
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

TensorCrypto: High Throughput
Acceleration of Lattice-based
Cryptography Using Tensor Core on
GPU
WAI-KONG LEE1, (Member, IEEE), HWAJEONG SEO2, (Member, IEEE), ZHENFEI ZHANG 3,
and SEONG OUN HWANG.1, (Senior Member, IEEE)
1Department of Computer Engineering, Gachon University, South Korea. (e-mail: waikonglee, sohwang@gachon.ac.kr)
2College of IT Engineering at Hansung University, Seoul, South Korea.
3Ethereum Foundation.

Corresponding author: Seong Oun Hwang (e-mail: sohwang@gachon.ac.kr).

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant (2021-0-00540,
30%), and National Research Foundation of Korea (NRF) grants (2019H1D3A1A01102607, 40% and 2020R1A2B5B01002145, 30%)
funded by the Korean Government through Ministry of Science and ICT (MSIT).

ABSTRACT Tensor core is a newly introduced hardware unit in NVIDIA GPU chips that allows
matrix multiplication to be computed much faster than in the integer and floating-point units. In this
paper, we show that for the first time, tensor core can be used to accelerate state-of-the-art lattice-based
cryptosystems. We employed tensor core to speed up polynomial convolution, which is the most time
consuming operation in lattice-based cryptosystems. Towards that aim, several parallel algorithms are
proposed to allow the tensor core to handle flexible matrix sizes and ephemeral key pairs. Experimental
results show that the polynomial convolution computed using the tensor core is at least 2× faster than
the version implemented with conventional integer units of the NVIDIA GPU. The proposed tensor-
core-based polynomial convolution technique was applied to NTRU, one of the finalists in NIST post-
quantum cryptography (PQC) standardization. It achieved 2.02×/1.98× (encapsulation) and 1.56×/1.90×
(decapsulation) higher throughput on two parameter sets (ntruhps2048509 and ntruhps2048677), compared
to the conventional integer-based implementations on a GPU. In particular, the proposed implementation
techniques achieved throughput up to 793651 key encapsulations per second and 505051 decapsulations
per second on a RTX2060 GPU. To demonstrate the flexibility of the proposed technique, we extend
the implementation to other lattice-based cryptosystems that have a small modulus: LAC and two variant
parameter sets in FrodoKEM. Considering that the IoT gateway devices and cloud servers need to handle
massive connections from the sensor nodes, the proposed high throughput implementation on GPU is very
useful in securing the IoT communication.

INDEX TERMS Cryptography, convolution, lattice-based cryptography, tensor core, graphics processing
units, information security, polynomial convolution.

I. INTRODUCTION

THIS security of traditional Public-Key Cryptography
(PKC), such as Rivest–Shamir–Adleman (RSA) and

elliptic curve cryptography (ECC), relies on one of the three
hard mathematical problems: integer factorization, discrete
logarithm, or the elliptic-curve discrete logarithm. These hard
problems can easily be solved on a sufficiently powerful
quantum computer with Shor’s algorithm [1], [2]. This cre-
ates the need for post-quantum PKC algorithms that can resist

the threat from quantum computers in near future.
The National Institute of Standards and Technology

(NIST) is in the process of selecting one or more
post-quantum cryptography algorithms through a public
competition-like process [3], where the candidates need to
specify the digital signature and key encapsulation mech-
anism (KEM). The evaluation criteria not only focuses on
security aspects of an algorithm, but also looks into per-
formance from its implementation. Considering the perfor-

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

mance aspects, the algorithm should be evaluated on var-
ious classical platforms to show its efficiency in practical
applications. In November 2017, 82 candidate algorithms
were submitted to the NIST post-quantum competition for
consideration. Of those candidates, seven finalists and eight
alternate candidates were selected for the third round, accord-
ing to the announcement made by NIST in July 2020.

In the third round, five lattice-based cryptography al-
gorithms were selected as finalists (i.e., KYBER, NTRU,
SABER, DILITHIUM, and FALCON) while another two are
chosen as alternate candidates (i.e., FrodoKEM and NTRU
Prime). Compared with other post-quantum cryptography
candidates, lattice-based cryptography maintains the major-
ity share in third round. In order to evaluate the practicality
of cryptographic algorithms, a lot of work is devoted to
improving the performance on various platforms, such as
FPGA, microcontrollers and massively parallel processors
(GPU). Recently, an FPGA implementation based on approx-
imate computation was proposed [4] to accelerate lattice-
based cryptography. The first GPU implementation of NTRU
was presented in 2010 [5] and showed that the GPU can
achieve very high encryption and decryption throughput by
utilizing the product form polynomial and some bit-packing
techniques. Other works have been proposed to accelerate the
performance of NTRU on a GPU [6]–[10]. There are also
several attempts to accelerate post-quantum cryptography
(PQC) on various GPU platforms [11]–[14], targeting the
parameters in NIST standardization process [15]. However,
previous works paid little attention to the power of the new
GPU tensor core, which would be a better choice than the or-
dinary GPU instruction set (i.e., integer/floating point units).
The tensor core is a specialized unit released by NVIDIA
in its’ latest GPU architectures (Volta, Turing and Ampere).
Many deep neural network applications take advantages of
NVIDIA’s tensor core to improve the training and inference
performance. However, it is unclear how cryptography can
exploit tensor core to improve the implementation perfor-
mance.

In this paper, our aim is to exploit tensor core to speed up
the lattice-based KEM implementation on GPU, in order to
achieve high throughput KEM. Our main contributions are
summarized below:

1) For the first time, a tensor-core-based polynomial con-
volution on GPU is presented. Experiments are carried
out on two latest GPUs (RTX2060 and RTX3080) that
supports tensor core. The proposed technique can han-
dle polynomials with a degree in multiples of 16, which
shows up to 3.41× (RTX2060) and 5.77× (RTX3080)
faster performance compared to the conventional im-
plementation using 32-bit integer units in the GPU, for
polynomial degree N = 1024.

2) The first NTRU [16] implementation based on tensor
core is proposed in this paper. Since the polynomial
degree in NTRU is not a multiple of 16, some modi-
fications are required in order to use the tensor-core-
based polynomial convolution. A series of parallel

algorithms, including zero padding, sign conversion
and type casting, is proposed to achieve this, resulting
a high-performance NTRU implementation in a GPU.
For instance, the tensor-core-based ntruhps2048509
can achieve a throughput of 793651 encapsulations
per second and 505051 decapsulations per second on
RTX2086 GPU. The results are 28.47×/2.02× and
66.50×/1.56× faster than implementation in Central
Processing Unit (CPU)/integer units in GPU, for en-
capsulation and decapsulation, respectively. The same
experiments were conducted on RTX3080, where sim-
ilar speed-ups were obtained. Note that this is also the
first NTRU implementation on GPU that follows the
NIST PQC specifications [16].

3) The proposed tensor-core-based polynomial convolu-
tion can handle various polynomial sizes. To validate
this point, we apply the proposed technique to an-
other two lattice-based cryptosystems: LAC and two
variant parameter sets of FrodoKEM. The tensor-core-
based polynomial convolution in LAC and one vari-
ant of FrodoKEM outperformed integer-units-based
implementations by 3.10× and 3.31×, respectively
(RTX2060). Detailed steps to efficiently utilize the pro-
posed technique for polynomial/matrix multiplication
in these two schemes are described Section IV.E and
IV.F.

4) The source code for tensor-core-based polynomial
convolution was placed in the public domain at
https://github.com/benlwk/Tensorcrypto. This allows
researchers to easily re-produce our results in their own
development environments to utilize the tensor-core-
aided lattice-based cryptography implementation for
their own purposes.

Here we established the criteria to apply our technique
over other lattice-based schemes. At a high level, our solution
allows very high throughput key encapsulation/decapsulation
using a same public-private key pair for each communication
session. The proposed solution is applicable to all lattice-
based cryptography with small modulus, where multiplica-
tion is expressed in the form of a vector and a matrix. This can
be either an ideal lattice construction, as in NTRU and LAC,
or a generic lattice construction, as in FrodoKEM. However,
schemes such as KYBER [12] and NewHope [13] already
use NTT-based multiplications, the polynomial convolution
is already efficient, so it would be more advantageous to use
NTT instead of schoolbook multiplication presented in this
paper. Moreover, it is also difficult to use tensor cores to
accelerate the NTT computations, since the size of modulus
(q) is most likely to exceed 11-bit, which is larger than the
supported size of half-precision tensor core. Therefore, we
restrict the scope of our paper to the schemes where NTT is
slow or not applicable.

Although this paper only use the proposed tensor-core-
based polynomial convolution for cryptography, it can be
extended to support other applications on GPU. For instance,

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

Block 1 Block N

Warp 1

Thread

1-32

. . .

Warp 2

Thread

33-64

. . .

Warp 32

Thread

992-1024

. . .

G
ri

d

. . .

. . .

Block 2

FIGURE 1: Relationship between grid, blocks and threads in
CUDA.

polynomial convolution is used to perform image recon-
struction [17], feature extraction [18], data preprocessing
[19] and signal processing [20]. These applications may also
benefits from the tensor-core-based polynomial convolution
to achieve high throughput performance.

The remainder of this paper is organized as follows. In
Section II, we introduce the background and related prior
works. In Section III, we present a novel tensor-core-based
polynomial convolution and the implementation of two pa-
rameter sets in NTRU. Thereafter, we summarize our exper-
imental results for NTRU, LAC, and FrodoKEM in Section
IV. Finally, we conclude the paper in Section V.

II. BACKGROUND AND RELATED WORKS
A. OVERVIEW OF GPU ARCHITECTURE AND CUDA
PROGRAMMING MODEL
A GPU consists of thousands of cores, enabling massively
parallel computation in many interesting applications. From
the hardware perspective, the GPU groups many cores (e.g.,
64, 128, or 192) into a Streaming Multiprocessor (SM). The
memory in the GPU can be categorized into on-chip and
off-chip. On-chip memory refers to register files and shared
memory that resides near to the GPU cores. Registers are
very fast, but come in small sizes (64–96K 32-bit words per
SM). Shared memory is known as “user-managed cache”,
which is usually used to store frequently accessed values
(e.g., look-up table or pre-cached values). Like registers,
shared memory is fast but small in size (48–164K 32-bit
words per SM). Off-chip memory refers to global memory,
which is essentially the DRAM. It comes in a large size (2–16
GB), but the access latency can be up to 300× slower than the
registers.

