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Abstract

The Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/ Fan-Vercauteren (BFV) schemes
are the two main homomorphic encryption (HE) schemes to perform exact computations over
finite fields and integers. Although the schemes work with the same plaintext space, there are
significant differences in their noise management, algorithms for the core homomorphic multi-
plication operation, message encoding, and practical usability. The main goal of our work is
to revisit both schemes, focusing on closing the gap between the schemes by improving their
noise growth, computational complexity of the core algorithms, and usability. The other goal of
our work is to provide both theoretical and experimental performance comparison of BGV and
BFV.

More precisely, we propose an improved variant of BFV where the encryption operation is
modified to significantly reduce the noise growth, which makes the BFV noise growth somewhat
better than for BGV (in contrast to prior results showing that BGV has smaller noise growth for
larger plaintext moduli). We also modify the homomorphic multiplication procedure, which is
the main bottleneck in BFV, to reduce its algorithmic complexity. Our work introduces several
other novel optimizations, including lazy scaling in BFV homomorphic multiplication and an
improved BFV decryption procedure in the Residue Number System (RNS) representation. We
also develop a usable variant of BGV as a more efficient alternative to BFV for common practical
scenarios.

We implement our improved variants of BFV and BGV in PALISADE and evaluate their
experimental performance for several benchmark computations. The experimental results sug-
gest that our BGV implementation is faster for intermediate and large plaintext moduli, which
are often used in practical scenarios with ciphertext packing, while our BFV implementation is
faster for small plaintext moduli.

1



Contents

1 Introduction 1

2 Background 5
2.1 Plaintext Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Homomorphic Encryption Schemes for Finite Field Arithmetic . . . . . . . . . . . . 6

2.2.1 Original BGV Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Original BFV Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 RNS Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Hybrid Key Switching in RNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Improved BFV Scheme 11
3.1 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Modified Homomorphic Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Improved Decryption in the HPS RNS variant . . . . . . . . . . . . . . . . . . . . . . 18

4 More Usable BGV Scheme 19

5 Comparison of BFV and BGV 21
5.1 Noise Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Software Implementation and Experimentation Setup . . . . . . . . . . . . . . . . . . 23
5.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Concluding Remarks 26

7 Acknowledgments 26

A Unified View of BGV and BFV 29

B Key Switching 29
B.1 Different Variants of Key Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B.1.1 Brakerski-Vaikuntanathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.1.2 Gentry-Halevi-Smart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.1.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B.2 RNS Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.2.1 Brakerski-Vaikuntanathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.2.2 Gentry-Halevi-Smart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
B.2.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B.3 Complexity of Key Switching Methods in RNS and Key Sizes. . . . . . . . . . . . . . 34

C Noise Estimates for BGV Multiplication 37
C.1 Setting the Optimal Constant Noise Level . . . . . . . . . . . . . . . . . . . . . . . . 37
C.2 Effect of Key-Switching Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

D Noise Estimates for Leveled BFV Multiplication 39



E Modulus Switching between Arbitrary RNS Bases 39

F Inner Product with Lazy Scaling 40

G Additional Experimental Results 40
G.1 Binary Tree Multiplicaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
G.2 Polynomial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
G.3 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



1 Introduction

Homomorphic encryption (HE) is a powerful cryptographic primitive that enables performing com-
putations over encrypted data without having access to the secret key. The HE research area has
seen a lot of progress since the formulation of the first fully homomorphic encryption construction
by Gentry in 2009 [19], and the schemes implemented in modern HE libraries are multiple orders
of magnitude faster than the initial implementation of Gentry’s scheme [20]. The most common
HE schemes are typically grouped into three classes based on the data types they support compu-
tations on. The first class primarily works with Boolean circuits and decision diagrams, similar to
the original Gentry scheme, and includes the FHEW and TFHE schemes [13, 17]. The second class
supports modular arithmetic over finite fields, which typically correspond to vectors of integers mod
t, where t is a prime power commonly called as the plaintext modulus. The second class is also
sometimes used for small-integer arithmetic. This class includes Brakerski-Gentry-Vaikuntantan
(BGV) and Brakerski/Fan-Vercauteren (BFV) schemes [9, 10, 18]. The third, and most recent, class
supports approximate computations over vectors of real and complex numbers, and is represented
by the Cheon-Kim-Kim-Song (CKKS) scheme [12]. All these schemes are based on the hardness
of the Ring Learning With Errors (RLWE) problem, where noise is added during encryption and
key generation to achieve the hardness properties. The noise grows as encrypted computations
are performed, and the main functional parameter in all these schemes, the ciphertext modulus Q,
needs to be large enough to accommodate the noise growth, or a special bootstrapping procedure
may be used to reset the noise and keep the value of Q relatively small.

Our work focuses on the HE schemes of the second class. Although the BGV and BFV schemes
work with the same plaintext algebra, they use different strategies for encoding the message com-
posed of integers in Zt and controlling the noise. The BGV scheme encodes the message in the least
significant digit (LSD) of integers in ZQ and applies the modulus switching technique to keep the
noise magnitude constant, i.e., it scales down Q by a factor that corresponds to the noise added
after the previous modulus switching call. The BFV scheme encodes the message in the most signif-
icant digit (MSD) of integers in ZQ and uses a special form of homomorphic multiplication, where
ciphertext polynomials are multiplied without modular reduction and then scaled down by Q/t. In
BFV, the value of Q is typically constant and the noise magnitude increases at a rate similar to how
Q decreases in BGV. The difference in noise management strategies between BGV and BFV affects
the noise growth and efficiency of the schemes. Costache and Smart performed a noise growth
comparison, which suggested that BGV has better noise growth for larger t than BFV [15]. However,
the authors did not examine the computational complexity difference, and it has not been clear
up to this moment how the schemes compare in terms of practical performance, both from the
perspective of computational complexity and actual experimental measurements.

The main goal of this paper is to present improved variants of BFV and BGV schemes, which also
close the gap between the schemes. The other goal is to compare the theoretical complexity of their
primitive operations, and experimental performance of BGV and BFV for several different scenarios
using our software implementation in the PALISADE library [2].

Modified BFV Scheme. We propose two modifications for the BFV scheme. The first modifi-
cation deals with encryption, and the second modification revises the homomorphic multiplication
operation. The net effects of these modifications are smaller noise growth and faster homomorphic
multiplication in BFV.
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The encryption in BFV can be represented as a ·s+e+∆m (for simplicity, we focus here on the
secret-key formulation), where a is a uniformly random ring element in cyclotomic ring RQ, s and
e are the secret key and Gaussian noise ring elements in R, m is a message in Rt, and ∆ = ⌊Q/t⌋
is the scaling factor. Our analysis shows that the difference between ∆ and Q/t, which is often
described in terms of rt(Q) := Q− t∆, brings about a significant error (proportional to rt(Q)) that
affects the first homomorphic multiplication and increases the noise growth in BFV as compared to
BGV for larger t. If this error is removed, i.e., rt(Q) ≈ 0, the noise growth in BFV becomes the same,
or actually somewhat better, as in BGV. In view of this, our first modification suggested for BFV is

to replace the encryption operation in BFV with a · s+ e+
⌈
Q
t m

⌋
, which is a more natural choice

as compared to the one in the original BFV. This encryption function also significantly simplifies
the noise analysis and estimates for BFV homomorphic multiplication. Note that this modification
can be likewise applied to the original Brakerski LWE scheme [9].

The most expensive operation in BFV is homomorphic multiplication as it requires a multipli-
cation of two ciphertexts c1 and c2 without modular reduction, followed by scaling the results of
the tensor product by t/Q. Algorithmically, this requires extending both ciphertexts to modulus
QP , where P is sufficiently larger than Q, performing a tensor product which involves expensive
Number Theoretic Transforms (NTTs), scaling down the result by Q/t, and finally switching the
scaling result from P to Q. We propose a more efficient procedure for homomorphic multiplication
where the values of P ≈ Q, which saves some expensive modulus extension operations and NTTs.
The main idea is to apply modulus switching to one of the ciphertexts, e.g., c2, to change it from
Q to P (denote it as c′2), and then do scaling by t/P after the tensor product. This removes the
requirement for extending the scaling result from P to Q (it will already be in Q) at the expense
of doing a smaller number of modulus extensions during the modulus switching of c2. The other
benefit is that the tensor product of c1 and c′2 can be scaled by t/P directly in PQ, i.e., we have a
tensor product mod PQ instead of a tensor product without modular reduction.

We also introduce a leveled version of BFV homomorphic multiplication, where ciphertexts
modulo a larger modulus Q are internally scaled down to a smaller modulus Qℓ (or Pℓ), the standard
homomorphic multiplication operations are performed, and then the results are scaled back up to
Q. The benefit of this approach is that the ciphertexts still look the same (modulo Q) outside
the homomorphic multiplication operations, but we get BGV-like benefits of working with smaller
moduli in multiplication. The combined effect of our improvements in homomorphic multiplication
is the speed-up of up to 4x, as compared to a prior state-of-the-art BFV implementation, when
dealing with multiplications at deeper levels of computation.

BFV Scheme Optimizations. We also introduce several algorithmic optimizations that equally
apply to the classical BFV and our modified variant. The first optimization is for the scenarios
where we need to add multiple BFV ciphertexts that were just obtained by BFV multiplication.
The standard way is to perform many expensive BFV multiplications and then add up the result.
However, we can delay the scaling by t/Q (or by t/P in our BFV variant) in each homomorphic
multiplication until the sum is computed, and then just do one scaling at the end. This saves many
expensive NTTs and modulus extension operations. We denote this optimization as lazy scaling.
The lazy scaling can be combined with previously known lazy relinearization to push most of the
expensive computations in a homomorphic multiplication, i.e., scaling and relinearization, to the
end, after the aggregation is done.

Some of the other optimizations apply to Residue Number Systems (RNS) variants of BFV,
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where multi-precision integers in ZQ are split into vectors of smaller integers using the Chinese
Remainder Theorem (CRT) to perform operations efficiently using native (64-bit) integer types.
The RNS variants are now predominately used in practice, and are implemented in the SEAL [31],
PALISADE [2], and Lattigo [1] software libraries. There are two main RNS variants of BFV: the
Bajard-Eynard-Hasan-Zucca (BEHZ) variant based on modular integer arithmetic and Montgomery
reductions and the Halevi-Polyakov-Shoup (HPS) variant based on a combination of modular integer
arithmetic and floating-point approximations [6, 23].

A significant limitation of the HPS approach is that high-precision (“long double” or even
quad-precision) floating-point arithmetic is required to support larger CRT moduli: long doubles
are needed for CRT moduli from 47 to 58 bits, and quad-precision floats are needed for higher
CRT moduli [23]. We introduce a general-purpose digit decomposition technique (inspired by digit
decomposition in key switching) and apply it to the HPS decryption procedure to add support for
arbitrary CRT moduli using only regular double-precision floating-point arithmetic, thus overcom-
ing this limitation of the HPS variant. This digit decomposition technique can be applied to other
mixed integer/floating-point RNS operations to reduce precision requirements for floating-point
arithmetic.

We also apply the full RNS variant of hybrid key switching [26] recently proposed for the CKKS
scheme to both BFV RNS variants, and demonstrate how some auxiliary CRT moduli needed for
homomorphic multiplication can be reused for hybrid key switching. This key switching method
has some benefits (smaller noise growth, better efficiency for deeper computations) over the residue
decomposition key switching method previously used in both RNS variants of BFV.

BGV Scheme Optimizations and Usability Improvements. We use the Gentry-Halevi-
Smart (GHS) variant of BGV as the basis for our BGV instantiation [22, 25]. Although the original
GHS variant performs some operations in RNS, it still uses multiprecision integer arithmetic for
key switching and some scenarios of modulus switching. For instance, although the GHS paper
originally introduced the hybrid key switching technique, the authors used multiprecision arithmetic
for the digit decomposition step. We apply the full RNS version of hybrid key switching to our
BGV instantiation and eliminate any multiprecision arithmetic from our BGV implementation, thus
significantly improving its efficiency.

One of the challenges in the GHS variant is the need to perform dynamic noise estimation, which
makes the BGV implementation less robust and usable as compared to the BFV variants where noise
estimation is typically needed only at the parameter generation phase. We develop a more usable
and robust variant of BGV that is essentially as simple to use as the current BFV implementations.
This variant only needs to know the multiplicative depth and maximum number of additions per
level for many common scenarios. The main advantage of this BGV variant is that it is significantly
faster than our BFV implementations for certain practical scenarios, yet its usability matches that
of BFV.

Implementation and Performance Comparison. We implement the improved variants of
BFV and BGV in PALISADE, and provide their comparison for specific benchmark computations.
To the best of our knowledge, this is the first publicly available implementation of both schemes in
the same software library. We also perform theoretical comparison of the computational complexity
for the operations that differ between BFV and BGV.

The comparison results can be summarized as follows:
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• Our improved variant of BFV has somewhat better noise growth than BGV, in contrast to prior
results for the original BFV scheme that showed better noise growth for BGV at larger plaintext
moduli [15].

• Our best variant of BFV is faster than BGV for small plaintext moduli, while BGV is faster for
intermediate and large plaintext moduli used in many practical scenarios.

• The speed-up in homomorphic multiplication of our best BFV variant compared to a prior
state-of-the-art RNS implementation of BFV goes up to 4x for deeper computations.

Related work. Costache et al. further examine the difference between the noise growth in
BFV and BGV [14] to improve the analysis presented in [15]. They explore an alternative heuristic
noise analysis approach to obtain tighter noise bounds. We point out that this new analysis has
some inacurracies, e.g., the effect of extra noise due to rt(Q) in BFV homomorphic multiplication is
not accounted for. We show that this extra noise determines the higher noise growth in BFV for large
plaintext moduli, and demonstrate how this noise is removed in our BFV variant. Moreover, we show
that this analysis can be carried out independently of the chosen heuristic for noise analysis. The
authors also do not consider the difference in the complexity of homomorphic encryption operations
between BGV and BFV, which affects their conclusions. In view of the above, we primarily compare
our results with the prior work [15].

The encoding of a message in the MSD of a ciphertext as ⌈Qt m⌋ was already used in the Key
Encapsulation Mechanism (KEM) Kyber [8]. But in the case of Kyber, the plaintext modulus t = 2,
i.e., the coefficients of the messages are either 0 or 1. Therefore, the messages can be recovered
directly during decryption by checking whether the coefficients are closer to ⌈Q/2⌋ or 0, and the
noise is not affected.

SEAL also independently added to v3.4.0 a modification of BFV encryption similar to what
we describe in our work [31]. However, no underlying noise analysis was presented, and the prior
paper related to SEAL [14] included noise analysis inaccuracies involving the rounding term rt(Q),
suggesting that the full effect of this change was not well-understood.

Note that the FHEW and TFHE schemes can also support arithmetic over finite fields for small
plaintext moduli (typically up to 4 bits) [30], and can be considered as an alternative to BGV and
BFV for these scenarios. These schemes support fast bootstrapping (the latency is much lower than
for BGV and BFV bootstrapping [24]), but their main limitation is the lack of support for CRT
packing, which makes the BGV/BFV approach much more appealing when large arrays of numbers
need to be computed on/bootstrapped because one ciphertext operation can perform thousands of
integer operations at once.

