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Abstract

We introduce the first construction for secure two-party computation of Poisson regression,
which enables two parties who hold shares of the input samples to learn only the resulting
Poisson model while protecting the privacy of the inputs.

Our construction relies on new protocols for secure fixed-point exponentiation and cor-
related matrix multiplications. Our secure exponentiation construction avoids expensive bit
decomposition and achieves orders of magnitude improvement in both online and offline costs
over state of the art works. As a result, the dominant cost for our secure Poisson regression
are matrix multiplications with one fixed matrix. We introduce a new technique, called corre-
lated Beaver triples, which enables many such multiplications at the cost of roughly one matrix
multiplication. This further brings down the cost of secure Poisson regression.

We implement our constructions and show their extreme efficiency. In a LAN setting, our
secure exponentiation for 20-bit fractional precision takes less than 0.07ms with a batch-size of
100,000. One iteration of secure Poisson regression on a dataset with 10, 000 samples with 1000
binary features needs about 65.82s in the offline phase, 55.14s in the online phase and 17MB
total communication. For several real datasets this translates into training that takes seconds
and only a couple of MB communication.

A preliminary version of this paper appears in the proceedings of USENIX Security 2022. This is the full version.

∗Part of this work was done during an internship at Google.
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1 Introduction

Privacy preserving computation technologies aspire to enable a wide range of modern computa-
tions used to analyze data, while providing strong privacy guarantees for the input data, which is
often partitioned across multiple parties. Approaches based on cryptographic techniques for secure
multiparty computation (MPC) have maintained the invariant of strong privacy guarantees while
progressively supporting more complex functionality. In recent years, such approaches have taken
on some of the most powerful available tools for data analysis which come from machine learning
(ML). These tools bring functionalities with new levels of complexity to be supported in secure
computation.

Existing MPC systems that support ML computations have mostly considered algorithms that
aim to solve classification tasks, the most prominent of which are neural networks [4, 21, 26, 30]. In
this work, we focus on a different type of computation: modeling Poisson processes. These processes
are used to represent counts of rare independent events which happen at random but at a fixed rate.
In such a process, the rate of events can be characterized by an underlying Poisson distribution.
Poisson distributions are used to describe processes across many life and social sciences. Some
examples include the number of bacteria over time in a petri dish, the number of mutations of a
strand of DNA of a certain length, the number of losses and claims in insurance policies in a certain
period of time, and the number of purchases a user makes after being shown online advertisements.

It is common to model response variables that follow the Poisson distribution by assuming their
dependence on a set of explanatory (predictor) variables. Specifically, it is often assumed that the
logarithm of the expected response is some linear combination of the explanatory variables. In this
setting, the relationship between a response variable and the corresponding explanatory variables
can be learned using Poisson regression. When the explanatory variables represent features which
are conjectured to affect the counts, the regression model can be interpreted as uncovering the sta-
tistical significance of the effect of different features on the response variable. For example, Poisson
regression has been used to model the dependence of the mortality rate from lung cancer on the
age and smoking habits of people [15], the frequency at which voters engage in political discussion
as a function of the method they use for voting (e.g., in person or by mail), their demographics,
political affiliations, news exposure and others [27], the effect of age, gender, preexisting conditions
such as diabetes and obesity on the mortality rate from COVID-19 [29], the number of payment
defaults in credit scoring based on socio-economic characteristics [20], and the number of purchases
that users make influenced by online advertisements they have been shown [28].

Traditionally, Poisson regression is performed by collecting all the examples (observed response
variable counts together with the observed explanatory variable values), and performing training.
However, in many of the above examples the information reflected in the predictor variables comes
from different sources that hold health or financial data, which is highly sensitive information that
is often subject to privacy regulations. Thus, while the final output model could be a useful tool for
drawing insights about the underlying processes and events, providing the input data in the clear
for the training is not an option. In this paper, we propose a solution that enables the computation
while keeping all the inputs hidden from the parties performing the computation, revealing only
the final Poisson regression model.

We introduce a system for secure computation that enables two parties who hold different parts
of the training samples for Poisson regression to compute the final Poisson model. We assume the
most general setting where the two parties hold cryptographic shares of the input training data, and
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obtain cryptographic shares of the resulting model. This representation can capture any partition
of the input among the parties and also enables computation with the output model that does
not reveal the model parameters to either party. Our new two party computation construction for
Poisson regression leverages several new constructions for its building block components that offer
improved efficiency. These functionalities have numerous uses beyond Poisson regression and thus
are of independent interest as tools for secure computation.

Secure Exponentiation. A key component of Poisson regression involves the exponential (ex)
function. This step constitutes the nonlinear portion of Poisson regression and is not part of existing
MPC implementations for ML functionalities. Nonlinear computations have traditionally been very
challenging for secure computation techniques, since such techniques are generally better suited for
evaluating linear functions or low-degree polynomials. Indeed, in existing MPC frameworks for
ML functionalities [4, 21], the nonlinear components of the computation (e.g., the logistic function
or the RELU function) are the core challenge that these works solve, and they contribute the
most significant part of the cost of the final constructions. Adding to the challenge is the fact
these nonlinear functions work on real numbers, which are quite difficult to support in MPC. Most
approaches replace the nonlinear function with an approximation such as a low-degree polynomial
or a piecewise linear function, which is easier to evaluate in MPC. However, such approximations
could lead to significant degradation in the quality of the learned model (i.e., higher model error
compared to training in the clear), and thus, the evaluation of the resulting constructions needs to
consider jointly efficiency and accuracy.

In our work, we present a new construction for secure fixed-point exponentiation. It leverages
a close approximation of the exact function with high precision that enables a significant efficiency
improvement compared to existing constructions. In particular, all existing secure exponentiation
approaches rely either on inaccurate polynomial approximations, or on bit decomposition of the
exponent, which comes with a significant computation and communication cost. Our techniques
avoid this multi-round computation step by leveraging ideas that enable the parties to obtain
approximate multiplicative shares of the output only with local operations. We can control the
accuracy and failure probability by appropriate parameter adjustment, only assuming knowledge
of bounds on the input range. These bounds arise naturally in the context of Poisson regression. We
introduce a new way to split the computation of the exponentiation into computation that depends
only on the integer part of the exponent and computation that depends only on the fractional part
of the exponent. Furthermore, we provide a novel way to combine the two computations with only
local operations to obtain multiplicative shares of the output. Our only communication requirement
is to transform the multiplicative shares of the output of the exponentiation into additive shares,
which can be used for any further computation. For this, we leverage an existing protocol from
Ghodosi et al. [16] that relies on a small amount of offline precomputation and a single round of
online computation.

Since there are no prior works that consider (fixed-point) exponentiation in the two-party semi-
honest model, as comparison points, we consider state-of-the-art works that achieve a similar func-
tionality in the malicious setting [9, 10] or in the semi-honest setting for n ≥ 3 parties using a
floating-point representation [7]. Although the comparison is not direct (see Section 7.1 for de-
tails), our protocol achieves orders of magnitude improvement on both the online throughput and
the offline cost which indicates the possibility of substantial gains even when comparing in the same
setting. In terms of accuracy, we can tune the parameters of our construction so that the output

4



is arbitrarily close to the “true” exponentiation on the values in the clear without significant effi-
ciency penalty (for example we can go from error 0.006% to error 0.0002% with 5 additional bits of
precision). Our construction is so efficient that the nonlinear component of our Poisson regression
protocol is no longer the cost bottleneck, and no longer degrades the quality of the computation,
which stands in stark contrast to other works in the area of secure ML.

Optimized Secure Matrix Multiplication. Poisson regression makes extensive use of matrix
multiplications. For secure multiplication on shared values, a well-known work [11] uses precom-
puted random Beaver triples followed by a single online communication round. In similar fashion,
state of the art techniques for secure matrix multiplication [21] generalize Beaver triples to matrices
and optimize the online communication and amount of preprocessing required; only one (matrix)
Beaver triple is required for each matrix multiplication.

We make the observation that the matrix multiplication operations used in the Poisson regres-
sion training have a specific structure that can be exploited to further optimized the communication
cost of the matrix multiplications: the same matrix X is used in many multiplications with many
different matrices Yi. While we can use independently generated Beaver triples for each multipli-
cation, we show a more efficient way to precompute multiplication triples which takes advantage
of the structure of the online matrix multiplications. We call these correlated Beaver triples, and
they enable multiple online multiplications with the same matrix.

Using correlated Beaver triples results in improvements in the online phaseof matrix multipli-
cations: the communication cost is reduced by up to a factor of (n+ 1) (where n is the number of
training samples; see Section 5). Thanks to our very efficient secure exponentiation, the dominant
cost (more than 90% for both computation and communication) in the secure Poisson regression
protocol comes from secure matrix multiplication operations. Consequently, the use of correlated
Beaver triples translates directly to a significant overall improvement of the cost of the whole secure
Poisson regression protocol.

Experimental Results. We implemented all our constructions and provide detailed benchmark-
ing. Our secure exponentiation protocol achieves significant efficiency improvements over existing
approaches. Our implementation uses a 127-bit modulus for the computation field, which suffices
for our Poisson regression evaluation. For this modulus, in a LAN setting with 1.5GB/s bandwidth,
secure exponentiation for shared exponents with 20-bit precision takes less than 0.07ms when 100K
evaluations are batched for communication. SCALE-MAMBA [9], which offers malicious security
but is our most relevant point of comparison, uses a larger 245-bit modulus and a 40-bit precision,
partly motivated by numerical instability for smaller sizes. Our construction does not have such
instabilities and achieves online throughput that is 200x more efficient. The improvement in the
offline phase is even greater, where our protocol requires 2000x less offline preprocessing and has a
500, 000x improvement in offline computation.

We evaluate our secure Poisson regression implementation using three real datasets: Somoza’s
data on infant and child survival in Colombia, time to Ph.D. data, and data on the three-year
survival status of breast-cancer patients [1]. We further evaluate the scalability of our system
using larger synthetic datasets. The accuracy of our secure regression is essentially identical to
that of plaintext computation of the regression. In our LAN setting, the total training (with 1000
iterations) for each of the three datasets takes less than 8s in the online phase, 120s in the offline
phase, and 121MB total communication. The computation and communication overhead for our
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construction scales roughly linearly with the size of the training data. For a dataset with 10,000
samples with 1000 binary features, and evaluation with a 127-bit modulus and 20-bit fractional
precision, one training iteration requires 65.82s in the offline phase, 23.73s in the online phase
and 17MB total communication. We also estimate the efficiency for secure Poisson regression
for datasets used to predict COVID-19 case fatality rate, credit default rates and ad campaign
conversion rates (see Section 8).

Paper organization. The rest of this paper is organized as follows. We introduce some standard
background and preliminaries in Section 2. Our basic computation model and operations are
provided in Section 3. Section 4 describes our full secure Poisson regression protocol; more details
on our correlated Beaver triples and our secure fixed-point exponentiation protocol are given in
Section 5 and Section 6 respectively. Section 7 provides a comprehensive set of experiments and
benchmarks for our full regression protocol as well as for the correlated triple and exponentiation
sub-components. Finally, in Section 8, we analyze the performance of our protocol for several
concrete applications.

2 Preliminaries and Background

We start with some preliminaries and introduce standard background techniques on regression, and
secure computation.

Basic notation. Z denotes the integers and R denotes the real numbers. ZN denotes the ring
of integers modulo N . For a prime q, Fq denotes the field with q elements, and F×q denotes
its multiplicative group. We use bold uppercase letters (e.g., M) to denote matrices and bold
lowercase letters (e.g., u,v) to denote (row) vectors. Throughout the paper, e denotes Euler’s
constant. In some places, we abuse function notation slightly, and write f(u) to denote the vector
resultant from applying f to each element in u separately.

2.1 Poisson Regression and Gradient Descent

In this section, we provide a brief overview of the gradient descent technique in the context of
Poisson regression.

Poisson regression. Regression is a common statistical technique to learn a function g(xi) ≈ yi,
given n training samples xi (each with m features), and corresponding output labels yi. Different
forms of regression model different classes of functions g. For example, machine learning has
extensively used linear regression (to model linear outputs) and logistic regression (to model binary
outputs).

When the response variable y is count or rate-based (rather than continuous), using Poisson
regression makes more sense. For Poisson regression, the expected response is modeled as a Poisson
distribution, and therefore, g(xi) = e〈θ,xi〉, where θ is the coefficient or weights vector, and 〈·, ·〉 is
the dot product. Rate-data can be modeled by an extra multiplicative factor ti denoting the time
“exposure” for each sample over which the response variable was computed.
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Gradient descent. Gradient descent is a standard machine learning technique used to train a
model iteratively. A model can be defined by a set of parameters θ = (θ1, · · · , θm). To learn
the model parameters from data, the algorithm iteratively attempts to minimize a predetermined
convex function. At each step, the parameters are updated based on the gradient.

