
Pre-Computation Scheme of Window τNAF for
Koblitz Curves Revisited?

Wei Yu1(B) and Guangwu Xu2,3(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

yuwei 1 yw@163.com
2 Key Laboratory of Cryptologic Technology and Information Security of

Ministry of Education, Qingdao, Shandong, 266237, China
gxu4sdq@sdu.edu.cn

3 School of Cyber Science and Technology, Shandong University,
Qingdao, Shandong, 266237, China.

Abstract. Let Ea/F2 : y2 + xy = x3 + ax2 + 1 be a Koblitz curve.
The window τ -adic non-adjacent form (window τNAF) is currently
the standard representation system to perform scalar multiplications
on Ea/F2m utilizing the Frobenius map τ . This work focuses on the
pre-computation part of scalar multiplication. We first introduce µτ̄ -
operations where µ = (−1)1−a and τ̄ is the complex conjugate of τ .
Efficient formulas of µτ̄ -operations are then derived and used in a novel
pre-computation scheme. Our pre-computation scheme requires 6M+6S,
18M+17S, 44M+32S, and 88M+62S (a = 0) and 6M+6S, 19M+17S,
46M+32S, and 90M+62S (a = 1) for window τNAF with widths from
4 to 7 respectively. It is about two times faster, compared to the state-
of-the-art technique of pre-computation in the literature. The impact
of our new efficient pre-computation is also reflected by the significant
improvement of scalar multiplication. Traditionally, window τNAF with
width at most 6 is used to achieve the best scalar multiplication. Because
of the dramatic cost reduction of the proposed pre-computation, we are
able to increase the width for window τNAF to 7 for a better scalar
multiplication. This indicates that the pre-computation part becomes
more important in performing scalar multiplication. With our efficient
pre-computation and the new window width, our scalar multiplication
runs in at least 85.2% the time of Kohel’s work (Eurocrypt’2017)
combining the best previous pre-computation. Our results push the scalar
multiplication of Koblitz curves, a very well-studied and long-standing
research area, to a significant new stage.

Keywords: Elliptic curve cryptography, Koblitz curve, Scalar multipli-
cation, Window τNAF, Pre-computation.

? The proceeding version of this paper appears at EUROCRYPT 2021

2 Wei Yu and Guangwu Xu

1 Introduction

Elliptic curve cryptography has drawn extensive attention from the literature
[25, 30]. The family of Koblitz curves, proposed by Koblitz in [12], are non-
supersingular curves defined over F2. The arithmetic of Koblitz curves has
been of theoretical and practical significance since the start of elliptic curve
cryptography. 4 Koblitz curves were recommended to be used in digital
signature, key-establishment, and key management by National Institute of
Standards and Technology (NIST) FIPS 186-5(draft) [21]–“digital signature
standard” (October of 2019), NIST special publication 800-56A (revision
3)–“recommendation for pair-wise key-establishment schemes using discrete
logarithm cryptography” [3] (April of 2018), and NIST special publication 800-57
Part 1 (revision 5)–“recommendation for key management, part 1: general” [2]
(May of 2020) respectively. These indicate that Koblitz curves can still be useful
in practice.

Koblitz curves has a computational advantage that a faster scalar multipli-
cation can be achieved by replacing point doubling with the Frobenius map. For
each bit a ∈ {0, 1}, the Koblitz curves are given as

Ea : y2 + xy = x3 + ax2 + 1.

These curves can be considered over the binary extension F2m as m varies.
Since Ea(F2) is a subgroup of Ea(F2m), one sees that |Ea(F2m)| = |Ea(F2)| · p
for some positive integer p. It is of cryptographic interest to choose suitable
m that makes p a prime. In the rest of our discussion, we just consider cases

that p is a prime. In the range of 160 < m < 2000, |E0(F2m)|
|E0(F2)| is a prime when

m = 233, 239, 277, 283, 349, 409, 571, 1249, and 1913, and |E1(F2m)|
|E1(F2)| is a prime

when m = 163, 283, 311, 331, 347, 359, 701, 1153, 1597, and 1621. Four Koblitz
curves with a = 0 have been recommended by NIST [2, 3, 21]: K-233(a = 0),
K-283(a = 0), K-409(a = 0), and K-571(a = 0). Koblitz curves with a = 1 over
F2163 , F2283 , F2359 , and F2701 denoted by K1-163(for legacy-use only), K1-283,
K1-359, and K1-701 respectively are also investigated in this work.

The Frobenius map τ is an endomorphism of Ea(F2m) defined by τ(x, y) =
(x2, y2) and τ(O) = O where O is the point at infinity. Let µ = (−1)1−a, then
for each point P in Ea(F2m),

τ2(P) + 2P = µτ(P).

This means that τ can be interpreted as a complex number satisfying τ2 −
µτ + 2 = 0. The Euclidean domain Z[τ] = Z + τZ can be identified as a set of
endomorphisms of Ea in the sense that (g + hτ)P = gP + hτ(P).

Let M be the main subgroup of Ea(F2m), namely the subgroup of order p.
M is an annihilating subgroup of δ = τm−1

τ−1 in the sense that δ(P) = O for every
P ∈ M . We also note that N(δ) = p where N is the norm function on Z[τ]
defined as N(g + hτ) = |g + hτ |2 = g2 + µgh+ 2h2. It is easy to see that for an
integer n and an element ρ ∈ Z[τ], if ρ ≡ n (mod δ), then ρP = nP holds for
all P ∈M .

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 3

Koblitz [12] proposed a method of computing scalar multiplication nP with

P from the main subgroup of a Koblitz curve by representing n =
∑l−1
i=0 εiτ

i with

εi ∈ {0, 1} and evaluating
∑l−1
i=0 εiτ

i(P). In [27], Solinas further developed an
extremely efficient window τNAF to compute nP . Refinements and extensions
of Solinas’ method were obtained by Blake, Murty and Xu [5,6].

The procedure of window τNAF can be described as four steps [5, 28].

1. Reduction. Find a suitable ρ ∈ Z[τ] satisfying ρ ≡ n (mod δ).
2. Window τNAF with width w. We shall just consider the nontrivial case of
w ≥ 3. Let Iw = {1, 3, . . . , 2w−1− 1}. For each i ∈ Iw, we choose an element
ci from the set Ri = {g + hτ |g + hτ ≡ i (mod τw), N(g + hτ) < 2w}, and
construct the coefficient set C = {c1, c3, . . . , c2w−1−1}. The window τNAF of
n is the following sparse τ expansion of its reduction ρ:

ρ =

l−1∑
i=0

εiuiτ
i,

where εi ∈ {−1, 1} and ui ∈ C ∪ {0} with the property that any set
{uk, uk+1, . . . , uk+w−1} contains at most one nonzero element.

3. Pre-computation. Compute Qi = ciP for each i ∈ Iw.
4. Computing nP . Employ Horner’s algorithm to calculate nP using window
τNAF and pre-computation.

Pre-computation plays a significant role in improving the efficiency of scalar
multiplications using window τNAF. For window τ -NAF with widths w, 2w−2−1
pre-computed points require to be stored in memory. Several ways of designing
pre-computations have been proposed by Solinas [27], Blake, Murty and Xu [5],
and Hankerson, Menezes, and Vanstone [10]. In fact, [5] established a framework
under which pre-computations for window τNAF can be made more flexible.
This framework also enables a rigorous proof of termination of window τNAF.
In [6], the authors investigated fast scalar multiplications for larger family
of elliptic curves by developing non-adjacent radix-τ expansions for integers
in other Euclidean imaginary quadratic number fields. Later, Trost and Xu
[28] introduced an optimal pre-computation of window τNAF that improves
previous results. However, the main objective of the pre-computation in [28] is its
mathematically natural and clean forms. The optimality is based on the fact that
it requires 2w−2 − 1 point additions and two evaluations of the Frobenius map
τ . They employed λ-coordinates [24] to achieve an improvement on performance
of scalar multiplication and provided a convenient structure for further work.

In 2017, Kohel introduced a twisted µ4-normal form elliptic curve over a
binary field for its efficiency in [15]. Kohel proved that twisted µ4-normal form
elliptic curves cover all the elliptic curves over binary fields recommended by
NIST. A Koblitz curve using twisted µ4-normal form is called a µ4-Koblitz
curve. Because of its promising computational advantage, it is of great interest
to consider the use of µ4-Koblitz curves in the window τNAF, especially for the
pre-computation part.

4 Wei Yu and Guangwu Xu

Let us summarize the cost of existing pre-computation schemes for window
τ -NAF with widths w = 4, 5, and 6 on µ4-Koblitz curves (for w = 3, P −µτP is
the only pre-computation). We write I, M, and S for the costs of an inversion, a
multiplication, and a squaring in F2m respectively. The pre-computation scheme
in [27] covers w = 4 and 5 only. The corresponding costs are 15M+15S and
38M+38S with a = 0 and those are 18M+15S and 45M+38S with a = 1.
In [10], w = 4, 5, and 6 are considered. The corresponding costs are 15M+15S,
40M+35S, and 89M+67S with a = 0 and those are 18M+15S, 47M+35S, and
104M+67S with a = 1. The pre-computation scheme constructed in [28] has
improved the above costs to 15M+12S, 39M+20S, and 87M+36S with a = 0
and 18M+12S, 46M+20S, and 102M+36S with a = 1 for w = 4, 5, and 6.

Our contributions The main purpose of this work is twofold. Firstly, we
develop an efficient way of calculating pre-computation for the window τNAF
on Koblitz curves; and secondly, we propose to use a bigger width in the window
τNAF together with our pre-computation to achieve a significant speedup on
scalar multiplication. By using a µ4-Koblitz curve, our results show a great
improvement over previous results. The main contributions are described as
follows.

