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Abstract. This paper introduces M-Circuits, a program representation which generalizes arithmetic
and binary circuits. This new representation is motivated by the way modern multi-party compu-
tation (MPC) systems based on linear secret sharing schemes actually operate. We then show how
this representation also allows one to construct zero knowledge proof (ZKP) systems based on the
MPC-in-the-head paradigm. The use of the M-Circuit program abstraction then allows for a number
of program-specific optimizations to be applied generically. It also allows to separate complexity and
security optimizations for program compilation from those for application protocols (MPC or ZKP).

1 Introduction

Secure computation methodologies are becoming more mainstream with multi-party computation
(MPC), fully homomorphic encryption (FHE) and zero-know-ledge proofs of knowledge (ZKPoKs)
all finding applications at an increasing rate. At their heart all three technologies work with a
public function; either to be compute it securely (in the case of MPC or FHE), or to prove the
correctness of public outputs under secret inputs (in the case of ZKPoKs). The representation of
this function is key to many of the practical realizations. For example: in theoretical MPC papers
functions are often represented by arithmetic circuits, in FHE they are often binary circuits, and
in ZKPoK papers R1CS representations are often used.

In this work we concentrate on two secure computation technologies: MPC protocols based on
linear secret sharing schemes (LSSS) and ZKPoKs based on MPC-in-the-Head (MPCitH). It is
common in theoretical treatments of these protocols to assume the input function representation is
given as an arithmetic or binary circuit. However, in practice, this is not how functions are repre-
sented as input to such protocols. It has been known since Beaver’s work [Bea92] that sometimes a
more interesting representation is as a set of linear operations, combined with a correlated random-
ness source. Previous work showed that more efficient representations for LSSS-based MPC can be
obtained using different sources of correlated randomness, as well as a combination of different finite
fields [DFK+06,CS10,Cd10]. This latter idea has been expanded in recent years with the advent of
so-called daBit-based protocols for switching between LSSS-based MPC and garbled circuit-based
MPC [RW19]. Thus the standard theoretical assumption of representing the function as a simple
arithmetic circuit is at least ten years out of date given the state-of-the-art of LSSS-based MPC
protocols.

A similar situation holds for MPCitH protocols. These are a class of zero-knowledge pro-
tocols introduced by Ishai et al in [IKOS07], and recently extended in a number of works eg.
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[AHIV17, BN20, BFH+20, CDG+17, KKW18, GMO16] In such protocols, a key aspect is to repre-
sent the function as a sequence of linear operations, combined with access to sources of correlated
randomness, as in [KKW18, BN20]. In MPC protocols, the creation of the correlated randomness
sources often involves expensive pre-processing, but for MPCitH this can be done essentially for
free. Therefore, larger performance improvements for MPCitH could result from expanding the use
of correlated randomness sources.

Indeed in both LSSS-based MPC and MPCitH there is no single ‘correct’ representation of
a function, with different representations presenting different performance trade-offs in the final
protocol. But it is also case that different representations can also present different security trade-
offs as well. Indeed the compilation of the abstract function into a concrete representation can
introduce security issues.

Our Contributions and Paper Overview. The first contribution of this paper (in Section 3) is a
generalized definition of the program input to such LSSS-based MPC and MPCitH protocols, which
we call an M-Circuit. It can be considered as a generalization of arithmetic circuits, but tuned for
MPC and MPCitH protocols (hence the name). An M-Circuit can make use of linear operations on
sensitive variables, correlated randomness sources, as well as objects we call ‘gadgets’. A gadget is a
function call from the M-Circuit representation of the program which is not necessarily implemented
itself as an M-Circuit. Such gadgets allow for specific functions to be implemented in ways which
avoid inefficiencies from implementing them using only an M-Circuit definition. Each M-Circuit
belongs to a set of classes of M-Circuits, determined by what correlated randomness sources we
allow, what finite fields are utilized, and what magic ‘gadgets’ are used. We can then determine
which classes of protocols are best suited for different protocols.

We furthermore examine what it means for a compilation of a function into an M-Circuit to be
‘secure’. And we relate this security definition to the security of the resulting MPC/MPCitH pro-
tocol when the given M-Circuit representation is used. Some compilation strategies are clearly
insecure, some give perfect security and some give statistical security; leading to the same cor-
responding security of the final protocol in which they are used. Whilst well understood in the
practical community, we can find no treatment of the security aspect of program compilation being
discussed in the MPC literature before.

After presenting our representation we show how this maps, in Section 4, onto common MPC
frameworks (such as MP-SPDZ [Kel20] and SCALE-MAMBA [ACK+20]), and how the M-Circuit
representation is already the underlying one used in practice. This application is now standard and
we only sketch it in this work.

In our second contribution in Section 5, we show how M-Circuits can be used in MPCitH pro-
tocols. We recast the protocols of [KKW18,BN20] to use our general M-Circuit definition (initially
excluding the use of the gadgets). We define the components needed to allow M-Circuits to be
used in general MPCitH protocols. We then go on to present a number of optimization strategies
which our M-Circuit representation allows one to express easily for MPCitH protocols. The first, in
Section 6, examines how introducing new correlated randomness sources can produce more efficient
proofs. We recall that for MPCitH adding new correlated randomness sources comes at little extra
cost and thus this is a resource we can utilize to improve efficiency quite aggressively. The second,
in Section 7, shows how, for some randomness sources, one can replace cut-and-choose checking
with a form of sacrificing (as used in MPC protocols such as SPDZ). This acts as a warm up for
our method which introduces the ability to introduce complex gadgets into our MPCitH protocol,
given in Section 8.
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2 Preliminaries

2.1 Zero-Knowledge Arguments

Let R be a relation generator, such that R(1λ) returns a polynomial-time decidable binary relation
R = {(x,w)}, where x is the statement and w is the corresponding witness. We assume one can
deduce λ from the description of R. Let LR = {x : ∃w | (x,w) ∈ R} be an NP-language containing
all the statements which for there exists a corresponding witnesses in R.

Honest verifier zero-knowledge argument of knowledge. Consider two parties, a prover P and a
verifier V. They both have input x, and P additionally has a secret witness w. The prover wants to
prove that she knows w for the statement x, such that (x,w) ∈ R. To accomplish this they carry
out an interactive protocol with several rounds, which at the end the verifier gets the transcript
(proof) along with x and returns either accept or reject. Such interactive arguments with 3 rounds
are also known as Σ-protocols.

An Honest-Versifier Zero-Knowledge (HVZK) argument Π between (P,V) for the relation R
with knowledge error δ(x) is supposed to guarantee the following three properties.

Definition 2.1 (Completeness). An HVZK argument Π with parties (P,V) is perfectly com-
plete for R, if for (x,w) ∈ R,

Pr [trans(P(R, x,w)↔ V(R, x)) is accepted by V] = 1 ,

where trans denotes the transcript of the argument.

Definition 2.2 (Honest Verifier Zero-Knowledge). The argument Π satisfies honest verifier
zero-knowledge for R, if there exists a PPT algorithm Sim that can simulate the transcript of the
argument, such that for all x ∈ LR, (x,w) ∈ R,

trans(P(R, x,w)↔ V(R, x)) ≈ trans(Sim(R, x)↔ V(R, x))

where trans(P(R, x,w)↔ V(R, x)) shows the transcript of argument Π with (P,V).

Definition 2.3 (Knowledge Soundness). The argument Π with parties (P,V) is knowledge
sound for R, if there exists a PPT extraction algorithm Ext, such that for every prover P̄ and every
x ∈ LR, the extraction algorithm Ext satisfies the following condition: let γ(x) be the probability
that the verifier returns accept after interacting with P̄. If γ(x) > δ(x), then upon input x ∈ LR,
and oracle access to P̄, the algorithm Ext outputs a witness w, s.t. (x,w) ∈ R in expected number
of steps bounded by O( 1

γ(x)−δ(x)).

An HVZK argument of knowledge can be transformed to a Non-Interactive Zero-Knowledge (NIZK)
argument of knowledge via the Fiat-Shamir transformation [FS87].

2.2 Commitment Schemes

A commitment scheme allows a committer to commit a secret value, and later open the commitment
in a verifiable manner.

Definition 2.4. A commitment scheme consists of two, possibly randomized, algorithms:
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- An algorithm Commit(m) which takes a message m and produces a pair (c, o), where c is the
commitment and o is the opening information.

- An algorithm DeCommit(c, o) which takes the output of Commit and returns m, if (c, o) was not
the output of Commit when called with m then the algorithm DeCommit should return ⊥.

Two primary requirements for a commitment schemes are known as hiding and binding, which in
summary can be defined as follows.

- Hiding: It is hard for any PPT adversary A, to generate two messages m0 6= m1 from the
message space M such that A can distinguish between their commitments c0 and c1 where
(c0, o0) = Commit(m0) and (c1, o1) = Commit(m1), where o0 and o1 are the opening values for
the commitments.

- Binding: It is hard for any PPT adversary A, to come up with a collision (c,m0, o0,m1, o1),
such that (m0, o0) and (m1, o1) are valid opening values of m0 6= m1 for c.

A standard practical commitment scheme is for Commit to generate a high entropy value r and
then set c ← H(m‖r) and o ← m‖r. If the message m contains sufficient entropy itself, as it
does in our application below, one does not need to generate a random string in this construction.
Thus the commitment scheme is simply to hash m, and to open we check whether the hash is
correct. Such a commitment scheme is both computationally binding (due to collision resistance
of the hash function H) and hiding (due to pre-image resistance of the hash function H). We let

AdvHiding
Commit (resp. AdvBinding

Commit) denote the advantage of an adversary in breaking the hiding (resp.
binding) property of the commitment scheme.

2.3 Linear Secret Sharing Schemes

Given N parties in the protocol we will denote by P1, . . . , PN , we let 〈x〉q denote an additive sharing
of a value x ∈ Fq; i.e. a sharing of x consists of random x1, · · · , xN ∈ Fq such that x =

∑
i∈[N ] xi,

where Pi holds xi. We can define the following (linear) operations on shares:

- 〈x〉q.reveal(): To reveal the secret x each party broadcasts its share xi. Upon receiving xk from
each Pk, Pi sets x =

∑
i∈[N ] xi.

- 〈x〉q + 〈y〉q: Given two sharings, over the same finite field Fq, each party Pi defines xi + yi as
its share of the result.

- σ+ 〈x〉q: Given a sharing 〈x〉q and a public constant σ ∈ Fq, party P1 defines x1 + σ as its new
share while the other parties’ shares remain the same.

- σ · 〈x〉q: Given a sharing 〈x〉q and a public constant σ ∈ Fq, each party Pi defines σ · xi as its
share of the product.

