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Abstract. Threshold ECDSA signatures provide a higher level of se-
curity to a crypto wallet since it requires more than t parties out of
n parties to sign a transaction. The state-of-the-art bandwidth efficient
threshold ECDSA used the additive homomorphic Castagnos and Laguil-
laumie (CL) encryption based on an unknown order group G, together
with a number of zero-knowledge proofs in G. In this paper, we propose
compact zero-knowledge proofs for threshold ECDSA to lower the com-
munication bandwidth, as well as the computation cost. The proposed
zero-knowledge proofs include the discrete-logarithm relation in G and
the well-formedness of a CL ciphertext.
When applied to two-party ECDSA, we can lower the bandwidth of
the key generation algorithm by 47%, and the running time for the key
generation and signing algorithms are boosted by about 35% and 104%
respectively. When applied to threshold ECDSA, our first scheme is more
optimized for the key generation algorithm (about 70% lower bandwidth
and 85% faster computation in key generation, at a cost of 20% larger
bandwidth in signing), while our second scheme has an all-rounded per-
formance improvement (about 60% lower bandwidth, 46% faster compu-
tation in key generation without additional cost in signing).
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1 Introduction

Threshold signature allows n parties to share the message signing ability without
trusting each other, such that no coalition of t < n or fewer users can gener-
ate a valid signature. Threshold ECDSA signatures become a popular research
topic recently since ECDSA is adopted in Bitcoin and other cryptocurrencies.
Threshold ECDSA signatures are useful for managing keys in crypto wallet. For
example, two-party ECDSA [14, 4] (with t = 1, n = 2) is useful for smart contract
building blocks such as Coinswap and Lightning Network. A threshold signature
with t = 1, n = 3 is useful for a hot wallet of a crypto exchange: the exchange
holds a private key for online transaction and a private key for paper backup,
and a separate security firm holds the third key to validate transactions. In this



case, losing one key from the exchange or the security firm does not compromise
the hot wallet. General threshold ECDSA signatures were proposed in [15, 11,
5].

1.1 Additive Homomorphic CL Encryption in Threshold ECDSA

Using additive homomorphic encryption is one of the most popular techniques
for generating efficient two-party or threshold ECDSA. Some earlier papers [14,
15, 11] used Paillier encryption. Recently, Castagnos et al. [4] used the addi-
tive homomorphic Castagnos and Laguillaumie (CL) encryption [7] based on an
unknown order group G, which contains a subgroup F in which the discrete
logarithm (DL) problem is tractable. We call the group G as the HSM group
since we require that the hard subgroup membership assumption holds in G. It
was shown in [1] that the HSM group G can be constructed from class groups of
quadratic fields. The advantage of using CL encryption over Paillier encryption
is that the generation of the class group is trustless, and the size of a class group
element is smaller than that of a Paillier group element (for the same security
level).

Zero-knowledge Proofs for CL Encryption. One of the technical difficulties
for using the CL encryption for threshold ECDSA is the design of zero-knowledge
(ZK) proofs in the HSM group. In particular, we need the ZK proofs related to
(1) the discrete-logarithm (DL) of an unknown order group element, and (2) the
well-formedness of a CL ciphertext. In [4], the authors used a ZK proof with a
single bit challenge. In order to achieve soundness error of 2−εs , the protocol has
to be repeated for εs-times and hence the resulting algorithm is inefficient. In
[5], the authors tackled the first DL problem by using a lowest common multiple
(lcm) tricks, which reduces the repetition of the ZK proof to about εs/10-times.
The authors tackled the second CL ciphertext well-formedness problem based
on a strong root assumption in the HSM group.

Although the ZK proof for a CL ciphertext in [5] is highly efficient, it does
not allow a fast, trustless setup. The strong root assumption used in [5] assumes
that when given a random group element w ∈ G \ F , it is difficult to output
a group element u and a positive integer e 6= 2k such that ue = w.3 In their
security proof, it requires that w is a random group generator, which can be
obtained from a standardized group, or jointly generated by all participating
parties during the interactive key generation algorithm. In the former case, all
users have to trust the standardizing authority and it is not desirable for de-
centralized applications such as public blockchain. In the latter case, it greatly
increases the round complexity and the bandwidth used for the interactive key
generation algorithm.

3 This special requirement on e is needed since computing square roots in class groups
of quadratic fields is easy [4]. The assumptions used in this paper do not require
such a special arrangement.
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Algorithm 1: Insecure ZK Proof for the relation R
1 Verifier sends a random λ-bit prime `.

2 Prover finds q′ ∈ Z and r ∈ [0, `− 1] s.t. x = q′`+ r. Prover sends Q = gq
′

and
r to the verifier.

3 Verifier accepts if r ∈ [0, `− 1] and Q`gr = w.

1.2 Compact Zero-Knowledge Proof with Fast Trustless Setup

In this paper, we propose compact ZK proofs for the DL relation of HSM group
element, and the well-formedness of CL ciphertext with a fast trustless setup.
We first consider a ZK proof for a simple DL relation R in an unknown order
group G for some group elements g, w ∈ G \ F :4

R = {x ∈ Z : w = gx}.

The subgroup F makes the ZK proof on the relation R much more complicated.

First Attempt. We start by adopting the adaptive root assumption [1] in the group
G with order q subgroup F . In short, the adversary first outputs a group element
w ∈ G \F (which can be verified by wq 6= 1). When given a random prime `, we
assume that no polynomial time adversary can output a group element u such
that u` = w with non-negligible probability. Given such an assumption, we can
construct a simple ZK proof for R based on [1] in Algorithm 1.

However, this trivial construction is not secure since there exists a known
order subgroup F ⊂ G. Suppose that the prover knows x and y such that
w = gxfy for some f ∈ F . The prover can compute Q′ = gq

′
f
y
` since the order

of f is known. It can pass the verification since:

Q′
`
gr = (gq

′
f
y
` )`gr = gxfy = w.

Our Solution. We propose the use of an extra round of challenge to eliminate the
elements of order q in w. This extra round simply uses q instead of using the
prime number `. We give a simplified ZK proof for the relation R in Algorithm
2. (It is the simplified version of Algorithm 4 by setting n = 1.)

Note that our protocol only runs for one time only for a soundness error of
2−εs ≈ 2log λ−λ, as compared to εs-times for [4] and εs/10-times for [5] for a
soundness error of 2−εs . Based on our efficient ZK proof for DL relation of a
class group element, we can later formulate an efficient ZK proof for the well-
formedness of a CL ciphertext. The major technical difficulty of this paper lies
in the security proof and the security model.

4 Since it is easy to compute logg w if g ∈ F , it is impossible to construct a ZK proof
for R if g ∈ F . Hence, we restrict that g ∈ G \ F .
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Algorithm 2: Simplified ZK Proof for the relation R
Param: A security parameter B.

1 Prover chooses k
$←− [−B,B] and sends R = gk to the verifier.

2 Verifier sends c
$←− [0, q − 1] to the prover.

3 Prover computes s = k + cx. Prover finds d ∈ Z, e ∈ [0, q − 1] s.t. s = dq + e

and sends D = gd and e to the verifier.
4 If e ∈ [0, q − 1] and Dqge = Rwc, verifier sends a random λ-bit prime `.

5 Prover finds q′ ∈ Z and r ∈ [0, `− 1] s.t. s = q′`+ r. Prover sends Q = gq
′

and
r to the verifier.

6 Verifier accepts if r ∈ [0, `− 1] and Q`gr = Rwc.

1.3 Our Contribution

Our contribution is twofold: (1) In theoretical aspect, we give compact ZK proofs
for the well-formedness of a CL ciphertext and for the DL relation in the HSM
group with a fast and trustless setup. (2) In practical aspect, we improve the
performance of two-party ECDSA and threshold ECDSA with trustless setup
by using our ZK proofs.

We observe that by using the generic group model, we can build a more
compact ZK proof for two-party/threshold ECDSA. Since ECDSA is known
to be secure in the generic group model [2], the security of two-party/threshold
ECDSA also indirectly relies on the generic group model. Using our compact ZK
proof for two-party/threshold ECDSA still relies on the generic group model.

ZK Proofs and the Generic Group Model. We propose the first generic
group model for the HSM group (including the class group of imaginary quadratic
group order), by defining group operations with the main group G, as well as the
subgroup F . Equipped with the new generic group model, we are able to anal-
yse the security of the hard subgroup membership assumption and the adaptive
root subgroup assumption in the generic group model. The technical difficulty
for the generic group mode is how to maintain the correctness of group opera-
tions among elements in G and F , where the discrete logarithm of elements in
F is known. Denote G = Gq × F where Gq is a subgroup of G. For all g ∈ G,
we represent g by an element in Gq and an element in F . We handle the group
operations in Gq and F separately in order to ensure the correctness of DL
computation in F .

Afterwards, we propose some building blocks, such as the proof of knowl-
edge of an exponent for a group element in G, and a zero-knowledge proof of
knowledge for a group element representation in G (a generalization of the DL
relation), and then a zero-knowledge proof of knowledge for the well-formedness
of a CL ciphertext. As shown in Figure 1, our ZK proof for DL in the HSM group
is around 97% shorter than CCL+19 [4] and around 74% shorter than CCL+20
([5], §5.1) with the same level of soundness error and statistical distance of 2−80.

As compared with ZK proofs in [5], their strong root assumption is similar to
the strong RSA assumption, while our adaptive root assumption is more similar

4



112 128 192 256

103

104

105

21,930
29,120

55,700
91,300

2,211
2,930

5,588
9,148

591
770

1,466
2,388

Security Level

B
a
n
d
w

id
th

(B
y
te

s)

CCL+19 CCL+20 This paper

Fig. 1: Comparison of ZK Proof of DL relation in HSM group.

to the RSA assumption. On the other hand, the security of our ZK proofs requires
the use of generic group model while the security of the ZK proofs in [5] does
not.

