Game 7: During Input, the simulator encrypts 0 on behalf of all of the honest input roles.
(It continues to force all decryptions to This is indistinguishable from the previous game
by the chosen plaintext security of TE . Note that at this point, the simulator does not
require honest parties’ inputs.

5 Compiling Abstract YOSO to Natural YOSO

We explore the issue of compiling from the (abstract) YOSO model into a natural YOSO model
with explicit role assignment. The example is only meant as a toy example to demonstrate the
feasibility, not as a treatment of actual real-world role assignment.

The basic idea of our compilation is to have a UC ideal functionality spit out on a blockchain
a stream of public keys. Each public key has a corresponding physical machine. This physical
machine knows the secret key. The other machines do not know which machine corresponds
to which public key in the key stream. The public keys can then be associated to roles in the
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protocol being executed using some open role assignment based on the execution schedule of
the protocol being compiled. As a result random machines are now associated to roles.

Each public key in the key stream consist of two sub public keys, one for encrypting and
one for verifying signatures. To send a secret message to a role, encrypt under the encryption
key associated to a role. When executing a role, sign the outgoing message using the signature
key of the role. Before sending the message, delete the secret keys and all other internal
state and then post the signed ciphertexts on the blockchain. Notice that if a machine is
corrupted then the roles executed by the machine are corrupted. However, since the mapping
from public keys to machines is random and hidden there is no way to corrupt a particular
role. Corrupting a machine corresponds to corrupting the random roles the machine have been
assigned. Furthermore, a role already executed by a machine had its internal state deleted, so
it remains honest even though the machine later becomes corrupted.

We want to model synchronous computation. Therefore we use the UC model with syn-
chronous computation from [20]. All parties and ideal functionalities are aware which round
they are currently in by accessing a global clock functionality.

We now go a bit more into detail. We assume we have an information theoretic secure YOSO
protocol Π for the setting with just a public broadcast channel and perfectly secure channels
to future roles. Note that this protocol might have been constructed in a modular way using
the YOSO framework using several intermediary ideal functionalities and hybrid settings. We
just assume that when all is plugged together we end up with a protocol using only broadcast
and secure channels. We assume it is secure against some fraction τ of random corruptions
of the computation roles RoleCmp. We assume the protocol can tolerate any number of chosen
corruptions of input roles and output roles. We assume the protocol has public activation such
that it can be predicted just from contents on the blockchain which role is to execute next.

The compilation is inspired by a blockchain setting where machines can post on a blockchain
but where we want to ensure that each machine speak only once.8 Messages can be sent to
future roles via the blockchain which all machines can read. The problem is how to send a secret
message via a public blockchain. We focus of the specific setting from [3] where a machine M is
given a role R by a random public key pk appearing on the blockchain for which M knows the
secret key. The machine M is picked at random among all N machines such that the adversary
cannot corrupt a specific role. This public key is then assigned to one of the future roles. The
listening schedule can be used to assign the keys to roles which are soon to receive messages.
In Figure 8 we sketch a concrete infrastructure for generating the random keys pk.

Below we will assume that we have an ideal functionality FRA which spits out to machines
such random keys pk. For simplicity we use the same FRA to model the blockchain. We then
show how to UC securely compile a YOSO protocol to the FRA-hybrid model.

Before we continue let us make a caveat. The focus on the present example is on illustrating
the feasibility of compiling YOSO protocols into the usual UC framework. We will therefore
skip many of the details that would show up in practice. Some of the simplifications we make
are:

1. We assume the set of parties is fixed. No new parties arrive during the execution of the
MPC. In practice one would have to deal with parties joining the blockchain during the
MPC, in particular if the MPC runs for a long time.

2. In some cases when a computation takes place on a blockchain, the parties are selected
according to how much stake they have. We assume a flat stake distribution where each

8Machines might by chance get several roles assigned but we will at least ensure that each role is executed at
uniformly random points to hide among all other machines from denial of service attacks.
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Figure 8: Illustration of running a YOSO protocol on top of a concrete role assignment mech-
anism. There is a publicly known key base pk1, . . . , pkN with machine Mi having public key
pki. These keys were registered on the blockchain at some point. Some protocol is creating
a rerandondomized key stream (RRKS). Each p̃kj is a rerandomized version of some pki for
a random index i. Machine Mi can decrypt under p̃kj . The index i is pseudo random to the
other parties even when they are given p̃kj . An open role assignment (ORA) then assigns these
rerandomized keys to future roles in the order in which they need to be spoken to according to
the listening schedule of the protocol being compiled. By open we mean that a given position
in the key stream is always assigned to the same role. This maintains that random machines
get assigned to role.
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party should be elected to a role with the same probability. In practice one would have to
deal with non-uniform stake distribution and evolving stake distribution. However, these
are largely orthogonal issues.

3. We assume that we can assign roles uniformly at random. In practice role assignment
protocols might have a bias, like not having the same machine repeat twice in a row. As
an example the protocol in [17] gives a slightly non-uniform assignment. Dealing with
non-uniform assignment is not essential to demonstrate the idea of compiling a YOSO
protocol to UC.

4. We assume that when the role assignment generates keys, then the secret keys are always
unknown to the adversary when they are assigned to an honest party. This is not always
the case. In [3] there is a constant probability that the secret keys assigned to an honest
party leaks to the adversary. In [17] the secret keys of an honest party are always hidden.
The proof for the weaker case is similar to the strong case with more corruptions. We
therefore opt for the simpler case.

5. We do not concern ourselves with how to implement FRA. We in particular do not claim
that the role assignment protocol in [3] or [17] UC implements our very idealized FRA.
In particular the feature of forward security is hard to implement with adaptive security.
It is an interesting future work to consider UC secure implementations of FRA, or similar
but more realistic models of role assignment.

5.1 The Big Picture

We now want to compile a YOSO protocol ΠAbstract using only broadcast and secure channels
into a natural YOSO protocol ΠNatural using a blockchain and role assignment. An easy way
to formalize this is to compile the YOSO protocol ΠAbstract back to the YOSO model, but
now for a corruption setting where we allow chosen corruption of the computation roles. To
distinguish the two settings we call the computation roles in ΠNatural computation machines
(we still call the computation roles in ΠAbstract computation roles). To be able to describe
ΠNatural it is convenient to have a lean notation for how roles in ΠAbstract executes. For this
purpose we introduce the Simple YOSO (SYOSO) model which gives a very simplified model
of IT YOSO protocols only using broadcast and secure channels. We then first cast ΠAbstract

into a protocol ΓAbstract in the SYOSO. Then we compile ΓAbstract into a protocol ΠNatural

running on top of FRA. We do not propose SYOSO as its own model, but rather as a technical
stepping stone for the proof abstracting away some of the unnecessary details.

5.2 Simplified YOSO Model (SYOSO)

For convenience of notation we first specify the Simple YOSO (SYOSO) model which gives a
very simplified model of IT YOSO protocols only using broadcast and secure channels. It also
only considers secure function evaluation.

To conveniently describe how to run YOSO protocols on top of FRA we will assume that
the parties act in sequence. The protocols we described in previous chapters acted in rounds.
However, we assumed a rushing adversary, so security does not suffer from unrolling each round
into a sequential activation. We note that this sequential execution is just for convenience of
description. In practice the roles which do not depend on each other can still be executed in
parallel.

When a role R executes it will post a public message mR on the ledger and send secret
messages to some future roles. We set up some notation for executing SYOSO protocols. An
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activation sequence ActSeq will be a sequence of pairs (R,mR), where R is the role which acted
and mR is the public message it sent. If the role was to send a message but it did not, then we
set mR = NoMsg. We assume that it can be efficiently computed from an activation sequence
which role R is to act next, which roles I have sent secret messages to R and which roles O are
to get secret messages from R. This follows if the protocol Π we start from has public activation.
We write

UpNext(ActSeq) = (R, IR,OR) ,

where each S ∈ IR occurs in ActSeq and each each S ∈ OR does not occur in ActSeq ∪ {R}.
This just says that roles do not send messages to roles which already executed and they do not
try to receive from roles which did not yet execute. Furthermore, the UpNext function should
guarantee that S ∈ IR iff R ∈ OS. We assume the execution of the role is given by a randomized
algorithm ExecRole, where

ExecRole(ActSeq, x, {(S,mS,R)}S∈I) = (R, y,mR, {(S,mR,S)}S∈O) ,

where R is the role which was executed, x is a possible secret input, y is a possible secret output,
mR is the message broadcast by R, and mS,R is a secret message from sender S to receiver R.
Here x = ⊥ if R 6∈ RoleIn and y = ⊥ if R 6∈ RoleOut. Note that ExecRole can use UpNext to
compute which role R it is to execute. We let it output R for notational convenience later.

We consider secure function evaluation of a function

(y1, . . . , ym) = F (x1, . . . , xn)

with n secret inputs and m secret outputs. We assume the input roles I1, . . . , In are fixed, that
the output roles O1, . . . ,Om are fixed, and that the activation sequence begins with I1, . . . , In
and ends with O1, . . . ,Om. Note that this in particular means that UpNext(()) = (I1,∅,O) for
some O.

We assume for convenience that input roles do not communicate and output roles do not
communicate. This is the case for the protocol we gave above. All entities tacitly take the
security parameter κ as input.

An execution Execstatic,τ
Γ,A,E (κ) with τ static corruptions proceeds as below.
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1. Let A specify any number of static Byzantine corruptions of RoleIn and RoleOut. Pick τ uni-
formly random Byzantine corruptions of RoleCmp. Let Corrupt ⊂ Role by the set of corrupted
parties let Honest = Role \Corrupt. Now let E and A interact as an adversary and environment
in the UC framework and let A attack the protocol as follows.

2. Run E to get inputs xi for Ii ∈ Honest.

3. Let ActSeq = () be the empty sequence.

4. Let (R, IR,OR) = UpNext(ActSeq).

5. If R = Ii and Ii ∈ Honest then let x = xi, otherwise let x = ⊥.

6. If R ∈ Honest then sample

(y,mR, {(S,mR,S)}S∈OR)← ExecRole(ActSeq, x, {(S,mS,R)}S∈IR)

otherwise sample
(mR, {(S,mR,S)}S∈OR)← A .