In this paper, we focus specifically on Poisson regression with exposure, which allows for model-
ing of rate-based data. For this, training data is provided as (X,Y,T), where X ∈ Rn×m contains
data for the explanatory variables, Y ∈ (R+)n×1 contains data for the response variable, and
T ∈ (R+)n×1 is the exposure data. n is the number of training samples and m is the number of
features (or explanatory variables). Henceforth, unless specified, we use Poisson regression with
exposure. Poisson regression attempts to learn model parameters θ, by minimizing −L(θ|X,Y,T)
where L(·) is the log likelihood function. For this, the gradient will be computed as:

∂L(θ|X,Y,T)

∂θ
=

n∑
i=1

xi(yi − tie〈θ,xi〉)

where (xi, yi, ti) is the ith data point. The training will now update the parameters iteratively. For
the (k + 1)th iteration, θ(k+1) is computed as follows:

θ(k+1) = (1− β)θ(k) + α
n∑
i=1

xi(yi − ti · e〈θ,xi〉)

= (1− β)θ(k) + αXT
(
Y −T ◦ eXθ(k)

)
where the exponential function is applied to each element in Xθ(k), ◦ is the Hadamard (element-
wise) product, and the constants α and β denote the learning rate and the regularization parameter
respectively. θ(0) is usually initialized either as the zero vector, or with random weights.

2.2 Secure Computation Functionalities

Secure computation protocols enable functionalities where parties can compute a function on their
joint private inputs in a way that is guaranteed only the output of the computation. Our protocol
constructions are in a two-party setting and provide semi-honest security [17], i.e., the parties are
assumed to follow the prescribed protocol. We denote the two parties by P0 and P1. We use JxKZN

to denote an (additive) sharing of x over ZN . We drop the superscript when it is clear from context.
We write JxK = (JxK0 , JxK1) where P0 holds JxK0 and P1 holds JxK1 such that JxK0+JxK1 = x mod N .
The sharing is chosen randomly, for example by first choosing JxK0 uniformly at random in ZN and
then assigning JxK1 = x− JxK0 mod N .

We use the notation F (JxK , JyK) to denote that the parties P0 and P1 engage in a computation
of some functionality F , with P0 contributing JxK0 and JyK0 as input, and P1 contributing JxK1 and
JyK1 as input, with each party receiving its corresponding secret share of the result as output.

Next we overview some secure computation techniques that we use in our protocols.

Multiplication using Beaver triples. Suppose that P0 and P1 are given shares JxK, and JyK,
over ZN . To compute JzK = JxyK, a common technique in the preprocessing model is to use
Beaver’s multiplication trick [11]. For this, a randomly sampled tuple (JaK , JbK , JcK), also called a
“Beaver triple”, such that c = ab mod N is provided to the two parties. Now, to compute JzK, P0
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and P1 start by locally computing JuK = JxK − JaK and JvK = JyK − JbK. Next, they reconstruct
u and v by communicating their share to the other party. Finally, Pi can compute its share
JzKi = i · uv+ u JbKi + v JaKi + JcKi. This works since JzK0 + JzK1 = (x− a)(y− b) + (x− a)(b) + (y−
b)(a)+c = xy−ab+c = xy mod N . Note that the same technique works for multiplying fixed-point
numbers. A different Beaver triple is needed for each secure multiplication to be performed in the
protocol. Each secure multiplication needs a preprocessing of 3 ring elements per party, and has
an online communication of 2 elements per party. We use Fmult(JxK , JyK) to denote executing the
secure multiplication functionality.

Vectorization for Beaver triples. Beaver triples also work for secure matrix multiplication,
where the two matrices to be multiplied are secret shared between P0 and P1 [21]. Consider a
matrix multiplication between an n×m size matrix X and an m× k size matrix Y. Naively, the
matrix multiplication XY requires nmk multiplications, and therefore nmk Beaver triples would
be necessary. However, as [21] notes, this can be optimized by sharing a matrix Beaver triple
(JAK , JBK , JCK), where A and B are matrices with the same dimension as X and Y respectively,
and C = AB mod N . Here, the preprocessing (using Ring-LWE) and online costs per party are
nk+mk and nm+mk ring elements respectively. We use FmatMult(JXK , JYK) to denote executing
the secure matrix multiplication functionality.

We use standard Ring-LWE based techniques to generate the Beaver triples, and compress the
real number of bits required for preprocessing and communication. We provide a background on
Ring-LWE in Section 2.2.1.

2.2.1 Ring-LWE-based Encryption

Ring-Learning-With-Errors [19] (RLWE) is a hardness assumption based on which efficient homo-
morphic encryption schemes have been constructed. We use the additive homomorphic properties
of the encryption scheme proposed by Brakersky et al. [12], based on RLWE, to generate the Beaver
triples in our preprocessing phase. For a positive integer N , the scheme is defined over the ring
R = Z[X]/ΦN (X) where ΦN (X) is an N th cyclotomic polynomial of degree φ(N) (φ(·) is the Eu-
ler’s totient function). We define the ring Rt = R/tR, and use p, q to denote the plaintext and
ciphertext modulus respectively. Choosing p and q carefully allows us to pack φ(N) plaintexts
(m1, · · · ,mφ(N)) into a single ring element m ∈ Rp and enables SIMD operations (addition, multi-
plication) over the packed plaintexts. Packing is used to generate preprocessing data for our secure
exponentiation protocol.

Basic definition. We now describe the operations for Ring-LWE-based encryption in the two-
party setting.

• Key Generation. One party samples a key pair (sk, pk) such that sk = (1,−s), where s ∈ R
with coefficients in {−1, 0, 1} and s has low Hamming weight (e.g., H(s) = 64) and pk = (a, b),
where a← Rq and b = as+ tε ∈ Rq with ε drawn from a small noise distribution χ.

• Encryption. Given a packed plaintext m ∈ Rp, its fresh ciphertext can be given by (c0, c1)
where c0 = m+bv+pε0 and c1 = av+pε1 (where v, ε0, ε1 are drawn from the noise distribution).
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• Decryption. The party that holds the secret key can decrypt the ciphertext to recover the
underlying plaintext. Given a ciphertext c ≡ (c0, c1) ∈ R2

q , the plaintext can be computed as
Decsk(c) = c0 + c1s mod p.

• Plaintext addition. Given a ciphertext c ≡ (c0, c1) = Enc(m) ∈ R2
q and a plaintext message

m′ ∈ Rp, one can produce the encryption of (m+m′) as c′ = (c0 +m′, c1) = Enc(m+m′).

• Scaling. Given a ciphertext c ≡ (c0, c1) = Enc(m) ∈ R2
q and a scalar a ∈ Zp, one can produce

the encryption of am = (am1, · · · , amN ) as c′ = (a · c0, a · c1) = Enc(a ·m).

• Shifting. Given a ciphertext c ≡ (c0, c1) = Enc(m) ∈ R2
q where m = (m1, · · · ,mK , 0, · · · , 0),

we can produce the encryption of m′ = (0, · · · , 0,m1, · · · ,mK , 0, · · · , 0) where m1 is shifted
by a distance t and t + K ≤ N . Let v = (0, · · · , 0, 1, 0, · · · , 0) where v is zero everywhere
except for the tth position. Then c′ = (v ◦ c0, v ◦ c1) = Enc(m ◦ v) = Enc(m′) where ◦ denotes
polynomial multiplication operation in Rq = Zq[X]/ΦN (X).

Choosing parameters for Ring-LWE. Following the parameters suggested by [6], we use a
ciphertext prime q = 160 bits for our RLWE scheme when generating Beaver triples for ring of
size p = 63 bits (Z263) and q = 295 bits when generating triples for ring of size p = 127 bits
(Z2127). In the first case, we use a polynomial modulus of degree 212 = 4096, while for the later
case 214 = 16384. This is sufficient for security of at least 128 bits. To allow efficient encryption
and decryption via the use of number theoretic transform, we choose a ciphertext modulus q such
that q ≡ 1 mod 2N .

3 Secure Computation over Fixed-Point Rings

Poisson regression operates over the real numbers. When the computation is done in the clear,
one can leverage floating point representation to achieve high precision. For secure computation,
while there are techniques that emulate floating point representation [7], they are often expensive.
A more efficient approach that is commonly used is to adapt the actual computation to work with
a fixed-point representation while preserving accuracy. We adopt this approach in our work as
well and similarly to other works [21], we will compute over fixed-point numbers mapped onto an
integer ring.

We start by defining a fixed-point ring that will be used to represent our fixed-point numbers.

Fixed-point ring. A fixed-point ring R is a tuple (Z2l , lx, lf ) where Z2l is the ring of integers
modulo 2l, and lx, lf are positive integers with lf ≤ lx ≤ l − 1. R will be used to represent fixed-
point numbers with at most lf (binary) fractional bits, and whose absolute value is less than 2lx−lf .
Non-negative numbers will be in the range R+

∗ = [0, 2lx) and negative numbers will be in the range
R−∗ (2l − 2lx , 2l) in their two’s complement representation. R∗ = R+

∗ ∪ R−∗ is the total part of R
wherein the fixed-point numbers are represented.

For a real number r, with |r| < 2lx−lf , we will use the hat operator, as in r̂, to denote its
representation in the ring R. Note that r̂ =

⌊
2lf · r

⌋
when r ≥ 0 and r̂ = 2l −

⌊
2lf · |r|

⌋
when

r < 0. For example, in R = (Z210 , 3, 2), a real number x = 1.25 will be represented in R by
x̂ =

⌊
22 · 1.25

⌋
= 5, and y = −1.25 will be represented by ŷ = 210 −

⌊
22 · 1.25

⌋
= 1019. Note that

something like z = 1.26 will also be represented by ẑ = 5 due to truncation.
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Similarly, for a ring element x ∈ R∗, i.e., x ∈ [0, 2lx) ∪ (2l − 2lx , 2l), we will use the under-tilde
operator, as in ˜x, to denote its canonical real number representation. By canonical, we mean the
real number which gives no truncation error when represented in the ring. For instance, in the
previous example, ˜5 = 1.25 and not 1.26.

Secure operations. We define secure arithmetic operations on values that have been secret
shared between the two parties, P0 and P1, in our protocol . We distinguish between two types of
operations: (1) Basic ring operations are operations over shares in the ring Z2l treating elements
as integers; (2) Fixed-point or FP operations, on the other hand, are operations that manipulate
shares in the ring Z2l , treating the underlying elements as fixed-point numbers. For a given R =
(Z2l , lx, lf ), we will use JxKR or JxKZ2l to denote additive shares of x ∈ Z2l . P0 and P1 will hold the
shares JxK0 and JxK1 respectively. We will drop the superscript R when it is clear from context.
With this notation, we now define some basic useful secure ring operations.

1. Basic operations:

• (Addition - Add). Given shared values JxK and JyK, Add(JxK , JyK) outputs Jx+ yK.

• (Multiplication - Mult). Given shared values JxK and JyK, Mult(JxK , JyK) outputs JxyK.

Addition can be done non-interactively by each party locally adding its shares modulo 2l.
Multiplication is modulo 2l and can be done in one interactive round using Beaver triples.

2. Fixed-Point operations: These operations are for elements inR∗. Intuitively, the functionality
here can be thought of as first retrieving the real numbers corresponding to the ring elements
(using the under-tilde operator), then computing the result in real numbers, and finally casting
back into the fixed-point ring (using the hat operator).

• (FP Addition - FPAdd). Given shared values JxK and JyK, FPAdd(JxK , JyK) outputsr
̂(˜x) +

(̃
y
)z

.

• (Public FP Multiplication - PubFPMult). Given JxK and a public element c ∈ R∗,
PubFPMult(JxK , c) outputs

r
(̂˜c)(˜x)

z
.

• (FP Multiplication - FPMult). Given shared values JxK and JyK, FPMult(JxK , JyK) outputsr
(̂˜x)(˜y)

z
.

• (Public FP Division - PubFPDiv). Given JxK and a public positive integer c ∈ Z+,

PubFPDiv(JxK , c) outputs
r

(̂˜x)/c
z

.

• (FP Exponentiation - FPExp). Given a public positive base element b ∈ [0, 2lx), and a

shared exponent JxK, FPExp(b, JxK) outputs
r

(̂˜b)(˜x)
z

.

Note that the basic addition and multiplication operations are over Z2l but for FP operations, they
are over reals. It is easy to see though that Add and FPAdd provide the same functionality when
the underlying shares represent valid fixed-point elements. To avoid overflow for FP operations, we
will require that the underlying real numbers represented by any FP operation will still be smaller
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in absolute value than the 2lx−lf . In practice, this can be done be choosing a large enough ring to
handle the range of values necessary for any computation.

Similar to the basic operations, FPAdd can be done non-interactively, and FPMult can be done
using Beaver triples. Due to truncation, FPMult can have an error of at most 2−lf in the underlying
computation. Public fixed-point multiplication and division can both be done non-interactively with
an error of at most 2−lf , and we provide protocols to do so in Section 3.1. The non-interactive
protocols also have an associated failure probability, which as similar to e.g., [21] can be made
arbitrarily small by increasing the gap between l and lx (see Section 3.1). The exponentiation
protocol is a novel contribution of our paper and we provide the full details in Section 6.

We can also use a prime modulus q for our fixed-pointring (instead of 2l), embed fixed-point
numbers into [0, 2lx) ∪ (q − 2lx , q) in Fq, and define all of the above operations similarly over Fq.

Failure probability and approximation errors. The secure computation of FP operations
may come inbuilt with some probability of failure as well as errors as a result of truncation. We say
that a protocol has failure probability pfail and error ε if, except with probability pfail, the error in
the underlying fixed-point computation is bounded by ε. The failure probability, similar to e.g., [21]
can be made arbitrarily small by increasing the gap between l and lx.

Ring change. A final useful operation we introduce is to switch between rings with different
moduli. Given N and N ′, and a shared value JxKZN , the operation RingChange(JxKZN ,ZN ′) will
output JxKZN′ , a sharing of x (mod N ′) in ZN ′ . We will only require the operation for N ′ > N
and when x is small (x < 2lx) which allows us to do this without any interaction. We detail a
non-interactive protocol for this in Section 3.1.