From a programming perspective, many parallel threads
form a block and multiple blocks form a grid. This allows
flexible arrangement of software threads into the physical
SM and cores across many different GPU architectures. The
relationship between grids, blocks, and threads is illustrated
in Figure 1. NVIDIA GPUs group 32 threads into a warp,
wherein all 32 threads execute the same instruction in paral-
lel. For this reason, the number of threads per block is usually
set in multiples of 32 to avoid divergence in the instruction

execution path. Besides that, shared memory also has 32
banks, allowing parallel access by all 32 threads within a
warp. Additional features like warp shuffle instruction and
tensor core are also designed to work at the warp level to
maximize the efficiency of the GPU warp scheduler.

B. TENSOR CORE

In 2017, NVIDIA released the Volta GPU architecture, which
introduced a specialized unit named as the tensor core.
Tensor core is used to perform one half-precision matrix-
multiply-and-accumulate (MMA) on a 4×4 (Volta) or 16×16
matrix (Turing, Ampere) per clock cycle. This greatly im-
proves the throughput of MMA operations, compared to the
conventional implementation using CUDA cores, which of-
ten requires multiple clock cycles to complete the same num-
ber of operations. The tensor core in Turing architecture sup-
ports MMA with half-precision inputs and single-precision
accumulator. Recently, the Ampere architecture that supports
double-precision MMA was released, enabling the use of
tensor core in generic scientific computing applications. The
latest tensor core in the Ampere architecture also supports
TensorFloat-32 (TF32) and Bfloat16 (BF16) new formats that
reduces the floating-point precision but maintains the same
range. Note that for different precisions, the performance
of tensor core varies. The detailed information about the
performance of tensor core can be obtained from [28].

Many deep neural network applications can take advantage
of the NVIDIA tensor core. For instance, the convolutional
neural network (CNN) requires many dot-product computa-
tions, which can easily be expressed as MMA operations.
However, it is unclear how cryptography implementations
can exploit the newly introduced tensor core. In this work, we
present a series of algorithms to map the polynomial convo-
lution in lattice-based cryptography to matrix multiplication
in order to exploit tensor core for faster performance.

C. LATTICE-BASED CRYPTOGRAPHY

Lattice-based cryptographic constructions are based on the
hardness of Shortest Vector Problem (SVP) which approx-
imates the minimal Euclidean length of a lattice vector.
Lattice-based cryptography is believed to be secure against
both conventional and quantum computers. In the third round
of the NIST post-quantum cryptography standardization pro-
cess, five lattice-based cryptography algorithms were se-
lected as finalists (CRYSTALS-KYBER, NTRU, SABER,
CRYSTALS-DILITHIUM, and FALCON) and another two
are selected as alternate candidates (FrodoKEM and NTRU
Prime). Table 1 shows the summary parameters for these can-
didates. Most of the lattice-based schemes rely on polynomial
convolution, which has high computational complexity. In
order to improve the performance of polynomial convolution,
we utilize the tensor core and show performance enhance-
ments on lattice-based cryptography with a small modulus,
such as NTRU, LAC, and two variant parameter sets of
FrodoKEM.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

TABLE 1: Comparison of lattice-based cryptography in the NIST PQC competition. PKE, KEMs, and DS stand for Public-Key
Encryption, Key Encapsulation Mechanisms, and Digital Signature, respectively.

Lattice-based candidates Application Category Modulus (q) NIST PQC competition
CRYSTALS-KYBER [21]

PKE/KEMs Module 3,329

Round 3 finalists
SABER [22] 213

NTRU [16] Ideal 211, 212, and 213

CRYSTALS-DILITHIUM [23] DS Module 223 − 213 + 1
FALCON [24] Ideal 11289
FrodoKEM [25] PKE/KEMs Standard 215 and 216 Alternate candidatesNTRU Prime [26] Ideal 4,591, 4,621, ..., 7,879
LAC [27] PKE/KEMs Ideal 251 Round 2 candidate

NTRU encryption is a lattice-based one-way CPA-secure
(OW-CPA) public-key encryption scheme that was invented
in 1996 [29]. For the purpose of this paper, we do not
go into the details of the scheme, interesting readers may
refer to [16] for details. The major computation bottleneck
in NTRU is the polynomial multiplication over the ring
Rq := Zq[x]/(x

N−1). Since the multiplication is carried out
on a ring structure, it is essentially a polynomial convolution.
In a nutshell, for a polynomial ring Rq := Zq[x]/F (x), and
a small parameter p, an NTRU public key is the ratio of two
small polynomials over h = g/f for some small g and f ,
where f is also invertible modulo p. The small polynomials
refer to polynomials with small coefficients, either binary or
ternary. The NTRU assumption says that given h, one cannot
recover g and f , or distinguish h from a random element over
the ring. To encrypt a message polynomial m, one computes
c = prh + m for that is co-prime with q, and a randomly
sampled small polynomial r. To decrypt, one then computes
cf = prg+mf ≡ mf mod p . Since f is invertible modulo
p, one can extract m from mf with f−1 mod p.

In the NIST PQC competition, there have been two flavors
of NTRU, differing in the choice of. The original NTRU
scheme, known as NTRU-HPS [29], [30], works overRq :=
Zq[x]/(x

N − 1) = φN (x)φ1(x). A newer design, referred to
as NTRU-HRSS [31], works over Zq[x]/φN (x). Note that,
although NTRU-HRSS works over Zq[x]/φN (x), computa-
tions are carried out overRq for better efficiency. In addition,
both schemes now use a variant of FO transformation to
achieve CCA-2 security.

D. PREVIOUS PQC IMPLEMENTATIONS ON GPU
The first implementation of NTRU in GPU dates back to
2010. Hermans et al. [5] showed that GPU can achieve
very high encryption and decryption throughput by utilizing
product form polynomial and bit-packing techniques. The
product form polynomial is no longer used in the NTRU
submission to NIST. Following up this work, Lee et al.
[7] proposed a sliding window technique to pre-compute
some repeating patterns in NTRU polynomial and then stored
them in a lookup table. With this technique, some of the
multiplication operations can be skipped. Although this work
is able to achieve high throughput, it may not be secure
against a side channel attack, because the look up table leaks
timing information. The NTRU modular lattice signature

(NTRU-MLS) scheme [32], [33], which requires operations
on large vectors, was optimized with parallel polynomial
multiplication on a GPU by Dai et al. [9]. Recently, Lee et al.
[10] proposed utilizing the Karatsuba algorithm to speed up
polynomial multiplication in NTRU. These previous works
were all implemented on the integer units available in GPU.
Unlike previous NTRU implementations on GPU, we intro-
duce the first tensor-core-based NTRU implementation.

Recently, there are also interests on implementing other
PQC schemes on GPU. Lee et al. [34] show various ways to
speed up NTT computation on GPU, targeting polynomials
used in qTESLA signature scheme. A following up work
from [35] demonstrated that Nussbaumer algorithm can be
faster than NTT on the polynomial convolutions when exe-
cuted on GPU. Sun et al. [14] show a parallel implementation
of SPHINCS signature scheme on GPUs with significantly
higher throughput compared to CPU implementation. Gupta
et al. [11] analyzed various parallelism available in GPU
(batch mode and single mode), and evaluate three PQC
schemes (FrodoKEM, NewHope and Kyber). Later on, Lee
et al. [12] demonstrated a low latency implementation of
Kyber KEM, which can be beneficial to latency-sensitive
applications. Another interesting work from Gao et al. [13]
further improved the throughput achieved by NewHope on
two different GPU platforms. Note that all these previous
work also do not consider the possibility to use tensor core in
their implementation. Besides high performance implemen-
tation of PQC, another interesting research direction is to de-
velop efficient implementation of various sieving algorithms
to solve hard lattice problems [36].

III. OPTIMIZED PARALLEL IMPLEMENTATION OF NTRU
A. PARALLEL POLYNOMIAL CONVOLUTION THROUGH
SCHOOLBOOK CONVOLUTION
Polynomial convolution is known as “truncated polynomial
multiplication”. This is the most time-consuming operation
in NTRU PKC. A straightforward way to implement this is
schoolbook multiplication, wherein the operation exhibits a
high degree of parallelism. Referring to Algorithm 1, school-
book polynomial convolution can be arranged in such a way
that it processes one column at a time (the k loop, lines 2-6).
The i loop first computes the multiplication and accumulation
up to the k element by following ordinary schoolbook mul-
tiplication. Next, it proceeds with the remaining polynomial

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

Algorithm 1: Schoolbook polynomial convolution.
Input: Polynomial a with degree N, Polynomial b with

degree N, modulus q.
Output: Polynomial c with degree N, which is the cyclic

convolution of a and b.

// Accumulate each column serially
1: for k from 0 to N − 1 do
2: c[k] = 0
3: for i from 0 to k do
4: c[k] = c[k] + a[k − i]× b[i]
5: end for
6: for i from 1 to N − k − 1 do
7: c[k] = c[k] + a[k + i]× b[N − i]
8: end for
9: end for

10: return c%q

Algorithm 2: Parallel schoolbook polynomial convo-
lution in NTRU.

Input: P blocks of Polynomial a and Polynomial b with
degree N, modulus q.

Output: Polynomial c with degree N, which is the cyclic
convolution of a and b.