7. Append (R,mR) to ActSeq and input mR to A.

8. For S ∈ OR ∩ Corrupt, input mR,S to A.

9. For S ∈ OR ∩ Honest, input |mR,S| to A.

10. If R = Oj and R ∈ Honest then let yj = y and input yj to E .

11. If R 6= Om then go to Step 4.

12. Run E to get z ∈ {0, 1} and output z.

We can define adaptive security similar to YOSO. On an adaptive corruption of R the
adversary learns the messages mS,R sent to R and may change them if R did not execute yet.

A simulation IdealF,S,E(κ) proceeds as follows:

1. Let S specify any number of static Byzantine corruptions of RoleIn and RoleOut. Pick τ uni-
formly random Byzantine corruptions of RoleCmp. Let Corrupt ⊂ Role by the set of corrupted
parties let Honest = Role \ Corrupt. Now let E and S interact as simulator and environment in
the UC framework and let S attack the protocol as follows.

2. Run E to get inputs xi for Ii ∈ Honest.

3. If at some point the simulator S outputs a value xi for each Ii ∈ Corrupt, then compute
(y1, . . . , ym) = F (x1, . . . , xn) and give yj for each Oj ∈ Corrupt to S.

4. For j = 1, . . . ,m, if Oj ∈ Honest then input yj to E .

5. Run E to get z ∈ {0, 1} and output z.

We call Γ SYOSO secure if for all PPT A there exists a PPT S such that

ExecΓ,A,E(κ) ≈ IdealF,S,E(κ) .

It is easy to verify that YOSO security implies SYOSO security up to some syntactic “mas-
saging.” In both cases the simulator has to do straight-line simulation of the honest parties in
an environment picking the inputs while only having access to evaluating f on inputs where the
inputs of the corrupted parties are chosen by S.
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5.3 Toy UC Model of a Global Ledger and Role Assignment

We would then like to be able to emulate the chosen corruption of computation machines in
ΠNatural using random corruption of computation roles in ΓAbstract. For this purpose we use
FRA to hide which computation machine executes which computation roles. In a bit more
details we let MachineIn = RoleIn and MachineOut = RoleOut. We let MachineCmp be a subset
of all pid’s such that MachineCmp ∩ (MachineIn ∪ MachineOut) = ∅. For R ∈ RoleIn we let
MR = R ∈ MachineIn, i.e., we let machine R execute role R. Similarly, for R ∈ RoleOut we let
MR = R ∈ MachineOut. We then use an ideal functionality FRA for role assignment to define
a random map RA : RoleCmp → MachineCmp and we let MR = RA(R). We then run the YOSO
protocol on a blockchain while letting MR execute role R. Recall that the reason why we do not
assign input roles and output roles at random is to model the practical reality that often some
specific parties are to give inputs and see the outputs.

5.3.1 The Timed Ledger with Role Assignment

We model the blockchain as a very simplistic timed ledger. A ledger is just a growing sequence of
messages which all parties agree on. A timed ledger is one where messages get timestamps when
posted. This timestamp is somewhat close to the real time. As an example consider a proof of
stake blockchain where blocks are associated to slots and slot numbers are closely associated to
physical time. Here a message can be timestamped via the slot number of the block in which it
occurs. For simplicity we use a simple model of timed ledger. We will use ∆Post to bound the
time it takes to post something to the ledger. We will make the very simplistic assumption that
when something is posted on a blockchain then all honest parties will see it at the same local
clock time and will output the message with a timestamp which is this local clock time.9 It is
possible to compile to blockchains with weaker delivery guarantees, but for our toy example of a
compilation nothing is lost in making this simplifying choice. We will also assume that we have
a mechanism for generating fresh public keys which appear on the ledger and where a random
secret party knows the corresponding secret keys. For simplicity we will allow the adversary to
decide when a given role R has its keys generated. In terms of safety this is the conservative
modeling: if you can prove security in this model, then the protocol is secure with any order
of key generation. In terms of liveness the model is problematic as it allows the adversary a
denial of service attack of not generating any keys; one for instance cannot prove guaranteed
output delivery in this setting. One can solve this issue by requiring that the compiled protocol
is non-trivial: if the adversary eventually generate keys for all honest roles then the protocol
eventually generates outputs.

The toy ledger with role assignment is given in Figure 9.
Notice that in FRA, if a machine MR with role R becomes corrupted then FRA leaks the

secret keys of the role R if the Generate message is still not output to the parties. This is a
simplistic model of the following real world setting. When MR is to learn the secret keys dkR and
skR some message will be sent which only MR can decrypt. Imagine that this message is posted
on the ledger. While this message is in transit the machine MR cannot avoid having the ability
to decrypt it. The purpose is, after all, that it lets MR learn (dkR, skR). However, after the
message is learned by MR and MR decrypted it to learn (dkR, skR) we assume that MR can forget

9One inefficient way to implement this is as follows. Assume an upper bound ∆Block on the time it takes for
a block with timestamp t to become known to a party, i.e., a block with timestamp t arrives at all parties before
time t + ∆Block. Note that on a Nakamoto style blockchain the time t at which a block “arrives” is the time
at which it is known to be in the stable common prefix forever except with negligible probability, which can be
much later than when it is seen for the first time. Assume furthermore that local clocks drift at most ∆Clock
from the global time. Now when a block B with timestamp t arrives wait until local time t + ∆Block + ∆Clock
and then output the messages in B with timestamp t+ ∆Block + ∆Clock.
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Init Let Posted be the empty set, let Ordered be the empty sequence. In any round let tNow denote
the current time. We assume the ledger is parametrized by a set Machine which is the set of
parties allowed to use it. They are divided into MachineRan and MachineFixed with random roles
respectively fixed roles.

Post On input (Post,m) from pid ∈ Machine, output (Post, pid,m) to the adversary and add
(pid, tNow,m) to the set Posted.

Order On input (Order, pid,m) from the adversary where some (pid, t,m) ∈ Posted and no
(pid, t′,m) ∈ Ordered, append (pid, tNow,m) to Ordered. Execute this command automatically
when (pid, t,m) ∈ Posted and no (pid, t′,m) ∈ Ordered and t = tNow −∆Post.

Read On input (Read) from pid ∈ Machine, leak (Read) to the adversary and output Ordered to
pid.

Generate On input (Generate,R) from the adversary, sample (ekR, dkR)← Enc.Gen(1κ) and sam-
ple (vkR, skR) ← Sig.Gen(1κ). If R ∈ RoleFixed then let pid = R. Otherwise sample a uniformly
random pid ∈ MachineRan. Then leak m = (Generate,R, ekR, vkR) to the adversary and add
(ra, tNow,m) to Posted. Let MR = pid. When (ra, t′,m) is later added to Ordered output
(Generate,R, ekR, dkR, vkR, skR) to MR.

Forward Security When MR becomes corrupted, output (Generate,R, ekR, dkR, vkR, skR) to the
adversary if (Generate,R, ekR, dkR, vkR, skR) 6∈ Ordered.

Figure 9: Toy Timed Ledger FRA with Role Assignment

the ability to decrypt the message, say by deleting or evolving the secret key needed to decrypt
these role assignment messages. This would be part of the protocol implementing FRA. The
value (dkR, skR) might still be around for the sake of the outer protocol ΠNatural, but for the
sake of FRA it should no longer be available to MR if MR is corrupted in the implementation of
FRA. This part of the model is essential for being able to prove adaptive security: it guarantees
that if MR is adaptively corrupted after executing R it is the same as R having been honest.10

Notice that if an honest role R posts a message m to the ledger and is later corrupted, then
the message m is still delivered. This holds even of R is corrupted while m is still in transit (it is
in Posted and not in Ordered). This is sometimes called atomic message delivery. It is needed for
adaptive corruption to be meaningful in the YOSO framework. We use random role assignment
to keep the role-machine associating hidden until the machine has to send its single message.
If a denial of service attacker is strong enough to kill a machine after role execution and take
back the message there is little we can do. We therefore assume atomic message delivery.

A compiled SYOSO role R is ready to execute when it is its turn according to ActSeq, and
all the roles it has to send messages to already have public keys on FRA. When a SYOSO role
R is ready to be executed by a party pid it will post the public message mR on FRA and send
secret messages to some future roles by encrypting under their public keys. The public message
mR will be signed by R, as will the ciphertexts. Before posting, the party pid deletes the secret
keys skR and dkR.

We now describe this protocol in more detail. We set up some notation for executing a
SYOSO protocol in practice. We use the same functions UpNext and ExecRole as given by
the SYOSO protocol Γ. The activation sequence ActSeq will be the sequence of pairs (R,mR),

10Looking a bit forward, our simulation strategy will then be to ensure that if MR is corrupted before executing
R, then we assign it one of the statically corrupted roles R. The simulator can do this as the role R of M is
unknown to the adversary until M is corrupted and the simulator can therefore program FRA to assign a given
R to M at corruption time.
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The protocol ΠNatural running in the FRA-hybrid model with parties Machine. We assume that
input machines MachineIn have their inputs provided before the execution starts. The protocol uses
a labelled CCA secure encryption scheme Enc and an unforgeable signature scheme.

Role Assignment If FRA outputs (Generate,R, ekR, dkR, vkR, skR) to M then M stores SKeysR =
(R, dkR, skR).

Ready to Receive We say that R ∈ Role is ready to receive if (ra, t′, (Generate,R, ekR, vkR)) occurs
in Ordered. If so, we say that it was ready at ledger time t′.

Ready to Send When it first happens that a message (·, t′,m) is posted to Ordered such that
UpNext(ActSeq) = (R, IR,OR) then we say that R is ready to send. We say R was ready at
ledger time t′.