1. Let τ̄ = µ− τ be the complex conjugate of τ and P be a rational point on a
Koblitz curve. Both Avanzi, Dimitrov, Doche, and Sica [1] and Doche, Kohel,
and Sica [8] used complex multiplication τ̄P in double-base representation to
speed up scalar multiplication. Inspired by their elegant results, we introduce
a new radix µτ̄ . Under this radix, we design new formulas for µτ̄P which only
requires 2M+2S. Trost and Xu proved that one point addition is necessary
for computing each pre-computation point Qi, i ∈ {3, 5, . . . , 2w−1 − 1} [28].
We use µτ̄ -operations to replace point additions or mixed additions in pre-
computation scheme. As the cost of one full addition is 7M+2S and that of
one mixed addition is 6M+2S for a = 0 and those are 8M+2S and 7M+2S
respectively for a = 1, our formulas of µτ̄P save quite a few field operations.
Our formulas for µτ̄P are part of doubling formulas, which may lead to a
simplicity of the implementation.

2. We propose a plane search to generate Ri whose elements are with the
form of g + hµτ . To take full advantage of our µτ̄ -operations, we choose
one suitable ci ∈ Ri for each i ∈ Iw generated by the plane search. A
novel pre-computation scheme is developed to save more field operations.
Our pre-computation scheme requires 6M+6S, 18M+17S, 44M+32S, and
88M+62S (a = 0) and 6M+6S, 19M+17S, 46M+32S, and 90M+62S
(a = 1) for window τNAF with widths from 4 to 7 respectively. The
cost of Solinas’ pre-computation scheme, that of Hankerson, Menezes, and
Vanstone’s pre-computation scheme, that of Trost and Xu’s pre-computation
scheme, and that our pre-computation scheme on µ4-Koblitz curves with
a = 0 and a = 1 are shown in Table 1. The practical implementations
show that our pre-computation is two times faster than Trost and Xu’s pre-
computation and are consistent with our theoretical analysis.

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 5

3. In window τNAF, a bigger window width corresponds to a sparser τ
expansion for scalar multiplication. However, one should not make the
width too big as it would increase the pre-computation cost and affect
the overall performance. Currently, the state-of-the-art pre-computation
scheme suggests to use width at most 6 to achieve the best efficiency of
scalar multiplication. Our pre-computation reduces the cost by half in most
practical cases, namely, scheme with width 7 is about the same as the
cost of existing pre-computation scheme with width 6. This allows us to
use a bigger window width (e.g., 7) to get a faster scalar multiplication.
The balance between the pre-computation part and the other part of scalar
multiplication shows that the pre-computation takes a bigger ratio of scalar
multiplication than before. This is useful especially for scalar multiplication
with unfixed point. Constant-time scalar multiplication using our novel pre-
computation on a µ4-Koblitz curve saves up to 33.5% compared to that using
Trost and Xu’s pre-computation in López-Dahab (LD) coordinates [20],
saves up to 28.6% compared to Trost and Xu’s original work [28], and
saves up to 14.8% compared to Kohel’s work [15] combining Trost and Xu’s
pre-computation. It is about 4 times faster compared to the state-of-the-
art non-pre-computation-based constant-time scalar multiplication in LD
coordinates, about 4 times faster in λ-coordinates, and over 3 times faster
on a µ4-Koblitz curve.

Table 1. Cost of pre-computations on a µ4-Koblitz curve
w = 4 w = 5 w = 6

Solinas [27] 15M+15S 38M+38S -
Hankerson,Menezes,Vanstone [10] 15M+15S 40M+35S 89M+67S

a = 0
Trost, Xu [28] 15M+12S 39M+20S 87M+36S

Ours 6M+6S 18M+17S 44M+32S
Solinas [27] 18M+15S 45M+38S -

Hankerson,Menezes,Vanstone [10] 18M+15S 47M+35S 104M+67S
a = 1

Trost, Xu [28] 18M+12S 46M+20S 102M+36S
Ours 6M+6S 19M+17S 47M+32S

This paper is organized as follows. In Section 2, we present previous pre-
computation schemes of window τNAF for Koblitz curves. In Section 3, we
propose new formulas of P ± Q and µτ̄ -operations. In Section 4, we design
a novel pre-computation. In Section 5, scalar multiplications using different
pre-computation schemes are analyzed. In Section 6, we compare our pre-
computation scheme to other pre-computation schemes and compare scalar
multiplications in experimental implementations. Finally, we discuss our pre-
computation in Section 7.

2 Preliminary

We shall include some technical preparation and three existing designs of pre-
computations in this section.

6 Wei Yu and Guangwu Xu

2.1 Determine τw|(g + hτ)

In the later discussion, we need a convenient criterion to determine whether
τw|(g + hτ) holds in Z[τ]. This can be done by Lucas sequence in [27] or by the
approach suggested in [6] based on Hensel’s lifting procedure [13].

Using Lucas sequence or Hensel’s lifting algorithm, we get s2 = 2µ, s3 = 6µ,
s4 = 6µ, s5 = 6µ, s6 = 38µ, s7 = 38µ, s8 = 166µ, s9 = 422µ, and s10 = 934µ.
When w ≥ 2, sw ≡ 0 (mod 2) and sw/2 is odd.

It has been proved in [6, 27] that for each positive integer w,

τw|(g + hτ)⇔ 2w|(g + hsw). (1)

2.2 Costs of Point Operations on Koblitz Curves

We summarize the costs of point operations on Koblitz curves using LD
coordinates [20], λ-coordinates [24], and those on a µ4-Koblitz curve [15] shown
as Table 2. We neglect the cost of a field addition since it involves only bitwise
XORs.

Table 2. Costs of point operations on Koblitz curves

Coordinates τ(P) τ -affine operation addition mixed addition*

LD coordinates [17,20] 3S 2S 13M+4S 8M+5S
λ-coordinates [24] 3S 2S 11M+2S 8M+2S

µ4-Koblitz curve (a = 0) [14] 4S 3S 7M+2S 6M+2S
µ4-Koblitz curve (a = 1) [15,18] 4S 3S 8M+2S 7M+2S

* Let P , Q be rational points in the main subgroup M . τ(P) is denoted by
τ -affine operation or P + Q is denoted by mixed addition when the Z-
coordinate of P is 1 using LD coordinates, that is 1 using λ-coordinates, or
X2-coordinate of P is 1 on a µ4-Koblitz curve.

Let a ∈ {0, 1}. A Koblitz curve y2 +xy = x3 +ax2 + 1 can be translated into
a µ4-Koblitz curve X2

0 +X2
2 = X1X3 + aX0X2, X2

1 +X2
3 = X0X2 via the map

(x, y) 7→ (x2 : x2 + y : 1 : x2 + y + x) and the inverse is (X0 : X1 : X2 : X3) 7→
(X1 +X3 : X0 +X1 : X2) [15]. The identity of a µ4-Koblitz curve is (1 : 1 : 0 : 1).
The inverse morphism is [−1](X0 : X1 : X2 : X3) = (X0 : X3 : X2 : X1). The
projective point (X0 : X1 : X2 : X3) on a µ4-Koblitz curve can be translated into
an affine point (X0

X2
: X1

X2
: 1 : X3

X2
). τ(X0 : X1 : X2 : X3) = (X2

0 : X2
1 : X2

2 : X2
3)

and τ2(P) + 2P = µτ(P) where µ = (−1)1−a. On a µ4-Koblitz curve, a τ -
operation requires 4S and a τ -affine operation requires 3S.

In particular, µ4-Koblitz curve with a = 0 corresponds to the curve given
in Theorem 4 of [14] with c = 1. In the case of a = 0, one full point addition
requires 7M+2S, one mixed addition requires 6M+2S, and one point addition
with both affine points (X2-components of both summands can be set to 1)
requires 5M+2S [14]. In the case of a = 1, one full point addition requires
8M+2S, one mixed addition requires 7M+2S, and one point addition with both
affine points requires 6M+2S [15, 18].

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 7

The LD coordinates system and λ-coordinates system, proposed by López
and Dahab [20] and by Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez [24]
respectively, are also efficient coordinate systems for binary elliptic curves. In
Appendixes B and C, we will utilize our pre-computation scheme on Koblitz
curves using LD coordinates and λ-coordinates.

2.3 Previous Pre-Computation Schemes

We will consider the efficiency of pre-computation schemes on a µ4-Koblitz curve.

Solinas’ pre-computation [27] Solinas suggested an efficient design of the
pre-computation and gave an example shown in Table 3. Computing Q3 =
−P + τ2P requires one point addition with both affine points and two τ -affine
operations at the total cost of (5M+2S)+6S. The other costs are similarly
computed in Table 3 and in the following pre-computation schemes. The costs
of Solinas’ pre-computation are 15M+15S and 38M+38S with a = 0 and
18M+15S and 45M+38S with a = 1 for window τNAF with widths 4 and
5 respectively.

Table 3. Pre-computation scheme in [27]
a = 0 a = 1 cost(a = 0)

15M+15S
Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S

w = 4
Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S
Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

38M+38S
Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S
Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S
Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

w = 5
Q9 = P + τ3Q5(c9 = −2τ − 3) Q9 = P − τ3Q5(c9 = 2τ − 3) (6M+2S)+12S
Q11 = −τ2Q5 − P (c11 = −2τ − 1) Q11 = −τ2Q5 − P (c11 = 2τ − 1) 6M+2S
Q13 = −τ2Q5 + P (c13 = −2τ + 1) Q13 = −τ2Q5 + P (c13 = 2τ + 1) 6M+2S
Q15 = −P + τ4P (c15 = 3τ + 1) Q15 = −P + τ4P (c15 = −3τ + 1) (5M+2S)+3S

Hankerson, Menezes, and Vanstone’s pre-computation [10] Hankerson,
Menezes, and Vanstone presented an improved design of pre-computation shown
in Table 4. The costs of Hankerson, Menezes, and Vanstone’s pre-computation
are 15M+15S, 40M+35S, and 89M+75S with a = 0 and 18M+15S, 47M+35S,
and 104M+75S with a = 1 for window τNAF with widths 4, 5, and 6
respectively.