Organization. The rest of the paper is organized as follows. In Section 2 we provide the necessary
background on BGV and BFV. In Sections 3 and 4, we present our improved variants of BFV and BGV,
respectively. Section 5 includes the theoretical comparison of the schemes, and discussion of the
experimental results. Section 6 provides the conclusions and outlines the ideas for future work.
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2 Background

All logarithms are expressed in base 2 if not indicated otherwise. Let N be a power of two. We
denote the 2N -th cyclotomic ring R = Z[X]/(XN + 1) and RQ := R/QR. 1 Ring elements are
indicated in bold, e.g. a. For an integer Q > 1, we identify the ring ZQ with (−Q/2, Q/2] ∩ Z as
a representative interval and for z ∈ Z, [z]Q ∈ ZQ denotes the centered remainder of z modulo Q,
while rQ(z) denotes the classical Euclidean remainder in [0, Q) ∩ Z. For x ∈ Q, ⌊x⌋, ⌊x⌉ and ⌈x⌉
denote the rounding to the lower, closest and higher integer, respectively. We extend these notations
to elements of R by applying them coordinate-wise. For a = a0 + a1 ·X + · · ·+ aN−1 ·XN−1 ∈ R,
we denote the ℓ∞ norm of a as ∥a∥∞= max0≤i<N{|ai|}. There exists a constant δR such that
∥a · b∥∞≤ δR∥a∥∞∥b∥∞ for any (a, b) ∈ R2. It is well-known that for R = Z[X]/(XN + 1),
δR = N . However in practice this bound is only reached with exponentially low probability. As
shown in [23], the bound δR = 2

√
N is much closer to what we observe experimentally, and can be

used to achieve tighter noise bounds. Another approach consists in estimating the noise size using
the canonical embedding norm [22], as currently done in HElib [25]. Nonetheless, in this work we
estimate the noise size using the expansion factor δR with the method of [23] as it is simpler and
precise enough for our purpose.

We use a ← χ to denote the sampling of a ∈ R according to a distribution χ. χkey denotes
the uniform ternary distribution, i.e., all the coefficients of a ← χkey are selected uniformly and
independently from {−1, 0, 1}. This distribution is commonly used for secret key generation as
it is the most efficient option conforming to the HE standard [4]. χerr denotes a discrete Gaus-
sian distribution with standard deviation σerr, i.e. all the coefficients of a ← χerr are selected
independently from a truncated discrete Gaussian distribution with standard deviation σerr. Trun-
cated discrete Gaussian distributions are commonly used to generate error polynomials to meet the
desired hardness requirement [4]. We assume that the polynomials sampled from χkey and χerr

have their coefficients bounded by Bkey = 1 and Berr = 6σerr, respectively. Although a Gaussian
distribution is not bounded by nature, the probability for a Gaussian coefficient to be larger than
Berr = 6σerr, is less than 2−30, therefore the two distributions are very close in practice. UQ
denotes the uniform distribution over RQ, where every coefficient of a is sampled uniformly and
independently from ZQ.

2.1 Plaintext Space

We are interested in the BGV and BFV homomorphic encryption schemes which both share the same
plaintext space Rt for some integer t > 1. Hence, the most natural way to represent plaintext
messages of these schemes is to think of them as vectors of size N with their coefficients taken
modulo t. However, Rt has many algebraic properties, in particular when t = pr is a prime power
with p coprime to 2N . In this case Rt is actually a Zt-algebra, which means that it contains a
subring isomorphic to Zt. In this paper we focus on the case r = 1, where t = p is a prime.
The interested reader can nonetheless refer to [25] for further details regarding the general case.
Zt-algebra supports efficent Single-Instruction Multiple-Data (SIMD) packing/batching. For more
details on the packing, the reader is referred to [32].

1more general cyclotomic rings are also supported, and all results of our work equally apply to these non-power-
of-two rings; please see [25] for more details on general cyclotomic rings
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2.2 Homomorphic Encryption Schemes for Finite Field Arithmetic

The two schemes studied in this work: BGV and BFV are actually two instantiations of the same
idea, and share, therefore, many common features. First, according to the desired security level λ
and the targeted application, one starts by selecting public parameters for the considered scheme:
ring dimension N = 2d, the plaintext modulus t, a ciphertext modulus Q and two probability
distributions χkey and χerr on the ring R. In both cases, the secret key will be an element s← χkey.
Note that BGV and BFV may be viewed as different modes of a unified scheme, where the ciphertexts
may be switched from one mode/scheme to the other (see Appendix A for details).

2.2.1 Original BGV Scheme

In 2011, Brakerski et al. designed a leveled homomorphic scheme, namely capable of evaluating
circuits of arbitrary size, but known beforehand [10]. The key tool of their construction is the
modulus switching procedure which allows to switch a ciphertext ct encrypted under a modulus
Q to a smaller modulus Q′ in order to maintain the noise level “constant”. As a consequence, one
must select a chain of L + 1 moduli Q0 | Q1 | . . . | QL = Q such that t and QL are coprime. The
public key is formed as:

pk =
(
[a · s+ te]QL

,−a
)
∈ R2

QL
,

which is equivalent to the Ring-LWE sample ([a/t · s+ e]QL
, [−a/t]QL

) (since t and QL are co-
prime) associated to s and QL with a← UQL

and e← χerr.
A ciphertext ct = (c0, c1) ∈ R2

Q corresponds to a degree 1 polynomial whose coefficients lie
in RQ. The message m ∈ Rt is hidden in the LSD of the first coefficient c0 of the ciphertext as
follows:

ct =
(
[[m]t + u · pk0 + te0]QL

, [u · pk1 + te1]QL

)
with u ← χkey and e0, e1 ← χerr. The noise contained in a ciphertext ct = (c0, c1) appears
explicitly once the ciphertext is evaluated on the secret key s:

c0 + c1 · s = [m]t + t(u · e+ e1 · s+ e0) = [m]t + tvfresh mod QL, (1)

where the term vfresh = u · e+ e1 · s+ e0 is the noise inherent to a “freshly” encrypted ciphertext.
Since Q0 | Q1 | . . . | QL, encryptions can be performed equivalently at any level i, i.e., modulo Qi.

To decrypt a ciphertext ct = (c0, c1) ∈ R2
Qi

with i ∈ [0, L], one computesm′ = [c0+c1 ·s]Qi and
then outputs [m′]t. To ensure correctness of the decryption, the noise v must be “small enough”
such that m′ = [m]t+ tv does not wrap-around modulo Qi. As a consequence, decryption remains
correct as long as:

∥v∥∞ <
Q0

2t
− 1

2
.

One can add two ciphertexts ct and ct′ encrypting m and m′, respectively, at the same level
i to yield:

c0 + c′0 + (c1 + c′1) · s = [m+m′]t + t(v + v′ + u) mod Qi,

with ∥u∥∞ ≤ 1. This means that

ctadd =
(
[c0 + c′0]Qi , [c1 + c′1]Qi

)
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is a level-i encryption of [m+m′]t and its noise is almost the sum of the noises of ct and ct′:

∥vadd∥∞ = ∥v + v′ + u∥∞≤ ∥v∥∞ +
∥∥v′∥∥

∞ + 1.

Similarly to addition, we can multiply two level-i ciphertexts ct and ct′ to obtain the following
congruence modulo Qi:

(c0 + c1 · s) · (c′0 + c′1 · s) = [m ·m′]t + t([m]t · v′ + v · [m′]t + tv · v′ + rm)

with [m]t · [m′]t = [m ·m′]t + trm and ∥rm∥∞≤ δRt/2. This means that

ctmult =
(
[c0 · c′0]Qi , [c0 · c′1 + c1 · c′0]Qi , [c1 · c′1]Qi

)
∈ R3

Qi

is a degree-2 ciphertext encrypting [m ·m′]t and its noise is bounded by

∥vmult∥∞ =
∥∥[m]t · v′ + v · [m′]t + tv · v′ + rm

∥∥
∞

≤ δRt

2

(
2 ∥v∥∞

∥∥v′∥∥
∞ + ∥v∥∞ +

∥∥v′∥∥
∞ + 1

)
.

Remark 2.1 The reader can notice that the degree, and thus the size, of a ciphertext increases
after each multiplication, increasing therefore the future communication and computational costs.
Since this is something one wants to avoid in practice, the degree-2 ciphertexts are “relinearized”
after a homomorphic multiplication to degree-1 ciphertexts using a key-switching procedure (see
Appendix B).

The main issue with homomorphic multiplication is its quadratic noise growth, which implies
that by choosing QL ≈ ∥vfresh∥L∞ one could only perform log2 L consecutive multiplications. The
idea of modulus switching is to reduce the size of the noise after each multiplication to keep it
constant and prevent the quadratic blow-up. This is achieved by scaling the ciphertext ct by
Qi/Qj for i < j, which scales down the noise by roughly the same factor. More precisely, let
ct = (c0, c1) be a level j ∈ (0, L]∩Z encryption of a message m with noise v and let i be an integer
smaller than j, then set:

δ =
(
t[−c0/t]Qj/Qi

, t[−c1/t]Qj/Qi

)
∈ R2.

Then one can compute

ct′ =
Qi

Qj
· (c0 + δ0, c1 + δ1) mod Qi.

Brakerski et al. showed that if ct = (c0, c1) is such that∥∥[c0 + c1 · s]Qj

∥∥
∞ <

Qj

2
− tQj

2Qi
(1 + δRBkey),

then ct′ is an encryption of [Qi/Qjm]t whose noise v′ is bounded by∥∥v′∥∥
∞ ≤

Qi

Qj
∥v∥∞ + ∥vms∥∞

with ∥vms∥∞≤ (1+δRBkey)/2. Therefore by choosing the encryption parameters such that perform-
ing modulus switching after a homomorphic multiplication (plus a key-switching) brings the noise
back to its initial level, one can perform L consecutive multiplications instead of approximately
log2 L initially.
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Gentry-Halevi-Smart (GHS) variant of BGV. Since the modulus-switching procedure out-
puts an encryption of the message scaled by a factor [Qi/Qj ]t, Brakerski et al. proposed to choose
the moduli Qi = 1 mod t. This approach, although very convenient in theory, becomes challenging
in practice when using a large t since it reduces significantly the range of possible moduli for the Qi.
As a consequence, Gentry, Halevi, and Smart proposed to keep track of the scaling factor for each
ciphertext instead [22]. In particular, they suggested to encrypt [QLm]t instead of [m]t in Equation
(1), which provides natural downscaling to [Qim]t as modulus switching operations are applied.
However in this case, one has to pay attention when adding two ciphertexts with different scaling
factors. Nonetheless this can be achieved without impacting significantly the noise by following the
methodology of [27].

Gentry et al. also proposed several optimizations related to noise management. The first
one is to perform modulus switching after encryption and before first multiplication, in order to
reduce the noise from ∥vfresh∥∞ to ∥vms∥∞. The second one is to perform modulus switching just
before the next multiplication instead of just after a multiplication. This permits to reduce the
noise accumulated due to other operations, such as additions or key switching, that are performed
between two subsequent multiplications.

2.2.2 Original BFV Scheme

In [9], Brakerski proposed a scale-invariant construction that achieves asymptotically the same
noise growth as BGV, but does not explicitly call the modulus-switching procedure, embedding
it internally in the homomorphic multiplication. Fan and Vercauteren then ported Brakerski’s
construction to the Ring-LWE setting [18], and the scheme is now commonly referred to as BFV.
The BFV scheme uses a public key

pk =
(
[a · s+ e]Q ,−a

)
∈ R2

Q,

which corresponds exactly to a Ring-LWE sample associated to s and Q with a← UQ and e← χerr.
The main difference between BGV and BFV is that BFV ciphertexts encode messages in their MSD
instead of LSD:

ct =
(
[∆[m]t + u · pk0 + e0]Q , [u · pk1 + e1]Q

)
with ∆ = ⌊Q/t⌋, u← χkey and e0, e1 ← χerr. Similarly to BGV, the noise contained in a ciphertext
ct = (c0, c1) appears explicitly once the ciphertext is evaluated on the secret key s:

c0 + c1 · s = ∆[m]t + u · e+ e1 · s+ e0 = ∆[m]t + vfresh mod Q,

where the “fresh” noise vfresh = u · e+ e1 · s+ e0 is the same as for BGV.
To decrypt the ciphertext ct, one needs to scale and round ct(s) by t/Q to remove the factor

∆. Hence the decryption procedure requires computing

m′ =

⌊
t

Q
[c0 + c1 · s]Q

⌉
,

and the decryption will be correct as long as:

∥v∥∞ <
Q

2t
− rt(Q)

2
. (2)
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Note that the term rt(Q)/2 is the error inherited from the difference between ∆−1 and t/Q: ∆t/Q =
1 − rt(Q)/Q. Addition of two ciphertexts ct and ct′ is done like in BGV, but the noise growth is
slightly different since the carry of the addition of the two messages is scaled by ∆:

c0 + c′0 + (c1 + c′1) · s = ∆[m+m′]t + v + v′ − rt(Q)u mod Q,

with ∥u∥∞ ≤ 1. This implies that

ctadd =
(
[c0 + c′0]Q, [c1 + c′1]Q

)
is an encryption of [m+m′]t, and its noise is bounded by

∥vadd∥∞ = ∥v + v′ + rt(Q)u∥∞≤ ∥v∥∞ +
∥∥v′∥∥

∞ + rt(Q). (3)

The BFV multiplication of two ciphertexts ct and ct′ is done differently, as compared to BGV,
since once the product is computed, it gets scaled by ∆2, which has two important consequences.
First, the product of ct and ct′ cannot be reduced modulo Q, therefore it must be done in R,
i.e., without any modular reduction. Second, the product must be scaled down by t/Q ≈ ∆−1 to
remove the extra ∆ factor and reduce the noise similarly to modulus switching in BGV. We describe
the two steps of the homomorphic multiplication separately. The first part, called the tensoring,
consists in computing the product of two ciphertexts in R:

cttensor = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) ∈ R3.

When evaluating cttensor on the secret key, one obtains:

(c0 + c1 · s) · (c′0 + c′1 · s) = (∆[m]t + v +Qk) · (∆[m′]t + v′ +Qk′)

=
Q

t
∆
[
m ·m′]

t
+

Q

t
vtensor +

Q2

t
ktensor,

where

vtensor =
tv · v′

Q
+

t∆

Q

(
[m]t · v′ + [m′]t · v

)
+ t(v · k′ + v′ · k)

− rt(Q)

(
[m]t · k′ + [m′]t · k + rm +

∆

Q
[m]t · [m′]t

)
,

ktensor = [m]t · k′ + [m′]t · k + tk · k′ + rm

with ∥rm∥∞≤ δRt/2 like for BGV. Also note that k = (c0 + c1 · s − ∆[m]t − v)/Q and k′ =
(c′0 + c′1 · s−∆[m′]t − v′)/Q have their norm bounded by (δRBkey + 3)/2.

The scaling operation is done in RQ and outputs a result modulo Q:

ctscale =

[⌈
t

Q
cttensor

⌋]
Q

∈ R3
Q.

The scaling leads to

t

Q

(
ctensor0 + ctensor1 · s+ ctensor2 · s2

)
= ∆

[
m ·m′]+ vtensor +Qktensor.
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The rounding of scaled terms introduces an additional error vr such that

ctscale0 + ctscale1 · s+ ctscale2 · s2 = ∆
[
m ·m′]+ vtensor + vr mod Q,

with ∥vr∥∞≤ (1 + δRBkey + δ2RB
2
key)/2. Hence the total multiplication noise vmult = vtensor + vr

is bounded by

∥vmult∥∞ ≤
δRt

2

(
2 ∥v∥∞ ∥v′∥∞

Q
+
(
4 + δRBkey

) (
∥v∥∞ +

∥∥v′∥∥
∞
)

+ rt(Q)
(
δRBkey + 5

))
+

1 + δRBkey + δ2RB
2
key

2
. (4)

For the same reasons as for BGV, one needs to perform a key-switching operation to relinearize
the resulting degree-2 ciphertext. The key-switching procedure is the same for both schemes, and
we refer to Appendix B for further details.