1: tid=thread ID
2: bid=block ID
// Copy polynomials into shared memory
// in parallel

3: shared_a[tid]= a[bid×N + tid]
4: shared_b[tid]= b[bid×N + tid]
5: __syncthreads() B Synchronize all the
threads

// Accumulate each column in parallel
// with N threads

6: sum=0 B Use register to accumulate ‘
7: for i from 0 to tid do
8: sum = sum+shared_a[tid− i] × shared_b[i]
9: end for

10: for i from 1 to N − tid-1 do
11: sum = sum+shared_a[tid+ i] × shared_b[N − i]
12: end for
13: return c[bid×N + tid] = sum%q

convolution through cyclic computation.
Detailed illustrations are presented in Figure 2. One can

observe that the operations within the k loop are independent
of each other, which allows a highly parallel implementation
on the GPU platform to achieve good performance. This
technique was previously explored by Dai et al. [9] and
it remains the most efficient way to compute polynomial
convolutions in a GPU. Note that for NTRU, the polynomial
convolution is performed with 32-bit integer unit (INT32).

Algorithm 2 shows the parallel version of schoolbook
polynomial convolution that can be implemented efficiently
in a GPU. This implementation utilizes P blocks in GPU
to perform P polynomial convolutions, where each block
computes one polynomial convolution with N threads. Poly-
nomials are first loaded from global memory and cached
in shared memory to reduce read/write latency (lines 3-5).
Next, each thread is responsible for accumulating one col-
umn independently (lines 7-12), with the intermediate results
stored in a register (i.e., sum). Finally, results are copied
to array c which resides in global memory (line 11). One
can also easily modify Algorithm 2 to perform nega-cyclic
convolution. In particular, instead of performing addition in
line 10, one can perform subtraction to achieve nega-cyclic
convolution. Besides high parallelism, this implementation
ensures minimal access to global memory (two reads opera-
tions and one write), with majority of the operations residing
in shared memory and registers.

Note that we only need to perform the modulo operation
(sum%q) at the end of the convolution. This is because in a
GPU implementation, sum is a 32-bit register that is large
enough to accommodate the two selected NTRU parameter
sets. It is also possible to use a 16-bit sum, because q is a
power-of-2 for NTRU. Whenever sum experiences overflow,
it carries out a free modulo operation over its word size.
However, this is not beneficial to GPU because it does not
support a native 16-bit register.

B. PROPOSED POLYNOMIAL CONVOLUTION
THROUGH TENSOR CORE

The tensor core was introduced into the GPU to accelerate
MMA operations with much higher throughput. By taking
a closer look at Algorithm 1, we find that the polynomial
convolution can be expressed in the form of matrix multi-
plication. To achieve this, polynomial a is first packed into a
cyclic form to allow the convolution to take place, whereas
polynomial b can be stored in a column major form. This
operation is illustrated in Figure 3, where the multiplica-
tion between matrix A and B produces the same results as
polynomial convolution. In other words, one can perform
matrix-vector convolution between polynomial a (matrix)
and polynomial b (vector), using tensor core. Note that this
technique only works where polynomial a can be reused
repeatedly. This is not a problem for encryption in NTRU
that executes r ∗ h, where h is the public-key and r is the
random ternary polynomial. One can reuse the public-key h
to encrypt multiple plaintexts, and renew the public-key from
time to time. On the other hand, polynomial b does not need
to be reused, so we can pack many random vectors r into
matrix B.

With this proposed technique, NTRU polynomial convolu-
tion can be formulated as matrix multiplication and acceler-
ated through the use of the tensor core, which is faster than
the conventional INT32 operations.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

a3 a2 a1 a0

b3 b2 b1 b0

a0b0

a3b1

a2b2

a1b3

c0

a3 a2 a1 a0

b3 b2 b1 b0

a1b0

a0b1

a3b2

a2b3

c1

a3 a2 a1 a0

b3 b2 b1 b0

a2b0

a1b1

a0b2

a3b3

c2

a3 a2 a1 a0

b3 b2 b1 b0

a3b0

a2b1

a1b2

a0b3

c3

(1) (2) (3) (4)

* * * *

FIGURE 2: Parallel computation of polynomial convolution with integer units in GPU; operations from (1) to (4) are performed,
independently.

FIGURE 3: Computing polynomial convolution using tensor core in GPU: Matrix A, B, and C represent constant polynomial
(e.g. public-key h), non-constant polynomial (e.g. random vectors, r), and result, respectively. Note that “?” refers to non-
constant polynomials that are different from polynomial b and c.

C. TENSORTRU: NTRU IMPLEMENTATION BASED ON
TENSOR CORE
1) Representing a Polynomial in Floating Point

TABLE 2: Supported precision in tensor core [28].

Conf. Matrix A Matrix B Accumulator Dimension
1 half half single 16× 16× 16

(FP16) (FP16) (FP32) 16× 16× 16
2 half half half 16× 16× 16

(FP16) (FP16) (FP16) 16× 16× 16
3 double double double 8× 8× 4

(FP64) (FP64) (FP64) 8× 8× 4
4 unsigned unsigned signed 16× 16× 16

(INT8) (INT8) (INT32) 16× 16× 16
5 signed signed integer 16× 16× 16

(INT8) (INT8) (INT32) 16× 16× 16

Referring to Table 1, NTRU requires modulus q to be 211,
212 or 213 depending on the parameter sets chosen. To allow
the use of tensor core in performing polynomial convolution,
we need to ensure that the polynomial coefficients can be
represented in the supported precision in tensor core, as de-
picted in Table 2. Because tensor core only support byte-level
integers (configurations 4 and 5), we cannot represent the
NTRU polynomial coefficients in integer due to insufficient
precision. Another option would be to convert the polynomial
coefficients from integers to floating point numbers, and then
utilize one of the three possible configurations (configura-
tions 1-3). Since configurations 1 and 2 have much higher
performance compared to configuration 3, we explore these
two options to implement NTRU.

The parameter sets ntruhps2048509 and ntruhps2048677
requires q= 211, which allows polynomial elements to be
represented exactly in FP16. The accumulator needs to be
sufficiently large to hold the results of matrix multiplication.
For instance, by using q= 211 the element size is 11-bit,
so each pair of multiplications between poly_a and poly_b
produces a number with a 22-bit maximum. However, one
of the polynomials in NTRU is ternary (i.e., elements are
only consists of -1, 0 and 1). Since we are using floating
point numbers to represent the polynomial elements, mul-
tiplication produces only the maximum 11-bit results (i.e.,
(211 − 1)× 1 = 211 − 1 and (211 − 1)×−1 = −211 − 1).
In the process of polynomial convolution, the accumulated
value can grow up to a maximum of N × 211 − 1. Hence,
for the two selected parameter sets, the accumulator must
be able to hold at least 20-bit (log2(509 × (211 − 1))) and
21-bit (log2(677 × (211 − 1))) data for ntruhps2048509
and ntruhps2048677, respectively. Due to this restriction,
we utilized configuration 1 in accelerating NTRU polynomial
convolution, because the single precision accumulator can
hold 24-bit integer value at maximum. Note that in practice,
the accumulated values may well below 20-bit, because the
accumulation can go in both directions (addition or subtrac-
tion) depending on the ternary polynomials.

Another two NTRU parameters (ntruhps4096821 and
ntruhrss701) can be implemented in tensor core with double
precision using configuration 3. However, the performance
of FP64 tensor core is much slower compared to FP32, and
they only support a smaller matrix size (8×8). A faster FP64

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

tensor core released in the future may open up opportunities
to apply our technique into these two parameter sets.

2) Parallel Polynomial Convolution using Tensor Core
Tensor core were developed to handle a small matrix with
dimension of 16× 16 within a warp (32 threads), as depicted
in the upper right part of Figure 4. To handle a larger matrix,
one can utilize many warps computing different parts of the
matrix, and then accumulate the results, iteratively. Referring
to Figure 4, there are three steps to complete when we
perform matrix multiplication for a 32×32 matrix. First, four
warps (w0 to w3) are launched in parallel to compute matrix
multiplication on 16 × 16 dimensions. For instance, w0 and
w2 read the same piece of data (16 × 16) from Matrix A,
but they read different data from Matrix B for multiplication
and accumulation. Intermediate results from this step are
stored in a temporary array. Next, the four warps proceed
to compute another half of the matrix in parallel. In other
words, two iterations are required to complete a 32 × 32
matrix multiplication. Lastly, results are stored into Matrix
C in parallel in different memory locations. To compute a
larger matrix, we need (M/16)2 warps and M/16 iterations
to compute M × M matrix multiplication in parallel. This
tensor-core-based matrix multiplication is utilized to com-
pute polynomial convolutions in NTRU.

Referring to Algorithm 3, the tensor-core-based polyno-
mial convolution requires the input matrices to be in mul-
tiples of 16 × 16. Matrix A is the constant polynomial a
organized in cyclic form (e.g. public-key h in NTRU), while
Matrix B consists of M non-constant polynomials (e.g. ran-
dom vector r in NTRU). Note that all matrices are stored as
a one-dimensional memory array (i.e., global memory). The
algorithm first initializes two fragments to hold the 16 × 16
sub-matrices and one fragment to hold the accumulated
results (lines 1-3). Next, it loops through Matrix A (row
major) and Matrix B (column major) to perform the matrix
multiplication in parallel (lines 11-16). For each iteration,
16 × 16 sub-matrices are loaded from Matrix A and Matrix
B (in global memory) to perform matrix multiplication in
parallel. (M/16)2 warps are executed in parallel, with each
warp operating on different parts of Matrix A and Matrix B
as depicted in Figure 4. Finally, the accumulated results are
copied from the tensor core to Matrix C in global memory
(line 17) in column major form.

3) Handling a Matrix not in a multiple of 16× 16

The polynomial degrees of two selected NTRU parameter
sets (ntruhps2048509 and ntruhps2048677) are N = 509
and N = 677 respectively. However, the tensor-core-based
matrix multiplication can only work for matrices that are
multiples of 16× 16. This implies that we cannot use tensor
core to accelerate these two NTRU parameter sets straight-
forwardly.

There are two methods to overcome this limitation. The
first method is through a hybrid algorithm that combines the
tensor core and integer-based polynomial convolution. Figure

Algorithm 3: TC-PC: parallel polynomial convolu-
tions using tensor core.
Input: M ×M matrix A (constant polynomial a in cyclic

form), M ×M matrix B (non-constant polynomials b),
M must be multiple of 16.

