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Abstract

Succinct non-interactive arguments (SNARGs) in the random oracle model (ROM) have sev-
eral attractive features: they are plausibly post-quantum; they can be heuristically instantiated
via lightweight cryptography; and they have a transparent (public-coin) parameter setup.

The canonical construction of a SNARG in the ROM is due to Micali (FOCS 1994), who
showed how to use a random oracle to compile any probabilistically checkable proof (PCP) with
sufficiently-small soundness error into a corresponding SNARG. Yet, while Micali’s construction
is a seminal result, it has received little attention in terms of analysis in the past 25 years.

In this paper, we observe that prior analyses of the Micali construction are not tight and
then present a new analysis that achieves tight security bounds. Our result enables reducing
the random oracle’s output size, and obtain corresponding savings in concrete argument size.

Departing from prior work, our approach relies on precisely quantifying the cost for an
attacker to find several collisions and inversions in the random oracle, and proving that any
PCP with small soundness error withstands attackers that succeed in finding a small number of
collisions and inversions in a certain tree-based information-theoretic game.
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1 Introduction

Succinct non-interactive arguments (SNARG) are cryptographic proofs for non-deterministic lan-
guages whose size is sublinear in the witness size. In the last decade, SNARGs have become a
fundamental cryptographic primitive with various applications in the real world. In this paper, we
study the classical SNARG construction of Micali [Mic00], which achieves unconditional security in
the random oracle model (ROM).
The Micali construction. Micali [Mic00] combined ideas from Fiat and Shamir [FS86] and Kilian
[Kil92] in order to compile any probabilistically checkable proof (PCP) into a corresponding SNARG.
Informally, the argument prover uses the random oracle to Merkle hash the PCP to a short root that
acts as a short commitment to the PCP string; then, the prover uses the random oracle to derive
randomness for the PCP verifier’s queries; finally, the prover outputs an argument that includes
the Merkle root, answers to the PCP verifier’s queries, and authentication paths for each of those
answers (which act as local openings to the commitment). The argument verifier re-derives the PCP
verifier’s queries from the Merkle root, and then runs the PCP verifier with the provided answers,
ensuring that those answers are indeed authenticated.
Security of the Micali construction. A SNARG in the ROM is (t, ε)-secure if every all-powerful
malicious prover that makes at most t queries to the random oracle can convince a verifier of a false
statement with probability at most ε. The probability is taken over the choice of random oracle,
whose output size λ is implicitly a function of the chosen query bound t and soundness error ε.

Prior work ([Mic00; Val08; BCS16], see Section 1.3) shows that, if the underlying PCP has
soundness error εPCP, then the Micali construction has a soundness error that can be bounded by

t · εPCP︸ ︷︷ ︸
attacking the

PCP

+ 4 · t
2

2λ︸ ︷︷ ︸
attacking the
random oracle

.

This expression can be intuitively explained (up to constants): the term t · εPCP bounds the proba-
bility of a cheating prover fooling the PCP after t trials, and the term 4 · t2

2λ
bounds the probability

that prover cheats in the commitment part by either inverting the oracle on given values or finding
collisions in the random oracle (the squared term comes from the birthday paradox).

This tells us how to set parameters for security: the Micali construction is (t, ε)-secure, e.g., if
each term is bounded by ε

2 . This yields two requirements: (i) εPCP ≤ 1
2
ε
t (the PCP has small-enough

soundness error); and (ii) λ ≥ log(8 t
2

ε ) (the random oracle has large-enough output size).
Our question. While it is not so hard to see that the expression t · εPCP is necessary in the
soundness error, it is not clear if the expression 4 · t2

2λ
is necessary as well. (E.g., can one attack the

Micali construction given any collision in the random oracle?) This leads us to ask:

Is the soundness expression for Micali’s construction optimal?

A negative answer would be excellent news because improving the soundness expression for the
Micali construction immediately yields improvements in the argument size (the main efficiency
measure for a SNARG), and in the time complexity of the argument prover and argument verifier.
In turn, a better understanding of the Micali construction is likely to lead to improved efficiency
for SNARGs in the ROM of practical interest. Indeed, while the Micali construction itself is not
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used in practice since PCPs with good concrete efficiency are not known, a generalization of it is.
Namely, the BCS construction [BCS16] transforms public-coin interactive oracle proofs (IOPs), a
multi-round extension of PCPs with much better efficiency, into SNARGs.

The Micali and BCS constructions, being SNARGs in the ROM, have attractive features: by
heuristically instantiating the random oracle with a cryptographic hash function, one obtains an
implementation that is lightweight (no public-key cryptography is used) and easy to deploy (users
only need to agree on which hash function to use without having to rely on a trusted party to sample
a structured reference string). Moreover, they both are plausibly post-quantum secure [CMS19].
Asking the right question. The answer to our question depends, perhaps surprisingly, on fine
details of the Micali construction that are generally overlooked in the literature.

For example, consider a PCP with a binary alphabet and suppose that we build the Merkle tree
for this PCP by placing each bit of the PCP string in a different leaf of the Merkle tree, padding to
the random oracle’s input size.1 In this case a cheating prover could conduct the following attack:
find a single collision in a leaf between the symbols 0 and 1, and re-use this collision in all leaves
of the tree; then answer each PCP query with 0 or 1 as needed to make the PCP verifier accept.
This attack will always fool the argument verifier, and tells us that the prior analysis is tight for
this flavor of the Micali construction (t2/2λ is roughly the probability of finding one collision).

Nevertheless, the foregoing attack can be trivially avoided by adding an index to each leaf,
preventing the re-use of one leaf collision across different leaves. This is a form of domain separation,
whereby one derives multiple random oracles from a single random oracle by adding pre-defined
prefixes to queries. Domain separation was used, e.g., by Micali in [Mic00] to separate queries for
constructing the Merkle tree and queries for deriving the PCP randomness (i.e., the randomness
used by the PCP verifier to select queries to the PCP string). More generally, as we wish to exclude
easily preventable attacks, in this paper we consider what we call the domain-separated flavor of the
Micali construction (see Section 3.3): (i) tree queries are domain-separated from PCP randomness
queries as in [Mic00]; and, moreover, (ii) each tree query (not only for the leaf layer) is further
domain-separated via a prefix specifying its location in the Merkle tree. At this point, it is not clear
if the prior analysis is tight for the domain-separated flavor of the Micali construction.

The goal of this paper is to study this question.

1.1 Our contributions

In this paper, we give a negative answer to our question, by improving the soundness expression of
the (domain-separated) Micali construction. In fact, we settle the security bounds for the Micali
construction, up to low-order terms by giving nearly matching lower bounds. We prove the following:

Theorem 1 (informal). The Micali construction (with domain separation), when instantiated with
a PCP with proof length l over alphabet Σ and soundness error εPCP and with a random oracle with
output size λ, has soundness error

t · εPCP + C · t
2λ

with C ≤ 12 · l · log |Σ|

against t-query adversaries, provided that λ ≥ 2 log t+ 6.
1Placing each symbol in a different leaf, padded with a freshly-sampled salt, leads to a zero-knowledge SNARG if

the underlying PCP is honest-verifier zero-knowledge [IMSX15; BCS16].
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The expression above is smaller than the previously known bound (t·εPCP+4· t2
2λ
): using the same

notation, previously we knew that C ≤ 4 · t, and our result reduces this bound to C ≤ 12 · l · log |Σ|,
which is significantly better for any reasonable parameter regime. This directly leads to improved
security parameters: for a given query bound t and soundness error ε, to achieve (t, ε)-security we
can set λ (the output size of the random oracle) to be smaller than what was previously required
(i.e., λ ≥ log(8 t

2

ε )), while leaving the PCP soundness error as before (i.e., εPCP ≤ 1
2
ε
t ).

Corollary 2. The Micali construction is (t, ε)-secure when instantiated with:

• a PCP with soundness error εPCP ≤ 1
2
ε
t , and

• a random oracle with output size λ ≥ max{2 log t+ 6 , log(t/ε) + log(l · log |Σ|) + 5}.

Matching lower bound. The security bound in Theorem 1 depends on the PCP’s length l and
alphabet Σ, in addition to the PCP’s soundness error εPCP. We show that, perhaps surprisingly,
the dependency on these parameters is inherent by proving a nearly matching lower bound on the
soundness error of the Micali construction. In Section 8 we exhibit attacks showing that there exists
a PCP with q queries for which the soundness error of the Micali construction is

Ω

(
t · εPCP + C · t

2λ

)
with C ≥ l · log |Σ|

q2
.

Tighter upper bound. To ease the presentation, the expressions given in our upper bounds are
simplifications of counterparts given in Theorem 7.1 and Corollary 7.2. These latter are closer to
the lower bounds, and provide additional savings when setting concrete values in practice for a given
security level (the desired query bound t and desired soundness error ε).

1.2 Concrete improvements in argument size

We have obtained a tight analysis of the Micali construction, leading to a smaller output size λ
for the random oracle. This, in turn, yields corresponding savings in argument size for the Micali
construction. We demonstrate this in Table 1 via argument sizes computed for an illustrative choice
of PCP for different targets of security (for all (t, ε) ∈ {296, 2128, 2160} × {2−96, 2−128, 2−160}).

Specifically, we consider the Micali construction applied to the amplification of an assumed “base”
PCP with soundness error 1/2, query complexity 3, and proof length 230 over a binary alphabet
(the Merkle tree thus has 30 levels). By repeating the PCP verifier log(1/εPCP) ≥ log 1

2
t
ε times,

the amplified PCP has soundness error εPCP and 3 log 1
2
t
ε queries. We then compute the argument

size obtained by applying the Micali construction to this PCP while setting the output size of the
random oracle to the value in Corollary 2 (more precisely, to its refinement in Corollary 7.2). See
Section 3.3 for an overview of the Micali construction and how its argument size is computed.
Concrete improvements for IOP-based SNARGs. One might ask whether our fine-grained
analysis of the Micali construction, which is based on PCPs, could be carried out for [BCS16], a
SNARG construction based on IOPs, which are more efficient, that is used in practice. The answer
is yes (this requires extending our techniques from PCPs to IOPs) but we leave this for future
work. We deliberately limited the scope of our paper to Micali’s construction because we wanted to
illustrate our new ideas in a straightforward way. Looking beyond [Mic00; BCS16] (i.e., SNARGs),
we believe that the ideas in our paper will help establish tight security bounds for other primitives
in the ROM, such as hash-based signatures (where again Merkle trees often play a significant role).
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log t

− log ε 96 128 160

96
389 KB

297 KB
≈ 1.31× 498 KB

389 KB
≈ 1.28× 618 KB

496 KB
≈ 1.25×

128
547 KB

405 KB
≈ 1.35× 675 KB

496 KB
≈ 1.36× 812 KB

615 KB
≈ 1.32×

160
730 KB

569 KB
≈ 1.28× 875 KB

635 KB
≈ 1.38× 1033 KB

746 KB
≈ 1.38×

Table 1: Argument sizes for the Micali construction applied to an illustrative PCP for different settings
of (t, ε)-security, comparing the size achieved by the prior analysis (in red) and our analysis (in blue).

1.3 Related work

While the Micali construction is a seminal result (it is the first SNARG construction and arguably
the simplest one to intuitively understand), it has received little attention in terms of analysis.

The analysis given by Micali [Mic00] considers the special case of PCPs over a binary alphabet
with soundness error εPCP ≤ 2−λ, and establishes (t, ε)-security with t ≤ 2λ/8 and ε ≤ 2−λ/16.

Subsequently, Valiant [Val08] again considers the special case of a PCP with soundness error
εPCP ≤ 2−λ, but contributes a new approach based on straightline extraction that establishes sound-
ness (and, in fact, also proof of knowledge if the underlying PCP is a proof of knowledge) for PCPs
over any alphabet. The analysis establishes (t, ε)-security with t ≤ 2λ/4 and ε ≤ 2−λ/8.

Finally, the expression t · εPCP + 4 · t2
2λ

stated above, which holds for any PCP and yields
relatively good security settings, is due to Ben-Sasson, Chiesa, and Spooner [BCS16], who build
on the straightline extraction approach of Valiant to obtain results beyond the Micali construction.
Specifically, they prove that any IOP with state-restoration soundness error εsr(·) can be compiled
into a SNARG with soundness error εsr(t)+4· t2

2λ
against t-query adversaries. This BCS construction,

when restricted to a PCP, recovers the Micali construction, and yields the previous expression
because the state-restoration soundness error of a PCP is at most εsr(t) ≤ t · εPCP.
Subsequent work. Chiesa and Yogev [CY21] gave a new SNARG construction in the random or-
acle model that achieves a smaller argument size than (any analysis of) the Micali construction. For
(t, ε)-security, the CY construction has argument size Õ(log(t/ε) · log t), while the Micali construc-
tion has argument size Ω(log2(t/ε)). The CY construction is achieved by identifying the limitations
of the Micali construction thanks to the tight security analysis in this work, and then modifying
the construction to overcome these limitations. Furthermore, the analysis in [CY21] is based on a
framework inspired by the one developed in this work and adapted to the CY construction.
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2 Techniques

We summarize the main ideas behind our main result (Theorem 1). In Section 2.1 we review the
prior analysis of the Micali construction and in Section 2.2 explain why that analysis is not tight.
Then in Sections 2.3 to 2.6 we describe our analysis, whose differences are displayed in Figure 1.