3.1 Detailed Secure Functionalities

We provide more details on the public fixed-point multiplication, and division functionalities, as
well as the RingChange operation, and RLWE encryption.

Public fixed-point division. Consider a sharing JxK over R+
∗ with modulus N , and a public

positive divisor c ∈ Z+. Except with probability 2lx/N , the sharing is such that JxK0+JxK1 = x+N .

Now, to compute the fixed-point division by c, P0 computes JzK0 = N −
⌊
N−JxK0

c

⌋
and P1 computes

JzK1 =
⌊

JxK1
c

⌋
. Notice now that, x

c +N − 1 ≤ JzK0 + JzK1 ≤
x
c +N + 1. Therefore, (JzK0 , JzK1) is a

sharing of the representation of ˜x/c in R, with an error at most 2−lf . Note that while our regression
protocol does not require it, a public negative divisor can easily be handled by first dividing by the
absolute value and then subtracting the shares from the modulus N .

Public fixed-point multiplication. Consider a sharing JxK over R∗ with modulus N , and a

positive public element c ∈ R+
∗ . Let JxK = (r, (x − r) mod N). Let JzK0 =

⌊
cJxK0−cN

2
lf

⌋
mod N and

JzK1 =
⌊
cJxK1
2
lf

⌋
mod N . Let

cJxK0−cN
2
lf

= w0− d0, and
cJxK1
2
lf

= w1 + d1, where wi are the integer parts

and 0 ≤ di < 1 are the fractional parts. Note the negative sign on d0 since N > JxK0. We show

that (JzK0 , JzK1) form a sharing of (̂˜c)(˜x). Recall that this is cx

2
lf

when x ∈ R+
∗ and N − c(N−x)

2
lf

when x ∈ R−∗ .

11



Case 1) x ∈ R+
∗ . Then, when r ∈ [2lx , N), the sharing is such that JxK0 + JxK1 = x+N . Now,

JzK0 + JzK1 mod N ≡ w0 + w1 ≡ (w0 − d0 + w1 + d1) + (d0 − d1) ≡ cx

2
lf

+ (d0 − d1). Therefore,

(cx)/2lf − 1 ≤ JzK0 + JzK1 mod N ≤ (cx)/2lf + 1.
Case 2) x ∈ R−∗ . Then, when r ∈ [0, N − 2lx ], the sharing is such that JxK0 + JxK1 = x (without

the modulo). Now, JzK0+JzK1 mod N ≡ w0+w1 ≡ (w0−d0+w1+d1)+(d0−d1) ≡ −c(N−x)
2
lf

+(d0−d1).
Therefore, (N − c(N−x)

2
lf

)− 1 ≤ JzK0 + JzK1 mod N ≤ (N − c(N−x)
2
lf

) + 1.

Consequently, when r ∈ [2lx , N − 2lx ], i.e., except with probability less than 2lx+1, this results
in a sharing of the representation of (˜x)(˜c), with an error of at most 2−lf . Note that a negative c
can also be handled analogously to PubFPDiv.

Ring change. We only require the RingChange operation to switch rings between ZN and ZN ′
where N ′ > N , and only for positive fixed-point numbers. Consider a random sharing of x ∈ [0, 2lx)
in ZN and denote the two shares by JxK0 = r and JxK1 = x− r mod N . Note that when r ∈ [0, 2lx),
JxK0 + JxK1 = x (even without a mod N). For any other r, JxK0 + JxK1 = x+N . This means that

for a random sharing of x, the addition “wraps around” N with probability 1− 2lx
N . Now, if we set

JxKZN′
0 = JxKZN

0 + N ′ − N and JxKZN′
1 = JxKZN

1 , then (JxKZN′
0 , JxKZN′

1 ) forms a sharing of x in ZN ′
and wraps around N ′. Consequently, except for a failure probability of at most 2lx/N , the above
protocol switches the sharing of x from ZN to ZN ′ with no error.

If necessary, the range for both the shares of both parties can be expanded to all of ZN ′ by
using a PRG. Specifically, both parties can agree on a PRG G the outputs values in ZN ′ , and a
seed g0 = s. For the jth RingChange, they can compute the next PRG value gj . Then P0 adds gj
modulo N ′ to its share, and P1 subtracts gj modulo N ′ to its share.

4 Secure Poisson Regression Protocol

We detail our full secure Poisson regression protocol in this section.

Protocol input. Recall that for Poisson regression (with exposure), each of the n training sam-
ples is of the form (xi, ti, yi) where xi contains m features, ti is the exposure value, and yi is the
response output. We use X to denote the n×m matrix of training samples, T to denote the n× 1
vector of exposures, and Y to denote the n×1 vector of response values. We assume that all entries
are already represented as fixed-point elements and shared between the two protocol parties. We
use JXK , JYK , JTK to denote the sharings.

Protocol parameters. Prior to the protocol, we require P0 and P1 to agree on the following
parameters: (1) A fixed-point ring R = (Z2l , lx, lf ); (2) An l bit prime q, and an exponent bound
(for the exponentiation protocol); (3) The regression parameters α (learning rate), β (regularization
term), and the number of iterations K.

4.1 Basic Design

The goal of the regression protocol is to output a sharing of a weights vector θ. For this, we use
gradient descent, which updates the weights at every iteration. Three variants are commonly used,
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which differ in the way the weights are updated: (1) Standard, where the entire dataset is used
for each iteration; (2) Mini-batch, where a small random sample is used for each iteration; and
(3) Stochastic, where a single random sample is used for each iteration. For this paper, we use
the standard gradient descent for our secure Poisson regression, but note that our protocol can be
adapted for any variant. We discuss the alternative mini-batch variant in Section 4.3.

Recall that in the update step of our gradient descent, the weights for the kth iteration are
updated as follows:

θ(k+1) = (1− β)θ(k) + αXT
(
Y −T ◦ eXθ(k)

)
Let Jθ(k)K denote a sharing of the weights vector after the kth iteration. Parties start with

Jθ(0)K initialized randomly or as shares of 0. Now, each iteration of our regression proceeds as

follows: (1) First, P0 and P1 compute the (fixed-point) matrix multiplication JUK =
r
Xθ(k)

z
. (2)

Next, each element in U is exponentiated (n exponentiations in total). Let JVK be the sharing of
the result after each term in JUK is exponentiated; (3) Then, P0 and P1 compute an element-wise
product JWK = JT ◦VK; (4) Next, P0 and P1 compute the (fixed-point) matrix multiplication
JZK =

q
XT (Y −W)

y
; (5) The remaining computations (public multiplication by α), and addition

by (1 − β)θ(k) can be computed locally, to end up with shares of the updated weights θ(k+1).
Our protocol requires 4 rounds, one for each of the first four steps. Figure 1 contains a detailed
description of our protocol. The element-wise product and matrix multiplications, can be computed
using the functionality Fmult and FmatMult respectively, and implemented using matrix Beaver triples
as preprocessing. The fixed-point exponentiations are computed using the functionality FFPexp,
which we describe in detail in Section 6.

Basic protocol cost. From the previous description, we note that each gradient descent iteration
computes 2 matrix computations (of sizes (n×m,m×1) and (m×n, n×1), 1 element-wise product
for n size vectors, and n secure exponentiations. By using the matrix Beaver triples optimization
from [21], a total of 2nm+n triples are enough in the preprocessing stage (per iteration). In addition
to this, we utilize further optimizations for batched multiplication that substantially improve the
performance of our protocol, when amortized over multiple iterations. Our key observation for
this optimization is that the matrix multiplications in each iteration have X, or XT as one of the
multiplicands. In other words, for K iterations, we have K multiplications of the form (X, ·) and
K of the form (XT , ·). This allows us to batch together the multiplications in separate iterations
using correlated randomness where one of the matrices in the Beaver triple is reused. We detail
this optimization in Section 5, and show that it does not leak any extra information about the
multiplicands.

The n secure exponentiations in each iteration require a total preprocessing of 2n field elements
per party, and a communication of n field elements per party (see Section 6). Note that all of the
exponentiations are independent and can be done in parallel in a single round.

Failure probability. The fixed-point multiplication, and exponentiation operations have a small
failure probability, which depends on the chosen parameters. We compute the overall failure prob-
ability for our regression protocol, which will be helpful to choose appropriate parameters for a
given acceptable failure probability.
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Secure Poisson Regression

Setup. P0 and P1 agree on a fixed-point ring R, a prime q, and parameters for the Poisson regression:
learning rate α, a regularization term β, number of iterations K.
Input. Two parties have shares (JXKi , JYKi , JTKi) over R. X ∈ Rn×m is the feature matrix where n
is the number of samples and m is the number of explanatory variables, Y ∈ Rn is the label vector,
T ∈ Rn is the exposure vector.

Protocol.

1. Both parties initialize shares Jθ(0)K to 0m.

2. For k = 1 to K do:

(a) The parties make a call to FmatMult, and set JUK← FmatMult(JXK , Jθ(k−1)K).

(b) The parties make a call to FFPexp on each element of JUK. Let JVK← FFPexp(e, JUK).

(c) The parties make calls to Fmult on corresponding element of the vectors JTK and JVK. Let
JWK← Fmult(JTK , JVK).

(d) The parties compute JSK← JY −WK locally.

(e) The parties make a call to FmatMult, and set JZK← FmatMult(
q
XT

y
, JSK).

(f) The parties update their share for θ locally:

Jθ(k)K← (1− β) · Jθ(k−1)K + α · JZK

Output. Party Pi outputs its share Jθ(K)Ki.

Figure 1: 2PC protocol for Secure Poisson Regression.

Consider R = (Z2l , lx, lf ), and Fq as parameters for our regression protocol. Each fixed-point
multiplication has a failure probability of at most 2lx+1−l due to truncation. For matrix multipli-
cation between a (n × m), and a (m × k) matrix, the failure probability is at most nk · 2lx+1−l

(see [21]).
For each iteration of the regression, there are a total of 2(n+m) truncations for the multiplication

steps (n each from steps 2a and 2c, and m each for steps 2e and 2f), which add up to a failure
probability of (2n + 2m) · 2lx+1−l. Additionally, there are n exponentiations in step 2c, each of
which has a failure probability of at most 2lx+1/q (see Section 6 for details). Therefore, by the
union bound, the total failure probability of our regression protocol for K iterations is at most
K(2(n+m) · 2lx+1−l +n · 2lx+1/q). This dictates the parameter choices for the fixed-point ring and
the prime field required for an acceptable failure probability, say pfail < 2−40. Note that the failure
probability can be made arbitrarily small by increasing l and q.

Standard Poisson regression. The secure regression protocol we described so far is for the
general version of Poisson regression with exposure. Standard Poisson regression does not contain
the exposure data (T). This means that for standard Poisson regression, the element-wise product

between T and eXθ(k)
is no longer necessary. Therefore, we can reduce one communication round,

resulting in a 3-round protocol. The other steps of our protocol remain exactly the same.

14



Secure Inference Protocol

Setup. P0,P1 agree on a fixed-point ring R and a prime q.
Input. Pi has share JθKi of the weights vector.

Protocol.

1. The parties make a call to FmatMult to compute the dot product between θ and x. Let JuK ←
FmatMult(

q
xT

y
, JθK).

2. The parties make a call to FFPexp on JuK. Let v ← FFPexp(e, JuK).

3. The parties make a call to Fmult to multiply JtK and JuK. Let JyK← Fmult(JtK , JuK).

Output. Party Pi outputs its share JyKi.

Figure 2: Secure inference protocol.

4.2 Secure Inference

A useful functionality, after the regression is complete is to use the learned weights to predict, or
infer the value of the response variable for future samples. Formally, suppose that P0 and P1 hold
a sharing JθK of the weights. Now, given a new sample (JxK , JtK) that is shared between the two
parties, the goal is to use the learned weights to compute a sharing JyK of the response variable.

Note that JyK =
r
ex

T θ
z

, which can be computed securely along the same lines as our secure Poisson

regression protocol. The inference protocol is detailed in Figure 2.

4.3 Additional Considerations

Learning rate. It is important to choose a good learning rate for the Poisson regression to
converge efficiently. A large learning rate may cause the regression to not converge, while a small
value can cause it to converge slowly. For regression done in the clear, the learning rate can be
adjusted according to the magnitude of the gradient to maximize the efficiency of the training and
to avoid divergence. In a secure setting however, this needs to be done carefully in order not to leak
information. Testing whether the regression is diverging/converging, or revealing the magnitude of
the gradient descent risks exposing sensitive information from the training dataset. All the probes
and adjustments for the learning rate must be done securely. For example, we can add a secure
function to clip the gradient if its magnitude is larger than certain bound before updating the
weights. This is useful as the gradient tends to be large at the beginning of the training and could
cause divergence even when the learning rate is relatively small.

Mini-batches. Mini-batched gradient descent, where a small random batch of training samples
is used for every iteration, is usually more efficient than batched gradient descent. In this paper,
however, we do not run experiments with mini-batch gradient descent as our datasets are all small
(each has less than 75 features).

Our correlated Beaver triples also work for mini-batched gradient descent, and allow for similar
improvements in both the offline and online phase. For iteration j, the parties generate Beaver
triples (JAK , JBjK , JCjK) and sample a random permutation πj together. The rows of (JAK , JCjK),
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Secure Batched Matrix Multiplication Functionality FbatchMult

Input. Pi has shares (JXKi , JY1Ki , · · · , JYKKi).
Functionality.