Output: M ×M matrix C, which contains the cyclic
convolution of polynomial a
and many polynomial b.

// Initialize fragment a and b with
// 16× 16 dimension and FP16 precision

1: fragment<A, 16, 16, 16, half, row_major> a_frag
2: fragment<B, 16, 16, 16, half, col_major> b_frag
// Initialize fragment c with 16× 16
// dimension and FP32 precision

3: fragment<accumulator, 16, 16, 16, float> c_frag

// Compute the warp ID and indices
4: tid=thread ID
5: bid=block ID
6: blockDim=block dimension
7: warpID = b(bid× blockDim+ tid)/32c B 32
threads per warp

8: row_idx = (warpID%bM/16c)× 16
9: col_idx = (warpID/bM/16c)× 16

10: store_idx = row_idx+ col_idx×M

11: for i from 0 to bM/16c do
12: ldA = row_idx×M + i× 16
13: ldB = col_idx×M + i× 16
//Load 16× 16 sub-matrix from
//Mat. A and B
14: load_matrix_sync(a_frag, A + ldA, M)
15: load_matrix_sync(b_frag, B + ldA, M)
// Perform matrix multiplication and
// accumulate the results in c_frag
16: mma_sync(c_frag, a_frag, b_frag, c_frag)
17: end for
// Store the results from c_grat
// into Matrix C
18: store_matrix_sync(C + store_idx, c_frag, M,

col_major)

5a shows a high-level illustration of such a hybrid algorithm.
In this example (parameter set ntruhps2048509), one can
utilize tensor core to compute the polynomial convolution
of 496 × 496 (Region A), and then complete the remaining
computations (region B, C, and D) in three steps. Note that
this hybrid algorithm is less efficient, because some of the
computations cannot be fully parallelized with tensor core.
This limitation, however, allows us to utilize the fast tensor
core to accelerate a polynomial convolution in NTRU and
other similar lattice-based cryptographic schemes. On the
other hand, one can utilize the second method by padding

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

FIGURE 4: Matrix multiplication: dimensions 32× 32; w: warps running in parallel; the arrow indicates computation order.

(a) Method 1: hybrid algorithm

(b) Method 2: padding with zeros

FIGURE 5: Handling a matrix that is not a multiple of 16×16
(parameter set: ntruhps2048509), E = A+B + C +D.

zeros into poly_a to form a matrix that is a multiple of
16 × 16. Referring to Figure 5b, zeros are padded to form
a matrix of 512 × 512. This allows us to perform a poly-
nomial convolution of N × N completely in tensor core,
at the expense of some additional memory. The redundant
storage required by this method can go up to a maximum
of (p − N) × N + (p − N) × p, where p refers to the
closest multiple of 16 that is larger than N. In this paper,
we proposed utilizing the second method (i.e., zero-padded
polynomial convolution), since it can be computed fully in
tensor core, which is more efficient than first method (i.e.,
the hybrid approach).

To achieve high-performance NTRU implementation in

(a) Read from polynomial (b) Write to matrix

FIGURE 6: Arranging a polynomial in cyclic form and
storing it in a matrix.

GPU, we proposed a series of parallel algorithms to effi-
ciently perform the following tasks:

1) Organize the polynomial in cyclic form and pad the
remaining parts with zeros to construct the matrix in
a multiple of 16× 16 (Algorithm 4).

2) Convert unsigned 16-bit integer (U16) polynomial el-
ements to 16-bit floating point (FP16) format (Algo-
rithm 5).

3) Convert 32-bit floating point (FP32) elements to un-
signed 16-bit integers (U16) and perform modulo op-
erations (Algorithm 6).

Referring to Algorithm 4 and Figure 6, the input polyno-
mial (in) is read by N threads in parallel, and then written to
the output matrix (out). Note that each block reads different
cyclic form in order to achieve high parallelism. Algorithm
5 shows the steps to convert U16 polynomial elements into
FP16 format. Lines 5-8 are only necessary if we are dealing
with ternary values; it converts -1 in integer format (i.e., 2047
when q = 1048) to FP16 format. Algorithm 6 first converts
FP32 elements to INT32 format (line 4) to keep the original
precision, then performs modulo q and store final results in
U16 format.

With these three proposed algorithms, one can perform
highly parallel polynomial convolution for NTRU using ten-

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

Algorithm 4: ParCyc: parallel algorithm to arrange
polynomial in cyclic form.
Input: Polynomial in with degree N.
Output: Matrix out with M ×M dimension, which is the

polynomial in organized
in cyclic form and padded with zeros for unused
elements.

1: tid=thread ID
2: bid=block ID
// Launch M blocks and M threads
// in parallel

3: if tid <N then
4: out[bid+ tid×M ] = in[(tid− bid)%N ]
5: else
6: out[bid+ tid×M ] = 0
7: end if

Algorithm 5: ParU16toFP16: parallel algorithm to
convert polynomial elements from U16 to FP16.
Input: Matrix in with N different polynomials of degree N

in U16 format.
Output: Matrix out with N different polynomials of degree

N in FP16 format.

1: tid=thread ID
2: bid=block ID
3: temp = 0 B Initialize a FP16 variable
// Launch N blocks and N threads
// in parallel

4: temp = in[bid×M ] + tid
5: if temp = 2047 then
6: out[bid×M + tid] = −1 B

Converting -1 from U16 to FP16
7: else
8: out[bid×M + tid] = temp
9: end if

sor core, where the steps are given in Algorithm 7. Three
floating point matrices are first initialized to zero in the
CPU; this process is only performed once. Next, the two
proposed algorithms are implemented in the GPU to per-
form pre-processing on Matrix A and Matrix B (lines 8-9).
Subsequently, tensor core is used to perform the polynomial
convolution, resulting in Matrix fp32_C in FP32 format (line
10). Lastly, this result is converted to Matrix C with U16
format and modulo with q to obtain the final output.

Another point to note is that when we use the proposed
technique to implement NTRU, the polynomial convolution
for decryption is slightly different from the encryption. Dur-
ing the encryption process, one computes r ∗ h, where h is
the public-key to be treated as a constant polynomial, while
r is the non-constant and small ternary polynomial. On the

Algorithm 6: ParFP32toU16: parallel algorithm to
convert polynomial elements from FP32 to U16 and
perform modulo q.
Input: M ×M matrix in with elements in FP16 format.
Output: M ×M matrix in with elements in U16 format

and modulo q.

1: tid=thread ID
2: bid=block ID
3: temp = 0 B Initialize a FP32 variable
// Launch N blocks and N threads
// in parallel

4: temp = in[bid×M ] + tid
5: out[bid×M + tid] = temp%q

Algorithm 7: Parallel implementation of NTRU
polynomial convolution using tensor core in a GPU.
Input: polynomial a with degree N (constant polynomial),

N polynomial b with
degree N (non-constant polynomials), modulus q.

Output: M ×M Matrix C, which contains the cyclic
convolution of polynomial a
and many different polynomial b.

// CPU Phase:
// Init. two matrices in FP16 to store
// the converted a and b

1: fp16_A
2: fp16_B
// Init. a matrix in FP32 to store
// the results from tensor core

3: fp32_C

// GPU Phase:

// Calc. total number of warps required

4: warp_tot = (M/16)2

5: tc_threads = warp_tot× 32
// Calc. number of blocks

6: tc_blocks = tc_threads/max_threads
// Limit the number of threads

7: tc_threads = max_threads
8: ParCyc< N,N > (fp16_A, a) B Alg. 4
9: ParU16toFP16< N,N > (fp16_B, b) B Alg. 5

10: TC-PC< tc_blocks, tc_threads >
(fp16_A, fp16_B, fp32_C) B Alg. 3

11: ParFP32toU16< N,N > (C, fp32_C) B Alg. 6

other hand, the private key f used in decryption is a small
ternary polynomial to be treated as a constant polynomial. In
such a case, Algorithms 4 and 5 needs to be slightly revised.
In particular, lines 5-6 in Algorithm 5 should be moved to

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

Algorithm 4 to cater for to the small ternary polynomial.
In other words, one does not need to execute lines 5-6 in
Algorithm 5 anymore, because the input polynomial does not
contain any negative value.

D. EPHEMERAL KEY PAIR
The proposed tensor-core-based polynomial convolution can
be more efficient than an integer-based implementation in a
GPU. So far, we have only discussed situations that allow the
same public/private key pair to be reused for a small number
of encryption/decryption. For instance, one can perform K
encryptions/decryptions with the same public/private key
pair, and refresh the key pair before executing the next K
encryption/decryption. In the previous discussion, we assume
that K = N to fully exploit the performance gain by using a
tensor core that operates on a square matrix. For applications
that need to refresh the key pair more frequently (i.e., K <
N ), we can scale the proposed technique accordingly by ad-
justing K, where K = 1, 2, ..., N − 1. By setting K = 1, we
refresh the key pair for every single encryption/decryption.
However, due to the tensor core limitation whereby it only
handle a 16 × 16 matrix, the value of K must be a multiple
of 16.

Algorithm 8: NTRU polynomial convolution using
tensor core with scalable ephemeral key pair configu-
rations.
Input: polynomial a with degree N (constant polynomial),

N polynomial b with
degree K (non-constant polynomials), modulus q.

Output: K ×M Matrix C, which contains the cyclic
convolution of polynomial a
and many different polynomial b.

// CPU Phase:
1: (Same with Alg. 7)

// GPU Phase:

// Calc. total number of warps required

2: warp_tot = (M/16)× (K/16)
3: tc_threads = warp_tot× 32
// Calc. number of blocks

4: tc_blocks = tc_threads/max_threads
// Limit the number of threads

5: tc_threads = max_threads
6: ParCyc< N,N > (fp16_A, a) B Alg. 4
7: ParU16toFP16< K,N > (fp16_B, b) B Alg. 5
8: TC-PC< tc_blocks, tc_threads >

(fp16_A, fp16_B, fp32_C) B Alg. 3
9: ParFP32toU16< K,M > (C, fp32_C) B Alg. 6

Referring to Algorithm 8, the number of warps required to
perform tensor-core-base polynomial convolution (TC-PC) is

reduced from (M/16)2 in Algorithm 7 to (M/16)× (K/16)
(line 1). Besides, the parallel blocks utilized to compute
ParU16toFP16 and ParFP32toU16 are also reduced from N
to K. This is because polynomial a is only used to convolute
K polynomial b, where K < N . With these small changes,
the proposed technique can be used for applications that need
to refresh the key pair more frequently. Note that Algorithm
8 is less optimal than Algorithm 7 because the tensor core is
only used to compute an M ×K matrix instead of M ×M .