Two-party ECDSA. The two-party ECDSA scheme CCL+19 [4] has an effi-
cient ISign algorithm, with the drawback of running the IKeyGen algorithm with
a communication size of > 50kB and a running time of > 60s for 128-bit secu-
rity level. Recently, [5] improved the IKeyGen algorithm in [4] by adding an lcm
trick upon it (we denote it as CCL+19-lcm). In this paper, we implement these
schemes and find out that CCL+19-lcm has a non-obvious cost of doubling the
running of ISign as compared with CCL+19.

We propose a new two-party ECDSA (§5.1) by modifying the ZK proof of the
well-formedness of CL ciphertext, such that the plaintext encrypted is related
to an ECC group element. As compared with CCL+19 [4] or CCL+19-lcm ([5]
§5.1), we use a single round ZK proof to replace the multiple rounds of ZK
proofs. Our new two-party ECDSA outperforms the state-of-the-art CCL+19-
lcm in most aspects. Our scheme uses 47% less bandwidth in IKeyGen than the
CCL+19-lcm for 128-bit security. The running time of our IKeyGen is 35% faster,
and the running time of our ISign is 104% faster. Detailed comparison in terms
of security assumptions and security models are discussed in §5.1.

Threshold ECDSA. For threshold ECDSA, the major bottleneck for the IKeyGen
algorithm for the threshold ECDSA in CCL+20 [5] is that the ZK proof for the
well-formedness of a CL ciphertext requires a random group generator gq as
discussed above (from the strong root assumption). As a result, their IKeyGen
algorithm requires an additional interactive ISetup algorithm to generate such
gq. This ISetup algorithm requires a ZK proof of DL relation in the class group
for n parties.

By using our bandwidth efficient ZK proof of DL relation, we can remove
this complicated IKeyGen algorithm. It is because our underlying adaptive root
assumption does not require a random group generator gq. We can build a band-
width efficient threshold ECDSA (Scheme 2 in §5.2) with about 60% smaller
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bandwidth than [5] for (t, n) = (1,3), (2,4) and (2,5)5. The running time of our
IKeyGen is 46-65% faster. Our scheme 1 is even more optimized for the key gen-
eration algorithm (about 70% lower bandwidth and 85-90% faster computation
in key generation than CCL+20), at a cost of 20% larger bandwidth in signing.
Detailed comparison in terms of security assumptions and security models are
discussed in §5.2.

2 Backgrounds

We review some definitions of groups and introduce some intractability assump-
tions in these groups. In particular, we will use a group where the hard subgroup
membership assumption [4] holds.

For a distribution D, we write d ←↩ D to refer to d being sampled from D
and b

$←− B if b is sampled uniformly in the set B. We use negl(λ) (resp. exp(λ))
to represent a negligible (resp. exponential) function in λ. We denote ordG(g) as
the order of g ∈ G. We denote εs and εd as the parameter for soundness error
and statistical distance respectively.

2.1 Groups

We define some group generation algorithms as in [4]:

– On input a security parameter 1λ, the GGenECC algorithm generates a cyclic
group Ĝ with prime order q and P̂ is a generator of Ĝ. It outputs GECC =
(Ĝ, q, P̂ ).

– On input a security parameter 1λ and a prime number q, the GGenHSM

algorithm outputs GHSM = (s̃, g, f, gq, G̃, G, F,G
q).

The set (G̃, ·) is a finite abelian group of order q · ŝ, where the length of ŝ is a
function of λ and gcd(q, ŝ) = 1. The value s̃ is the upper bound of ŝ. One can
decide if an element is in G̃ in polynomial time. The set (F, ·) is the unique
cyclic subgroup of G̃ of order q, generated by f . The group Gq := {xq, x ∈ G}
is the subgroup of order s of G, generated by gq. The set (G, ·) is a cyclic

subgroup of G̃ of order q · s, where s divides ŝ. By construction F ⊂ G, it
holds that G = Gq × F and g := f · gq is the generator of G. The discrete
logarithm problem in F can be solved by a polynomial time algorithm Solve:

x← SolveGHSM,q(f
x), ∀x $←− Zq.

We drop the subscript for Solve when the context is clear. For simplicity, we
will call this group the HSM group.

5 These are the most popular types of threshold signatures in Bitcoin’s P2SH
transactions as shown in https://txstats.com/dashboard/db/p2sh-repartition-by-
type?orgId=1. Hence we use these 3 settings for comparison in this paper.
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Class groups of imaginary quadratic order. The HSM group can be in-
stantiated by class groups of imaginary quadratic order.

The GGenHSM algorithm picks a random prime q̃ such that qq̃ ≡ 1 (mod
4) and (q/q̃) = −1. It computes ∆K = −qq̃,∆q = q2∆K . Denote G̃ as the
class group Cl(∆q), whose order is h(∆q) = q · h(∆K). It computes s̃ :=⌈
1
π log |∆K |

√
|∆K |

⌉
such that h(∆K) < s̃.

It sets f = [(q2, q)] ∈ Cl(∆q) and F = 〈f〉. Let r be a small prime, with r 6= q
and (∆Kr ) = 1. It sets I as an ideal lying above r. Denote ϕ−1q as the surjection
defined in the Algorithm 1 of [6]. It computes gq = [ϕ−1q (I2)]q ∈ Cl(∆q) and
sets Gq = 〈gq〉. It computes g = f · gq and sets G = 〈g〉. It outputs GHSM =

(s̃, g, f, gq, G̃, G, F,G
q).

2.2 ECDSA

We review the ECDSA below.

Setup. On input a security parameter 1λ, it runs GECC ← GGenECC(1λ). It
outputs param = GECC. The input param is omitted for other algorithms for
simplicity.

KeyGen. It picks a random secret key x
$←− Zq and computes a public key Q̂ = P̂ x.

It returns (Q̂, x).

Sign. On input a message m, it picks k
$←− Zq. It computes R̂ = (rx, ry) = P̂ k,

r = rx mod q and s = k−1(xr +H(m)) mod q. It outputs the signature (r, s).

Verify. On input a public key Q̂, a message m and a signature (r, s), it computes
R̂ = (rx, ry) = (Q̂rP̂H(m))1/s. It outputs 1 if r = rx mod q. Otherwise, it outputs
0.

2.3 CL Encryption from HSM Group

Castagnos and Laguillaumie [7] introduced a framework of a group with an easy
DL subgroup. We review the additive homomorphic CL encryption algorithm
instantiated from class groups of quadratic fields [4].

Setup. On input a security parameter 1λ and a prime q, it runs GHSM ←
GGenHSM,q(1

λ). It parses GHSM = (s̃, g, f, gq, G̃, G, F,G
q). Define S = s̃ · 2εd

for some statistical distance εd. It outputs param = GHSM. The input param is
omitted for other algorithms for simplicity.

KeyGen. It picks a random sk
$←− [0, S] and computes pk = gskq . It returns (sk, pk).

Encrypt. On input a public key pk and a message m, it picks a random ρ
$←− [0, S]

and outputs the ciphertext C = (C1, C2), where:

C1 = fmpkρ, C2 = gρq .

Decrypt. On input a secret key sk and a ciphertext C = (C1, C2), it computes
M = C1/C

sk
2 and returns m← Solve(M).

7



EvalScal. On input a public key pk, a ciphertext C = (C1, C2) and a scalar s, it
outputs C ′ = (C ′1 = Cs1 , C

′
2 = Cs2).

EvalSum. On input a public key pk, two ciphertexts C = (C1, C2) and C ′ =
(C ′1, C

′
2), it outputs Ĉ = (Ĉ1 = C1C

′
1, Ĉ2 = C2C

′
2).

3 Generic Group Model for HSM Group

We use the generic group model for groups of unknown order [8] together with
groups of known order to model the HSM group.

A group G = G1 × G2 is parameterized by three integer public parameters
q, A,B such that the order of G1 is sampled uniformly from [A,B] and the
order of G2 is q. The group G is defined by a random injective function σ :
Z|G1|×q → {0, 1}`. for some ` where 2` � |G1| × q. The group elements are
σ(0), σ(1), . . . , σ(|G1| × q − 1). We further define a function π(a, b) = qa+ b for
a ∈ Z|G1| and b ∈ Zq.

A generic group algorithm A is a probabilistic algorithm. Let L = L0 ∪ L1

be a list that is initialized with the encodings. A is given (q,L) as input. The
algorithm can query two generic group oracles:

– O1 takes a bit b′. If b′ = 0, it samples a random a ∈ Z|G1|, b ∈ Zq and
returns σ(π(a, b)). It is appended to the list of encodings L0. If b′ = 1, it
samples a random b ∈ Zq and returns σ(π(0, b))6. It is appended to the list
of encodings L1.

– When L has size q̃, the second oracle O2(i, j,±) takes two indices i, j ∈ [1, q̃]
and a sign bit, and returns σ(π(ai ± aj mod |G1|, bi ± bj mod q), which is
appended to L1 if ai ± aj 6= 0 mod |G1|. Otherwise, it is appended to L0.

For the group GHSM, this model treats the output of O1(1) as the elements
in F and the output of O1(0) as the elements in G. The generator gq in Gq

is initialized as σ(π(a, 0)) for some random a. Given the output of O1(0), it
is difficult to distinguish if it is in Gq or not. Suppose that f is initialized as
σ(π(0, b∗)) for some b∗ ∈ Zq. The Solve algorithm for input f̃ ∈ F can be

modelled by finding the encoding of f̃ in L1 as σ(π(0, b̃)) for some b̃ ∈ Zq and

returning b̃/b∗ mod q.

Lemma 1 (Element Representation [16]). Let G be a generic group and
A be a generic algorithm making q1 queries to O1 and q2 queries to O2. Let
{g1, . . . , gm} be the outputs of O1. There is an efficient algorithm Ext that given
as input the transcript of A’s interaction with the generic group oracles, produces
for every element u ∈ G that A outputs, a tuple (α1, . . . , αm) ∈ Zm such that
u =

∏m
i=1 g

αi
i and αi ≤ 2q2 .