Ready to Execute When it first happens that a message (·, t′,m) is posted to Ordered such that R
is ready to send and it holds for all S ∈ OR that S is ready to receive we say that R is ready
to execute. We say R was ready at ledger time t′. Note that this is a publicly observable event
which all machine agree on given the same Ordered.

Time out If it happened at ledger time t′ that R is ready to execute and the local time is now t = t′ +
∆Post and no message of the form (R,mR,M, σ) was posted with Sig.Ver(vkR, (mR,M), σ) = >,
then virtually inject a message (R,mR = NoMsg,NoMsg,NoMsg) into Ordered at ledger time
t′ + ∆Post. By this we mean that all machines behave as if that message is in Ordered.

Role Execution When it happens that R is ready to execute at time t and M is the machine which
has SKeysR = (R, dkR, skR) stored, then M proceeds as follows at time t.

1. For each S in IR inspect Ordered to find (S,mS,M, σ). We know it is there as S ∈ IR and
we enforce by convention that the roles execute in turn according to UpNext on Ordered.
If mS = NoMsg, or S posted the message before it was ready to execute, or there are no
keys (S, ekS, vkS) on Ordered or Sig.Ver(vkS, (mS,M), σ) = ⊥, then set mS,R = NoMsg.
Otherwise parse M as {(R′,MS,R′)}R′∈OS and retrieve MS,R. If this is not possible let
mS,R = NoMsg. Otherwise let mS,R = Enc.DecS(dkR,MS,R). Here S is the label.

2. If R = Ii then retrieve input xi and let x = xi. Otherwise let x = ⊥.
3. Sample (R, y,mR, {(S,mR,S)}S∈OR)← ExecRole(ActSeq, x, {(S,mS,R)}S∈IR)
4. For S ∈ OR compute MR,S ← Enc.EncR(ekR,mR,S) and let M = {(S,MR,S)}S∈OR . Here R

is the label.
5. Compute σ = Sig.Sign(skR, (mR,M)).
6. If R = Oj let yj = y and output yj .
7. Erase skR and dkR and all internal values used during the above computation, except

(R,mR,M, σ).
8. Post (R,mR,M, σ) on FRA.

Figure 10: The protocol ΠNatural compiled from ΓAbstract.
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where R is the role which acted and mR is the public message it sent on FRA. To keep this
synchronized with the same notion in the SYOSO model we make the convention that we ignore
(R,mR) if it occurs on the ledger out of turn, i.e., it occurs at a point in time where it was not
the case that UpNext(ActSeq) = (R, ·, ·). In the exposition below we will tacitly behave as if any
messages sent on Ordered out of turn is not there. If the role was to send a message but did not,
then we will use a timeout to set mR = NoMsg, more on this below. Notice that the current
activation sequence can be read from FRA, it is an efficient function ActSeq(Ordered) of Ordered.
Since Ordered is implicitly given at all parties we will write ActSeq to mean ActSeq(Ordered).
With this notation the protocol is given in Figure 10.

5.4 Theorem Statements

We prove three results. We show that we can compile a statically secure YOSO protocol into a
statically secure natural YOSO protocol for the FRA-hybrid model, with a slight reduction in
the corruption level tolerated. The new corruption level can be arbitrarily close to the original,
but not equal. We also show that we can compile an adaptively secure YOSO protocol into an
adaptively secure natural YOSO protocol for the FRA-hybrid model, with a slight reduction in
corruption level.

Theorem 3. Let τ > 0 and ρ > 0 be constants with ρ < τ .

• If there exists ΠAbstract for the synchronous YOSO model using hybrid functionalities
FBC and FSPP and which IT YOSO implements F against τ random, static corruptions,
then there exist ΠNatural

1 for the FRA-hybrid model which implements F against ρ chosen,
static corruptions.

• If there exists ΠAbstract for the synchronous YOSO model using hybrid functionalities
FBC and FSPP and which IT YOSO implements F against τ random, adaptive point-
corruptions, then there exist ΠNatural

2 for the FRA-hybrid model which implements F
against ρ chosen, adaptive point corruptions.

The protocols ΠNatural
i use a number of computation machines which is polynomial in the

number of computation roles of ΠAbstract. The degree of the polynomial depends on the constant
gap ρ−τ . The compiled protocols use a labeled CCA secure encryption scheme and an unforgeable
signature scheme. The compiled protocol Π2 in addition assumes that the encryption scheme is
a public key non-committing encryption scheme.

For the public-key non-committing scheme we can use the two-round NCE scheme from [9].
The public key is the first message from the receiver to the sender. The ciphertext is the second
message from the sender to the receiver. To make it labeled CCA one can send the ciphertext
of the NCE encrypted by a labeled CCA scheme.

We comment on the relation between τ and ρ. Let R be the number of roles assigned at
random. Let M be the number of machines they are assigned to. Consider throwing R balls
uniformly at random into M bins. If you corrupt a fraction ρ of bins you will on average corrupt
a fraction ρ of roles. So if you assume M grows with the security parameter, and you set ρ < τ
with a big enough margin to account for the variation, you can ensure that you corrupt at most
a fraction τ roles, except with negligible probability. The variance can be made arbitrarily small
by increasing M , which is how we get the above theorems. If M is small and fixed then many
roles get assigned to the same machine and the variance goes up. This will lower the tolerated
ρ. We do not discuss how to compute ρ from given τ , R and M . We simply assume that we
can set M arbitrarily to “squeeze” ρ to τ .
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5.5 Analysis

We now prove Theorem 3. Let M be the number of computation machines ΠNatural and let
R be the number of computation roles in ΓAbstract. Assume that R grows at least linearly
in the security parameter κ. If not, then it can be padded to do so by introducing dummy
roles. Let M = R2+c for a positive integer c. We assign R roles at random to M machines.
This means that the probability that any two roles are assigned to the same machine is less
than R−2−c. Therefore the expected number of collisions is less than R−c. For any constant
δ we can set c large enough that the fraction of roles in a collision is less than δ except with
negligible probability. This means that for any ρ < τ we can ensure that corrupting ρ machines
will corrupt at most τ roles except with negligible probability. Below we assume that this has
been assured by setting M large enough.

We now prove that ΠNatural UC implements FFMPC in the FRA-hybrid model with τ adap-
tive, chosen corruptions of MachineCmp. Along the way we will also prove the static case as a
warm-up case.

It is clear that by construction and by the unforgeability of the signature scheme, the
messages computed and sent (and laster received) by the honest parties are computed correctly
according to ExecRole. Therefore, if the number of corrupted roles can be kept below τ the
outputs of the computation at honest roles will be correct and match those of F . Below we
then focus on how to simulate the transcript of the protocol to E in an indistinguishable manner.
We go via a number of hybrid distributions to prove this. In all the processes and hybrids we
describe below we assume that any number of chosen, static corruptions are allowed among role
RoleIn and RoleOut.

• Let Execadaptive,ρ
FFMPC,SUC,E

denote the ideal process with ideal functionality FFMPC and with
adaptive, chosen corruptions of up to ρ parties in MachineCmp.

• Let Execadaptive,ρ
ΠNatural,A,E denote the UC execution of ΠNatural in the FRA-hybrid model with

ρ adaptive, chosen corruptions of MachineCmp and adversary A.

• Let Idealadaptive,τ
F,SSYOSO,E denote the ideal SYOSO ideal process with τ adaptive, random cor-

ruptions of RoleCmp.

• Let ExecSYOSO,adaptive,τ
ΓAbstract,B,E denote the real-world SYOSO protocol with τ adaptive, random

corruptions of RoleCmp and adversary B.

We have to prove that for all PPT A there exists a PPT simulator T such that

Execadaptive,ρ
ΠNatural,A,E = Execadaptive,ρ

FFMPC,T ,E
.

We give a hybrid argument. The first hybrids are mainly syntactic or by assumption, so we
will only sketch the proofs. We can prove that for all PPT SSYOSO there exists PPT SUC such
that

Idealadaptive,τ
F,SSYOSO,E = Execadaptive,ρ

FFMPC,SUC,E
.

This follows by construction of the processes. In both processes the simulator has the same
powers and obligations, so SUC = SSYOSO up to a thin wrapper.

Synchronous YOSO security for the model with broadcast and secure channels imply SYOSO
security by construction, and by SYOSO security we have that for all PPT B there exists PPT
SSYOSO such that

ExecSYOSO,adaptive,τ
ΓAbstract,B,E ≈ Idealadaptive,τ

F,SSYOSO,E .
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This means that we have reduced the proof obligation to proving that for all PPT A there
exist PPT S such that

Execadaptive,ρ
ΠNatural,A,E ≈ ExecSYOSO,adaptive,τ

ΓAbstract,S,E .

If we can lift this proof obligation then we can in particular for all PTT A construct a PPT
simulator T = S ◦ SSYOSO ◦ SUC composed of S, SSYOSO, and SUC such that

Execadaptive,ρ
ΠNatural,A,E ≈ Execadaptive,ρ

FFMPC,T ,E
.

Note that there is a slight misuse of notation in claiming Idealadaptive,τ
F,SSYOSO,E = Execadaptive,ρ

FFMPC,SUC,E
.

In Execadaptive,ρ
FFMPC,SUC,E

the corruption aggregation of the UC framework will report corrupted ma-
chines to E . In the process Idealadaptive,τ

F,SSYOSO,E we work with roles. We should allow SUC to simulate
this difference which it formally cannot right now as the corruptions are reported by the cor-
ruption aggregation mechanism. Similarly for the simulator S which is simulating machines
from roles. We will not go into the details of patching the processes to allow this bridging.
Note in particular that when we use S and SSYOSO as components in Execadaptive,ρ

FFMPC,S◦SSYOSO◦SUC,E
we do not have this formal mismatch, as both Execadaptive,ρ

FFMPC,S◦SSYOSO◦SUC,E
and Execadaptive,ρ

ΠNatural,A,E
work with machines. So the swap from machines to roles to machines happens internally in
T = S ◦ SSYOSO ◦ SUC.