E. POLYNOMIAL ADDITION
NTRU Encrypt involves polynomial convolution followed
by addition to another polynomial (r ∗ h + e). Since the
tensor core can perform MMA in one cycle, one can also
utilize this feature to perform MMA for NTRU Encrypt. We
utilized this feature in the NTRU implementation. However,
polynomial addition itself is a lightweight operation; a simple
parallel implementation using INT32 is already very effi-
cient. Performing the accumulation in tensor core involves
type conversion from U16 to FP16, which introduces a small
overhead. Hence, the benefit of performing polynomial addi-
tion within the tensor core is not significant in this situation.

IV. EVALUATION
This section presents experimental results for the proposed
tensor-core-based polynomial convolution and its application
to three different lattice-based cryptographic schemes. Re-
sults are compared to the reference and AVX2 accelerated
implementation found in the NIST PQC standardization sub-
mission package [15]. CPU implementations were evaluated
on a machine with Intel Core i7-9700F clocked at 4.7 GHz
with 16 GB RAM. The GPUs used in this paper are the
NVIDIA RTX2060 with 8 GB RAM and RTX3080 with
10GB; both devices are clocked at 1.71 GHz. GPU imple-
mentations of NTRU follow closely the NIST submission
package [15] and the results are verified against the test
vectors provided.

A. PERFORMANCE EVALUATION OF
TENSOR-CORE-BASED POLYNOMIAL CONVOLUTION
The first experiment was aimed at demonstrating the su-
periority of tensor-core-based polynomial convolution (TC-
PC) against the conventional implementation using 32-bit
integer units (INT32-PC). In INT32-PC implementation, N
blocks are launched, where each block computes one poly-
nomial convolution in parallel, with N threads. To optimize
the performance of this implementation, we stored the two
polynomials (poly_a and poly_b) in shared memory to reduce
the overhead in accessing global memory. For the TC-PC
implementation, (N/16)2 warps were launched to complete
the matrix multiplication. The performance of both INT32-
PC and TC-PC implementations are presented in Table 3.
Note that the results reported for GPU implementations are
the average time of processing one polynomial convolution
(i.e., (total time to process N polynomial convolutions)/N ).
Referring to the implementation results on RTX2060, when

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

TABLE 3: Performance of tensor-core-based polynomial convolution (Algorithm 7)

N 32 64 128 192 256 384 512 768 1024

Time (µs)
*

RTX2060 INT32-PC** 0.22 0.15 0.15 0.22 0.41 0.53 0.92 2.06 3.79
TC-PC 0.27 0.16 0.11 0.12 0.18 0.20 0.33 0.64 1.11

Ratio (INT32-PC / TC-PC) 0.81 0.94 1.36 1.83 2.28 2.65 2.79 3.22 3.41

Time (µs)
*

RTX3080 INT32-PC** 0.15 0.09 0.06 0.07 0.10 0.21 0.36 0.76 1.27
TC-PC 0.23 0.12 0.07 0.06 0.06 0.08 0.08 0.17 0.22

Ratio (INT32-PC / TC-PC) 0.65 0.75 0.86 1.17 1.67 2.5 4.5 4.47 5.77
* Average time of N polynomial convolutions.
** INT32: 32-bit integer units, TC: tensor core, PC: polynomial convolution.

the polynomial degree was small (N ≤ 64), INT32-PC
showed better performance than TC-PC. This is because
TC-PC requires additional steps in reorganizing poly_a into
cyclic form and converting the polynomial elements be-
tween integer and floating point formats. However, when
N increases beyond 64, the benefit of using tensor core is
obvious. The speed-up gained by TC-PC against INT32-PC
increases steadily when 64 < N ≤ 1024, where it records
the highest speed-up of 3.41× when N = 1024. We do not
report on the cases beyond 1024, because the speed-up gained
does not increase anymore. Note that the implementation
results on RTX3080, a similar behaviour can be observed,
wherein the speed-up gained by TC-PC increases steadily
when 128 < N ≤ 1024.

B. PERFORMANCE EVALUATION UNDER THE
EPHEMERAL KEY PAIR SCENARIO

By changing the dimensions of matrix multiplication from
M × M to M × K, one can compute K polynomial con-
volutions using the proposed tensor core technique, with the
same public/private key pair. Due to the current tensor core
limitation in NVIDIA GPU that only handles 16×16 matrix,
K has to be a multiple of 16. From Table 4, we observed that
the proposed TC-PC is more efficient than the conventional
integer-based implementation when K ≥ 32 (RTX2060)
or K ≥ 128 (RTX3080). However, the performance is
less efficient compared to the case of computing M × M ,
and sometimes it is even slower than AVX2. For instance,
considering the case where both M and N are 512, the
GPU can complete one polynomial convolution in 0.33µs on
average (see Table 3), which is faster than all theM×K com-
binations. This is because the same polynomial a is reused
for N convolutions against polynomial b, so the overhead
of pre- and post-processing are effectively amortized. On the
other hand, AVX2 can complete one polynomial convolution
in 1.51µs, so it is only beneficial to employ the GPU to
perform polynomial convolutions if K ≥ 64 (RTX2060) or
K ≥ 128 (RTX3080). For cases where GPU does not provide
good speed up, it is better to use AVX2 for accelerating
the polynomial convolutions. The break-even point where
GPU is more advantageous than AVX2 has to be determined
through experiments, because the computational capability
of each GPU platform differs.

C. PERFORMANCE EVALUATION OF NTRU

To demonstrate the benefit of tensor core in accelerating
lattice-based cryptographic schemes, we implemented NTRU
public-key encryption and KEM scheme with parameter
sets ntruhps2048509 and ntruhps2048677 using TC-PC
and INT32-PC. In the experiment, 512 blocks are launched,
where each block computes one NTRU operation. Results of
our GPU implementation are presented in Table 5, where they
are compared against the reference and AVX2 implementa-
tion in CPU. Note that the AVX2 implementation is heavily
optimized for performance. On the other hand, the reference
implementation aims at providing a clear description to the
underlying operations, so it is not optimized for performance.

Considering the results in RTX2060, for the ntruhps2048
509 parameter set, the TC-PC throughput of implementation
was 2.02× and 1.56× higher than INT32-PC for encap-
sulation and decapsulation respectively. A similar speed-up
ratio was also observed for ntruhps2048677, wherein the
throughput of TC-PC implementation was 1.98× and 1.90×
higher than INT32-PC. We observed that TC-PC achieved
more than 20× higher throughput compared to the reference
implementation for encapsulation and decapsulation; it is
also more than 2× higher than the AVX2 implementation.
The results in RTX3080 also shows similar speed up for TC-
PC against INT32-PC, but it is significantly faster RTX2060
due to higher number of cores available. For instance,
considering parameter set ntruhps2048677, throughput in
RTX3080 is 2.52× and 1.65× higher than RTX2060 for
encapsulation and decapsulation respectively.

Note that GPU is a throughput-oriented accelerator that is
only useful when there are many operations to be computed.
Conversely, the AVX2 implementation is advantageous in
improving the latency of a single NTRU operation. In other
words, the reported speed-up against AVX2 in Table 5 is the
full throughput achievable when there is a sufficient workload
(512 encapsulation/decapsulation or encryption/decryption).
Under such circumstances, the GPU can be an effective
accelerator to assist the computation in the CPU, especially
in server environment where CPU cores are usually busy
handling many other tasks. With insufficient workload, one
can always fallback on the AVX2 implementation or employ
the techniques for an ephemeral key pair (see Section 3.3).

Fig. 7 and 8 show the throughput achieved by CPU (using
AVX2) and GPU (using TC-PC) at various batch sizes, for
two different parameter sizes. In this experiment, each block

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

TABLE 4: Performance of tensor-core-based polynomial convolution for an M ×K dimension ((Algorithm 8, where both M
and N are 512)

K 16 32 64 128 256 384
Time, CPU AVX2 1.51
µs GPU* INT32-PC** 2.53 2.05 1.30 1.05 0.93 0.91

RTX2060 TC-PC 3.74 1.88 0.95 0.72 0.54 0.36
Ratio (INT32-PC / TC-PC) 0.68 1.09 1.37 1.46 1.72 2.53

Time, GPU* INT32-PC** 1.57 0.75 0.46 0.39 0.37 0.33
µs RTX3080 TC-PC 2.47 1.24 0.62 0.31 0.18 0.1

Ratio (INT32-PC / TC-PC) 0.64 0.6 0.74 1.26 2.06 3.3
* Average time of K polynomial convolution.
** INT32: 32-bit integer units, TC: tensor core, PC: polynomial convolution.

TABLE 5: Comparing the throughput of TensorTRU against other GPU and CPU implementations.

N Operation
CPU GPU RTX2060* GPU RTX3080*

Throughput, operations per second Improvement ratio Throughput, ops per second Improvement ratio
Reference AVX2 INT32-PC TC-PC (TC-PC/INT32-PC) INT32-PC TC-PC (TC-PC/INT32-PC)

509

Encrypt 47103 483092 847458 1639344 1.93 2362318 3606853 1.53
Encapsulation 27878 271739 392157 793651 2.02 1113462 1666389 1.5

Decrypt 11700 250627 436681 862069 1.97 866974 1515152 1.75
Decapsulation 7595 240964 323625 505051 1.56 490461 904323 1.70

677

Encrypt 29551 334448 313223 606452 1.94 771642 1325030 1.60
Encapsulation 19658 237530 248756 492611 1.98 463242 740083 1.60

Decrypt 7959 152672 197239 398406 2.02 447978 715147 1.72
Decapsulation 6158 123762 146843 278552 1.90 320051 529241 1.65

* INT32: 32-bit integer units, TC: tensor core, PC: polynomial convolution.