6 The random encoding for DL-easy subgroup is necessary, since the adversary may
obtain some g′ = σ(π(a1, b1)) and f ′ = σ(π(0, b2)) from O1. The adversary can
obtain g′ · f ′ or (g′)2/f ′ from O2. The encodings b1 and b2 ensure that the value in
the DL-easy subgroup is always correct even when the computation involves elements
in G1.

8



Lemma 2 (Subgroup Element Representation). Let G be a generic group
and A be a generic algorithm making q1 queries to O1 and q2 queries to O2. Let
{g1, . . . , gm0} be the outputs of O1(0). There is an efficient algorithm Ext that
given as input the transcript of A’s interaction with the generic group oracles,
produces for every element u ∈ G that A outputs, a tuple (α1, . . . , αm0

) ∈ Zm
and γ ∈ Zq such that u = fγ ·

∏m0

i=1 g
αi
i and αi ≤ 2q2 .

Proof. Suppose that there is an algorithm A of this lemma and we will show
how to build the extractor Ext. Ext first runs as an algorithm A′ in the Lemma 1.
A′ is given initial encodings from its challenger and forwards them to A. When
A makes an oracle query, A′ forwards them to its challenger to get the answer.
Finally, A outputs an element u ∈ G. A′ forwards u to its challenger. By Lemma
1, there exists an extractor Ext’ that outputs, a tuple (α1, . . . , αm) ∈ Zm such
that u =

∏m
i=1 g

αi
i and {g1, . . . , gm} are the outputs of O1. W.l.o.g., assume that

(g1, . . . , gm0
) are the outputs of O1(0) and (gm0+1, . . . , gm) are the outputs of

O1(1). Ext can compute βi = logf gi ∈ Zq for i ∈ [m0 + 1,m] by running the
Solve algorithm. Hence, Ext can compute γ =

∑m
i=m0+1 βiαi mod q and can

output (α1, . . . , αm0
, γ) such that u = fγ ·

∏m0

i=1 g
αi
i and αi ≤ 2q2 . ut

Lemma 3 (Subgroup Hidden Order). Let G = G1 ×G2 be a generic group
where |G1| is a uniformly chosen integer in [A,B]. Let A be a generic algorithm
making q1 queries to O1(0) and q2 queries to O2. The probability that A succeeds
in computing 0 6= k ∈ N such that for a g which is a response to an O1(0) query

gk = 1 is at most (q1+q2)
3

M , where 1/M is negligible whenever |B −A| = exp(λ).

It follows from the Lemma 3 of [1]. If there is an A succeeds in this lemma,
it is easy to build an algorithm A′ which succeeds in the Lemma 3 of [1].

Lemma 4 (Subgroup Discrete Logarithm). Let G = G1 ×G2 be a generic
group where |G1| is a uniformly chosen integer in [A,B] and 1/A and 1/|B −
A| are negligible in λ. Let A be a polynomial time generic algorithm and let
{g1, . . . , gm0

} be the outputs of O1(0). The probability that A succeeds in out-
putting α1, . . . , αm0

, β1, . . . , βm0
∈ Z and γ, δ ∈ Zq, such that fγ

∏m0

i=1 g
αi
i =

fδ
∏m0

i=1 g
βi
i ∈ G, αi 6= βi and γ 6= δ mod q, is negligible.

Proof. By Lemma 2, every group element u in G that the adversary obtains
from the O2 query can be written as u = fγ

∏m0

i=1 g
αi
i for some known αi ∈ Z,

γ ∈ Zq. Let h = fδ
∏m0

i=1 g
βi
i be another such a group element.

If there is some i ∈ [1,m0] for which αi 6≡ βi mod ordG(gi) or γ 6≡ δ mod q,

then the probability that u = h is at most (q1+q2)
2

A as shown in [8]. Therefore

when fγ
∏m0

i=1 g
αi
i = fδ

∏m0

i=1 g
βi
i , then αi ≡ βi mod ordG(gi) and γ ≡ δ mod q

with non-negligible probability if 1/A is negligible.

If αi ≡ βi mod ordG(gi), we have either αi = βi or αi = βi + K·ordG(gi)
for some integer K. By Lemma 3, αi = βi with overwhelming probability (1 −
(q1+q2)

3

M , where 1/M is negligible whenever |B −A| = exp(λ)). ut
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3.1 Assumptions

Let D (resp. Dq) be a distribution over the integers such that the distribution

{gx, x $←− D} (resp. {gxq , x
$←− Dq}) is at a distance less than 2λ from the uniform

distribution in G (resp. Gq).

Hard Subgroup Membership Assumption. The hard subgroup membership
assumption for the group GHSM means that it is hard to distinguish the elements
of Gq in G. It means that for every polynomial time algorithm A:∣∣∣∣∣∣Pr

 b = b∗

∣∣∣∣∣∣
GHSM ← GGenHSM,q(1

λ), x←↩ D, x′ ←↩ Dq,
b

$←− {0, 1}, Z0 = gx, Z1 = gx
′

q ,
b∗ ← A(GHSM, Zb,Solve(·))

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

Adaptive Root Subgroup Assumption. We define the adaptive root sub-
group assumption, which is the modification of the adaptive root assumption [1]
in the group GHSM. We denote Primes(λ) as the set of odd primes less than 2λ.

The adaptive root subgroup assumption holds for the group GHSM if for all
polynomial time algorithms (A0,A1):

Pr

[
u` = w,
wq 6= 1

∣∣∣∣∣ q > 2λ,GHSM ← GGenHSM,q(1
λ), (w, state)← A0(GHSM),

`
$←− Primes(λ), u← A1(`, state)

]
≤ negl(λ).

The next two corollaries show that the adaptive root subgroup problem and
the non-trivial order element problem are intractable in a generic group model.

Corollary 1. (Adaptive Root Subgroup Hardness). Let G ∈ GHSM be a generic
group where |Gq| is a uniformly chosen integer in [A,B] such that 1/A and
1/|B−A| are negligible in λ. Any generic adversary A that performs a polynomial
number of queries to oracle O2 succeeds in breaking the adaptive root subgroup
assumption on GHSM with at most negligible probability in λ.

Proof. Recall that the adversary outputs u,w ∈ G for a challenge ` such that
u` = w and wq 6= 1. According to Lemma 2, we can write u = fγ

∏m
i=1 g

αi
i and

w = fδ
∏m
i=1 g

βi
i , where {g1, . . . , gm} is the outputs of O1(0). Since wq 6= 1, there

exists some i∗ ∈ [1,m] such that βi∗ 6= 0.
According to Lemma 4, we know that αi∗` = βi∗ mod ordG(gi∗) with over-

whelming probability 1 − ε. Hence, αi∗` = βi∗ + k·ordG(gi∗) for some k ∈ Z.
According to Lemma 3, an efficient adversary can compute a multiple of the or-
der of the group Gq with at most negligible probability ε′. It follows that k = 0
and αi∗` = βi∗ with probability greater than 1 − ε − ε′ Hence, ` must divides
βi∗ . However, βi∗ is chosen before ` and if A makes q2 generic group queries
then βi∗ ≤ 2q2 . The probability that ` divides βi∗ is bounded by the probability
that a random prime in Primes(λ) divides a number less than 2q2 . Any such a
number has less than q2 distinct prime factors and there are more than 2λ/λ
primes in Primes(λ). Therefore, the probability that ` divides βi∗ is at most q2λ

2λ
.

10



Overall, we obtain that a generic adversary can break the adaptive root sub-

group assumption with probability at most (q1+q2)
2

A + 2(q1+q2)
3

M + q2λ
2λ

, which is
negligible if 1/A and 1/|B − A| are negligible in λ and q1, q2 are bounded by
some polynomials in λ. ut

Corollary 2. (Non-trivial order hardness). Let G ∈ GHSM be a generic group
where |Gq| is a uniformly chosen integer in [A,B] such that 1/A and 1/|B −A|
are negligible in λ. Any generic adversary A that performs a polynomial number
of queries to oracle O2 succeeds in finding an element h 6= 1 ∈ G and a positive
integer d such that hd = 1 and d < q with at most negligible probability in λ.7

Proof. Suppose that B an adaptive root adversary that is given G from its chal-
lenger. B gives G to A. When A makes an oracle query, B forwards it to its
challenger. A returns h and d to B.

We claim that hq 6= 1. Assume that on the contrary hq = 1. We have 0 <
d < q, hd = 1. Denote that q′ = q mod d. Then hq

′
= 1 and 0 < q′ < d. Since q

is prime and 0 < d < q, gcd(d, q) = 1. By the Euclidean algorithm, we can apply
the same computation recursively until we get h1 = 1, which is a contradiction.
Hence hq 6= 1.

Since hq 6= 1, B sends h to its challenger and receives a prime `. With non-
negligible probability, ` is relative prime to d. If so, B computes c = `−1 mod d.
B returns hc = h1/` to its challenger. Since the adaptive root assumption holds
in the generic group model, A succeeds with negligible probability. ut

4 ZK Proofs for HSM Group with Trustless Setup

In this section, we will give two different ZK proofs for HSM groups. The defi-
nition of an argument system is given in the Appendix A.1.

4.1 Argument of Knowledge for Exponentiation

We first construct an argument of knowledge for the following relation about
exponentiation within a group G with order q subgroup F :

RExpS = {w ∈ G;x ∈ Z : w = gx 6= 1},

where g and G are the parameters in the CRS GHSM. The ZK proof is given in
Algorithm 3.

Lemma 5. Protocol PoKES is an argument of knowledge of RExpS in the generic
group model.