2.3 RNS Representation

The Chinese Remainder Theorem (CRT) permits decomposing multi-precision integers in ZQ into
vectors of smaller integers to perform operations efficiently using native (64-bit) integer data types.
The integer CRT representation is also often referred to as the Residue-Number-System (RNS)
representation. As a consequence, the ciphertext modulus is usually chosen as a product of “small”,
i.e., fitting in a machine word, co-prime moduli so that elements of RQ are represented with their
residues modulo the different qi’s. For BGV, we choose Q = q0 · · · qL and we denote Qi = q0 · · · qi for
0 ≤ i ≤ L, where each qi = 1 mod 2N , to use the efficient NTT algorithm for the multiplication of
elements in RQ. For BFV, we choose Q = q1 · · · qk, with qi = 1 mod 2N for 1 ≤ i ≤ k and similarly
to BGV we denote Qi = q1 · · · qi for 1 ≤ i ≤ k. Note that we have chosen different notations on
purpose since in the original BGV the size of the moduli is directly related to the noise reduction
we want to achieve by modulus switching, and is therefore dependent on the circuit one wants
to evaluate. However, this constraint can be removed by considering a granular approach with
dynamic noise estimation, as implemented in HElib [25] (see the discussion in Section 4 for more
details on dynamic vs static noise estimation in BGV). On the other hand, in BFV the size of the
moduli is independent of the circuit and, hence, the moduli are usually chosen as large as possible
within the limit of a machine word.

When performing computations in RNS, and more particularly when implementing BGV and
BFV, it is sometimes needed to switch the RNS basis, i.e., convert a ∈ RQ from its residues modulo
Q = q1 · · · qk to [a]Q modulo P for some P = p1 · · · pk′ . This can be achieved using a basis extension
formulated as

FastBaseExtension(a, Q, P ) =

k∑
i=1

[
a

(
Q

qi

)−1
]
qi

Q

qi
mod pj . (5)

Note that the basis extension does not yield [a]Q mod P but rather [a]Q+uQ mod P with ∥u∥∞<
k/2. When the result of this extension is divided by Q, as in many procedures of BGV and BFV, the
error caused by this Q-overflow u can be neglected most of the times. However in certain cases, as in
the BFV decryption procedure, this overflow cannot be tolerated and needs to be removed/corrected.
This can be achieved either using integer instructions with the so-called γ-correction technique of
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[6], or using floating-point instructions to retrieve u as in [23] since

u =

 k∑
i=1

[
a

(
Q

qi

)−1
]
qi

1

qi

 . (6)

The same problem occurs during BFV homomorphic multiplication, and if it is not handled using
either of the techniques of [6] or [23], the impact of u on the noise growth will be significant [7].

2.4 Hybrid Key Switching in RNS

Key switching transforms a ciphertext ct = (c0, c1) ∈ R2
Q, which can be decrypted with sA,

into a ciphertext ct′ = (c′0, c
′
1) ∈ R2

Q encrypting the same message as ct, but decryptable with
another secret key sB. This procedure is needed to compute automorphisms (rotations) of the
ciphertexts [21], or to relinearize ciphertexts after a homomorphic multiplication. Note that this
procedure adds a noise vks to the ciphertexts.

Several ways of performing the key-switching procedure have been found over the years. The
first one was formulated by Brakerski and Vaikuntanathan (BV) in [11] and extended to RNS in [6].
This technique is based on digit decomposition of one ring element in the ciphertext. Unfortunately
the BV key switching requires a quadratic number of NTTs to be computed, and hence becomes the
main bottleneck of the scheme (asymptotically, and often in practice), and causes a relatively large
noise growth. In [22], Gentry, Halevi, and Smart proposed another alternative for key switching.
Their method, which we refer to as the GHS key switching, has a smaller noise growth than BV,
and is also more efficient (asymptotically, and in many practical cases) since it only requires a linear
number of NTTs. The drawback of this method is that one either needs to double the dimension
N or reduce the size of Q by a factor of 2 for security reasons. Gentry, Halevi, and Smart also
presented a hybrid key switching technique, which combines BV digit decomposition and larger
modulus from GHS to provide the best tradeoff between the two techniques. The RNS versions of
hybrid key switching were later derived for the CKKS scheme in [28] (for one small special prime)
and in [26] for the more general case. The hybrid key switching technique [26] is the most efficient
one in practice, both in terms of performance and noise growth, as our detailed comparison of the
BV, GHS, and Hybrid key switching in Appendix B shows. Hence we use the hybrid key switching
in our implementation.

3 Improved BFV Scheme

One can notice from Equations (2), (3) and (4) that the noise of BFV is impacted by the rt(Q) factor
which does not appear in BGV. This factor causes faster noise growth for BFV when using larger
plaintext moduli, as compared to BGV. In this section we show that this problem is not inherent to
the MSD encoding of BFV, but rather comes from the choice for its instantiation in [18] and prior
LWE-based Brakerski scheme [9]. We show that by instantiating the scheme in a more natural way,
we can get rid of this rt(Q) term. We also present a modified homomorphic multiplication procedure
that significantly improves the complexity of BFV homomorphic multiplication, as compared to all
prior variants of BFV.

In this section, ct = (c0, c1) and ct′ = (c′0, c
′
1) denote two BFV ciphertexts encrypting, respec-

tively, the messages [m]t and [m′]t with noise v and v′.
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3.1 Noise Reduction

To fully understand the problem with faster noise growth in BFV for larger plaintext moduli, let us
examine more carefully the noise bound after a multiplication in BFV (Equation (4)). This bound
can be simplified by analyzing only the dominant terms, which determine the noise magnitude.
More precisely, if we assume that the two ciphertexts have their noise bounded by V , and Bkey = 1,
the size of the noise of their multiplication can be reasonably approximated by

δRt

(
(5 + δR)V +

rt(Q)

2
(δR + 5)

)
+

δ2R
2
≈ δ2Rt

(
V +

rt(Q)

2

)
. (7)

Since the noise grows significantly with homomorphic multiplications, V becomes larger than
rt(Q)/2 < t after we perform the first multiplication. However, this is not necessarily true for
the first multiplication itself since, like in BGV, the noise of fresh ciphertexts in BFV is bounded by
Berr(2δRBkey + 1) ≈ 2δRBerr. The homomorphic encryption standard ([4]) recommends using an
error distribution with σerr = 3.2. Therefore, the noise of a fresh ciphertext can be estimated as
Vinit = 2× 6× 3.2× 2

√
N < 77

√
N . Since in practice the dimension N typically does not exceed

216, a fresh ciphertext always has its noise size not higher than 14 bits, while rt(Q) can be as large
as t. As a consequence, when rt(Q) is larger than 215, it becomes responsible for the larger noise
growth after the first multiplication in BFV. For instance, if t = 232 and rt(Q) ≈ t/2 ≈ 231, the noise
after the first multiplication will be at least 16 bits larger than in the case when rt(Q) < Vinit.
Note that this difference will not lead to a larger noise growth on the next multiplications since,
as shown in Equation (7), the noise growth after a multiplication is linear in V . However, this
difference of 16+ bits will be carried through until the end of the computation. In the case of
t = 260, this difference would become at least 44 bits.

The easiest way to circumvent this problem would be to choose the moduli qi, as in the original
BGV, i.e., such that qi = 1 mod t, which would lead to rt(Q) = 1. However, for the same reasons as
in BGV, this restriction would make the finding of the moduli challenging for large t. Although it is
possible to relax this condition by choosing, for instance, rt(Q) <

√
N , i.e., finding rt(Q) through

trial and error, we believe this would be a patch rather than a real solution. We show next that
there is a more natural way to fix this problem.

Indeed, the rt(Q) term comes from the difference between ∆−1 and t/Q since when computing
∆t/Q (during decryption and homomorphic multiplication), one obtains 1 − rt(Q)/Q. Therefore,
to solve this issue we propose to modify the original BFV encryption algorithm by encoding [m]t in
the ciphertext in a more natural way as ⌊Q[m]t/t⌉ instead of ∆[m]t. The first benefit is seen in
the decryption bound since now⌊

t

Q
[c0 + c1 · s]Q

⌉
=

⌊
t

Q

(
Q

t
[m]t + v + ε+ kQ

)⌉
= [m]t +

⌊
t

Q
(v + ε)

⌉
+ tk

= [m]t +

⌊
t

Q
(v + ε)

⌉
mod t,

where k ∈ R and ε is the rounding error coming from ⌊Q[m]t/t⌉ = Q[m]t/t + ε, such that
∥ε∥∞≤ 1/2. Therefore the decryption will be correct as long as:

t

Q
∥v + ε∥∞ <

1

2
,
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which is satisfied if

∥v∥∞<
Q

2t
− 1

2
. (8)

Remark 3.1 Note that one can compute ⌊Q[m]t/t⌉ mod Q directly in RNS as long as t and Q are
coprime since ⌊

Q[m]t
t

⌉
=

Q[m]t − [Qm]t
t

= − [Qm]t
t

mod Q.

The second benefit is observed in the addition since now we have

c0 + c1 · s+ c′0 + c′1 · s =
Q

t

(
[m]t + [m′]t

)
+ v + v′ + ε+ ε′

=
Q

t

(
[m+m′]t + tu

)
+ v + v′ + ε+ ε′

=
Q

t
[m+m′]t + v + v′ + ε+ ε′ mod Q.

Hence the noise after a homomorphic addition is bounded by

∥vnew-add∥∞≤ ∥v∥∞ +
∥∥v′∥∥

∞ + 1. (9)

Note that the decryption bound (8) and the addition bound (9) are now exactly the same as
for BGV.

The equations for homomorphic multiplication can be simplified the same way. Denoting ṽ =
v + ε, cttensor is computed as

(c0 + c1 · s) · (c′0 + c′1 · s) =
(
Q

t
[m]t + ṽ + kQ

)
·
(
Q

t
[m′]t + ṽ′ + k′Q

)
=

Q2

t2
[m ·m′]t +

Q

t
vnew-tensor +

Q2

t
knew-tensor,

where

vnew-tensor = [m]t · ṽ′ + [m′]t · ṽ +
t

Q
ṽ · ṽ′ + t(ṽ · k′ + ṽ′ · k),

knew-tensor = [m]t · k′ + [m′]t · k + tk · k′ + rm.

Then after the scaling by t/Q and rounding, similarly to the original BFV scheme, the noise of the
multiplication is given by: vnew-mult = vnew-tensor + vr, and is bounded by:

∥vnew-mult∥∞≤
δRt

2

(
2 ∥ṽ∥∞ ∥ṽ′∥∞

Q
+
(
4 + δRBkey

) (
∥ṽ∥∞ +

∥∥ṽ′∥∥
∞
))

+
1 + δRBkey + δ2RB

2
key

2
. (10)

We will see in Section 5 that this bound is similar to the bound for BGV.
Similarly to [29], we can derive a bound on the noise after having evaluated a binary tree of

depth L from (10). By assuming that the size of the noise of ciphertexts is bounded by V before
the first multiplication, the noise of the resulting ciphertext will be bounded by
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CL
1 V + C2

L−1∑
i=0

Ci
1 ≤ CL

1 V + LC2C
L−1
1

with C1 = δRt(5+ δRBkey) and C2 = (1+ δRBkey+ δ2RB
2
key)/2+Vks where Vks represents the noise

added by the key-switching (see Appendix B).
Last we want to highlight further the similarity between BGV and BFV. Just like in the GHS variant

of BGV, one can encrypt a ciphertext ct in BFV using a slightly larger modulus Qp and then rescale
the ciphertext by 1/p, which will have the same effect as modulus switching in BGV:

ctscale =

⌊
1

p
ct

⌉
mod Q,

so that its noise after scaling is bounded by

∥vscale∥∞≤
∥v∥∞
p

+
1

2p
+

1 + δRBkey

2
.

Therefore, like in BGV, this allows to reduce the noise of a freshly encrypted to (1+δRBkey)/2 ≈
δR/2. Note that the noise benefit of the BFV encryption proposed in our work will become more
significant as the fresh noise is several bits larger than the modulus switching noise. Moreover,
when using GHS or Hybrid key switching, p can be chosen as one of the moduli of the key-switching
basis, and therefore this technique will not impact the selection of Ring-LWE security parameters.

3.2 Modified Homomorphic Multiplication

In the previous subsection, we showed how to instantiate BFV in such a way that it is not worse
than BGV in terms of noise growth. Now the main difference left between the two schemes is in
the complexity of their homomorphic multiplication procedure. In a nutshell, in BGV the tensoring
can be done directly modulo Q while in BFV it must be done without any modular reduction. In
practice, this requires using a second RNS basis P = p1 · · · pk′ such that ct(s) · ct′(s′) does not
wrap around modulo PQ. More precisely, the critical part in practice is to avoid the wraparound
of the dominant term Qtk · k′ modulo P during the scaling (see Section 2.2.2). This requires to
choose P > tδ3RQ/4, which in practice is satisfied by setting k′ = k + 1 for the RNS instantiation.
Algorithm 1 recalls the original homomorphic multiplication procedure of BFV.

We propose a new homomorphic multiplication algorithm, with a reduced computational com-
plexity. Instead of multiplying two ciphertexts modulo Q and dealing with a multiple of Q2 modulo
QP , the idea is to switch one of the two ciphertexts to modulus P so that after the tensoring we
obtain a multiple of PQ that vanishes modulo PQ. As explained in the above paragraph, this
would allow us to reduce the size of P since the original dominant term would now disappear.
More precisely, the procedure starts as usual with two ciphertexts encrypted modulo Q:

ct(s) =
Q

t
[m]t + ṽ + kQ and ct′(s) =

Q

t
[m′]t + ṽ′ + k′Q.

with ṽ = v + ε and ṽ′ = v′ + ε′, like in Section 3.1.
Then one can perform the modulus switching of one of the two ciphertexts, say ct, to convert

it to modulus P by computing

ĉt =

⌊
P

Q
ct

⌉
mod P,

14



Algorithm 1 Original BFV Multiplication Algorithm

procedure OriginalMult(ct = (c0, c1) ∈ R2
Q, ct

′ = (c′0, c
′
1) ∈ R2

Q)

Expand: ct ∈ R2
Q and ct′ ∈ R2

Q → ct ∈ R2
QP and ct′ ∈ R2

QP :
▷ ct(s) = ∆[m]t + v +Qk (mod RQP )
▷ ct′(s) = ∆[m′]t + v′ +Qk′ (mod RQP )
Tensor: cttensor = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) ∈ R3

QP :

▷ cttensor(s) =
Q
t ∆ [m ·m′]t +

Q
t vtensor +

Q2

t ktensor (mod RQP )
ScaleDown: ctscale = ⌊ t

Qcttensor⌉ ∈ R
3
P

▷ ctscale(s) = ∆ [m ·m′]t + vtensor +Qktensor + vr (mod RP )
SwitchBasis: ctscale ∈ R3

P → ctscale ∈ R3
Q:

▷ ctscale(s) = ∆ [m ·m′]t + vtensor + vr (mod RQ)

which satisfies:

ĉt(s) =
P

t
[m]t +

P ṽ

Q
+ kP + εround mod P,

where the rounding error εround = ĉt(s) − Pct(s)/Q has its norm bounded by (1 + δRBkey)/2 as
usual. From there, ĉt is expanded from P to QP , ct′ is expanded from Q to QP , and one can
perform the tensoring as usual to obtain

ĉttensor(s) =
PQ

t2
[m ·m′]t +

P

t
v̂tensor +

QP

t
k̂tensor

+ εround ·
(
Q

t
[m′]t + ṽ′ + k′Q

)
mod PQ,

with v̂tensor = vnew-tensor from Section 3.1 and

k̂tensor = [m]t · k′ + [m′]t · k + rm ∈ R.

Note that this time k̂tensor does not contain a multiple of k ·k′. Then to get back a valid ciphertext
modulo Q, one must scale down the result by t/P , instead of t/Q in the original case, which leads
to

t

P
ĉttensor(s) =

Q

t
[m ·m′]t + v̂tensor +Qk̂tensor +

tεround
P

·
(
Q

t
[m′]t + ṽ′ + k′Q

)
.