2
1

22 23 25 27 29

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Batch size

T
ho

us
an

ds
en

ca
p/

de
ca

p
pe

rs
ec

on
d AVX2 (Encap)

AVX2 (Decap)
RTX2060 (Encap)
RTX2060 (Decap)
RTX3080 (Encap)
RTX3080 (Decap)

FIGURE 7: Comparing the throughput of AVX2 and GPU
implementation of ntruhps2048509 parameter set with vari-
ous batch sizes

performs one encapsulation/decapsulation, so the batch size
is essentially the number of blocks. When the batch size is
small (2 to 32), AVX2 implementation is achieving higher
or similar throughput compared to the GPU version. How-
ever, GPU can produce higher throughput when batch size
increases beyond 128 (approximately). This shows that the
proposed TensorTRU can be used in various applications to
provide high throughput KEM.

21 22 23 25 27 29

200

400

600

800

1,000

Batch size

T
ho

us
an

ds
en

ca
p/

de
ca

p
pe

rs
ec

on
d AVX2 (Encap)

AVX2 (Decap)
RTX2060 (Encap)
RTX2060 (Decap)
RTX3080 (Encap)
RTX3080 (Decap)

FIGURE 8: Comparing the throughput of AVX2 and GPU
implementation of ntruhps2048677 parameter set with vari-
ous batch sizes

D. COMPARISON WITH OTHER NTRU AND PQC
IMPLEMENTATIONS ON A GPU
Existing NTRU implementations on GPU platforms are pre-
sented in Table 6. Note that the previous implementations do
not follow the NIST NTRU specifications; they targeted dif-
ferent polynomial sizes and GPU devices, which are difficult
to benchmark with our work directly. To allow a fair compar-
ison, we scale the results from previous implementation to
match our GPU, which is calculated as Throughput

1920/core , where

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

TABLE 6: Comparing the performance of TensorTRU (polynomial convolution) with other existing NTRU implementations
on GPU. Throughput is measured as tasks per second.

Implementation Year N GPU Core Throughput Techniques

[7] 2013 251 GTX275 240 332557 / 2660456 * Sliding window
[10] 2018 401 GTX1080 2560 508541 / 381405 * Karatsuba

TensorTRU 2021 251 RTX2060 1920 + 240 3448275 Schoolbook401 tensor cores 1408451

* Performance scaled to match the number of GPU cores in RTX2060 (1920 cores).

TABLE 7: Comparing the performance of TensorTRU KEM with other existing PQC implementations on GPU. Throughput is
measured as key exchange per second.

Implementation Year GPU Core Throughput (KEx/s) Techniques

NTRU-509 KEM (this work) 2021 RTX2060 1920 + 240 tensor cores 308641 Schoolbook
Kyber KEM [11] 2020 V100 5120 473000 / 177373* NTT
Kyber KEM [12] 2021 RTX2060 1920 + 240 tensor cores 64200 NTT

NewHope KEM [13] 2021 GTX1650 1024 58337 / 109382* NTT

* Performance scaled to match the number of GPU cores in RTX2060 (1920 cores).

the number of cores in our RTX2060 was 1920. We also
configure the polynomial degree (N) in TensorTRU to match
the one in previous implementations (i.e., N = 251 and
N = 401.) However, we did not compare with Hermans et
al. [5] because it targets the product-form polynomial, which
is not used in the NTRU submission to NIST [16].

TensorTRU achieved 1.29× higher throughput than the
implementation by Lee et al. [7] for N = 251. Note that
the sliding window approach requires pre-computation and
storage of the polynomial in a look-up table, which can
be vulnerable to side channel (timing) attacks. In contrast,
the execution of TensorTRU does not depends on a look-
up table or any secret information, since it was developed
based on the schoolbook convolution. Referring to Algorithm
3, the polynomials are loaded (lines 14 and 15), computed
(line 16) and stored (line 17) in a synchronized manner
at the warp level. All parallel warps actually perform the
same number of operations on different data (see Figure 4),
resembling the matrix–matrix multiplication operation. This
implies that TensorTRU is constant time and does not have
the vulnerabilities found in the work by Lee et al. [7].

Compared to the most recent work by Lee et al. [10],
TensorTRU also achieved 9.04× higher throughput. Note
that Lee et al. [10] exploited the Karatsuba algorithm to
split the polynomials for more efficient computation. Due
to the limitation in the GPU architecture (see Section II), a
thread can only access the registers in other threads through
a warp shuffle instruction. This instruction can only be used
within a warp (32 threads), but NTRU polynomials are
usually much larger than the warp size. Hence, Lee et al.
[10] stored the polynomials in shared memory and accessed
them across different parallel threads. This is considered the
most efficient way to implement schoolbook and Karatsuba
polynomial convolutions, but it still requires access to the
shared memory, which is slower than registers. In contrast,

TensorTRU stores the polynomials directly into registers
without using shared memory. This is made possible by
converting a polynomial convolution to matrix multiplication
in the tensor core, through the series of algorithms proposed
in this paper (Algorithm 3, 4, 5 and 6). Moreover, TensorTRU
is executed in the tensor core, which are more optimized than
ordinary GPU cores to process matrix multiplication. This
justifies the high performance in TensorTRU compared to
other NTRU GPU implementations.

Table 7 shows the comparison with existing PQC KEM
implementations on GPU. Gupta et al. [11] shows that Ky-
ber KEM can achieve a very high throughput when it is
implemented in batch mode, which is essentially a serial
implementation. The key exchange throughput achieved by
TensorTRU is 1.74× higher than Kyber [11]. Another recent
Kyber implementation from Lee et al. [12] also shows high
throughput; TensorTRU achieves 4.81× higher throughput
on the same GPU platform. Compared to the GPU imple-
mentation of another NIST Round-2 PQC candidate [13],
NewHope, the proposed TensorTRU achieves 2.82× higher
throughput.

E. TENSORLAC: APPLICATION TO LAC
LAC is a cryptosystem based on the poly-LWE variant of

the Learning with Errors problem, and was selected as Round
2 candidate in the NIST PQC competition. The modulus of
LAC is restricted to q = 251, which allows each polynomial
element to fit into a single byte [27]. The decoding correct-
ness in LAC relies heavily on the ability of Bose-Chaudhuri-
Hocquenghem (BCH) error correction code to recover errors.
Even though LAC was not selected to advance to Round 3, it
won first prize in the post-quantum cryptography competition
hosted by the Chinese Association for Cryptologic Research
(CACR). LAC remains an interesting candidate due to its su-
perior implementation performance and simplicity in design.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

Algorithm 9: Parallel implementation of LAC poly-
nomial convolution using tensor core in a GPU.
Input: polynomial a with degree N (constant polynomial),

N polynomial b with
degree N (non-constant polynomials), modulus q.

Output: N ×N Matrix C, which contains the nega-cyclic
convolution of polynomial
a and many different polynomial b.

// CPU Phase:
1: u8cyclic_A B Initialize one matrix in
U8

2: fp32_C B Initialize one matrix in
FP32

// GPU Phase:
3: warp_tot = (N/16)2 B Calc. total number
of warps required

4: tc_threads = warp_tot× 32
5: tc_blocks = tc_threads/max_threads B Calc.
number of blocks

6: tc_threads = max_threads B Limit the
number of threads

7: LACParCyc< N,N > (u8cyclic_A, a)
8: TC-PC < tc_blocks, tc_threads >

(u8cyclic_A,B, fp32_C) B Algorithm 3
9: ParFP32toU8< N,N > (C, fp32_C)

In this paper, we have extended our idea of using tensor
core to compute polynomial convolution in LAC. Since LAC
uses modulus q = 251, one can use Configuration 5 (see
Table 2) to implement polynomial convolution in tensor
core. The polynomial degrees in LAC are N = 512 and
N = 1024, which appear to be multiples of 16, so it can be
computed by Algorithm 7 without padding zeros. However,
the polynomial convolution in LAC is of nega-cyclic form,
which implies that we cannot use Algorithm 4 to arrange the
polynomial a (a constant) into cyclic form. However, this can
be resolved easily by converting the relevant elements to a
nega-cyclic form in line 4 (replace in[(tid − bid)%N ] by
q − in[(tid− bid)%N ]).

The implementation of polynomial convolution in LAC
is similar to NTRU, and is presented in Algorithm 9. Since
polynomial elements in LAC are already represented in 8-bit
integer (U8) form, we can use Configuration 5 in tensor core,
and no type conversion is required. This reduces one step
compared to Algorithm 7. Firstly, oneN×N matrix with U8
and another one N × N matrix in FP32 are initialize in the
CPU. Next, we arrange the polynomial in nega-cyclic form
(line 7), followed by matrix multiplication in tensor core (line
8). Finally, the results from tensor core (FP32) are converted
to U8 and modulo q (line 9). Note that the last step is similar
to Algorithm 6, except that we are converting the results to
U8 instead of U16.

Table 8 shows the implementation results of nega-cyclic
polynomial convolution of LAC in a CPU (reference and
AVX2) and a GPU (integer units and tensor core), respec-
tively. TC-NPC is showed 2.93× and 3.1× higher perfor-
mance than INT8-NPC, for N = 512 and N = 1024
respectively. These speed-ups are slightly higher than with
TensorTRU, because there is no need to convert the data from
INT8 to FP16 as required in NTRU.