3 M-Circuits

Given a function F there are many ways of representing the function: theoreticians may look at
binary or arithmetic circuit representations, programmers may think of C, Java, or Haskell, a
processor designer may think of an x86 instruction stream. By the Church-Turing thesis all are
essentially equivalent. In this section we formalize a way of representing a function for use in
LSSS-based MPC and/or MPCitH systems. A key aspect of our definition is that the process of
compiling/programming an abstract mathematical function F as a concrete representation involves
some form of security analysis, i.e. it is not only the MPC/MPCitH protocol which impacts security
but also the input representation of the function being operated upon.
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3.1 Defining an M-Circuit

At the heart of our definitions is the idea that a function maps input variables to output variables,
but that some of the input variables, and indeed some of the output variables may be sensitive.

Machine State. We start by defining a machine state.

Definition 3.1 (Machine State). A machine state state defined over a set of finite fields F =
{Fq1 , . . . ,Fqf } is a collection of variables (or memory addresses). Each variable has a type which is
one of the following three forms:

- (qi,−), which refers to a variable which holds a non-sensitive variable in the finite field Fqi;
- (qi, s), which refers to a variable which holds a sensitive variable in the finite field Fqi;
- (−,−) which refers to a signed integer variable (i.e. an element of Z) in some bounded range

(for example a 64-bit integer).

The machine state can hold these variables in a number of manners, for example as memory locations
indexed by integers via stacks. The usage of the signed integer variables are to allow memory access
operations and stack operations within the machine. Note, one could extend the definition to finite
rings, and not just finite fields, using techniques such as those from SPDZ2k [CDE+18], but for
now we keep to the simpler case of finite fields.

To ease notation in what follows we let {x}q denote a variable of type (q,−), 〈x〉q denote a
variable of type (q, s), and x denote a variable of type (−,−). Also, we make no distinction between
the name of the variable and the value it contains. If we want to refer to a type, and are not
interested in its sensitivity classification, we refer to the type (q, ∗), and call it the base type of the
variable.

We note that variables of the same type can be added, subtracted and multiplied etc. Variables
of different types can be combined in the following sense: the operation of a binary arithmetic
operator on two variables of type (p1, s1) and (p2, s2) can be applied if gcd(p1, p2) 6= 1, resulting in
a type (p3, s3) where:

- p3 = gcd(p1, p2),
- s3 = s if and only if s1 = s or s2 = s, otherwise s3 = −. (This means that variables can only

become more sensitive, akin to the ‘no write down’ rule of Bell-LaPadula [BL73]).

Thus one can form (relatively) arbitrary arithmetic expressions on variables, and one can assign a
type to the result of the expression.

Variables of type (p,−), for prime p, can be arbitrarily converted into variables of type (−,−)
and vice-versa, using the inclusion Fp −→ [0, . . . , p − 1) ⊂ Z and the mapping Z −→ Fp given by
x 7→ x (mod p).

Correlated Randomness Sources: As well as variables, and the arithmetic expressions we
can create from them, there are two additional components for an M-Circuit, namely correlated
randomness sources and gadgets, which we describe in the following.

Definition 3.2 (Correlated Randomness Source). A correlated randomness source S is de-
fined by a set of variables {v1, . . . , vt} of any (specific) types {(q1, ∗), . . . , (qt, ∗)} and a predicate
pred on those variables.
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A correlated randomness source should be thought of as related to the data which is produced in
preprocessing phases of MPC protocols such as SPDZ [DPSZ12]. Thus typical sources would be:

- Triple: This has associated to it three variables, (a, b, c) all of type (p, s), for which the predicate
is pred(a, b, c) := a · b = c, with a, b being uniformly randomly chosen from Fp.

- Square: This has associated to it two variables, (a, b), both of type (p, s) for which the predicate
is pred(a, b) := a · a = b, with a being uniformly randomly chosen from Fp.

- Bit: This has associated to it a single variable, a, of type (p, s) for which the predicate is
pred(a) := a ∈ {0, 1}, and a is uniformly randomly chosen from {0, 1}.

- daBit: This has associated to it two variables, a, b, one of type (p, s) and one of type (2, s), for
which the predicate is pred(a, b) := (a = b) ∧ (a ∈ {0, 1}), with a uniformly randomly chosen
from {0, 1}.

Gadgets: The second component we introduce now is called a ‘gadget’. From a high level point
of view these can be arbitrary operations. More formally, they are function calls made by the
M-Circuit which we do not necessarily implement using an M-Circuit. This means, for example,
that their functionality could be provided by some externally defined protocol. In practice, we will
use gadgets to perform very specific operations within specific protocols and also to help to define
stages of program transformation within a compilation. Thus gadget’s correspond to operations
which are done using special protocols, with the idea being that if we can show the special protocol
for implementing the gadget is secure and correct, then we can use the gadget as an optimization
process within our final protocols.

Definition 3.3 (Gadget). A gadget G is a mathematical function which takes a set of variables
and outputs a set of variables (v̂1, . . . , v̂u)← G(v1, . . . , vt), where no assumption is made about how
G will be implemented. The types of the input and output variables are assumed to be implicitly
defined by the gadget itself.

Looking ahead, in the context of MPC using a gadget is like calling a protocol to perform a Garbled
Circuit operation on some secret shared data over F2 in a system such as that described by the
Zaphod paper [AOR+19]. The gadget in this case goes outside the neat confines of LSSS-based
MPC, but it is integrated with the LSSS based MPC and is thus able to allow greater functionality
at reduced cost. Another example of a gadget could be a multiplication gate, which we do not
expand into its Beaver representation if we want to avoid correlated randomness sources.

Instructions and M-Circuits. An M-Circuit is composed of an ordered finite list of instructions
as follows.

Definition 3.4 (Instruction). An instruction can be one of the following forms:

- A pair (v, expr), where v is a variable and expr, is an arithmetic expression as described above.
The type of v must correspond to the type of expr. As a shorthand we may write v ← expr. We
restrict the expressions expr to be arbitrary arithmetic expressions, however the total degree of
the expression in any sensitive variables must be one. Thus we can only compute linear functions
on sensitive variables.

- A tuple ({v1, . . . , vt},S) where S is a correlated randomness source, and the variables {v1, . . . , vt}
have the same types as the variables associated to the source. As a shorthand we may write
v1, . . . , vt ← S.
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- A tuple ({v̂1, . . . , v̂u}, {v1, . . . , vt},G) where v̂i and vi are variables and G is a gadget as described
above. The types of vj and v̂i must correspond to the input and output types of the Gadget. As
a shorthand we may write v̂1, . . . , v̂u ← G(v1, . . . , vt).

- A ‘declassification’ instruction which we write as x← y.reveal(). This takes a variable y of type
(p, s) and creates a variable x of type (p,−) which has the same value as y.

- A special instruction called terminate.

Examples, of the first three types of instruction, could include:

〈z〉 ← 〈x〉p + 〈y〉p
〈x〉p, 〈y〉p, 〈z〉p ← Triple

{〈ci〉2}127
i=0 ← AES

(
{〈ki〉2}127

i=0, {〈mi〉2}127
i=0

)
.

Finally, we can define what we mean by an M-Circuit.

Definition 3.5. An M-Circuit is a tuple consisting of an ordered list of instructions I and two
sets of variables VI and VO (called the input and the output variables).

A class of M-Circuits C({S1,...,Ss},{G1,...,Gg})
{Fq1 ,...,Fqf }

is the set of all M-Circuits over the finite fields {Fq1 , . . . ,Fqf },
which utilize correlated randomness sources {S1, . . . ,Ss} and gadgets {G1, . . . ,Gg}. If F and F ′
are sets of finite fields, and S and S ′ are sets of correlated randomness sources, and G and G′ are

sets of gadgets then we have C(S,G)
F ⊆ C(S′,G′)

F ′ if F ⊆ F ′, S ⊆ S ′ and G ⊆ G′.

3.2 Executing an M-Circuit

An M-Circuit (I,VI ,VO) operates on a machine state as follows. The machine state state has an
initial state consisting of the set of registers VI with pre-assigned values given to them (i.e. the
inputs to the function). In addition there is a special register of type (−,−), called pc, which is
initial set to zero. Then the following operations are repeated until a terminate instruction is met.

- Instruction numbered pc is fetched from the list of instructions I.
- The value of pc is incremented by one.
- The instruction is executed as follows depending on its type

- (v, expr) is evaluated if all the variables in expr are currently defined, and the result is
assigned to variable v. If not all variables are defined then the system aborts.

- ({v1, . . . , vt},S) is evaluated by sampling the variables {v1, . . . , vt} according to the source
definition.

- ({v̂1, . . . , v̂u}, {v1, . . . , vt},G) is evaluated as for (v, expr)
- Declassification instructions do the obvious declassification operation.
- If the instruction is terminate then the M-Circuit terminates.

On termination the M-Circuit outputs the variables in the set VO, if they are defined. If any are
not defined it aborts.

Note, this is a rather general model in a number of senses:

- One can perform a conditional branch on non-sensitive variables by making instructions of the
form (pc, expr), e.g. pc← b · 100 + (1− b) · 200 will either result in a jump to instruction 100 or
instruction 200 depending on the value of variable b ∈ {0, 1} of type (−,−).
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- Subroutines calls, and hence recursion, can be performed by using creating a stack of type
(−,−) in the machine state, and then using this to push/pop the pc variable on or off of it.

The main limitation of the model seems to be that instructions of the form (v, expr) can only contain
linear functions of sensitive variables. This is where our gadgets and randomness sources will come
in.

There are four different measures of complexity of an M-Circuit, and we name these so as to link
them with their analogues when we use M-Circuits for MPC (where analogues exist), as follows.

- The offline complexity is the number of calls to the source oracles {S1, . . . ,Ss} made by the
M-Circuit on a given input.

- The online communication complexity is the number of calls to the operation reveal() made by
the M-Circuit on a given input.

- The online round complexity is the minimum number of parallel calls to the operation reveal()
made by the M-Circuit on a given input.

- The gadget-complexity (which has no usual analogue in the MPC domain) is the number of calls
to gadgets G made by the M-Circuit on a given input.

3.3 Compiling M-Circuits

An M-Circuit is created by a process called compilation.

Definition 3.6 (Compilation). A compilation step is an algorithm which takes an M-Circuit C

in a class C(S,G)
F and maps it to an M-Circuit C ′ in a class C(S′,G′)

F ′ . The algorithm must ensure that
the functional behaviour of C and C ′ are identical, i.e. the input/output behaviour of C and C ′ are
the same.