After the rounding, the multiple of Q will vanish modulo Q and one will have to take into
account the rounding error term vr of norm bounded by (1 + δRBkey + δ2RB

2
key)/2, which adds

to the noise, like in the original BFV scheme. Therefore, the noise of this variant of homomorphic
multiplication is bounded by

∥v̂new-mult∥∞≤ ∥vnew-mult∥∞+
tδR(δRBkey + 1)

2P

(
∥ṽ∥′∞ +

Q(δRBkey + 4)

2

)
. (11)

Notice that the only difference in the noise growth between Equation (10) and Equation (11) is
due to rounding error εround occuring during the first modulus switching. However, we can control
the size of this noise with P . As explained in Section 3.1, the norm of vnew-mult is dominated by
δ2RtV , where V is the bound on the size of the noise of ṽ and ṽ′. If we look carefully at the other
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term and choose P ≈ Q, it will be dominated by δ3Rt/4. Since the noise of a fresh ciphertext,
even scaled-down after encryption, has always a size larger than δR/2, this error term will add at
most half a bit to the noise of the first multiplication in the worst case, which can be considered
as neglible in practice as a larger cushion is typically added to the heuristic expression for δR, or,
more precisely, δ3R in this case. This means that one can choose P ≈ Q and hence k′ = k, instead
of k′ = k + 1 in the original case, which reduces the size of P and still achieves the same noise
growth as in Section 3.1. We summarize our new multiplication algorithm in Algorithm 2.

Algorithm 2 New BFV Multiplication Algorithm

procedure NewMult(ct = (c0, c1) ∈ R2
Q, ct

′ = (c′0, c
′
1) ∈ R2

Q)

ModSwitch: ct ∈ R2
Q → ĉt ∈ R2

P

Expand: ĉt ∈ R2
P → ĉt ∈ R2

QP and ct′ ∈ R2
Q → ct′ ∈ R2

QP

▷ ĉt(s) = P
t [m]t +

P
Q ṽ + Pk + εround (mod RQP )

▷ ct′(s) = Q
t [m

′]t + ṽ′ +Qk′ (mod RQP )
Tensor: ĉttensor = (ĉ0 · c′0, ĉ0 · c′1 + ĉ1 · c′0, ĉ1 · c′1) ∈ R3

QP :

▷ ĉttensor(s) =
QP
t2

[m ·m′]t +
P
t v̂tensor +

QP
t k̂tensor (mod RQP )

ScaleDown: ctscale = ⌊ t
P ĉttensor⌉ ∈ R

3
Q

▷ ctscale(s) =
Q
t [m ·m′]t + v̂tensor + vr (mod RQ)

Remark 3.2 Notice that since one must scale the tensored ciphertext by t/P instead of t/Q, it
can be done directly in the basis Q. Therefore the homomorphic multiplication procedure requires
2 basis extensions from Q to P for ct = (c0, c1) in the beginning, 4 more basis extensions to
expand the two ciphertexts ĉt = (ĉ0, ĉ1) and ct′ = (c′0, c

′
1) from P and Q, respectively, to PQ.

Finally one needs 3 additional basis extensions from PQ to Q for ĉttensor ∈ R3
PQ to perform the

downscaling modulo Q. Thus it requires a total of 9 basis extensions instead of 4+3+3 = 10 in the
original BFV algorithm. Moreover, since P is slightly smaller, each basis extension will be cheaper
to compute.

Leveled BFV multiplication. If one wants to make BFV even closer to BGV in terms of per-
formance, one could consider a “leveled” approach to BFV by working with ciphertexts modulo
Qℓ = q1 · · · qℓ and performing modulus switching as the computation progresses. However, as in
BGV, one would have to manage ciphertexts at different levels and deal with more challenging noise
estimation.

To keep the usability of BFV, we propose instead a “leveled” multiplication that pre-scales both
ciphertexts by Qℓ

Q (using internal modulus switching to Qℓ), and then multiplies the result by Q
Qℓ

after the multiplication procedure. In this case, the ciphertexts will always stay modulo Q outside
the multiplication procedure, but the multiplication will be done internally modulo Qℓ < Q and
hence will be more efficient.

In this case, the noise of input ciphertexts after internal modulus switching from Q to Qℓ will
be equal to

v̂ =
Qℓ

Q
v + εround and v̂′ =

Qℓ

Q
v′ + ε′round,

where εround and ε′round have their norm bounded by (1 + δRBkey)/2 ≈ δR/2. On the one hand,
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# NTTs # integer-mult # floating-point-oper

MultOld 14k + 7 (10k2 + 26k + 9)n (10k + 3)n

MultNew 14k (9k2 + 15k)n 7kn

MultNewLeveled 14ℓ (4kℓ+ 5ℓ2 + 2k + 18ℓ)n (2k + 5ℓ)n

Table 1: Complexities of different multiplication methods.

the main consideration here is to choose ℓ such that Qℓ
Q ∥v∥∞ remains significantly larger than

∥εround∥∞ ≈
δR
2 , so that the noise brought about by the modulus switching procedure will not

significantly impact the overall noise growth. This is equivalent to

∥v∥∞ ≫
QδR
2Qℓ

and ∥v∥′∞ ≫
QδR
2Qℓ

,

or in practice

∥v∥∞ > 8
QδR
Qℓ

and ∥v∥′∞ > 8
QδR
Qℓ

. (12)

On the other hand, in order to gain as much as possible in efficiency, Qℓ must be chosen as the
smallest modulus satisfying inequalities (12). Theoretically this requires to have a precise estimate
of the average (or lower bound within a certain confidence interval) noise size. But in practice it is
enough to add a heuristic “cushion” to our worst-case bound. See Appendix D for details.

Algorithm 3 New Leveled BFV Multiplication Algorithm

procedure LeveledNewMult(ct = (c0, c1) ∈ R2
Q, ct

′ = (c′0, c
′
1) ∈ R2

Q)

ModSwitchDown: ĉt = ⌊Qℓ
Q ct⌉ ∈ R2

Qℓ
and ĉt

′
= ⌊Qℓ

Q ct′⌉ ∈ R2
Qℓ

▷ v̂ = Qℓ
Q v + εround and ▷ v̂′ = Qℓ

Q v′ + ε′round

ĉtm = NewMult(ĉt, ĉt
′
) ∈ R3

Qℓ

▷ ĉtm(s) =
Qℓ
t [m1m2]t + v̂m (mod RQℓ

)

ModSwitchUp: ctm = ⌊ Q
Qℓ
ĉtm⌉ ∈ R3

Q

▷ ctm(s) =
Q
t [m1m2]t + vm (mod RQ)

▷ vm =
Q
Qℓ

v̂m + vr

Remark 3.3 Note that this “leveled” optimization can be equally applied to key switching. The
only difference in this case would be to ensure that the noise of the scaled ciphertext remains larger
than the noise brought about by the key-switching procedure itself.

Remark 3.4 Modulus switching from Q to Qℓ and then from Qℓ to Pℓ in Algorithm 3 can be com-
bined into a single modulus switching from Q directly to Pℓ. This reduces the number of integer
multiplications from (kℓ + ℓ2 + 2ℓ)n to (kℓ + ℓ)n. Note that an approximate modulus switching
(instead of an exact one with a floating-point correction technique from [23]) can be employed by
adding extra log k bits to the noise estimate used for reducing the number of levels inside homomor-
phic multiplication. Both exact and approximate procedures for switching the moduli of ciphertexts
between arbitrary RNS bases are described in Appendix E.
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Table 1 summarizes the computational complexities of different multiplication algorithms by
assuming that the extension from Q to QP is performed using the technique from [23] with floating-
point operations.

Lazy scaling in BFV multiplication. An additional optimization can be implemented by
noticing that tensoring and scaling can be separated to optimize some evaluation circuits. For
example, consider the inner product circuit of two vectors of ciphertexts. We evaluate it by multi-
plying (tensoring and scaling) the pairs of ciphertexts and then adding the results (mod RQ). It
is more efficient to do this in a different way: first we apply the tensoring subroutine to the pairs
of ciphertexts, then add the results (mod RQP ), and finally perform the expensive scaling subrou-
tine only once. Indeed, after tensoring we already have the information about the multiplicative
noise vtensor, thus changing the order of scaling and additions does not affect the vtensor noise.
Moreover, as we perform the scaling down only once instead of doing it for each pair of ciphertexts,
the total noise from the inner product is actually reduced. We call this technique lazy scaling and
describe the pseudocode in Appendix F. The experimental results in Appendix G.3 suggest that
this optimization can speed up inner products by more than 2x in practice.

3.3 Improved Decryption in the HPS RNS variant

A significant practical limitation of the HPS approach is that high-precision (“long double” or
even quad-precision) floating-point arithmetic is required to support larger CRT moduli [23]. We
introduce a general-purpose digit decomposition technique (inspired by digit decomposition in key
switching) and apply it to the HPS decryption procedure to add support for arbitrary CRT moduli
using only regular double-precision floating-point arithmetic, hence overcoming this limitation of
the HPS variant.

The idea of HPS scaling [23] for decryption can be briefly explained as follows: for x ∈ ZQ with
CRT representation (x1, . . . , xk) we want to compute an integer y = ⌈t/Qx⌋ ∈ Zt, and use a CRT
composition formula to derive the following expression:

y :=

⌈
t

Q
x

⌋
=


 k∑

i=1

xi ·

[(
Q

qi

)−1
]
qi

· Q
qi
· t
Q

− u ·Q · t
Q

 =

=


 k∑

i=1

xi ·

[(Q

qi

)−1
]
qi

· t
qi


t

=

[(
k∑

i=1

xi · ωi

)
+

⌈
k∑

i=1

xi · θi

⌋]
t

,

where

[(
Q

qi

)−1
]
qi

· t
qi

= ωi + θi with ωi ∈ Zt and θi ∈
[
−1

2
,
1

2

)
.

As we can only store approximate values θ̃i = θi+ϵi, the magnitude of the error term |ϵ′|= |
∑

i xiϵi|
in the fractional part is limited by kqmϵm, where qm = maxi(qi) and ϵm = maxi(ϵi). If we restrict
the floating-point precision to “doubles”, which are natively supported by modern CPUs, we have
to introduce a constraint kqm < 251. To support larger CRT moduli, we need “long doubles” or
even quad-precision arithmetic: long doubles are needed for CRT moduli from 47 to 58 bits, and
quad-precision floats are needed for higher CRT moduli [23].
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Our main idea is to perform digit decomposition, somewhat similar to how digit decomposition
is done in BV key-switching, to replace the factor qm with a smaller digit of it. For base Bs ∈ Z,
Bs ≥ 2, let ds = ⌈log(qm)/log(Bs)⌉. Let xi =

∑ds−1
j=0 xi,j · Bj

s be the Bs base decomposition of xi.
Then the expression for y can be rewritten as

y =


 k∑

i=1

ds−1∑
j=0

xi,j ·

 t

qi
·

[(Q

qi

)−1
]
qi

·Bj
s


qi


t

=

 k∑
i=1

ds−1∑
j=0

[xi,j · ωi,j ]t

+


k∑

i=1

ds−1∑
j=0

xi,j · θi,j


t

,

where
t

qi
·

[(Q

qi

)−1
]
qi

·Bj
s


qi

= ωi,j + θi,j , with ωi,j ∈ Zt and θi,j ∈
[
−1

2
,
1

2

)
.

Note that ωi,j and θi,j are the new precomputation factors instead of ωi and θi.

Error analysis. The magnitude of the error term |ϵ′|= |
∑

i,j xij ϵi,j | is now limited by
∣∣∣∑i,j xi,jϵi,j

∣∣∣ <
kdsBsϵm. In practice, our moduli qi are normally bounded by 64 (or often by 60) bits. We have
already considered the case of kqm < 251. If kqm > 251, we can take ds = 2, Bs = 2⌈log2 qm/2⌉. Then
|ϵ′|< 2−19k < 1/4 for k < 217. Hence the floating-point error will have no effect on the result for
any practically reasonable value of k.

Complexity analysis. The procedure takes kds floating-point multiplications, kds modular in-
teger multiplications, some modular additions, and one rounding to compute ⌈u⌋. However, if
tkdsBs < 264, then we can replace modular multiplications and modular additions by plain integer
multiplications and additions respectively, and do one modular reduction at the end.

Remark 3.5 Note that this digit decomposition technique can be applied to other mixed integer/floating-
point RNS operations to reduce precision requirements for floating-point arithmetic or avoid extra
noise due to floating-point rounding. For instance, it can be used in the scaling for homomorphic
multiplication.

4 More Usable BGV Scheme

The practical use of the BGV scheme requires accurate dynamic noise estimation to decide when
the modulus operation should be executed, and what scaling factor should be chosen for modulus
switching [22]. Each modulus switching decision may significantly impact the noise not only for
the current operation, but also for all subsequent operations. An error in a noise estimate may
eventually lead even to a decryption failure. Therefore, fine-tuned noise estimation techniques
are used to estimate the noise for various operations (see [25] for a more detailed discussion). In
contrast, the BFV scheme is much more robust to inaccuracies in noise estimation and typically
only requires an upper bound on the error for the desired multiplicative depth. This robustness
of BFV is related to the use of the MSD encoding and scaling down by a large factor Q/t during
BFV homomorphic multiplication, and the “fragility” of BGV is caused by the LSD encoding and
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scaling down by a small factor, comparable in magnitude to the noise incurred in operations after
the previous modulus switching. For this reason, many modern homomorphic encryption libraries
implement BFV as the scheme for finite fields, while only HELib and PALISADE (since quite
recently) provide efficient implementations of BGV.

We present an alternative approach for instantiating BGV, which does not require dynamic noise
estimation. For this instantiation, one only needs to specify the multiplicative depth of the com-
putation, maximum number of additions per multiplicative level, and the number of additions and
automorphisms before first multiplication. Then all moduli QL, QL−1, . . . , Q1, Q0 are chosen so
that a small, constant level of noise can be maintained throughout the computation. All modulus
switching operations are automatically performed right before a homomorphic multiplication. Con-
ceptually, this BGV instantiation is similar in usability to BFV, where only the multiplicative depth
needs to be specified upfront and all “modulus switching” operations are performed automatically.

The logic for choosing the moduli is as follows. We start with a fresh encryption that has a noise
∥vfresh∥∞ = Berr(2δRBkey + 1). Then we perform automorphism operations and additions, and
apply modulus switching right before the first multiplication. This additional modulus switching
before first multiplication allows us to reset the noise to a value comparable to the modulus switching
noise, which will be the constant noise level ∥vc∥∞ we will maintain throughout the computation.
This can be expressed as

QL

QL+1
((nadd + 1) ∥vfresh∥∞ + nks ∥vks∥∞) +

1 + δRBkey

2
≤ ∥vc∥∞ ,

where nadd and nks are the numbers of additions and automorphism operations, respectively, that
are performed before first multiplication, and ∥vks∥∞ is the bound on key switching noise. Note that
here we introduced a new level and corresponding new modulus QL+1 to account for an extra level
we added before first multiplication. It is best to choose QL+1/QL such that ∥vc∥∞ ≈ 1 + δRBkey

to achieve the smallest constant error because this error will allow us to minimize the subsequent
values of Qi+1/Qi for most practical scenarios, hence resulting in the minimum value of ciphertext
modulus QL+1 (see Appendix C.1 for more details, and more general expression for optimal ∥vc∥∞).