1. Wait for shares (JXKi , JY1Ki , · · · , JYKKi) from party Pi, for i ∈ {0, 1}.

2. Reconstruct X,Y1, · · · ,YK and compute Zi = X ·Yi.

3. Secret share Zj = JZjK0 + JZjK1 for j ∈ [1,K] where JZjK0 is sampled uniformly at random and
give JZjKi to Pi.

Output. Party Pi outputs shares JZ1Ki , · · · , JZKKi where Zj = X ·Yj .

Figure 3: Ideal functionality for batched matrix multiplication

and the training data are then shuffled according to πj . Now, the triples and the training data
can be partitioned into mini batches, with each gradient descent iteration run over a different
mini-batch.

5 Optimized Batched Multiplication

We now describe our optimized batched multiplication protocol for efficient computation of many
multiplications where one of the multiplicands stays the same. More specifically, we want to
compute K multiplications of the form XYj for secret shared matrices where X has size n ×m,
and all Yi have size m × k. Pi is provided shares JXKi , JY1Ki , · · · , JYKKi, and the goal now is to
compute shares of the multiplications JZjK = JXYjK (for j ∈ [1,K]) more efficiently. We provide
the ideal functionality FbatchMult for this in Figure 3.

5.1 Online Phase

To realize the FbatchMult functionality, instead of using independent beaver triples (JAjK , JBjK , JCjK)
(one for each multiplication), we prove (in Theorem 1) that we can use correlated randomness across
the multiplications and therefore need only a single matrix sharing JAK for the X multiplicand.
Formally, our preprocessing requirement is now the shares JAK , JB1K , · · · , JBKK , JC1K , · · · , JCKK.
We call these correlated Beaver triples. The batched multiplication protocol that uses these triples
is detailed in Figure 4.

If X is large compared to the Yj (as is the case in Poisson regression), this optimization is
significant since we only need one matrix to mask X across all multiplications. Note that we can
use the same batch multiplication technique to compute the element-wise product in our protocol.

Theorem 1. The protocol ΠbatchMult in Figure 4 securely realizes the ideal functionality FbatchMult

in Figure 3 in the FbatchBeaver-hybrid world and in the presence of a semi-honest adversary.

Proof. Let Pi be the corrupted party. The simulator S queries FbatchBeaver to obtain shares of
the Beaver triples and hands them to Pi. This means that the distribution of the Beaver triple
shares is identical in both the hybrid and ideal world. Next, the simulator opens (X − A) to a
random matrix, and uses the output from the ideal functionality FbatchMult to compute the values
(Yj −Bj). This allows S to simulate the shares J(Yj −Bj)K1−i of the other party in the online
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Secure Batched Matrix Multiplication Protocol ΠbatchMult

Input. Pi has shares (JXKi , JY1Ki , · · · , JYKKi).
Offline Phase. Pi retrieves correlated Beaver triples (JAKi , JB1Ki , · · · , JBKKi , JC1Ki , · · · , JCKKi)
such that Cj = A ·Bj for j ∈ [1,K]. This is done by making a call to FbatchBeaver.

Online Protocol.

1. Pi computes shares JX−AKi, JY1 −B1Ki, · · · , JYK −BKKi locally. Then, P0 and P1 exchange
the shares to reconstruct (X−A), (Y1 −B1), · · · , (YK −BK).

2. For each j ∈ [1,K], party Pi computes

JZjKi = i · (X−A)(Yj −Bj) + (X−A) JBjKi + JAKi (Yj −Bj) + JCjK

Output. Party Pi outputs shares JZ1Ki , · · · , JZKKi

Figure 4: Protocol for batched matrix multiplication

phase. Note that J(Yj −Bj)K1−i is a function of the Beaver triple shares, the output JZjKi and
(X−A). In both worlds, these matrices are uniformly random and independent from one another.
Therefore, the joint distributions between the hybrid world and the ideal world are identical.

Online cost improvement. Correlated Beaver triples improve the cost of our protocol signifi-
cantly. In the online phase, since X −A only needs to be reconstructed once instead of for each
multiplication, the amortized total online communication per multiplication for our technique is
2nm
K + 2mk ring elements, compared to 2nm+ 2mk using standard matrix Beaver triples from[21].

In the setting of Poisson regression, the most significant factor in these costs is Θ(nm) as k = 1
typically, which results in a n+1

(n/K)+1 factor improvement for the online phase. When K is large,

this is very close to (n + 1). For example, if the number of training samples n = 1000 and the
model is trained over K = 1000 iterations, the communication cost of the online phase is reduced
by 500 times if correlated Beaver triples are used.

5.2 Offline Phase

We now discuss how to generate the correlated Beaver triples. The ideal functionality is given in
Figure 5. Without any need for optimization, the triples can be generated in the offline phase
using the two approaches from SecureML [21]: OT-based and additive homomorphic encryption
(AHE) based. The latter, which uses Paillier encryption, requires 190x less communication than the
former, but is more expensive computationally. Experiments from [21] show that the AHE-based
approach is better in WAN network, while the OT-based is 20-30x faster in LAN setting (See Table
2 in [21]).

Here, we show how to significantly improve triple generation via the use of Ring-LWE. Our
approach works for any ring ZN (N = 2l in our case) and does not rely on packing techniques
for Z2l as in [24] (where the number of slots is only φ(m)/5, resulting in 80% space being wasted)
or on the embedding of plaintext values in a larger prime field of length 2 · l + σ + 2 as in [25]
(which increases the communication and computation cost by at least (2 + (σ + 2)/l) times). In
more detail, to generate K correlated Beaver triples, our protocol proceeds as follows: First, P0
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Correlated Beaver Triple Functionality FbatchBeaver

Parameters. Let n,m, k,K,N be functionality parameters, where n,m, k are used to define matrix
sizes, K is the number of triples to generate, and N defines the ring ZN .

Functionality.

1. Sample uniformly at random JAKi ∈ Zn×m
N , JBjKi ∈ Zm×k

N , JCjK0 ∈ Zn×k
N for i ∈ {0, 1}, j ∈

[1,K].

2. Compute JCjK1 = (JAK0 + JAK1)(JBjK0 + JBjK1)− JBjK0.

3. Send (JAKi , JBjKi , JCjKi) to Pi.

Output.

1. P0 outputs (JAK0 , JB1K0 , JC1K0 , · · · , JBKK0 , JCKK0).

2. P0 outputs (JAK1 , JB1K1 , JC1K1 , · · · , JBKK1 , JCKK1) where JCjK1 = −Rj .

Figure 5: Ideal functionality for generating correlated Beaver triples

and P1 sample random matrices to be shares of A and B1, · · · ,BK . Let the shares held by
Pi be JAKi , JB1Ki , · · · , JBKKi. In order to obtain the shares of Cj = ABj , the parties need to
compute the shares of JAKi JBjK1−i as JAKi JBjKi can then be computed locally by each party Pi
(since JCjK = JABjK =

q
JAK0 JBjK0 + JAK1 JBjK1 + JAK0 JBjK1 + JAK1 JBjK0

y
). We propose two

different ways to compute the shares of JAKi JBjK1−i. The first approach works better when the
number of training samples n is large while the second approach works better when the number of
explanatory variables m is small. We benchmark the cost to generate triples using both approaches
in Table 3 (Section 7.2), and also compare to the Paillier encryption based approach used in [21].
Overall, both of our approaches are significantly better than Paillier encryption in terms of both
communication and computation.

Approach I: Column-wise encryption. P0 encrypts each column of the the matrix JAK0
separately using Ring-LWE and sends the encrypted columns to P1. Define JBjK1 = (b1j , · · · , bmj)T ,
Ai as the ith column of JAK0, and Ei as Encsk(Ai) for 1 ≤ i ≤ m. P1 uses the additive homomorphic
properties of Ring-LWE to compute the encryption Dj =

∑m
i=1 bijEi+Rj = Enc(JAK0 JBjK1+Rj).

P1 sends the ciphertexts to P0 who decrypts them to obtain
q
JAK0 JBjK1

y
0

= JAK0 JBjK1+Rj while

P1 has
q
JAK0 JBjK1

y
1

= −Rj . If the number of training samples n is much smaller than the length
of the ciphertext (say N , the degree of the cyclotomic polynomial used in the Ring-LWE scheme),
P1 can pack multiple Dj into a single ciphertext to optimize communication. Assuming N = 2n,
D0 = Enc(d1, · · · , dn, 0, · · · , 0), and D1 = Enc(d′1, · · · , d′n, 0, · · · , 0), we can produce the ciphertext
D′1 = Enc(0, · · · , 0, d′1, · · · , d′n) by multiplying D1 with the plaintext message (0, · · · , 0, 1, 0, · · · , 0)
which is zero everywhere except for the nth position. Now, D01 = D0 + D′1 is the ciphertext
containing (b1, · · · , bn, b′1, · · · , b′n). Similarly, if t = N/n, we can pack t ciphertexts Dj into one
ciphertext. The parties now reverse roles to compute shares of JAK1 JBjK0, and finally shares of
ABj . Figure 6 contains a full description of this protocol.

To analyze the efficiency of this approach, first notice that each party sends m ciphertexts
and receives K · n/N ciphertexts. Now, if log(q) is the bitlength of the Ring-LWE ciphertext
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Correlated Beaver Triple Protocol ΠI
batchBeaver (Approach I)

Setup. P0 and P1 agree on a ring ZN̂ and the parameters of an additive homomorphic encryption
(Ring-LWE) scheme. They also agree on the number of Beaver triple matrices to generate.
Protocol.

1. P0 and P1 sample shares of random matrix A and of random vectors B1, ...,BK (denoted
(JAK0 , JB1K0 , · · · , JBKK0) and (JAK1 , , JB1K1 , · · · , JBKK1) respectively). A is a n ×m matrix
and Bj is a column vector of size m.

2. Compute
q
JAK0 JBjK1

y
for 1 ≤ j ≤ K.

(a) Denote JBjK1 = (b1j , · · · , bmj)
T and Ai the ith column of JAK0.

(b) P0 samples a secret key sk of the Ring-LWE scheme and computes Ej ← Encsk(Aj) for
1 ≤ j ≤ m. It then sends (E1, · · · ,Em) to P1. (P0 shares the public key with P1.)

(c) Upon receiving (E1, · · · ,Em) from P0, P1 samples random matrix R = (R1, · · · ,RK)
and uses the additive homomorphic property of the encryption scheme to compute Dj =∑m

i=1 bijEi + Rj for 1 ≤ j ≤ K. P1 sends D1, · · · ,DK back to P0.

(d) P0 decrypts Dj and obtains
q
JAK0 JBjK1

y
0

= JAK0 · JBjK1 + Rj while P1 setsq
JAK0 JBjK1

y
1

= −Rj

3. Compute
q
JAK1 JBjK0

y
for 1 ≤ j ≤ K. The parties reverse roles in the previous step to computeq

JAK1 JBjK0
y
.

4. Pi sets JCjKi = JAKi JBjKi +
q
JAK0 JBjK1

y
i
+

q
JAK1 JBjK0

y
i

for 1 ≤ j ≤ K.

Output.

1. P0 outputs (JAK0 , JB1K0 , JC1K0 , · · · , JBKK0 , JCKK0).

2. P1 outputs (JAK1 , JB1K1 , JC1K1 , · · · , JBKK1 , JCKK1).

Figure 6: Approach I for correlated Beaver triple generation

modulus, then the cost to generate K correlated Beaver triples is 2(m + Kn/N)N(2 log(q)) =
4(mN +Kn) log(q) bits. When K is very large (� mN), the amortized cost per triple is roughly
4n log(q) bits. For 127-bit input, we use a ciphertext modulus with length log(q) = 295. For
Paillier encryption, the amortized cost per triple is 2(m + n) log(q′) bits where q′ = 6144 is the
length of the Paillier ciphertext. Since m < n is typical for training data, our protocol uses at
least 10x less bandwidth than the AHE approach from [21]. Besides the smaller communication
cost, our approach also provides significant gains in the computation time. To multiply a constant
with a ciphertext in Ring-LWE we only need to perform multiplications over field of size 295 bits.
However, if Paillier encryption is used, an exponentiation in group of size 6144 bits needs to be
computed which is much more expensive.

In terms of computational cost, our protocol requires m ×K multiplications between a scalar
and a ciphertext and K(1− n/N) shift operations.

Approach II: Row-wise encryption. While the previous approach is efficient in terms of
communication, it results in a lot of wasteful computation if the number of training samples n is
much smaller than the degree N of the cyclotomic polynomial used for Ring-LWE. Our second
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Correlated Beaver Triple Protocol ΠII
batchBeaver (Approach II)

Setup. P0 and P1 agree on a ring ZN̂ and the parameters of an additive homomorphic encryption
(Ring-LWE) scheme. They also agree on the number of Beaver triple matrices to generate, K.
Protocol.

1. P0 and P1 sample shares of random matrix A and of random vectors B1, ...,BK (denoted
(JAK0 , JB1K0 , · · · , JBKK0) and (JAK1 , , JB1K1 , · · · , JBKK1) respectively). A is a n ×m matrix
and Bj is a column vector of size m.

2. Compute shares
q
JAK1 JBjK0

y
for 1 ≤ j ≤ K.

(a) Denote JAK1 = (aij) and B = (JB1K0 , · · · , JBKK0) and Bi the ith row of B.

(b) P0 samples a secret key sk of the Ring-LWE scheme and computes Ej ← Encsk(B
j) for

1 ≤ j ≤ m. It then sends (E1, · · · ,Em) to P1. (P0 shares the public key with P1.)