Note a compilation says nothing about whether C(S,G)
F ⊆ C(S′,G′)

F ′ or vice-versa.
Given an arbitrary polynomial time function F , defined over a set of finite fields F and the

integers, there is always an M-Circuit, which we call CF , which implements F in the class C(∅,{F})
F ,

namely the M-Circuit which uses the gadget G = F . The goal of compilation is to find representa-
tions of CF in simpler classes, in particular a class which can be implemented in either an MPC or
MPCitH system. We present three exemplar compilations here to fix ideas:

- Arithmetic Circuit: Consider the gadget GM for a finite field Fp which multiples two input
values, giving the output value of the same type. Then the standard ‘arithmetization’ of poly-

nomial time functions F compiles the M-Circuit CF to an M-Circuit CAF in the class C(∅,{GM})
Fp .

- Beaver Randomized Circuit: We can take the M-Circuit CAF produces in the previous ex-

ample and compile it to an M-Circuit CBF in the class C(Triple,{∅})
Fp using Beaver’s standard circuit

randomization trick, [Bea92].
- Insecure Circuit: Here we take F , and create the functionally equivalent function F ′ which

first de-classifies all the sensitive input variables of F . Then it evaluates F on the clear values,
using the arithmetic circuit representation of F . Finally, it re-classifies any output variables
as sensitive which need to be sensitive, by multiplication by 〈1〉p. The associated arithmetic
circuit CAF ′ (which includes reveal() operations as well as the usual arithmetic operations) is an

M-Circuit in the class C(∅,{GM})
Fp .

The last example here hints that compilation can create something which is ‘insecure’. To quantify
this notion we need to define what we mean by security of an M-Circuit.
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3.4 Security of M-Circuits

To define security of an M-Circuit we have to examine the reveal() operations in more detail, since
these are the operations which potentially de-classify sensitive information. Informally we require
that the reveal() operations never reveal more than an negligible amount of sensitive information
about any sensitive inputs to the function.

To each reveal operation of the form a ← 〈b〉q.reveal() we associate a given distribution Rb on
the set Fq. The reader can think of Rb on first reading as the uniform distribution (which will be
true for circuits compiled using the Beaver compilation above, but it is not true in general). To
take into account the type of efficient function representations used in say [CS10] we need to be a
little more nuanced.

The distributions Rb are on the outputs of reveal() are conditioned on the following three things:

- The specific non-sensitive inputs and outputs of the function being evaluated.
- The random execution path taken by the circuit.
- The distributions of the correlated randomness sources.

However, the distributions are not conditioned on sensitive input and output values to the function.
For example consider the code fragments in Figure 1. In fragment (a) the function is b, in which
case the distribution Rz has probability mass of one at the value b−1 and is zero elsewhere, whilst
in fragment (b) the distribution Rz is the set of values in the range [−B, . . . , B] with an associated
binomial distribution.

Code Fragment (a)
a = z.reveal()

b = a+1

Output b

Code Fragment (c)
z=x+y

a=z.reveal()

Output a

Code Fragment (b)
for i in range(2*B):

b_i = Bits

z = sum(b[2*i]-b[2*i+1],i in range(B))

a = z.reveal()

Code Fragment (d)
b=x.reveal()

c=y.reveal()

a=b+c

Output a

Fig. 1. Example Code Fragments

The trace TraceC of an M-Circuit, on a given input, consists of the set of non-sensitive input
variables, the non-sensitive output variables, plus the output of every reveal() operation. A simulated
trace SimC is the same except that the output of every reveal() operation is replaced by a value
chosen via the distributions Rb above.

Definition 3.7 (Perfectly Secure M-Circuit). An M-Circuit C is said to perfectly securely
implement a function F if the functional behaviour of the M-Circuit C and the M-Circuit CF are
identical, and the distribution of TraceC and SimC are identical for all input values.

Definition 3.8 (Statistically Secure M-Circuit). The M-Circuit C is said to securely imple-
ment a function F with statistical security sec if the functional behaviour of the M-Circuit C and
the function CF are identical, and the statistical distance between the distribution of TraceC and
SimC is bounded by 2−sec for all input values.

9



The first question one must ask is if such a definition is vacuous. The celebrated technique of
Beaver’s Circuit Randomization [Bea92] says no.

Theorem 3.1. Every polynomial time function F can be perfectly securely implemented by the
M-Circuit CBF with polynomial complexity (in all four metrics).

Proof. Using the compilation process above we can compile the M-Circuit CBF . It is well known
that the reveal() operations this creates are associated with uniform distributions, and thus the
reveals are perfectly hiding.

Note, this definition is about the representation of the function i.e. the compilation of the M-Circuit
from the function definition. It asks whether the compilation process is itself secure; it makes no
claim about how the M-Circuit is then used or evaluated within an MPC or MPCitH system.

Not all compilations will result in secure M-Circuits, as our insecure compilation example illus-
trates. To see why this compilation violates our security definition, consider the specific function
F which takes two sensitive values x and y, and returns their sum, but as a non-sensitive value.
Mathematically one could write F (〈x〉, 〈y〉) = (〈x〉+〈y〉).reveal(). A functionally valid M-Circuit for
this function is given in code fragment (c) of Figure 1, whilst another functionally valid M-Circuit
for the same function is given in code fragment (d).

Code fragment (c) is a perfectly secure M-Circuit, with the distribution Rz being the point
distribution will all the probability mass at the point a (where a is the public output of the
function). Thus the valid transcript TraceC and SimC are identical and equal to TraceC = SimC =
{∅, {a}, {a}.}, i.e. there are no distributions here at all, TraceC and SimC are fixed by the output
a. Note, the ∅ corresponds to the set of non-sensitive input variables, the first {a} is the set of non-
sensitive output variables, and the second {a} is the output of every reveal (resp. the simulated
reveals) in the case of the actual trace (resp. the simulated trace).

Code fragment (d) has Rx being the point distribution on x, with y being the point distribution
of y = a− x. Thus TraceC of the second M-Circuit is equal to TraceC = {∅, {a}, {x, a− x}} which
is a fixed value (for each given input), whereas the simulated trace SC is equal to the value given
by SC = {∅, {a}, {r, a− r}} where r uniformly chosen from Fp. Thus TraceC and SC in the second
case can never be statistically close. Thus the second compilation to an M-Circuit is insecure, but
functionally correct.

4 M-Circuits for Multi-Party Computation

It turns out that our M-Circuit notion lies underneath almost all algorithmic level optimizations
of LSSS-based MPC over the last decade (by which we mean optimizations related to the program
representation and not the MPC protocol itself). The M-Circuit concept allows us to isolate which
optimizations can be utilized by which MPC protocols, since not all MPC protocols can implement
all M-Circuit classes.

As remarked earlier, arithmetic circuit representation of a functionality over a finite field Fq
correspond to M-Circuits in the class C(∅,{GM})

Fq . Thus ‘traditional’ LSSS based MPC protocols such

as [BGW88,CCD88], or modern protocols such as [CGH+18], which have specific protocols for the
multiplication operation can utilize this M-Circuit representation. However, the security of these
protocols is then proved by showing that the implementation of the specific multiplication gadget
leaks no information.
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Protocols which expand the multiplication gadget via Beaver’s trick [Bea92] utilize circuits

from the class C({Triple},∅)
Fp . The security of the underlying (passively secure) online protocol then

follows from the security of the M-Circuit representation; if the M-Circuit is secure then so is the
obvious LSSS-based MPC protocol in which one replaces the sensitive variables in the M-Circuit
by secret shared values. The problem comes in creating an offline phase to produce the necessary
correlated randomness source Triple in a secret shared manner. For honest majority protocols this
offline phase is usually performed using hyper-invertible matrices (as in VIFF [DGKN09]) or, for
dishonest majority protocols using homomorphic encryption (as in SPDZ [DPSZ12]) or OT (as in
MASCOT [KOS16]). In the latter case to prove active security of the underlying MPC protocol one
needs to provide a form of authenticated secret sharing, while the privacy of the protocol follows
from the security of the M-Circuit representation. For the passive case the security of the online
phase we cover in Section 5.1 later.

Papers such as [DFK+06,CS10,Cd10] showed that one can obtain greater efficiency by working

with M-Circuits in the class C(∅,{GM})
F28 ,Fq , or equivalently C({Triple28 ,Tripleq},∅)

F28 ,Fq ; although of course they did

not use this language. In these latter works the authors used multiplication to create shared-random
bits, whereas if one assumes these as a random source then the protocols become simpler to describe;

thus the same work can be cast as corresponding to M-Circuits in the class C({Triple,Bit},∅)
Fq . It is this

latter representation which is used in modern LSSS-based systems in the pre-processing model; for
example the second generation of the SPDZ protocol [DKL+13] utilizes function descriptions which

are M-Circuits in the class C({Triple,Square,Bit},∅)
Fp . The papers such as [CS10, Cd10] also showed one

can obtain more efficient representations, in terms of minimizing the various complexity measures
we described earlier, by compiling to what we call statistically secure M-Circuits as opposed to
perfectly secure M-Circuits.

Systems which make use of daBits [RW19] to translate between binary and arithmetic fields

utilize M-Circuits in the class C({Triple,Square,Bit,daBit},∅)
{Fp,F2} . Systems such as Zaphod, [AOR+19] extend

this idea further by allowing gadgets based on garbled circuits to be evaluated within the MPC-

computation. Thus they allow M-Circuits in the class C({Triple,Square,Bit,daBit},{G1,...,Gg})
{Fp,F2} for specific

garbled circuit based sub-procedures G1, . . . ,Gg. As long as the gadget can be securely implemented,
then the overall MPC protocol is itself secure.

Obviously compilation methods, and different sources of correlated randomness, will give dif-
ferent M-Circuits with different complexities. This is essentially the engineering challenge of MPC
solutions: to pick the compilation strategy and sources of correlated randomness in order to achieve
an efficient M-Circuit which can be executed by a given MPC engine.

5 M-Circuits for MPC-in-the-Head

In this section, we present an MPCitH-based Honest Verifier Zero-Knowledge (HVZK) argument
of knowledge system for satisfiability of a function (computation) that is compiled to an M-Circuit.
Initially we consider M-Circuits with no gadgets, namely we consider the class of M-Circuits

C({S1,...,Ss},∅)
{Fq1 ,...,Fqf }

. Later we shall remove this restriction, at the expense of introducing more rounds

of communication.

Our construction extends Katz et al.’s construction [KKW18] for arbitrary finite fields. Since
we work with M-Circuits, we do not consider operations such as AND, multiplication or squaring
(as in Katz et al.’s presentation), but rather we formalize the protocol in term of generic correlated
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randomness sources over arbitrary finite fields, along with calls to the reveal() function. As we have
already explained, such a representation is universal, and can lead to optimizations (which we will
discuss later).

We first describe the specific underlying MPC protocol to securely compute an M-Circuit in-
stance that we will exploit in our MPCitH protocol. Then, we present an MPCitH-based HVZK
argument of knowledge based on the input M-Circuit instance. Initially, we present a protocol which
checks the correlated randomness sources using the cut-and-choose paradigm. This method works
for arbitrary sources. In a latter section we present another methodology which works for some
specific correlated randomness sources which is based on the sacrificing idea used in some actively
secure MPC protocols.