Proof. We describe the extractor Ext:

1. W.l.o.g. let g1 = g be encoded in the CRS.

7 Non-trivial order hardness is similar to the low order assumption in [5], except that
their assumption did not rule out the trivial attack that fq = 1.

11



Algorithm 3: Protocol PoKES for the relation RExpS

Param: GHSM ← GGenHSM,q(1
λ), g ∈ G \ F

Input: w ∈ G
Witness: x ∈ Z

1 Prover finds d ∈ Z and e ∈ [0, q− 1] s.t. x = dq+ e. Prover sends D = gd and e
to the verifier.

2 If e ∈ [0, q − 1] and Dqge = w, verifier sends `
$←− Primes(λ).

3 Prover finds q′ ∈ Z and r ∈ [0, `− 1] s.t. x = q′`+ r. Prover sends Q = gq
′

and
r to the verifier.

4 Verifier accepts if r ∈ [0, `− 1] and Q`gr = w.

2. Run A0 to get output (w, state).
3. Let L ← {}.
4. Run Protocol PoKES with A1 on input (w, state), sampling fresh randomness

for the verifier. If the transcript (D, e, `,Q, r) is accepting set L ← L∪{(r, `)},
and otherwise repeat this step.

5. Use the CRT algorithm to compute x such that x = ri mod `i for each
(ri, `i) ∈ L. If gx = w, output x and stop. Otherwise, return to Step 4.

It remains to argue that Ext succeeds with overwhelming probability in a
poly(λ) number of rounds. Suppose that after some polynomial number of rounds
the extractor has obtained M accepting transcripts {D, e, `i, Qi, ri} for indepen-
dent values of `i ∈ Primes(λ).

Consider an accepting transcripts (D, e, `1, Q1, r1) such that w = Q`11 g
r1 =

Dqge. By Lemma 2, we can write Q1 = fγ
∏m
i=1 g

αi
i

8, and D = fν
∏m
i=1 g

µi
i .

Hence:

Q`11 g
r1 = fγ`1gr1

m∏
i=1

gαi`1i = fγ`1gα1`1+r1

m∏
i=2

gαi`1i

=Dqge = fνqge
m∏
i=1

gµiqi = gµ1q+e
m∏
i=2

gµiqi

By Lemma 4, γ`1 = 0 mod q. Also, αi`1 = µiq for all i ∈ [2,m] with probability
1 - ε. Therefore `1 divides µiq. Since `1 6= q, then `1 divides µi since `1 and q are
relatively prime. However, µi ≤ 2q2 and µi is chosen before `1 is sampled. Hence
the probability that `1 divides some non-zero µi is at most q2λ ln 2

2λ
. We conclude

that αi = µi = 0 for i ∈ [2,m] with probability 1 - ε − q2λ ln 2
2λ

. Hence, we can

express w = gα1`1+r1 for some integers α1, r1.
By the argument above, with overwhelming probability there exists x ∈ Z

such that x = ri mod `i and gx = w and x < 2q2 . Hence, the CRT algorithm
used in Step 5 will recover the required x once |L| > q2.

8 Since g = g1, if Q1 is computed from f, gi and w = gx = gx1 , we can write Q1 =
fγ

∏m
i=1 g

αi
i .
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Algorithm 4: Protocol ZKPoKRepS for the relation RRepS

Param: GHSM ← GGenHSM,q(1
λ), g1, . . . , gn ∈ G \ F , B = n2λ+εd+1|G| where

εd = 80.
Input: w ∈ G.
Witness: x = (x1, . . . , xn) ∈ Zn.

1 Prover chooses k1, . . . , kn
$←− [−B,B], t

$←− Zq and sends R =
∏n
i=1 g

ki
i to the

verifier.

2 Verifier sends c
$←− [0, q − 1] to the prover.

3 Prover computes si = ki + cxi for i ∈ [1, n]. Prover finds di ∈ Z, ei ∈ [0, q − 1]

s.t. si = diq + ei and sends D =
∏n
i=1 g

di
i and e = (e1, . . . , en) to the verifier.

4 If e1, . . . , en ∈ [0, q − 1] and Dq∏n
i=1 g

ei
i = Rwc, verifier sends `

$←− Primes(λ).
5 Prover finds qi ∈ Z and ri ∈ [0, `− 1] s.t. si = qi`+ ri for i ∈ [1, n]. Prover

sends Q =
∏n
i=1 g

qi
i and r = (r1, . . . , rn) to the verifier.

6 Verifier accepts if r1, . . . , rn ∈ [0, `− 1] and Q`
∏n
i=1 g

ri
i = Rwc.

Since a single round of interaction with A1 results in an accepting transcript
with probability ε ≥ 1/poly(λ), in expectation the extractor obtains |L| > q2
accepting transcripts for independent primes `i after q2 · poly(λ) rounds. Hence,
Ext outputs x such that gx = w in expected polynomial time, as required. ut

Note that there are more than 2λ/λ primes in Primes(λ) and it can be instan-
tiated by a hash to prime function [1]. The soundness error is about 1/2λ−log2 λ

if ` is λ bits.

4.2 ZK Proof for Multi-exponentiation

We now construct an argument of knowledge for the following relation:

RRepS = {w ∈ G;x ∈ Zn : w =

n∏
i=1

gxii },

where g1, . . . , gn ∈ G\F are in the CRS GHSM. The ZK proof is given in Algorithm
4.

Theorem 1. Protocol ZKPoKRepS is an argument of knowledge for RRepS in
the generic group model.

Proof. We describe the extractor Ext:

1. Run A0 to get output (w, state).
2. Let L ← {}. Run Step 1 of Protocol ZKPoKRepS with A1 on input (w, state).
3. Run Step 2-3 of Protocol ZKPoKRepS with A1, sampling fresh randomness
c for the verifier.

4. Run Step 4-5 of Protocol ZKPoKRepS with A1, sampling fresh randomness
` for the verifier. If the transcript (R, c, z,D, e, `, Q, r) is accepting, set L ←
L ∪ {(r, `)}, and otherwise repeat this step.
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5. Use the CRT algorithm to compute s = (s1, . . . , sn) such that s = ri mod
`i for each (ri, `i) ∈ L. If

∏n
i=1 g

si
i 6= Rwc, return to Step 4.

6. Consider the intermediate transcript as (R, c,D, e, s). Run from Step 4 for
the second time and obtain (R, c′, D′, e′, s′).

7. Compute ∆si = si−s′i for i ∈ [1, n] and ∆c = c−c′. Output x = (x1, . . . , xn)
for xi = ∆si/∆c.

Analysis for Step 5. This is a generalization of the protocol PoKES. We first
argue that

∏n
i=1 g

si
i = Rwc with overwhelming probability in a poly(λ) number

of rounds. Suppose that after some polynomial number of rounds the extrac-
tor has obtained M accepting transcripts {R, c,D, e, `i, Qi, ri} for independent
values of `i ∈ Primes(λ).

Consider an accepting transcripts (R, c,D, e = (e1, . . . , en), `1, Q1, r1 = (r1,1,

. . . , r1,n)) such that Rwc = Q`11
∏n
i=1 g

r1,i
i = Dq

∏n
i=1 g

ei
i . By Lemma 2, we can

write Q1 =
∏m
i=1 g

αi
i · fγ and D =

∏m
i=1 g

βi
i · fδ. Hence:

Q`11

n∏
i=1

g
r1,i
i =

n∏
i=1

g
αi`1+r1,i
i

m∏
i=n+1

gαi`1i · fγ`1 = Dq
n∏
i=1

geii

=

n∏
i=1

gβiq+eii

m∏
i=n+1

gβiqi · fδq =

n∏
i=1

gβiq+eii

m∏
i=n+1

gβiqi .

By Lemma 4, αi`1 = βiq for all i ∈ [n + 1,m] with overwhelming probability.
Therefore `1 divides βiq. Since `1 6= q, `1 and q are relatively prime and `1
divides βi. However, βi ≤ 2q2 and βi are chosen before `1 is sampled. Hence the
probability that `1 divides some non-zero βi is at most q2λ ln 2

2λ
. We conclude that

with overwhelming probability αi = βi = 0 for i ∈ [n+ 1,m]. Also by Lemma 4,

γ`1 = 0 mod q. Hence, we can express Rwc =
∏n
i=1 g

αi`1+r1,i
i for some integers

αi, r1,i.

By the argument above, with overwhelming probability there exists s ∈ Zn
such that s = ri mod `i, si < 2q2 for all si ∈ s and

∏n
i=1 g

si
i = Rwc. Hence, the

CRT algorithm used in Step 5 will recover the required vector s once |L| > q2.
Since a single round of interaction with A1 results in an accepting transcript
with probability ε ≥ 1/poly(λ), in expectation the extractor obtains |L| > q2
accepting transcripts for independent primes `i after q2 · poly(λ) rounds. Hence,
Ext outputs s such that

∏n
i=1 g

si
i = Rwc in expected polynomial time.

Analysis for Step 7. It remains to argue that Ext succeeds with overwhelming
probability in Step 7. W.l.o.g., assume that c > c′, by Step 6, we have

∏n
i=1 g

si
i ·

w−c =
∏n
i=1 g

s′i
i · w−c

′
. Then

∏n
i=1 g

∆si
i = w∆c = (

∏m
i=1 g

α′i
i · fγ

′
)∆c for some

α′i ∈ Z and γ′ ∈ Zq by Lemma 2. By Lemma 4, ∆si = α′i∆c for i ∈ [1, n],
α′i = 0 for i ∈ [n + 1,m] and γ′ = 0 mod q with overwhelming probability. If

µ =
∏n
i=1 g

∆si/∆c
i 6= w, then µ∆c = w∆c . It follows that µ/w is an element of

order 1 < ∆c < q. By Corollary 2, the probability of finding a non-trivial order
of µ/w 6= 1 is negligible. Hence, µ = w with overwhelming probability. It implies
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that ∆si/∆c ∈ Z for all i. Hence, the witness x = (x1, . . . , xn) can be extracted
as in Step 7. ut

Theorem 2. The protocol ZKPoKRepS is an honest-verifier statistically zero-
knowledge argument of knowledge for relation RRepS in the generic group model.