PCP soundnessSecurity of 
Micali’s 
SNARG

Reverse soundness game

Tree soundness game

PCP soundness

Pr
io

r a
na

ly
si

s
O

ur
 a

na
ly

si
s

Security of 
Micali’s 
SNARG

scoring 
collisions and 

inversions

no
collisions or 
inversions

Figure 1: The prior analysis of the Micali construction conditions on the event that no collisions
or inversions are found, and directly reduces soundness of the SNARG to soundness of the PCP. In
contrast, we carefully assign scores to collisions and inversions, which enables us to reduce soundness
of the SNARG to soundness in an information-theoretic tree game. Then we prove that soundness in
this game reduces to soundness of the PCP, by relying on another information-theoretic game.

2.1 Prior analysis of the Micali construction

We begin by reviewing the prior security analysis of the SNARG construction of Micali. Let εPCP

be the soundness error of the PCP used in the construction, and let λ be the output size of the
random oracle. We wish to bound the probability that a t-query cheating prover makes the SNARG
verifier accept. Intuitively, the cheating prover may try to attack the PCP or the random oracle.

First, consider a cheating prover that tries to attack the random oracle, that is, tries to find
collisions or inversions. Recall that a collision consists of two or more distinct inputs that map to
the same output, and an inversion is an input that maps to a target value or list of values (that
were not answers to prior queries). So let E be the event that the cheating prover finds at least one
collision or inversion. By the birthday bound, one can show that

Pr[E] = O

(
t2

2λ

)
.

Next condition on the event E not occurring, i.e., attacking the random oracle does not succeed.
In this case, one can show that the cheating prover’s only strategy is to attack the PCP as follows:
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commit to a PCP string, derive randomness for the PCP verifier from the resulting Merkle root,
and check if the PCP verifier accepts; if not, then try again with new randomness.2 One can model
this via a simple t-round game: in each round i ∈ [t] the attacker outputs a PCP string Πi and
the game replies with fresh PCP randomness ρi; the attacker wins if there is i ∈ [t] such that Πi

convinces the PCP verifier on randomness ρi. A union bound shows that the winning probability in
this game is at most t · εPCP. Thus, this bound is (relatively) tight (assuming εPCP is a tight bound
on the soundness of the PCP).

Combining the above cases, we can bound the probability that the cheating prover makes the
verifier in the Micali construction accept:

Pr

[
verifier
accepts

]
≤ Pr

[
verifier
accepts

∣∣∣∣E ]+ Pr[E] ≤ t · εPCP +O

(
t2

2λ

)
.

2.2 The prior analysis is not tight

The starting point of our work is the observation that the prior security analysis is not tight for
the domain-separated flavor of the Micali construction (discussed in Sections 1 and 3.3). While the
term t ·εPCP in the expression is essentially tight, the term t2/2λ is not. In other words, while ruling
out the event E (the cheating prover finds a collision or inversion) is sufficient to show security, it
is not a necessary condition for security. We illustrate this via a simple example about collisions.
Collisions are not too harmful. Suppose that a cheating prover finds a collision in the random
oracle, for a specific location. This enables the cheating prover to commit to two PCP strings
instead of one, derive PCP randomness from their common Merkle root, and choose which PCP
string to use for answering the PCP verifier’s queries. While this increases the winning probability
in (a modification of) the simple t-round game described above, a union bound shows that the
probability increases at most by a factor of 2. At the same time, the probability of finding a
collision is much smaller than 1/2, so overall this is not a beneficial strategy for a cheating prover.

We could alternatively consider a cheating prover that finds many collisions. For instance,
suppose that the PCP is over a binary alphabet and the cheating prover has found a collision
between 0 and 1 for every leaf of the Merkle tree. This enables the cheating prover to compute a
Merkle root and derive corresponding PCP randomness without actually committing to any PCP
string, because every leaf can be opened to a 0 or a 1. Thus the cheating prover can always provide
satisfying answers to the PCP verifier. But, again, this strategy is also not problematic because the
probability of finding so many collisions is very small (e.g., much smaller Pr[E]).

The above considerations give intuition about why collisions are not that harmful.
What about inversions? Unlike collisions, even a single inversion lets a cheating prover win with
probability one. Here is the attack: derive the PCP randomness for some arbitrary choice of Merkle
root; find a satisfying PCP string for this PCP randomness; and then hope that the Merkle tree for
this PCP string hashes to the chosen Merkle root. This would be considered a single “inversion”.

The probability of this happening in any of the t queries by the cheating prover is at most t ·2−λ,
which is small enough for us to afford to simply rule out and pay this term as an additive loss in
the soundness error bound. Hence, it is tempting to do this, and then focus only on collisions.

That, however, would be incorrect because, perhaps surprisingly, the aforementioned attack is
not the only way to exploit inversions, as we now discuss. That attack relies on a “strong inversion”:

2The new randomness could be derived by changing a salt if present in the construction, or by changing just one
location of the PCP string and then re-deriving a different Merkle root, leading to new PCP randomness.

6



the cheating prover wanted to invert a specific single Merkle root (given y, find x such that the
random oracle maps x to y). However, a cheating prover could instead seek a “weak inversion”:
invert any one element out of a long list. For example, the cheating prover could gather a t/2-size
list of Merkle roots (for which PCP randomness has already been derived via 1 query each), and
use the remaining t/2 queries to try to invert any one of them. The probability that one query
inverts any value in the list is roughly t ·2−λ, so the probability of inverting via any of the queries is
roughly t2 ·2−λ. This is again a term that we cannot afford to simply rule out, so we must somehow
deal with weak inversions if we are to improve the security analysis of the Micali construction.
Weak inversions are not too harmful. The aforementioned considerations lead to the following
non-trivial attack, which exemplifies the limits of possible strategies via inversions. The cheating
prover randomly samples many Merkle roots and, for each Merkle root, derives the corresponding
PCP randomness; finds a PCP string that is accepting for as many of the PCP randomness strings
as possible; computes the Merkle tree for this PCP string; and tries to connect this Merkle tree
to one of the Merkle roots via a weak inversion. If the cheating prover succeeds, and the PCP
randomness was one of the convincing ones for this PCP string, then the cheating prover has won.
If it fails, the cheating prover can try again with another PCP string (and so on).

At this point it is not clear if the success probability of this attack is something we can afford.
Showing that this attack cannot succeed with high probability will require introducing new tools.
Mixing strategies. Once we do not to rule out the event E then we must consider the impact on
security of strategies that may go well beyond exploiting a single collision or a single weak inversion.
An adversary might be able to find many pairs of collisions or even multi-collisions of more than two
elements. The cheating prover could adopt a strategy that mixes between finding collisions, finding
(weak) inversions, and attacking the PCP. For example, finding some collisions leads to improving
the success probability in the above inversion attack, as now the cheating prover is not committed
to a single string in every trial. Moreover, the adversary may choose its strategy adaptively, based
on each response from the random oracle.

In sum, the main challenge in not ruling out E is to analyze how any combination of these
strategies will impact the security of the construction. To handle this, we define a more involved
PCP soundness game, where the attacker has a budget for collisions and a budget for (weak)
inversions and can perform arbitrary strategies with collisions and inversions up to those budgets.
We show that any cheating prover that succeeds in fooling the argument verifier will also succeed
(with similar probability) in this PCP soundness game. We describe the game next.

2.3 A tree soundness game

In order to obtain a tight security analysis of the Micali construction, we introduce an intermediate
information-theoretic game, which we call tree soundness game, that enables us to model the effects
of attacks against the Micali construction. In order to motivate the description of the game, first
we describe a simplified game with no collisions or inversions (Section 2.3.1), then describe how the
simplified game leads to the prior analysis of the Micali construction (Section 2.3.2), and finally
describe how to augment the game with features that model collisions and inversions (Section 2.3.3).
The formal description of the tree soundness game can be found in Section 5.

The intermediate game then leaves us with two tasks. First, reduce the security of the Micali
construction to winning the tree soundness game (without paying for the birthday bound term).
Second, reduce winning the tree soundness game to breaking the standard soundness of a PCP
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(which is not clear anymore). We will discuss the second step in Section 2.4, and the first step in
Sections 2.5 and 2.6.

2.3.1 The game with no collisions or inversions

The tree soundness game has several inputs: a PCP verifierV; an instance x; an integer λ (modeling
the random oracle’s output size); a malicious prover P̃ to play the game; and a query budget t ∈ N.
We denote this game by Gtree(V,x, λ, P̃, t).
The graph G. The game is played on a graph G = (V,E) that represents the Merkle trees
constructed by the malicious prover so far. The graph G contains all possible vertices, and actions
by the malicious prover add edges to the graph.

Letting d be the height of the Merkle tree, vertices in G are the union V := V0 ∪ V1 ∪ · · · ∪ Vd
where Vi are the vertices of level i of the tree: for every i ∈ {0, 1, . . . , d − 1}, Vi := {(i, j, h) : j ∈
[2i], h ∈ {0, 1}λ} is level i; and Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ} is the leaf level. The indices i and
j represent the location in the tree (vertex j in level i) and the string h represents either a symbol
of the PCP (if in the leaf level) or an output of the random oracle (if in any other level). Edges in
G are hyperedges that keep track of which inputs are “hashed” together to create a given output.
That is, elements in the edge set E of G are chosen from the collection E below, which represents
an edge between two vertices in level i+ 1 and their common parent in level i:

E =

(u, v0, v1) :
u = (i, j, h) ∈ Vi
v0 = (i+ 1, 2j − 1, h0) ∈ Vi+1

v1 = (i+ 1, 2j, h1) ∈ Vi+1

 .

Playing the game. The game starts with the graph G empty (E = ∅), and proceeds in rounds.
In each round, provided there is enough query budget left, the malicious prover chooses between
two actions: (i) add an edge to E from the set E , provided the edge is allowed; (ii) obtain the PCP
randomness for a given Merkle root. We discuss each in more detail.

• Adding edges. When the prover adds to E an edge (u, v0, v1) ∈ E the query budget is updated
t ← t − 1. However, the prover is not allowed to add any edge he wants. In particular, at least
for now, he cannot add edges that correspond to collisions or inversions. Namely, if E already
contains an edge of the form (u, v′0, v

′
1), then (u, v0, v1) would form a collision with that edge,

and so in this case (u, v0, v1) is not added to E. Moreover, if E already contains an edge of the
form (u′, v′0, v

′
1) with v′0 = u or v′1 = u, then (u, v0, v1) would form an inversion with that edge,

and so in this case (u, v0, v1) is not added to E. (Note that the game would have allowed adding
these two edges in reverse order, though, as that would not have been an inversion.)

• Deriving randomness. A root is a vertex vrt ∈ V0, which has the form (0, 0, h) for some h ∈ {0, 1}λ.
(The root level is 0 and has a single vertex, at position 0.) When the prover submits vrt, the
game samples new PCP randomness ρ, and the pair (vrt, ρ) is added to a mapping Roots. (The
prover is not allowed to submit a root vrt that already appears in the mapping Roots.) This costs
a unit of the query budget, so when this happens the game updates t← t− 1.

Winning the game. When it decides to stop playing the game, the prover outputs a root vertex
vrt ∈ V0 and a PCP string Π ∈ Σl. The prover wins the game if the following two conditions hold.
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• The PCP verifier accepts the proof string Π when using the randomness associated to vrt. That
is, VΠ(x; ρ) = 1 for ρ := Roots[vrt]. (If Roots has no randomness for vrt then the prover loses.)

• The PCP string Π is consistent with vrt in the graph G. That is, if the PCP verifier queries
location j of Π, then the leaf u = (d, j,Π[j]) ∈ Vd is connected to the root vrt ∈ V0 in G.

We denote by εtree(t) the maximum winning probability in the tree soundness game by any malicious
prover with query budget t. See Figure 2 for an example of such a tree.

Level 0

Level 1

Level 2

Level 3

Figure 2: An example of a possible state of the graph in the tree soundness game. Level 0 happens
to contain two root vertices, level 1 contains three vertices, and so on. A hyper-edge containing three
vertices is drawn using the green lines that are attached to three vertices.