Similarly we can reduce the proof obligation for the static case to proving that for all A
there exist S such that

Execstatic,ρ
ΠNatural,A,E ≈ ExecSYOSO,static,τ

ΓAbstract,T ,E .

The proofs for the two cases are very similar. To be able to reuse most of the proof structure
we will initially do one proof that for all A there exist S such that

Execadaptive,ρ
ΠNatural,A,E ≈ ExecSYOSO,static,τ

ΓAbstract,S,E .

Note that we attempt to prove adaptive security from static security.

5.5.1 Programming FRA in the Simulation

During the execution or simulation of Execadaptive
ΠNatural,A,E let MachineCor denote the currently

corrupt machines in Machine and let MachineHon = Machine \MachineCor. Let Corrupt be the
statically corrupted roles in ExecSYOSO,static,τ

ΓAbstract,S,E
The main challenge in proving Execadaptive,ρ

ΠNatural,A,E ≈ ExecSYOSO,static,τ
ΓAbstract,S,E is that in Execadaptive

ΠNatural,A,E

we have chosen and adaptive corruptions, while in ExecSYOSO,adaptive,τ
ΓAbstract,S,E we have random and

static corruptions. Note, however, that A expects to see a copy of FRA which is not present
in ExecSYOSO,static,τ

ΓAbstract,S,E . So it is S which simulates FRA to A. We will use this to map roles
R ∈ RoleCmp ∩ Corrupt to corrupt machines M and map R ∈ RoleCmp ∩ Honest to machines M
which are honest at the time of execution.

There are some caveats to this, as we sometimes have to map corrupt roles to honest ma-
chines, but first we look at the basic simulation strategies.
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5.5.2 Delayed Role Assignment

When the simulator S simulates FRA it will simulate it exactly as in the protocol, with the
following differences.

When keys are generated for R ∈ RoleComp ∩Honest then it will not pick MR until it is time
for R to be executed. This is possible as the behavior of FRA is independent of MR to A when
MR is honest. We call this delayed honest role assignment below. Furthermore, when it is time
for R to be executed, S will assign R to a uniformly random M ∈ MachineHon, i.e., a uniformly
random machine M which is honest at the time of execution. Then S will simulate that MR
executes R as detailed below. Notice that this operation is atomic, so E cannot corrupt the
simulated MR while it executes R. And afterwards, when the simulated message is posted to
the simulated FRA a corruption of MR will have to leak nothing new: in the real world protocol
MR would have deleted all internal state. And, importantly, note that when it is time for R to
be executed, then FRA delivered the Generate-message for R by construction. Therefore FRA
will not have to later hand the secret keys for R to A either. All in all, this ensure that when
the execution of an honest R has been done it is (1) by an honest MR at the time and (2) the
secret keys skR and dkR never have to be handed to A.

When keys are generated for R ∈ RoleComp ∩ Corrupt then with some carefully calculated
probability α the simulator S will pick MR to be a uniformly random machine from MachineCor,
assign R to MR immediately, and then output the secret keys to the adversary immediately as
FRA would do. With probability 1 − α we instead from now on treat R as honest. We do
delayed honest role assignment of R to some future honest machine and once MR is chosen and
R is executed the simulator just executes R correctly. This corrupt-to-honest conversion has the
rationale that the current number of adaptively corrupted machines might be much smaller than
the number of statically corrupted roles. It would therefore give a wrong distribution to assign
all keys for corrupt roles to currently corrupted machines. Think of a single corrupted machine
which would receive a fraction τ of all roles. We cannot somehow put R in the pocket and assign
it to the next adaptively corrupt machine: this would give an odd distribution on role assignment
where roles which already had keys generated hit newly corrupted machines too frequent. We
therefore assign it uniformly at random to an honest machine. We can postpone this assignment
as we do with postponed honest role assignment. Importantly, we never assign honest roles to
currently corrupted machines. We return to how to simulate the correct distribution of role
assignment below. We first show how to simulate the different combinations of role versus
machines and corrupt versus honest.

5.5.3 Corrupt Role, Honest Machine (Case Orange)

Assume corrupted R is assigned to honest MR and now S has to simulate the execution of R. This
is the easy case. Later we call it the orange case. Since the role is corrupted, the simulator S re-
ceived mR and each mS,R in ExecSYOSO,τ

ΓAbstract,S,E . It can then compute (y,mR, {(S,mR,S)}S∈OR)←
ExecRole(ActSeq, x, {(S,mS,R)}S∈IR) and output (mR, {(S,mR,S)}S∈OR) in ExecSYOSO,τ

ΓAbstract,S,E to
simulate the execution of an honest role R. Then let MR send encrypted and signed (mR, {(S,mR,S)}S∈OR)
in the simulated Execadaptive

ΠNatural,A,E .

5.5.4 Corrupt Role, Corrupt Machine (Case Red)

To simulate a corrupt role R executed by a corrupt machine MR the simulator proceeds as
follows. Later we call this the red case. Recall that MR is controlled by A in the simulated
Execadaptive

ΠNatural,A,E . The simulator runs A until MR posts (R,mR,M, σ) on FRA (or a timeout is
called on behalf of MR). If a message is posted before all S ∈ OR were ready to receive then let
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mR = NoMsg and let mR,S = NoMsg for all S ∈ OR. The protocol has the same behavior as
it ignores messages posted before S was ready to execute, which it is not unless all its receivers
are ready to receive. Otherwise, use the secret key skS of each S ∈ OR and decrypt mR,S from
M as S would have done in the protocol. Then output (mR, {(S,mR,S)}S∈OR). Note that we
here might decrypt under the secret key of an honest receiver S. However, this could have been
done via a decryption oracle. And, the receiver S will decrypt messages from R under label R,
so we never use the oracle to decrypt ciphertexts for S sent by an honest R′. We can therefore
assume that these are still indistinguishable.

5.5.5 Honest Role, Corrupt Machine (Case Cyan)

Due to delayed honest role assignment this case will not happen.

5.5.6 Honest Role, Honest Machine (Case Green)

When an honest role R is to be executed by an honest MR then S proceeds as follows. Later we
call this the green case. Learn mR from ExecSYOSO,,τ

ΓAbstract,S,E . For S ∈ O ∩ Corrupt learn mR,S from
ExecSYOSO,,τ

ΓAbstract,S,E and let m′R,S = mR,S. For S ∈ O ∩ Honest learn |mR,S| from ExecSYOSO,,τ
ΓAbstract,S,E

and let m′R,S = 1|mR,S|. Then let MR send encrypted and signed (mR, {(S,m′R,S)}S∈OR) in the
simulated Execadaptive

ΠNatural,A,E . Notice that if m′R,S 6= mR,S then S is honest. As argued above we
never need to decrypt the ciphertext M ′R,S in the simulation, so we could ask a challenge oracle
for the IND-CCA game to encrypt us m′R,S or mR,S at this point.

Notice that here we send an encryption of 1|mR,S| to the currently honest machine S. If MS
was to become corrupted before the role R was executed this would be a problem as A would
have to be given skS and would see 1|mR,S| instead of mR,S. Note however that since S ∈ OR and
R was just executed, it follows that S has not yet been in turn to be executed. Therefore S is
per delayed honest role assignment not yet assigned to a machine M. More importantly, when
S is later executed S will pick a machine MS which is honest at the time.

5.5.7 Getting the Right Distribution of Role Assignment, Static from Static Case

Above we argued that by a reduction to IND-CCA the above simulation cases can be shown
indistinguishable from the execution. We now argue that we can simulate the correct distribu-
tion of role assignment while only using the above simulation cases. We should ensure that the
number of roles assigned to machines has the correct distribution. At the same time we should
not assign unexecuted honest roles to currently corrupted machines. We are allowed to assign
corrupted roles to honest machines.

As a warm up, let us first consider the case where there are ρ static corruptions of com-
putation machines in Execadaptive,ρ

ΠNatural,A,E . We will play two balls in bins games; the machines
MachineCmp will be the bins, and the roles RoleCmp will be the balls. Call MachineRed =
MachineCor∩MachineCmp the red machines. Call MachineGreen = MachineHon∩MachineCmp the
green machines. Let R = |RoleCmp| and let M = |MachineCmp|.

Consider the following process P1 for coloring some roles R ∈ RoleCmp as red or green. First
throw roles R ∈ RoleCmp uniformly at random into machines MachineCmp. Then color R red if
R ∈ MachineRed and otherwise color it green. Notice that this is how the protocol colors roles.
It is the machines which are corrupt. Roles are assigned to machines, and roles inherit the color
from the machine.

Consider then the following process P2 for coloring some roles R ∈ RoleCmp as red or green.
First assign R yellow balls uniformly at random to machines MachineCmp. Call the balls in red
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machines red and call the balls in green machines green. Let r be the number of red balls. By
assumption on ρ and τ it will always be the case that Rτ ≥ r, except with negligible probability.
Pick Rτ −r green balls and color them orange. Now there are Rτ green balls and R(1− τ) balls
which are red or orange. Then color τR uniformly random roles R ∈ RoleCmp as red and color
the rest as green. Then for all computation roles R = R1, . . . ,RR in some possibly adversarially
chosen order, proceed as follows. If R is green, then find a uniformly random green ball and
swap the ball with R. If R is red, find a uniformly random red or orange ball and replace it by
R. If R is swapped with an orange role, color R green.

Notice that here the roles get colors before being placed in machines. Then we place them at
random but under the condition that green roles are placed in green machines. This is possible
as Rτ − r is positive. These two processes clearly give the same distribution of roles unto
machines and both ensure that all roles R in red machines are corrupted. This means that S
can assign roles to machines as follows.