5.1 The Underlying MPC Protocol

The MPCitH protocol we utilize will make use of a very simple (passively secure) MPC protocol
based on full threshold secret sharing in the pre-processing model. The function F we will be
evaluating is assumed to have (some) sensitive input variables, but no sensitive output variables.
The N parties in the protocol we will denote by P1, . . . , PN .

Offline Phase. We define an ideal functionality for the offline phase, which implements the gener-
ation of suitable correlated randomness according to the sources required by the M-Circuit. This
is given in Figure 2.

MPC Offline Functionality FSOffline

For every source S ∈ S we define a command which operates as follows:

S: On input of (S) the functionality proceeds as follows
1. Generate (v1, . . . , vt) according to the source definition S.
2. For all variables vi of type (qi, s) wait for shares vi,j from the adversary A.
3. On receiving these shares complete them to a full set of shares

∑
j 6∈A vi,j = vi−

∑
j∈A vi,j and send the

relevant vi,j to the honest parties.
4. Output vi when it is of type (qi,−) to all parties.

Figure 2. Functionality FSOffline

Online Phase. We wish to implement the passively MPC/SFE functionality given in Figure 3, in
which we assume the sensitive inputs are assigned to specific parties. This is done using the online
phase given in Figure 4, which is defined in the FOffline-hybrid model.

Security. We let A denote an adversary which statically corrupts a subset of the parties. We abuse
notation slightly by referring to A both as the adversary, and as the set of parties which it has
corrupted. We define view{A,ΠMPC}(C) to be the view of A during the execution of the protocol
ΠMPC on the function F represented by the M-Circuit C in the FOffline-hybrid model. This view
consists of the inputs of the parties in A, the shares of the correlated randomness the parties in
A receive from {S1, . . . ,Ss}, and the messages they obtain from the other parties while evaluating
the protocol. The security of Π is stated in the following theorem.
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Passively Secure MPC/SFE Functionality FMPC

Given a function F defined over finite fields with input variables VI and output variables VO, the functionality
proceeds as follows.

1. For each input variable v ∈ VI :
(a) If input variable v of type (q, s) is assigned to party Pi then wait for party Pi to enter the value v.
(b) If input variable v is of type (q,−) then wait for all parties to input the same value v.

2. Compute the function F on (v1, . . . , vt) and output the output variables to all parties (recall we assume F
has no sensitive output variables).

Figure 3. Passively Secure MPC/SFE Functionality FMPC

Theorem 5.1. For every subset of parties A ⊆ {P1, · · · , PN}, with |A| ≤ N − 1, there ex-
ists a probabilistic polynomial-time algorithm S, with access to the functionality FMPC, such that
{S(A, F, vA)} ≡ view{A,ΠMPC}(C), where vA are the function inputs of the parties in A.

The equivalence relation is a perfect equivalence if the M-Circuit C is a perfectly secure imple-
mentation of the functionality F , and is a statistical equivalence if the M-Circuit is a statistically
secure implementation of F .

Proof. Intuitively, the corrupted parties see only shares of the values on the variables of the M-
Circuit that could reveal to any value or random public values. The simulator has to just execute
the M-Circuit, and add the necessary data to the adversaries view. Technically the algorithm S
acts as follows,

- It first chooses random shares for the parties in A, for each of the input variables of the parties
not in A, and adds them to the view of the corrupted parties A.

- It obtains the inputs for the sensitive variables assigned to the parties in A from A, and then
calls F (using random values for the honest parties inputs) so as to obtain the output values of
F .

- Then the simulator passes over the M-Circuit step by step and performs all the local operations
on the corrupted parties’ shares based on the protocol,

- For each query to a correlated randomness sources, it chooses the shares of the sensitive outputs
of the sources at random and adds them to the corrupted parties’ view, the non-sensitive outputs
are added directly to the view.

- For each reveal() call, say 〈b〉q.reveal(), the simulator chooses α from the corresponding distri-
bution Rb on the set Fq. Note, the simulator knows the distributions Rb since it knows the
program, the non-sensitive inputs, the sensitive input values of the parties in A and the output
of the function F . It then takes the corrupted parties shares bi for i ∈ A and defines the honest
parties shares by

∑
i 6∈A bi = α−

∑
i∈A bi. The values (b1, . . . , bN ) are added to the view.

The only difference between the real protocol view and the simulated view is in dealing with the
reveal() operations. That these have the required difference between the real and simulated view
follows from the security definition of the underlying M-Circuit M . ut

5.2 Sub-Procedures for MPCitH

In this subsection we collect together a number of sub-procedures and algorithms for our general
MPCitH protocol for M-Circuits.
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Passively Secure MPC/SFE Protocol Π
(F,S)
MPC (C)

Given a function F defined over finite fields with input variables VI and output variables VO represented as an
M-Circuit C in the class C(S,∅)

F , the protocol proceeds as follows.

1. For each input variable v ∈ VI
(a) If input variable v of type (q, s) is assigned to party Pi then party Pi shares v =

∑
vj and sends vj to

party Pj .
(b) If input variable v is of type (q,−) then all parties agree on the value v.

2. Now execute the M-Circuit line by line (as above).
- For a x.reveal() command, party Pi sends his share xi to all parties.
- For a call to a correlated randomness source S ∈ S, make the appropriate call to the functionality FOffline.
- For an arithmetic operation, perform the associated operation on the linear secret sharing scheme given

above.
3. Finally, for a terminate operation, for each variable v ∈ VO the parties output their (necessarily opened)

value v as their output.

Figure 4. Passively Secure MPC/SFE Protocol Π
(F,S)
MPC (C)

Pseudo-Random Generator. We let PRGq denote a pseudo-random function, which on input of a
key seed and an index j outputs a (pseudo-) uniformly random element of the finite field Fq. We
let PRFλ denote an equivalent function which outputs values in {0, 1}λ.

GenAux Function. To a correlated randomness source S we associate a deterministic algorithm
GenAuxS which on input of a given assignment to the variables {v1, . . . , vt} in the source will
output a set of variables {v′1, . . . , v′t} of the same types. The output should satisfy the following
equality of distributions, where v1 ← Fp1 means sample v1 uniformly from the field Fp1 ,{

(v1 + v′1, . . . , vt + v′t) : vi ← Fpi for i = 1, . . . , t,

(v′1, . . . , v
′
t)← GenAuxS(v1, . . . , vt)

}
≡
{

(v1, . . . , vt) : (v1, . . . , vt)← S
}

Note, there can be many ways for a given source to define the algorithm GenAux; some are more
compact than others. For example take the source Triple which has (at least) the two following
definitions for GenAux.

1. GenAuxTriple(a, b, c) = (0, 0, a · b− c).
2. GenAuxTriple(a, b, c) = (x − a, y − b, z − c) where x, y are deterministically selected from Fp by

GenAuxTriple using a PRG with the seed H(a, b, c), for some hash function H, and z = x · y.

The first of these is more efficient in our application as the user knows the first two coordinates are
always zero, and can therefore drop them from any data transferred. It turns out the first is also
better for one of our optimizations we present later.

Sources which require some specific distribution, such as the Bit source from earlier, can be
produced by defining GenAuxBit(a) = (a− b) where b = H(a)&1 for some hash function H.

GenShares. To each correlated randomness source S, with variables {v1, . . . , vt} we associate the
following seeds:

1. If vi is of type (qi,−) then we associate a single seed seedS
i .
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2. If vi is of type (qi, s) then we associate N seeds seedS
i,j for j = 1, . . . , N .

We also associate a counter cntS, which on initialization of the source is set to zero. In the
MPCitH protocol below when S is called we execute an algorithm GenSharesS (given in Figure 5)
which takes as input the above seeds and the counter cntS and produces a sample from the random-
ness source presented as a sharing amongst the parties, as well as the correction term. We write
({vi}†, {vi,j}∗, aux, cntS)← GenSharesS({seedS

i }†, {seedS
i,j}∗, cntS).

The GenSharesS Algorithm

1. For all variables vi output by S of type (q,−) execute
(a) vi ← PRGqi(seedS

i , cntS)
2. For all variables vi output by S of type (q, s) execute

(a) vi,j ← PRGqi(seedS
i,j , cntS) for j = 1, . . . , N .

(b) vi ←
∑n
j=1 vi,j for all i ∈ 1, . . . , t.

3. cntS ← cntS + 1.
4. aux = (v′1, . . . , v

′
t)← GenAuxS(v1, . . . , vt).

5. vi ← vi + v′i for all i.
6. vi,N ← vi,N + v′i for all i such that vi has type (qi, s).
7. Output ({vi}†, {vi,j}∗, aux, cntS), where † denotes vi has type (qi,−) and ∗ denotes vi has type (qi, s).

Figure 5. The GenSharesS algorithm for a source S

5.3 The Construction of HVZK Argument of Knowledge

We can now present our generalization of the MPCitH protocols of [KKW18, BN20] to the case
of arbitrary M-Circuits. Our initial construction uses the cut-and-choose checking paradigm, but
later we will also consider the other checking approach, i.e. sacrificing, that we show to be more
efficient for particular cases. Recall at this point we assume an M-Circuit C is given in the class

C({S1,...,Ss},∅)
{Fq1 ,...,Fqf }

. The M-Circuit has no sensitive output variables, but there are a set of sensitive input

variables, which we denote by w. The prover wishes to show that he knows a witness for these
output variables, which by abuse of notation we also call w, such that the M-Circuit produces a
given output.

At a high level the proof proceeds by the prover simulating the N -party MPC protocol from
Section 5.1 in his head and executes it over an additive sharing of w, along with calls to the cor-
related randomness sources ({S1, . . . ,Ss}, ∅), which are performed using the algorithm GenSharesS

given above. Clearly, as the secret sharing scheme is executed in prover’s head, the prover might
try to cheat and convince the verifier about a false statement. To prevent such issues, and hence
to obtain a negligible soundness error, the construction allows the verifier to challenge the prover.
Namely, at the end of the first round the prover commits (by the above commitment scheme) to the
views of N parties in M executions. Then, the verifier (randomly) challenges a subset of executions
E ⊂ [M ] of size τ for which all correction terms induced by calls to the correlated randomness
sources will be revealed and verified. The verifier also (randomly) challenges a single party j ∈ [N ],
such that all parties views are opened to him (bar party j) for all e ∈ [M ] \ E.

After revealing the secret information for the challenged executions and parties, e.g. the master
seeds, the challenged parties’ seeds, or the commitments, the verifier recomputes (either using
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directly the values sent by the Prover, or by using the parties’ seeds and correction terms to
emulate the secret sharing scheme) and checks the commitments and final output of the M-Circuit.