F. TENSORFRO: APPLICATION TO FRODOKEM
FrodoKEM was selected as an alternate candidate in the third
round of the NIST PQC competition. The official FrodoKEM
parameter sets require that modulus q = 215 and q = 216,
which are too large to be represented in FP16, so we cannot
utilize tensor core to perform the matrix multiplication. How-
ever, Frodo allows flexible configuration on its parameters
as a trade-off between security level, size of modulus and
the probability of decryption failure. One of the interesting
parameters was proposed by Bian et al. [37], wherein the
modulus can be as small as q = 211. This parameter set
allows the server side to perform only matrix-vector multi-
plication (N× ñ), but it requires the client side to do much
more work (N× m̃). On the other hand, one can also utilize
the parameter searching script provided by the FrodoKEM
Round 3 submission [25] to obtain a parameter set with small
modulus. In this paper, we instantiated another parameter set
for FrodoKEM, which is presented in Table 10. With the
restrictions q = 2048 and σ = 1.0, we obtained a parameter
set that has a balanced workload between server and client,
since m̃ and ñ is close to each other. We show that the
proposed tensor core technique can be utilized to accelerate
the matrix multiplication in these two variant parameter sets.

Polynomial degree N for Frodo-II and TensorFro is not a
multiple of 16, so we need to use the proposed method to
pad zeros into the polynomial (see Figure 5b). For Frodo-
II, the server side can pack many polynomials into a matrix
and perform many matrix–vector multiplications using Al-
gorithm 3. The client side can pack two N×m̃ (570 × 256)
matrices and can perform matrix multiplications with tensor
core. A similar technique is applicable to TensorFro on both
the client and the server side by packing multiple smaller
matrices to form a larger one. Note that we do not need to
arrange the polynomial in cyclic form, since FrodoKEM does
not perform convolutions.

The error vectors in FrodoKEM span a larger distribution
compared to ternary values in NTRU and LAC. For instance,
Frodo-II and TensorFro have error vector with values in
the range {-4, -3, ...0, ..., +3, +4}. When the proposed
tensor-core-based technique is used, multiplication between
a 11-bit (q = 2048) sample and an error vector produces
a maximum of 13-bit value in floating point format i.e.,
(211−1)×4 ≈ 213 and (211−1×−4 ≈ −213). In the process
of polynomial convolution, the accumulated value can grow
up to a maximum ofN×(213−1). Hence, for the two variant
parameter sets, the values stored in the accumulator can
grow to 23-bit (Frodo-II, log2(570 × (213 − 1)); TensorFro,

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

TABLE 8: Comparing TensorLAC (polynomial convolution) against other GPU and CPU implementations.

Implementation Operation

CPU GPU (RTX2060)* GPU (RTX3080)*

Time (µs) Impr. Ratio Time (µs) Impr. Ratio

Reference AVX2 INT8-NPC TC-NPC INT8-NPC INT8-NPC TC-NPC INT8-NPC
/TC-NPC /TC-NPC

LAC-128 (N = 512) Poly. Conv. 55.93 4.35 1.23 0.42 2.93 1.108 0.1913 5.79
LAC-256 (N = 1024) Poly. Conv. 216.74 20.68 3.88 1.25 3.10 0.38 0.06 6.33
* INT8: 8-bit integer units, TC: tensor core, NPC: nega-cyclic polynomial convolution.

TABLE 9: Performance of tensor-core-based matrix multiplication for Frodo variants, implemented on RTX2060 and
RTX3080.

GPU (RTX2060)* GPU (RTX3080)*

Implementation Time (µs) Improvement ratio Time (µs) Improvement ratio

INT32-MM TC-MM INT32-MM/ INT32-MM TC-MM INT32-MM/
TC-MM TC-MM

Frodo-II (server side, 570× 570) [37] 1.35 0.44 3.07 0.42 0.17 2.54
Frodo-II (client side, 570× 512) [37] 1.41 0.43 3.28 0.42 0.14 3.07

TensorFro (server side, 560× 550) 1.39 0.42 3.31 0.43 0.17 2.62
TensorFro (client side, 560× 552) 1.39 0.42 3.31 0.46 0.15 3.15

INT32: 32-bit integer units, TC: tensor core, MM: matrix multiplication.

TABLE 10: Parameter instantiations of FrodoKEM.

Implementation q σ N ñ m̃ Security Error
level distr.

Frodo-Rec-1 215 2.8 640 8 8 141-bit ±12
[25]

Frodo-II [37] 211 1.0 570 1 256 137-bit ±4
TensorFro 211 1.0 560 11 12 136-bit ±4

IoT SN IoT SN IoT SN IoT SN IoT SN IoT SN IoT SN

Gateway Device Gateway Device

Cloud Server

Encapsulate
Keys

SN: Sensor Nodes

Encapsulated
Keys

Scenario 1 Scenario 2

FIGURE 9: Key refreshment in IoT communication systems

log2(560× (213 − 1))). This allows matrix multiplication to
be computed correctly within the single precision, so we can
utilize the tensor core Configuration 1.

Table 9 shows the results of matrix multiplication for
Frodo variant parameter sets implemented on RTX2060.
The achieved speed-up between INT32-MM and TC-MM is
similar to cases in TensorTRU and TensorLAC.

G. USE CASE: SECURE COMMUNICATION IN IOT
APPLICATIONS
IoT applications typically employ symmetric encryption
schemes (e.g., AES) to encrypt the IoT data. To reduce the
risks of compromising symmetric encryption keys, we need
to refresh these encryption keys frequently. Referring to Fig-
ure 9, this key refreshment task in a typical IoT application
can be carried out in two ways:

1) Scenario 1: The IoT sensor nodes generate new sym-
metric encryption keys locally and forward them to
the gateway device and cloud server via KEM. This
process takes place in every communication session, in
which pseudorandom number generator (PRNG) can
be employed to produce the new symmetric encryption
key.

2) Scenario 2: The cloud server generates new symmetric
encryption keys and forward them to the gateway de-
vice and each sensor node via KEM. Similarly, PRNG
can be utilized to generate new keys for every session.

In scenario 1, the gateway device and cloud server need
to handle many key decapsulations in real time. On the
other hand, in scenario 2, the cloud server needs to generate
and encapsulate many keys, so that these keys can be sent
to each sensor node in a timely manner. Under the IoT
application scenario, a gateway device typically needs to
communicate with tens to hundreds of sensor nodes. On
the IoT cloud servers, this connection can go up to tens of
thousands. With such massive connections in IoT communi-
cation, it is clear that both scenarios needs high throughput
key encapsulation/decapsulation, which is difficult even for
a high-end workstation. To mitigate this challenge, one can
offload the KEM to GPU, which is already found in many
gateway device (e.g., Jetson AGX Xavier [38]) and cloud
server platforms. The proposed tensor-core-based technique
can be very useful in handling this kind of massive key
encapsulations/decapsulations.

Due to constrained energy storage, IoT sensor nodes usu-
ally transmit the collected sensor data in a coordinated ses-
sion [39], intermittently. Instead of using a separate public-
private key pair for each sensor node, the same key pair is
used for key encapsulations/decapsulations for a particular
session in all sensor node. This implies that performing
hundreds to thousands of KEMs using the same public-
private key pair for one communication session is common

VOLUME 4, 2016 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

in IoT applications [12]. In the subsequent sessions, the user
can choose to use the same key pair or generate a new one
(ephemeral key pair).

V. CONCLUSION
In this paper, we present the first tensor-core-aided cryptog-
raphy implementation on a GPU. The proposed tensor-core-
based polynomial convolution is faster than conventional
implementations that rely on integer units in the GPU. Since
the proposed tensor-core-based polynomial convolution is
a generic algorithm, it can be applied to various sizes of
matrix/polynomial. Although the current tensor core can only
support limited floating point precision and integer types,
we believed the situation may change in near future. In
particular, the introduction of FP64 into tensor core recently
opened up its adoption into the mainstream scientific com-
puting applications, fostering the use of the GPU in a wider
range of applications. As this trend persists, we believe the
performance of FP64 tensor core will increase and eventually
support more parameters for lattice-base cryptography. On
top of that, a recently released embedded GPU (the Jetson
AGX Xavier) also offers tensor core to accelerate deep learn-
ing inference. This embedded GPU can be used to implement
gateway device in IoT applications (e.g., road side units in a
smart city), in which our solution can be applied to enable
high throughput key encapsulations/decapsulations.

Advanced Matrix Extensions (AMX) is a new x86 in-
struction set architecture (ISA) released by Intel to support
matrix multiplication, which is similar to the tensor core on
GPUs. Adapting the proposed tensor-core-based polynomial
convolution on such advanced ISA would be an interesting
future work that we wish to pursue. On the other hand, a
recent work utilized the Strassen’s algorithm to speed-up the
matrix-multiplication [40]. This can also be an interesting
future direction, as the performance of such approach on a
GPU is still unknown.

The proposed tensor-core-based polynomial convolution
can be implemented on consumer (RTX2060 and RTX3080)
and server grade (T4 and A100) GPU platforms with Turing
and Ampere architecture, with similar performance gain.
However, the tensor core in Volta architecture GPU (e.g.,
V100) is not as powerful as the one in Turing and Ampere
architectures. Hence, we expect that the performance of our
solution implemented on Volta architecture GPU may not be
as impressive compared these two architectures.

REFERENCES
[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[2] D. J. Bernstein, “Introduction to post-quantum cryptography,” in Post-
quantum cryptography. Springer, 2009, pp. 1–14.

[3] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
Y.-K. Liu, C. Miller, D. Moody, R. Peralta et al., Status report on the
first round of the NIST post-quantum cryptography standardization pro-
cess. US Department of Commerce, National Institute of Standards and
Technology, 2019.

[4] A. Khalid, S. Bian, C. Wang, M. O’Neill, W. Liu et al., “Axrlwe: A multi-
level approximate ring-lwe co-processor for lightweight iot applications,”
IEEE Internet of Things Journal, 2021.

[5] J. Hermans, F. Vercauteren, and B. Preneel, “Speed records for NTRU,”
in Cryptographers’ Track at the RSA Conference. Springer, 2010, pp.
73–88.

[6] A. A. Kamal and A. M. Youssef, “Enhanced implementation of the
NTRUEncrypt algorithm using graphics cards,” in 2010 First International
Conference On Parallel, Distributed and Grid Computing (PDGC 2010).
IEEE, 2010, pp. 168–174.