First we let S mentally throw R yellow balls uniformly at random into machines MachineCmp.
Call the balls in red machines red and call the balls in green machines green. Let r be the number
of red balls. Pick Rτ − r green balls and color them orange. Then it learns the τ corrupted
computation roles R from ExecSYOSO,τ

ΓAbstract,S,E . Then for all computation roles R = R1, . . . ,RR
in the activation order of ΓAbstract, proceed as follows. If R is honest, then find a uniformly
random green ball in a green machine M, remove the green ball, let MR = M and simulate MR
executing R using Case Green. If R is corrupt, then find a uniformly random red or orange
ball in a machine M, remove the ball from M, let MR = M and simulate MR executing R. This
means simulating a corrupt role on a corrupt machine (Case Red) or simulating a corrupt role
on an honest machine (Case Orange). This completes the proof for the static-static case.

5.5.8 Getting the Right Distribution of Role Assignment, Adaptive from Adaptive
Case

We now turn our attention to the case of simulating chosen adaptive corruptions of machines
from adaptive random point-corruptions of roles. The simulator proceeds as S in the above
case except that it does not know the set Corrupt statically, it will define this set adaptively
using point-corruptions. First we let S throw R yellow balls uniformly at random into machines
MachineCmp. As above this is to ensure that the distribution of roles unto machines has the
right distribution. Now we want to map honest roles to honest machines and corrupt roles to
corrupt machines.11

When a role R is about to get keys in the simulation, the simulator needs to pick a machine
M for R. The simulator knows that it will swap R for a random yellow ball. It will count
the current number of yellow balls in currently red machines (call these the red balls) and the
current number of yellow balls in currently green machines (call these the green balls). Then
it calculates the probability α that if R is swapped with a random yellow ball then R will
become red, this is just the fraction of red balls to red plus green balls. Then S asks for a point
corruption of R with probability α. If R becomes corrupted, then swap R with a random yellow
ball in a red machine. If R becomes honest, then later swap R with a random yellow ball in a
green machine, but do not choose the machine yet. Do postponed honest role assignment. The
reason why we do postponed honest role assignment is that if we pick MR now, then MR might
become corrupted before we can execute R. However, the role R will remain honest forever after
the point corruption judged it to be honest.

This obviously gives the correct distribution of roles unto machines and ensure that we can
11In the adaptive case we do not need to assign corrupt roles to honest machines as we do not need to work

with a surplus of corrupt roles.
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simulate with Case Green and Case Red. There are only two things left to handle. (1) We
need to argue that α ≤ τ in the point corruptions, and (2) in the adaptive case we get the
additional case to simulate when a role R moves from honest to corrupted.12 We handle this
case first. Notice that if a role R moves from honest to corrupted, it is because S just did
a point corruption of R. So R is about to be executed. This means that all S ∈ IR already
sent MS,R = Enc.EncS(ekR, 1|mS,R|) to R while R was honest. Now that R becomes adaptively
corrupted the simulator learns mS,R and has to simulate the internal state of R to A as R became
corrupted before executing. This is where we use that the encryption scheme is non-committing.
When given mR,S the simulator patches skR to make MS,R decrypt to mS,R. Then it shows skR
to A.

We then argue that α ≤ τ . Recall that we compute α as the current fraction of red balls to
red plus green balls. Consider the points in the simulation where the set of corrupted servers
increases. There are at most ρM such points and M is polynomial in the security parameter.
Consider the fixed set of corrupted machines at such a point in time. Even if the size of this
set is at a maximal ρM then it follows from how we pick ρ and τ that if we throw R yellow
balls at random then less than a fraction τ will hit the corrupt machines except with negligible
probability. Then do a union bound over these polynomially many points in time. The negligible
probability is not affected by this polynomial union bound. This completes the proof for the
adaptive-adaptive case.
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A Details of the YOSO Model

The intended purpose of our YOSO model is to have an abstract model of YOSO protocols where
the discovered techniques apply to a variety of real-world application domains. In normal MPC
the standard model has been one with a fixed set of so-called parties P1, . . . ,Pn connected by
ideal authenticated channels or secure channels, and possibly with a broadcast channel. This
abstract model did not concern itself with how these roles met, who channels were set up
between them et cetera.

A lot of the many constructive techniques and proof techniques developed in MPC research
over the past three decades were developed in this abstract standard model. To actually run
an MPC protocol in practice a lot of independent details need to be considered. However,
details like on how setting up a PKI in practice and using it to establish secure channels are
entire research areas unto themselves. Yet, MPC has developed largely independently of the
research on PKI and key exchange. We believe that there is a need for a similar clean model
for developing MPC techniques applicable to the variety of blockchain inspired settings. Ideally
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the model should invite participation from MPC researchers who do not know or care about
what a blockchain is and how it works.

A.1 Role Assignment versus Role Execution

The model is targeted at protocols where pieces of a protocol are executed by random machines
and where no one knows who these machines are before they execute their role. After that,
some new machine is chosen at random to execute the next piece of the protocol. Adding the
next block to a Nakamoto style consensus is a prominent example; if a machine speaks in such a
protocol it never has to speak again, i.e., it does not need to keep any secret state. We therefore
call such protocol YOSO (you only speak once).

We will now dive a bit into the YOSO-style protocols and describe our model. Protocols in
the YOSO model have two main components.

Role Assignment: Some mechanism allows a chosen physical entity to take on a particular
role, like extending on a given block, producing a block for a given slot in proof-of-
stake consensus, or being party number 7 in round number 42 in a player-replaceable
model. Other mechanisms involve volunteering and permissioned assignment of roles, and
nomination. The techniques going into this aspect are often largely independent of those
going into how the actual protocol works.

Role Execution: Once a physical entity was assigned the right to execute a role and received
the necessary messages, it will send out a set of messages in one atomic step. These
messages are designed to obtain some complex goal like reaching agreement or running
an MPC. This aspect is capturing the more abstract logic of how the protocol works.

It appears that even though these components are often entangled in current presentations of
such protocols, the actual techniques for realizing each component can be developed in parallel
and later be adapted to work together. Ideally, we should have a single clean abstraction of
role acquisition, which could be implemented by one line of research and then be used for
implementing a variety of abstract protocols by other teams.

There are many subtle details of YOSO-type protocols which are hard to capture in one
simple model. An example is a detail such as “when can a role be spoken to?” To send a message
to an unknown machine, the other machines need to learn the public key of the receiver machine,
and these public keys typically become gradually available by some role assignment protocol.
Sometimes the role execution itself can influence future role assignments; e.g., in a blockchain
proof-of-stake mechanism the lottery might depend on how much stake machines have, and the
MPC might be executing a ledger layer allowing stake to be shifted. Other protocols have other
entangled aspects. It is therefore impossible to make an abstraction which is both simple and
that allows to analyse all practical protocols. When we had to make a choice, we opted for
simplicity, for the reasons discussed above. This means that the YOSO model cannot be used
to modularly analyse all practical protocols. Rather, the main intended purpose is to allow
theoretical studies and discover general techniques which can be used as ingredients in other
practical constructions and theoretical results. Before describing the details of our model, we
first motivate our design choices next.

A.2 Natural versus Abstract YOSO

There are two different approaches one could take to modeling YOSO protocols in the UC
framework. We call them the natural model and the abstract model.

50



In the natural model we explicitly represent both physical machines and abstract roles. The
roles are assigned at random to machines and the adversary is not told which machine has which
role until the protocol execution reveals this. The adversary can make chosen corruptions of
machines as is usual in UC, but since it does not know which machine has which role these
chosen corruption of machines are de facto random corruptions of roles. In this model the
parties of the UC model are identified with the machines, i.e., a UC party identifier pid names
a machine. There is then a mechanism to inform machines which role they have been assigned,
and to enforce that they only execute the assigned role(s).

In the abstract model there are no machines, only roles. An advantage is that we abstract
away the unnecessary notion of physical machines. In this model we identify the parties of the
UC model with the roles, i.e., identifier names a role in the protocol. A problem which arises
here is that the adversary knows the party identifier pid and can choose to corrupt a specific
pid. We therefore lose the property that the physical location of the hardware executing a role
is hidden from the adversary. We fix this by introducing a new type of corruption where the
adversary gets to corrupt a random party and where this randomness is out of the control of the
adversary. This gives the same effect as in the natural model, where a random role is corrupted,
but now without explicitly modeling the physical machines.

A.3 A Case Against Natural UC YOSO Model

We will later go for an abstract model, but to be able to compare the two options we now
sketch a natural model and discuss some drawbacks. Let us call the model the Natural YOSO
(NYOSO) model.

We cast the NYOSO model within the UC model. We describe a mechanism for decoupling
the machine which executes a given role from the name of the role. The goal is to hide from
the environment and adversary which machine executed a given role. This will ensure that the
environment/adversary may choose to corrupt a specific machine but cannot a priori choose to
corrupt a given role. We will let the name of the machines in our model be a party identifier pid,
i.e., we identify machines with parties. We then introduce machinery which allows machines
to execute some given secret roles. To allow composition and allow the same pid to play the
same role R across several protocols we will use an ideal functionality ARA for Abstract Role
Assignment. It will sample role assignments at random and keep track of which pid is assigned
to a given role R,13 to later inform parties which roles they are assigned to. Other ideal
functionalities can also ask the ARA whether a given pid is allowed to execute a given role R.
Corrupted parties can do what they want.

YOSO protocols and YOSO ideal functionalities will be specified obliviously of this ARA.
When specifying a YOSO protocol we take the pid to be the role R. Also, YOSO ideal func-
tionalities take inputs for roles and gives outputs for roles. To run these up against an ARA
we therefore use wrappers. As an example, for a YOSO ideal functionality F , the wrapper
F ′ = YoS(F) runs as follows: If it gets an input from pid wanting to given input m on behalf of
role R, then the wrapper consults with ARA to determine whether pid was assigned role R. If
this is the case then F is given input m as if coming from party identifier R. In particular, the
ideal functionality F is oblivious of who is executing role R. Similarly outputs from F to role
R are handed to the assigned party pid after consulting with ARA.