2.3.2 Recovering the prior analysis

The game described so far, which excludes collisions and inversions, enables us to recover the prior
analysis of the Micali construction. Conditioned on not finding a collision or an inversion in the
random oracle, any winning strategy of a t-query cheating argument prover can be translated into
a winning strategy for a prover in the tree soundness game with query budget t. This tells us that
the soundness error of the Micali construction can be bounded from above as follows:

ε(λ, t) ≤ εtree(t) +O(t2/2λ) .

In turn, if the PCP has soundness error εPCP, then the winning probability in the tree soundness
game is at most t · εPCP. This is the expression of the prior analysis of the Micali construction.

We wish, however, to analyze the Micali construction in a more fine-grained way, by studying
the impact of a few collisions and inversions. That requires extending the tree soundness game.

2.3.3 Adding collisions and inversions

We describe how to extend the tree soundness game by adding collision edges and inversion edges,
up to respective collision and inversion budgets. We first discuss collisions and then inversions.
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Easy: supporting collision. We introduce a collision budget tcol. Whenever the prover adds
to the graph G an edge that collides with an existing edge (a new edge (u, v0, v1) for which an
edge (u, v′0, v

′
1) is already in G), the game charges the prover a unit of collision budget by setting

tcol ← tcol − 1. Note that the game charges a single unit for each collision edge, and multi-collisions
are allowed. Thus, a k-wise collision costs k − 1 units of tcol. This makes the budget versatile in
that, for example, a budget of 2 can be used to create two 2-wise collisions or one 3-wise collision.

If the collision budget is large enough (as large as the proof length), then for some PCPs the
prover can win with probability 1 (see the collision attack in Section 2.2). However, our analysis
will say that, for this case, obtaining such a large collision budget happens with very small proba-
bility. Unlike the query budget, the collision (and inversion) budget is scarce. See Figure 3 for an
illustration.

𝑢

𝑣! 𝑣"

𝑣!# 𝑣"#

Figure 3: An example of a possible state of the graph in the tree soundness game, with a collision:
the edge (u, v0, v1) collides with the edge (u, v′0, v

′
1).

Hard(er): supporting inversions. We introduce, similarly to the case of collisions, an inversion
budget tinv. Supporting inversions, though, is significantly more challenging. The cheating prover
can win with one strong inversion (see Section 2.2), which happens with small probability. So we
cannot simply let the adversary in the tree soundness game add arbitrary inversion edges to the
graph, as that would enable trivially winning even with tinv = 1. Instead, we designate tinv for weak
inversions (inversions for any value within a large set rather than for a specific value).

In the game described so far the prover adds edges to the graph by specifying the desired edge
(u, v0, v1). In contrast, when the prover wishes to perform a weak inversion, the prover cannot fully
specify the vertex u = (i, j, h) of the edge: the prover provides the location i and j for u, but the
game samples the string h ∈ {0, 1}λ instead. Specifically, the game samples h at random from the
set H of “possible targets for inversion” (all h such that (i′, j′, h) is a vertex in an edge in the graph).

How much should a weak inversion cost? Note that H might contain a single vertex, which
would make this a strong inversion, and thus should be very costly for the prover. So one option
would be to charge the prover according to the size of H (the smaller H is, the higher the cost).
Yet we do not see how to set this cost, as a function of H, that would suffice for the proof. Hence,
instead, we charge the prover differently. The cost for any (weak) inversion is always a single unit
of tinv, regardless of the size of H. But the game adds the edge to the graph only with probability
|H|
2t . (The constant “2” appears since each edge added to the graph contributes two vertices that
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could be inverted, and so after t edges the maximal size of H is 2t.) If H is small, then there is a
small probability for the edge to be added, making the expected cost to get an inversion high. The
maximal size of H is 2t, and in this case the edge is added with probability one.

2.4 PCPs are secure against collisions and inversions

We prove that any PCP with sufficiently small soundness error is secure against collisions and
inversions, i.e., has small tree soundness error. The loss in soundness depends on the various
budgets provided to the tree soundness game (t, tcol, tinv), as stated in the following theorem.

Theorem 2.1. Let (P,V) be a PCP for a relation R with soundness error εPCP and proof length l
over an alphabet Σ. Then (P,V) has tree soundness error

εtree(t, tcol, tinv) = O

(
2tcol · t · εPCP + 2tcol · tinv ·

l · log |Σ|
t

)
.

The above formulation is a simplification of our actual theorem (Theorem 5.7), which gives a
more precise bound that is useful for concrete efficiency.

The tree soundness game is relatively complicated, as an adversary may employ many different
strategies that demand for different analyses. Our proof of Theorem 2.1 relies on a simpler game,
which we call reverse soundness game, that focuses almost solely on weak inversion, and omits tree
structure and collisions. (See Figure 1.) In light of this, the rest of this section is organized as follows:
(i) We summarize a simplification of the reverse soundness game and discuss how reverse soundness
reduces to regular PCP soundness (Lemma 2.2); technical details are in Section 4. (ii) We discuss
how tree soundness reduces to reverse soundness (Lemma 2.3); technical details are in Section 5.
These two steps directly lead to Theorem 2.1 above. We then conclude this section with a brief
discussion of which additional features we rely on in the non-simplified reverse soundness game.
Reverse soundness. The reverse soundness game has several inputs: a PCP verifier V; an
instance x; a parameter K ∈ N; and a malicious prover P̃ to play the game. For simplicity, here we
describe a simplified version of the reverse soundness game that captures its main idea. Later on
we describe how to go to from this simplification to the game that we use in the technical sections.

The simplified game works as follows: (1) the game draws K samples of PCP randomness
ρ1, . . . , ρK and gives them to P̃; (2) P̃ outputs a single PCP string Π; (3) the game samples a
random index i ∈ [K] and P̃ wins if and only if VΠ(x; ρi) = 1 (Π convinces the PCP verifier with
randomness ρi). Intuitively, the K samples are modeling randomness derived from K Merkle roots,
and the subsequent choice of a PCP string to be tested with a random choice among the samples is
modeling a weak inversion.

This game becomes “harder” as K increases. At one extreme where K = 1, the game is easy
to win: the cheating prover can pick any PCP string Π that makes the single PCP randomness ρ1

accept. At the other extreme whereK equals the number of possible random strings, the (simplified)
game approximately equals the regular PCP soundness game. We are interested in a regime whereK
is in between, which we think of as “reverse soundness”: the cheating prover chooses the PCP string
after seeing samples of PCP randomness (and is then tested via one of the samples at random).
Standard soundness implies reverse soundness. We prove that reverse soundness reduces to
standard soundness of a PCP, as stated in the following lemma:
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Lemma 2.2. Let (P,V) be a PCP for a relation R with soundness error εPCP and proof length l
over an alphabet Σ. If K · εPCP ≤ 1/20 then (P,V) has reverse soundness error

εrev(K) = O

(
l · log |Σ|

K

)
.

The precise statement and its proof (for the non-simplified game) are given in Lemma 4.4. Next
we provide a summary of the proof for the simplified reverse soundness game described above.

There is a simple optimal strategy for the reverse soundness game: given the K samples of
PCP randomness, enumerate over all possible PCP strings, and choose the one that maximizes
the probability of winning (over a random choice of sample from within the list of samples). This
strategy is not efficient, but that is fine as we are not bounding the running time of adversaries.

Hence, to bound the reverse soundness error, we consider an infinite sum over an intermediate
parameter c ∈ N. For each c we bound the probability, over ρ1, . . . , ρK , that there exists a PCP
string that wins against any c of the samples. The resulting geometric series converges to the
claimed upper bound.

In more detail, winning against c specific samples happens with probability εcPCP, so a union
bound over all subsets of size c yields the following:

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[VΠ(x; ρi) = 1] ≥ c

K

]
≤ |Σ|l ·

(
K

c

)
· εcPCP ≤ 2l·log |Σ|+c·log(K·εPCP) .

Next, fixing any cheating prover P̃ and letting Grev(V,x,K, P̃) = 1 be the output of the game for
an instance x and parameter K, we conclude that:

Pr
[
Grev(V,x,K, P̃) = 1

]
≤
∞∑
c=1

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[VΠ(x; ρi) = 1] =

c

K

]
· c
K
≤ O

(
l · log |Σ|

K

)
.

Reverse soundness implies tree soundness. We are left to prove that tree soundness reduces
to reverse soundness, as stated in the following lemma:

Lemma 2.3. If (P,V) is a PCP for a relation R with soundness error εPCP(x) and reverse sound-
ness error εrev(x,K), then it has tree soundness error

εtree(t, tcol, tinv) = O
(
2tcol · t · εPCP + 2tcol · tinv · εrev(t)

)
.

The precise statement and its proof (for the non-simplified game) are given in Lemma 5.6.
The expression above can be interpreted in a meaningful way.

• The first term corresponds to a cheating prover that tries to win the standard PCP soundness
game over and over, aided by collisions. Given a budget of tcol collisions, he can commit to 2tcol

PCP strings before submitting a Merkle root and getting PCP randomness. Each trial’s winning
probability is 2tcol · εPCP, and across t trials the winning probability becomes O(2tcol · t · εPCP).

• The second term corresponds to a cheating prover that tries to win using an inversion. He creates
t Merkle roots, commits to 2tcol strings, and tries to invert. He does this tinv times overall and
wins with probability roughly O(2tcol · tinv · εrev(t)).

12



On the non-simplified game. We show that we can reduce any prover that plays the tree
soundness game to one that plays the reverse soundness game (with small losses in the success
probability). However, the reverse soundness game described above is too simple to capture the
wide range of strategies possible in the tree soundness game, and some modifications are required.

Consider a cheating prover that performs a weak inversion on an intermediate vertex in the tree.
Instead of creating a long list of isolated vertices, he can create the same list where each vertex is
already connected to a partial tree, representing a partial proof string Πi. Then, when he submits
the final PCP string Π, the two strings will be merged in a way that depends on the vertex’s location
in the tree. The inversion creates a collision at the inversion vertex, which lets the prover use a
combination of Π and Πi, depending on which pre-image he chooses for the collision vertex.

To capture these strategies, we rely on a merging function that takes as input two partial PCP
strings Π0,Π1 ∈ (Σ ∪ {⊥})l and outputs another partial PCP string. The function is defined as
follows:

merge(Π0,Π1, b)[j] :=


Π0[j] if Π1[j] = ⊥
Π1[j] if Π0[j] = ⊥
Πb[j] otherwise

.

The reverse soundness game is then extended as follows: the prover first outputs K PCP strings
Π1, . . . ,ΠK ; then the prover receives K samples of PCP randomness; then the prover outputs a new
string Π and a bit b; the game samples i ∈ [K] and tests the merged string Π∗ := merge(Π,Πi, b)
against the i-th sample. The game that we use is generous in that it allows a larger class of strategies
than what is possible in the tree soundness game. This lets us use a clean a simple definition (via
the merge function) whereas a tight definition capturing the set of strategies in the tree soundness
game would be significantly more involved and cumbersome.

There are other modifications needed for the game to capture all possible strategies. For example,
the prover can choose the K PCP strings adaptively instead of committing to them in advance, as
above. These extensions create additional technical challenges in the full proof.

2.5 Scoring oracle queries

The tree soundness game lets us bound the success probability of a malicious prover given specific
budgets in that game. But what budgets should we use when analyzing a cheating argument prover
(attacking the soundness of the SNARG)? For this, we introduce a new tool: a scoring function for
the query trace of an algorithm in the random oracle model.

Intuitively, the score of a query trace “counts” the number of collisions and inversions in a way
that reflects the probability of that event occurring. The lower the probability, the higher the score.
This enables us to translate our claims about cheating argument provers into claims about cheating
tree soundness provers, where a high score is translated to a high budget. A strategy that uses
a large budget has a higher chance of winning the tree soundness game, but the probability of
achieving a corresponding high score is low, and our goal is to balance these two.

We separately define scoring functions for collisions and for inversions, as motivated below.

• Scoring collisions. A natural idea would be to set the collision score to equal the number of
pairwise collisions in a query trace. However, this choice is not useful if a query trace contains
multi-collisions. For example, a k-wise collision (k inputs that all map to the same output) would
have a score of

(
k
2

)
because there are this many pairwise collisions in the k-wise collision. This
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does not reflect well the probability of finding
(
k
2

)
pairwise collisions, which is much smaller than

finding one k-wise collision.

Instead, we set the score of a k-wise collision to be k−1 (assuming k is maximal within the query
trace); in particular, a 2-wise collision gets a score of 1. Note that two pairwise collisions and
one 3-wise collision both get the same score of 2, even though it is much more likely to see two
pairwise collisions than one 3-wise collision. In this case, it is fine since two pairwise collisions
yield four possible proof strings, while a 3-wise collision yields only three possible proof strings.