Trost and Xu’s pre-computation [28] Trost and Xu proposed a mathemat-
ically natural and clean form of pre-computation. The pre-computation requires
the least number of point additions and τ evaluations. We include their pre-
computation scheme for window τNAF with widths 4, 5, and 6 in Table 5. The
costs are 15M+12S, 39M+20S, and 87M+36S with a = 0 and 18M+12S,
46M+20S, and 102M+36S with a = 1.

8 Wei Yu and Guangwu Xu

Table 4. Pre-computation scheme in [10]

a = 0 a = 1 cost(a = 0)
15M+15S

Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S
w = 4

Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S
Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

40M+35S
Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S
Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S
Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

w = 5
Q9 = P + τ3Q5(c9 = −2τ − 3) Q9 = P − τ3Q5(c9 = 2τ − 3) (6M+2S)+12S
Q11 = −τ2Q5 − P (c11 = −2τ − 1) Q11 = −τ2Q5 − P (c11 = 2τ − 1) 6M+2S
Q13 = −τ2Q5 + P (c13 = −2τ + 1) Q13 = −τ2Q5 + P (c13 = 2τ + 1) 6M+2S
Q15 = −Q5 + τ2Q5(c15 = 3τ + 1) Q15 = −Q5 + τ2Q5(c15 = −3τ + 1) 7M+2S

89M+75S
Q23 = −P − τ3P (c23 = τ − 3) Q23 = −P + τ3P (c23 = −τ − 3) (5M+2S)+9S
Q25 = P − τ3P (c25 = τ − 1) Q25 = P + τ3P (c25 = −τ − 1) 5M+2S
Q27 = −P − τ2P (c27 = τ + 1) Q27 = −P − τ2P (c27 = −τ + 1) 5M+2S
Q29 = P − τ2P (c29 = τ + 3) Q29 = P − τ2P (c29 = −τ + 3) 5M+2S
Q3 = τ2Q25 − P (c3 = 3) Q3 = τ2Q25 − P (c3 = 3) (6M+2S)+8S
Q5 = τ2Q25 + P (c5 = 5) Q5 = τ2Q25 + P (c5 = 5) 6M+2S
Q7 = −τ3Q27 − P (c7 = −2τ − 5) Q7 = τ3Q27 − P (c7 = 2τ − 5) (6M+2S)+12S

w = 6
Q9 = −τ3Q27 + P (c9 = −2τ − 3) Q9 = τ3Q27 + P (c9 = 2τ − 3) 6M+2S
Q11 = τ2Q27 − P (c11 = −2τ − 1) Q11 = τ2Q27 − P (c11 = 2τ − 1) 6M+2S
Q13 = τ2Q27 + P (c13 = −2τ + 1) Q13 = τ2Q27 + P (c13 = 2τ + 1) 6M+2S
Q15 = −τ2Q27 +Q27(c15 = 3τ + 1) Q15 = −τ2Q27 +Q27(c15 = −3τ + 1) 7M+2S
Q17 = −τ2Q27 +Q29(c17 = 3τ + 3) Q17 = −τ2Q27 +Q29(c17 = −3τ + 3) 7M+2S
Q19 = −τ2Q3 − P (c19 = 3τ + 5) Q19 = −τ2Q3 − P (c19 = −3τ + 5) (6M+2S)+8S
Q21 = τ2Q29 + P (c21 = −4τ − 3) Q21 = τ2Q29 + P (c21 = 4τ − 3) (6M+2S)+8S
Q31 = τ2Q25 +Q27(c31 = τ + 5) Q31 = τ2Q25 +Q27(c31 = −τ + 5) 7M+2S

Table 5. Pre-computation scheme in [28]

a = 0 a = 1 cost(a = 0)
15M+12S

Q5 = −P − τP (c5 = −τ − 1) Q5 = −P + τP (c5 = τ − 1) (5M+2S)+3S
w = 4

Q7 = P − τP (c7 = −τ + 1) Q7 = P + τP (c7 = τ + 1) 5M+2S
Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+3S

39M+20S
Q5 = −P − τP (c5 = −τ − 1) Q5 = −P + τP (c5 = τ − 1) (5M+2S)+3S
Q7 = P − τP (c7 = −τ + 1) Q7 = P + τP (c7 = τ + 1) 5M+2S
Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+3S

w = 5
Q9 = Q3 − τP (c9 = −2τ − 3) Q9 = Q3 + τP (c9 = 2τ − 3) 6M+2S
Q11 = Q5 − τP (c11 = −2τ − 1) Q11 = Q5 + τP (c11 = 2τ − 1) 6M+2S
Q13 = Q7 − τP (c13 = −2τ + 1) Q13 = Q7 + τP (c13 = 2τ + 1) 6M+2S
Q15 = −Q11 + τP (c15 = 3τ + 1) Q15 = −Q11 − τP (c15 = −3τ + 1) 6M+2S

87M+36S
Q27 = P + τP (c27 = τ + 1) Q27 = P − τP (c27 = −τ + 1) (5M+2S)+3S
Q25 = −P + τP (c25 = τ − 1) Q25 = −P − τP (c25 = −τ − 1) 5M+2S
Q29 = P − τ2P (c29 = τ + 3) Q29 = P − τ2P (c29 = −τ + 3) (5M+2S)+3S
Q3 = Q29 − τP (c3 = 3) Q3 = Q29 + τP (c3 = 3) 6M+2S
Q9 = −Q29 − τP (c9 = −2τ − 3) Q9 = −Q29 + τP (c9 = 2τ − 3) 6M+2S
Q31 = Q3 − τ2P (c31 = τ + 5) Q31 = Q3 − τ2P (c31 = −τ + 5) 6M+2S
Q5 = Q31 − τP (c5 = 5) Q5 = Q31 + τP (c5 = 5) 6M+2S

w = 6
Q7 = −Q31 − τP (c7 = −2τ − 5) Q7 = −Q31 + τP (c7 = 2τ − 5) 6M+2S
Q11 = −Q27 − τP (c11 = −2τ − 1) Q11 = −Q27 + τP (c11 = 2τ − 1) 6M+2S
Q13 = −Q25 − τP (c13 = −2τ + 1) Q13 = −Q25 + τP (c13 = 2τ + 1) 6M+2S
Q15 = −Q11 + τP (c15 = 3τ + 1) Q15 = −Q11 − τP (c15 = −3τ + 1) 6M+2S
Q17 = −Q9 + τP (c17 = 3τ + 3) Q17 = −Q9 − τP (c17 = −3τ + 3) 6M+2S
Q19 = −Q7 + τP (c19 = 3τ + 5) Q19 = −Q7 − τP (c19 = −3τ + 5) 6M+2S
Q21 = −Q17 − τP (c21 = −4τ − 3) Q21 = −Q17 + τP (c21 = 4τ − 3) 6M+2S
Q23 = −Q3 + τP (c23 = τ − 3) Q23 = −Q3 − τP (c23 = −τ − 3) 6M+2S

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 9

Trost and Xu did not get into field arithmetic details to speed up the
pre-computation. Our main objective of this paper is to design a novel
pre-computation and efficient formulas to achieve a great saving of scalar
multiplication. To implement scalar multiplication, Montgomery trick may be
useful.

2.4 Montgomery Trick

Montgomery trick [7] computes simultaneously the inversions of n elements. It
requires one inversion and 3(n−1) multiplications. Montgomery trick is powerful
to translate points in projective coordinates to those in affine coordinates shown
as Algorithm 1. For n points (X0i : X1i : X2i : X3i), 1 ≤ i ≤ n, we use
Montgomery trick to compute X−1

2i , and then compute (X0i

X2i
: X1i

X2i
: 1 : X3i

X2i
).

This trick translates n projective points on a µ4-Koblitz curve to those in affine
coordinates on a µ4-Koblitz curve. When projective points are converted to affine
points, we replace full point addition with mixed point addition to get a higher
efficiency of scalar multiplication when the ratio of I/M is not too high.

Algorithm 1 Montgomery trick [7]

Input: a1, a2, . . . , an
Output: b1 = a1

−1, b2 = a2
−1, . . . , bn = an

−1

Computation

1. c1 ← a1
2. for i from 2 to n

ci ← ci−1 · ai
3. d← c−1

n

4. for i from n to 2
bi ← ci−1 · d
d← ai · d

5. b1 ← d
6. output bi

In the next section, we will propose new formulas on a µ4-Koblitz curve to
design an efficient pre-computation scheme.

3 New Formulas on µ4-Koblitz Curves

Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 : Y2 : Y3) be rational points on a
µ4-Koblitz curve. Let Uij = XiYj in the following text. Point addition P +Q on
a µ4-Koblitz curve can be calculated as(

(U13 + U31)2 : U02U31 + U20U13 + aF : (U02 + U20)2 : U02U13 + U20U31 + aF
)

10 Wei Yu and Guangwu Xu

where F = (X1 +X3)(Y1 + Y3)(U02 + U20). It also can be calculated as(
(U00 + U22)2 : U00U11 + U22U33 + aG : (U11 + U33)2 : U00U33 + U11U22 + aG

)
where G = (X1 +X3)(Y1 +Y3)(U00 +U22). This point addition requires 9M+2S
and mixed addition requires 8M+2S. The point addition with a = 0 is shown
in Lemma 1 and that with a = 1 is shown in Lemma 2.

Lemma 1 (Corollary 5 in [14]) Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 :
Y2 : Y3) be rational points on a µ4-Koblitz curve with a = 0. Point addition
P +Q can be computed at the cost of 7M+2S as(

(U00 + U22)2 : U00U11 + U22U33 : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00U11 + U22U33) .

Mixed addition costs 6M+2S. Point addition with both affine points costs
5M+2S.

Lemma 2 (Theorem 1 in [18]) Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 :
Y2 : Y3) be rational points on a µ4-Koblitz curve with a = 1. Point addition
P +Q can be computed at the cost of 8M+2S as(

(U00 + U22)2 : U00(U11 +H) + U22(U33 +H) : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00(U11 +H) + U22(U33 +H)) ,

where H = (X1 + X3)(Y1 + Y3). Mixed addition costs 7M+2S. Point addition
with both affine points costs 6M+2S.