We now highlight an important drawback of natural models. Recall that the UC theorem
says that if γ emulates G and π is a protocol for the G-hybrid model emulating F , then πG→γ

also emulates F . Here πG→γ is the protocol π with calls to G replaced by calls to γ. We recall
some technical steps from the proof of the UC theorem. When we want to show the security

13This ARA could be a global ideal functionality or a normal one, this is not important for the present discussion.
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of πG→γ in environment E then we create a new environment Eπ which internally runs all of π
except that calls to G are made to the hybrid functionality G in the execution. Then we show
that running E with π gives the same effect as running Eπ with G and we show that running E
with πG→γ gives the same effect as running Eπ with γ. It then follows from γ emulating G that
πG→γ emulates F .

Assume we try the same proof strategy to prove a composition theorem for YOSO protocols.
In the composed protocol πG→γ a party with party identifier pid will be composed of two
machines, P pid running as part of π and Qpid running as part of γ.

Notice that the part P pid in the copy of π in E ′ = Eπ needs to know which role it executes.
So we need to give E ′ access to ARA. But if we give environments access to ARA they can learn
which machines run which roles, defying the purpose of having sampled the role assignment at
random. There is seemingly no way around this. After all, the party P pid in π running role R
must know which role it executes to be able to execute the correct code. Even if P pid is not
explicitly told what role it runs, its input-output behavior towards G will a priori reveal which
program it is running, which most likely reveals information on its role. Therefore it will be
known to E ′ which role P pid is executing in π. This leaks to E ′ which role the corresponding
party Qpid is executing in γ. Now E ′ can go and corrupt the specific role it is interested in.

This problem seems inherent in proving general composition of natural YOSO models. The
problem is not insurmountable, but one has to create NYOSO models with classes of environ-
ments where some have access to ARA and some do not, or define that environments only use
access to ARA in “benign” ways. Both directions lead to significant changes to the UC model
and complicated models defying the elegance of having general composition. We could then
just say that we do not want to do modular analysis of YOSO protocols. This would defy the
purpose of having a UC model of YOSO protocols of course.

A.4 The (Abstract) YOSO Model

As argued above, natural YOSO models are cumbersome for modular analysis. We therefore
propose the methodology of developing, composing and analyzing YOSO protocols in an ab-
stract model where only roles are considered, and then compiling the final protocol to a natural
model if/when they are to be run with a given role assignment mechanism. This allows to do
simple composable analysis of YOSO protocols as the ”role level” without caring about how
roles will later be assigned. We show a toy example of such a compilation in Section 5. We now
go into the details of our UC YOSO model.

We consider a finite set of roles Role, which might depend on the security parameter κ.
For the sake of the abstract model, we can think of the roles as descriptions of roles in the
protocol, as e.g. “party 7 in round 8”. We use R to denote a generic role R ∈ Role and often
write R1, . . . ,Rn when we have an ordered sequence of roles, for instance a committee. Roles
are reminiscent of the abstract names P1, . . . ,Pn which are often used in MPC; they are just
abstract names to which we can later associate a program.

We identify Role with the set of party identifiers pid in the UC model, and the role names
are hence passed around as the pid in UC.

Random Corruptions. We allow the same classes of corruptions as the UC model. However,
we extend with a notion of random corruptions. To be able to give precise statements about
what a random corruption is we introduce the corruption control (CC) component CC. It is a
poly-time ITI. It is meant to codify in a precise manner statements about proving security only
against some restricted class of corruptions.

The corruption control component is only meant to ever talk to a UC environment E , so we
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describe the behavior of CC in the context of an environment E . They will form a single entity
ECC called a controlled environment. Recall that the UC framework has a corruption aggregation
component. It allows the environment to learn which corruptions have been performed. We will
use corruption information to denote the information the environment would get by querying
the corruption aggregation component. The CC allows the following two types of interactions
with E .

Judgement: The environment might query CC with (legal?, ci), where ci is the current cor-
ruption information. In response it returns a judgement > or ⊥. This judgement should
be a monotone safety property: If there has not been any corruptions yet, then it returns
>. Furthermore, if the current corruption information ci makes CC return ⊥ in its current
state, then ci and all future ci′ will make CC return ⊥ if there are no future negotiations.
As a simple example of a CC consider a CC parameterized by a set of n parties and which
returns > iff less than n/2 of these parties have ever been corrupted.

Negotiation: The environment might query CC with (negotiate, aux) with some auxiliary
information aux. In response the CC will return some bitstring a. A negotiation might
change which ci’s are legal in the future. As a simple example, let’s say the CC has the
behavior that all roles R start out with status untested. If queried with (legal?, ci),
it will return > iff all R which were ever corrupted have status corruptable. On input
(negotiate,R) where R has status untested it samples a uniformly random bit. If it
comes out 0, then R gets status honest. Otherwise R gets status corruptable. The CC
then replies with a being the new status of R to let the adversary know the result of the
negotiation.

When run in the UC experiment the controlled environment ECC runs as a proxy for E , with
the following differences.

1. When E makes its guess b (its output bit for the UC execution), then ECC inputs (legal?, ci)
to CC for the current ci. If the reply is >, then ECC terminates with guess b. If the reply
is ⊥ the controlled environment samples a uniformly random bit b′ and terminates with
guess b′.

2. If the adversary sends (negotiate, aux) to ECC , then ECC first sends (legal?, ci) to CC
for the current ci. If the reply is ⊥ then ECC terminates with a random guess in the UC
experiment, as above. If the reply is >, then it sends (negotiate, aux) to CC and sends
the reply a back to the adversary.

The purpose of the random guess b′ is to ensure that if the adversary makes an illegal
corruption, then the environment outputs the same distribution in the real world and the
simulation. Therefore any distinguishing advantage of a controlled environment comes from an
execution with legal corruptions. The reason for first querying on (legal?, ci) is to ensure that
a negotiation does not turn an already illegal corruption legal. If also provides CC with the
current ci for the negotiation.

Recall that during the proof of the UC theorem, an environment Eπ is defined which in-
ternally runs all of π except that calls to G are made to the hybrid functionality G in the
execution. It is easy to see that if E is a controlled environment then Eπ is a controlled environ-
ment. In particular, (ECC)π = (Eπ)CC . The same holds for the case of pulling a simulator into
an environment. Therefore we get UC composition for the class of controlled environments.

We can now use the CC to define and limit random corruptions. We do not put any further
restrictions on how this is done. The CC can also be used to negotiation other types of corruption
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than random corruptions of course. Two types of corruptions we will consider later are sample
corruptions and point corruptions.

By a sample corruption over a set Role of roles we mean that the adversary submits a
poly-time distribution C on Role. Then CC samples R ∈ Role using C and now allows R to be
corrupted. We can let CC restrict the distributions and total corruptions. We might for instance
say that the corruptions must be uniform on the currently uncorrupted R in Role and that at
most a fraction τ of the roles may be corrupted in total.

By a point corruption of R ∈ Role we mean that the adversary submits R and a probability ρ.
Then CC flips a bit which is 1 with probability ρ. We require that this can be done in poly-time.
If the bit is 1 then R is considered corruptible. Otherwise it is consider honest forever after.
We can let CC restrict the queries. We might for instance say that the corruptions must not be
with probability above 49% and that each R might be negotiated at most once.

You Only Speak Once. Another key aspect of our model is that we want to consider
protocols where each party only sends messages at one point in time. This again gives some
challenges with composition. Consider a protocol π for the G-hybrid model. Consider then a
protocol πG→γ where we replace G by a protocol γ. Roles R in πG→γ is a composition of two
parties, the part PR acting in π and the part QR acting in γ. Let us denote the composed role
by RR = PR ◦ QR. If at some point during a call from π to γ the protocol γ has Qpid send
a message, then this counts as RR having sent a message. Therefore PR cannot later send a
message. However, when π is in the G-hybrid model, then a call from π goes to G and hence
there is no notion of some QR having sent a message. Therefore PR would now be allowed to
later send a message. This gives different behavior when running with G and γ, which leads to
problems with modular analysis.

For composition to work out we need to introduce some bookkeeping about when a party
has already “spoken” inside an ideal functionality G. And for γ to emulate G we need that they
“speak” at the same time. This will allow to forbid PR to speak in the future at the correct
times also in the G-hybrid model.

We use a very simple mechanism for this. All communication takes place via ideal function-
alities. We introduce a special token Spoke which ideal functionalities can return to parties.
If a party PR gets output Spoke from G then we say that R spoke in G.

When a part in a composed party like RR = PR ◦QR gets input Spoke from a sub-party or
its outer protocol, then it inputs Spoke to all its (other) sub-parties in a canonical order and
then returns Spoke to its outer protocol. This ensures that if some component in a composed
party “spoke” then all other components are made aware of this. After this the party will ignore
all future inputs and never give output again. We enforce this behavior using a wrapper YoS(P )
which will normally forward all inputs and outputs to and from P , but which in response to
a Spoke token will pass it around to all other wrappers as specified and then start ignoring
inputs by immediatly returning Spoke on all future inputs; we say that YoS(P ) crashed. For
this purpose the wrapper keeps track of all sub-routines that P took part in and will inform
them about future Spoke tokens. This means that P will never see the token. Once it spoke
it will just never get activated again. Notice that YoS(P ◦ Q) = YoS(P ) ◦ YoS(Q), which
we use in the YOSO composition theorem later. Recall that in UC the sub-routines can be
created dynamically. This leaves the corner case where a future sub-routine created by another
party contacts YoS(P ) after it crashed. By design YoS(P ) returns Spoke in response to these
unsolicited sub-routine contacts.

Notice that by design, if a role YoS(P ) gets input Spoke from the environment E , then
YoS(P ) will crash. This allows the environment to do a trivial denial of service attack on a
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protocol by crashing all roles. This looks like a problem, but it is foremost a necessary feature.14

It makes sense for some sub-routines to learn that the role it is part of spoke in some other part
of the protocol. To avoid unintended denial of service attacks, one can as usual choose to analyse
protocols in a restricted class of environments, for instance environments which never inputs
Spoke to an internal honest role of a protocol. As a consequence one can of course later only
compose the protocol into an outer protocol with this property. That means that honest outer
protocols should not unintentionally speak on behalf of an internal role of an inner protocol.
This can be ensured by proper scoping of roles during protocol design. Such bookkeeping is an
unfortunate but necessary part of doing modular analysis of YOSO protocols.