In the described HVZK argument, intuitively, zero-knowledge is achieved relying on the fact
that the M-Circuit is secure (its trace is simulatable) and the revealed data are only random values
which are independent of the witness w. Thus the N − 1 views that are revealed do not reveal
anything as the underlying MPC protocol is passively secure against N − 1 semi-honest parties.

In our protocol description, as before, we use 〈x〉q to denote a sensitive variable (associated
to an additive sharing x =

∑
j∈[N ] xi) and {x}q to denote a non-sensitive variable within the M-

Circuit. As input to both the protocol and the verifier we have a general M-circuit C in the class

C(S,∅)
F , with the set of finite fields F = {Fq1 , . . . ,Fqf }, a set of Correlated Randomness Sources
S = {S1, . . . ,Ss}, and no gadget. We assume that the prover and verifier have agreed on the non-
sensitive input variables to the M-Circuit, and the prover additionally has an assignment to the
sensitive input variables (witness) such that the M-Circuit evaluates to a given public output.

Phase 1 of the protocol is given in Figure 6, at the end of this execution the prover sends to
the verifier the triple (hφ, hΓ , hview). Phase 2, given in Figure 7, starts with the verifier (randomly)
selecting a subset of executions E ⊂ [M ] of size τ . We set Ē = [M ] \E, and the verifier also selects
je ∈ [N ] for e ∈ Ē. To ease notation we define Ie = [N ] \ je The challenge is the set E and the
values {je}e∈Ē . Figure Figure 7 also gives, in Phase 3, what the verifier finally performs to verify
the proof is correct.

Remark. Note that the M-Circuits can have a randomized execution even for a deterministic func-
tion. Therefore the prover computes all the M executions in Phase 1, even those for which the
master seed will be revealed. This is needed to learn the number of calls to the correlated random
sources in each execution.

5.4 Security Proof

Next, we show that the construction of an MPCitH protocol, given in Figure 6 and Figure 7,
is an HVZK argument of knowledge which works for all functions represented as an M-Circuit

in the class C({S1,...,Ss},∅)
{Fq1 ,...,Fqf }

. Since our protocol extends previous MPCitH-based constructions, such

as [KKW18,BN20], our security proofs are an adaption of their proofs for our setting.

Let c be the number of executions where the prover cheats in the protocol, by for example
producing invalid values of the output of the function GenSharesS. We let A denote the event that
among the M total pre-processing runs, none of the τ that are opened coincide with the c ones
that the adversary chose to cheat in. Since τ emulations out of M are revealed and checked by the
verifier (in Step 1 of Phase 3), the success probability of an adversarial prover in passing the checks

on the correlated randomness is Pr[Ac] =
(M−cτ )
(Mτ )

.

After the correlated randomness is verified in Step 2 of Phase 3, the remaining M−τ M-Circuit
executions are then verified by the prover opening all bar one players view. In order to make the
output proof accept, the prover must cheat (i.e., deviate from the specification of the secret sharing
scheme) in M−τ−c emulations. We let B denote the event that for the M−τ−c online executions
with honest pre-processing the dishonest party is not opened. Since N−1 views are being opened in
each such emulation, the prover clearly cannot cheat in the view of more than one party. Therefore,
his success probability in this stage is Pr[Bc] = 1/(NM−τ−c).
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Phase 1 of the MPCitH protocol

Phase 1:

For e ∈ [M ] the prover executes

Set up the seeds

1. seede ← {0, 1}λ.
2. For i ∈ [N ] compute seede,i ← PRFλ(seede, i).
3. For j ∈ [s] and variable vk in source Sj

- seed
Sj
e,k ← PRFλ(seede, j‖k) if vk is of type (qi,−).

- seed
Sj
e,i,k ← PRFλ(seede, j‖k) if vk is of type (qi, s) for i ∈ [N ].

4. For j ∈ [s] set cnt
Sj
e ← 0.

Set up the input shares

5. For each variable wi in the input which is sensitive (i.e. each witness variable)
- we,i,j ← PRGqi(seede,j , i) for j ∈ [N ].
- φe,i ← wi −

∑
j we,i,j .

- Set 〈we,i〉qi ← (wi, {we,i,j}j∈[N ]).
6. For each variable wi in the input which is non-sensitive set {wi} ← wi.
7. viewe ← ∅, auxe ← ∅.

Evaluate the circuit

8. For each call to 〈αe〉.reveal() set set viewe ← viewe||αe,1|| . . . ||αe,N
9. For each call to source Sj with associated variables vi of type (qi, ∗) execute

- Compute ({{vi}qi}†, {〈vi〉qi}∗, aux
Sj

cnt
Sj
e

, cnt
Sj
e ) by calling GenSharesS({seed

Sj
e,i}†, {seed

Sj
e,k,i}∗, cnt

Sj
e ).

- auxe ← auxe‖aux
Sj

cnt
Sj
e

.

Compute the commitments and hashes

10. Input correction terms: (cφe , o
φ
e )← Commit({φe,i}i∈|w∗|).

11. Each parties seeds: (cseed
e,i , o

seed
e,i )← Commit(seede,i).

12. Correlated Randomness Correction Terms: (caux
e , oaux

e )← Commit(auxe).
13. Offline view: he ← H(caux

e ‖cseed
e,1 ‖ . . . ‖cseed

e,N ).
14. The view: (cview

e , oview
e )← Commit(viewe).

Compute
- hφ ← H(cφ1‖ . . . ‖c

φ
M )

- hΓ ← H(h1‖ . . . ‖hM )
- hview ← H(cview

1 ‖ . . . ‖cview
M )

Figure 6. The HVZK proof system for general M-Circuits
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Phase 2 and Phase 3 of the MPCitH protocol

Phase 2:

On input of E ⊂ [M ] and {je}e∈Ē from the verifier the prover computes the set of values O to open.
1. For e ∈ E the seed to open the correlated randomness, and the material to compute hφ, hview, i.e.

O ← {seede‖cφe ‖cview
e }e∈E .

2. The number of calls to each randomness source, i.e. O ← O‖{cnt
Sj
i }i∈[M ],j∈[s].

3. For e ∈ Ē
- All parties seeds bar the challenge one, i.e. O ← O‖{seede,j}e∈Ē, j 6=je .

- The commitments to the missing seed, i.e. O ← O‖{cseed
e,je}e∈Ē .

- The opening values for the commitments to the input correction terms, i.e. O ← O‖{oφe }e∈Ē .
- The opening values for the commitments to the correlated randomness correction terms, i.e. O ←
O‖{oaux

e }e∈Ē .
- For each αe revealed, the jthe share, i.e. O ← O‖{αe,je}e∈Ē .

The set of all opened values O is returned to the verifier.

Phase 3:

On input of O the verifier performs the following steps to verify the proof.
1. For e ∈ E

- Execute the seed generation from seede as an honest prover would do in Phase 1.
- Compute auxe as an honest prover would do, and compute he ← H(caux

e ‖cseed
e,1 ‖ . . . ‖cseed

e,N ).
2. For e ∈ Ē

- For j 6= je, use seede,j to compute cseed
e,j as an honest prover would, and obtain auxe from oauxe .

- Use the above computation with the received cseed
e,je to compute he.

- Use the received oφe to compute cφe .
- Evaluate the circuit as an honest prover would do, using shares derived from the seeds for j 6= je,

and the correction terms for the inputs and correlated randomness. For each call to 〈αe〉.reveal()
use the received αe,je to reconstruct the non-sensitive variable {αe}. From this evaluation, compute
viewe as an honest prover would do, and make sure that the output corresponds to the statement.

3. Computes hφ from the received {cφe }e∈E and computed {cφe }e∈Ē , and compare to the received hφ.
4. Compute hΓ from the computed {he}e∈[M ], and compare to the received hΓ .
5. Compute hview from the received {cview

e }e∈E and computed {cview
e }e∈Ē , and compare to the received hview.

6. Accept the proof if all tests pass.

Figure 7. The HVZK proof system for general M-Circuits
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Therefore, the overall probability that the prover can cheat successfully is,

AdvC&C(M,N, τ) = max
0≤c≤M−τ

{
Pr[Ac] · Pr[Bc]

}
= max

0≤c≤M−τ

{ (
M−c
τ

)(
M
τ

)
·NM−τ−c

}
.

We use the notation AdvC&C as our verification of the correlated randomness is performed by cut-
and-choose. Later we shall look at a different method for verifying the randomness which can be
applied with the correlated randomness is ‘arithmetic’ in nature.

Theorem 5.2. Let C be an M-Circuit in the class C({S1,...,Ss},∅)
{Fq1 ,...,Fqf }

such that the statistical distance

between TraceC and SC is bounded by 2−sec for all input values (with the convention that sec =∞ if
C is a perfectly secure representation of the desired functionality). Let H denote a collision-resistant
hash function, and Commit a commitment scheme. Then the protocol in Figure 6 and Figure 7 is
an HVZK argument of knowledge, with soundness error

AdvC&C(M,N, τ) + AdvBinding
Commit,

and with computational zero-knowledge with distinguishing advantage

AdvHiding
Commit + 2−sec.

Proof. We show that the construction satisfies completeness, honest verifier zero-knowledge, and
(special) knowledge soundness.

Completeness. This is straightforward and follows from the correctness of the secret sharing scheme
and the description of the construction.

Honest Verifier Zero Knowledge. HVZK follows from the security of the M-Circuit, the security of
the secret sharing scheme in Theorem 5.1 and by the hiding property of the commitment scheme.
We construct an HVZK simulator SZK which uses the simulator SMPC constructed in Theorem 5.1.
The simulator SZK works as follows:

- SZK chooses random E ⊂ [M ] with size τ . Then, for each e ∈ Ē = [m] \E, it chooses a random
je ∈ [N ].

- For each e ∈ E, the simulator SZK acts as the honest prover, with one exception: it computes
Πe as a commitment to a 0-string.

- For each e ∈ Ē, the SZK chooses seede,j for each j ∈ Ie = [N ] \ {je}. Then, it generates ste by
choosing random ∆e,k for each call to the correlated randomness source. In addition, it chooses
random φe,k for each input wire k and compute Πe accordingly. Then, the SZK generates viewe
by following the instructions of SMPC with A = Ie and using seede,j to generate the required
randomness. For the commitments Γe,j̄e , the SZK uses the 0-string as the committed message.

- For each e ∈ Ē, for each k ∈ o, the S sets oe,k,je = yk −
∑

j∈Ie oe,j .
- The simulator SZK computes all the hash values as an honest prover would do.
- Finally SZK outputs the transcript of the protocol obtained from SMPC.