Jarvinen, Forsten, and Skytta first proposed P ±Q to improve the efficiency
of scalar multiplication on Koblitz curves in affine coordinates [11]. Longa and
Gebotys used P ± Q to improve the efficiency of pre-computation on elliptic
curves over a prime field [19]. To avoid the expensive inversion, we will show the
formulas of P ±Q on µ4-Koblitz curves in Theorem 1. Avanzi, Dimitrov, Doche,
and Sica [1] first introduced τ̄ to improve the efficiency of scalar multiplication.
They noticed that 2 = τ τ̄ and computed τ̄P requiring a point doubling and
three square roots. Doche, Kohel, and Sica [8] proposed a new way to compute
τ̄P which induces a speedup on the scalar multiplication using double-base
representation over 15% in LD coordinates. Inspired by their works, we introduce
a new radix µτ̄ to speed up the pre-computation stage of scalar multiplication
using window τNAF shown in Theorem 1.

Theorem 1 Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 : Y2 : Y3) be rational
points on a µ4-Koblitz curve. The two operations of P +Q and P −Q ((P ±Q)-
operation) can be computed at the total cost of 10M+3S (a = 0) and 11M+3S
(a = 1) when X2 = 1, and µτ̄P are calculated at the cost of 2M+2S.

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 11

Proof. Let P (X0 : X1 : X2 : X3), Q(Y0 : Y1 : Y2 : Y3), and −Q(Y0 : Y3 : Y2 : Y1).
When a = 0, P +Q and P −Q are computed as

P +Q =
(
(U00 + U22)2 : U00U11 + U22U33 : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00U11 + U22U33) ,

P −Q =
(
(U11 + U33)2 : U02U33 + U20U11 : (U02 + U20)2 :

(U02 + U20)(U11 + U33) + U02U33 + U20U11) .

(2)

Notice that U22 = Y2 and U20 = Y0, the total cost of computing P ± Q is
10M+3S.

When a = 1, P +Q and P −Q are computed as

P +Q =
(
(U00 + U22)2 : U00(U11 +H) + U22(U33 +H) : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00(U11 +H) + U22(U33 +H)) ,

P −Q =
(
(U11 + U33)2 : U02(U33 +H) + U20(U11 +H) : (U02 + U20)2 :

(U02 + U20)(U11 + U33) + U02(U33 +H) + U20(U11 +H)) ,

(3)

where H = (X1 +X3)(Y1 + Y3). Since U22 = Y2 and U20 = Y0, the total cost of
computing P ±Q is 11M+3S.

Notice that 2 = τ τ̄ . We have 2µP = τ(µτ̄P).
It is pointed out that there is one typographical error in Section 6 of [15],

the correct doubling formulas are in Kohel’s slides [16] where 2µP is computed
as (

(X0 +X2)4 : (X0X3 +X1X2)2 : (X1 +X3)4 : (X0X1 +X2X3)2
)
.

Then

µτ̄P =
(
(X0 +X2)2 : (X0X3 +X1X2) : (X1 +X3)2 : (X0X1 +X2X3)

)
. (4)

When a = 0, since (X0X3 +X1X2) = (X0 +X1)(X2 +X3) + (X0 +X2)2 +
(X1 +X3)2 and (X0X1 +X2X3) = (X0 +X2)(X1 +X3) + (X0X3 +X1X2), the
cost of µτ̄P is 2M+2S.

When a = 1, since (X0X3 +X1X2) = (X0 +X1)(X2 +X3) + (X0 +X2)2 and
(X0X1 + X2X3) = (X0 + X2)(X1 + X3) + (X0X3 + X1X2), the cost of µτ̄P is
2M+2S.

Since separate computations of P + Q and P −Q require 12M+4S (a = 0)
and 14M+4S (a = 1), our formulas save 2M+S (a = 0) and 3M+S (a = 1).
In the case of a = 0, using our formulas of P ± Q, Solinas’ pre-computation
scheme saves 2M+S for w = 4 and 4M+2S for w = 5; Hankerson, Menezes, and
Vanstone’s pre-computation scheme saves 2M+S for w = 4, 4M+2S for w = 5,
and 10M+5S for w = 6; Trost and Xu’s pre-computation scheme saves 4M+2S
for w = 6.

12 Wei Yu and Guangwu Xu

Our formulas of µτ̄ -operation save 4M(a = 0) and 5M(a = 1). The costs of
point operations including (P ±Q)-operation and µτ̄P are summarized in Table
6. Notice that formulas of (P ±Q)-operation are the two forms of the formulas of
point addition and formulas of µτ̄P are part of the formulas of point doubling.
This leads to software and hardware implementations with simplicity. These new
efficient point operations will be used to improve the arithmetics on a µ4-Koblitz
curve.

Table 6. Costs of point operations on a µ4-Koblitz curve
Point operation cost (a = 0) cost (a = 1)
(P ±Q)-operation (this work) 10M+3S (Equation (2)) 11M+3S (Equation (3))
µτ̄P (this work) 2M+2S (Equation (4)) 2M+2S (Equation (4))

4 A Novel Pre-Computation Scheme

Solinas’ pre-computation in Section 7.4 of [27], Hankerson, Menezes, and
Vanstone’s pre-computation shown as Tables 3.9 and 3.10 in [10], and Trost and
Xu’s pre-computation shown as Tables 5 and 6 in [28] all have a pre-computation
scheme on E0 and another pre-computation scheme on E1. In this section, we will
introduce a unified pre-computation without treating a = 0 and a = 1 separately.
Our method is to write pre-computations with variable curve coefficient hidden
in µ. Let ci ∈ Ri and ci = g + hµτ for i ∈ Iw. Then Qi = ciP works on
both E0 and E1. We call Qi = ciP a unified pre-computation scheme when ci
has the form g + hµτ for all i ∈ Iw. Trost and Xu’s pre-computation can be
unified. Take w = 4 for example, we have Q5 = −P + µτP , Q7 = P + µτP ,
Q3 = −3P +µτP . Also Solinas’ pre-computation, and Hankerson, Menezes, and
Vanstone’s pre-computation can be unified.

To design an efficient pre-computation, some properties of Ri, i ∈ Iw are
useful.

4.1 Basic Lemmas

Recall that for w ≥ 3, Iw = {1, 3, · · · , 2w−1− 1} and Ri consists of the elements
of the class i modulo τw whose norms are smaller than 2w for each i ∈ Iw. Since
elements of Iw are odd integers, we will work on the subset (2Z+ 1) +Zτ ⊂ Z[τ]
as Ri ⊂ (2Z + 1) + Zτ .

Lemma 3 We have the following facts:

1. If g + hτ ∈ Ri for some i ∈ Iw, then g − hτ /∈ Ri for any h 6= 0.
2. If g + hτ ∈ Ri for some i ∈ Iw, then g′ + hτ /∈ Ri for any g′ ∈ Z \ {g}.
3. For any g + hτ ∈ (2Z + 1) + Zτ , there exists an i ∈ Iw such that i ≡ g + hτ

(mod τw) or −i ≡ g + hτ (mod τw).

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 13

Proof. From [28], we know that if g + hτ ∈ Ri, then |g| < 2
w+2

2√
3

and |h| < 2
w
2 .

(1) Assume both g+hτ and g−hτ are in Ri, then τw|2hτ . By Equation (1),
this implies that 2w|2hsw and hence 2w−2|h as sw

2 is odd. On the other hand,
since N(g ± hτ) < 2w, we see that h2 < 2w−1. This reaches a contradiction.

(2) Assume both g+hτ and g′+hτ are in Ri for some g′ 6= g, then τw|(g−g′).
We get 2w|(g−g′) by Equation (1). Since |g|, |g′| < 2

w+2
2√
3

, then |g−g′| < 2· 2
w+2

2√
3
≤

2w. We get a contradiction again.
(3) Since g + hsw is odd, it must be in one of the congruence classes of

−2w−1 + 1,−2w−1 + 3, . . . ,−3,−1, 1, 3, . . . , 2w−1 − 3, 2w−1 − 1 modulo 2w.

We can show that the number of elements of Ri is well bounded.

Lemma 4 Let i ∈ Iw, then #Ri ≤
⌊
2
w+2

2

⌋
.

Proof. If g+ hτ ∈ Ri, then |h| < 2
w
2 . So the cardinality of T = {h ∈ Z|g+ hτ ∈

Ri for some odd number g} is less than 2 · 2w2 . By Lemma 3, for each h ∈ T ,

there is only one g available such that g+hτ ∈ Ri. Thus #Ri = #T ≤
⌊
2
w+2

2

⌋
.

If g+ h1τ ≡ g+ h2τ (mod τw), then sw(h2 − h1) ≡ 0 (mod 2w). Since sw is
even and sw/2 is odd, h2 = h1 + c · 2w−1. Thus g+ hτ, g+ (h+ 1)τ, . . . , g+ (h+
2w−1 − 1)τ cover all congruence classes Ri and R−i, i ∈ Iw when g is odd. On
average, #Ri is less than 4.62. We have calculated out that #Ri ≤ 3 for i ∈ Iw
and 3 ≤ w ≤ 10.

4.2 Calculating Ri

We propose a plane search to generate Ri, i ∈ Iw, shown as Algorithm 2. For
each g + hµτ ∈ (2Z + 1) + Zτ with N(g + hµτ) = g2 + gh+ 2h2 < 2w, we treat
it as the point (g, h) on the Euclidean plane. To determine whether g + hµτ is
in the set Ri for some i satisfying 2w|g − i + hµsw, we search all points (g, h)

and append g + hµτ to the corresponding Ri where −
⌊

2
w+2

2√
3

⌋
≤ g ≤

⌊
2
w+2

2√
3

⌋
,

−
⌊
2
w
2

⌋
≤ h ≤

⌊
2
w
2

⌋
, and g is odd. We collect all such elements and form a set

C = {ci|ci ∈ Ri, i ∈ Iw}. Then Qi = ciP with ci ∈ C for all i ∈ Iw form a
unified pre-computation. We set the trivial case c1 = 1.