• Scoring inversions. To score inversions we simply count the number of inversions in the query
trace. We now elaborate on what we consider an inversion in the query trace. Recall that, in the
(domain-separated) Micali construction, queries to the random oracle designated for the Merkle
tree are compressing: a query is of the form x = (x1, x2) ∈ {0, 1}λ × {0, 1}λ and an answer is
y ∈ {0, 1}λ. Instead, queries to the random oracle designated for deriving PCP randomness are
of the form x ∈ {0, 1}λ and an answer is ρ ∈ {0, 1}r. For inversions we only consider tree queries,
and note that a given tree query may invert one of the two components in a previous tree query or
may invert (the one component of) a previous randomness query. Hence, a tree query performed
at time j with answer y is an inversion if there exist a previous tree query (at time j′ < j) of the
form x = (x1, x2) with x1 = y or x2 = y, or a previous randomness query x with x = y.

Informally, we show the following lemma:

Lemma 2.4. For any t-query algorithm that queries the random oracle and every k ∈ N:

1. Pr [collision score > k] ≤
(

t2

2·2λ

)k
;

2. Pr [inversion score > k] ≤ 1
k! ·
(

2t
2λ

)k
.

Further details, including precise definitions of scores and the proof of the lemma, are provided
in Section 6. There the lemma statement is more involved as it considers queries to the tree oracle
and to the randomness oracle separately, to get tighter bounds.

Subsequent to this work, a simple variant of Lemma 2.4 has been used to analyze a SNARG
construction whose argument size improves on the argument size of the Micali construction [CY21].

2.6 Concluding the proof of Theorem 1

As reviewed in Section 2.1, the prior analysis of the Micali construction separately bounds the
probability that the cheating argument prover finds any collision or (weak) inversion and then
conditions the cheating argument prover on the event it finds no collisions or (weak) inversions.
This means that the query trace’s score is 0, which in turn translates to collision and inversion
budgets that equal 0 in the tree soundness game (tcol = 0 and tinv = 0).

In contrast, in our analysis, we consider every possible query trace score and also the probability
that the cheating argument prover could have achieved that score (see Section 2.5). For any integer
k ∈ N we consider the event of the cheating argument prover producing a query trace that has either
collision score or inversion score exactly k. We show that conditioned on the cheating argument
prover producing a query trace of score k, there is another cheating prover that wins the tree
soundness game with the same probability and budget k (the precise statement is given in Claim 7.3).
Namely,

Pr

[
verifier
accepts

∣∣∣∣ score k] ≤ εtree(t, k, k) .
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We consider an infinite sum over k, and for each value of k we bound the probability of the
cheating argument prover getting a score of k multiplied by the maximum winning probability in
the tree soundness error given budget tcol = k and tinv = k. This infinite sum then converges to the
soundness expression stated in our main theorem, provided that λ ≥ 2 log t+ 6.

This approach could be over-simplified via the following equations (for simplicity here we are
not careful with constants). First, using Lemma 2.4 we can conclude that the probability that either
score (collisions or inversions) is bounded by the sum of the two probabilities, namely:

Pr[score of k] ≤ 2 ·
(

2t2

2λ

)k
.

This lets us express the success probability of the cheating prover as an infinite sum conditioned on
getting a score of k, for any k ∈ N:

Pr

[
verifier
accepts

]
≤
∞∑
k=0

Pr

[
verifier
accepts

∣∣∣∣ score of k
]
· Pr[score of k]

≤
∞∑
k=0

εtree(t, k, k) · Pr[score of k]

≤
∞∑
k=0

O

((
2k · t · εPCP + 2k · k · εrev(t)

)
·
(

2t2

2λ

)k)

≤
∞∑
k=0

O

((
2k · t · εPCP + 2k · k ·

(
l · log |Σ|

t

))
·
(

2t2

2λ

)k)

= O(t · εPCP) ·
∞∑
k=0

(
4t2

2λ

)k
+O(l · log |Σ|) ·

∞∑
k=0

2k · k
t
·
(

2t2

2λ

)k
.

Then, separately, we show that (assuming λ ≥ 2 log t+ 6) the two infinite sums converge:

∞∑
k=0

(
4t2

2λ

)k
= O(1) and

∞∑
k=0

2k · k
t
·
(

2t2

2λ

)k
= O

(
t

2λ

)
.

Finally, we conclude that:

Pr

[
verifier
accepts

]
≤ O

(
t · εPCP + C · t

2λ

)
,

where C = 12 · l · log |Σ|.
Moreover, in order to achieve concrete efficiency (e.g., the numbers reported in Section 1.2), our

security analysis improves on the above expression in two ways: (1) it replaces the hidden constant
(in the big-O notation) with the constant 1; and (2) it lowers the upper bound on C to 12 · l·log |Σ|

log 1
t·εPCP

.

To achieve this, we count separately the queries performed to the tree and to derive PCP
randomness. Thus, in the full proof, we introduce two new parameters ttree and trnd such that it
always holds that t = ttree + trnd. Hence the full proof contains similar expressions as above, where
in some cases, t is replaced with either ttree, trnd, or their sum. See Section 7 for further details.
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Adaptive soundness. The soundness notion provided by Theorem 1 is non-adaptive: an instance
x /∈ L is fixed, and then the random oracle is sampled. All prior works in Section 1.3 also focus on
non-adaptive soundness. However, one could also consider a stronger, adaptive, soundness notion:
the random oracle is sampled and then the cheating prover chooses an instance x /∈ L. While there
is a general (black-box) method to achieve adaptive soundness from non-adaptive soundness in any
SNARG, the method incurs a multiplicative factor of t in the soundness error, which is undesirable,
especially so in the context of our work (aimed at a tight security analysis). Fortunately, our security
analysis can be naturally extended to directly show adaptive soundness with the same soundness
error. This mostly relies on using an adaptive soundness definition of the tree soundness game and
the reverse soundness game. We leave working out the details for this adaptive case to future work.
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3 Definitions

Relations. A relation R is a set of tuples (x,w) where x is the instance and w the witness. The
corresponding language L = L(R) is the set of x for which there exists w such that (x,w) ∈ R.
Random oracles. We denote by U(λ) the uniform distribution over functions ζ : {0, 1}∗ → {0, 1}λ
(implicitly defined by the probabilistic algorithm that assigns, uniformly and independently at
random, a λ-bit string to each new input). If ζ is sampled from U(λ), we call ζ a random oracle.
Oracle algorithms. We restrict our attention to oracle algorithms that are deterministic since,
in the random oracle model, an oracle algorithm can obtain randomness from the random oracle.
Given an oracle algorithm A and an oracle ζ ∈ U(λ), queries(A, ζ) is the set of oracle queries that
Aζ makes. We say that A is t-query if |queries(A, ζ)| ≤ t for every ζ ∈ U(λ).

3.1 Probabilistically checkable proofs

We provide standard notations and definitions for probabilistically checkable proofs (PCPs) [BFLS91;
FGLSS91; AS98; ALMSS98]. Let PCP = (P,V) be a pair where P, known as the prover, is an
algorithm, and V, known as the verifier, is an oracle algorithm. We say that PCP is a PCP for a
relation R with soundness error εPCP if the following holds.

• Completeness. For every (x,w) ∈ R, letting Π := P(x,w) ∈ Σl, Prρ∈{0,1}r [V
Π(x; ρ) = 1] = 1.

• Soundness. For every x /∈ L(R) and malicious proof Π̃ ∈ Σl, Prρ∈{0,1}r [V
Π̃(x; ρ) = 1] ≤ εPCP(x).

Above, Σ is a finite set that denotes the proof’s alphabet, and l is an integer that denotes the proof’s
length. We additionally denote by q the number of queries to the proof made by the verifier. All of
these complexity measures are implicitly functions of the instance x.

3.2 Non-interactive arguments in the random oracle model

We consider non-interactive arguments in the random oracle model (ROM), where security holds
against query-bounded, yet possibly computationally-unbounded, adversaries. Recall that a non-
interactive argument typically consists of a prover algorithm and a verifier algorithm that prove and
validate statements for a binary relation, which represents the valid instance-witness pairs.

Let ARG = (P, V ) be a tuple of (oracle) algorithms. We say that ARG is a non-interactive
argument in the ROM for a relation R with (t, ε)-security if, for a function λ : N× (0, 1)→ N, the
following holds for every query bound t ∈ N and soundness error ε ∈ (0, 1).

• Completeness. For every (x,w) ∈ R,

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))
π ← P ζ(x,w)

]
= 1 .

• Soundness. For every x /∈ L(R) with |x| ≤ t and t-query P̃ ,

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))

π ← P̃ ζ

]
≤ ε .

The argument size s := |π| is a function of the desired query bound t and soundness error ε. So are
the running time pt of the prover P and the running time vt of the verifier V .
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3.3 Micali’s construction

We describe Micali’s construction of a (succinct) non-interactive argument from a PCP [Mic00], with
the domain-separated flavor (Remark 3.1). Let (P,V) be a PCP system for the desired relation,
with proof length l over an alphabet Σ and query complexity q; for notational convenience, we set
d := dlog le. The algorithms below are granted access to a random oracle ζ : {0, 1}∗ → {0, 1}λ, which
is domain separated into two random oracles: (i) a PCP randomness oracle ζrnd : {0, 1}∗ → {0, 1}r,
where r is the randomness complexity of the PCP verifierV; (ii) a tree oracle ζtree : {0, 1}∗ → {0, 1}λ.

We describe the argument prover P and then the argument verifier V of the tuple ARG = (P, V ).
Argument prover. The argument prover P takes as input an instance x and witness w, and
computes an argument π as follows. First P runs the PCP prover P on (x,w) to obtain the PCP
proof Π ∈ Σl. Next P uses the random oracle ζtree to Merkle commit to Π, as follows:

• For every j ∈ [l], set the j-th leaf hd,j := Πj ∈ Σ.
• For i = d− 1, d− 2, . . . , 0: for j ∈ [2i], compute hi,j := ζtree(i‖j‖hi+1,2j−1‖hi+1,2j) ∈ {0, 1}λ.
• Set the root rt := h0,1 ∈ {0, 1}λ.

Then P derives randomness ρ := ζrnd(rt) ∈ {0, 1}r and simulates the PCP verifier V on input (x; ρ)
and PCP string Π; this execution induces q query-answer pairs (j1, a1), . . . , (jq, aq) ∈ [l]×Σ. Finally,
P outputs

π :=
(
rt, (j1, a1, p1), . . . , (jd, ad, pd)

)
(1)

where p1, . . . , pd are the authentication paths for the query-answer pairs (j1, a1), . . . , (jq, aq).
Argument verifier. The argument verifier V takes as input an instance x and a proof π (of the
form as in Equation (1)), and computes a decision bit as follows:
• derive randomness ρ := ζrnd(rt) for the PCP verifier;
• check that the PCP verifier V, on input (x; ρ) and by answering a query to jr with ar, accepts;
• check that p1, . . . , pd are authentication paths of (j1, a1), . . . , (jd, ad) that hash into the root rt.
Argument size. The argument π contains the root rt ∈ {0, 1}λ, a (log |Σ|)-bit answer for each of
q queries, and q authentication paths. This totals to an argument size that is

λ+ q · log |Σ|+ q · λ · log l . (2)

Each of the q queries in [l] comes with an authentication path containing the log l siblings of vertices
on the path from the query to the root, which amounts to λ · log l bits. (More precisely, log |Σ|+λ ·
(log l− 1) bits since the first sibling is a symbol in Σ rather than an output of the random oracle.)

As noted in earlier works (e.g., [BBHR19; BCRSVW19]) parts of the information across the q
authentication paths is redundant, and the argument size can be reduced by pruning : the prover
includes in π the minimal set of siblings to authenticate the q queries as a set. All concrete argument
sizes that we report in Section 1.2 already account for this straightforward optimization.

Remark 3.1 (domain separation). The reader may notice that the above description differs slightly
from [Mic00]. While the random oracle ζ is split into the two oracles ζrnd and ζtree as in [Mic00],
each time we use ζtree to hash two children we additionally hash the location in the tree (the level i
and the vertex number j). This has no effect on argument size and only a negligible effect on the
running times of the argument prover and argument verifier. However, these minor differences force
an attacker to specify in its query which part of the scheme it is attacking, which we leverage.
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Remark 3.2 (salts for zero knowledge and more). The security analysis that we present in this
paper (see Section 7) works even if all the vertices in the tree are “salted”, which means that an
attacker may include an arbitrary string σi,j ∈ {0, 1}λ in the query that obtains the digest hi,j , for
any i ∈ {0, 1, . . . , d − 1} and j ∈ [2i]. This is useful for capturing the zero knowledge extension of
the Micali construction (explained below), and more generally shows that our results hold against
strong attacks (the attacker can obtain multiple random digests hi,j for any given indices i and j).
Note that, when adding salts, the definition of an authentication path needs to be extended to
account for salts wherever they are used, and in particular the size of π increases accordingly.