Then for multiplication levels (from L to 1), we have to satisfy

Qi

Qi+1

(
(n′

add + 1) δRt
2 (2 ∥vc∥2∞ + 2 ∥vc∥∞ + 1) + (n′

ks + 1) ∥vks∥∞
)
+

1+δRBkey
2 ≤ ∥vc∥∞ ,

where n′
add and n′

ks are the maximum numbers of additions and key switching operations, re-
spectively, allowed per any multiplication level (going from L down to 1). For simplicity we use
these maximum values across all levels so that Qi+1/Qi could have roughly same value for all
i ∈ {1, . . . , L− 1}. Note that for Hybrid key switching and relatively large plaintext moduli, such
as t = 216+1, which is often used for CRT packing, the multiplication noise is always much higher
than ∥vks∥∞ (see derivations in Appendix C.2). Hence for this case we can rewrite the expression
as

Qi

Qi+1

(
(n′

add + 1)
δRt

2
(2 ∥vc∥2∞ + 2 ∥vc∥∞ + 1)

)
+

1 + δRBkey

2
≤ ∥vc∥∞ .

The last modulus Q0 is chosen such that decryption is correct for a ciphertext with noise
bounded by ∥vc∥∞. This implies that Q0 > 2t ∥vc∥∞ − t.
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It is easy to show that once L, nadd, nks, n
′
add, and n′

ks (only needed for small t) are given, all
moduli Qi can be derived. First we compute Q0, then all values Q1, . . . , QL, and finally we can
find QL+1.

This logic is simple to implement and avoids any dynamic noise estimation during the com-
putation. It is also robust to inaccurate estimates as long as the upper bound for δR is chosen
appropriately, which is very similar to what is done for BFV. There is a cost for this simplicity and
robustness. The moduli QL+1 may be larger than the values obtained using the more granular ap-
proach with dynamic noise estimation [25] because we use the maximum values of n′

add and n′
ks over

all intermediate levels. However, our experimental results show that this instantiation of BGV can
be significantly faster than the improved BFV implementation described in Section 3.

Remarks on the RNS instantiation. Recall that for original BGV, we choose Q = q0 · · · qL and
denote Qi = q0 · · · qi for 0 ≤ i ≤ L, where all qi = 1 mod 2N and co-prime to each other. In the
case of our BGV variant, an extra qL+1 is introduced to reset the “fresh” noise to modulus switching
noise. It is easy to show that for this setup, Q0 = q0, Qi+1/Qi = qi+1, and QL+1/QL = qL+1.

The expressions for finding q0, qi, qL+1, where i ∈ {1, . . . , L}, can be written as follows:

q0 > 2t ∥vc∥∞ − t, (13)

qi > 2

(
(n′

add + 1)
δRt

2
(2 ∥vc∥∞ + 2 +

1

∥vc∥∞
) + (n′

ks + 1)
∥vks∥∞
∥vc∥∞

)
, (14)

qL+1 > 2

(
(nadd + 1)

∥vfresh∥∞
∥vc∥∞

+ nks
∥vks∥∞
∥vc∥∞

)
,

where we take ∥vc∥∞ = 1 + δRBkey.

Handling crosslevel operations and scaling factors. The GHS variant implemented in HE-
Lib uses ciphertext-specific scaling factors, which introduces some complications that may affect
the usability and may require additional scalar multiplications to bring two ciphertexts to the same
scaling factor. In our BGV variant, we chose a simpler approach where the same scaling factor is
used for all ciphertexts at a specific level, which reduces the number of scalar multiplications. This
approach was originally introduced for the CKKS scheme in [27], and in our work we adapt it to
BGV.

5 Comparison of BFV and BGV

This section presents both theoretical and experimental comparison of BFV and BGV.

5.1 Noise Growth

When comparing BGV and BFV, it is convenient to use the leveled approach of BGV, first comparing
Q0, then Qi, and finally QL+1.

For Q0, our modified variant of BFV has identical noise as BGV, i.e., Equation (8) is exactly the
same as Equation (13).

For Qi+1/Qi, which corresponds to each multiplicative level, the dominant term in the BFV ex-
pression given by Equation (11) is δ2RtBkeyV , where V is the largest of the errors in two multiplied
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ciphertexts. For BGV, Equation (14) suggests that the dominant term is 2δ2RtBkeyV . In other words,
the expressions for BFV and BGV are identical except for the extra multiplicative factor of 2. This
factor appears in BGV because we ensure that at each level the downscaled noise matches the added
modulus switching noise, keeping the noise level constant at twice the modulus switching noise (see
Appendix C.1 for details). In the case of BFV, the quadratic noise (product of prior noises for each
ciphertext) is negligible as we downscale the ciphertext by a large factor Q/t, and we only observe
the pure modulus switching noise. In other words, BFV has a small benefit of using one bit less per
multiplication level.

There is also an extra advantage of BFV for small plaintext moduli, e.g., t = 2. As the analysis
in Appendix C.2 shows, the key switching noise in this case becomes comparable to multiplication
noise for BGV, which implies higher values of Qi+1/Qi. In contrast, the key switching noise may only
affect the initial level in BFV, as afterwards the accumulated noise from prior multiplications will be
much higher than additive key switching noise, which is independent of current ciphertext noise.
When we switch to larger plaintext moduli, this BFV advantage disappears as the key-switching
noise in BGV becomes negligible compared to multiplication noise (as shown in Appendix C.2).

Using the (L+ 1)-th level (qL+1 in the RNS version) is preferred in BGV to achieve the smallest
constant noise (twice the modulus switching noise). If (L+ 1)-th level is not used, then the fresh
noise will make each Qi+1/Qi larger by a factor ∥vfresh∥∞ /∥vc∥∞ ≈ 2Berr ≈ 37. Although one
could use an auxiliary modulus in hybrid key switching during encryption instead (see the end
of Section 3.1), extra noise can be accumulated from additions and/or key switching operations
performed before first multiplication, which would increase all subsequent Qi+1/Qi. So the least
level of constant noise in BGV, and hence smallest Qi+1/Qi, can be guaranteed only by introducing
a relatively small extra “noise budget” for pseudo-level L+1. Note that in BFV it is best to use an
auxiliary modulus to reset the fresh noise to smaller modulus switching noise, without increasing
the ciphertext modulus (see Section 3.1). Hence no pseudo-level L + 1 is needed in BFV, which is
another small advantage of BFV over BGV.

In summary, the improved variants of BFV and BGV presented in this work have very similar noise
growth, but BFV has some minor advantages over BGV, resulting in somewhat reduced ciphertext
moduli needed to support the same computations.

5.2 Computational Complexity

The main difference between BFV and BGV in terms of computational complexity is due to the
scaling method used in the multiplication operation. As was previously mentioned, BFV uses the
MSD encoding and scales down the tensor product by a large Q/t factor, while BGV uses the LSD
encoding technique to scale the tensor product only by a relatively small factor, comparable to the
noise of previous multiplication. Considering that the noise growth is very similar in both schemes,
one can expect that the computational complexity of BFV multiplication will be significantly higher.
The purpose of this section is to quantify this difference, and examine the effect of plaintext moduli
on this difference. Note that all other operations, such as addition and automorphism, use the
same approach in both schemes, and do not have any significant difference in terms of theoretical
complexity. Hence we focus on the operation of multiplication.

The analysis in Section 3.2 shows that our leveled BFV multiplication takes 14ℓ NTTs and
(4kℓ+5ℓ2+2k+18ℓ)n integer multiplications (we ignore for simplicity a much smaller contribution
of floating-point operations). We also add the computational cost of hybrid key switching used for
relinearization as there is a difference in its cost between BFV and BGV. For key-switching we assume
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that the ciphertext element is decomposed into dnum = ℓ/α digits, i.e. each digit is considered
modulo α moduli. The cost of relinearization for BFV is 4ℓ+2α NTTs and n(3αℓ+2dnumℓ+2α+5ℓ)
integer multiplications (see Appendix B for details). Here, for simplicity of analysis we assume that
ℓ is the same for leveled BFV multiplication and subsequent relinearization. The total cost of
multiplication and relinearization in BFV is 17ℓ + 2α NTTs and n(4kℓ + 5ℓ2 + 2k + 23ℓ + 3αℓ +
2dnumℓ+ 2α) integer multiplications.

In the case of our BGV variant, the total cost of multiplication includes two modulus switching
operations for input ciphertexts, the tensor product, and, finally, the relinearization. The cost of
modulus switching is 4(ℓ′ +1) NTTs and 4n(ℓ′ +2) integer multiplications, where ℓ′ is the number
of CRT moduli after modulus switching. The cost of tensor product is 4nℓ′ integer multiplications.
The cost of relinearization in the case of BGV is: 4ℓ′ + 2α′ NTTs and n(3α′ℓ′ + 2dnumℓ

′ + 4α′ + 7ℓ′)
integer multiplications. Hence the total cost of multiplication and relinearization is 8ℓ′ + 4 + 2α′

NTTs and n(3α′ℓ′ + 2dnumℓ
′ + 4α′ + 15ℓ′ + 8) integer multiplications.

One can observe that the number of NTTs needed for BFV multiplication appears to be 2x or
even higher than for BGV. But we should keep in mind that typically ℓ′ > ℓ. For example, when
t = 2, we can even have ℓ′ > 3ℓ since in BFV we work with large (60-bit) moduli vs the moduli
of size δ2Rt (less than 20 bits) in BGV. On the other hand, the cost of integer multiplications in
BFV appears to be significantly higher due to multiple basis extension operations. The above may
suggest that the complexity of BFV could be lower than for BGV at small t, while more significant
benefits of BGV are expected as t is increased, when the ratio of ℓ′/ℓ becomes smaller than 2, which
corresponds to the typical value of t = 216 + 1 used for CRT packing. One could argue that this is
essentially due to the assumption that the computations modulo each CRT moduli are implemented
on different machine words, which is typically true for practical implementations of homomorphic
encryption. As a consequence, while BGV might be practically slower than BFV at small t for
classical implementations, we stress that this is only due to the way the CRT representation is
usually implemented and that BGV still has a lower theoretical complexity than BFV even for small
plaintext moduli.

Remark 5.1 To reduce even further the computational cost of BGV, one could trunk some CRT
moduli together in the same 64-bit machine word. This would allow one to divide the number of
moduli ℓ′, and thus of NTTs, by a factor of 2 when the moduli are smaller than 30 bits (t ≈ 211)
and by a factor of 3 when they are smaller than 20 bits (t ≈ 2).

5.3 Software Implementation and Experimentation Setup

We implemented all variants of BFV and BGV in PALISADE v1.10.4. The evaluation environment
was a commodity desktop computer system with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
and 64 GB of RAM, running Ubuntu 18.04 LTS. The compiler was g++ 9.3.0. All experiments
were executed in the single-threaded mode.

PALISADE includes the implementation of both BEHZ and HPS variants of BFV. The runtime
results and noise growth for both variants are roughly the same (as shown in Section 5.4). We chose
the HPS variant as the main RNS variant for our BFVmodifications due to its relative simplicity. We
denote our modified BFV variant as BFV-NEW, our modified BFV variant with leveled multiplication
as BFV-NEW-LVL, and our BGV variant as BGV-NEW. Note that our implementation does not trunk
small CRT moduli in BGV for small values of t, i.e., it does not include the optimization suggested
in Remark 5.1.
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Figure 1: Comparison of homomorphic multiplication runtimes for BFV and BGV variants at various depths
as a function of plaintext modulus t. Hybrid key switching with 3 digits, i.e., dnum = 3, was used, and N
was set to 215.
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5.4 Performance Comparison

Figure 1 illustrates the comparison of homomorphic multiplication runtimes for the BFV and
BGV variants developed in this work to the baseline for the prior state-of-the-art BFV implementation
of the HPS variant [23]. The first major observation is that BFV-NEW-LVL outperforms BGV-NEW

for small plaintext moduli (at least up to depth 20), while BGV-NEW runs significantly faster than
BFV-NEW-LVL for intermediate and large plaintext moduli, i.e., t = 216 + 1 and t = 230 − 218 + 1.
This observation is in agreement with our theoretical complexity analysis in Section 5.2 since our
implementation does not include the optimization suggested in Remark 5.1, i.e., small moduli are
not trunked together. The second significant observation is that our best BFV variant, labeled as
BFV-NEW-LVL, speeds up the runtime of deeper multiplications (depth-20 for t = 2 and depth-10
for higher t) by 3x-4x, as compared to the BFV baseline.

Table 2 shows the comparison of noise growth and runtimes for a binary tree computation
ranging in multiplicative depth from 1 to 7. First, we want to point out that the noise growth
and runtimes for the BEHZ and HPS variants are very close, with HPS having somewhat better
runtime efficiency, which agrees well with the noise analysis in [7] and runtime comparison in [3].
In view of this, we chose HPS as the main variant for our BFV improvements (but similar gains
can be expected for the BEHZ variant). Our next observation is that BGV has a slightly faster
noise growth, as compared to all BFV variants, with the difference in noise increasing with depth
(as predicted in Section 5.1). Note that the original BFV variants have somewhat higher noise
(by almost constant number of bits) as compared to our BFV variants because they do not use
the technique of encrypting with a slightly larger modulus Qp, followed with scaling by p. Our
final observation is that BGV-NEW has a minor speed-up over the best BFV variant for the chosen
plaintext modulus t = 216 +1. Note that the speed-up is observed only for this or higher plaintext
moduli, with BFV-NEW-LVL becoming faster for t = 2 (see Appendix G.1 for details). Table 6 in
Appendix G.1 also shows the more significant effect of rt(Q) on noise magnitude at larger plaintext
moduli for the original BFV, as theoretically predicted in Section 3.

Table 3 illustrates the comparison of noise growth and runtimes for a polynomial evaluation
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Table 2: Comparison of noise growth and runtimes of BFV and BGV variants for a benchmark

computation
∏2k

i=1 xi. Hybrid key switching with 3 digits, i.e., dnum = 3, was used, t was set to 216+
1, and λ ≥ 128. Here, e denotes the current noise magnitude, logQ, the size of the BFV ciphertext
modulus, and logQL, the equivalent ciphertext modulus in BGV without the last CRT modulus
qL+1.

Original BFV Our BFV Our BGV

params BEHZ HPS params BFV-NEW BFV-NEW-LVL params BGV-NEW

k logN log qi logQ log e time(s) log e time(s) logN log qi logQ log e time(s) log e time(s) logN log qi logQL log e time(s)

1 13 31 62 45 0.011 44 0.01 13 59 59 36 0.004 35 0.004 13 33 58 34 0.005

2 13 47 94 66 0.034 66 0.03 13 45 90 63 0.025 63 0.025 13 33 91 67 0.02

3 14 43 129 102 0.24 103 0.21 14 41 123 95 0.19 96 0.18 13 33 124 100 0.063

4 14 53 159 131 0.52 132 0.45 14 52 156 125 0.4 125 0.39 13 33 157 133 0.17

5 14 48 192 158 1.41 161 1.2 14 47 188 155 1.07 155 1.04 14 34 196 171 0.8

6 14 56 224 189 2.85 189 2.44 14 55 220 184 2.18 184 2.13 14 34 230 205 2.03

7 14 51 255 221 7.61 220 6.51 14 50 250 214 5.98 214 5.73 14 34 264 239 4.86

benchmark. Our first observation is that BGV-NEW has a significantly higher noise than all BFV vari-
ants because the moduli qi in this case require extra room for the additions at each level (the
deepest level has the most significant effect on all qi’s). BGV-NEW again has a minor advantage in
terms of runtime as compared to our best BFV variant for t = 216 + 1, but BFV-NEW-LVL becomes
faster when we decrease t to smaller values (see Appendix G.2 for details). Note that for k = 8,
BGV-NEW has a smaller ring dimension than all BFV variants, which is an effect of the automated
logic for hybrid key switching used in the implementation, rather than a result of better noise
growth in BGV (since logQ in BFV is significantly smaller than logQL in BGV).