Since the transcript generated by SMPC is indistinguishable from the real transcript of the secret
sharing scheme, and since the commitment scheme guarantees hiding, therefore by a hybrid ar-
gument the view generated by SZK is computationally indistinguishable from the view of a real
protocol instance.
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(Special) Knowledge Soundness. We assume the commitment scheme to be computationally binding

and the hash function is collisions resistant. With a security loss of AdvBinding
Commit we can ‘game-hop’ to

an instance where the commitment scheme is perfectly binding, thus from now on we will assume
the commitment scheme is perfectly binding. We now argue that if the success probability of an
adversarial prover, δ(x), is larger than soundness error AdvC&C(M,N, τ), then there exists at least
one execution (out of M) where the prover has committed to a valid witness w, i.e. a witness for
which the evaluation of the M-Circuit C on this witness (as the sensitive inputs) gives the desired
output.

Let G be a binary matrix where each column corresponds to a possible challenge of the Verifier
for execution (i.e. the τ executions to be revealed) and each row corresponds to one possible
challenge of the Verifier for the parties (i.e. the parties indices to determine which view’s of which
party are not be opened in the remaining M − τ executions). Therefore, the success probability of
an adversarial prover, δ(x), is the fraction of entries equal to one in the matrix G.

Let

AdvC&C(M,N, τ) =

(
M−c?
τ

)(
M
τ

) · 1

NM−τ−c? =

(
M−c?
τ

)(
M
τ

)
·NM−τ

·N c?

(i.e. c? is the value for which the expression for AdvC&C is maximized). Considering the definition
of the matrix G, observe that it has

(
M
τ

)
· NM−τ entries. From the assumption that the success

probability satisfies

δ(x) >

(
M−c?
τ

)(
M
τ

)
·NM−τ

·N c? ,

the number of one entries in the matrix G is larger than
(
M−c?
τ

)
·N c? .

Next, assume that in the interaction with the adversarial prover Prover?, the prover corrupts c
of the calls to the correlated randomness generations. Obviously, if any of these are revealed, then
the transcript will not be accepted by the Verifier. Therefore, there can be a one entry in only in(
M−c
τ

)
columns of the matrix G. For each of these columns, there exists N c possible challenges for

the execution of the secret sharing scheme where the output of correlated randomness sources are
incorrect.

Now, as there are more than
(
M−c?
τ

)
· N c? ≥

(
M−c
τ

)
· N c with a one entry in matrix G, then

there must exist two accepting transcripts with the same challenge E and with different challenge
{je}e∈Ē and {j′e}e∈Ē , where je 6= j′e for an execution e with correct calls to the correlated randomness
sources. This implies that all the views of the parties in execution e are correct as well. Therefore,
the witness (the sensitive variables) used in this instance must be a valid witness w.

It is therefore possible to extract the witness w given two accepting transcripts (E, {je}e∈Ē),
(E′, {j′e}e∈Ē′) when the challenge for e is different. Specifically, it is required that one of the following
will hold: e ∈ E ∪E′ \E ∩E′ or j′e 6= je. With the first case it is possible to extract the seeds of all
parties from one transcript (where all calls to the correlated randomness sources in e are revealed)
and the adjustments sent by the Prover from the second transcript (where calls to the correlated
randomness sources in e are not revealed), thereby obtaining the input shares of all parties which
would allow to compute w. In the other case, j′e 6= je, one of the transcripts reveals N − 1 input
shares whereas the other reveals the only remaining share, which would allow one to compute w
by adding all shares together.

Let δ(x) = AdvC&C(M,N, τ)+ε for some ε > 0. An extractor Ext to obtain such two transcripts
can then be constructed as below.
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1. Probe the matrix G until the first one entry is found. Let c = (c1, · · · , cM ) be the challenge for
that entry, where for each e ∈ [M ], ce is the challenge for the jth execution.

2. For each execution e run an extractor Exte, who probes the matrix G at random until an entry
one is found for which the challenge c′ is such that c′e 6= ce.

3. For each c′ outputted by Exte, extract w used in execution e using c and c′ (as described before),
and check that the M-Circuit on w gives the desired output. If yes, output w and halt.

The expected running time of the first step is 1
δ <

1
ε . For the second step, we rely on the following

lemma.

Lemma 5.1. Let J = {je1 , je2 , · · · } ⊆ [M ] be the set of indices which correspond to executions
with valid witnesses. Let |j| shows its size. Then there exists an e ∈ J such that

Pr[accept|c′e 6= ce] ≥
ε

M
,

where accept is the event where the verifier accepts.

Proof. The proof is almost the same as in [BN20, Lemma 1], and so is omitted. ut

Note that Ext tries to extract the witness from all executions until it succeeds in extracting a
valid w from some execution. From the above lemma, there exists an execution e with a valid w for
which the probability of probing an accepting transcript that allows one to extract is larger than
ε
M . Therefore, the expected number of steps until the desired w is extracted is bounded by M

ε .
The value of M depends only on the statistical security parameter but it is in independent of the
common input held by the Prover and the Verifier. Therefore, if the success cheating probability is
larger than AdvC&C(M,N, τ), then a valid w can be extracted in O( |x|ε ) expected number of steps.
This concludes the proof of (special) knowledge soundness. ut

5.5 Efficiency

The size of the proof depends on the proof parameters N,M and τ , which are selected to give
the desired soundness error AdvC&C(M,N, τ). It also depends on the complexity of the M-Circuit
C. To simplify our discussion we consider an M-Circuit over a single finite field Fq, in which all
correlated randomness sources require a single finite field element as the correction term generated
by GenAux.

In particular if C has online communication complexity conline (i.e. the total number of reveal()
operations is conline), and has offline complexity coffline (i.e. the expected maximum number of calls
to all correlated randomness source over a valid execution3). Then the proof size will be

- Phase 1 output size 3 · `H .
- Phase 2 step one: |E| · (`seed + 2 · `C).
- Phase 2 step two: ≈ s ·M .
- Phase 2 step three: |Ē| · ((N − 1) · `seed + `C + (|w∗|+ coffline + conline) · log2 q). Note, this can be

reduced to t(log2(N − 1) · `seed + `C + (|w∗| + coffline + conline) · log2 q) by generating the seeds
using a tree, as explained in [BN20].

3 We say ‘expected’ as the number of bounds may not in theory be finite due to possible probabilistic behaviour,
but it will be expected to be polynomially bounded if C represents an expected polynomial time function.
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Where `H is the output length of the hash function H, `seed is the size of the seed values, and `C
is the size of the commitments (all in bits). To open commitments we assume the size is equal to
the size of the underlying message (which it can be for hash based commitments to high entropy
bit-strings). In terms of the M-Circuit complexity this gives the overall proof size to be

O
(

(M − τ) · (coffline + conline) · log2 q
)
.

The computational effort needed by the prover is O(N ·M · (coffline + conline)) since the prover needs
to execute the M-Circuit M times, and compute the view of each of the N players.

Independent of the circuit complexity, and hence the specific M-Circuit, we can select M , N and
τ to give a desired security level AdvC&C(M,N, τ), which either minimizes communication costs, or
minimizes computational cost for the prover. The following table gives the best parameters, if we
allow M in the range [30, . . . , 200] and N to be a power of two in the range [2, . . . , 64], for different
security levels.

− log2 AdvC&C(M,N, τ) M N τ

40 Best Computation 69 2 22
40 Best Communication 136 64 128

80 Best Computation 138 2 42
80 Best Communication 185 64 167

128 Best Computation 160 4 64
128 Best Communication 199 64 164

6 Using Different Correlated Randomness Sources

In the case of MPC protocols if one wants to add a new form of correlated randomness to a
protocol then this equates to a more complex and costly offline phase. When using our cut-and-
choose methodology for checking the correlated randomness sources in the MPCitH protocol we
have already paid the cost of introducing a single source. Thus introducing new sources is essentially
‘for free’, and can indeed reduce complexity of this stage by requiring less data to check, as well
as reducing proof complexity (both in time to produce/verify and in terms of size). Thus a new
correlated randomness source should aim to reduce the online cost conline, whilst not increasing
coffline (and the associated size of the auxiliary data needed for the resource) by a similar amount.
We give two examples, one arithmetic and one non-arithmetic,

6.1 Dot-Product Computation

As an example, suppose in an M-Circuit program one is given sensitive vectors 〈x〉q and 〈y〉q
of size k and one wishes to compute their dot-product. The naive way of doing the dot product
would be to call the correlated randomness source for triple generation k times; thus receiving
{(〈ai〉q, 〈bi〉q, 〈ci)〉q}i∈[k], and then doing the Beaver multiplication trick k times.

〈z1〉q = 〈c1〉q − (x1 − a1) · 〈b1〉q − (y1 − b1) · 〈a1〉q + (x1 − a1) · (y1 − b1)

. . . . . .

〈zk〉q = 〈ck〉 − (xk − ak) · 〈bk〉q − (yk − bk) · 〈ak〉q + (xk − ak) · (yk − bk)
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Finally we obtain 〈z〉q =
∑

i∈[k]〈zi〉q. The k calls to the correlated randomness source, however,
require k correction terms to make sure that 〈ci〉 = 〈ai · bi〉 for all i. Thus these k terms need to be
added to the proof. However, by introducing a different correlated randomness source tailored to
this specific operation we can replace these k correction terms with a single term. To see this note
that we could also write

〈z〉q =
∑
〈ci〉q −

∑(
(xi − ai) · 〈bi〉q − (yi − bi) · 〈ai〉q + (xi − ai) · (yi − bi)

)
.

Therefore, the necessary pre-processing data could be obtained by defining a new correlated source
which produces values of the form

〈a1〉q, . . . , 〈ak〉q, 〈b1〉q, . . . , 〈bk〉q, 〈c〉q where c =
∑
i∈[k]

ci =
∑
i∈[k]

ai · bi.

Using this source we thus need only one correction term for c, thus saving (M − τ) · (k − 1) field
elements of communication for the pre-processing material when using our cut-and-choose method
for source correctness verification.

6.2 Matrix triples

This is a trick known in the MPC literature that can be easily applied to the setting of MPCitH.
Consider 〈X〉q and 〈Y〉q two matrices of size n·m and m·l respectively. The naive way of computing
〈Z〉q = 〈X ·Y〉q requires O(n ·m · l) calls to the correlated randomness source for triple generation.
However if one has access to a correlated randomness source for matrix triples (〈A〉q, 〈B〉q, 〈C〉q)
such that C = A ·B and A, B are two matrices of size n ·m and m · l respectively, one can perform
the matrix multiplication much more efficiently. Indeed, this source only requires n · l auxiliary
information and the multiplication protocol is similar to the classic Beaver multiplication, thus
requires to reveal one n ·m and one m · l matrix.

6.3 Tiny-Tables

Interesting optimizations from the MPC world can be carried over directly to the MPCitH worlds
using our abstraction. Consider for example the Tiny-Tables optimization, see [DNNR17] as ex-
tended by [KOR+17]. Suppose we wish, at some point in the computation, to compute a function
y = G(x) where x, y ∈ Fq, for prime q, and x is known to be restricted to come from a small domain
D ⊂ Fq of size d− 1, with d < q/2. For simplicity assume D = {0, . . . , d− 1} in what follows.