4.3 Our Novel Pre-Computation

We design a novel pre-computation for window τNAF with widths from 4 to 8.

Theorem 2 Let P = (xP , λP) and Qi = (Xi, Λi, Zi) with i ∈ Iw. There exists a
unified pre-computation scheme shown in Tables 7, 14, and 15 requiring 6M+6S,
18M+17S, 44M+32S, 88M+62S, and 186M+123S on a µ4-Koblitz curve with
a = 0 and 6M+6S, 19M+17S, 47M+32S, 93M+72S, and 198M+123S with
a = 1 for window τNAF with widths from 4 to 8 respectively.

14 Wei Yu and Guangwu Xu

Algorithm 2 Plane search to generate Ri, i ∈ Iw
Computation

1. Ri ←<>
2. for g from −

⌊
2
w+2

2√
3

⌋
to

⌊
2
w+2

2√
3

⌋
and g is odd

for h from −
⌊
2
w
2

⌋
to
⌊
2
w
2

⌋
if (2w|g − i+ hµsw) and (g2 + gh+ 2h2 < 2w)

then append (g + hµτ) to Ri

3. output Ri

Table 7. Novel pre-computation for widths from 4 to 6

ci Qi a = 0/a = 1
6M+6S

c5 = −1 + µτ c5 = −µτ̄ Q5 = −µτ̄P 2M+2S
w = 4

c7 = 1 + µτ c7 = µτ̄c5 Q7 = −(µτ̄)2P 2M+2S
c3 = −3 + µτ c3 = −µτ̄c7 Q3 = (µτ̄)3P 2M+2S

18M+17S/19M+17S
c5 = −1 + µτ c5 = −µτ̄ Q5 = −µτ̄P 2M+2S
c7 = 1 + µτ c7 = µτ̄c5 Q7 = −(µτ̄)2P 2M+2S
c3 = −3 + µτ c3 = −µτ̄c7 Q3 = (µτ̄)3P 2M+2S

w = 5
c15 = 1− 3µτ c15 = −µτ̄c3 Q15 = −(µτ̄)4P 2M+2S

c11 = −1 + 2µτ c11 = µτ + c5 Q11 = µτP +Q5 (6M+2S)+3S/(7M+2S) + 3S*

c9 = 3 + µτ c9 = µτ̄c11 Q9 = µτ̄Q11 2M+2S
c13 = −5 + 3µτ c13 = −µτ̄c9 Q13 = −(µτ̄)2Q11 2M+2S

44M+32S/47M+32S
c27 = 1− µτ c27 = µτ̄ Q27 = µτ̄P 2M+2S
c25 = −1− µτ c25 = µτ̄c27 Q25 = (µτ̄)2P 2M+2S
c29 = 3− µτ c29 = −µτ̄c25 Q29 = −(µτ̄)3P 2M+2S
c15 = 1− 3µτ c15 = µτ̄c29 Q15 = −(µτ̄)4P 2M+2S
c21 = −5− µτ c21 = µτ̄c15 Q21 = −(µτ̄)5P 2M+2S
c3 = 3 c3 = µτ + c29 Q3 = µτP +Q29

c9 = −3 + 2µτ c9 = µτ − c29 Q9 = µτP −Q29 (10M+3S)+3S/(11M+3S)+3S*

w = 6
c13 = −1− 3µτ c13 = −µτ̄c9 Q13 = −(µτ̄)Q9 2M+2S
c31 = −7 + µτ c31 = µτ̄c13 Q31 = −(µτ̄)2Q9 2M+2S
c17 = 3− 3µτ c17 = µτ̄c3 Q17 = µτ̄Q3 2M+2S
c11 = −3− 3µτ c11 = µτ̄c17 Q11 = (µτ̄)2Q3 2M+2S
c23 = −1 + 4µτ c23 = µτ − c15 Q23 = µτP −Q15 6M+2S/7M+2S
c19 = −7− µτ c19 = −µτ̄c23 Q19 = −µτ̄Q23 2M+2S
c5 = 5 c5 = −µτ − c21 Q5 = −µτP −Q21 6M+2S/7M+2S
c7 = 5− 5µτ c7 = µτ̄c5 Q7 = µτ̄Q5 2M+2S

* “+3S” is the cost of τP . For window width 6, Q3 and Q9 can be computed as one
(P ±Q)-operation.

Proof. The explicit design of calculating pre-computations for window τNAF
with widths from 4 to 6 is shown as Table 7, for that with width 7 is shown as
Table 14 in Appendix A.1, and for that with width 8 is shown as Table 15 in
Appendix A.2. Let ci = g + hµτ for each i ∈ Iw in Tables 7, 14, and 15. Since
ci = g + hµτ for each i ∈ Iw, our pre-computation scheme for w from 4 to 8 is
unified. Since g + hµsw ≡ i (mod 2w) and N(ci) < 2w for all i ∈ Iw, this novel
pre-computation is correct for window τNAF with widths from 4 to 8.

We show our novel pre-computation for window τNAF with widths 4, 5, and
6 as follows.

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 15

1. w = 4. Q5 = −(µτ̄P), Q7 = −(µτ̄)2P , Q3 = (µτ̄)3P are shown as Table
7. Our pre-computation scheme for window τNAF with width 4 requires
6M+6S.

2. w = 5. Let τP = (xτP , λτP) = (x2
P , λ

2
P). Q5 = −(µτ̄P), Q7 = −(µτ̄)2P ,

Q3 = (µτ̄)3P , Q15 = −(µτ̄)4P , Q11 = µτP + Q5, Q9 = µτ̄Q11, Q13 =
−(µτ̄)2Q11 are shown as Table 7. This pre-computation scheme requires
18M+17S with a = 0 and 19M+17S with a = 1.

3. w = 6. Let τP = (xτP , λτP) = (x2
P , λ

2
P). Q27 = µτ̄P , Q25 = (µτ̄)2P , Q29 =

−(µτ̄)3P , Q15 = −(µτ̄)4P , Q21 = −(µτ̄)5P , (Q3, Q9) = µτP ± Q29 (Q3 =
µτP + Q29, Q9 = µτP − Q29), Q13 = −(µτ̄)Q9, Q31 = −(µτ̄)2Q9, Q17 =
µτ̄Q3, Q11 = (µτ̄)2Q3, Q23 = µτP−Q15, Q19 = −µτ̄Q23, Q5 = −µτP−Q21,
Q7 = µτ̄Q5 are shown as Table 7. This scheme requires 44M+32S with a = 0
and 47M+32S with a = 1.

The explicit computing process and the value of ci for window τNAF with
widths from 4 to 6 are shown as Table 7; those for window τNAF with width 7
are shown as Table 14; and those for window τNAF with width 8 are shown as
Table 15.

For each Qi (i = 3, 5, . . . , 2w−1 − 1), one point addition is necessary. We
employ µτ̄(P) and (P ±Q)-operations to replace point addition which leads to
a speedup of our pre-computation algorithm. Next, we will compare our scheme
with other pre-computation schemes.

4.4 Comparison of Pre-Computation Schemes in M and S

The ratio of I/M and that of S/M both affect the cost of pre-computation
schemes and that of scalar multiplications. Suppose that I/M=10, S/M=0;
or I/M=10, S/M=0.2; or I/M=150, S/M= 0.5. The first two cases are both
suggested by Bernstein and Lange in their explicit-formulas database [4]. The
third case suits for binary fields over desktop architectures embedded with the
carry-less multiplication instruction [9]. The first two ratios are reasonable in
the experiments of our environments shown as Section 6 where I/M=10 and
0.06<S/M<0.12.

The costs of Solinas’ pre-computation scheme, Hankerson, Menezes, and
Vanstone’s pre-computation scheme, Trost and Xu’s pre-computation scheme,
and our pre-computation scheme on the µ4-Koblitz curves with a = 0 and a = 1
for window τNAF are summarized in Table 1. Our pre-computation scheme
is the fastest one among these four pre-computation schemes. Our novel pre-
computation scheme is about two times faster than Trost and Xu’s scheme for
window τNAF with widths 4, 5, and 6 for all three cases.

5 Scalar Multiplications Using Window τNAF on
µ4-Koblitz Curves

Let the costs of pre-computation schemes for window τNAF with width w be
denoted by Prew.

16 Wei Yu and Guangwu Xu

5.1 Expected Costs of Scalar Multiplications

Scalar multiplication using window τNAF has two situations.

1. Scalar multiplication uses pre-computations in projective coordinates. It

requires m τ -operations, m
w+1 ·

2w−2−1
2w−2 point additions, m

w+1 ·
1

2w−2 mixed
additions, and the pre-computation. Scalar multiplication is expected to cost

4mS +
m

w + 1

(
(7 + a)M + 2S− 1

2w−2
M

)
+ Prew.

2. Scalar multiplication uses pre-computations in affine coordinates. This
method fully uses mixed additions and requires Montgomery trick to
translate the pre-computation points in projective coordinates to those
in affine coordinates. It requires m τ -projective operations, m

w+1 mixed
additions, Montgomery trick, and the pre-computation. Scalar multiplication
is expected to cost

4mS +
m

w + 1
((6 + a)M + 2S) + I + (6 · 2w−2 − 9)M + Prew.

For window τNAF with width w, one should choose Case 1 or Case 2 to
compute the scalar multiplication. The selection is not affected by the efficiency
of the pre-computation. For the case of a = 0, the lowest costs of scalar
multiplications on K-233, K-283, K-409, and K-571 using µ4-Koblitz curves
utilizing our pre-computation scheme and Trost and Xu’s pre-computation
scheme are summarized in Table 8. For the case of a = 1, the lowest costs
of scalar multiplications on K1-163, K1-283, K1-359, and K1-701 utilizing
our pre-computation scheme and Trost and Xu’s pre-computation scheme are
summarized in Table 9.