(c) Upon receiving (E1, · · · ,Em) from P0, P1 samples random matrix R = (R1, · · · ,Rn)T

and uses the additive homomorphic property of the encryption scheme to compute Di =∑m
j=1 aijE

j + Ri for 1 ≤ i ≤ n. P1 sends D1, · · · ,Dn back to P0.

(d) P0 decrypts Di and obtains
q
JAK1 JBjK0

y
0

= JAK1 · JBjK0 + Rj while P1 setsq
JAK1 JBjK0

y
1

= −Rj

3. Compute
q
JAK0 JBjK1

y
for 1 ≤ j ≤ K. The parties reverse roles in the previous step to computeq

JAK0 JBjK1
y
.

4. Pi sets JCjKi = JAKi JBjKi +
q
JAK0 JBjK1

y
i
+

q
JAK1 JBjK0

y
i

for 1 ≤ j ≤ K.

Output.

1. P0 outputs (JAK0 , JB1K0 , JC1K0 , · · · , JBKK0 , JCKK0).

2. P1 outputs (JAK1 , JB1K1 , JC1K1 , · · · , JBKK1 , JCKK1).

Figure 7: Approach II for correlated Beaver triple generation

approach therefore, will be geared towards settings when n� N .
For this, P0 first encrypts each row of the matrix B = (JB1K0 , · · · , JBKK0) separately and sends

the ciphertexts Ej ← Encsk(B
j) for 1 ≤ j ≤ m to P1. Now, P1 uses the additive property of

Ring-LWE to compute Di =
∑m

j=1 aijE
j + Ri for 1 ≤ i ≤ n, where Di is the encryption of the ith

row of the matrix JAK1 B + R and R is a random matrix sampled by P1, and sends the ciphertexts
to P0. Note that when K is much smaller than N , P1 can pack multiple ciphertexts into one
before sending them back to P0 to reduce the communication cost. The packing is done by simply
shifting the ciphertexts as described in the first approach. P0 now decrypts the ciphertexts to
obtain

q
JAK1 JBjK0

y
0

= JAK1 JBjK0 + Rj , while P1 sets
q
JAK1 JBjK0

y
1

= −Rj . Similar to the first
approach, the two parties now reverse roles to compute shares of JAK1 JBjK0, and finally shares of
ABj . Figure 7 contains a full description of this protocol.

Assume K � N (in our experiments, K = 1000 and N = 214). To analyze the efficiency of this
approach, first notice that P1 sends m ciphertexts to P1 and receives n · K/N ciphertexts. The
communication cost to generate K correlated Beaver triples is therefore 2(m+n·K/N)N(2 log(q)) =
4(mN + nK) log(q) bits. When mN < nK (for example, n = 1000,m = 10, N = 214,K = 1000),
the amortized cost for one triple is less than 8n log(q) bits, which is around 5x cheaper than the
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AHE-based approach from [21]. In terms of computation, our protocol requires n×mmultiplications
between a scalar and a ciphertext and n(1−K/N) shift operations. The second approach is faster
than the first one when n < K.

In our secure Poisson regression protocol, we also need to generate the correlated Beaver triples
for the multiplication between shares of scalars Ti and Vi where Ti is fixed during the training
process. This is equivalent to having n = m = 1, so the second approach will be used to generate
these correlated Beaver triples.

Theorem 2. The protocols ΠI
batchBeaver (Figure 6) and ΠII

batchBeaver (Figure 7) both securely realize
the ideal functionality FbatchBeaver in Figure 5 in the presence of a semi-honest adversary.

Proof. The security proofs for both approaches are identical and directly follow from the security
of the additive homomorphic scheme. First, suppose that P0 is the corrupted party. Then, the
simulator S queries the ideal functionality and obtains P0’s output. In Step 3, the simulator
sends P0 the encryption of a random matrix A′1, receiving

q
JA′K1 · JBjK0

y
1
. The simulator can

infer
q
JA′K1 · JBjK0

y
0

as it knows P0’s input. The simulator rewinds to Step 2 and sends P0 the

ciphertexts Dj which encrypt the messages JCjK0 − JAK0 · JBjK0 −
q
JA′K1 · JBjK0

y
0
. It is easy to

see that the joint distributions in both worlds are computationally indistinguishable by a reduction
to the security of the additive homomorphic encryption scheme.

Now, suppose that P1 is the corrupted party. To simulate P1, it is enough to send P1 the
encryption of random messages in Step 2. In Step 3, the simulator just ignores what it receives
from P1 and sends back the encryption of JCjK1−JAK1 ·JBjK1−

q
JA′K0 · JBjK1

y
1
. Again, the ability

to distinguish the real and ideal execution will imply the ability to break the additive homomorphic
encryption scheme.

We conclude that the joint distributions in both worlds are computationally indistinguishable.

6 Secure Fixed-Point Exponentiation

In this section, we detail our novel secure fixed-point exponentiation protocol. To simplify our
analysis, our protocol will mirror FFPexp functionality (Figure 8) rather than the previously defined
FPExp operation. Note that due to truncation errors, the two functionalities are not identical.
However, we will show later (in Section 6.4) that the result computed by FFPexp is close to the
actual fixed-point exponentiation result. Similar to the FPExp operation, the functionality FFPexp

will take as inputs a public base and a secret shared exponent. Since we are working in a fixed-point
ring, we will consider our inputs to be the fixed-point representations rather than the real numbers
themselves. Given a fixed-point ring R = (Z2l , lx, lf ), a public base b ∈ R∗, and a shared exponent

JxK, FFPexp(b, JxK) will compute a sharing of something “close” to (̂˜b)(˜x). We compare our work to
existing techniques in Section 6.5 and benchmark our protocol in Section 7.1.

6.1 Protocol Construction

It is straightforward to construct a protocol that realizes the FFPexp functionality. First, we note
that the PubFPMult, FPAdd, RingChange, and PubFPDiv operations used in steps 1, 2, 4, 9, and
10 of FFPexp can all be computed by locally manipulating the shares. Steps 3, 5 and 6 are also
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Secure Fixed-Point Exponentiation Functionality FFPexp

Public Parameters. P0 and P1 agree on a fixed-point ring R = (Z2l , lx, lf ), an l-bit prime q < 2l,
and an exponent bound A ∈ Z+.
Input. P0 and P1 have shares JxK ∈ R∗, and a public real base b ∈ R+, satisfying ˜x log2(b) > 1−A

Functionality.

1. Let Jx′K← PubFPMult(JxK , ̂log2(b)) // Convert to base 2 exponentiation

2. Let JzK← FPAdd(Jx′K , Â) // Make exponent > 1

3. Let (zinti , zfraci )←
(⌊

JzKi /2
lf
⌋
, (JzKi /2

lf )− zinti

)
// Split into integer and fractional parts

4. Let (zint0 , zint1 )← RingChange((zint0 , zint1 ),Zq−1) // RingChange from Z
2l−lf to Zq−1

5. Let (vinti , vfraci )← (2z
int
i mod q, 2z

frac
i ) // Exponentiate both parts

6. Let vi ←
(
vinti ·

⌊
2lf vfraci

⌋)
mod q // Get each party’s local share

7. Let y′ ← v0v1 mod q // Combine shares of both parties

8. Create a random additive sharing Jy′K in Fq // Convert to additive shares

9. Let JyKFq ← PubFPDiv(Jy′K , 2lf+A) // Divide by the remaining factor

10. Let JyKZ2l ← RingChange(JyKFq ,Z2l) // RingChange from Fq to Z2l

Figure 8: Functionality FFPexp

purely local computations. The only point at which communication will be necessary is to retrieve
an additive sharing of y′ (steps 7, 8). Effectively, here, P0 and P1 need to go from a multiplicative
sharing of y′ ∈ Fq to an additive sharing of the same y′.

To accomplish this, we use a 2-party variant of the efficient MTA (multiplicative to additive)
protocol from Ghodosi et al. [16] (also given in Figure 9). Suppose that P0 and P1 hold multiplica-
tive shares m0 and m1 of a secret s in Fq. The protocol requires a tuple (αi, βi) of preprocessed
values (in Fq) such that α0α1 + β0β1 = 1. Now, the MTA protocol proceeds as follows: First, P0

and P1 simultaneously send v0 = β0m0 and v1 = α1m1 respectively to the other party. Then, P0

and P1 can compute a0 = α0m0v1 and a1 = β1m1v0. Note that a0 and a1 are the required additive
shares of s since a0 +a1 = α0m0α1m1 +β1m1β0m0 = m0m1(α0α1 +β0β1) = s. [16] also shows that
the shares are individually uniformly random.

The source of the preprocessed values is not provided in [16] but they are nevertheless easy to
compute even without a trusted dealer. For this, first, P0 samples u0, w0 and P1 samples α1, β1
uniformly at random from F×q . Next, the two parties can securely compute r = u0α1 + w0β1, and
resample if r = 0. The probability that a resample is necessary is at most 1/(q − 1). Finally, P0

can set α0 = u0r
−1 and β0 = w0r

−1, where r−1 is the multiplicative inverse of r in F×q . Notice now,
that α0α1 + β0β1 = rr−1 = 1, as required. Note that since the resample probability is negligible,
the distribution of r is negligibly close to uniformly random.

Since the only communication is through the MTA protocol, the security of our protocol securely
realizing the FFPexp functionality is a direct consequence of the security of the MTA protocol. In
total, our protocol requires only one round, and a single field element sent by each party.
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Multiplicative to Additive Conversion: MTA

Public Parameters. A finite field Fq where q is prime. All operations will be in Fq.
Preprocessing. P0 is given (α0, β0) and P1 is given (α1, β1) satisfying α0α1 + β0β1 = 1.
Input. P0 and P1 have multiplicative shares m0 and m1 of s, i.e., s = m0m1.
Required Output. Pi outputs ai such that a0 + a1 = s.
Protocol Description.

P0 P1

v0 ← β0m0 v1 ← α1m1
v0

v1
a0 ← α0m0v1 a1 ← β1m1v0

Output a0 Output a1

Figure 9: Protocol MTA to convert from multiplicative to additive shares

6.2 Protocol Details

We now describe the main technical components of why our protocol is a useful proxy for computing
the fixed-point exponentiation. We defer the concrete error analysis of our protocol to Section 6.4.
We begin with a simplified version of our protocol where ˜b = 2, and the exponent satisfies ˜x > 1,
and handle other exponents and other (positive) bases later.

Our strategy is as follows: (1) First, we split the exponentiation into two parts: an integer
part and a fractional part. (2) Next, each part is exponentiated separately (and locally) to get
multiplicative shares of the final result (along with an extra factor). (3) We then use a single round
of interaction to convert the multiplicative shares to additive shares. (4) Finally, each party can
locally remove the extra factor to obtain additive shares of the final result. We detail each of these
steps below.

Splitting the exponent. Let JzK be a sharing of the fixed-point exponent, where P0 holds JzK0
and P1 holds JzK1. We use z here (instead of x) to follow along with functionality FFPexp, and
standardize the notation for a general base, since the first two steps there reduce the problem
to a base 2 exponentiation (of a positive exponent). The party Pi first splits its share JzKi as
(zinti , zfraci ) where zinti =

⌊
JzKi /2

lf
⌋

and zfraci = JzKi /2
lf − zinti = (JzKi mod 2lf )/2lf . Notice now

that z = (JzK0 + JzK1 mod 2l) = 2lf
(
(zint0 + zint1 mod 2l−lf ) + (zfrac0 + zfrac1 )

)
. Therefore,

2̃z =
(

2(z
int
0 +zint1 ) mod 2

l−lf
)
·
(

2z
frac
0 +zfrac1

)
This allows us to exponentiate the integer and fractional parts separately and combine them at a
later step. Note that the two integer and fractional exponent shares may not always sum up to the
actual integer and fractional parts of ˜z respectively. This is because the two fractional shares could
add up to more than 1, leaving the integer shares to sum to

⌊
z/2lf

⌋
− 1 mod 2l−lf . Furthermore,

our integer exponentiation requires the exponent to be positive. This leads to our requirement of

˜z > 1. We will relax this assumption later.
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Integer exponentiation. First, we observe that JwK0 = zint0 and JwK1 = zint1 form a sharing

of w = (zint0 + zint1 mod 2l−lf ) over the ring R = Z
2
l−lf . Denote this sharing by JwKR. Now, we

can use existing integer ring exponentiation techniques (such as [8, 23, 31]) to compute 2w. These
techniques however require a few rounds of communication even for a public base. Instead, here, we
will describe an alternative method that can be done locally in a way that will seamlessly combine
with the fractional exponentiation part.

For this, we assume that the parties have agreed on an l-bit prime q (i.e., 2l−1 < q < 2l). We
will first convert the sharing of w in R to a sharing in Zq−1 using the RingChange operation. Note
that the ring size increases if at least 1 fractional bit is present. Recall that since w is positive
(from our exponent assumption), with probability (1− 2lx/q), the new sharing JwKZq−1 will satisfy

w+(q−1) = JwKZq−1

0 +JwKZq−1

1 . Now, the two parties can exponentiate their shares locally ( mod q)
to directly get a multiplicative sharing of 2w. This works since,(

2JwK
Zq−1
0 mod q

)
·
(

2JwK
Zq−1
1 mod q

)
mod q

=
(
2w+q−1

)
mod q = 2w mod q

where the last step is due to Fermat’s little theorem. Let vint0 = 2JwK
Zq−1
0 mod q and vint1 =

2JwK
Zq−1
1 mod q be the final multiplicative shares (in Fq) of 2w held by P0 and P1.