Recall that the Micali construction is (statistical) zero knowledge if the underlying PCP is
honest-verifier zero knowledge and all the leaves in the Merkle tree are salted (the honest prover
sets the j-th leaf hd,j of the tree to be ζtree(Πj‖σd,j) for a random σd,j ∈ {0, 1}λ rather than just
Πj). We refer the reader to [BCS16] for an analysis of this (the cited work discusses zero knowledge
for the BCS construction, which extends the Micali construction to work for public-coin IOPs).
Salts in the leaves behave as hiding commitments, which indeed were similarly used in [IMSX15] to
improve Kilian’s zero knowledge succinct arguments to only make a black-box use of cryptography.

For simplicity, in this paper we do not explicitly add an additional layer below the tree for
salting each leaf individually. Instead, we remark that the above construction is implicitly captured
by having the honest prover place the honest-verifier PCP in every even leaf and setting odd leaves
to a default value. The salts in the first layer of the tree then produce the same effect as salting
each leaf.
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4 Reverse soundness for a PCP

We define the reverse soundness game, and prove that reverse soundness for a PCP reduces to the
PCP’s standard soundness (Lemma 4.4).

Definition 4.1. The function merge : (Σ ∪ {⊥})l × (Σ ∪ {⊥})l × {0, 1} → (Σ ∪ {⊥})l maps two
partial proof strings Π0,Π1 ∈ (Σ∪{⊥})l and a bit b ∈ {0, 1} to a new partial proof string whose j-th
entry, for j ∈ [l], is defined as follows:

merge(Π0,Π1, b)[j] :=


Π0[j] if Π1[j] = ⊥
Π1[j] if Π0[j] = ⊥
Πb[j] otherwise

.

Game 4.2. The reverse soundness game is parametrized by a PCP verifier V, an instance x, and
a positive integer K. We denote by Grev(V,x,K, P̃) the boolean random variable denoting whether
a malicious prover P̃ wins in this game, according to the description below.
1. For i = 1, . . . ,K do:

(a) P̃ outputs a partial proof string Πi ∈ (Σ ∪ {⊥})l.
(b) P̃ receives a random string ρi ∈ {0, 1}r, which represents randomness for the PCP verifier.

2. P̃ outputs a partial proof string Π ∈ (Σ ∪ {⊥})l and a bit b ∈ {0, 1}.
3. The game samples i ∈ [K], and sets Π? := merge(Πi,Π, b).
4. The game outputs 1 if VΠ?

(x; ρi) = 1, and 0 otherwise.

Definition 4.3. A PCP (P,V) for a relation R has reverse soundness error εrev(x,K) if for
every instance x /∈ L(R), positive integer K, and malicious prover P̃,

Pr
[
Grev(V,x,K, P̃) = 1

]
≤ εrev(x,K) .

Lemma 4.4. Let (P,V) be a PCP for a relation R with soundness error εPCP and proof length l
over an alphabet Σ. If K · εPCP(x) ≤ 1/20 then (P,V) has reverse soundness error

εrev(x,K) ≤ 1.06 · l · log |Σ|
K · log 1

K·εPCP(x)

.

Proof. For each i ∈ [K], define Π?
i := merge(Πi,Π, b) where Πi,Π, b are the corresponding outputs

of P̃ in the game. Let X̃i be the boolean random variable for the event that VΠ?i (x; ρi) = 1. Set
X̃ :=

∑
i∈[K] X̃i, and observe that E[X̃] ≤ εPCP. Define X :=

∑
i∈[K]Xi where each Xi is defined

based on X̃i as follows

Xi :=


1 if X̃ = 1

1 w.p. εPCP − E[X̃i]

0 otherwise
.

Note that it always holds that Xi ≥ X̃i and thus X ≥ X̃. Moreover, we have that E[Xi] = εPCP,
E[X] = εPCP ·K, and that X1, . . . , XK are independent random variables.

Let I ⊆ [K] be any subset of size c ∈ N. Then, we get that

Pr
ρ1,...,ρ|I|

[
∀i ∈ [I] : VΠ?i (x; ρi) = 1

]
≤ ε|I|PCP = εcPCP .
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Taking a union bound over all (complete) proofs Π in Σl, and over all subset I of size c ∈ N we
obtain that

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[Vmerge(Πi,Π,b)(x; ρi) = 1] ≥ c

K

]
≤ |Σ|l ·

(
K

c

)
· εcPCP ≤ 2l·log |Σ|+c log(K·εPCP) .

Let c∗ = l·log |Σ|
log 1

K·εPCP

. Then, we bound the success probability of the prover by:

Pr
[
Grev(V,x,K, P̃) = 1

]
≤ Pr

ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[Vmerge(Πi,Π,b)(x; ρi) = 1] ≤ c∗

K

]
· c
∗

K

+
∞∑

c=c∗+1

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[Vmerge(Πi,Π,b)(x; ρi) = 1] =

c

K

]
· c
K

≤ c∗

K
+

∞∑
c=c∗+1

2l·log |Σ|+c log(K·εPCP) · c
K

≤ c∗

K
+

∞∑
i=1

2l·log |Σ|+(c∗+i) log(K·εPCP) · c
∗ + i

K

≤ c∗

K
+

∞∑
i=1

(K · εPCP)i · c
∗ + i

K

≤ c∗

K
+
c∗

K

(
K · εPCP

(1−K · εPCP)2
+

K · εPCP

1−K · εPCP

)
≤ c∗

K
+
c∗

K

(
20

361
+

1

20

)
≤ 1.06 · l · log |Σ|

K · log 1
K·εPCP

.
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5 Tree soundness for a PCP

We define the tree soundness game after introducing some notation and auxiliary definitions. Then
we prove that tree soundness reduces to reverse soundness (Lemma 5.6) and conclude, by further in-
voking our lemma from Section 4, that tree soundness reduces to standard soundness (Theorem 5.7).

Definition 5.1. Let d and λ be positive integers, and Σ a finite alphabet. The vertex set V is the
union V0 ∪ V1 ∪ · · · ∪ Vd where Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ} and, for every i ∈ {0, 1, . . . , d− 1},
Vi := {(i, j, h) : j ∈ [2i], h ∈ {0, 1}λ}. We consider graphs of the form G = (V,E) where E is a set
of (hyper)edges chosen from the following collection:

E =

(u, v0, v1) :
u = (i, j, h) ∈ Vi
v0 = (i+ 1, 2j − 1, h0) ∈ Vi+1

v1 = (i+ 1, 2j, h1) ∈ Vi+1

 .

For an edge e = (u, v0, v1), we call u its base vertex and v0, v1 its children vertices. We also define:
• the edges of a base vertex u = (i, j, h) are edges(u) := {(u, v0, v1) ∈ E : v0, v1 ∈ Vi+1};
• the interval of a base vertex u = (i, j, h) is [a, b] where a = 2d−i · j and b = 2d−i · (j + 1)− 1;
• the level of an edge e, denoted level(e), is i if its base vertex has the form u = (i, j, h).

Each leaf of the graph, namely, a vertex u = (d, j, h) at level d is associated to a symbol, h. A
collection of leaves thus determine a string whose location j is the symbol of the j-th leaf.

Definition 5.2. Let G = (V,E) be a graph over the vertex set V as in Definition 5.1.
• A vertex ud ∈ Vd is connected in G to a vertex u` ∈ V` if there exist vertices ud−1, . . . , u`+1 such
that, for all i ∈ {d, d− 1, . . . , `+ 1}, ui ∈ Vi and there is an edge e ∈ E such that {ui, ui−1} ∈ e.

• A vertex v ∈ Vi is free in G if for every u ∈ Vi−1 and v′ ∈ Vi it holds that (u, v, v′) /∈ E.

Notice that the connectivity concerns only paths that begin at any leaf (i.e., a vertex at level d)
and move directly towards the vertex u`. That is, at each step on the path, the level decreases by
1. Moreover, a vertex at level i is free if there is no edge that connects it to a vertex at level i− 1.

Definition 5.3. Let G = (V,E) be a graph over the vertex set V as in Definition 5.1. Let u be a
vertex and let [a, b] be its associated interval. A string s ∈ (Σ ∪ {⊥})b−a is consistent in G with
u if for every j ∈ [a, b] such that s[a + j] 6= ⊥ there exists a vertex vj = (d, j, h) ∈ Vd such that
h = s[j − a] and vj is connected to u in G. In such a case we write Consistent(G, s, u) = 1.

Game 5.4. The tree soundness game is parametrized by a PCP verifier V, an instance x, and an
integer λ. The game receives as input a malicious prover P̃, a randomness budget trnd ∈ N, a tree
budget ttree ∈ N, a collision budget tcol ∈ N, and an inversion budget tinv ∈ N, which we denote
Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv). The game works as follows:

• Initialization:
1. Set E := ∅ to be an empty edge set for the graph G = (V,E).
2. Set Roots to be an empty mapping from V to verifier randomness.

• Round: P̃ chooses one of the following options until it decides to exit.
– Option ADD: P̃ submits a vertex u = (i, j, h) ∈ V with i ∈ {0, 1, . . . , d− 1} and strings h0, h1.

1. Set the (hyper)edge e := (u, v0, v1) where v0 := (i+1, 2j−1, h0) ∈ Vi+1 and v1 := (i+1, 2j, h1) ∈ Vi+1.
2. If u is free and |e(u)| = 0 then add e = (u, v0, v1) to E.
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3. ttree ← ttree − 1.
– Option COL: P̃ submits a vertex u = (i, j, h) ∈ V with i ∈ {0, 1, . . . , d− 1} and strings h0, h1.

1. Set the (hyper)edge e := (u, v0, v1) where v0 := (i+1, 2j−1, h0) ∈ Vi+1 and v1 := (i+1, 2j, h1) ∈ Vi+1.
2. If u is free and |e(u)| ≥ 1 then add e = (u, v0, v1) to E.
3. tcol ← tcol − 1.

– Option INV: P̃ submits indices i, j with i ∈ {0, 1, . . . , d− 1} and j ∈ [2i] and strings h0, h1.
1. Define Hi,j = {h ∈ {0, 1}λ : ∃ e ∈ E, (i, j, h) ∈ e}.
2. Sample a biased coin b such that Pr[b = 1] =

|Hi,j |
2(ttree+trnd) .

3. If b = 1 then choose h← Hi,j at random.
4. If b = 0 then choose h← {0, 1}λ \Hi,j at random.
5. Add the (hyper)edge e := (u, v0, v1) to E where u := (i, j, h) ∈ Vi, v0 := (i + 1, 2j − 1, h0) ∈ Vi+1,

and v1 := (i+ 1, 2j, h1) ∈ Vi+1.
6. tinv ← tinv − 1.
7. Give h to P̃.

– Option RND: P̃ submits a root vertex vrt ∈ V0.
1. If Roots already contains an entry for vrt then set ρ← Roots[vrt].
2. If Roots does not contain an entry for vrt then sample ρ ∈ {0, 1}r at random and set Roots[vrt]← ρ.
3. trnd ← trnd − 1.
4. ρ is given to P̃.

• Output: P̃ outputs a root vertex vrt ∈ V0 and leaf vertices v1, . . . , vq ∈ Vd.

• Decision: P̃ wins if all checks below pass.
1. Construct a PCP string Π ∈ (Σ ∪ {⊥})l: for every r ∈ [q], parse the r-th leaf vertex as vr = (d, j, h)

and set Π[j] := h ∈ Σ; set Π[j] := ⊥ for all other locations.
2. Retrieve PCP randomness for this root vertex: ρ∗ ← Roots[vrt].
3. Check that the PCP verifier accepts: VΠ(x; ρ∗) = 1.
4. Check that Π is consistent in G with the root: Consistent(G,Π, vrt) = 1.
5. Check that P̃ is within budget: tcol ≥ 0, tinv ≥ 0, trnd ≥ 0, and ttree ≥ 0.

Definition 5.5. A PCP (P,V) for a relation R has tree soundness error εtree(x, λ, trnd, ttree, tcol, tinv)
if for every x /∈ L(R), output size λ ∈ N, malicious prover P̃, and budgets trnd, tcol, tinv ∈ N,

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1

]
≤ εtree(x, λ, trnd, ttree, tcol, tinv) .