Table 8. The expected costs of scalar multiplications on K-233, K-283, K-409, and
K-571 using µ4-Koblitz curves in M

K-233(w) K-283(w) K-409(w) K-571(w)
τNAF 466 566 818 1142

S=0M Trost, Xu 306.0(5) 363.3(5) 492.3(6) 652.9(6)
Ours 274.9(6) 324.5(6) 444.3(7) 585.4(7)

regular τNAF 683.5 830.1 1199.7 1674.9
S=0.2M Trost, Xu 511.9(5) 612.5(5) 850.1(6) 1149.5(6)

Ours 481(6) 573.4(6) 804.3(7) 1083.1(7)
regular τNAF 1009.7 1226.3 1772.3 2474.3

S=0.5M Trost, Xu 835.2(6) 991.9(6) 1386.8(6) 1894.5(6)
Ours 790.2(6) 946.9(6) 1341.8(6) 1829.8(7)

5.2 Expected Costs of Constant-Time Scalar Multiplications

When a constant running time is required, a regular window τNAF [23], the
improved recoding of zero-free representation [22, 29], is used to implement

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 17

Table 9. The expected costs of scalar multiplications on K1-163, K1-283, K1-359, and
K1-701 using µ4-Koblitz curves in M

K1-163(w) K1-283(w) K1-359(w) K1-701(w)
τNAF 380.3 660.3 837.7 1635.7

S=0M Trost, Xu 259.9(5) 417.4(5) 509.1(6) 896.9(6)
Ours 231.8(6) 367.9(6) 450.6(7) 791.3(7)
τNAF 532.5 924.5 1172.7 2289.9

S=0.2M Trost, Xu 405.2(5) 666.7(5) 824(6) 1505(6)
Ours 377.9(6) 616.9(6) 768.1(7) 1399.5(7)
τNAF 760.7 1320.7 1675.3 3271.3

S=0.5M Trost, Xu 623.1(5) 1040.6(5) 1296.4(6) 2417.3(6)
Ours 594.6(5) 990.3(6) 1239.4(6) 2311.9(7)

scalar multiplication. Scalar multiplication using pre-computations in projective
coordinates requires

4mS +
m

w − 1
((7 + a)M + 2S) + Prew.

Scalar multiplication using pre-computations in affine coordinates requires

4mS +
m

w − 1
((6 + a)M + 2S) + I + (6 · 2w−2 − 9)M + Prew.

We summarize the lowest costs of constant-time scalar multiplications using
our pre-computation scheme and Trost and Xu’s pre-computation scheme on
curves with a = 0 in Table 10 and on curves with a = 1 in Table 11. Our pre-
computation saves 9M+6S with a = 0 and 12M+6S with a = 1 for w = 4,
21M+3S with a = 0 and 27M+3S with a = 1 for w = 5, 43M+4S with
a = 0 and 55M+4S with a = 1 for w = 6, compared to the state-of-the-art
pre-computation. Our pre-computation scheme only requires 88M+62S with
a = 0 and 93M+62S with a = 1 for w = 7, and 186M+123S with a = 0 and
198M+123S with a = 1 for w = 8. Since constant-time scalar multiplication
usually uses window τNAF with a bigger window width, the ratios of the
improvements of scalar multiplication become higher.

Table 10. The expected costs of constant-time scalar multiplications on K-233, K-283,
K-409, and K-571 using µ4-Koblitz curves in M

K-233(w) K-283(w) K-409(w) K-571(w)
regular τNAF 1398 1698 2454 3426

S=0M Trost, Xu 413.2(6) 483.2(6) 659.6(6) 869.2(6,M)
Ours 359.8(7) 418.2(7) 565.2(7) 754.2(7)

regular τNAF 1677.6 2037.6 2944.8 4111.2
S=0.2M Trost, Xu 625.4(6) 739.4(6) 1026.7(6) 1378.9(6,M)

Ours 574.2(7) 675.8(7) 932(7) 1261.4(7)
regular τNAF 2097 2547 3681 5139

S=0.5M Trost, Xu 943.8(6) 1123.8(6) 1577.4(6) 2160.6(6)
Ours 895.7(7) 1062.3(7) 1482.3(7) 2022.3(7)

If we use Montgomery trick, we denote it by M. This notation is also used
in the following tables.

18 Wei Yu and Guangwu Xu

Table 11. The expected costs of constant-time scalar multiplications on K1-163, K1-
283, K1-359, and K1-701 using µ4-Koblitz curves in M

K1-163(w) K1-283(w) K1-359(w) K1-701(w)
regular τNAF 1141 1981 2513 4907

S=0M Trost, Xu 362.8(6) 554.8(6) 676.4(6) 1180.4(6,M)
Ours 307.8(6) 470.3(7) 571.7(7) 999.1(8)

regular τNAF 1336.6 2320.6 2943.8 5748.2
S=0.2M Trost, Xu 513.4(6) 811(6) 999.5(6) 1804.5(6,M)

Ours 457.6(6) 728(7) 895.2(7) 1624.6(8)
regular τNAF 1630 2830 3590 7010

S=0.5M Trost, Xu 739.4(6) 1195.4(6) 1484.2(6) 2783.8(6)
Ours 682.4(6) 1114.5(7) 1380.5(7) 2562.8(8)

6 Experiments

Miracl lib [26] is used to implement field arithmetics over F2m . Our experiments
are tested by C++ programs compiled by Microsoft visual studio 2015. The
processor is Intelr CoreTM i7-6567U 3.3 GHZ with Skylake architecture and the
operating system is 64-bit Windows 10.

6.1 Pre-Computation Schemes on µ4-Koblitz Curves

We run each pre-computation scheme 1000 times on six Koblitz curves. The time
costs of pre-computation schemes on K1-163, K-233, K-283, K1-283, K-409, and
K-571 using µ4-Koblitz curves for window τNAF with widths from 4 to 6 are
shown in Table 12.

Table 12. Time costs of pre-computations on K1-163, K-233, K-283, K1-283, K-409,
and K-571 using µ4-Koblitz curves in µs

K1-163 K-233 K-283 K1-283 K-409 K-571
Solinas 4.4 5.36 7.08 8.36 10.48 12.35

Hankerson, Menezes, Vanstone 4.4 5.36 7.08 8.36 10.48 12.35
w = 4

Trost, Xu 4.36 5.28 6.52 7.64 10 11.76
Ours 1.76 2.24 3.04 3.4 4.5 5.432

Solinas 11.24 13.68 17.6 20.72 27.86 31.81
Hankerson, Menezes, Vanstone 11.52 14.04 18.32 20.92 29.12 33.77

w = 5
Trost, Xu 10.88 13.28 17.56 20.36 27.47 31.75

Ours 4.96 6.44 8.36 9.16 13.5 15.2
Hankerson, Menezes, Vanstone 25.16 30.68 40.48 46.36 63.83 73.64

w = 6 Trost, Xu 24.88 30.36 39.24 45.28 62.96 71.89
Ours 11.44 15.32 19.96 21.16 31.72 36.54

Our pre-computation scheme is about two times faster than Trost and Xu’s
scheme. Within the bounds of the error, the practical implementations are
consistent with the theoretical analysis. The reason of some tiny differences is
that a few field additions were ignored, that the number of temporary variables
affects the performance, and that the ratio of S/M is about 0.06 to 0.12 which
depends on the size of the binary field.

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 19

6.2 Scalar Multiplications on µ4-Koblitz Curves

The costs of constant-time scalar multiplications on K1-163, K-233, K-283, K1-
283, K-409, and K-571 using µ4-Koblitz curves are shown in Table 13. Our
constant-time scalar multiplication is over 3 times faster, compared to the state-
of-the-art non-pre-computation-based constant-time scalar multiplication. The
constant-time scalar multiplication using our pre-computation on µ4-Koblitz
curves runs in 85.6%, 88.7%, 87.9%, 85.2%, 87.7%, and 87.9% the time of that
using Trost and Xu’s pre-computation on µ4-Koblitz curves. The experimental
results also show that the lowest constant-time scalar multiplication using our
pre-computation usually employs width 7, and that using Trost and Xu’s pre-
computation usually employs width 6.

Table 13. Time cost of scalar multiplications using µ4-Koblitz curves in µs
K1-163(w) K-233(w) K-283(w) K1-283(w) K-409(w) K-571(w)

τNAF 70.42 98.6 171.9 167.3 384.2 424.6
Trost, Xu 48.9(5) 70.23(5) 114.9(5) 132.1(5) 225(6) 268.4(6)

Ours 44.75(6) 64.05(6) 104.3(6) 117.8(6) 207.4(7) 243.3(7)
regular τNAF 173.7 265.6 432.4 491.8 860.1 1038.5

Trost, Xu 63.95(6) 88.7(6) 143.6(6) 164.8(6) 283.6(6) 336.2(6,M)constant-time
Ours 54.77(6) 78.67(7) 126.2(7) 140.5(7) 248.8(7) 294.7(7)

7 Conclusion

In the previous works of scalar multiplication using window τNAF [10,22,23,27–
29], the authors employed a window τNAF with width at most 6. From Tables
8, 9, 10, 11, and 13, scalar multiplication using our pre-computation usually
employs a bigger window width (e.g., 7) to achieve a lower cost of the total
scalar multiplication.

In Appendix B, we employed our pre-computation scheme on Koblitz
curves using LD coordinates. Our pre-computation scheme requires 5M+6S,
19M+19S, 51M+40S, 99M+76S, and 214M+158S when a = 0, and 5M+3S,
19M+13S, 51M+29S, 99M+53S, and 214M+113S when a = 1 using LD
coordinates for window τNAF with widths from 4 to 8 respectively. Constant-
time scalar multiplication using Trost and Xu’s pre-computation requires 74.35,
109.4, 189.8, 357.9, and 433.1 µs on K1-163, K-233, K-283/K1-283, K-409, and K-
571 respectively. Non-pre-computation-based constant-time scalar multiplication
216.3, 339.7, 547.8, 1078.3, and 1330.6 µs on these curves. These experimental
results show that constant-time scalar multiplication using our pre-computation
on µ4-Koblitz curves runs in 73.7%, 71.9%, 66.5%, 74%, 69.5%, and 68%
the time of Trost and Xu’s work on K1-163, K-233, K-283, K1-283, K-409,
and K-571 respectively where they used LD coordinates to perform scalar
multiplication. Our scalar multiplication on µ4-Koblitz curves is about 4 times
faster than non-pre-computation-based constant-time scalar multiplication in
LD coordinates and saves up to 33.5% on the scalar multiplication compared to
scalar multiplication using Trost and Xu’s pre-computation in LD coordinates.