Proof. The simulator Sim picks a random challenge c′
$←− [0, q − 1] and `′

$←−
Primes(λ). It picks random q′1, . . . , q

′
n,

$←− [0, B − 1], r′1, . . . , r
′
n

$←− [0, ` − 1]. It
finds d′i ∈ Z and e′i ∈ [0, q − 1] such that d′iq + e′i = q′i`

′ + r′i. It computes:

Q′ =

n∏
i=1

g
q′i
i , D′ =

n∏
i=1

g
d′i
i , R′ = D′

q
n∏
i=1

g
e′i
i · w

−c′ .

We argue that the transcript (R′, c′, (D′, e′ = (e′1, . . . , e
′
n)), `′, (Q′, r′ = (r′1, . . .,

r′n))) is indistinguishable from a real transcript between a prover and a veri-
fier. Sim chooses `′, c′ identically to the honest verifier. It also solves R′, D′, e′

uniquely from the other values such that the verification holds.
We must show that in the real protocol, independent of ` and c, the values

in r have a negligible statistical distance from the uniform distribution over
[0, `− 1] and each gqii has a negligible statistical distance from uniform over G.
In addition we must argue that Q and r are independent. For this we use the
following facts, which are easy to verify:

1. Fact 1: If Z is a uniform random variable over N consecutive integers and
m < N , then Z mod m has a statistical distance at most m/N from the
uniform distribution over [0,m− 1].

2. Fact 2: For independent random variables X1, X2, Y1, Y2, the distance be-
tween the joint distributions (X1, X2) and (Y1, Y2) is at most the sum of
statistical distances of X1 from Y1 and X2 from Y2. Similarly, if these vari-
ables are group elements in G, the statistical distance between X1 ·X2 and
Y1 · Y2 is no greater than the sum of statistical distances of X1 from Y1 and
X2 from Y2.

3. Fact 3: Consider random variables X1, X2, Y1, Y2 with statistical distances
s1 = ∆(X1, Y1) and s2 = ∆(X2, Y2), where Pr(X1 = a|X2 = b) < Pr(X1 =
a) + ε1 and Pr(Y1 = a|Y2 = b) < Pr(Y1 = a) + ε2 for all values a, b. Then the
joint distributions (X1, X2) and (Y1, Y2) have a statistical distance at most
s1 + s2 + ε1|supp(X2)|+ ε2|supp(Y2)|, where supp is the support.

Consider fixed values of c, x1, . . . , xn and `. In the real protocol, the prover
computes si = ki + cxi, where ki is uniform in [−B,B] and t is uniform in Zq,
and sets ri = si mod `. By Fact 1, the value of si is distributed uniformly over
a range of 2B+ 1 consecutive integers, thus ri has a statistical distance at most
`/(2B + 1) from uniform over [0, ` − 1]. This bounds the distance between the
real ri and the simulated r′i, which is uniform over [0, `− 1].

Next, we show that each gqii is statistically indistinguishable from uniform
in the subgroup generated by gi (denoted as Gi). The distribution of gqii over
Gi is determined by the distribution of qi mod |Gi|. Consider the distribution
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of qi =
⌊
si
`

⌋
over the consecutive integers in [

⌊
cxi−B
`

⌋
,
⌊
cxi+B
`

⌋
]. Denote this

by the random variable Z. The probability that qi = z is the probability that
si falls in the interval [z`, (z + 1)` − 1]. Hence Pr[qi = z] = `/(2B + 1) for all
z ∈ Z if z` ≥ cxi −B and (z + 1)`− 1 ≤ cxi +B. This probability may or may
not hold for the two endpoints E1 =

⌊
cxi−B
`

⌋
and E2 =

⌊
cxi+B
`

⌋
. Denote Y as

the set of points with Pr[qi = z] = `/(2B + 1) only. The distance of qi from a
uniform random variable UY over Y is largest when the number of possible si
mapping to E1 and E2 are both `−1, i.e., cxi−B = 1 mod ` and cxi+B = `−2
mod `. In this case, qi is one of the two endpoints outside Y with probability
2(`−1)
2B+1 . As |Y | = 2B+3

` − 3, the statistical distance of qi from UY is at most
1
2 (|Y |( 1

|Y | −
`

2B+1 )+ 2(`−1)
2B+1 ) = 5`−4

2(2B+1) ≤
2λ+1

B . Moreover, the statistical distance

of qi mod |Gi| from UY mod |Gi| is no larger.

By Fact 1, UY mod |Gi| has a statistical distance at most |Gi||Y | ≤
2λ|G|

2B+3−3·2λ <

2λ−1|G|
B+1−2λ . By the triangle inequality, the statistical distance of qi mod |Gi| from

uniform is at most 2λ+1

B + 2λ−1|G|
B+1−2λ . This also bounds the distance of gqii from

uniform in Gi. The simulated value q′i is uniformly chosen from a set of size B.
Again by Fact 1, if |Gi| < B, then q′i mod |Gi| has a distance |Gi|/B ≤ |G|/B
from uniform. The simulated value g

q′i
i has a distance at most |G|/B from uniform

in Gi. By the triangle inequality, the statistical distance of gqii and g
q′i
i is at most:

2λ+1

B
+

2λ−1|G|
B + 1− 2λ

+
|G|
B

<
2λ−1|G|+ |G|+ 2λ+1

B + 1− 2λ

=
(2λ−1 + 1)|G|+ 2λ+1

B + 1− 2λ
≤ 1

n2εd+1
,

if B ≥ n2εd+1(2λ−1 + 1)|G|+n2εd+λ+2 + 2λ− 1 for some distance parameter εd.

Finally, we consider the joint distribution of gqii and ri. Consider the condi-
tional distribution of qi|ri. Note that qi = z if (si−ri)/` = z. We repeat a similar
argument as above for bounding the distribution of qi from uniform. For each
possible value of z, there always exists a unique value of si such that

⌊
si
`

⌋
= z

and si = 0 mod `, except possibly at the two endpoints E1, E2 of the range of
qi. When ri disqualifies the two points E1 and E2, then each of the remaining
points z /∈ {E1, E2} still has an equal probability mass, and thus the probability
Pr(qi = z|ri) increases by at most 1

|Y | −
`

2B+1 . The same applies to the variable

qi|ri mod |Gi| and hence the variable gqi |ri.
We can compare the joint distribution Xi = (gqii , ri) to the simulated dis-

tribution Yi = (g
q′i
i , r

′
i) using Fact 3. Setting ε1 = 1

|Y | −
`

2B+1 and ε2 = 0, the

distance between these joint distributions is at most 1
n2λ

+ `
2B+1 + ε1` = 1

n2λ
+

`2

2B+3−3` + `(1−`)
2B+1 . Moreover, as each Xi is independent from Xj for i 6= j, we use

Fact 2 to bound the distance between joint distributions (gq11 , . . . , g
qn
n , r1, . . . , rn)

and (g
q′1
1 , . . . , g

q′n
n , r′1, . . . , r

′
n) by the sum of individual distances between each Xi
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Table 1: Comparison of ZK Proofs of DL relation in HSM group for x ∈ [0, s̃·280].
Communication Size (Bytes)

Remark
λ = 112 λ = 128 λ = 192 λ = 256

CCL+19 [4] 21930 29120 55700 91300

CCL+20 [5] (lcm trick) 2211 2930 5588 9148 Modified relation

This paper 591 771 1467 2389 Generic group model

and Yi, which is at most:

1

2εd+1
+

n`2

2B + 3− 3`
+
n`(1− `)
2B + 1

=
1

2εd+1
+
n`(2B + 3− 5`− 3`2)

(2B + 3− 3`)(2B + 1)

<
1

2εd+1
+

n`

2B + 1
<

1

2εd
,

where the last equality holds if B > n2εd+λ−1. Finally, this also bounds the dis-

tance between (Q, r) and (Q′, r′), where Q =
∏
i g
qi
i and Q′ =

∏
i g
q′i
i . Combining

the two requirements on B, we can simplify the requirement as B ≥ n2λ+εd+1|G|.
ut

Comparison. We compare our scheme with the similar ZK proofs for DL rela-
tion in HSM group in [4] and [5]. However, there are some minor differences for
the relation to be proven. In our case, we prove the knowledge of x = logg1 w for
some g1 ∈ G \ F and x ∈ Z. In the other two schemes, g1 ∈ Gq and the range
of x is restricted to x ∈ [0, S] (where S = s̃ · 240 in [5] and S = s̃ · 2λ−2 in [4]).
More importantly, the ZK proof in [5] only proves the knowledge of x such that
hy = gx1 for some public value y. The relation proved is slightly modified. On
the other hand, our proof uses the generic group model. We note that there are
some ZK proofs for class group [1] using the generic group model as well.

We compare these schemes in Table 1 by setting g1 ∈ Gq ⊂ G \ F and
fixing the range S as s̃ · 280. We use 2−80 for statistical distance and soundness
error for fair comparison. In our scheme, we can set B = 2λ+81s̃, where s̃ :=⌈
1
π log |∆K |

√
|∆K |

⌉
. Note that the communication size of our scheme does not

change much for soundness error εs < λ − log λ (only the size of ` and r are
affected).

4.3 ZK Proof for the well-formedness of a CL ciphertext

Consider a prover honestly generated his public key pk and encrypted a message
m ∈ Zq using a randomness ρ ∈ [0, S]. We present a zero-knowledge proof of
knowledge of the following relation:

REnc = {(pk, C1, C2); (m, ρ)|pk ∈ Gq, ρ ∈ [0, S] : C1 = fmpkρ ∧ C2 = gρq}.