Fractional exponentiation. Let zfrac0 and zfrac1 be the fractional exponents held by P0 and P1

respectively. Notice that if both parties locally exponentiate (in R) their shares, they would end
up with multiplicative shares (in R) of the fractional exponentiation result. Specifically, if Pi
computes vfraci = 2z

frac
i , then vfrac0 · vfrac1 = 2z

frac
0 +zfrac1 . To allow for seamless integration with the

integer exponentiation part, we have Pi later compute
⌊
2lf · vfraci

⌋
. A crucial observation here is

that since 20 ≤ vfraci < 21,
⌊
2lf · vfraci

⌋
is small and positive, and therefore it can also be viewed as

an element in Fq. Furthermore, the multiplication (now in Fq), will not wrap around the modulus
q. This will allow vfraci and vinti to be combined easily. Note that the product will include an extra
2lf factor (apart from the standard fractional fixed-point multiplier). Due to truncation, the extra
factor is necessary when first combining the integer and fractional parts and will be divided out
later. This will become evident in our error analysis.

Combining the two parts. At this stage, Pi holds the result of the integer exponentiation vinti ,
and the result of the fractional part vfraci . Let di =

⌊
2lf · vfraci

⌋
. Ignoring errors due to truncation

for now, we have:

(vint0 · vint1 · d0 · d1) mod q ≈
(

2(z
int
0 +zint1 ) mod 2

l−lf
)(

22lf
)(

2z
frac
0 +zfrac1

)
mod q

= 22lf 2̃z mod q

= 2lf (̂2̃z) mod q

This means that barring any truncation errors, if Pi computes y′i = vinti ·di mod q, then y′0y
′
1 mod q ≈

(2lf )(̂2̃z). Now, P0 and P1 convert the multiplicative shares of y′ = y′0y
′
1 to additive ones through

the MTA protocol which requires one round of interaction. The leftover 2lf factor can be divided out
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through local computation using PubFPDiv. Finally, both parties can locally use the RingChange
protocol to convert their shares back to Z2l . Note that this conversion is once again from a smaller
to a larger ring since q < 2l. We will bound the error resultant from truncation in Section 6.4.

Working with bases other than 2. Our Poisson regression usecase requires secure base e
exponentiation, but so far our protocol only works for base 2. To make it work for any positive
base b, we first observe that given a real exponent u, bu = 2u log2(b). Consequently, as the first
protocol step, the sharing JxK of the (base b) exponent in R will be converted to a sharing JzK,
of the equivalent base 2 exponent, where (˜z) = (˜x) log2(b). This can be computed as JzK =

PubFPMult(JxK , ̂log2(b)) and requires no interaction.

Working with exponents ≤ 1. As previously mentioned, we initially required our fixed-point
exponent to be greater than 1 since this guarantees correctness for the integer ring exponentiation.
To handle other exponents, we will assume that there is an agreed upon exponent bound A ∈ Z+,
such that for base b and exponent sharing JxK, it holds that (˜x log2(b)) > 1 − A, i.e., the most
negative exponent for base 2 exponentiation still has an absolute value of less than A− 1. Suppose
that Jx′K is the sharing of the exponent after converting to a base 2 exponentiation. We now need
to ensure that ˜x′ > 1. This can be done by adding A to the exponent, or equivalently, adding Â to
the sharing using FPAdd to get a new sharing JzK. At the end of the protocol, the extra 2A factor
will be divided out. We note that since the 2A factor will be present in intermediate steps, both R
and Fq will need to be large enough to accommodate it.

Protocol cost and other considerations. Our exponentiation protocol has a total online cost
of 2 Fq elements (1 per party), and a preprocessing cost of 4 Fq elements (2 per party). We
note that our protocol can easily be adapted to working solely in the field Fq (with appropriately
defined fixed-point representation), rather than switching between our defined fixed-point ring and
Fq. This design is simpler but usually much slower since common operations like multiplication,
truncation etc., are much faster over a ring Z2l , as compared to a field. Therefore, for our purpose,
it is far more cost efficient to work mostly in Z2l (and Z

2
l−lf ), and only switch to Fq inside of the

exponentiation subprotocol.

Assumption on the exponent bound. We emphasize that our assumption of a minimum
allowable exponent is not unreasonable in the context of fixed-point exponentiation. Given lf
fractional bits, 2(−z) where z > lf is already not representable in the fixed-point ring. Consequently,
this gives us a natural bound of 2(−z)on how negative the exponent can be for the computation
to even make sense. Of course, a tighter bound A can be chosen if appropriate. This observation
allows our protocol to be orders of magnitude faster than prior work, since it does not require an
expensive bit decomposition to first detect whether the exponent is negative; we can simply add the
bound to all exponents to always work with positive exponents for the main protocol. One caveat
is that we lose the ability to detect if our predefined bound has been violated without resorting to
a bit decomposition, and our protocol may produce incorrect results when the bound is incorrectly
defined or is exceeded during protocol execution. We point out though, that this assumption is not
unlike a standard assumption of a large enough ring modulus to hold the fixed-point computations,
and similar assumptions appear in [4, 21].
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Failure probability. We analyze the total failure probability of our base 2 exponentiation pro-
tocol. Note that this is different from our error analysis in Section 6.4. In particular, we say that
our exponentiation protocol has failure probability pfail and error ε if, except with probability pfail,
the protocol error is bounded by ε. To compute the failure probability, first suppose that the
(positive) base 2 exponent z is secret shared as (JzK0 , JzK1). With probability at least 1− 2lx−l, we
have JzK0 + JzK1 = z + 2l, i.e., the two shares wrap around Z2l . When this happens, the integer
components will also wrap around Z

2
l−lf , and after the RingChange to Zq−1, zint0 and zint1 will wrap

around Zq−1 .
Next, after the integer and fractional parts are exponentiated combined, and converted from

multiplicative to additive shares, the random additive sharing of y′ in Fq will also wrap around Fq
with probability at least 1− 2lx

q . Finally, the later PubFPDiv and RingChange back to Z2l steps will

work smoothly when the sharing of y′ wraps around Fq.
Therefore, using the union bound, we can bound the total failure probability of the exponen-

tiation protocol as 2lx−l + 2lx/q < 2lx+1/q, since we use q < 2l. Given the exponent bound A,
choosing lx = 2A+ 2lf is sufficient, and therefore, we can rewrite the bound as 22A+2lf+1/q. Note
that the failure probability can easily made as small as necessary by increasing the size of Fq, and
our fixed-point ring. For example, to achieve pfail < 2−40, with lf = 15 bits of precision, and A = 5,
roughly an 81-bit modulus will be required.

6.3 Other Considerations

Alternate 2-round protocol. We also describe a alternate 2-round variant of our exponentiation
protocol. Here, instead of combining the integer and fractional exponentiation shares locally first,
the MTA protocol is used to retrieve additive shares of the integer and fractional result separately.
Note that this can be done simultaneously in 1 round. Finally, in the second round, shares of
both results can be combined through a single secure multiplication. In total, 8 Fq elements are
transmitted in the online phase, and 14 Fq elements are required for preprocessing. While the
communication cost is larger than the previously described 1-round protocol, one upshot of this
construction is that it can tolerate a smaller ring size. Recall that in the 1-round protocol, the full
result along with an extra 2lf factor needs to fit in the ring. This is no longer necessary for the
2-round protocol and depending on the usecase and the number of fractional bits used, the trade-off
may be acceptable. For our regression usecase however, there are other constraints that increase
the size of the fixed point ring. Furthermore, in practice, the computational gain as a result of
a smaller ring size (in the order of microseconds for our construction), will almost certainly be
overshadowed by the extra communication round (usually in the order of milliseconds). Therefore,
we use the 1-round protocol that optimizes for communication cost.

Malicious security. Although our secure fixed-point exponentiation protocol operates exclu-
sively in the semi-honest setting, we comment briefly on the challenges of extending it to a mali-
ciously secure version. One possible technique is for the protocol parties to operate on authenticated
shares [22] and use generic zero-knowledge proofs to prove that each party performs their steps cor-
rectly. However, doing so would likely reduce the efficiency gains of our protocol substantially. In
particular, a key step in our protocol is separating the exponentiation into integer and fractional
parts, following which the fractional part can be exponentiated locally in real numbers (or floating
point) and still be seamlessly combined with the integer exponentiation part. In the malicious
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setting, it is expensive to prove that these steps were performed correctly, and it may be more
efficient to use a polynomial approximation instead for the fractional exponentiation, together with
cut-and-choose or ZK techniques to prove correctness. We leave these explorations for future work.

6.4 Error Analysis

We will now compute a bound on the error of our exponentiation protocol for base 2. For this, we
will compute the difference between the result computed by FFPexp and the actual exponentiation
(in real numbers).

Let JzK be a sharing of the (base 2) exponent in the fixed-point ring R = (Z2l , lx, lf ), that
computes the exponentiation 2(˜z) (in R). First, we note that the integer exponentiation produces
no error; the only error results from the truncation in the fractional part and its subsequent
combination with the exponentiation of the integer part. Let zinti and zfraci denote the integer
and fractional parts of the underlying fixed-point of the share JzKi, after (zint0 , zint1 ) has undergone
a RingChange to become a sharing in Zq−1. Note that no error is added by the RingChange. It is

easy to see that the true computation 2̃z can be written as 2(z
int
0 +zint1 mod q−1)2z

frac
0 2z

frac
1 .

Following FFPexp, we first compute vinti = 2z
int
i mod q, and vfraci = 2z

frac
i , and combine them

to get vi = (vinti ·
⌊
2lf vfraci

⌋
) mod q. Since vfraci is a positive real, suppose that vfraci = di + εi,

where 0 ≤ εi < 2−lf . In other words, εi is the part not representable in lf fractional bits. Now,
vi =

(
vinti · 2lf · (vfraci − εi)

)
mod q. Consequently,

y′ = 22lf · vint0 · vint1 · (vfrac0 − ε0) · (vfrac1 − ε1) mod q

= 22lf · 2(zint0 +zint1 mod q−1) · (vfrac0 − ε0) · (vfrac1 − ε1)

= 22lf
[
2(z

int
0 +zint1 mod q−1)(vfrac0 vfrac1 − ε0vfrac1 − ε1vfrac0 + ε0ε1)

]
= 22lf

[
2(˜z) + 2(z

int
0 +zint1 mod q−1)(−ε0vfrac1 − ε1vfrac0 + ε0ε1)

]
where the mod q can be removed from step 2 onwards, since Fq is large enough to accommodate

the entire intermediate result. Now, 2(z
int
0 +zint1 mod q−1) = 2(˜z)/(vfrac0 · vfrac1 ), and 1 ≤ vfraci < 2 and

therefore,

22lf
[
2(˜z) − 2(˜z) · 2−lf (vfrac0 + vfrac1 )

vfrac0 vfrac1

]
< y′ < 22lf

[
2(˜z) + 2(˜z) · 2−2lf ]

This gives,

2lf 2(˜z)(2lf − 2) < y′ < 2lf 2(˜z)(2lf + 2−lf )

Now, y ← PubFPDiv(Jy′K , 2lf ) results in an additional potential error of at most ±1. That is,

−1 + 2(˜z)(2lf − 2) < y < 1 + 2(˜z)(2lf + 2−lf )

In other words, the computed fixed-point number ˜y = y/2lf differs from the real value 2(˜z) as,∣∣∣̃y − 2(˜z)
∣∣∣ < 2−lf (2 · 2(˜z) + 1)

27



To put this in perspective, a computation of 210.125 ≈ 1116.68 in a fixed point ring with lf = 15,
will result in a maximum possible error of 0.068, or at most 0.006%. With lf = 20, the maximum
error reduces to 0.0002%. This should be more than reasonable for most practical settings, and
indeed fits our regression usecase well, since regression is resistant to small errors. Furthermore,
we emphasize that the error can always be made arbitrarily small by increasing the number of
fractional bits available for the computation. Also note that this error is achieved for the worst
possible sharing of the exponent, and may be much smaller for a random sharing.

Error dependence on actual value. The astute reader might observe that the above computed
error (in the fixed-point ring) is bounded by a small multiple of the actual real number result 2̃z.
We highlight that this is not unlike the error of chaining two truncated secure multiplications.
For example, suppose that JâK , ĴbK, JĉK , Jd̂K are sharings held by P0 and P1 of fixed-point numbers
a, b, c, d. Recall that secure multiplication can result in an error of at most ±1 in the fixed-point
ring. This means that the secure multiplication of a, b can result in a sharing of âb + 1, while the
secure multiplication of c, d can result in a sharing of ĉd + 1. At this point, if the two resultant
shares are also multiplied, the complete result can be at most âbcd+ âb+ ĉd+ 2. In other words,
the error here can also depend on the actual numbers involved in the computation.

6.5 Comparison to Existing Techniques

To highlight the strong improvements of our secure exponentiation protocol, we provide a compar-
ison to existing techniques in literature. Later, in Section 7.1, we also benchmark our protocol and
compare the results to existing works.

Modular and integer exponentiation. There is a long line of work [8, 14, 23, 31] on secure
integer and modular exponentiation. Here, the goal is to compute ba mod N where both a, b are
secret shared in ZN . Other variants have also been studied; for example, where b is assumed to
be public, or when N is prime. Classical approaches, such as the one put forth by Damg̊ard et
al. [14], required a full decomposition of the shared values, which is computationally expensive.
Later approaches [8, 23, 31] are more practical and did not require decomposition. Still, for semi-
honest adversaries, even when the base b is public, previous approaches require more than 1 round
of communication (e.g., [8] describes a 2-round protocol, and [31] describes a 3-round protocol).