Notice that a corrupted party is free to not run the YoS wrapper. So corrupted parties
can send multiple message and keep talking to ideal functionalities after speaking. This also
holds for adaptive corruption. If an honest party spoke and then crashed, then it is so to say
uncrashed if adaptively corrupted. The adversary can now interact with the ideal functionalities
that the honest party used in the past.

A.5 YOSO Security and The Composition Theorem

We define security via the UC definition of security. For simplicity we stick to the case of
securely implementing an ideal functionality. We use π ≤UC F to denote that π UC securely
implements F against the class of controlled environments. Recall briefly that it means that
for all PPT A there exists a PPT S such that Execπ,A,E ≈ ExecF ,S,E for all PPT E controlled
environments. When we consider information theoretic security we allow E to be unbounded.

Definition 4 (YOSO Security). Let π be a protocol for the UC model and let F be an ideal
functionality. We say that π YOSO securely implements F if YoS(π) ≤UC F . We write π ≤YOSO

F . We say that the protocol IT YOSO securely implements F if security holds for unbounded
environments and with statistical indistinguishability.

Theorem 4 (YOSO Composition). Let π and γ be protocols for the UC model. Assume that π
runs in the G hybrid model. If π ≤YOSO F and If γ ≤YOSO G then πG→γ ≤YOSO F .

Proof. From π ≤YOSO F we get that YoS(π) ≤UC F . From γ ≤YOSO G we get that YoS(γ) ≤UC

G. From the UC theorem we get that YoS(π)G→YoS(γ) ≤UC F . Now observe that by construction
YoS(π)G→YoS(γ) = YoS(πG→γ). This gives us that YoS(πG→γ) ≤UC F , which implies that
πG→γ ≤YOSO F ,

A.6 Synchronous YOSO

We now give a model of synchronous YOSO protocols. We base it on the model from [20]. All
parties and ideal functionalities are aware which round they are currently in by accessing a global
clock functionality. The exact details of the model are not important to the exposition here, and
the interested reader is encouraged to consult [20]. The crucial point is that the model allows the
computation to proceed in synchronous rounds where in each round each honest party gets to
give an input. Between rounds each honest party has ample time to compute the next message,
i.e., polynomial time. If the corrupted parties do not give an input in a round, a dummy one is
enforced. This way, crashed or malicious parties cannot deadlock the computation and crashes
can be detected.

14There is no reasonable way around this “problem”. A role Q does not know when it talks to the environment
or a role R in an outer protocol. And when it talks to an outer protocol we need it to respect a Spoke token to
get YoS(P ◦Q) = YoS(P ) ◦ YoS(Q). Another way to look at it is that if P can crash a sub-party Q, then when
P is pulled into the environment during the proof of the UC theorem, then the environment should be allowed
to crash Q when P instructs this.

55



A.6.1 Some Ideal Functionalities

We now proceed to specify our computation model by giving some ideal functionalities for
communicating. Before that we give some conventions for specifying YOSO ideal functionalities.

We assume that all inputs to ideal functionalities are of the form (c,R, · · · ) where c is the
command type, R the role (party identifier) of the role who gave the input, and the rest is the
payload. We will not be explicit about session identifiers.

We assume that F is parametrized by a set of roles F .Role ⊂ Role. There is a “promise” that
an implementation of F will not touch other roles than these in F .Role. The ideal functionality
can further specify input, computation and output roles, F .RoleIn,F .RoleCmp,F .RoleOut ⊂
F .Role, where

F .Role = F .RoleIn ∪ F .RoleCmp ∪ F .RoleOut .

We require that (F .RoleIn ∪ F .RoleOut) ∩ F .RoleCmp = ∅. The input roles and output roles
might overlap. We think of R ∈ RoleIn as those roles taking inputs, R ∈ RoleComp as those doing
the internal computation, and R ∈ RoleOut as those giving outputs.

To take part in the protocol, computation roles need to send messages, so we expect that
roles in RoleCmp will speak during an implementation of F . We will therefore enforce that
they output Spoke. We do not require the same for input roles, as we might want to have
ideal functionalities where input roles do not communicate. An example could be an ideal
functionality for signature schemes. Output roles on the other hand will also have associated
restrictions. In any protocol, the only way a role can contribute information to the future
execution is by sending a message.15 However, in YOSO protocols you can only speak once.
Therefore output roles should not speak during the implementation of a protocol, as they might
have to speak in the outer protocol to contribute the output to a larger computation. All in
all, we have the following conventions.

External Roles: F will ignore all inputs from R 6∈ F .Role and never give outputs to R 6∈
F .Role, neither normal output nor Spoke. This ensures that F does not “pollute” other
roles which should have been used by other protocols. This allows to scope the role space.

Computation Roles: When F is initialized it will give an adversarially delayed output of
Spoke to all R ∈ F .RoleCmp. When using F in a hybrid model, this ensures that an outer
protocol should not expect to use R ∈ F .RoleCmp. When using F in the simulation as the
ideal functionality being implemented, it allows the simulator to output Spoke on behalf
of all computation roles at the same time as the role output Spoke in the computation
being simulated.

Input Roles: F never outputs Spoke to R ∈ F .RoleIn until R gave an input. It might or
might not output Spoke to R after an input was given.

Output Roles: F never gives output Spoke to R ∈ F .RoleOut \ F .RoleIn.

Generic Computation Nodes: We say that the computation roles are generic if the behavior
of F does not depend on RoleCmp. This means that F does not look at the inputs to
R ∈ RoleCmp, does not depend on whether they are corrupted or not, and do not depend
on the value of the RoleCmp, except that it outputs Spoke to all R ∈ F .RoleCmp. In
particular, we can specify F without knowing the set of computation nodes. When the
computation roles are generic we do not explicitly mention RoleComp. We think of it as

15In a synchronous models this is not technically true. One can send a bit b at time t by sending a Ping if
b = 1 and sending nothing if b = 0. Still the role needs to have the option to send a message to be able to send
information.
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The ideal functionality is conventionally YOSO with RoleIn = RoleOut and in addition has the following
behavior.

• Initially create a map y : N × Role → Msg⊥ with y(r,R) = ⊥ for all r,R. Below we use y(r, ·)
to denote the map y′ : Role→ Msg⊥ with y′(R) = y(r,R).

• On input (Send,R, xR ∈ Msg) in round r proceed as follows:

1. Update y(r,R) = xR. Store inputs of the round.
2. Output (R, xR) to S. Leak messages in a rushing fashion.

If R is honest the command is only executed if y(r,R) = ⊥. If R is honest then give output
Spoke to R.

• On input (Read,R, r′) in round r where r′ < r output y(r, ·) to R.

Figure 11: The IF FBC for broadcast.

The ideal functionality is conventionally YOSO with RoleIn = RoleOut and in addition has the following
behavior.

• Initially create a map y : N× Role× Role→ Msg⊥ with y(r,R,S) = ⊥ for all r,R, S.

• On input (Send, S,R, xS,R ∈ Msg) in round r proceed as follows:

1. Update y(r,R, S) = xS,R. Store inputs of the round.
2. Output (S,R, |xS,R|) to S. Leak the sending of a message in a rushing fashion.

If S is honest the command is only executed if y(r,R, S) = ⊥. If S is honest then at the end of
the round give output Spoke to S. If R is corrupt (or later corrupted) then output xS,R to S
(at the time of corruption).

• On input (Read,R, r′) in round r where r′ < r output y(r,R) to R.

Figure 12: The IF FSPP for secure message transmission on point-to-point channels.

being provided later to match the computation nodes of the protocol π implementing F .
This conveniently allows us not to have to specify up front what computation roles a
protocol implementing F will use.

Ideal functionalities can output to the adversary or simulator and receive inputs back. We use
S to name the entity that the ideal functionalities talks to, be it a simulator or adversary. We
call an ideal functionality that meets all these conventions conventionally YOSO. Note that
these conventions are not enforced by the YOSO model. We just give them a name to not have
to mention them every time we specify a conventional ideal functionality.

We now give the ideal functionalities for broadcast and secure message transmission. We
work with a finite message space Msg and has a special symbol ⊥ 6∈ Msg. Let Msg⊥ = Msg∪{⊥}.
The ideal functionality for broadcast is given in Figure 11. Notice that FBC outputs Spoke to
R the first time R sends a message. This models the YOSO behavior that the role R can send
messages in at most one round.

The ideal functionality for secure message transmission is given in Figure 12. Notice that
FSPP outputs Spoke to S after the first round when S sends a message. This models the YOSO
behavior that the role R can send messages in at most one round. It does allow that a role sends
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The ideal functionality is conventionally YOSO and in addition has the following behavior.

• Initially set the stage to be GettingInputs. We set a default input for all roles, which they
may overwrite later: for all R ∈ RoleIn let xR = 0.

• On input (Input,R ∈ RoleIn, x ∈ Msg) proceed as follows:

1. Store xR = x.
2. If R ∈ Honest then output (Input,R, |x|) to S.
3. If or when R ∈ Leaky ∪Malicious output (Input,R, x) to S.

If R is honest then output Spoke to R. If R is honest then consider only the first input of the
form (Input,R, ·) and only consider this input if it is given in round 1.

• On Evaluated from S in a round r > 1 and when the stage is GettingInputs, set the stage
to be Evaluated and compute {yR}R∈RoleOut = F ({xR})R∈RoleIn . Store yR for all R ∈ Correct
and output to S the value {yR}R∈RoleOut∩(Malicious∪Leaky).

• On input (Read,R ∈ RoleOut) when the stage is Evaluated output yR to R.

Figure 13: Functionality FFMPC, wrapping a function F (x1, . . . , xn) → (y1, . . . , ym). Roles in
RoleIn hold input values and roles in RoleOut receive output values.

messages to several other roles in the same round. It is possible to consider weaker forms of
YOSO secure message transmission where only one (or a small constant) number of messages
can be sent.