For the relation REnc, we cannot apply the protocol ZKPoKRepS directly
since f ∈ F . We propose a new ZK proof ZKPoKEnc for REnc in Algorithm 5.
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Algorithm 5: Protocol ZKPoKEnc for the relation REnc

Param: GHSM ← GGenHSM,q(1
λ), B = 2λ+εd+2s̃, where εd = 80.

Input: C1, C2, pk ∈ Gq.
Witness: ρ ∈ [0, S],m ∈ Zq, where S = s̃ · 2εd .

1 Prover chooses sρ
$←− [−B,B], sm

$←− Zq and computes:

S1 = pksρfsm , S2 = g
sρ
q .

Prover sends (S1, S2) to the verifier.

2 Verifier sends c
$←− [0, q − 1] to the prover.

3 Prover computes:

uρ = sρ + cρ, um = sm + cm mod q.

Prover finds dρ ∈ Z and eρ ∈ [0, q − 1] s.t. uρ = dρq + eρ. Prover computes:

D1 = pkdρ , D2 = g
dρ
q .

Prover sends (um, D1, D2, eρ) to the verifier.
4 The verifier checks if eρ ∈ [0, q − 1] and:

Dq
1pk

eρfum = S1C
c
1 , Dq

2g
eρ
q = S2C

c
2 .

If so, the verifier sends `
$←− Primes(λ).

5 Prover finds qρ ∈ Z and rρ ∈ [0, `− 1] s.t. uρ = qρ`+ rρ. Prover computes:

Q1 = pkqρ , Q2 = g
qρ
q .

Prover sends (Q1, Q2, rρ) to the verifier.
6 Verifier accepts if rρ ∈ [0, `− 1] and:

Q`1pk
rρfum = S1C

c
1 , Q`2g

rρ
q = S2C

c
2 .

Theorem 3. The protocol ZKPoKEnc is an argument of knowledge in the generic
group model.

Proof. We rewind the adversary on fresh challenges ` so that each accepting
transcript outputs an (rρ, `), where sρ = rρ mod ` with overwhelming proba-
bility.

If pksρ 6= S1C
c
1f
−um and (pksρ)q 6= (S1C

c
1f
−um)q, then we have:

pksρ 6= S1C
c
1f
−um = Q`1pk

rρ = Dq
1pk

eρ .

Let γρ =
rρ−sρ
` . Then Q1pk

γρ is an `-th root of (S1C
c
1f
−um)/pksρ 6= 1. This

would break the adaptive root subgroup assumption since (S1C
c
1f
−um)q/(pksρ)q 6=

1. If pksρ 6= S1C
c
1f
−um and (pksρ)q = (S1C

c
1f
−um)q, then S1C

c
1 = pksρfδ

′
for

some δ′ 6= um ∈ Zq. It is contradictory to S1C
c
1f
−um = Dq

1pk
eρ where pk ∈ Gq.
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Hence by Corollary 1 it follows that pksρfum = S1C
c
1 with overwhelming prob-

ability.
The extractor obtains a pair of accepting transcripts with (sρ, um, c) and

(s′ρ, u
′
m, c

′). The extractor can compute ∆sρ = sρ−s′ρ and ∆um = um−u′m mod

q. We denote ρ =
∆sρ
∆c

and m =
∆um
∆c

mod q. Hence we have:

C∆c1 = (pkρfm)∆c .

If C1 6= pkρfm, then pkρfm

C1
is a non-trivial element of order ∆c < q. It contradicts

the hardness of computing a non-trivial element and its order in the generic group
model (Corollary 2).

Note that our scheme includes a sub-protocol ZKPoKRepS on input C2 w.r.t.
bases gq ∈ G \ F . Since ZKPoKRepS is an argument of knowledge, there exists
an extractor to extract the same ρ such that C2 = gρq . Hence the extractor can
output (m, ρ, sk) such that C1 = pkρfm, C2 = gρq . ut

Theorem 4. The protocol ZKPoKEnc is an honest-verifier statistically zero-
knowledge argument of knowledge for relation REnc in the generic group model.

Proof. The simulator Sim randomly picks a challenge c′ ∈ [0, q− 1] and a prime
`′ ∈ Prime(λ). It picks a random u′m ∈ Zq, q′ρ ∈ [0, B − 1] and r′ρ ∈ [0, `′ − 1].

It finds d′ρ ∈ Z and e′ρ,∈ [0, q − 1] such that

d′ρq + e′ρ = q′ρ`
′ + r′ρ.

It computes:

D′1 = pkd
′
ρ , D′2 = g

d′ρ
q , Q′1 = pkq

′
ρ , Q′2 = g

q′ρ
q ,

S′1 = Q′1
`′
pkr

′
ρfu

′
mC−c

′

1 , S′2 = Q′2
`′
g
r′ρ
q C

−c′
2 .

We argue that the simulated transcript (S′1, S
′
2, c
′, u′m, D

′
1, D

′
2, e
′
ρ, `
′, Q′1, Q

′
2, r
′
ρ)

is indistinguishable from a real transcript (S1, S2, c, um, D1, D2, eρ, `, Q1, Q2, rρ)
between a prover and a verifier. Sim chooses (`′, c′) identically to the honest
verifier. Both um and u′m are uniformly distributed in Zq. (S′1, S

′
2, D

′
1, D

′
2, e
′
ρ) is

uniquely defined by the other values such that the verification holds.
For simulated transcript (Q′1, Q

′
2, r
′
ρ) and real transcript (Q1, Q2, rρ), the

same arguments as in the Theorem 2 apply. Namely, in the real protocol, inde-
pendent of ` and c, the values rρ has a negligible statistical distance from the
uniform distribution over [0, ` − 1] and each one of pkqρ , g

qρ
q has negligible sta-

tistical from uniform over Gk = 〈pk〉, Gq respectively. In addition, Q1, Q2 and
rρ are independent. Thus, the simulator produces statistically indistinguishable
transcripts. The complete proof is as follows.

Consider fixed values of c, ρ and `. In the real protocol, the prover computes
uρ = cρ + sρ where sρ is uniform in [−B,B] and sets rρ = uρ mod `. By Fact
1, the value of uρ is distributed uniformly over a range of 2B + 1 consecutive
integers, thus rρ has a statistical distance at most `/(2B+ 1) from uniform over
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[0, ` − 1]. This bounds the distance between the real rρ and the simulated r′ρ,
which is uniform over [0, `− 1].

Next, we show that g
qρ
q is statistically indistinguishable from uniform in Gq.

The distribution of g
qρ
q over Gq is determined by the distribution of qρ mod

|Gq|. Consider the distribution of qρ =
⌊uρ
`

⌋
over the consecutive integers in

[
⌊
cρ−B
`

⌋
,
⌊
cρ+B
`

⌋
] Denote this by the random variable Z. The probability that

qρ = z is the probability that uρ falls in the interval [z`, (z + 1)` − 1]. This
probability is `/(2B+1) for all points where z` ≥ cρ−B and (z+1)`−1 ≤ cρ+B,

which includes all points except possibly the two endpoints
⌊
cρ−B
`

⌋
and

⌊
cρ+B
`

⌋
.

Call this set of points Y . The distance of qρ from a uniform random variable UY
over Y is largest when cρ − B = 1 mod ` and cρ + B = ` − 2 mod `. In this

case, qρ is one of the two endpoints outside Y with probability 2(`−2)
2B+1 . For each

z ∈ Y , Pr[qρ = z] = `/(2B + 1). As |Y | = 2B+3
` − 3, the statistical distance of

qρ from UY is at most: 1
2 [Y ( 1

Y −
`

2B+1 ) + 2(`−1)
2B+1 ] = 5`−4

2(2B+1) ≤
2λ+1

B . Moreover,

the statistical distance of qρ mod |Gq| from UY mod |Gq| is no larger. By Fact

1, UY mod |Gq| has a statistical distance at most |G
q|
|Y | ≤

2λ|Gq|
2B+3−3·2λ <

2λ−1|Gq|
B+1−2λ .

By the triangle inequality, the statistical distance of qρ mod |Gq| from uniform

is at most 2λ+1

B + 2λ−1|Gq|
B+1−2λ . This also bounds the distance of g

qρ
q from uniform

in Gq. The simulated value q′ρ is uniformly chosen from a set of size B. Again
by Fact 1, if |Gq| < B, then q′ρ mod |Gq| has a distance |Gq|/B from uniform.

The simulated value g
q′ρ
q has a distance at most |Gq|/B from uniform in Gq.

By the triangle inequality, the statistical distance of g
qρ
q and g

q′ρ
q is at most

2λ+1

B + 2λ−1|Gq|
B+1−2λ + |Gq|

B < 1
2εd+2 , if B ≥ 2εd+2(2λ−1 + 1)|Gq| + 2λ+εd+3 + 2λ − 1.

Similarly, the same argument holds for the distances of pkqρ and pkq
′
ρ . By using

Fact 3, the distance between the joint distribution Xρ = (pkqρ , g
qρ
q ) and the

simulated distribution Yρ = (pkq
′
ρ , g

q′ρ
q ) is at most 1

2εd+1 .

Finally, we consider the joint distribution of (pkqρ , g
qρ
q ) and rρ. Consider the

conditional distribution of qρ|rρ. Note that qρ = z if (sρ − rρ)/` = z. We repeat
a similar argument as above for bounding the distribution of qρ from uniform.
For each possible value of z, there always exists a unique value of sρ such that⌊ sρ
`

⌋
= z and sρ = 0 mod `, except possibly at the two endpoints E1, E2 of the

range of qρ. When rρ disqualifies the two points E1 and E2, then each of the
remaining points z /∈ {E1, E2} still have equal probability mass, and thus the
probability Pr(qρ = z|rρ) increases by at most 1

|Y | −
`

2B+1 . The same applies to

the variable (pkqρ , g
qρ
q )|rρ.