Lemma 5.6. If (P,V) is a PCP for a relation R with soundness error εPCP(x) and reverse sound-
ness error εrev(x,K), then it has tree soundness error

εtree(x, λ, trnd, ttree, tcol, tinv) ≤ 2tcol ·max {trnd · εPCP(x), 2tinv · εrev(x, trnd + ttree)} .

Proof. Let P̃tree be a malicious prover that wins the tree soundness game with probability greater
than εtree. For any root vertex vrt we set Consistent(G, vrt) to be all proof strings that are consistent
with vrt in the graph G and are also full proof strings (no entry equals ⊥):

Consistent(G, vrt) := {Π ∈ Σl : Consistent(G,Π, vrt)} .

We define an event E that, intuitively, indicates that the prover P̃tree wins the game using
Option RND without using inversions. If E does not hold then the prover wins using an inversion
submitted via Option INV. Formally, let the root vertex vrt ∈ V0 and leaf vertices v1, . . . , vq ∈ Vd
be the final output of the prover. If the prover wins in the tree soundness game, then it must be
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that these leaves are connected to the root: Consistent(G,Π, vrt) = 1 where Π is the partial proof
that identifies with v1, . . . , vq. The event E holds whenever there exist paths that connect every leaf
v1, . . . , vq to the root vrt and all the edges in these paths where added using Option ADD.

We split the analysis in two cases according to the event E , and then derive the lemma.
Case 1: E occurs. Conditioned on the event E we know that all edges connecting v1, . . . , vq to vrt
were added without Option INV, which, in particular, means that they existed in the graph before
the prover used Option RND on vrt.

There are at most trnd invocations of Option RND, and in each a root is chosen. For each
iteration, we wish to bound the number of consistent proof strings Π that identify with the leaves
v1, . . . , vq. Every such proof string must be in the set Consistent(G, vrt) and thus it suffices to bound
the size of this set. We obtain such a bound by bounding the number of collisions (and the size of
each collision): using the budget on collision tcol we get that

|Consistent(G, vrt)| ≤
∏
u∈V
|edges(u)| ≤ 2tcol .

From the (standard) soundness of the PCP, we know that the probability that the verifier accepts
any fixed proof string is at most εPCP. Thus, taking a union bound over all trnd roots vrt and over
all (full) proof strings in Consistent(G, vrt) we get that

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1

∣∣∣ E] ≤ trnd · |Consistent(G, vrt)| · εPCP ≤ trnd · 2tcol · εPCP .

Case 2: E does not occur. We reduce to the reverse soundness game: we describe how to
obtain a malicious prover P̃rev that wins the reverse soundness game with probability greater than
a certain loss times εrev(x, trnd) where we set K := trnd + ttree.

The cheating prover P̃rev plays in the reverse soundness game Grev by simulating a play of P̃tree

and an instance of the tree soundness game Gtree. In particular, P̃rev maintains the internal data
structures of Gtree (the edge set E and roots map Roots) as they would be maintained in Gtree.
These maintenance details are omitted from the description below. During its simulation, P̃tree

may repeatedly choose one of four options available in Gtree. In the case of either Option INV or
Option RND, P̃rev does the following for each of these cases. The prover can perform at most tinv
inversions (via Option INV). Thus, we guess ` ∈ [tinv] at random.

• Option INV in Gtree: P̃tree submits indices i, j and strings h0, h1.

1. `← `− 1.
2. If ` > 0 skip the steps below and continue with the simulation.
3. Let v0 = (i+ 1, 2j − 1, h0), v1 = (i+ 1, 2j, h1), and u = (i, j, 0), and add the edge (u, v0, v1) to

the graph.
4. Submit K − |Roots| empty proofs in the Grev.
5. Sample Π∗ ∈ Consistent(G, u) and b ∈ {0, 1} at random and submit it as the final proof in Grev.

• Option RND in Gtree: P̃tree submits a root vertex vrt ∈ V0.

1. Sample a random Π ∈ Consistent(G, vrt).
2. Submit Π in 1.a in Grev and get ρ.
3. Set Roots[vrt]← ρ.
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We now bound the success probability of P̃rev. The final output of the cheating prover includes
leaves v1, . . . , vq and a root vrt. Let Π′ be a proof that identifies with these leaves. Then, there must
exist Π ∈ Consistent(G, vrt), Π∗ ∈ Consistent(G, u), and b ∈ {0, 1} such that Π′ = merge(Π,Π∗, b).
This is since the accepting proof Π′ must be consistent with vrt after we added the edge (u, v0, v1).
Thus, it must be a combination of proofs that were already consistent with vrt and a (partial) proof
that was consistent with u.

Let `∗ be the invocation of Option INV at which after this invocation there exists a proof
Π ∈ Consistent(G, vrt) that convinces the verifier. We guess this invocation of Option INV (i.e.,
` = `∗) with probability 1/tinv. If all our guess are correct, then the probability that we win in the
reverse soundness game is at least

1

tinv
· 1

2tcol
· 1

2
· εrev(x,K) .

This yields us the bound:

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1 | ¬E

]
≤ 2tinv · 2tcol · εrev(x,K) .

Combining the cases. Combining the two cases above, we obtain the claimed bound:

εtree(x, λ, trnd, ttree, tcol, tinv)

= Pr[Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1 | E ] · Pr[E ]+

Pr[Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1 | ¬E ] · Pr[¬E ]

≤ 2tcol · trnd · εPCP(x) · Pr[E ] + 2tinv · 2tcol · εrev(x, trnd + ttree) · Pr[¬E ]

≤ 2tcol ·max {trnd · εPCP(x), 2tinv · εrev(x, trnd + ttree)} .

Theorem 5.7. Let (P,V) be a PCP for a relation R with soundness error εPCP and proof length l
over an alphabet Σ. Then (P,V) has tree soundness error

εtree(x, λ, trnd, ttree, tcol, tinv) ≤ 2tcol ·max

{
trnd · εPCP(x), 2.12 · tinv ·

l · log |Σ|
K · log 1

K·εPCP(x)

}
,

where K = trnd + ttree.

Proof. We apply Lemma 4.4 to our PCP and get that it has soundness

εrev(x,K) ≤ 1.06 · l · log |Σ|
K · log 1

K·εPCP(x)

.

Then, we apply Lemma 5.6 and get that the PCP has tree soundness:

εtree(x, λ, trnd, ttree, tcol, tinv) ≤ 2tcol ·max {trnd · εPCP(x), 2 · tinv · εrev(x,K)}

≤ 2tcol ·max

{
trnd · εPCP(x), 2.12 · tinv ·

l · log |Σ|
K · log 1

K·εPCP(x)

}
.
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6 Scoring oracle queries

Consider an algorithm A that has query access to a random oracle ζ : {0, 1}∗ → {0, 1}λ. In this
section we are interested in studying the probability that Amakes “notable” queries to ζ as a function
of the number of queries performed. Here “notable” means one of two cases: multiple queries that
map to the same answer (i.e., a collision); or a query whose answer already appeared as part of
a prior query (i.e., an inversion). Below we assign scores to each of these cases, and bound the
probability that A can succeed in making queries that in aggregate result in a high score.

We define the notion of a query trace, then how we score a query trace, and then state and
prove our results about algorithms achieving query traces with high scores. (Note that in all cases
we only care about A’s query trace, and ignore its output.)

Definition 6.1. A query trace with respect to ζ : {0, 1}∗ → {0, 1}λ is a list tr = ((x1, y1), . . . , (xt, yt)),
with no duplicate pairs, such that ζ(xj) = yj for every j ∈ [t].

In the domain-separated flavor of the Micali construction (see Section 3.3), the oracle ζ is divided
via domain separation into multiple oracles, one for each vertex in the tree, and it would make sense
to have separate scores for each oracle. However, here we give a simpler, and more generous, scoring
definition that ignores the oracle separation for the tree queries, and only distinguishes between the
tree oracle ζtree and the PCP randomness oracle ζrnd. The benefit is a more general definition that
may be of interest in other contexts. This relaxation does not hurt our analysis because the tree
soundness game does enforce domain separation, which prevents the adversary, e.g., from using the
same collision on multiple locations.

While the collision score is well-defined for any query trace, we are interested only in collisions
in the query trace of ζtree, and so use the notation trtree =

(
(xj , yj)

)
j∈[ttree]

to denote this trace.

Definition 6.2. The collision score of a query trace trtree =
(
(xj , yj)

)
j∈[ttree]

with respect to
ζtree : {0, 1}∗ → {0, 1}λ is defined as scorecol(trtree) :=

∑
j∈[ttree] scorecol(trtree, (xj , yj)) where

scorecol(trtree, (x, y)) =
m− 1

m
where m = |{j ∈ [ttree] | ζtree(xj) = y}| .

The definition of inversion score is with respect to both traces. Let ttree be the length of the
query trace trtree for ζtree and trnd the length of the query trace trrnd for ζrnd, and let t := ttree + trnd.

As explained above, we ignore the domain separation used to distinguish different types of tree
queries, and so we view a query x that is part of a pair (x, y) in the query trace trtree as a pair
(x0, x1) consisting of two strings of length λ (or log |Σ| in the case of a query for a leaf). Then, for
any query-answer pair (x, y) in trtree, we set Tinv(trtree, trrnd, (x, y)) to be the set of possible targets
for inversion in both traces: for any pair (x′, y′) that appears before (x, y) in either trtree or trrnd
where x′ = (x′0, x

′
1) ∈ {0, 1}2λ, we add x′0, x′1 to Tinv.

Definition 6.3. Let trtree =
(
(xj , yj)

)
j∈[ttree]

be a query trace for ζtree, and trrnd a query trace for ζrnd.
The inversion score scoreinv(trtree, trrnd) is defined as

∑
j∈[ttree] scoreinv(trtree, trrnd, (xj , yj)) where

scoreinv(trtree, trrnd, (x, y)) :=

{
1 if y ∈ Tinv(trtree, trrnd, (x, y))

0 otherwise
.
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Lemma 6.4 (trace score lemma). Let λ ∈ N be the oracle’s output size and ttree, trnd ∈ N query
bounds. Then for every parameter k ∈ N and algorithm A it holds that:

1. Pr

scorecol(trtree) > k

∣∣∣∣∣∣
ζ ← U(λ)

trtree ← queriestree(A, ζ)
ttree = |trtree|

 ≤ ( t2tree
2·2λ

)k
;

2. Pr

scoreinv(trtree, trrnd) > k

∣∣∣∣∣∣∣∣
ζ ← U(λ)

trtree ← queriestree(A, ζ)
trrnd ← queriesrnd(A, ζ)

ttree = |trtree|, trnd = |trrnd|

 ≤ 1
k! ·
(

2·(ttree+trnd)·ttree
2λ

)k
.

Proof of Item 1 of Lemma 6.4. In order to get a score of k, the trace must contain a collection of
at most k subsets (J1, . . . , Jk) that collide (namely, ζ(xj) = ζ(xj′) for all j, j′ ∈ J). Let CJ be the
random variable indicating that all queries in J collide. Now, we define a set A of all such subsets
that get a score of k. The score for each J is |J | − 1. Thus, we define

A :=

(J1, . . . , J`) :

J1, . . . , J` ⊆ [ttree] are distinct
|Ji| ≥ 2 for all i ∈ [`]∑`

i=1(|Ji| − 1) = k

 .

Claim 6.5. For any ttree ≥ 5 we have that |A| ≤
(
t2tree

2

)k
.

Proof. For any ` we count the size of A with exactly ` subsets. We have that
∑`

i=1 |Ji| = k + `
and thus there are k + ` elements and tk+`

tree ways to choose them. For each choice of these k + `
elements, there are

(
k−1
`−1

)
ways to divide the total score of k into ` groups. Finally, we observe that

we counted each element in A multiple times. First, we order of the subsets does not matter and
thus we divide by a factor of `!. Next, within each subset, the order does not matter. Each subset
is of size at least 2, and there are ` subsets and thus we divide by 2`.

Together we get that

|A| ≤
k∑
`=1

tk+`
tree ·

(
k−1
`−1

)
`! · 2`

≤ tktree ·
k∑
`=1

t`tree · (k − 1)`−1

`! · (`− 1)! · 2`
≤ tktree ·

(
ttree
2

)k
=

(
t2tree
2

)k
,

where the last inequality can be easily shown using an inductive argument (and using ttree ≥ 5).