A byproduct of our protocol, is a modular/integer exponentiation protocol that works for a
public base, and when the exponent is small. In the online phase, it requires a single (simultaneous)
communication round, and an exchange of a single field element in either direction. In other words,
for exponentiation modulo a prime q, our protocol has a total communication cost of 2 log q bits,
and a total preprocessing cost of 4 log q bits.

Fixed-point exponentiation. There are substantially fewer works tackling fixed-point exponen-
tiation. [13] provides several common fixed-point operations but does not describe exponentiation.

The most relevant comparison for fixed-point exponentiation is the protocol from the SCALE-
MAMBA package [10]. The authors mention that they could not find a secure fixed-point exponen-
tiation protocol in academic literature and resorted to constructing their own protocol for base 2
(and by extension any public base) exponentiation. While [10] primarily targets malicious security,
we briefly compare the overall technique of their protocol to ours.
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Their technique is as follows: First, the protocol compares the exponent to zero and proceeds
differently depending on positive and negative exponents. Next, each exponent share is split into
its integer and fractional parts and the exponentiation is done separately. For the integer part,
earlier known techniques are used. The fractional computation is approximated using a degree-9
polynomial P1045(x), described by Hart [18]. Finally, the two computations are combined using a
single multiplication, and a division is performed if the exponent was negative.

The overall structure is similar to our technique of splitting the computation into an integer and
a fractional part. However, their approach has some notable drawbacks compared to our protocol.
First, as far as we are aware, a comparison to zero requires a full bit decomposition of each parties
shares, which as mentioned earlier, is expensive. In contrast, our work does not need to compare to
zero to be able to handle negative exponents. Instead, here, we assume that the exponent is bounded
from below, which allows us to convert the exponents to a suitable positive value beforehand. The
extra multiplicative factor (2A if A is the exponent bound) is later divided out. This assumption
is suitable for our application, and results in a much faster protocol. Second, for the fractional
exponentiation, SCALE-MAMBA uses a polynomial approximation, using a degree-9 polynomial,
which will require several rounds of communication and/or a large communication cost. Here, for
our protocol, we make a crucial observation that the fractional exponentiation (in real numbers)
is small enough, such that the multiplicative shares of the product do not wrap around the fixed-
point ring. This allows us to directly compute shares of the fractional approximation without any
polynomial approximation. Finally, we also realize that the integer and fractional parts can be
combined locally first, giving rise to our 1-round protocol. For this, we do require a slightly larger
ring (lf more bits) to ensure that our intermediate computations can be appropriately represented,
but we think that this tradeoff is appropriate. Furthermore, as we point out in Section 7.1, SCALE-
MAMBA chooses a larger ring to reduce numerical instability that was observed, which already
results in a larger ring size requirement than our protocol.

7 Experimental Evaluation

Implementation details. We implemented our protocols in C++, and compiled the code using
the open-source Bazel [2] build tool. We support moduli up to 127-bit for both the fixed-point ring
and the field. For the operations, we use the native C++ uint64 t type for moduli smaller than
64-bits, and uint128 from Google’s abseil library [3] for larger moduli. We give users the option
to decide the base integer size (64-bit or 128-bit) and provide experimental results for both.

Experimental setup. We ran all of our experiments on two compute-optimized c2-standard-8
Google cloud instances with 3.1 GHz base frequency and 32 GB RAM. Our code is single-threaded
and only uses a single core of the instance. For the LAN setting, both instances were deployed in
the us-central1 region where the mean network latency was 0.15ms and the bandwidth was about
1.5GB/s. For the WAN setting, one instance was in us-central1 while the other was in us-west2;
the mean network latency was 49ms and the bandwidth was about 50MB/s.

7.1 Secure Exponentiation Experiments

We benchmark our secure exponentiation protocol separately and present our results and compar-
isons here.
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(lf , l) 64-bit BaseInt 128-bit BaseInt

Offline Online
End-to-End

Offline Online
End-to-End

LAN WAN LAN WAN

(5, 32) 3.09 0.004 4.21 11.06 7.68 1.01 9.56 16.29
(10, 63) 3.22 0.99 5.43 12.07 9.24 14.9 25.02 32.17
(15, 63) 3.22 1.01 5.49 12.11 9.24 16.0 26.29 32.95
(20, 100) - - - - 11.15 33.2 44.91 52.35
(20, 127) - - - - 12.9 54.9 68.63 75.91

Table 1: Timing benchmarks (in µs) for the exponentiation protocol, for base 64-bit and 128-bit
int sizes. Exponents in the range [−5, 5] were randomly sampled and shared in the fixed-point ring.
Offline and online phase computation times (in µs) are averaged over 1 million runs, and don’t
include communication. End-to-end times per exponentiation are given in the LAN and WAN
settings where 100K exponentiations are batched for communication. End-to-end times include
computation and communication costs for both the online and offline phases.

lf
Our approach Polynomial Approx. [10]
µ σ µ σ

5 0.0286 0.011 0.0932 0.0202
10 0.0009 0.0003 0.0051 0.0019

20 9.2× 10−7 3.5× 10−7 6.6× 10−6 5× 10−6

30 9.1× 10−10 3.5× 10−10 1.3× 10−8 2× 10−8

40 8.9× 10−13 3.4× 10−13 1.8× 10−9 7.4× 10−9

Table 2: Mean (µ) and standard deviation (σ) of the fractional exponentiation error as a ratio of
the actual result for both our approach and polynomial approximation (as in [10]). Exponents are
sampled and shared randomly. The error is averaged over 1 million runs.

Timing experiments. We provide the offline and online computation times as well as end-to-end
benchmarks (both LAN and WAN) for several (l, lf ) parameters and for both 64-bit and 128-bit
base integer sizes. The results are shown in Table 1. We find that especially when batching the
communication for several exponentiations together, the impact of the network is quite minimal,
primarily due to the small amount of communication our protocol requires.

Accuracy experiments. As mentioned earlier, our exponentiation has smaller error than stan-
dard techniques. Since, the error comes only from the fractional part, we implement both our
fractional exponentiation as well as a degree-9 polynomial approximation used in [10] and compare
the errors in Table 2. Our errors are smaller by 1 to 2 orders of magnitude and the difference gets
wider with more fractional bits.

Apart from the smaller errors, we also note that our technique only requires a single round
of communication while a degree-d polynomial approximation usually takes d rounds when imple-
mented using Horner’s method (as in done in [10] to reduce total communication). One shortcoming
however, is that while it is straightforward to extend polynomial approximation to the malicious
setting, it is not obvious how to efficiently do the same for our technique.
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Benchmark comparisons. We did not find any prior work on fixed-point exponentiation that
targets the same setting we do. The most relevant protocols are the ones in SCALE-MAMBA [10]
(benchmarked in [9]) and Aliasgari et al. [7]. The protocol from [10] uses fixed-points but focuses
primarily on active security; the one from [7] is in the semi-honest setting but uses floating-points, is
described only for n ≥ 3 parties and only for Shamir shares. Consequently, while we provide some
comparison points, our comparison is not direct and comes with significant caveats. We intend
the comparison to be primarily directional, and to highlight the difference in broader protocol
approaches. Specifically, we believe the comparison shows the simplicity of our design in the 2-
party semi-honest setting, and the corresponding performance gains (often µs vs ms or s).

First, we compare to the 2-party protocol from [9, 10]. As noted earlier, this protocol targets the
active-security setting, while we target the semi-honest setting, so the comparison is not direct. [10]
requires a full bit decomposition and uses a polynomial approximation for the fractional part, which
incurs a larger error than our approach. For fixed-point exponentiation with l = 245 and lf = 40, [9]
shows an online runtime of 15 ms, an offline runtime of 18000 ms, and an offline cost of 1337 Beaver
triples, 1 square tuple, and 7688 shared bits, which comes out to ∼2MB per exponentiation. In
contrast, for those parameters, our total offline cost is 980 bits, i.e., a 2000x improvement. Our
implementation only supports a maximum of l = 127, and therefore our comparison is not direct,
but for (lf , l) = (20, 127), our online runtime was 0.055 ms, and our offline time was 0.013 ms.

For comparable parameters, the offline time for the arctan operation in [9], which requires fewer
preprocessed bits than exponentiation, is still around 7000 ms, which implies a more than 500,000x
improvement. [9] notes that the reason large parameters were chosen specifically for exponentia-
tion (as opposed to (20, 128) for other functions like square-root, sine, cosine etc.), was the high
numerical instability. This is not observed in our protocol for the parameters (20, 127), which is in
part due to our ability to effectively exponentiate the fractional component in R rather than using
polynomial approximation.

Our protocol also has a large throughput advantage. While [9] reports 76 ops/s when 50
invocations are run in parallel, we achieve ∼15,000 ops/s run sequentially for our 127-bit modulus.
We also note that the implementation from [9] leverages multiple threads while all our code is single
threaded and could potentially be optimized further.

Aliasgari et al. [7] provide a secure exponentiation protocol in the semi honest setting. They con-
sider floating-point exponentiation in the 3-party setting with Shamir shares. This is significantly
different from our setting, since we target fixed-point exponentiation in the 2-party setting. The
comparison therefore comes with significant caveats, but we provide a brief analytical comparison
here to highlight the differences in techniques, and therefore efficiency. In particular, the protocol
from [7] requires a full bit decomposition, 4 comparison tests, and lf floating-point multiplications
(where lf is number of significand bits). For a lf -bit comparable precision (for their best setting
where lf is more than the number of exponent bits k), it requires at least 16 + 12 log lf + log log lf
rounds and O(k) +O(lf log lf ) interactive operations (involving exchange of a secret share) taking
preprocessing and parallel computation into account. In comparison, our protocol requires a single
round and only one interactive operation (i.e., only one secret share is exchanged) regardless of l
and lf .
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l = 63

Dataset n m
Paillier [21] Correlated Triples A Correlated Triples B

LAN (s) WAN (s) Comm. LAN (s) WAN (s) Comm. LAN (s) WAN (s) Comm.

Replicated

1 1 0.0638 0.0732 3 KB 0.0043 0.0044 0.48 KB 0.00006 0.00017 0.48 KB

100
10 4.2724 4.6407 0.17 MB 0.0165 0.0175 9.60 KB 0.0022 0.0033 9.60 KB
100 13.469 14.046 0.30 MB 0.1392 0.1435 24.0 KB 0.0162 0.0178 24.0 KB
1000 105.48 105.98 1.65 MB 1.3659 1.4024 168 KB 0.1621 0.1652 168 KB

1000
10 40.085 40.462 1.52 MB 0.0210 0.0227 81.6 KB 0.0202 0.0224 81.6 KB
100 106.94 107.62 1.65 MB 0.1556 0.1561 96.0 KB 0.1484 0.1509 96.0 KB
1000 776.68 777.24 3.00 MB 1.5033 1.5065 240 KB 1.4914 1.4928 240 KB

10000
10 395.42 396.04 15.0 MB 0.0926 0.1091 805 KB 0.1994 0.2183 805 KB
100 1041.3 1041.7 15.2 MB 0.5213 0.5352 848 KB 1.4749 1.4885 848 KB
1000 7492.0 7498.4 16.5 MB 5.5495 5.5641 1.28 MB 14.740 14.796 1.28 MB

Somoza 21 11 1.1794 1.2350 48 KB 0.0176 0.0182 3.68 KB 0.0007 0.0011 3.68 KB

PhD 73 17 3.7691 3.8559 135 KB 0.0259 0.02659 8.48 KB 0.0025 0.0035 8.8 KB

Cancer 36 14 1.9553 2.0278 75 KB 0.0218 0.0225 5.12 KB 0.0012 0.0018 5.12 KB

l = 127

Dataset n m
Paillier [21] Correlated Triples A Correlated Triples B

LAN (s) WAN (s) Comm. LAN (s) WAN (s) Comm. LAN (s) WAN (s) Comm.

Replicated

1 1 0.06563 0.0752 3 KB 0.0048 0.0051 0.89 KB 0.00007 0.00024 0.89 KB

100
10 5.0371 5.3857 0.17 MB 0.0180 0.0192 17.8 KB 0.0024 0.0037 17.8 KB
100 20.088 20.676 0.30 MB 0.1488 0.1495 44.4 KB 0.0179 0.0195 44.4 KB
1000 171.18 171.85 1.65 MB 1.4597 1.4620 311 KB 0.1759 0.1814 311 KB

1000
10 47.739 48.342 1.52 MB 0.0229 0.0263 151 KB 0.0227 0.0265 151 KB
100 173.58 174.84 1.65 MB 0.1602 0.1642 178 KB 0.1601 0.1640 178 KB
1000 1433.1 1434.4 3.00 MB 1.5889 1.6150 444 KB 1.6003 1.6006 444 KB

10000
10 474.36 476.59 15.0 MB 0.1077 0.1331 1.49 MB 0.2234 0.2506 1.49 MB
100 1709.5 1710.3 15.2 MB 0.5737 0.6008 1.57 MB 1.5840 1.6158 1.57 MB
1000 14053 14056 16.5 MB 5.9126 6.0368 2.36 MB 15.920 15.956 2.36 MB

Somoza 21 11 1.3610 1.4202 48 KB 0.0192 0.0200 6.81 KB 0.0007 0.0012 6.81 KB

PhD 73 17 4.6749 4.7559 135 KB 0.0282 0.0296 15.7 KB 0.0028 0.0042 16.3 KB

Cancer 36 14 2.3283 2.4085 75 KB 0.0233 0.0245 9.47 KB 0.0013 0.0021 9.47 KB

Table 3: Micro benchmarks for generation of correlated Beaver triples ([A], [Bi], [Ci] = [ABi]) in
the offline phase for l = 63 and l = 127 bits. A has dimension n×m; the Bi have dimension m×1.
The plaintext modulus used is 2l. Times (in seconds) and communication cost for correlated triples
are amortized for one triple over 1000 iterations. The baseline cost for triple generation via Paillier
encryption (with a 3072-bit keysize) is averaged over 5 iterations. All of our code is single threaded
and is run in the LAN setting.