We can compare the joint distribution Xρ = (pkqρ , g
qρ
q , rρ) to the simulated

distribution Yρ = (pkq
′
ρ , g

q′ρ
q , r′ρ) using Fact 3. Setting ε1 = 1

|Y |−
`

2B+1 and ε2 = 0,

the distance between these joint distributions is at most 1
2εd+1 + `

2B+1 + ε1` =
1

2εd+1 + `2

2B+3−3`+
`(1−`)
2B+1 < 1

2εd , where the last equality holds if B > 2λ+εd+2λ+1−
1. This bounds the distance between (Q1, Q2, rρ) and (Q′1, Q

′
2, r
′
ρ). Combining
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Table 2: Comparison of communication size for ZK proof of the well-formedness
of CL ciphertext.

Communication Size (Bytes)
Additional Requirement

λ = 112 λ = 128 λ = 192 λ = 256

CCL+19 [4] 37970 49950 95520 156130 ×
CCL+20 [5] 495 645 1214 1972 Pick random gq ∈ Gq
This paper 1129 1488 2864 4692 pk ∈ Gq, generic group model

the two requirements on B, we can simplify the requirement as B ≥ 2λ+εd+2s̃.
ut

Comparison. We compare our scheme with the similar ZK proofs for the well-
formedness of CL ciphertext in [4] and [5] in Table 2. We use the statistical
distance 2−80 suggested for the CL encryption in [7]. We use the same statistical
distance and soundness error of 2−80 for fair comparison.

We note that CCL+20 [5] required that the generator gq is randomly chosen
in Gq prior to running the zero knowledge proof. In order to achieve trustless
setup, it should be jointly generated by all participating parties according to
[5]. It introduces some overheads in bandwidth as well as a few more rounds of
communication. In our scheme, we additionally require that pk ∈ Gq. It can be
proved by the owner of the secret key separately (e.g., §5.2 scheme 1), or can be
embedded into this ZK proof if the prover himself is also the owner of the secret
key (e.g., §5.1).

5 Applications to Threshold ECDSA and Two-Party
ECDSA

5.1 Two-Party ECDSA

The two-party ECDSA in [4] used a ZK proof for the CL ciphertext with a
slightly different relation. Suppose that P̂ is a generator in GECC included in
the system parameter param. The two-party ECDSA in [4] used a ZK proof of
plaintext and randomness used in the additive homomorphic encryption for the
following relation:

REncECC = {(m, ρ) : C1 = fmpkρ ∧ C2 = gρq ∧ Q̂ = P̂m}.

This ZK proof is used in the interactive key generation IKeyGen phase of the
two-party ECDSA.

For the relation REncECC, we cannot apply the protocol ZKPoKRepS directly
since pk is not in the CRS. Moreover, pk may not be well-formed (e.g., pk = gskq f

δ

for some δ ∈ Zq). Therefore, we change the relation to:

REnc′ = {(m, ρ, sk) :C1 = fmpkρ ∧ C2 = gρq ∧ Q̂ = P̂m ∧ pk = gskq }.
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It is because the knowledge of the secret key is known by the prover in the
IKeyGen algorithm.

We propose a new ZK proof ZKPoKEnc’ for REnc′ as shown in Algorithm 6.
The security proofs are similar to the previous proof and are omitted due to the
page limit.

Algorithm 6: Protocol ZKPoKEnc’ for the relation REnc′

Param: (Ĝ, q, P̂ )← GGenECC(1λ), GHSM ← GGenHSM,q(1
λ), B = 2λ+εd+2s̃,

εd = 80.
Input: C1, C2, pk ∈ G, Ĉ ∈ Ĝ.
Witness: ρ, sk ∈ [0, S],m ∈ Zq, where S = s̃ · 2εd .

1 Prover chooses sρ, sk
$←− [−B,B], sm

$←− Zq and computes:

S1 = pksρfsm , S2 = g
sρ
q , S3 = gskq , Ŝ = P̂ sm .

Prover sends (S1, S2, S3, Ŝ) to the verifier.

2 Verifier sends c
$←− [0, q − 1] to the prover.

3 Prover computes:

uρ = sρ + cρ, uk = sk + c · sk, um = sm + cm mod q.

Prover finds dρ, dk ∈ Z and eρ, ek ∈ [0, q − 1] s.t. uρ = dρq + eρ and
uk = dkq + ek. Prover computes:

D1 = pkdρ , D2 = g
dρ
q , D3 = gdkq .

Prover sends (um, D1, D2, D3, eρ, ek) to the verifier.
4 The verifier checks if eρ, ek ∈ [0, q − 1] and:

ŜĈc = P̂um , Dq
1pk

eρfum = S1C
c
1 , Dq

2g
eρ
q = S2C

c
2 , Dq

3g
ek
q = S3pk

c.

If so, the verifier sends `
$←− Primes(λ).

5 Prover finds qρ, qk ∈ Z and rρ, rk ∈ [0, `− 1] s.t. uρ = qρ`+ rρ and
uk = qk`+ rk. Prover computes:

Q1 = pkqρ , Q2 = g
qρ
q , Q3 = gqkq .

Prover sends (Q1, Q2, Q3, rρ, rk) to the verifier.
6 Verifier accepts if rρ, rk ∈ [0, `− 1] and:

Q`1pk
rρfum = S1C

c
1 , Q`2g

rρ
q = S2C

c
2 , Q`3g

rk
q = S3pk

c.

Evaluation. We follow the evaluation methodology in [5]. For each scheme,
the bandwidth used is the sum of the total input and output transmission for
a single party. A broadcast message is only counted as one transmission only.
All interactive zero-knowledge proofs are turned into a non-interactive one using
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Table 3: Comparison for two-party ECDSA with different security levels.
Security Level IKeyGen (Bytes) ISign (Bytes) Assumption

CCL+19 [4]

λ = 112 38714 575
Hard subgroupλ = 128 50876 697

membershipλ = 192 97230 1260
λ = 256 158850 1973

CCL+19-lcm [5]

λ = 112 4559 575
Hard subgroupλ = 128 5939 697

membershipλ = 192 11280 1260
λ = 256 18351 1973

Our two-party
λ = 112 2453 575 Hard subgroup

ECDSA
λ = 128 3173 697 membership,
λ = 192 6030 1260 adaptive root
λ = 256 9789 1973 subgroup.

the Fiat-Shamir transformation, such that the commit message can be omitted
if possible.

We compare our scheme with the two-party ECDSA scheme in [4], which used
a binary challenge in the ZK proof in the IKeyGen algorithm. As a result, the
ZK proof has to be repeated for εs times for soundness error of 2−εs . Recently,
[5] proposed an lcm trick (CCL+19-lcm) to replace a binary challenge with a
challenge of 10 bits. Hence, the ZK proof has to be repeated for εs/10 times.
However, the relationship proved by the lcm trick is changed slightly, and hence
the prover and the verifier have to additionally compute exponentiation of y =
lcm(1, . . . , 210), which is a 1479 bits integer, in IKeyGen and ISign respectively.

In our scheme, we only need to run the ZK proof for one time only and no
extra exponentiation is needed. The comparison of communication size is shown
in Table 3. For a soundness error and statistical distance of 2−80, CCL+19 [4]
needs at least 10 times more bandwidth in IKeyGen than ours, while CCL+19-
lcm [5] needs about twice the bandwidth in IKeyGen than ours. Our scheme
additionally relies on the adaptive root subgroup assumption in the generic group
model. Note that the security of ECDSA is based on the DL assumption in the
generic group model [2].

5.2 Threshold ECDSA

Our proposed ZK proofs can be used to improve the state-of-the-art bandwidth
efficient threshold ECDSA CCL+20 [5]. We give two threshold ECDSA schemes
in this section. Our scheme 1 reduces the communication cost of IKeyGen in
CCL+20 and also reduces the computation time in both IKeyGen and ISign,
at the price of having a larger communication cost for ISign. Our scheme 2
outperforms CCL+20 [5] in the communication cost and computation time in
IKeyGen, while having the same performance in ISign.
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Our Scheme 1. We show how to use our protocols ZKPoKRepS and ZKPoKEnc
to build a threshold ECDSA with fast trustless setup from the scheme in [5].
There are three main differences in the protocol (shown in Fig. 4):

1. IKeyGen:
(a) We do not need to run the interactive ISetup algorithm in [5] to generate

the generator gq used in IKeyGen.
(b) One of the main differences between our ZKPoKEnc protocol and with the

argument of knowledge for CL ciphertext in [5] is that our ZKPoKEnc
protocol requires that the public key pk is well-formed. This can be
achieved by adding a zero-knowledge proof of the secret key sk with
respect to pk in the key generation phase.

2. ISign: For the interactive signing phase, we only need to modify phase 1 of
the signing protocol in [5]. All other phases remain the same.

The resulting scheme 1 is secure in the generic group model by assuming
the hardness of the hard subgroup membership and the adaptive root subgroup
assumption.

Our Scheme 2. If we make the extra adaptive root subgroup assumption, we
can keep the ISign algorithm and the most of the IKeyGen algorithm in CCL+20
[5]. We only need to modify the interactive ISetup algorithm in [5], such that the
proof of knowledge of ti for gi = gtiq is replaced by our ZKPoKRepS protocol.
The resulting scheme is the most bandwidth efficient for the total bandwidth
used in the IKeyGen and the ISign algorithms, at the price of using one more
assumption.

Evaluation. We compare our schemes with the state-of-the-art bandwidth ef-
ficient threshold ECDSA scheme [5] in table 5. The total number of party is n
and the threshold is t.