Using this bound, we get that:

Pr[scorecol(trtree) ≥ k] ≤ Pr[∃ (J1, . . . , Jk) ∈ A : CJ1 = 1, . . . , CJk = 1]

≤
∑

(J1,...,Jk)∈A

2−(|J1|−1)λ · · · 2−(|Jk|−1)λ

= 2−λ·k · |A|

≤ 2−λ·k ·
(
t2tree
2

)k
=

(
t2tree

2 · 2λ

)k
.
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Proof of Item 2 of Lemma 6.4. Recall that a query trace trtree is an ordered list containing all query-
answer pairs to the oracle, and let trtree[j] = (xj , yj) be the j-th query pair in the list trtree. We
define random variables {Ij}j∈[ttree] for which it holds that scoreinv(trtree, trrnd) =

∑
j∈[ttree] Ij . The

variables encode the contributions to the score of individual inversions:

Ij := scoreinv(trtree, trrnd, trtree[j]) .

Next, we define random variables {Īj}j∈[t] based on {Ij}j∈[t] that will help us in the analysis.
Observe that the random variable Ij is not independent of the other random variables. In particular,

Pr[Ij = 1] =
|Tinv(trtree, trrnd, (xj , yj))|

2λ
,

where (xj , yj) is the j-th query to the tree oracle. The random variable Īj below “rounds up” the
probability that Ij = 1 to 2(j − 1)/2λ regardless of other events:

Īj :=


1 if Ij = 1

1 w.p. 2(j−1)−|Tinv(trtree,trrnd,(xj ,yj))|
2λ

0 otherwise
.

Observe that it always holds that Ij ≤ Īj , that I1, . . . , It are independent and that

Pr[Īj = 1] =
2(j − 1)

2λ
≤ 2(ttree + trnd)

2λ
.

If scoreinv(trtree, trrnd) ≥ k then there must exist distinct j1, . . . , jk in [ttree] such that I1 = 1, . . . , Ik =
1, and thus also Ī1, . . . , Īk = 1. Then, we get that:

Pr[scoreinv(trtree, trrnd) ≥ k] ≤ Pr

[
∃ (j1, . . . , jk) ∈

(
[ttree]

k

)
: Īj1 = 1, . . . , Ījk = 1

]
≤ Pr

[
∃ (j1, . . . , jk) ∈

(
[ttree]

k

)
: Īj1 = 1, . . . , Ījk = 1

]
≤

∑
(j1,...,jk)∈([ttree]k )

Pr[Īj1 = 1, . . . , Ījk = 1]

=
∑

(j1,...,jk)∈([ttree]k )

2(ttree + trnd)

2λ
· · · 2(ttree + trnd)

2λ

=
2k · (ttree + trnd)k

2k·λ
·
(
ttree
k

)
≤ 2k · (ttree + trnd)k

2k·λ
· t
k
tree

k!
≤ 1

k!

(
2 · (ttree + trnd) · ttree

2λ

)k
.
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7 Upper bound on the soundness error of Micali

Theorem 7.1 (Theorem 1). Suppose that the Micali construction (described in Section 3.3) is
instantiated with: (i) a PCP with soundness error εPCP, proof length l over alphabet Σ, and query
complexity q; and (ii) a random oracle with output size λ. Then, provided that λ ≥ 2 log t + 6, the
Micali construction has a soundness error ε(t) against t-query adversaries that is bounded as follows:

ε(t) ≤ t · εPCP + C · t
2λ

with C := 12 · l · log |Σ|
log 1

t·εPCP

.

The bound on the soundness error enables us to set parameters to achieve security.

Corollary 7.2 (Corollary 2). The Micali construction is (t, ε)-secure when instantiated with:

• a PCP with soundness error εPCP ≤ 1
2
ε
t ; and

• a random oracle with output size λ ≥ max
{

2 log t+ 6 , log(t/ε) + log l·log |Σ|
log 1

t·εPCP

+ 5
}
.

Proof. We set εPCP and λ such that each term is bounded by ε/2 and thus get overall soundness
ε for the argument scheme. For the first term, we want that t · εPCP ≤ ε/2 which leads us to
require εPCP ≤ 1

2
ε
t . For the second term we need that C · t

2λ
≤ ε/2, which leads us to require that

λ ≥ log(t/ε) + log(2C). Plugging in C = 12 · l·log |Σ|
log 1

t·εPCP

we get that

λ ≥ log(t/ε) + log

(
2 · 12 · l · log |Σ|

log 1
t·εPCP

)
.

Recall that Theorem 7.1 also requires that λ ≥ 2 log t+ 6. Together, we get the claimed bound.

We prove the theorem in Section 7.1 and a technical claim in Section 7.2. Throughout this
section we denote by (P, V ) the argument prover and argument verifier in the Micali construction,
and by (P,V) the PCP prover and PCP verifier of the PCP used in the Micali construction.

7.1 Proof of Theorem 7.1

Fix t ∈ N. Let P̃ be a t-query cheating argument prover. Note that P̃ can make queries to the
randomness oracle ζrnd and tree oracle ζtree. For any choice of positive integers trnd and ttree such that
trnd + ttree = t, below we condition on the event that P̃ makes trnd queries to ζrnd and ttree queries to
ζtree. For any such choice, we obtain the same upper bound (independent of the choice of trnd and
ttree), and hence conclude that the bound holds for the distribution of trnd and ttree implied by P̃ .

We rely on the claim below, which states that a cheating argument prover can be transformed
into a cheating PCP prover for the tree soundness game with a small loss, when the budgets for
collisions and inversions correspond to the corresponding scores of the trace of the argument prover.
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Claim 7.3. There is an efficient transformation T such that, for every cheating argument prover
P̃ , the cheating PCP prover P̃ := T(P̃ ) satisfies the following condition for every k ∈ N:

Pr


V ζ(x, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ ← U(λ)

π ← P̃ ζ

trrnd ← queriesrnd(P̃ , ζ)

trtree ← queriestree(P̃ , ζ)
|trrnd| = trnd, |trtree| = ttree

scorecol(trtree) ≤ k
scoreinv(trtree, trrnd) ≤ k


≤ Pr

[
Gtree(V,x, λ, P̃, trnd, ttree, k, k) = 1

]
. (3)

Above queriesrnd(P̃ , ζ) and queriestree(P̃ , ζ) respectively denote the queries by P̃ to the oracles ζrnd
and ζtree obtained from ζ via domain separation.

The proof of Claim 7.3 is given in Section 7.2.
We use Lemma 6.4 to obtain two bounds that will be useful in the analysis further below; we

also use the assumption that λ ≥ 2 log t + 6 and the fact that t ≥ ttree. Both bounds hold for any
choice of a parameter k ∈ N. The first bound is:

∞∑
k=0

k · 2k

t
· Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤
∞∑
k=0

k · 2k

t
·

(
1

k!
·
(

2t · ttree
2λ

)k
+

(
t2tree

2 · 2λ

)k)

=

∞∑
k=0

k · 2k

t
· 1

k!
·
(

2t · ttree
2λ

)k
+

∞∑
k=0

k · 2k

t
·
(
t2tree

2 · 2λ

)k
≤ ttree

2λ
·
∞∑
k=0

2k · 2k

k!
·
(

2t · ttree
2λ

)k−1

+
ttree
2λ
·
∞∑
k=0

k · 2k

2
·
(
t2tree

2 · 2λ

)k−1

(since t ≥ ttree)

≤ ttree
2λ
·
∞∑
k=0

k · 22k

k! · 26(k−1)
+
ttree
2λ
·
∞∑
k=0

k · 2k

2 · 26(k−1)
(since λ ≥ 2 log t+ 6)

≤ ttree
2λ
· 4.26 +

ttree
2λ
· 1.07 = 5.33 · ttree

2λ
.

The second bound is:
∞∑
k=0

2k · Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ 1 +

∞∑
k=1

2k ·

(
1

k!
·
(

2t · ttree
2λ

)k
+

(
t2tree

2 · 2λ

)k)

= 1 +

∞∑
k=1

1

k!
·
(

4t · ttree
2λ

)k
+

∞∑
k=1

(
t2tree
2λ

)k
≤ 1 +

∞∑
k=1

1

k!
·
(

4ttree
26 · t

)k
+
∞∑
k=1

(
ttree
26 · t

)k
(since λ ≥ 2 log t+ 6)
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≤ 1 +
8ttree
26t

+
2ttree
26t

≤ 1 +
ttree
t

.

Using the above bounds, we conclude by establishing an upper bound on the soundness error:

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ)

π ← P̃ ζ

]
≤
∞∑
k=0

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, k, k) = 1

]
· Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤
∞∑
k=0

εtree(x, λ, trnd, ttree, k, k) · Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤
∞∑
k=0

(
trnd · 2k · εPCP + 2.12k · l · log |Σ|

log 1
t·εPCP

· 2k

t

)
· Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ trnd · εPCP ·
∞∑
k=0

2k · Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

+
2.12C

12
·
∞∑
k=0

k · 2k

t
· Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ trnd · εPCP ·
(

1 +
ttree
t

)
+

2.12C

12
·
(

5.33 · ttree
2λ

)
≤ (trnd + ttree) · εPCP + C · ttree

2λ

≤ t · εPCP + C · t
2λ

.

7.2 Proof of Claim 7.3

For simplicity, we assume the following two conditions that are without loss of generality.

• No duplicate queries: The cheating argument prover P̃ does not make duplicate queries to the
random oracle. This can be achieved by having P̃ store the answers to prior queries, and making
only new queries to the random oracle, and has no effect on the rest of the proof. Recall that
we are considering the Micali construction with salts (see Remark 3.2), which means that the
aforementioned “no duplicate query” condition implies that the prover does not make the same
query with the same salt but can make the same query with a different salt (as that results in a
different input to the random oracle).

• Self-verifying: The cheating argument prover P̃ either outputs an accepting proof or an abort
symbol. This can be achieved by modifying P̃ to run the argument verifier on its output proof
and, if the proof is not accepting, outputting the abort symbol. This is not completely without
loss of generality, as this might cost a few additional queries. However, this has a negligible effect
on P̃ ’s query complexity (and thus our results) because the argument verifier makes few queries
to the random oracle, so we ignore this effect.
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We use P̃ to construct a PCP prover P̃ that plays in the tree soundness game Gtree (Game 5.4).
The PCP prover P̃ simulates the argument prover P̃ and, whenever P̃ performs a query x to the
random oracle, P̃ performs one of the following actions depending on x.

• Root query: x is a query in {0, 1}λ to the PCP randomness oracle ζrnd.

1. Construct the root vertex vrt := (0, 1, x) ∈ V0.
2. Submit, via Option RND in Gtree, the root vertex vrt.
3. Receive from Gtree a random string ρ ∈ {0, 1}r for the PCP verifier.
4. Send ρ to P̃ .

• Tree query: x is a query (i, j, h0, h1, σ) to the tree oracle ζtree with indices i ∈ {0, 1, . . . , d − 1}
and j ∈ [2i], strings h0, h1 in {0, 1}λ or in Σ (depending on i) and salt σ ∈ {0, 1}λ.
1. Sample a biased coin b ∈ {0, 1} such that Pr[b = 1] = 2t

2λ
.

2. If b = 1 then submit i, j, h0, h1 via Option INV in Gtree and obtain an answer h ∈ {0, 1}λ.
3. If b = 0 then:

3.1. sample a random h ∈ {0, 1}λ and set u := (i, j, h) ∈ Vi;
3.2. if |e(u)| = 0 then submit u, h0, h1 via Option ADD in Gtree;
3.3. if |e(u)| ≥ 1 then submit u, h0, h1 via Option COL in Gtree.

4. Send h to P̃ .

• Other query: x is a query that does not fit either case above.

1. Sample a random h ∈ {0, 1}λ and send h to P̃ .

At the end of its simulation, P̃ outputs a proof π that is parsed as in Equation (1). The cheating
prover P̃ outputs the root vertex vrt := (0, 1, rt) where rt is the root contained in π and also outputs
the leaf vertices {vr}r∈[q] where vr := (d, jr, ar) specifies the location jr ∈ [l] and answer ar ∈ Σ in
π for the r-th query.

We now argue that the constructed PCP prover P̃ satisfies Equation (3).
The probability of the left-hand side in Equation (3) is over a random oracle ζ (with several

conditions). We view the randomness in the right-hand side, which comes from P̃ simulating P̃ and
from the tree soundness game, also as an oracle, denoted by ζ ′.
• For each root query x the output of ζ ′ is the string ρ sampled by the tree soundness game.
• For each tree query x the output of ζ ′ is the bit b sampled by P̃, another bit b′ sampled by the

tree soundness game (if b = 1), and the string h sampled by the tree soundness game or by P̃
(depending on the value of b).

• For all other queries the output of ζ ′ is the string h sampled by P̃.
Observe that, in the second case, the output of ζ ′ is larger than the output of ζ.