Table 3: Comparison of noise growth and runtimes of BFV and BGV variants for a benchmark
computation

∏k
i=0 aix

i: |ai|< 16. Hybrid key switching with 3 digits, i.e., dnum = 3, was used, t was
set to 216+1, and λ ≥ 128. Here, e denotes the current noise magnitude, logQ, the BFV ciphertext
modulus, and logQL, the equivalent ciphertext modulus in BGV without the last CRT modulus
qL+1.

Original BFV Our BFV Our BGV

params BEHZ HPS params BFV-NEW BFV-NEW-LVL params BGV-NEW

k logN log qi logQ log e time(s) log e time(s) logN log qi logQ log e time(s) log e time(s) logN log qi logQL log e time(s)

2 13 34 68 41 0.012 40 0.01 13 32 64 35 0.009 36 0.009 s 13 38 68 38 0.007

4 13 50 100 76 0.034 76 0.03 13 48 96 67 0.026 67 0.025 s 13 38 107 74 0.024

8 14 45 135 106 0.25 107 0.22 14 43 129 100 0.19 100 0.18 s 13 39 148 116 0.061

16 14 56 168 138 0.53 138 0.46 14 54 162 130 0.4 130 0.33 s 14 41 197 163 0.28

32 14 50 200 166 1.43 167 1.22 14 49 196 161 1.1 161 0.78 s 14 42 244 208 0.61

48 14 58 232 197 2.16 198 1.85 14 57 228 191 1.66 190 1.22 s 14 42 286 251 1.07

64 14 58 232 199 2.89 199 2.48 14 57 228 191 2.22 191 1.54 s 14 43 293 256 1.27
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6 Concluding Remarks

Our theoretical analysis and experimental results show that the modified BFV variant has somewhat
better noise growth than BGV for all plaintext moduli, though previous results suggested that BGV has
a better noise growth than BFV for larger plaintext moduli [14, 15]. This result is mainly due to
our modification of the BFV encryption procedure. The other major conclusion is that, when the
moduli of BGV are not trunked together, BFV is significantly faster for small plaintext moduli, e.g.,
t = 2, with BGV becoming faster as the plaintext modulus is increased.

The variant of BGV presented in this paper was mainly motivated by improving the usability of
the scheme, which is known to be more challenging for use than BFV. From this perspective, this
BGV variant is as easy to use as the implementation of BFV in PALISADE. However, the usability also
has some performance cost, e.g., we have to choose the size of CRT moduli more conservatively. It
would be interesting to examine how the performance of our BGV variant compares to the BGV design
with dynamic noise estimation, which is implemented in HElib. It would not be fair to compare the
PALISADE implementation directly with the HElib implementation as one would mostly observe
the effect of differences in the efficiency of primitive ring operations, such as NTTs, rather than the
differences between the BGV variants. For a fair comparison, a PALISADE implementation of the
dynamic-noise BGV variant would be needed. Another potential improvement for BGV is to consider
the idea of trunking multiple small CRT moduli mentioned in Remark 5.1. We plan to examine
both ideas in our future work.
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A Unified View of BGV and BFV

The BGV and BFV schemes can be viewed as different modes of the same unified scheme using the
methodology described in [5, 16]. The BGV encryption corresponds to the Least Significant Digit
(LSD) message encoding, and the BFV encryption can be interpreted as the Most Significant Digit
(MSD) message encoding. One can losslessly switch (without increasing the noise) between the two
encodings as long as Q and t are coprime, using the techniques discussed in Appendix A of [5]. This
unified scheme can support three modes based on the type of tensor product in the homomorphic
multiplication. The first mode is LSD × LSD, i.e., it corresponds to the product of an encryption
in the LSD encoding by an encryption in the LSD encoding, and represents the BGV scheme. The
MSD × MSD mode directly corresponds to the BFV scheme. The last (intermediate) mode, where
we deal with the LSD × MSD product, is a variant of BGV discussed in [16]. Note that both the
LSD × LSD and LSD × MSD modes incur the BGV noise growth while the MSD × MSD mode
has the BFV noise growth behavior. This unified view simplifies the analysis of noise growth and
computational complexity as we can focus on the comparison of homomorphic multiplication and
encryption/decryption procedures between BGV and BFV. All other operations incur essentially the
same noise growth. This unified view also helps understand the differences between the schemes,
e.g., the better noise growth in BGV for large plaintext moduli reported in [15].

B Key Switching

In this section we recall different variants of key switching used in the litterature and compare their
efficiency in terms of noise growth and performance. Key-switching procedures can be applied
equivalently to BGV or BFV ciphertexts. In the following, we detail them for BGV ciphertexts.

Let ctA = (cA0 , c
A
1 ) be a ciphertext encrypted modulo Q ∈ {Qi}Li=0 under a public key pkA

whose associated secret key is skA = sA, we have

cA0 + cA1 · sA ≡m+ tv mod Q.

It is possible to transform ctA into another cipertext ctB which will decrypt under a secret
key skB = sB. The high level idea is to multiply cA1 by an encryption of sA under a public key
associated to sB

ksA→B =
(
[sA + a · sB + te]Q ,−a

)
∈ R2

Q

with a ∈← UQ and e← χerr. Then by setting

ctB =
([

cA0 + cA1 · (sA + a · sB + te)
]
Q
,
[
−cA1 · a

]
Q

)
∈ R2

Q,

we would have

cB0 + cB1 · sB ≡ cA0 + cA1 · (sA + a · sB + te)− cA1 · a · sB
≡ cA0 + cA1 · sA + tcA1 · e
≡m+ t(v + cA1 · e) mod Q,

which is exactly what we wanted. Unfortunately, this cannot be done directly this way because the
added noise cA1 · e would be too high: ∥cA1 · e∥∞≤ δRQBerr/2 > ⌊(Q− t)/2t⌋. Therefore one has
to find ways to reduce the size of the product cA1 · e.
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B.1 Different Variants of Key Switching

B.1.1 Brakerski-Vaikuntanathan

Since the problem of the size of cA1 · e comes mainly from cA1 whose coefficients can be of size Q/2,
Brakerski and Vaikuntanathan proposed to decompose cA1 into small coefficients [11]. This can be
done by using the decomposition in radix base ω ≪ Q. Let ℓω,Q = ⌊logω(Q)⌉ + 1. We define the
functions Dω,Q as the decomposition in radix base ω and Pω,Q that retrieves powers of ω lost within
the decomposition process. So that for any a ∈ R

Dω,Q(a) =

(
[a]ω,

[⌊a
ω

⌉]
ω
, . . . ,

[⌊ a

ωℓω,Q−1

⌉]
ω

)
∈ Rℓω,Q

ω

Pω,Q(a) =
(
[a]Q, [aω]Q, . . . , [aω

ℓω,Q−1]Q

)
∈ Rℓω,Q

Q

Lemma B.1 For any (a, b) ∈ R2, ⟨Dω,Q(a),Pω,Q(b)⟩ ≡ a · b mod Q.

Therefore if we use a key-switching key

ksBVA→B =
([
Pω,QL

(sA) +
−→a · sB + t−→e

]
QL

,−−→a
)
∈ Rℓω,QL

QL
×Rℓω,QL

QL

with −→a ∈← U ℓω,Q

Q and −→e ← χ
ℓω,Q
err , we can compute

ctB =
([

cA0 +
〈
Dω,Q(c

A
1 ), ks

BV
A→B,0

〉]
Q
,
[〈
Dω,Q(c

A
1 ), ks

BV
A→B,1

〉]
Q

)
.

Thanks to the linearity of the inner product we obtain in this case

cB0 + cB1 · sB ≡ cA0 +
〈
Dω,Q(c

A
1 ), ks

BV
A→B,0

〉
+
〈
Dω,Q(c

A
1 ), ks

BV
A→B,1

〉
· sB

≡ cA0 +
〈
Dω,Q(c

A
1 ),Pω,Q(sA)

〉
+ t
〈
Dω,Q(c

A
1 ),
−→e
〉

≡ cA0 + cA1 · sA + t
〈
Dω,Q(c

A
1 ),
−→e
〉

≡m+ t
(
v +

〈
Dω,Q(c

A
1 ),
−→e
〉)

mod Q

with

∥vBV∥∞ =
∥∥〈Dω,Q(c

A
1 ),
−→e
〉∥∥

∞ ≤
ℓω,Q−1∑
i=0

∥∥∥∥[⌊cA1ωi

⌋]
ω

· ei
∥∥∥∥
∞
≤

ℓω,QδRωBerr

2
.

B.1.2 Gentry-Halevi-Smart

Another way to reduce the size of the added noise cA1 ·e was proposed by Gentry, Halevi, and Smart
in [22]. Their idea was to temporarily extend the size of Q with another modulus P and modify
the key-switching key by shifting sA of P

ksGHSA→B =
(
[PsA + a · sB + te]QP ,−a

)
∈ R2

QP .

Then one can perform the product with the key-switching key modulo QP and obtain:

c̃tB =
([

cA1 · (PsA + a · sB + te)
]
QP

,
[
−cA1 · a

]
QP

)
∈ R2

QP ,
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which satisfies

c̃B0 + c̃B1 · sB ≡ cA1 · (PsA + a · sB + te)− cA1 · a · sB
≡ PcA1 · sA + tcA1 · e mod QP

Therefore at this point we can scale everything down by P using modulus switching to get back
cA1 · sA and reduce the error by a factor P , so that in the end

ctB =

([
cA0 +

c̃B0 + δ0
P

]
Q

,

[
c̃B1 + δ1

P

]
Q

)
,

with δi = t[−t−1c̃Bi ]P , satisfies

cB0 + cB1 · sB ≡ cA0 +
cA1 · (PsA + a · sB + te) + δ0

P
+
−cA1 · a+ δ1

P
· sB

≡ cA0 +
cA1 · (PsA + a · sB + te) + δ0

P
+

(
−cA1 · a+ δ1

P

)
· sB

≡ cA0 + cA1 · sA + t
cA1 · e
P

+
δ0 + δ1 · sB

P

≡m+ t

(
v +

cA1 · e
P

+
δ0 + δ1 · sB

tP

)
mod Q.

with

∥vGHS∥∞ =

∥∥∥∥cA1 · eP
+

δ0 + δ1 · sB
tP

∥∥∥∥
∞
≤ δRQBerr

2P
+

1 + δRBkey

2
.

Therefore by chosing P ≈ Q the noise added by the operation will be relatively close to modulus
switching noise. However the drawback of this method is that the security of the scheme now
depends on a Ring-LWE sample modulo QP ≈ Q2. Therefore to maintain the same level of
security one must either divide the size of Q by 2, which implies to lose half the multiplicative
depth, or double the ring dimension which will degrade the performance.

B.1.3 Hybrid

BV method overcomes the limitations of GHS technique since it does not require to halve the mul-
tiplicative depth. However the drawback of this method is that one has to perform a quadratic
number of NTTs: ℓω,Qi(i+1) at level i. This becomes very quickly the efficiency bottleneck of the
scheme especially in the first levels. On the other hand, the GHS technique requires only 2(i + 1)
NTTs. In order to obtain a tradeoff between efficiency and noise growth, one can use a hybrid
method which takes advantage of both previous methods [22].

Using this method, one starts by decomposing cA1 as in BV but using a relatively large radix
basis ω so that ℓω,Q remains quite small. Then to compensate for the noise growth caused by the
size of the digits, the product with the key-switching key is performed in an extended basis PQ as
in GHS. Therefore in this case the key-switching key will be:

ks
Hybrid
A→B =

([
PPω,Q(sA) +−→a · sB + t−→e

]
PQ

,−−→a
)
∈ Rℓω,Q

PQ ×R
ℓω,Q

PQ .
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We compute

c̃tB =

([〈
Dω,Q(c

A
1 ), ks

Hybrid
A→B,0

〉]
PQ

,
[〈
Dω,Q(c

A
1 ), ks

Hybrid
A→B,1

〉]
PQ

)
∈ R2

PQ,

which satisfies
c̃B0 + c̃B1 · sB ≡ PcA1 · sA + t

〈
Dω,Q(c

A
1 ),
−→e
〉
mod PQ.

Then, as in GHS, we can scale down everything by P using modulus switching and sum the result
to cA0 to obtain

ctB =

([
cA0 +

c̃B0 + δ0
P

]
Q

,

[
c̃B1 + δ1

P

]
Q

)
,

with δi = t[−t−1c̃Bi ]P which satisfies

cB0 + cB1 · sB ≡m+ t

(
v +

〈
Dω,Q(c

A
1 ),
−→e
〉

P
+

δ0 + δ1 · sB
tP

)
mod Q,

with ∥∥vHybrid∥∥∞ =

∥∥∥∥∥
〈
Dω,Q(c

A
1 ),
−→e
〉

P
+

δ0 + δ1 · sB
tP

∥∥∥∥∥
∞

≤
ℓω,QδRωBerr

2P
+

1 + δRBkey

2

In this case we only need P ≈ ℓω,Qω/2 ≈ logQ(ω), which means that we do not have to sacrifice
half the multiplicative levels as in the original GHS technique. Futhermore the products can be
done using 2ℓω,Q(i+ 1) products with a relatively small ℓω,Q (between 3 and 5 in practice).

B.2 RNS Instantiation

In practice BGV and BFV are implemented using RNS, which does not allow to perform certain
operations natively, e.g., the decomposition in radix-base ω. In this section we detail the RNS
variants of the previous key-switching techniques. In this section we assume that Q = Qi = q0 · · · qi
is a product of (i+ 1) small primes.

B.2.1 Brakerski-Vaikuntanathan

The BV technique can be adapted to RNS by decomposing the values according to each residue as
done in [6]

DQi(a) =

[a(Qi

q0

)−1
]
q0

, . . . ,

[
a

(
Qi

qi

)−1
]
qi

 ∈ Ri+1

PQi(a) =

([
a
Qi

q0

]
Qi

, . . . ,

[
a
Qi

qi

]
Qi

)
∈ Ri+1

Qi

This method was later improved by Halevi, Polyakov, and Shoup [23] who noticed that one could
move the [(Qi/qj)

−1]qi factors from DQi(c
A
1 ) to PQi , saving therefore (i+1) vector-scalar multipli-

cations.

Lemma B.2 For any (a, b) ∈ R2, ⟨DQi(a),PQi(b)⟩ ≡ a · b mod Qi.
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So, by denoting q̃i = max0≤j≤i{qj} in this case the noise added by the key-switching is bounded
by:

∥vRNS-BV∥∞ ≤
(i+ 1)δRq̃iBerr

2
.

Note that one can add a second level of decomposition by decomposing each digits (which fits on
a machine word) in radix base ω < q̃i. In this case the noise will be bounded by

∥vRNS-BV∥∞ ≤
ℓω,q̃i(i+ 1)δRωBerr

2

with ℓω,q̃i = ⌊logω(q̃i)⌋ + 1. However the computational cost is now dominated by the ℓω,q̃(i + 1)2

NTTs instead of (i+ 1)2.