7.2 Offline Phase Experiments

We provide micro benchmarks for the offline phase generation of correlated Beaver triples in both
the LAN and WAN settings in Table 3. As a baseline, we also compare to the cost when using
Paillier encryption. Both our approaches (see Section 5.2) have 5x-10x less communication cost
and are 520x-4200x faster than Paillier AHE-based approaches. Experiments in [21] suggest that
an OT-based approach is 20x-30x faster than the Paillier AHE-based one in the LAN setting which
highlights that our protocols would also be faster than OT-based triple generation.
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7.3 Poisson Regression Experiments

We now measure the performance of our end-to-end secure Poisson regression protocol and compare
its accuracy with plaintext regression, where the data is provided without encryption. Our secure
regression is implemented with fixed-point numbers, while the C++ double type is used in the
plaintext version.

Datasets. We run our regression experiments on three datasets (detailed next) from the Princeton
University course on Generalized Linear Models [1].

1. Somoza. This dataset contains infant and child survival rates in Colombia, based on the
World Fertility Survey. Survival is modeled as a function of sex, cohort, and age range. The
dataset tracks 2000 infants over several years, and provides aggregate exposures and counts
over 21 distinct feature combinations.

2. Time to PhD. This dataset predicts PhD graduation as a function of years in graduate
school, university, and residence status. We encode the explanatory variables into 17 binary
features. Data from 35,000 PhD students is used to calculate the aggregate exposure period
and graduation counts for 73 distinct feature combinations.

3. Smoking and Cancer. This dataset contains information from a Canadian study of mortality
by age and smoking status. There are 14 different binary features, corresponding to different
age buckets and smoking statuses. There are 36 distinct feature combinations, containing
counts and exposure periods from a total of 92,000 respondents.

All of the datasets are publicly available at [1].

Accuracy evaluation. To quantify accuracy, we benchmark our secure Poisson regression pro-
tocol against a plaintext regression baseline for different learning rates and fixed-point precision.
See Figures 10 and 11. We observe that our secure protocol performs almost exactly as well as
the plaintext regression: the lines plotted for model error versus number of iterations are nearly
coincident.

When we take a closer look at the learned parameter θ, we find that the actual weights learned
by the secure protocol are also nearly exactly the same as those from plaintext learning. See Table
5: the root mean square error between the secure weights and the plaintext weights is very small
regardless of the dataset being tested on.

Performance evaluation. We also benchmark the computation and communication efficiency
of our end-to-end protocol regression protocol in Table 4. In addition to the earlier datasets, we
also run our experiments on larger synthetic datasets. For this, we replicate the Somoza dataset to
obtain a new dataset of the appropriate size (n×m). We report our timing results for this under
the “Replicated” dataset header.

As there is no previous work done on secure Poisson regression, it is not possible for us to
compare efficiency of our protocol with other work. Instead, we compare our protocol with a “basic”
version that does not use correlated Beaver triples. We still use our exponentiation protocol. For
correlated triples, since the gain is only when multiple gradient descent iterations are run, for our
timing values, we run 1000 iterations, and report the amortized time for 1 iteration.
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Figure 10: Convergence of the RMSE for plaintext regression versus Secure Poisson regression with
15-bit fixed-point precision.

We find that our protocol performs well, even for larger datasets. For example, in the LAN
setting, for a dataset with 10,000 elements and 100 features, it has an amortized cost of 3.116
seconds of offline time, 5.501 seconds of online time, and 14.8 MB of communication. Over 100
iterations, the cost is about 5 minutes of offline time, 9 minutes of online time, and 1.48 GB of
communication.

8 Applications

In this section, we give several concrete applications for secure Poisson regression, and discuss
performance of our protocol in each of these scenarios.

8.1 COVID-19 Case Fatality Rate

Recent work [29] performs an analysis of COVID-19 case fatality using Poisson Regression. They
measure the effect of 9 binary variables on the counts of COVID-19 fatalities, using 2070 cases as
training examples. Variables include age-range (≥ 60 years), presence of cardiovascular disease,
and presence of neurologic diseases. The regression model is used to compute the incidence rate
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Figure 11: Convergence of the RMSE for plaintext regression versus Secure Poisson regression with
20-bit fixed-point precision.

ratio (IRR) for each variable, that is, the ratio between predicted fatalities when that variable is
present versus not.

This case provides a good example for health data, where multiple hospitals may hold slices of
the data, and may not want it to be centralized in the clear. To compute over this data privately,
hospitals could send shares of the data to two servers who could perform Poisson regression securely,
and compute shares of the model parameters. The model could then be sent to each hospital which
would individually compute the IRR for each variable, and release the aggregate IRRs.

On a synthetic dataset with similar shape, in the LAN setting, our protocol takes 0.268 seconds
in the offline phase and 0.103 seconds in the online phase per iteration of gradient descent, with a
total communication cost of 3.52 MB. Assuming 100 iterations of gradient descent are needed in
order to converge, this results in 26.8 seconds in the offline phase, 10.3 seconds in the online phase,
and a communication of 352 MB.

8.2 Predicting Credit Default Rates

[20] use Poisson Regression to model the rate of default payments by borrowers. They measure the
effect of 6 variables, including income, age, monthly credit card expenditure, and home-ownership on
the monthly rate of defaulted loan payments using a sample of 1002 individuals. After regression,
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(lf , l) = (15, 63)

Dataset n m

Standard Correlated Triples
Offline Online Offline Online

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

Repl.

100
10 15.110 16.415 0.638 0.001 0.198 0.038 0.025 0.026 0.075 0.0006 0.196 0.006
100 33.317 35.408 0.908 0.006 0.199 0.314 0.039 0.054 0.104 0.002 0.199 0.008
1000 218.80 220.92 3.61 0.059 0.241 3.075 0.318 0.335 0.392 0.022 0.217 0.049

1000
10 142.56 152.30 6.11 0.006 0.205 0.382 0.129 0.241 0.721 0.002 0.190 0.062
100 276.21 286.77 6.38 0.056 0.240 3.130 0.381 0.502 0.750 0.021 0.207 0.062
1000 1617.2 1627.6 9.08 0.556 1.002 30.61 3.053 3.172 1.04 0.209 0.405 0.107

10000
10 1420.1 1514.5 60.8 0.055 0.238 3.815 1.119 2.296 7.19 0.020 0.208 0.614
100 2734.0 2833.2 61.1 0.542 1.032 31.28 2.844 4.050 7.28 0.202 0.389 0.643
1000 15896 16000 63.8 5.91 10.902 306.0 61.746 64.371 8.14 2.101 2.469 0.931

Sozoma 21 11 3.6838 4.007 0.161 0.0005 0.188 0.008 0.003 0.006 0.020 0.0004 0.188 0.001

PhD 73 17 12.089 13.053 0.495 0.0009 0.194 0.040 0.011 0.021 0.063 0.0007 0.188 0.002

Cancer 36 14 6.1600 6.690 0.261 0.0006 0.193 0.017 0.005 0.011 0.032 0.0005 0.188 0.001

(lf , l) = (20, 127)

Dataset n m

Standard Correlated Triples
Offline Online Offline Online

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

Repl.

100
10 16.700 18.006 0.644 0.008 0.201 0.077 0.028 0.034 0.139 0.006 0.200 0.013
100 46.740 48.877 0.914 0.065 0.271 0.629 0.044 0.065 0.192 0.062 0.254 0.016
1000 351.32 354.22 3.61 0.653 1.172 6.149 0.344 0.371 0.725 0.618 0.963 0.049

1000
10 158.52 168.74 6.17 0.059 0.260 0.763 0.277 0.324 1.33 0.056 0.245 0.123
100 410.40 421.94 6.44 0.593 1.035 6.259 0.414 0.604 1.39 0.558 0.846 0.131
1000 2931.8 2944.1 9.14 5.888 8.474 61.22 3.256 3.460 1.92 5.562 6.045 0.214

10000
10 1582.2 1680.5 61.5 0.584 1.023 7.630 2.650 3.107 13.3 0.549 1.001 1.227
100 4077.7 4181.3 61.7 5.825 8.342 62.56 3.116 4.997 13.5 5.501 5.989 1.285
1000 29040 29154 64.4 59.745 72.234 611.9 65.82 70.61 15.1 55.144 55.862 1.862

Sozoma 21 11 4.067 4.421 0.162 0.002 0.199 0.016 0.003 0.008 0.037 0.002 0.197 0.002

PhD 73 17 13.960 15.005 0.500 0.009 0.202 0.081 0.012 0.028 0.116 0.008 0.201 0.004

Cancer 36 14 6.950 7.526 0.263 0.004 0.199 0.034 0.006 0.014 0.060 0.004 0.199 0.003

Table 4: Benchmarks for the end-to-end Poisson regression protocol for different datasets. n is the
number of examples and m is the number of features. For larger values of n and m, the Somoza
dataset was replicated. Times (in seconds) are given per iteration of gradient descent over the
entire dataset. For the “Standard” column, we use standard Beaver triples generated via Paillier
encryption (e.g., as in [21]) along with our fixed-point exponentiation protocol. For correlated
triples, the protocol is amortized over 1000 iterations. All of our code is single threaded.

the authors propose using the model inference to data of loan applicants to compute predicted
defaults, and thereby characterize risk level.

This case involves training on sensitive financial data, which may be distributed across several
institutions. Securely computing regression on these values would then consist of two phases: com-
bining the records from multiple institutions, followed by performing secure regression on the joint
data. The former task can be handled using techniques like privacy-preserving record linkage [5].
Our secure protocol is a good fit for the latter part, as well as the subsequent inference.

On a synthetic dataset with similar shape, in the LAN setting, our protocol incurs 5.8 seconds
of offline time and 3.4 seconds of online time to perform 100 iterations of secure gradient descent,
with a total communication cost of 157 MB. Each iteration would incur 0.058 seconds and 0.034
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Learning rate Iterations
RMSE between plaintext weights and secure weights

Somoza Time to PhD
Smoking and
Lung Cancer

0.0001
100 0.00064 - 0.00016
500 0.00259 - 0.00048
1000 0.00456 - 0.00097

0.00005
100 0.00034 0.00031 0.00021
500 0.00160 0.00123 0.00057
1000 0.00346 0.00200 0.00150

0.00003
100 0.00029 0.00030 0.00023
500 0.00131 0.00126 0.00060
1000 0.00294 0.00228 0.00107

Table 5: Root mean square errors between the weights obtained from secure regression and those
from plaintext regression. This table shows that the learned weights from secure regression are
nearly the same as those obtained from plaintext regression.

seconds of offline and online time, with 1.57 MB of communication.

8.3 Modeling Ad Campaign Conversion Rates

Google researchers [28] describe a system for measuring ad campaign conversion rates using Poisson
regression. A “conversion” corresponds to an individual buying an item after seeing one or more
ads. [28] give several ways to model multiple ad channels having a combined effect on an individual,
with the ad effects decaying over time. One is to use a “step” decay: assigning each ad channel 3
binary attributes, corresponding to whether an individual was exposed to the ad in the short term (1
day prior), medium term (2-7 days prior) or long term (7-30 days prior). The conversion rate is then
learned via Poisson regression using such attributes for some combination of ad channels. Credit
for a conversion is proportionally distributed to each ad channel according to the relative change
in predicted conversion rate when that ad channel is switched from exposed to unexposed. The
total credit per ad channel is computed as the sum of its proportional credit across all conversions
in the dataset.

This problem is an excellent case for the use of secure computation techniques, since it involves
sensitive business and user data that may be held by different ad companies and transaction data
providers. A secure solution would require privately joining the records, securely performing re-
gression, and then securely computing the aggregate credit for each ad channel. The private join
could be achieved using privacy-preserving record linkage techniques [5]. Our work is well-suited
for regression as well as the subsequent inference.

On a synthetic dataset with 5 ad channels and 3 binary attributes per channel for a total of
15 binary attributes, and assuming 100,000 training points, our regression takes 6.90 seconds of
offline time and 8.197 seconds of online time per iteration of gradient descent, with 156.7 MB of
total communication. For 100 iterations of gradient descent, we incur 11.5 minutes of offline time
and about 14 minutes of online time, with 15.67 GB of total communication.
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9 Conclusion

Poisson regression is a widely used technique for modeling Poisson processes that occur across the
life and social sciences. In many settings, the inputs for training Poisson models are sensitive health
or financial data held by different parties. The secure Poisson regression protocol introduced in
this paper enables computation on private data which reveals only the output Poisson model while
protecting the inputs. Our construction achieves this with great efficiency while preserving accuracy
comparable to computation in the clear. For several real datasets, this means execution in just a
few seconds with a couple MB of communication. At the crux of our protocol is a new construction
for secure fixed-point exponentiation and a new technique for correlated matrix multiplication, both
of which are of independent interest with applications far beyond Poisson regression.
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