The way that P̃ answers P̃ ’s queries to ζ naturally induces a mapping f that maps any oracle
ζ ′ to an oracle ζ such that:

1. f is a regular mapping (for every ζ1, ζ2 it holds that |f−1(ζ1)| = |f−1(ζ2)|);
2. if f(ζ ′) = ζ and V ζ(x, π) = 1 then Gtree(V,x, λ, P̃, trnd, ttree, k, k) = 1 with the randomness ζ ′.

We are left to argue that the two properties hold, as they imply Equation (3).
Property 1. The mapping is regular since the PCP prover P̃ performs a perfect simulation of the
argument prover P̃ , in that P̃ gives values to P̃ that are identically distributed as the answers from

32



a random oracle ζ. We argue this for (well-formed) queries to ζrnd and queries to ζtree; other query
types are trivially uniformly random because that is how P̃ answers in the third bullet.

First, if P̃ issues a query x to the randomness oracle ζrnd, then P̃ replies with the randomness
ρ received from the tree soundness game Gtree, which is uniformly distributed.

Second, suppose that P̃ issues a query x to the tree oracle ζtree. Since P̃ ’s queries are distinct,
either of i, j, h0, h1 are new elements, in which case no value h has been assigned; or the salt σ
is new (the salt allows P̃ to get new randomness for the same choice of i, j, h0, h1). Note that P̃
replies with h that is received from Option INV in Gtree with probability 2t/2λ and otherwise it is
uniformly random. In turn, in Option INV in Gtree, h is a random element from Hi,j with probability
|Hi,j |

2(ttree+trnd) and otherwise it is uniformly random outside the set. Overall, the probability that h is
chosen from Hi,j is

2t

2λ
· |Hi,j |

2(ttree + trnd)
=

2t

2λ
· |Hi,j |

2t
=
|Hi,j |

2λ
,

and in this case it is uniformly within the set Hi,j . Otherwise, it is uniform outside of the set Hi,j .
Overall, we conclude that h is uniformly random, as required.
Property 2. We claim that the PCP prover P̃ wins the tree soundness game whenever the
argument prover P̃ convinces the argument verifier V . Suppose that V ζ(x, π) = 1 for the proof π
output by P̃ and the (partial) random oracle ζ implied by the randomness of the simulation and
tree soundness game. Let ρ∗ := Roots[vrt] be the PCP randomness associated to the root vertex vrt
output by P̃ (recall that Roots is the table maintained by the tree soundness game).

We can deduce the following two items, which mean that P̃ wins up to budget constraints.

• VΠ(x; ρ∗) = 1 where Π is the PCP proof with value ar ∈ Σ at location jr ∈ [l] for every r ∈ [q],
and the value ⊥ at all other locations. This is because if the argument verifier V accepts then
the underlying PCP verifier V also accepts: V on instance x and PCP randomness ρ∗ accepts
when, for every r ∈ [q], the answer to query jr is the value ar.

• For every r ∈ [q], the leaf vertex vr is connected in G to the root vertex vrt (G is the graph
maintained by the tree soundness game). This is because p1, . . . , pq in π are valid authentication
paths for the query-answer pairs (j1, a1), . . . , (jq, aq) with respect to the root rt in π (and the
oracle ζ). Then, since we assumed that P̃ has queried all vertices in the authentication paths in
the output proof π, all edges between the leaf vertices {vr}r∈[q] and the root vertex vrt are in G.

Hence, we only need to show that when the scores of P̃ ’s query trace are bounded by k then the
budgets for P̃’s suffice to win the tree soundness game.

• If scorecol(trtree) ≤ k then we know that P̃ has found at most k collisions in trtree. In this case,
P̃ submits the same number of collisions in the tree soundness game as P̃ because it imitates its
queries. Thus, the collision budget suffices for the simulation.

• If scoreinv(trtree, trrnd) ≤ k then we know that P̃ has performed at most k inversions in trtree and
trrnd together. In this case, P̃ simulates the same queries and will use Option INV at most k
times. Thus, the inversion budget will suffice for the simulation.

• Since P̃ performs at most trnd queries to the randomness oracle ζrnd and at most ttree queries to the
tree oracle ζtree, then P̃ will perform the same amount of queries to Option RND and Option ADD
respectively.
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8 Lower bounds on the soundness error of Micali

We show that the security bounds for the Micali construction proved in this paper (Theorem 1 and
Corollary 2) are tight up to low-order terms. In particular, we show that the dependency in the
proof length and alphabet size in our security analysis is, in general, necessary.

Lemma 8.1. Let M [(P,V), λ] denote the Micali construction instantiated with the PCP (P,V)
and with oracle output size λ. There exists a PCP (P,V) with soundness error εPCP, proof length l
over an alphabet Σ, and query complexity q such that if M [(P,V), λ] is (t, ε)-secure for t ≥ 4l then:3

1. ε(t) ≥ Ω(t · εPCP);
2. ε(t) ≥ Ω(C · t

2λ
) where C ≥ l·log |Σ|

q2
;

3. λ ≥ 2 · (log t− log l− log log l) +O(1).

We prove each item below via different attacks on the Micali construction. Our attacks work
for general PCPs that satisfy some mild assumption (each attack requires a certain assumption).
Therefore, the above lemma is more robust than stated in the sense that each lower bound works
for most set of parameters (l,Σ, q, εPCP) for which a PCP exists.

Proof of Item 1 (resample attack). For this attack we only need the PCP to have soundness error
exactly εPCP, i.e., there exist an instance x /∈ L and proof string Π ∈ Σl such that Prρ[V

Π(x; ρ) =
1] ≥ εPCP. The cheating argument prover first commits to Π, like the honest prover would, to obtain
a Merkle root rt; this costs 2 · l queries to the random oracle. Then the cheating argument prover
uses the remaining t− 2 · l queries to the random oracle to derive many possible random strings for
the PCP verifier, by changing the salt used to derive the randomness from the same Merkle root
rt. The probability that the PCP verifier accepts Π on that randomness, and thus the malicious
argument prover can make the argument verifier accept, is at least εPCP. In sum, the probability
that the cheating argument prover succeeds is the probability at least one of these random strings
causes the PCP verifier to accept.

We lower bound this probability via the inclusion-exclusion principle: the probability that the
verifier accepts in any of the t− 2 · l query sets is at least (t− 2 · l) · εPCP− t2 · ε2

PCP. If t · εPCP ≤ 3/4
then we can write this probability as Ω(t ·εPCP). Else if t ·εPCP > 3/4 then we bound the probability
of the attack failing by (1 − εPCP)t ≤ e−t·εPCP < 1/2 and thus ε(t) > 1/2 which contradicts the
assumption that ε(t) ≤ 1/2 in the lemma statement.

Proof of Item 2 (inversion attack). First we describe a simple inversion attack that succeeds with
probability Ω(C · t

2λ
) for C = 1 for any PCP. Then we improve the attack to obtain C ≥ l/q2 for

any PCP with random queries. Finally, we show that this latter attack can be simulated over a
larger alphabet, resulting in the claimed bound of C ≥ l·log |Σ|

q2
.

Simple inversion attack (C ≥ 1). The cheating argument prover selects an arbitrary Merkle
root rt ∈ {0, 1}λ (e.g., rt = 0λ), without first committing to any proof string, and then uses
the random oracle to derive, from the Merkle root rt, a random string ρ ∈ {0, 1}r for the PCP
verifier. Then the cheating argument prover deduces a local view of q symbols that makes the PCP
verifier accept for the randomness ρ (such a local view exists for non-trivial languages), and extends
arbitrarily this local view into a proof string Π. Then the cheating argument prover computes a
Merkle tree on Π, hoping that it will yield the same root value rt chosen earlier; this costs 2 · l

3The requirement t ≥ 4l is minor as even the honest prover uses 2l queries.
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queries to the random oracle. If this does not happen, the cheating argument prover re-computes
the last layer of the Merkle tree with new salts, over and over, hoping that the new root will collide
with the exiting root rt. Each such trial costs 1 query, and so overall the cheating prover can afford
t̃ := t− 2 · l = Ω(t) trials (the one when computing the Merkle tree plus all the trials after that).

The success probability of this attack is at least t̃ · 2−λ − t̃2 · 2−2λ. If t̃ · 2−λ ≤ 3/4 then we can
write this probability as Ω( t

2λ
). Else if t̃ · 2−λ > 3/4 then we bound the failure probability of the

attack by (1 − 2−λ)t̃ ≤ e−t̃·2
−λ ≤ 1/2 and thus ε(t) > 1/2 which contradicts the assumption that

ε(t) ≤ 1/2 in the lemma statement.
A better inversion attack (C ≥ l/q2). We increase the probability of inversion by leveraging
weak inversions. The cheating argument prover arbitrarily chooses t/2 distinct roots rt1, . . . , rtt/2
and derives corresponding PCP random strings ρ1, . . . , ρt/2; then it finds a PCP string Π that
satisfies as many of the PCP random strings as possible; it computes the Merkle tree of this string;
and finally with the remaining queries tries to invert to any of the t/2 roots by enumerating over
salts. The probability that the prover succeeds in inverting is Ω(t2/2λ), and if Π satisfied C of the
challenges then the overall success probability of this strategy is

Ω

(
t2

2λ
· C
t

)
= Ω

(
C · t

2λ

)
.

We are left to bound C from below. For any choice of PCP randomness, there is a proof string
satisfies it. Moreover, if several PCP random strings query different parts of the proof string, then
there is a proof string that satisfies all of them. Henceforth, we will assume that the queries of the
PCP are uniformly random (such PCPs are known to exist). We collect distinct PCP randomness
strings in a greedy manner: initially set S to be empty; then, at step i, add ρi to S if its queries
do not collide with any queries of PCP random strings already in S; stop when |S| = l/q2. For any
i ∈ [t/2], let Xi be an indicator variable for the event that we added ρi to S. Then,

Pr[Xi = 1] ≥
(

1− |S| · q
l

)q

≥
(

1− 1

q

)q

≥ Ω(1) .

In expectation, every O(1) iterations an element is added to S. By a Chernoff bound, with high
probability after O(l/q2) iterations the set S achieves its maximal size of |S| = l/q2. Since we
assumed that t ≥ 4l > l/q2, we conclude that with high probability C ≥ l/q2, as desired.

The case of a large alphabet (C ≥ l·log |Σ|
q2 ). The above attack can be modified to work over a

larger alphabet. Take any PCP string of length l′ over the binary alphabet and divide the PCP string
into blocks of length log |Σ|, thereby obtaining a PCP string of length l = l′/ log |Σ| over an alphabet
Σ. (The PCP verifier is modified accordingly.) We perform the attack above on the large-alphabet
PCP by exploiting the binary PCP underneath. That is, two query sets that query the same location
are still considered distinct as long as they read different bits of the symbol’s representation. This
yields the same bound on C for the underlying binary PCP: C ≥ l′

q2
= l·log |Σ|

q2
.

Proof of Item 3 (collision attack). First we discuss an attack that works for any PCP over the binary
alphabet, and then discuss the case of a PCP over a larger alphabet.
Any binary PCP. The cheating argument prover finds a collision for each leaf in the Merkle
tree, thus committing to both the value 0 and the value 1 at each leaf. Then, it continues honestly
computing the Merkle tree given the colliding values to obtain a Merkle root rt, and then from
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rt derives a random string ρ ∈ {0, 1}r for the PCP verifier. Then, the cheating argument prover
deduces a local view of q symbols that makes the PCP verifier accept for the randomness ρ (such
a local view exists for non-trivial languages), and uses the correct value in each collision (0 or 1) to
include in the output argument string to convince the argument verifier.

We need to bound (from below) the probability of finding l collisions. First, we perform O(2λ/2)
queries and find a collision with probability at least 1/2. We repeat this process log(2l) times
such that the probability that we did not find a collision in any of the repetitions is at most
2− log(2l) = 1/(2l). Taking a union bound we get that with probability at least 1/2 we find a
collision in each and every leaf as desired, and can complete the Merkle tree.

We compute the total number of queries in the above attack. The number of queries required
for the attack is t ≥ O(2λ/2) · log(2l) · l + 2l = O(2λ/2 · l · log l). Equivalently, we can write this as
λ ≤ 2 · (log t− log l− log log l) +O(1), and get the desired bound.
The case of a non-binary alphabet. The attack above works for any binary PCP but does
not work for any PCP over any alphabet. Nevertheless, we can embed the binary alphabet into a
larger alphabet by associating 0 and 1 with two arbitrary symbols of the larger alphabet. The new
PCP prover then writes the same binary PCP string but over the new alphabet, and the new PCP
verifier acts the same way while rejecting when seeing any query answers other than 0 or 1. One can
then conduct the same collision attack on this new PCP. This establishes that, for any alphabet,
there exists a PCP over the alphabet for which the collision attack works.
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