We can define the correlated randomness source SG which outputs sensitive values 〈s〉, 〈g0〉, . . . , 〈gd−1〉,
subject to the constraints that s is uniformly randomly chosen from Fq and that

gi = G
(

(s+ i (mod q) ) (mod d)
)
.

Evaluation of the table on a shared value 〈x〉, whose value is guaranteed to lie in D, can then be
performed by opening the value 〈h〉 = 〈x〉 − 〈s〉, to obtain h (which we reduce into the centred
interval (−q/2, . . . , q/2)) and then taking the result of the table look up as 〈gh (mod d)〉.

In the case of MPCitH the size of the output of GenAux will depend on the input domain size
d. Thus the Tiny-Table approach will result in a smaller proof if the table size is less than the
multiplicative complexity of the function G, assuming the only alternative is to compute G via an
arithmetic circuit.
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7 Sacrificing

Another trick we can take from the MPC world and apply to the world of MPCitH protocols,
directly from our M-Circuit definition, is that of sacrificing. At a high level one can consider the
cut-and-choose component of the MPCitH protocol i.e. where the verifier selects the set E and
the prover opens all the correlated randomness from the executions in E, as a method to turn a
passively secure offline phase into an actively secure offline phase for the underlying MPC protocol.
The method of cut-and-choose is very general, and thus applies to any correlated randomness
source. However, some correlated randomness sources are arithmetic in nature and thus can be
checked using arithmetic means. This is well known in the MPC literature, and is called sacrificing.
We note a similar trick was proposed in [BN20] but not in the generality we present.

We refer to correlated randomness sources for which one can execute a method akin to sacrificing
as a Checkable Correlated Randomness Source. Using such a check, as opposed to the generic cut-
and-choose methodology from earlier, can introduce efficiencies. However, it comes at the cost of
needing a five-round, as opposed to a three-round protocol.

The basic idea is to modify the correlated randomness source so that it produces an additional
correlation, which is ‘sacrificed’ so as to check the correctness of the desired correlation. The cor-
rectness check makes use of a verifier defined random nonce, which can be fixed across all of the
checks. To simplify our presentation we consider the case where all the variables in a randomness
source are defined over the same finite field Fq, where q is large; extending to smaller and different
finite fields is trivial.

In terms of an M-Circuit definition, suppose we have an initial M-Circuit utilizing a desired
source S which produces correlated variables x. However, to compile it we utilize a related source
S′ whose output variables are of the form (x,y) and which has a function generating auxiliary
input GenAuxS

′
. There is then a procedure SCheckS which takes x, y, the output of GenAuxS

′
and

a challenge value t. The procedure SCheckS which outputs a single bit b; if b = 0 then the value
x is not from the same distribution as S and if b = 1 then it is. The probability that the bit b
is incorrect is bounded by a value εS

′
, with the probability being a function of the choice of the

challenge value t. We say that such a source S′ is a Checkable Correlated Randomness Source.

7.1 The Modified MPCitH Protocol

We now modify our MPCitH protocol so as to execute the sacrificing check, as opposed to cut-
and-choose, for all correlated randomness sources for which we can do so. Note, our protocol now

requires five rounds of interaction. Consider an M-Circuit C in the class C(S,∅)
{F} where the sources

S are divided into two sets Scheck and Snon−check. For which every S ∈ Scheck there is an associated
checkable source S′.

Let tS
′

denote the random variables used in the algorithm SCheckS
′
. We now produce an ex-

tended M-Circuit C ′ which contains not only C but also the procedures SCheckS
′

for all of the
calls to the sources S used by the original M-Circuit C. Note, that C ′ is an M-Circuit which takes
additional input, namely the variables tS

′
for every S ∈ Scheck. We let this new set of sources be

denoted by S ′.
Our protocol is similar to the one before, except now the prover cannot commit to the views

of the M-Circuit evaluation until it knows the versifier’s choice for tS
′

for every S ∈ Scheck. On
the other hand it must commit to the seeds generating the players secret sharings before it knows

24



the value of tS
′
. This introduces an extra two rounds of communication, as we see in Figure 8 and

Figure 9.

Phase 1 of the five round MPCitH protocol

Phase 1:

For e ∈ [M ] the prover executes

Set up the seeds

1. seede ← {0, 1}λ.
2. For i ∈ [N ] compute seede,i ← PRFλ(seede, i).
3. For j ∈ [s] and variable vk in source Sj ∈ S ′

- seed
Sj
e,k ← PRFλ(seede, j‖k) if vk is of type (qi,−).

- seed
Sj
e,i,k ← PRFλ(seede, j‖k) if vk is of type (qi, s) for i ∈ [N ].

4. For j ∈ [s] set cnt
Sj
e ← 0.

Set up the input shares

5. For each variable wi in the input which is sensitive (i.e. each witness variable)
- we,i,j ← PRGqi(seede,j , i) for j ∈ [N ].
- φe,i ← wi −

∑
j we,i,j .

- Set 〈we,i〉qi ← (wi, {we,i,j}j∈[N ]).
6. For each variable wi in the input which is non-sensitive set {wi} ← wi.

Compute the commitments and hashes

7. Input correction terms: (cφe , o
φ
e )← Commit({φe,i}i∈|w∗|).

8. Each parties seeds: (cseed
e,i , o

seed
e,i )← Commit(seede,i).

9. Offline view: he ← H(‖cseed
e,1 ‖ . . . ‖cseed

e,N ).
Compute and send to the verifier

- hφ ← H(cφ1‖ . . . ‖c
φ
M )

- hΓ ← H(h1‖ . . . ‖hM )

Figure 8. The five round HVZK proof system for general M-Circuits

The security of this modified protocol follows in exactly the same way as the original protocol.
The only thing which is modified is the soundness probability. The value of Pr[Ac] stays the same,
but we need to modify Pr[Bc] to take into account the probability that a cheating prover manages
to pass the SCheckS

′
checks. The adversary can either guess the challenge in the source check for a

given checkable source, or he can guess which party will remain unopened; and this has to be done
correctly M − τ − c times. This leads to

Pr[Bc] =
(

(1− max
S∈Scheck

εS
′
)

1

N
+ max

S∈Scheck

εS
′
)M−τ−c

,

which for negligibly small values of εS
′

is essentially the same as the previous value. However, when
all randomness sources are checkable we can set τ = 0 as explained above, and our soundness
becomes

AdvSacrifice(M,N) =
(

(1− max
S∈Scheck

εS
′
)

1

N
+ max

S∈Scheck

εS
′
)M

We note that to determine how many calls we make to the random sources, we need to know
the value of all the variables in the M-circuit. Therefore, the output of all sources (checkable and
non-checkable) must be known before receiving the cut-and-choose challenge. An attentive reader
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Phase 2, 3, and 4 of the five round MPCitH protocol

Phase 2:

On input of tS
′

from the verifier for every checkable source S ∈ Scheck

For e ∈ [M ] the prover executes
1. viewe ← ∅, auxe ← ∅.

Evaluate the circuit C′

2. For each call to 〈αe〉.reveal() set viewe ← viewe||αe,1|| . . . ||αe,N
3. For each call to source S′j such that Sj ∈ Scheck and with associated variables vi of type (qi, ∗) execute

- Compute ({{vi}qi}†, {〈vi〉qi}∗, aux
S′j

cnt
S′
j

e

, cnt
S′j
e ) by calling GenSharesS

′
j ({seed

S′j
e,i}†, {seed

S′j
e,k,i}∗, cnt

S′j
e ).

- auxe ← auxe‖aux
S′j

cnt
S′
j

e

.

4. For each call to source Sj ∈ Snon−check and with associated variables vi of type (qi, ∗) execute

- Compute ({{vi}qi}†, {〈vi〉qi}∗, aux
Sj

cnt
Sj
e

, cnt
Sj
e ) by calling GenSharesSj ({seed

Sj
e,i}†, {seed

Sj
e,k,i}∗, cnt

Sj
e ).

- auxe ← auxe‖aux
Sj

cnt
Sj
e

.

Commit to the sources and the views

5. Correlated Randomness Correction Terms: (caux
e , oaux

e )← Commit(auxe).
6. (cview

e , oview
e )← Commit(viewe).

Compute and send to the verifier
- hview ← H((caux

e ‖cview
1 ‖ . . . ‖cview

M )

Phase 3:

On input of E ⊂ [M ] and {je}e∈Ē from the verifier this proceeds exactly as in the Phase 2 of the original
protocol from Figure 7.

Phase 4:

On input of O the verifier performs proceeds exactly as in the Phase 3 of the original protocol from Figure 7;
except that he is computed without caux

e , and caux
e is used to compute hview.

The verifier will also reject the proof however if any output from a SCheckS′ operation returns zero whilst
evaluating the M-Circuits.

Figure 9. The five round HVZK proof system for general M-Circuits
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may thus point out that if one has to pay the soundness cost of cut-and-choose, then there is no
practical reason for adding sacrificing on top of it, as all correlated randomness sources that can
be checked by sacrificing can also be checked by cut-and-choose. This is indeed the case, and in

the case of an M-Circuit C ∈ C(S,∅)
F , one should, in practice, use the sacrificing technique only if

∀S ∈ S,S ∈ Scheck, and completely ignore the cut-and-choose part of the protocol (set τ = 0).

However the usefulness of our 5-round protocol will be clear once we describe gadgets. Indeed,
gadgets will be treated in a similar way as checkable correlated randomness sources, with the
exception that, unlike correlated randomness sources, the cut-and-choose technique can not be
used to check the correctness of their execution.

Example Checkable Correlated Randomness Sources: Note, the ‘program’ for the check

SCheckS can be expressed as an M-Circuit in the class C(∅,∅)
Fq . Thus property of being a checkable

correlated randomness source is a function not only of the procedure SCheckS existing, but also of
the definition of the function GenAuxS

′
as we now illustrate.

Triple. Recall the source Triple produces tuples (〈a〉, 〈b〉, 〈c〉) such that c = a · b. Our ‘extended’
source Triple′ produces values (〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉) where it is ‘claimed’ that c = a · b and e = b · d.
This validity can be verified by the following algorithm which takes as input a public value t ∈ Fq
(which can be the same for every output of Triple′).

1. 〈ρ〉 ← t · 〈a〉 − 〈d〉.
2. ρ← 〈ρ〉.reveal().

3. 〈r〉 ← t · 〈c〉 − 〈e〉 − ρ · 〈b〉.
4. r ← 〈r〉.reveal().