[7] M.-K. Lee, J. W. Kim, J. E. Song, and K. Park, “Efficient implementation
of NTRU cryptosystem using sliding window methods,” IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 96, no. 1, pp. 206–214, 2013.

[8] S. Akleylek and Z. Y. Tok, “Efficient interleaved Montgomery modular
multiplication for lattice-based cryptography,” IEICE Electronics Express,
vol. 11, no. 22, pp. 20 140 960–20 140 960, 2014.

[9] W. Dai, B. Sunar, J. Schanck, W. Whyte, and Z. Zhang, “NTRU modular
lattice signature scheme on CUDA GPUs,” in 2016 International Confer-
ence on High Performance Computing & Simulation (HPCS). IEEE,
2016, pp. 501–508.

[10] W.-K. Lee, B.-M. Goi, W.-S. Yap, D. C.-K. Wong, and S. Akleylek, “Fast
NTRU encryption in GPU for secure IoP communication in post-quantum
era,” in 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City In-
novation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE,
2018, pp. 1923–1928.

[11] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, “Pqc accelera-
tion using gpus: Frodokem, newhope, and kyber,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 3, pp. 575–586, 2020.

[12] W. K. Lee and S. O. Hwang, “High throughput implementation of post-
quantum key encapsulation and decapsulation on gpu for internet of things
applications,” IEEE Transactions on Services Computing, 2021.

[13] Y. Gao, J. Xu, and H. Wang, “cunh: Efficient gpu implementations of post-
quantum kem newhope,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 3, pp. 551–568, 2021.

[14] S. Sun, R. Zhang, and H. Ma, “Efficient parallelism of post-quantum
signature scheme sphincs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 11, pp. 2542–2555, 2020.

[15] C. S. Division, “Round 3 submissions - post-quantum
cryptography: Csrc.” [Online]. Available: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

[16] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck,
P. Schwabe, W. Whyte, and Z. Zhang, “NTRU algorithm specifications and
supporting documentation,” 2020.

[17] C.-c. Lin, M.-h. Sheu, C. Liaw, and H.-k. Chiang, “Fast first-order polyno-
mials convolution interpolation for real-time digital image reconstruction,”
IEEE transactions on circuits and systems for video technology, vol. 20,
no. 9, pp. 1260–1264, 2010.

[18] Y. Zeng, L. Zhang, J. Zhao, J. Lan, and B. Li, “Jrl-yolo: A novel jump-join
repetitious learning structure for real-time dangerous object detection,”
Computational Intelligence and Neuroscience, vol. 2021, 2021.

[19] Q. Ding, A. Rehman Sheikh, W. Pan, X. Gu, N. Sun, X. Su, L. Luo, H. Ma,
R. He, and T. Zhang, “In situ monitoring of grape seed protein hydrolysis
by raman spectroscopy,” Journal of Food Biochemistry, vol. 45, no. 4, p.
e13646, 2021.

[20] X. Zhang, J. Saniie, and A. Heifetz, “Spatial temporal denoised thermal
source separation in images of compact pulsed thermography system for
qualification of additively manufactured metals,” in 2021 IEEE Interna-
tional Conference on Electro Information Technology (EIT). IEEE, 2021,
pp. 209–214.

[21] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber: a CCA-secure
module-lattice-based KEM,” in 2018 IEEE European Symposium on Se-
curity and Privacy (EuroS&P). IEEE, 2018, pp. 353–367.

[22] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “SABER:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,” in International Conference on Cryptology in Africa.
Springer, 2018, pp. 282–305.

[23] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “CRYSTALS-DILITHIUM: Digital signatures from module
lattices,” 2018.

16 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152217, IEEE Access

Author et al.: TensorCrypto: High Throughput Acceleration of Lattice-based Cryptography Using Tensor Core on GPU

[24] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “FALCON: Fast-
fourier lattice-based compact signatures over NTRU,” Submission to the
NIST’s post-quantum cryptography standardization process, 2018.

[25] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig,
V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila, “FrodoKEM
learning with errors key encapsulation,” 2020.

[26] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. Van Vredendaal,
“NTRU Prime.” IACR Cryptol. ePrint Arch., vol. 2016, p. 461, 2016.

[27] X. Lu, Y. Liu, Z. Zhang, D. Jia, H. Xue, J. He, B. Li, K. Wang, Z. Liu, and
H. Yang, “LAC: Practical Ring-LWE based public-key encryption with
byte-level modulus.” IACR Cryptol. ePrint Arch., vol. 2018, p. 1009, 2018.

[28] C. NVIDIA, “CUDA C programming guide, version 11.2,” NVIDIA Corp,
2020.

[29] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public
key cryptosystem,” in International Algorithmic Number Theory Sympo-
sium. Springer, 1998, pp. 267–288.

[30] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte,
and Z. Zhang, “Choosing parameters for ntruencrypt,” in Topics in
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA
Conference 2017, San Francisco, CA, USA, February 14-17, 2017,
Proceedings, ser. Lecture Notes in Computer Science, H. Handschuh,
Ed., vol. 10159. Springer, 2017, pp. 3–18. [Online]. Available:
https://doi.org/10.1007/978-3-319-52153-4\_1

[31] A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe, “High-
speed key encapsulation from NTRU,” in Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, ser. Lecture
Notes in Computer Science, W. Fischer and N. Homma, Eds., vol.
10529. Springer, 2017, pp. 232–252. [Online]. Available: https:
//doi.org/10.1007/978-3-319-66787-4\_12

[32] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte,
“Transcript secure signatures based on modular lattices,” in Post-Quantum
Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo,
ON, Canada, October 1-3, 2014. Proceedings, ser. Lecture Notes in
Computer Science, M. Mosca, Ed., vol. 8772. Springer, 2014, pp. 142–
159. [Online]. Available: https://doi.org/10.1007/978-3-319-11659-4\_9

[33] D. Das, J. Hoffstein, J. Pipher, W. Whyte, and Z. Zhang, “Modular lattice
signatures, revisited,” Des. Codes Cryptogr., vol. 88, no. 3, pp. 505–532,
2020. [Online]. Available: https://doi.org/10.1007/s10623-019-00694-x

[34] W.-K. Lee, S. Akleylek, W.-S. Yap, and B.-M. Goi, “Accelerating number
theoretic transform in gpu platform for qtesla scheme,” in International
Conference on Information Security Practice and Experience. Springer,
2019, pp. 41–55.

[35] W.-K. Lee, S. Akleylek, D. C.-K. Wong, W.-S. Yap, B.-M. Goi, and S.-O.
Hwang, “Parallel implementation of nussbaumer algorithm and number
theoretic transform on a gpu platform: application to qtesla,” The Journal
of Supercomputing, vol. 77, no. 4, pp. 3289–3314, 2021.

[36] H. Satılmış, S. Akleylek, and C.-C. Lee, “Efficient implementations of
sieving and enumeration algorithms for lattice-based cryptography,” Math-
ematics, vol. 9, no. 14, p. 1618, 2021.

[37] S. Bian, M. Hiromoto, and T. Sato, “Filianore: Better multiplier architec-
tures for LWE-based post-quantum key exchange,” in Proceedings of the
56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[38] CUDA, “Nvidia agx xavier module.” [Online]. Available: https:
//developer.nvidia.com/embedded/jetson-agx-xavier

[39] S.-Y. Liew, C.-K. Tan, M.-L. Gan, and H. G. Goh, “A fast, adaptive,
and energy-efficient data collection protocol in multi-channel-multi-path
wireless sensor networks,” IEEE Computational Intelligence Magazine,
vol. 13, no. 1, pp. 30–40, 2018.

[40] J. W. Bos, M. Ofner, J. Renes, T. Schneider, and C. v. Vredendaal, “The
matrix reloaded: Multiplication strategies in frodokem,” in International
Conference on Cryptology and Network Security. Springer, 2021, pp.
72–91.

WAI-KONG LEE received the B.Eng. degree in
electronics and the M.Sc. degree from Multimedia
University in 2006 and 2009, respectively, and
the Ph.D. degree in engineering from Universiti
Tunku Abdul Rahman, Malaysia, in 2018. He
was a Visiting Scholar with Carleton University,
Canada, in 2017, Feng Chia University, Taiwan, in
2016 and 2018, and OTH Regensburg, Germany,
in 2015, 2018 and 2019. Prior to joining academia,
he worked in several multi-national companies

including Agilent Technologies (Malaysia) as R&D engineer. His research
interests are in the areas of cryptography, numerical algorithms, GPU
computing, Internet of Things, and energy harvesting. He is currently a post-
doctoral researcher in Gachon University, South Korea

HWAJEONG SEO received the B.S., M.S. and
Ph.D degrees in Computer Engineering at Pusan
National University. He is currently an assistant
professor in Hansung university. His research in-
terests include cryptographic engineering.

ZHENFEI ZHANG received the PhD. degree
from the University of Wollongong, Australia, in
2014. He was the director of cryptographic re-
search with OnBoard Security, a company that
developed NTRU and the related technologies. He
was also the CTO and co-founder of Manta Net-
work. Currently, he serves as a cryptographer in
Ethereum Foundation. His main research interests
include quantum-safe cryptography, specifically,
and lattice-based cryptography.

SEONG OUN HWANG (SENIOR MEMBER,
IEEE) received the B.S. degree in mathematics
from Seoul National University, in 1993, the M.S.
degree in information and communications engi-
neering from the Pohang University of Science
and Technology, in 1998, and the Ph.D. degree in
computer science from the Korea Advanced Insti-
tute of Science and Technology, in 2004, South
Korea. He worked as a Software Engineer with
LG-CNS Systems, Inc., from 1994 to 1996. He

worked as a Senior Researcher with the Electronics and Telecommunications
Research Institute (ETRI), from 1998 to 2007. He worked as a Professor with
the Department of Software and Communications Engineering, Hongik Uni-
versity, from 2008 to 2019. He is currently a Professor with the Department
of Computer Engineering, Gachon University. His research interests include
cryptography, cybersecurity, and artificial intelligence. He is an Editor of
ETRI Journal.

VOLUME 4, 2016 17