B.2.2 Gentry-Halevi-Smart

To take advantage of the RNS representation, P is also chosen as a product of small prime moduli
P = p1 · · · pk, such that P and Q are coprime so that one can perform the division by P modulo
Q. In original GHS one has to temporarily extend the size of the modulus Q to perform the product
with the key-switching key. In order to avoid a costly CRT reconstruction, this is done by a fast
base extension from the basis Qi = {q0, . . . , qi} to the basis P = {p1, . . . , pk} using the classical
CRT technique:

∀a ∈ RQi , FastBaseExtension(a,Qi,P) =

 i∑
j=0

[
a

(
Qi

qj

)−1
]
qj

Qi

qj
mod pl

k

l=1

Note that this conversion is not exact and one gets [a]Qi +uQi in base P with ∥u∥∞≤ i/2 instead
of exactly [a]Qi . So overall one has the residues of [a]Qi +uQi in the basis P ∪Qi. From there one
can compute

c̃tB =
([

(cA1 +Qiu) · (PsA + a · sB + te)
]
PQi

,
[
−(cA1 +Qiu) · a

]
PQi

)
∈ R2

PQi

which satisfies

c̃B0 + c̃B1 · sB ≡ PcA1 · sA + t(cA1 · e+Qiu · e) mod PQi

Then to perform the modulus switching, one has to first get δ = t[−t−1c̃tB]P in base Qi. This
is done by converting back c̃tB from P to Qi, once again one can use FastBaseExtension. Hence
one obtains δ̃ = t([−t−1c̃tB]P + Pu′) with ∥u′∥∞ ≤ (k − 1)/2 in the basis Qi. Therefore in the
end one obtains

ctB =

([
cA0 + (c̃B0 + δ̃0)/P

]
Qi

,
[
(c̃B1 + δ̃1)/P

]
Qi

)
which satisfies

cB0 + cB1 · sB ≡ [m]t + t

(
v +

(cA1 +Qiu) · e
P

+
δ0 + δ1 · sB

tP
+ u′

0 + u′
1 · sB

)
with

∥vRNS-GHS∥∞ ≤
δRQi(i+ 1)Berr

2P
+

k + δRkBkey

2
.
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To summarize, the approximate RNS techniques increase the first part of the worst-case bound by
a factor i + 1 and the second one by a factor k. This can be softened by using techniques from
BEHZ or removed with techniques from HPS but the noise growth is quite small in practice and
thus barely noticed.

B.2.3 Hybrid

For Hybrid key-switching in RNS we use the same methodology and tools as for BV and GHS tech-
niques. We start by decomposing cA1 in dnum digits Q̃0, . . . Q̃dnum−1, where each digit is the product
of α moduli Q̃j = qαj · · · qα(j+1)−1 for α = ⌈(L+1)/dnum⌉. Therefore the key-switching key will be:

ks
RNS-Hybrid
A→B = ([P P̃Qi(sA) +

−→a · sB + t−→e ]PQi ,−
−→a ) ∈ Rdnum

PQi
×Rdnum

PQi
,

with

P̃Qi(sB) =

([
sB

Qi

Q̃0

]
Qi

, . . . ,

[
sB

Qi

Q̃dnum−1

]
Qi

)
∈ Rdnum

Qi
.

Remark B.3 Note that the trick used in HPS for BV key switching equally applies to hybrid key
switching, hence the decomposition into dnum digits can be obtained for free (without the scalar
multiplications).

Then each digit is extended from Q̃j = {qαj , . . . , qα(j+1)−1} to P ∪Qi which causes an overflow

ujQ̃j , where ∥uj∥∞≤ (α−1)/2. As in GHS, the second source of errors comes from the conversion
from P to Qi to perform the modulus switching. In this case the overflow will remain the same as
in GHS ∥u′∥≤ (k − 1)/2.

Therefore by denoting Q̃ = max0≤j≤dnum−1{Q̃j} the noise added by the hybrid key-switching in
RNS is bounded by

∥vRNS-Hybrid∥∞ ≤
αdnumδRQ̃Berr

2P
+

k + kδRBkey

2

Thus overall one can take P ≈ Q̃ i.e. k ≈ α.

Remark B.4 Note that for BGV while the moduli qi must be chosen between 20 and 60 bits depend-
ing on the targeted application, the moduli pi can be chosen of maximal size ≈ 60 bits which should
reduce k and hence the computational complexity.

B.3 Complexity of Key Switching Methods in RNS and Key Sizes.

In this section we need to distinguish whether we are using BGV or BFV since in BGV the ciphertexts
are kept in NTT format during homomorphic multiplication while the BFV ciphertexts are kept in
coefficient representation.

Therefore we assume that for BFV, the ciphertext modulus Q is made of ℓ moduli, the key-
switching modulus P is made of k moduli and the digits fit on α moduli. For BGV, we assume that
the ciphertext modulus Q is made of ℓ′ moduli, the key-switching modulus P is made of k′ moduli
and the digits fit on α′ moduli.

The costs are given in number of NTTs (we assume that NTTs and invNTTs have the same
cost) and integer multiplications (Mult). Last we recall that the maximal number of moduli L, for
GHS and Hybrid key-switching techniques, is smaller than for BV (L/2 and L− α respectively).
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Brakerski-Vaikuntanathan

• put c1 in coefficient representation: ℓ′ invNTTs (not required for BFV);

• decompose c1 in small digits (for free with HPS trick);

• put D(c1) in NTT form: ℓω,q̃ℓ
2 NTTs for BFV and ℓω,q̃ℓ

′2 NTTs for BGV;

• perform the product with the evaluation key: 2nℓω,q̃ℓ
2 Mults for BFV and 2nℓω,q̃ℓ

′2 Mults for
BGV;

• put the result back in coefficient form 2ℓ invNTTs (not required for BGV)

• sum the results to c0;

Total:

BGV: ℓ′(ℓω,q̃ℓ
′ + 1) NTTs and 2nℓω,q̃ℓ

′2 Mults.

BFV: ℓ(ℓω,q̃ℓ+ 2) NTTs and 2nℓω,q̃ℓ
2 Mults.

GHS

• put c1 in coefficient representation: ℓ′ invNTTs (not required for BFV);

• extend c1 from base Q to base P: nℓ(k + 1) Mults for BFV and nℓ′(k + 1) Mults for BGV;

• put c1 in NTT form: ℓ+ k NTTs for BFV and k′ NTTs for BGV;

• perform the product with the evaluation key, yielding c̃tB: 2n(ℓ + k) Mults for BFV and
2n(ℓ′ + k′) Mults for BGV;

• compute the inverse NTT in base P: 2k invNTTs for BFV and 2k′ invNTTs for BGV;

• compute the inverse NTT in base Q: 2ℓ invNTTs for BFV (not required for BGV);

• multiply the result by −t−1 mod P for the computation of δ̃: 2nk′ Mults (not required for
BFV);

• convert back from base P to base Q: 2nk(ℓ+1) Mults for BFV and 2nk′(ℓ′+1) Mults for BGV;

• multiply by t for the computation of δ̃ (no modular reduction): 2nℓ′ Mults (not required for
BFV);

• put the results in NTT format: 2ℓ′ NTTs (not required for BFV);

• add δ̃ to c̃tB and multiply the result by P−1 mod Q, then add the result to c0: 2nℓ Mults
for BFV and 2nℓ′ Mults for BGV.

Total:

BGV: 3(ℓ′ + k′) NTTs and n(3ℓ′k′ + 7ℓ′ + 6k′) Mults.

BFV: 3(ℓ+ k) NTTs and n(3ℓk + 5ℓ+ 4k) Mults.
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Given that for GHS key-switching one must choose k ≈ ℓ (resp. k′ ≈ ℓ′) the total cost is given
by:

BGV: 6ℓ′ NTTs and nℓ(3ℓ′ + 13) Mults.

BFV: 6ℓ NTTs and nℓ(3ℓ+ 9) Mults.

Hybrid

• put c1 in coefficient representation: ℓ′ invNTTs (not required for BFV);

• decompose c1 in small digits : for free with HPS trick;

• extend the digits of c1 from base Qi to base P ∪Q: ndnumα(ℓ−α+k+1) = nℓ(ℓ−α+k+1)
Mults for BFV and ndnumα

′(ℓ′ − α′ + k′ + 1) = nℓ′(ℓ′ − α′ + k′ + 1) Mults for BGV;

• put the digits of c1 in NTT form: dnum(ℓ+ k) NTTs for BFV and dnum(ℓ
′−α′ + k′) NTTs for

BGV;

• perform the product with the evaluation key, yielding c̃tB: 2ndnum(ℓ+ k) Mults for BFV and
2ndnum(ℓ

′ + k′) Mults for BGV;

• compute the inverse NTT in base P: 2k invNTTs for BFV and 2k′ invNTTs for BGV;

• compute the inverse NTT in base Q: 2ℓ invNTT (not required for BGV);

• multiply the result by −t−1 mod P for the computation of δ̃: 2nk′ Mults (not required for
BFV);

• convert back from base P to base Q: 2nk(ℓ+1) Mults for BFV and 2nk′(ℓ′+1) Mults for BGV;

• multiply by t for the computation of δ̃ (no modular reduction): 2nℓ′ Mults (not required for
BFV);

• put the results in NTT format: 2ℓ′ NTTs (not required for BFV);

• add δ̃ to c̃tB and multiply the result by P−1 mod Q, then add the result to c0: 2nℓ Mults
for BFV and 2nℓ′ Mults for BGV.

Total:

BGV: 3ℓ′ + 2k′ + dnum(ℓ
′ + k′ − α′) NTTs and n(ℓ′2 + (3k′ − α′ + 2dnum + 5)ℓ′ ++2dnumk

′ + 4k′)
Mults.

BFV: 2(ℓ+ k) + dnum(ℓ+ k) NTTs and n(ℓ2 + (3k − α+ 2dnum + 3)ℓ+ 2dnumk + 2k) Mults.

Given that for hybrid key-switching one must choose k ≈ α (resp. k′ ≈ α′) and that dnumα ≈ ℓ
(resp. dnumα

′ ≈ ℓ′) we have
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BGV BFV

# NTTs # Mults # NTTs # Mults

BV ℓ′(ℓ′ℓω,q̃ + 1) 2nℓω,q̃ℓ
′2 ℓ(ℓℓω,q̃ + 2) 2nℓω,q̃ℓ

2

GHS 6ℓ′ nℓ′(3ℓ′ + 13) 6ℓ nℓ(3ℓ+ 9)

Hybrid 3ℓ′ + α′(d2num + 2) n((ℓ′ + 2α′ + 2dnum + 7)ℓ′ + 4α′) 2ℓ+ α(d2num + 3) n((ℓ+ 2α+ 2dnum + 5)ℓ+ 2α)

Table 4: Complexities of different key-switching methods for BGV and BFV.

BV GHS Hybrid

2Nℓω,Q log2Q 2N log2QP 2Ndnum log2QP

Table 5: Size in bits for different key-switching methods

BGV: 3ℓ′ + α′(d2num + 2) NTTs and n(ℓ′2 + (2α′ + 2dnum + 7)ℓ′ + 4α′) Mults.

BFV: 2ℓ+ α(d2num + 3) NTTs and n(ℓ2 + (2α+ 2dnum + 5)ℓ+ 2α) Mults.

There is another important parameter that needs to be considered if one wants to have an
efficient implementation of the schemes: the key-switching key size. For simplicity, we assume here
that the ciphertext modulus Q has the same size for BGV and BFV.

In BV, the key-switching is made of two vectors of ℓω,Q elements of RQ. Hence it is usually
larger than for GHS, where it is made of two elements ofRPQ with P ≈ Q. In the case of hybrid key
switching, we have two vectors of dnum elements of RQiP with log2Qi ≈ log2Q/dnum and Qi ≈ P .
Therefore, one obtains roughly the same size as for the GHS key.

For the sake of completeness, we provide in Table 5 a comparison of different key-switching key
sizes in bits.

C Noise Estimates for BGV Multiplication

C.1 Setting the Optimal Constant Noise Level

Let us approximate the noise expression for BGV (here we drop negligible terms)

Qi

Qi+1

(
(n′

add + 1) δRt
2 (2 ∥vc∥2∞ + 2 ∥vc∥∞ + 1) + (n′

ks + 1) ∥vks∥∞
)
+

1+δRBkey
2 ≤ ∥vc∥∞

as
Qi

Qi+1

(
A · c2 ∥vms∥2∞ +B ∥vks∥∞

)
+ ∥vms∥∞ ≤ c ∥vms∥∞ ,

where ∥vms∥∞ =
1+δRBkey

2 , A = δRt · (n′
add + 1), B = (n′

ks + 1), ∥vc∥∞ = c ∥vms∥∞, and c is the

sought parameter corresponding to the minimum value of Qi+1

Qi
.

Rearranging the terms, we obtain

Qi+1

Qi
>

A · c2 ∥vms∥2∞ +B ∥vks∥∞
(c− 1) ∥vms∥∞

= f(c).
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Taking a derivative of the right-hand side w.r.t. c yields

f ′(c) =
c · (c− 2) ·A ∥vms∥2∞ −B ∥vks∥∞

∥vms∥∞ · (c− 1)2
.

Solving the quadratic equation in the numerator for c gives us the following expression for
optimal c, corresponding to the smallest value of Qi+1

Qi
:

c = 1 +

√
1 +

B ∥vks∥∞
A ∥vms∥2∞

.

If
B∥vks∥∞
A∥vms∥2∞

≪ 1, which corresponds to many practical cases where the plaintext modulus is

relatively large (see Appendix C.2), then c ≈ 2.

C.2 Effect of Key-Switching Noise

We show that the hybrid-key-switching noise is much smaller than the multiplication noise for
larger plaintext moduli in the noise expression for BGV:

Qi

Qi+1

(
(n′

add + 1) δRt
2 (2 ∥vc∥2∞ + 2 ∥vc∥∞ + 1) + (n′

ks + 1) ∥vks∥∞
)
+

1+δRBkey
2 ≤ ∥vc∥∞ .

Note that ∥vc∥∞ ≈ 1 + δRBkey and ∥vks∥∞ ≤
αdnumδRQ̃Berr

2P
+

kd + kdδRBkey

2
.

As P ≈ Q̃, k ≈ αdnum, Bkey = 1, and Berr = 6σ, we have

∥vks∥∞ ≈
kδRBerr

2
+

kd + kdδR
2

≈ kδRBerr

2
= 3kδRσ.

For the multiplication noise, we have

∥vm∥∞ ≈
δRt

2
(2 ∥vc∥∞) ≈ δRt ∥vc∥∞ ≈ δ2Rt.

Hence we have
∥vm∥∞
∥vks∥∞

≈
δ2Rt

3kδRσ
≈ δRt

9.6k
≈ 2
√
Nt

9.6k
,

where we use that σ ≈ 3.2 and δR ≈ 2
√
N . Note that N ≥ 210 (often higher).

If t is relatively large, e.g., 216+1 often used in scenarios of CRT packing, then the multiplication
noise dominates the key-switching noise. If t is small, e.g., t = 2, the key-switching noise makes a
significant (non-negligible) contribution to the total noise related to multiplication.
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D Noise Estimates for Leveled BFV Multiplication

Let us rewrite expression (12):

∥v∥∞ > 8
QδR
Qℓ

and ∥v∥′∞ > 8
QδR
Qℓ

.

The main challenge here is that we need precise estimates of ∥v∥∞ and ∥v∥′∞ to make sure
we do not drop more levels than we need to. If we use our worst-case bounds ∥v∥ws∞ and ∥v∥′∞

ws
,

which may be significantly higher than the actual noise, then we may loose some extra bits to noise,
approaching the worst-case bound. While this would not necessarily lead to decryption errors (as
we would still not exceed the worst-case bound), we would observe somewhat higher actual noise
growth than in BFV without leveled multiplication.

This can be mitigated in practice by computing ∥v∥∞ = C · ∥v∥ws∞ and ∥v∥′∞ = C · ∥v∥′∞
ws
,

where C is the “cushion” accounting for the maximum deviation of the worst-case bounds from
the actual noise. For our implementation, we heuristically found C = 230 adequate up to at least
depth-10 computations. A higher value of C may of be used if deeper computations need to be
supported, e.g., C = 260 is sufficient for depth-20 computations.

E Modulus Switching between Arbitrary RNS Bases

Consider the modulus switching
[⌈

P
Q · [x]Q

⌋]
P
, where P and Q are arbitrary co-prime moduli.

Observe that ⌈
P

Q
· [x]Q

⌋
=

P · [x]Q − [Px]Q
Q

.

This implies that[⌈
P

Q
· [x]Q

⌋]
P

=
[
(P · [x]Q − [Px]Q) ·Q−1

]
P
=
[
−[Px]Q ·Q−1

]
P
.