5. Reject if r 6= 0.

Note, this algorithm is an M-Circuit in the class C(∅,∅)
Fq . Also note that the algorithm reveals no

information about the values 〈a〉, 〈b〉 and 〈c〉. Also note, that for a valid tuple we have r = t · c −
e − ρ · b = t · a · b − b · d − (t · a − d) · b = 0, and note that if c 6= a · b and e 6= b · d then we have
r = t · (c − a · b) + e + b · d which will equal zero with probability εTriple′ = 1/q, when t is chosen
independently of the output of Triple′.

However, whilst this verifies that the (〈a〉, 〈b〉, 〈c〉) variables output by Triple′ satisfy the desired
multiplicative relationship, it does not on its own demonstrate that the distribution of (〈a〉, 〈b〉, 〈c〉)
is correct; namely that 〈a〉 and 〈b〉 are chosen uniformly at random. To ensure this we need to
examine how GenAuxTriple′ is defined. Mirroring our two previous instantiations of GenAuxTriple we
have

1. GenAuxTriple′(a, b, c, d, e) = (0, 0, a · b− c, b · d− e).
2. GenAuxTriple′(a, b, c, d, e) = (x − a, y − b, z − c, u − d,w − e) where x, y, u are deterministically

selected from Fp by GenAuxTriple′ using a PRG with the seed H(a, b, c, d, e), for some hash
function H, z = x · y and w = y · u.

The first case produces the correct distribution irrespective of what the prover computes, whereas
the second case does not. In the second case a cheating prover can deviate from the protocol and
make 〈a〉 follow any distribution they desire.
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Square. Recall this works in roughly the same way, the source Square produces pairs of values
(〈a〉, 〈b〉) such that b = a ·a. Our ‘extended’ source Square′ produces values (〈a〉, 〈b〉, 〈f〉, 〈h〉) where
it is ‘claimed’ that b = a · a and h = f · f . This validity can be verified by the following algorithm
which takes as input a public value t ∈ Fq.

1. 〈ρ〉 ← t · 〈a〉 − 〈f〉.
2. ρ← 〈ρ〉.reveal().
3. 〈r〉 ← t2 · 〈b〉 − 〈h〉 − ρ · (t · 〈a〉+ 〈f〉).
4. r ← 〈r〉.reveal().
5. Reject if r 6= 0.

Again the same analysis shows that this checks correctness and an adversary can make the check
pass with probability εSquare′ = 1/q.

Bit. As remarked earlier this is the more interesting correlated randomness source in applications,
as it enables far more efficient M-Circuit representations of functions. The source Bit produces a
value 〈b〉 such that b is guaranteed to lie in {0, 1}. However, whilst in an MPC protocol there is a
sacrificing methodology for Bits, this does not translate over to the MPCitH paradigm as one needs
a way of verifying the bits are uniformly selected. Thus checking the source Bit seems to require
cut-and-choose.

8 Executable Gadgets

Up until now we have considered for our MPCitH protocols only M-Circuits from classes of the form

C(S,∅)
F , i.e. M-Circuits with no gadgets. A gadget captures an essential non-linear subroutine within

an M-Circuit. By abstracting it away, we simplify the composition of special-purpose protocols
for such subroutines within a more generic M-Circuit. Whilst M-Circuits can describe arbitrary
gadgets, only special gadgets, which we call executable gadgets are able to be supported by the
MPCitH protocol.

We proceed to the formal definition of an executable gadget, which we define over a single
finite field Fq of large characteristic for ease of exposition, and then we present two examples of
executable gadgets for MPCitH protocols.

Definition 8.1 (Executable Gadget). An Executable Gadget G is an object defined by

I. A function G with (possibly zero) inputs and (at least one) output in F .
II. A GenAuxG function that fixes the auxiliary information needed to correct a uniformly random

y to be equal to G(x), i.e. GenAuxG(x,y) = G(x)− y.

III. A GCheckG M-Circuit in the class C(S,∅)
F for a set of randomness sources S, the function which

takes as input x, y, the output of GenAuxG(x,y) and a challenge value t ∈ F . The procedure
GCheckG which outputs a single bit b; if b = 0 then the the values are inconsistent, i.e. the
purported value of aux is not correct, and if b = 1 then it is correct. The probability that the bit
b is incorrect is bounded by a value εG

′
, with the probability being a function of the choice of the

challenge value t.

Thus an executable gadget is very similar to the checkable randomness sources from the previous
section. To process the gadget with in the MPCitH protocol we thus proceed just as we did for
checkable randomness sources; the initial M-Circuit C is extended to an augmented circuit C ′
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which includes all the necessary GCheckG operations. As GCheckG itself potentially requires access
to correlated randomness sources this might require the addition of addition correlated randomness
source. Then the five round protocol is executed, so that the augmented circuit C ′ can be created
(as it depends on the versifier’s selection of the challenges t in GCheckG). The modification to the
soundness error is the same as that introduced for checkable randomness sources.

The BitDecomp Gadget: The executable gadget BitDecomp for a given sensitive value 〈x〉q
produces the dlog2(q)e sensitive values 〈bi〉q such that bi ∈ {0, 1} and x =

∑dlog2(q)e−1
i=0 bi · 2i.

A simple example is the bit decomposition operation (〈b0〉q, . . . , 〈bdlog2(q)e−1〉q ← BitDecomp(〈x〉),
where ∀i, bi ∈ {0, 1} and

∑
i bi2

i = x. See Figure 10 for a formal specification, note this checking
procedure requires no random input from the verifier; this is because there is implicitly random
input needed to check the (checkable) correlated randomness source Square which it requires.

The BitDecomp Gadget

I. Function G : (〈x〉q) 7→
(
〈b0〉q, . . . , 〈bdlog2(q)e−1〉q

)
such that bi ∈ {0, 1} and x =

∑
i bi · 2

i

II. GenAuxBitDecomp(x, (y0, . . . , ydlog(q)e−1)) = (0, b0 − y0, . . . , bdlog2(q)e−1 − ydlog2(q)e−1)

III. GCheckBitDecomp ∈ C(Square,∅)
Fq : On input of 〈b0〉q, . . . , 〈bdlog2(q)e−1〉q, 〈x〉q:

(a) flag← 1, 〈s〉q ← 0
(b) For i from dlog2(q)e − 1 to 0 do

- 〈a〉q, 〈a2〉q ← Square
- 〈α〉q ← 〈bi〉q − 〈a〉q
- {α}q ← 〈α〉q.reveal()
- 〈r〉q ← {α}q · (〈bi〉q + 〈a〉q) + 〈a2〉q − 〈bi〉q
- {r}q ← 〈r〉q.reveal()
- If {r}q 6= 0 then flag← 0
- 〈s〉q ← 2 · 〈s〉q + 〈bi〉q

(c) 〈s〉q ← 〈s〉q − 〈x〉q
(d) {s}q ← 〈s〉q.reveal()
(e) If {s}q 6= 0 then flag← 0
(f) Return flag

Figure 10. The BitDecomp Gadget

In the above instantiation of BitDecomp we assumed that our randomness source Square was
already checked by either cut-and-choose or sacrificing. However, we can obtain a further efficiency
if we merge the checking of the output of Square with the checking of this bits produced in the
gadget. To present this we give utilize a correlated randomness source USquare, which represents an
unchecked square tuple. Namely, we check the output is correct neither by the sacrificing style check
or via cut-and-choose. This allows us to present an more efficient check of the BitDecomp Gadget
in Figure 11, where now we require the verifier to provide a random challenge t ∈ Fq. At first sight
it seems to involve the same number of reveals operations, but we actually save operations as we
no longer need reveals to check the output of Square.

The RNSDecomp Gadget: If we extend our definitions to rings Zq with q =
∏k
i=1 pi and pi

primes, an interesting technique which has been widely used in cryptography is to make use of the
Chinese Remainder Theorem. In MPCitH it is very easy for the prover to inject the residues of a
sensitive variable such that the M-Circuit can operate on those residues. Since CRT reconstruction
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The Optimized BitDecomp Gadget

I. Function G : (〈x〉q) 7→
(
〈b0〉q, . . . , 〈bdlog2(q)e−1〉q

)
such that bi ∈ {0, 1} and x =

∑
i bi · 2

i

II. GenAuxBitDecomp(x, (y0, . . . , ydlog(q)e−1)) = (0, b0 − y0, . . . , bdlog2(q)e−1 − ydlog2(q)e−1)

III. GCheckBitDecomp ∈ C(Square,∅)
Fq : On input of 〈b0〉q, . . . , 〈bdlog2(q)e−1〉q, 〈x〉q and a value t from the verifier:

(a) flag← 1, 〈s〉q ← 0
(b) For i from dlog2(q)e − 1 to 0 do

- 〈a〉q, 〈a2〉q ← USquare
- 〈ρ〉q ← 〈bi〉q − t · 〈a〉q
- {ρ}q ← 〈ρ〉q.reveal()
- 〈r〉q ← 〈bi〉q − {ρ}q · (〈bi〉q + t · 〈a〉q)− t2 · 〈a2〉q.
- {r}q ← 〈r〉q.reveal()
- If {r}q 6= 0 then flag← 0
- 〈s〉q ← 2 · 〈s〉q + 〈bi〉q

(c) 〈s〉q ← 〈s〉q − 〈x〉q
(d) {s}q ← 〈s〉q.reveal()
(e) If {s}q 6= 0 then flag← 0
(f) Return flag

Figure 11. The Optimized BitDecomp Gadget

is a linear operation, it is also trivial to design a GCheck M-Circuit, as it suffice to apply the linear
CRT reconstruction algorithm to the residues, and compare the result with the original value.
An application of such a technique would then be to use the Tiny-Tables optimization described
previously, but for functions with domain Zq that can be computed residue-wise. By following the
blueprint of [BMR16], one would then create a table of the desired function for all the residues,
thus going from a prohibitive size q table to k tables of total size

∑
pi. (e.g. exponentiation of a

sensitive variable by a non-sensitive variable)

The RNSDecomp get

I. Function G : (〈x〉q) 7→ (〈x1〉p1 , . . . , 〈xk〉pk ) such that xi ∈ Fpi and x = CRT([x1, . . . , kk], [p1, . . . , pk])
II. GenAuxRNSDecomp(x, (y1, . . . , yk)) = (0, x1 − y1, . . . , bk − yk)

III. GCheckRNSDecomp ∈ C(∅,∅)
Zq,Fp1 ,...,Fpk

: On input of 〈x1〉p1 , . . . , 〈xk〉pk , 〈x〉q:
(a) flag← 1
(b) 〈s〉q ← CRT([〈x1〉p1 , . . . , 〈xk〉pk ], [p1, . . . , pk]) (Local operation)
(c) 〈s〉q ← 〈s〉q − 〈x〉q
(d) {s}q ← 〈s〉q.reveal()
(e) If {s}q 6= 0 then flag← 0
(f) Return flag

Figure 12. Residue Number System Decomposition
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