The most common threshold signature P2SH transaction of Bitcoin is the
case of (t, n) = (1,3), (2,4) and (2,5). By using this parameter, our scheme 1 is
the most bandwidth efficient for the IKeyGen algorithm and it is about 69-74%
less than CCL+20. However, the bandwidth of the ISign algorithm of CCL+20
and our scheme 2 is 20-22% less than our scheme 1. Our scheme 2 uses 59-
65% less bandwidth than [5] in IKeyGen (as shown in Fig. 2), with the same
bandwidth in ISign. Our schemes are proved secure in the generic group model.
Note that the security of ECDSA is based on the DL assumption in the generic
group model [2].

6 Implementation

Choices of Parameters. Various security parameters are used for soundness
error and statistical distance in different threshold ECDSA papers which makes
it difficult to compare the efficiency of different schemes. Lindell17 [14] used
2−40 for soundness error and statistical distance. LN18 [15] used 2−80 for these
parameters. CCL+19 [4] followed [14] to use 2−40 for comparison, but they
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Table 4: Scheme 1: Modifications to the threshold ECDSA in [5] are shown in
the box.

IKeyGen(param)
Pi All players {Pj}j 6=i

ui
$←− Zq

(kgci, kgdi)← Com(P̂ui)

(ski, pki)← CL.KeyGen()
kgci,pki−−−−−→
kgdi−−→

πk := ZKPoKRepS(pki; ski : pki = gskiq )
πk←→ Abort if the proof fails.

Follow from line 5 of Fig. 4 in in [5].

ISign(param,m)
Pi Phase 1 All players {Pj}j 6=i

ki, γi
$←− Zq, ri

$←− [0, S]

(ci, di)← Com(P̂ γi)

Cki ← CL.Enc(pki, ki; ri)
Cki

,ci−−−−→
πC := ZKPoKEnc((ki, ri) :

((pki, Cki); (ki, ri)) ∈ REnc)
πC←→ Abort if the proof fails.

suggested to use 2−60 in practice. GG18 [11] and GG20 [12] used a soundness
error of 2−q and a statistical distance of 2−λ. CCL+20 [5] used 2−λ for soundness
error and 2−40 for statistical distance. For the two-party and threshold ECDSA
based on oblivious transfer, DKLs18 [9] and DKLs19 [10] used 2−80 for statistical
distance. In addition, the CL encryption [7] proposed to use 2−80 for statistical
distance. In this paper, we take the middle ground of using 2−80 for soundness
error and statistical distance for the ZK proofs as well as the CL encryption.

We only implement the schemes with 112-bit and 128-bit security due to the
constraint in running time (it takes > 66 seconds to run the IKeyGen of CCL+19
for 128-bit security). We use the secp256k1 curve.

Testing Environment. We implemented our schemes, CCL+19 [4] and CCL+20
[5] using Rust. We tested the program in a MacBook with Intel Core i5 1.4GHz,
16GB RAM. The results are the median running time for running > 100 times.
The program is implemented in one single thread for comparing different set-
tings.

During the testing, we do not consider the network conditions. We may fur-
ther outperform existing schemes in terms of running time since our schemes use
a smaller bandwidth.

6.1 Two-party ECDSA

We show the running time for both IKeyGen and ISign for 112-bit and 128-bit
security level in Figure 3. As compared with the CCL+19-lcm in [5], the running
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Table 5: Comparison for threshold ECDSA with different security levels.
Security IKeyGen ISign Assumption

Level (Bytes) (Bytes)

CCL+20 [5]

λ = 112 32tn+ 2692n− 64 2397t− 1412
Hard subgroup membershipλ = 128 32tn+ 3479n− 64 3100t− 1891

Strong root subgroupλ = 192 32tn+ 6518n− 96 5862t− 3694
λ = 256 32tn+ 10535n− 128 9489t− 6099

Our threshold
λ = 112 32tn+ 797n− 64 3031t− 1412

Hard subgroup membership
ECDSA

λ = 128 32tn+ 979n− 64 3944t− 1891
Adaptive root subgroup

scheme 1
λ = 192 32tn+ 1779n− 96 7512t− 3694
λ = 256 32tn+ 2805n− 128 12210t− 6099

Our threshold
λ = 112 32tn+ 1072n− 64 2397t− 1412

Hard subgroup membership
ECDSA

λ = 128 32tn+ 1319n− 64 3100t− 1891
Adaptive root subgroup

scheme 2
λ = 192 32tn+ 2397n− 96 5862t− 3694

Strong root subgroup
λ = 256 32tn+ 3775n− 128 9489t− 6099
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Fig. 2: (t, n)-Threshold ECDSA with 128-bit security.

time of our IKeyGen is 35-65% times faster, and the running time of our ISign is
104-138% times faster.

In particular, the lcm trick has a non-obvious cost of doubling the running of
ISign as compared with CCL+19 [4] and our scheme. The prover and the verifier
have to additionally compute exponentiation of y = lcm(1, . . . , 210), which is a
1479 bits integer, in IKeyGen and ISign respectively. It takes about 0.6 seconds
and significantly affects the performance in ISign.

6.2 Threshold ECDSA

We show the running time for both IKeyGen and ISign for 112-bit and 128-bit
security level in Figure 4. As compared with CCL+20 [5], the running time of our
scheme 1 is 85-90% faster in IKeyGen, with the price of a higher communication
cost in ISign. If one wants to minimize the communication cost, our scheme 2
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Fig. 3: Running time of two-party ECDSA.

is still 46-65% faster in IKeyGen. For the running time in ISign, our scheme 1 is
slightly slower than scheme 2/CCL+20.
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Fig. 4: Running time of threshold ECDSA with t = 1, n = 3.

7 Conclusion

In this paper, we propose a compact zero-knowledge proof for the DL relation
in HSM groups and the CL ciphertext. When applied to two-party ECDSA
and threshold ECDSA, it can significantly improve the performance in terms of
bandwidth used in IKeyGen, and the running time of IKeyGen and ISign.
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A Background

A.1 Definitions for Argument Systems

An argument system for a relation R ⊂ X ×W is a triple of randomized poly-
nomial time algorithms (Setup,P,V), where:

– Setup takes a security parameter 1λ and outputs a common reference string
(CRS) crs.

– P takes as input the crs, a statement x ∈ X and a witness w ∈ W. V takes
as input the crs and x and after interaction with P outputs 0 or 1.

The transcript between the prover and the verifier is denoted as 〈V(crs, x),P(crs,
x,w)〉, and it is equal to 1 if the verifier accepted the transcript.

Definition 1 (Completeness). An argument system (Setup,P,V) for a rela-
tion R is complete if for all (x,w) ∈ R:

Pr[〈V(crs, x),P(crs, x, w)〉 = 1 : crs
$←− Setup(1λ)] = 1.

We follow the soundness definition for trapdoorless crs from [1].

Definition 2 (Soundness). An argument system (Setup,P,V) is sound if for
all polynomial time adversaries A = (A0,A1):

Pr

[
〈V(crs, x),A1(crs, x, state)〉 = 1
and 6 ∃w s.t. (x,w) ∈ R : crs

$←− Setup(1λ)
(x, state)← A0(crs)

]
= negl(λ).

Additionally, the argument system is an argument of knowledge if for all polyno-
mial time adversaries A1 there exists a polynomial time extractor Ext such that
for all polynomial time adversaries A0:

Pr

 〈V(crs, x),A1(crs, x, state)〉 = 1
and (x,w′) /∈ R :

crs
$←− Setup(1λ)

(x, state)← A0(crs)

w′
$←− Ext(crs, x, state)

 = negl(λ).

Definition 3 (Zero Knowledge). An argument system (Setup,P,V) is statis-
tical zero-knowledge if there exists a polynomial time simulator Sim such that for
all (x,w) ∈ R, the following two distributions are statistically indistinguishable:

D1 = {〈V(crs, x),P(crs, x, w)〉, crs $←− Setup(1λ)},

D2 = {〈V(crs, x),Sim(crs, x)〉, crs $←− Setup(1λ)}.

A.2 Generalized Schnorr Proofs

The Sigma protocol based on Schnorr’s proof can be generalized for proving DL
in groups of unknown order [3]. It can be done by introducing appropriate range
checking and using computations over the integers. The proof size is dominated
by the response of size (εs + εd)· ord(G), and hence it is not practical. By taking
εs = εd = 80, the proof size is in the order of MBytes.
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Table 6: (2, 4)-Threshold ECDSA for 112 bit security
IKeyGen ISign

Communication Running Communication Running
Size (bytes) Time (sec) Size (bytes) Time (sec)

CCL+20 10958 19.34 3382 10.23

Our Threshold Scheme 1 3380 2.82 4650 11.70

Our Threshold Scheme 2 4478 8.33 3382 10.23

Table 7: (2, 4)-Threshold ECDSA for 128 bit security
IKeyGen ISign

Communication Running Communication Running
Size (bytes) Time (sec) Size (bytes) Time (sec)

CCL+20 14106 35.75 4308 15.75

Our Threshold Scheme 1 4107 4.11 4650 17.54

Our Threshold Scheme 2 5468 15.28 4308 15.75

B More Implementation Results for Threshold ECDSA

We also implemented the threshold ECDSA schemes for the setting of (t, n)
= (2,4) and (2,5) and the security level of 112-bit and 128-bit. The complete
comparison tables for these cases are given in Table 6 to 9.

30



Table 8: (2, 5)-Threshold ECDSA for 112 bit security
IKeyGen ISign

Communication Running Communication Running
Size (bytes) Time (sec) Size (bytes) Time (sec)

CCL+20 13714 28.70 3382 16.45

Our Threshold Scheme 1 4241 4.25 4650 18.28

Our Threshold Scheme 2 5614 11.00 3382 16.45

Table 9: (2, 5)-Threshold ECDSA for 128 bit security
IKeyGen ISign

Communication Running Communication Running
Size (bytes) Time (sec) Size (bytes) Time (sec)

CCL+20 17468 51.31 4308 25.51

Our Threshold Scheme 1 5150 6.10 4650 27.23

Our Threshold Scheme 2 6851 18.08 4308 25.51
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