Using the CRT composition formula, we can write [[Px]Q]P as

[Px]Q =

k∑
i=1

[Px]qi ·

[(
Q

qi

)−1
]
qi

· Q
qi
− u ·Q.

Then we have[⌈
P

Q
· [x]Q

⌋]
pj

=

[
−Q−1 ·

(∑k
i=1[Px]qi ·

[(
Q
qi

)−1
]
qi

· Qqi + u ·Q

)]
pj

=

[
−
∑k

i=1[Px]qi ·
[(

Q
qi

)−1
]
qi

· qi−1 + u

]
pj

.

Note that the value of ∥u∥∞ is at most k/2. In other words, if we use FastBaseExtension

given by Equation (5), the extra noise introduced by scaling will be log(k/2) bits. This noise can
be included in the noise estimate used in the leveled BFV multiplication. Alternatively, u can be
computed exactly using the floating-point expression (6).
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F Inner Product with Lazy Scaling

The algorithm for inner product computation with lazy scaling is depicted in Algorithm 4. We
apply tensoring to pairs of ciphertexts, then add the results (mod RQP ), and finally perform the
scaling only once. The part

∑
i vtensori of the resulting noise is unchanged, but as we perform

scaling only once, we both reduce the complexity and noise coming from the scaling subroutine.
The part QP

t (
∑

i ktensori + rip), where rip comes from
∑

i[xiyi]t = [
∑

i xiyi]t + trip, disappears,
as was explained in Section 3.2.

Note that we can also apply lazy scaling to the original BFV multiplication algorithm, but in this

case we have to control the part Q2

t (
∑

i ktensori + rip), so that it does not overflow (mod RQP ).
This could require increasing the number of primes in the RNS basis for P , reducing the benefit of
this optimization.

Algorithm 4 Inner Product with Lazy Scaling

procedure InnerProdLazy(ctxi , ctyi , i = 1, . . . , n)
for i = 1, . . . , n do

ctxiyi = Tensor(Expand(ctxi , ctyi)) ∈ R3
QP

▷ cttensori(s) =
QP
t2

[xiyi]t + vtensori +
QP
t ktensori (mod RQP )

cip = cip + ctensori ∈ R3
QP

▷ ctip(s) =
QP
t2

[
∑

i xiyi]t +
∑

i vtensori +
QP
t (
∑

i ktensori + rip) (mod RQP )

ScaleDown: ĉtip =
⌈

t
P ctip

⌋
∈ R3

Q

▷ ĉtip(s) =
Q
t [
∑

i xiyi]t +
∑

i vtensori + vr (mod RQ)

G Additional Experimental Results

G.1 Binary Tree Multiplicaton
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Table 6: Comparison of noise growth and runtimes of BFV and BGV variants for a benchmark

computation
∏2k

i=1 xi at different plaintext moduli. Hybrid key switching with dnum digits, and
λ ≥ 128. Here, e denotes the current noise magnitude, logQ, the BFV ciphertext modulus, and
logQL, the equivalent ciphertext modulus in BGV without the last CRT modulus qL+1.

Original BFV Our BFV Our BGV

params BEHZ HPS params BFV-NEW BFV-NEW-LVL params BGV-NEW

t dnum k logN log qi logQ log e time(s) log e time(s) logN log qi logQ log e time(s) log e time(s) logN log qi logQ log e time(s)

2 3

1 12 32 32 22 0.003 22 0.003 12 30 30 18 0.002 18 0.002 12 19 34 25 0.002

2 12 47 47 34 0.009 34 0.008 12 43 43 30 0.006 31 0.006 13 20 56 25 0.018

3 13 32 64 50 0.079 49 0.07 13 30 60 47 0.058 47 0.059 13 20 75 39 0.058

4 13 40 80 63 0.17 63 0.15 13 38 76 60 0.13 60 0.13 13 20 94 58 0.15

5 13 48 96 76 0.35 76 0.31 13 46 92 73 0.26 74 0.26 13 20 113 77 0.35

6 13 56 112 91 0.71 90 0.63 13 54 108 87 0.53 87 0.52 13 20 131 94 0.84

7 14 45 135 111 4.42 111 3.84 14 44 132 109 3.35 109 3.34 14 22 165 126 4.44

2 L

1 12 32 32 22 0.003 21 0.003 12 30 30 19 0.002 19 0.002 12 19 34 25 0.003

2 12 47 47 34 0.009 34 0.009 12 43 43 30 0.006 31 0.006 13 20 56 25 0.024

3 13 32 64 50 0.079 50 0.07 13 30 60 46 0.058 46 0.058 13 20 75 39 0.076

4 13 40 80 63 0.17 63 0.15 13 38 76 60 0.12 60 0.12 13 20 94 57 0.21

5 13 48 96 77 0.35 76 0.31 13 46 92 73 0.26 74 0.26 13 20 113 77 0.56

6 13 56 112 90 0.71 90 0.63 13 54 108 87 0.53 87 0.52 13 20 131 94 1.42

7 13 43 129 104 2.15 104 1.86 13 41 123 101 1.63 101 1.62 14 22 165 125 7.33

216 + 1 3

1 13 31 62 45 0.011 44 0.01 13 59 59 36 0.004 35 0.004 13 33 58 34 0.005

2 13 47 94 66 0.034 66 0.03 13 45 90 63 0.025 63 0.025 13 33 91 67 0.02

3 14 43 129 102 0.24 103 0.21 14 41 123 95 0.19 96 0.18 13 33 124 100 0.063

4 14 53 159 131 0.52 132 0.45 14 52 156 125 0.4 125 0.39 13 33 157 133 0.17

5 14 48 192 158 1.41 161 1.2 14 47 188 155 1.07 155 1.04 14 34 196 171 0.8

6 14 56 224 189 2.85 189 2.44 14 55 220 184 2.18 184 2.13 14 34 230 205 2.03

7 14 51 255 221 7.61 220 6.51 14 50 250 214 5.98 214 5.73 14 34 264 239 4.86

216 + 1 L

1 13 31 62 44 0.011 44 0.01 13 59 59 35 0.004 35 0.004 13 33 58 34 0.006

2 13 47 94 66 0.034 66 0.03 13 45 90 63 0.025 63 0.025 13 33 91 67 0.022

3 13 41 123 100 0.12 100 0.1 13 40 120 92 0.091 92 0.09 13 33 124 100 0.07

4 13 52 156 127 0.25 127 0.22 13 50 150 120 0.2 120 0.19 13 33 157 133 0.2

5 14 48 192 159 1.41 158 1.31 14 47 188 155 1.18 155 1.13 14 34 196 171 1.09

6 14 56 224 189 2.85 190 2.65 14 55 220 184 2.4 184 2.3 14 34 230 205 2.78

7 14 51 255 220 7.64 221 7.11 14 50 250 214 6.49 214 6.19 14 34 264 239 6.89

230 − 218 + 1 3

1 13 52 104 71 0.011 71 0.01 13 43 86 49 0.008 50 0.008 13 46 85 48 0.005

2 14 51 153 116 0.11 115 0.091 14 45 135 95 0.08 94 0.077 14 47 133 96 0.046

3 14 49 196 159 0.32 159 0.27 14 45 180 138 0.24 137 0.23 14 47 180 143 0.13

4 14 49 245 200 0.9 200 0.77 14 56 224 183 0.52 181 0.5 14 47 227 190 0.36

5 14 58 290 246 1.87 245 1.59 14 54 270 225 1.46 226 1.34 14 47 274 238 0.86

6 15 57 342 294 9.66 294 8.15 14 53 318 269 3.56 269 3.34 15 48 328 291 4.62

7 15 55 385 340 23.79 340 19.89 15 53 371 321 18.72 320 17.13 15 48 376 339 10.84

230 − 218 + 1 L

1 13 52 104 71 0.011 71 0.01 13 43 86 49 0.009 49 0.009 s 13 46 85 48 0.006

2 13 50 150 114 0.052 113 0.045 13 44 132 91 0.04 92 0.038 s 13 46 131 94 0.023

3 14 49 196 158 0.33 158 0.3 14 45 180 137 0.27 137 0.25 s 14 47 180 143 0.15

4 14 49 245 200 0.93 200 0.85 14 56 224 181 0.59 181 0.54 s 14 47 227 190 0.42

5 14 58 290 245 1.92 245 1.76 14 54 270 225 1.61 225 1.48 s 14 47 274 237 1.11

6 14 56 336 288 5.26 288 4.51 14 53 318 269 4.19 268 3.79 s 14 47 321 284 2.87

7 15 55 385 341 24.06 340 23.2 14 52 364 312 10.57 312 9.6 s 14 47 368 331 7.06

G.2 Polynomial Evaluation
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Table 7: Comparison of noise growth and runtimes of BFV and BGV variants for a benchmark
computation

∏k
i=0 aix

i: |ai|< 16 at different plaintext moduli (for t = 2 we set ai = 1). Hybrid
key switching with dnum digits, and λ ≥ 128. Here, e denotes the current noise magnitude, logQ,
the BFV ciphertext modulus, and logQL, the equivalent ciphertext modulus in BGV without the last
CRT modulus qL+1.

Original BFV Our BFV Our BGV

params BEHZ HPS params BFV-NEW BFV-NEW-LVL params BGV-NEW

t dnum k logN log qi logQ log e time(s) log e time(s) logN log qi logQ log e time(s) log e time(s) logN log qi logQ log e time(s)

2 3

2 12 33 33 22 0.003 22 0.003 12 30 30 18 0.002 19 0.002 s 12 20 35 25 0.002

4 12 49 49 35 0.009 35 0.009 12 45 45 31 0.006 31 0.006 s 13 22 60 23 0.023

8 13 34 68 51 0.08 52 0.071 13 32 64 48 0.059 48 0.059 s 13 23 85 43 0.063

16 13 42 84 66 0.17 66 0.15 13 40 80 62 0.13 62 0.12 s 13 23 108 66 0.15

32 13 51 102 80 0.35 80 0.31 13 48 96 76 0.26 76 0.24 s 13 24 136 93 0.32

48 13 59 118 94 0.53 94 0.47 13 57 114 90 0.39 90 0.38 s 14 26 173 126 1.19

64 13 59 118 95 0.72 94 0.64 13 57 114 91 0.53 91 0.49 s 14 26 173 127 1.43

2 L

2 12 33 33 22 0.003 22 0.003 12 30 30 19 0.002 19 0.002 s 12 20 35 26 0.003

4 12 49 49 35 0.009 35 0.009 12 45 45 31 0.006 31 0.006 s 13 22 60 23 0.027

8 13 34 68 52 0.079 51 0.07 13 32 64 48 0.059 48 0.059 s 13 23 85 43 0.076

16 13 42 84 66 0.17 65 0.15 13 40 80 63 0.13 62 0.13 s 13 23 108 66 0.18

32 13 51 102 81 0.35 80 0.31 13 48 96 77 0.26 77 0.24 s 13 24 136 93 0.4

48 13 59 118 93 0.53 93 0.47 13 57 114 91 0.39 91 0.38 s 14 26 173 126 1.45

64 13 59 118 94 0.72 95 0.64 13 57 114 91 0.53 92 0.49 s 14 26 173 127 1.74

216 + 1 3

2 13 34 68 41 0.012 40 0.01 13 32 64 35 0.009 36 0.009 s 13 38 68 38 0.007

4 13 50 100 76 0.034 76 0.03 13 48 96 67 0.026 67 0.025 s 13 38 107 74 0.024

8 14 45 135 106 0.25 107 0.22 14 43 129 100 0.19 100 0.18 s 13 39 148 116 0.061

16 14 56 168 138 0.53 138 0.46 14 54 162 130 0.4 130 0.33 s 14 41 197 163 0.28

32 14 50 200 166 1.43 167 1.22 14 49 196 161 1.1 161 0.78 s 14 42 244 208 0.61

48 14 58 232 197 2.16 198 1.85 14 57 228 191 1.66 190 1.22 s 14 42 286 251 1.07

64 14 58 232 199 2.89 199 2.48 14 57 228 191 2.22 191 1.54 s 14 43 293 256 1.27

216 + 1 L

2 13 34 68 42 0.012 42 0.01 13 32 64 38 0.009 39 0.009 13 38 68 37 0.007

4 13 50 100 76 0.034 74 0.031 13 48 96 66 0.026 67 0.026 13 38 107 72 0.025

8 13 44 132 104 0.12 105 0.1 13 42 126 98 0.092 97 0.086 13 39 148 115 0.064

16 14 56 168 137 0.53 138 0.47 13 53 159 126 0.2 127 0.16 14 41 197 163 0.3

32 14 50 200 166 1.42 166 1.32 14 49 196 161 1.2 161 0.79 14 42 244 209 0.64

48 14 58 232 198 2.16 198 2.02 14 57 228 191 1.82 190 1.25 14 42 286 250 1.14

64 14 58 232 198 2.89 199 2.7 14 57 228 191 2.44 191 1.58 14 43 293 256 1.33

230 − 218 + 1 3

2 13 55 110 71 0.012 71 0.01 13 46 92 51 0.008 51 0.009 s 13 52 96 51 0.007

4 14 52 156 114 0.11 115 0.093 14 46 138 98 0.081 53 0.075 s 14 53 151 105 0.051

8 14 51 204 164 0.32 163 0.28 14 46 184 143 0.25 142 0.21 s 14 54 208 162 0.13

16 14 50 250 203 0.92 204 0.78 14 58 232 187 0.53 185 0.43 s 14 55 267 219 0.29

32 14 59 295 253 1.9 253 1.62 14 56 280 231 1.48 231 0.97 s 15 57 333 284 1.29

48 15 58 348 301 7.31 301 6.15 15 55 330 281 5.8 281 3.74 s 15 57 391 341 2.3

64 15 58 348 302 9.95 302 8.46 15 55 330 282 7.79 282 4.71 s 15 58 397 346 2.74

230 − 218 + 1 L

2 13 55 110 70 0.012 70 0.011 13 46 92 53 0.009 53 0.009 13 52 96 51 0.007

4 13 52 156 116 0.053 118 0.046 13 46 138 96 0.04 95 0.037 13 52 149 103 0.025

8 14 51 204 164 0.33 164 0.31 14 46 184 142 0.28 141 0.22 14 54 208 161 0.13

16 14 50 250 203 0.95 204 0.87 14 58 232 187 0.6 187 0.45 14 55 267 219 0.31

32 14 59 295 253 1.96 252 1.79 14 56 280 231 1.64 231 1.03 14 56 328 278 0.66

48 14 57 342 295 3.98 296 3.4 14 54 324 275 3.18 275 1.88 15 57 391 341 2.47

64 14 57 342 295 5.39 295 4.59 14 54 324 275 4.27 276 2.34 15 58 397 347 2.88

G.3 Inner Product

Tables 8 illustrates the results for the inner product computation. We compare our BFV-NEW variant
(BFV-NEW-LVL has same performance as no levels will be dropped at multiplication steps) without
optimizations, with lazy key switching optimization, and with lazy scaling optimization.

42



Table 8: Runtimes of inner product
∑k

i=1 xiyi. Hybrid key switching with dnum digits, and λ ≥ 128.
Here e denotes the current noise magnitude.

params BFV-NEW BFV-NEW Lazy KS BFV-NEW Lazy Scale

t dnum k logN log qi logQ log e time(s) log e time(s) log e time(s)

2 3 128 13 35 35 23 0.56 23 0.38 24 0.28

2 L 128 13 35 35 23 0.56 23 0.38 23 0.28

216 + 1 3 128 13 33 66 38 1.07 38 0.72 38 0.5

216 + 1 L 128 13 33 66 38 1.07 39 0.72 39 0.5

230 − 218 + 1 3 128 13 47 94 52 1.09 52 0.73 52 0.51

230 − 218 + 1 L 128 13 47 94 53 1.09 53 0.73 53 0.5
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