A.6.2 Synchronous YOSO MPC

As usual for UC-like models, to formulate the assertion that a function F could be computed
securely we need to wrap that function by a ideal functionality FFMPC. The wrapper functionality
for the YOSO model is depicted in Figure 13. The ideal functionality evaluates a function
F : (RoleIn → Msg) → (RoleOut → Msg), i.e., given an input for each input role it provides
an output for each output role. We formulate the ideal functionality for a setting where we
might have both Byzantine and semi-honest corruptions. We use Malicious to denote the set
of Byzantine or active corrupted roles, we use Leaky to denote semi-honest corruptions that
behave correctly but leak their internal state, and finally we use Honest to denote the roles
which are not corrupted. We let Correct = Leaky ∪ Honest. These are the roles computing the
correct program, though some might be leaky.

We assume that all input roles get input in round 1. This means that the protocol starts
running in round 1 and that all honest parties must provide their input there. If some input
role did not get an input x ∈ Msg by round 1, it will simply use 0. The protocol can then go
through two stages, GettingInputs and Evaluated. The stage can be GettingInputs for
a long time, but only corrupted parties can give inputs in later rounds. This models that we
need the honest parties to give input in the first round, but corrupted parties might only be
committed to their inputs in a later round.

The adversary S decides when it is time to give outputs by inputting Evaluated. We
assume that the output roles do not speak in an implementation. This is specified by letting
FFMPC not output Spoke for the output roles.

When studying YOSO MPC we will assume chosen corruptions of input roles and output
roles and random corruptions of computation roles. This is to model a situation where the
inputs to the computation are provided by some known parties. These parties might therefore
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be the target of a denial of service attack. Similarly for the parties who are to learn the outputs:
these might well be some known servers. It is therefore reasonable to assume targeted corruption
of the input roles and output roles. For the computation roles we assume they are assigned to
unknown machines using some role assignment mechanism so we allow only random corruptions
of computation roles. By a τ -secure YOSO MPC we mean one secure against any number of
corruptions of parties in RoleIn ∪ RoleOut and uniformly random corruptions of a fraction τ of
the parties in RoleCmp.

Definition 5 (YOSO MPC). We say that π YOSO-securely realizes F against τ corruption
if π ≤YOSO FFMPC for the set of environments allowed to corrupt any number of roles in
RoleIn ∪ RoleOut and a uniformly random fraction τ of RoleCmp. We say that the protocol
IT YOSO-securely realizes F if security holds for unbounded environments and with statistical
indistinguishability.

When considering τ -security with adaptive corruptions we can consider two types of cor-
ruption, namely sampling corruption and point corruption. Sampling corruption means that
the adversary can ask for an additional corruption, and then a uniformly random uncorrupted
R ∈ RoleComp will be corrupted; this is allowed until a fraction τ is corrupted. In point corrup-
tion the adversary can ask to corrupt a given R ∈ RoleComp and specify a probability α ≤ τ ,
and then R is announced corrupt with probability α and honest with probability (1− α). The
adversary cannot ask for the same R twice, so once R is announced honest it remains honest. It
is of course possible to consider other variations of random, adaptive corruptions.

We can simulate sample corruptions from point corruptions. When sampling a new cor-
rupted role, keep making random point corruptions with the right marginal probability until
some R is announced corrupt and then return R. It does not seem that you can simulate point
corruptions from sample corruptions. In fact, we conjecture that security against point corrup-
tion is strictly stronger. Note, in particular, that it seems stronger to have a protocol secure
against point corruptions when using it in a bigger protocol. During simulation in the hybrid
model for the protocol a simulator which has access to point corruptions might learn that a
role will never become corrupted in the future. The simulator might conceivably exploit this.
With sample corruptions any honest role might become corrupt at some future point. It is an
interesting open problem to find a separating example.

A.6.3 Parameters of the Models

It is interesting to study restricted versions of the YOSO model to determine what features
allow YOSO MPC with certain efficiency and security properties.

A.6.4 Horizons

With the FBC and FSPP functionalities we proposed (Figure 11 and Figure 12 respectively), any
role can send messages to any other role. In implementing role assignment it will typically not
be the case that all roles are assigned immediately. In fact, there are several settings where this
is not desirable, as roles should be assigned according to recent conditions: which machines are
alive, which machines hold how much stake in the system et cetera. For the purpose of studying
the impact of the scheduling of assignments on the possibility of YOSO MPC it is convenient
to have a notion of horizon. For this we associate with each round a time t. It starts out being
t = 0 and increases by 1 at the beginning of each round. Let Time = N.

Listening Schedule. A listening schedule is a function Listening : Time→ P(Role) which at
each time describes which roles are “listening”. We say that a protocol is Listening-admissible
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if no honest party ever sends to a role which is not listening. Note that in practice “listening”
might just mean that the public key of the role is known and that ciphertexts sent to the role
can be deposited somewhere for later pick up, for instance on a blockchain. The machine (later)
assigned the role might not need to be awake yet, in fact, the machine might not even need
to know that it was assigned the role yet. For R ∈ Role we let Listening(R) = { t ∈ Time|R ∈
Listening(t)}. For simplicity we will assume the model is equipped with a listening schedule, by
default the dummy one with Listening = Role.

Liveness Schedule. A liveness schedule is a function Active : Time→ P(Role) which at each
time describe which roles may act. We say that a protocol is Active-admissible if an honest R
only speaks when R ∈ Active(t). For R ∈ Role we let Active(R) = { t ∈ Time|R ∈ Active(t)}. For
simplicity we will assume the model is equipped with a liveness schedule, by default the dummy
one with Active = Role.

Round Based. We say that a protocol is round based if each role is assigned to a particular
round using a function Round : Time → P(Role). We let Rolet = Round(t) and assume that
Role = ⋃∞

r=1 Roler, where the union is disjoint. We let Round(R) be the t such that R ∈ Round(t).

Future Horizon. For a round based protocol we define a future horizon and past horizon.
We say a protocol has future horizon fh ∈ N if

Listening(t) =
t+fh⋃
h=t+1

Round(t) .

Past Horizon. We say a protocol has past horizon ph ∈ N if

Active(t) =
t⋃

h=t−ph+1
Round(t) .

The past horizon limits how long the machines assigned with a round has to linger to be able
to act. In a serverless architecture where a machine is rented or spun up only when it needs to
act, this controls how long the machine needs to be up. Note that past horizon 1 means that
only roles in Round(t) may trigger. Future horizon 1 means that only Round(t+ 1) my receive
messages. Hence (ph, fh) = (1, 1) is the minimal meaningful model if information is to be passed
from one round to the next using the point-to-point channels.

Broadcast Horizon. Note that a role can always post to the broadcast channel and any role
can see all previous messages on the broadcast channel. The horizons so far only affect what
can be sent on the point-to-point channels. In practice the future horizon mainly affects secret
values, as authenticated values for future roles could in principle be stored on the broadcast
channel. We might want to restrict the use of the broadcast channel as a storage medium. This
can be done via the broadcast horizon bh ∈ N ∪ {∞}.

If bh is finite then a role may only read messages from GBC sent in the time interval [t +
1− bh, t]. If bh = 1 a role can only see the messages broadcast in the previous round, i.e., the
broadcast channel behaves as a single shot broadcast protocol. If bh =∞ the broadcast channel
behaves as a ledger/persistent totally ordered broadcast channel which stores previous values
and allows these to be retrieved when a role wakes up. If bh = 0 there is no broadcast channel.

The above horizon notions are for a model with only point-to-point channels. If a PKI
is included in the model, then the broadcast channel can be used to send secure message by
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dumping encryptions for future roles on the blockchain. In that case it does not make sense to
consider a broadcast horizon longer than the future horizon.

A.6.5 Adaptive versus Static Triggering

We can also make a distinction between whether parties speak at fixed points in time or can be
dynamic.

Public Triggering. We say that a protocol has public triggering if all roles can efficiently
predict when all other roles will speak at least one round before they do so. Public triggering is
useful in publicly verifying whether a role refused to execute its role. In a serverless setting it
is helpful in knowing when to spin up a machine to execute a given role. If a role does not have
public triggering, then the machine that should execute the role should in principle always be
alive.

Static vs. Adaptive Triggering. We say that a protocol has static triggering if ∀R ∈
Role ( |Active(R)| ≤ 1 ). We say that a protocol has adaptive triggering if it does not have
static triggering. Clearly static triggering implies public triggering. We conjecture that static
triggering is weaker than adaptive public triggering.

Static Communication Pattern. We can restrict the model using a static communication
pattern Comm : Role → P(Role) × P(Role), where (R,S) = Comm(P) restricts P to receive
from R′ ∈ R and send to S ∈ S. For simplicity we assume all protocols have a communication
restriction Comm, by default the dummy one Comm = (Role,Role). We say that a protocol has
out degree δ and in degree ι if it holds for all R ∈ Role and Comm(R) = (R,S) that |R| ≤ ι and
|S| ≤ δ. A basic assumption about the YOSO model is that DoS attacks are a threat and that
a machine executing a role has time to send its message before being attacked. For this to hold
in practice it could be important that the machine does not have to send an excessively large
message (or many messages). In particular it can be interesting to limit the number of roles a
given role can send to.

Note that if a model has static triggering and a static communication graph, there is no
need for cycles in the communication graph as backwards edges will always point to roles which
already spoke. If there is no broadcast channel the model in this case then strongly resembles a
circuit model with the individual roles acting as gates. It is interesting to explore connections
between YOSO MPC and notions of robust and leakage resilient circuits.

A.6.6 Complexity

As usual it is interesting to study communication complexity, both in terms of bits, messages,
and number of active roles. A seemingly interesting parameter to study is communication depth.
It is the longest chain of roles passing information along the chain. It is interesting to relate it
to round complexity in the standard model of MPC.
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