20 Wei Yu and Guangwu Xu

In Appendix C, we employed our pre-computation scheme on Koblitz curves
using λ-coordinates. The costs of our pre-computation scheme are 7M+5S,
26M+16S, 66M+36S, 135M+72S, and 282M+148S using λ-projective coor-
dinates for window τNAF with widths from 4 to 8 respectively. Constant-time
scalar multiplication using Trost and Xu’s pre-computation requires 71.21, 102.2,
176.7, 335.9, and 402.5 µs on K1-163, K-233, K-283/K1-283, K-409, and K-
571 respectively. Non-pre-computation-based constant-time scalar multiplication
211.7, 332.3, 540.8, 1065.2, and 1316.1 µs on these curves. These experimental
results show that constant-time scalar multiplication using our pre-computation
on µ4-Koblitz curves runs in 76.9%, 77%, 71.4%, 79.5%, 74.1%, and 73.2% the
time of Trost and Xu’s work on K1-163, K-233, K-283, K1-283, K-409, and K-
571 respectively where they used λ-coordinates to perform scalar multiplication.
Based on our novel pre-computation, the efficient arithmetics on µ4-Koblitz
curves, and a bigger window width, our scalar multiplication on µ4-Koblitz
curves is about 4 times faster than non-pre-computation-based constant-time
scalar multiplication in λ-coordinates and can save up to 28.6% on the scalar
multiplication compared to [28].

It is noted that the arithmetic of Koblitz curves has been of theoretical and
practical importance since the start of elliptic curve cryptography. Our results
make a significant progress on the scalar multiplication for Koblitz curves which
is a long-standing and well-studied area.

The idea of using µτ̄ to design an efficient pre-computation scheme and using
a window τNAF with a bigger window width to improve the efficiency of scalar
multiplication can be extended to Koblitz curves over F3m and Fqm for some
small primes q ≥ 5. The efficient µτ̄ -operations can also be used to speed up
scalar multiplication utilizing double-base chain [30] and double-base number
system [1], and to speed up multi-scalar multiplication utilizing double-base
number system [8].

Acknowledgments

The authors would like to thank the anonymous reviewers for many helpful
comments and thank Bao Li, Kunpeng Wang, Xianhui Lu, and Song Tian
for their helpful suggestions. This work is supported by the National Natural
Science Foundation of China (No. 61872442 and U1936209), by National
Key Research and Development Program of China (No. 2018YFA0704702),
and by Department of Science and Technology of Shandong Province of
China (No. 2019JZZY010133). W. Yu is supported by Beijing Municipal
Science & Technology Commission (No. Z191100007119006), by the National
Cryptography Development Fund (No. MMJJ20180216), and by the National
Natural Science Foundation of China (No. 61772515 and 61502487).

References

1. Avanzi R.M., Dimitrov V.S., Doche C., Sica F.: Extending scalar multiplication
using double bases. ASIACRYPT 2006. LNCS, vol. 4284, pp. 130-144. Springer,

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 21

Heidelberg, 2006.
2. Barker E.: Draft NIST special publication 800-57 part 1 revision 5

– recommendation for key management, part 1: general. May 2020.
https://doi.org/10.6028/NIST.SP.800-57pt1r5

3. Barker E., Chen L., Roginsky A., Vassilev A., Davis R.: NIST spe-
cial publication 800-56A revision 3 – recommendation for pair-wise key-
establishment schemes using discrete logarithm cryptography. April 2018.
https://doi.org/10.6028/NIST.SP.800-56Ar3

4. Bernstein D.J., Lange T.: Explicit-formulas database, 2020,
http://hyperelliptic.org/EFD/

5. Blake I., Murty V., Xu G.: A note on window τ -NAF algorithm, Inf. Process. Lett.,
vol. 95, no. 5, pp. 496-502, 2005.

6. Blake I., Murty V., Xu G.: Nonadjacent radix-τ expansions of integers in Euclidean
imaginary quadratic number fields, Canadian J. Math., vol. 60, pp. 1267-1282,
2008.

7. Bos J., Lenstra A., Te Riele H., Shumow D.: Introduction. In Bos J.
and Lenstra A.(Eds.), Topics in Computational Number Theory Inspired by
Peter L. Montgomery (pp. 1-9). Cambridge: Cambridge University Press.
doi:10.1017/9781316271575.002, October, 2017.

8. Doche C., Kohel D.R., Sica F.: Double Base Number System for multi scalar
multiplications. EUROCRYPT 2009. LNCS, vol. 5479, pp. 502-517. Springer,
Heidelberg, 2009.

9. Gueron S., Kounavis M.: Intel carry-less multiplication instruction and
its usage for computing the GCM mode, Revision 2.02, Intel, April
2014. https://software.intel.com/sites/default/files/managed/72/cc/

clmul-wp-rev-2.02-2014-04-20.pdf

10. Hankerson D., Menezes A., Vanstone S.: Guide to elliptic curve cryptography. New
York, NY, USA: Springer-Verlag, 2004.

11. Jarvinen K., Forsten J., Skytta J.: FPGA Design of Self-certified Signature
Verification on Koblitz Curves. CHES 2007, LNCS, vol. 4727, pp. 256-271.
Springer, Heidelberg, 2007.

12. Koblitz N.: CM-curves with good cryptographic properties, in Proc. 11th Annu.
Int. Cryptol. Conf. Adv. Cryptol., pp. 279-287, 1992.

13. Koblitz N.: p-adic numbers, p-adic analysis, and zeta-functions. New York, NY,
USA: Springer, 1996.

14. Kohel D.: Efficient arithmetic on elliptic curves in characteristic 2, 2016. https:
//arxiv.org/abs/1601.03669

15. Kohel D.: Twisted µ4-Normal Form for Elliptic Curves. EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 659-678. Springer, Heidelberg, 2017.

16. Kohel D.: Twisted µ4-normal form for elliptic curves. EUROCRYPT 2017, Paris,
2017. https://eurocrypt.iacr.org/2017/slides/A03-twisted.pdf

17. Lange, T.: A note on Lopez-Dahab coordinates. Cryptology ePrint Archive, Report
2004/323 (2004). https:https://eprint.iacr.org/2004/323.pdf

18. Li W., Yu W. Li B., Fan X.: Speeding up scalar multiplication on Koblitz
curves using µ4 coordinates. ACISP 2019, LNCS, vol. 11547, pp. 1-10. Springer,
Heidelberg, 2019.

19. Longa P., Gebotys C.: Novel precomputation schemes for elliptic curve
cryptosystems, ACNS 2009, LNCS, vol. 5536, pp. 71-88. Springer, Heidelberg, 2009.

20. López J., Dahab R.: Improved algorithms for elliptic curve arithmetic in GF (2n),
in Proc. Selected Areas Cryptography, LNCS, vol. 1556, pp. 201-212, 1998.

http://hyperelliptic.org/EFD/
 https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
 https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
 https://arxiv.org/abs/1601.03669
 https://arxiv.org/abs/1601.03669
https://eurocrypt.iacr.org/2017/slides/A03-twisted.pdf

22 Wei Yu and Guangwu Xu

21. National Institute of Standards and Technology(NIST).: Digital
signature standard(DSS). FIPS PUB 186-5(Draft). 2019 October.
https://doi.org/10.6028/NIST.FIPS.186-5-draft

22. Okeya K., Takagi T., Vuillaume C.: Efficient representations on Koblitz curves
with resistance to side channel attacks. ACISP 2005, LNCS, vol. 3574, pp. 218-
229. Springer, Heidelberg, 2005.

23. Oliveira T., Aranha D.F., López J., Rodŕıguez-Henŕıquez F.: Fast Point
Multiplication Algorithms for Binary Elliptic Curves with and without
Precomputation. SAC 2014, LNCS, vol. 8781, pp. 324-344. Springer, Heidelberg,
2014.

24. Oliveira T., López J., Aranha D.F., Rodŕıguez-Henŕıquez F.: Two is the fastest
prime: Lambda coordinates for binary elliptic curves, J. Cryptography Eng. vol. 4,
no. 1, pp. 3-7, 2014.

25. Renes J., Costello C., Batina L.: Complete addition formulas for prime order
elliptic curves. EUROCRYPT 2016, LNCS, vol. 9665, pp. 403-428. Springer, Berlin,
Heidelberg 2016.

26. Scott M.: MIRACL-Multiprecision integer and rational arithmetic cryptographic
library, C/C++ Library, https://github.com/miracl/MIRACL

27. Solinas J.: Efficient arithmetic on Koblitz curves, Des., Codes Cryptography, vol.
19, pp. 195-249, 2000.

28. Trost W. and Xu G.: On the optimal pre-computation of window τNAF for Koblitz
curves. IEEE Transactions on Computers. Vol. 65, No. 9. pp. 2918-2924, September
2016.

29. Vuillaume C., Okeya K., Takagi T.: Defeating simple power analysis on Koblitz
curves. IEICE Transactions on Fundamentals of Electronics Communications and
Computer Sciences, E89-A(5), pp. 1362-1369, 2006.

30. Yu W., Al Musa S., Li B.: Double-base chain for scalar multiplication.
EUROCRYPT 2020, Part III, LNCS, vol. 12107, pp. 538-565. Springer, Heidelberg,
2020.

A Pre-Computation for Window τNAF with Widths 7
And 8

A.1 Pre-Computation for Window Width w = 7

Our pre-computation on a µ4-Koblitz curve for window τNAF with width 7 is
shown in Table 14. The cost of this pre-computation is 88M+62S with a = 0
and 93M+62S with a = 1.

A.2 Pre-Computation for Window Width w = 8

Our pre-computation on a µ4-Koblitz curve for window τNAF with width 8 is
shown in Table 15. The cost of this pre-computation is 186M+123S with a = 0
and 198M+123S with a = 1.

https://github.com/miracl/MIRACL

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 23

Table 14. Novel pre-computation for w = 7

ci Qi a = 0/a = 1
88M+62S/93M+62S

c37 = −1 + µτ c37 = −µτ̄ Q37 = −µτ̄P 2M+2S
c39 = 1 + µτ c39 = µτ̄c37 Q39 = −(µτ̄)2P 2M+2S
c35 = −3 + µτ c35 = −µτ̄c39 Q35 = (µτ̄)3P 2M+2S
c15 = 1− 3µτ c15 = −µτ̄c35 Q15 = −(µτ̄)4P 2M+2S
c43 = 5 + µτ c43 = −µτ̄c15 Q43 = (µτ̄)5P 2M+2S
c53 = 1− 2µτ c53 = µτ + c15 Q53 = µτP +Q15

c23 = −1 + 4µτ c23 = µτ − c15 Q23 = µτP −Q15 (10M+3S) + 3S/(11M+3S) + 3S
c41 = 3 + µτ c41 = −µτ̄c53 Q41 = −µτ̄Q53 2M+2S
c19 = 5− 3µτ c19 = µτ̄c41 Q19 = −(µτ̄)2Q53 2M+2S

c63 = 1 + 5µτ c63 = −µτ̄c19 Q63 = (µτ̄)3Q53 2M+2S
c27 = −11 + µτ c27 = −µτ̄c63 Q27 = −(µτ̄)4Q53 2M+2S
c45 = 7 + µτ c45 = µτ̄c23 Q45 = µτ̄Q23 2M+2S
c3 = 3 c3 = µτ − c35 Q3 = µτP −Q35

c55 = 3− 2µτ c55 = −µτ − c35 Q55 = −µτP −Q35 10M+3S/11M+3S
c17 = 3− 3µτ c17 = µτ̄c3 Q17 = µτ̄Q3 2M+2S
c11 = −3− 3µτ c11 = µτ̄c17 Q11 = (µτ̄)2Q3 2M+2S
c13 = −1− 3µτ c13 = µτ̄c55 Q13 = µτ̄Q55 2M+2S
c31 = −7 + µτ c31 = µτ̄c13 Q31 = (µτ̄)2Q55 2M+2S
c5 = 5 + 7µτ c5 = µτ̄c31 Q5 = (µτ̄)3Q55 2M+2S
c51 = −1− 2µτ c51 = µτ + c13 Q51 = µτP +Q13

c25 = 1 + 4µτ c25 = µτ − c13 Q25 = µτP −Q13 10M+3S/11M+3S
c33 = −5 + µτ c33 = µτ̄c51 Q33 = µτ̄Q51 2M+2S
c59 = −3 + 5µτ c59 = µτ̄c33 Q59 = (µτ̄)2Q51 2M+2S
c7 = −7− 3µτ c7 = −µτ̄c59 Q7 = −(µτ̄)3Q51 2M+2S
c29 = −9 + µτ c29 = −µτ̄c25 Q29 = −µτ̄Q25 2M+2S
c49 = −3− 2µτ c49 = −µτ − c41 Q49 = −µτP −Q41 6M+2S/7M+2S
c21 = 7− 3µτ c21 = −µτ̄c49 Q21 = −µτ̄Q49 2M+2S
c9 = −1 + 7µτ c9 = −µτ̄c21 Q9 = (µτ̄)2Q49 2M+2S
c57 = 5− 2µτ c57 = −µτ − c33 Q57 = −µτP −Q33 6M+2S/7M+2S
c61 = −1 + 5µτ c61 = −µτ̄c57 Q61 = −µτ̄Q57 2M+2S
c47 = 9 + µτ c47 = µτ̄c61 Q47 = −(µτ̄)2Q57 2M+2S

B Our Pre-Computation Scheme on Koblitz Curves
Using LD Coordinates

A projective point P = (X : Y : Z) in LD coordinates on an elliptic curve
E/F2m can be converted to an affine point (XZ ,

Y
Z2) [20]. Let P = (xP , yP).

The projective LD coordinates of P are (XP , YP , ZP) where xP = XP
ZP

and

yP = YP
Z2
P

. We have −(xP , yP) = (xP , xP + yP), −(XP , YP , ZP) = (XP , XPZP +

YP , ZP), τ(xP , yP) = (x2
P , y

2
P), and τ(XP , YP , ZP) = (X2

P , Y
2
P , Z

2
P). Let P =

(XP , YP , ZP) and Q = (XQ, YQ, ZQ). Point addition P + Q = (xP+Q, λP+Q)
with ZP = 1 was given in Section 3 of [17] as

A = Z2
QYP + YQ,B = ZQXP +XQ, C = ZQB,

ZP+Q = C2, D = ZP+QXP , E = XP + YP ,

XP+Q =A2 + C(A+B2 + aC),

YP+Q = (D+XP+Q)(AC + ZP+Q) + Z2
P+QE.

One full point addition costs 13M+4S, one mixed point addition costs 8M+5S,
and one point addition with both affine points costs 5M+5S. Furthermore,

24 Wei Yu and Guangwu Xu

evaluation of −P costs 1M, evaluation of τ(P) costs 3S, and τ -affine operation
requires 2S.

B.1 New Formulas Using LD Coordinates

New formulas for P ± Q We introduce efficient formulas of P ± Q in LD
coordinates by Theorem 5.

Theorem 3 Let P = (xP , yP) and Q = (XQ, YQ, ZQ) where P 6= ±Q. Notice
that −Q = (XQ, XQZQ+YQ, ZQ). The two operations of P+Q and P−Q ((P±
Q)-operation) can be computed as Equation (5) at the total cost of 12M+6S.

A =Z2
QYP + YQ, B = ZQXP +XQ, C = ZQB 3M+S

ZP+Q =ZP−Q = C2 S

D =ZP+QXP , E = XP + YP , F = AC 2M

XP+Q =A2 + C(A+B2 + aC) M+2S

YP+Q =(D +XP+Q)(F + ZP+Q) + Z2
P+QE 2M+S

G =XQZQC,H = (XQZQ)2 +G 2M+S

XP−Q =XP+Q +H

YP−Q =YP+Q +H(G+ F + ZP+Q) + (D +XP+Q)G 2M

(5)

Theorem 4 ([8]) Let P = (XP , YP , ZP) in LD coordinates. µτ̄P can be
computed as

Xµτ̄P =(XP + ZP)2

Zµτ̄P =XPZP

Yµτ̄P =(YP + (1− a)Xµτ̄P)(YP + aXµτ̄P + Zµτ̄P) + (1− a)Z2
µτ̄P

at the cost of 2M+2S with a = 0 and 2M+S with a = 1 when ZP 6= 1 and at
the cost of M+2S with a = 0 and M+S with a = 1 when ZP = 1. The cost of
−µτ̄P is the same as that of µτ̄P .

B.2 Pre-Computation Schemes Using LD Coordinates

Our pre-computation scheme for window τNAF in LD coordinates is the same
as that on a µ4-Koblitz curve. Our pre-computation scheme requires 5M+6S,
19M+19S, 51M+40S, 99M+76S, and 214M+158S when a = 0, and 5M+3S,
19M+13S, 51M+29S, 99M+53S, and 214M+113S when a = 1 using LD
coordinates for window τNAF with widths from 4 to 8 respectively.

The costs of different pre-computation schemes for window τNAF with
widths from 4 to 6 are summarized in Table 16. Trost and Xu’s pre-computation
scheme requires 15M+19S, 48M+39S, and 120M+79S for w = 4, 5, and 6. Both
theoretical analysis and experimental results show that our pre-computation
scheme is about 2.4 times faster than Trost and Xu’s scheme using LD
coordinates.

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 25

B.3 Scalar Multiplications Using Window τNAF in LD Coordinates

The Montgomery trick transferring n pre-computations in LD coordinates to
affine coordinates costs I+(5n − 3)M+nS. Let the costs of pre-computation
schemes for window τNAF with width w be denoted by PreLDw.

Constant-time scalar multiplication using window τNAF has two situations.

1. Scalar multiplication uses pre-computations in LD coordinates. It requires
m τ -operations, m

w−1 point additions, the pre-computation, and negative of
the pre-computation. Scalar multiplication is expected to cost

3mS +
m

w − 1
(13M + 4S) + PreLDw + (2w−2 − 1)M.

2. Scalar multiplication uses pre-computations in affine coordinates. It requires
m τ -projective operations, m

w−1 mixed additions, Montgomery trick, and the
pre-computation. Scalar multiplication is expected to cost

3mS +
m

w − 1
(8M + 5S) + I + (5 · 2w−2 − 8)M + (2w−2 − 1)S + PreLDw.

We summarize the lowest costs of constant-time scalar multiplications on
K1-163, K-233, K-283, K1-283, K-409, and K-571 using our pre-computation
scheme in Table 17. Our experimental results show that our constant-time scalar
multiplication on Koblitz curves using LD coordinates saves up to 10% compared
to Trost and Xu’s work using LD coordinates.

C Our Pre-Computation Scheme on Koblitz Curves
Using λ-Coordinates

Given an affine point P = (x, y) on an elliptic curve E/F2m , its lambda
representation is (x, λ) with λ = x+ y

x [24]. Let P = (xP , λP) with λP = xP+ yP
xP

.
The λ-coordinates of −P are (xP , λP + 1). The λ-projective coordinates of P
are (XP , ΛP , ZP) where xP = XP

ZP
and λP = ΛP

ZP
. We have τ(xP , λP) = (x2

P , λ
2
P)

and τ(XP , ΛP , ZP) = (X2
P , Λ

2
P , Z

2
P). Let P = (xP , λP) and Q = (xQ, λQ). Point

addition P +Q = (xP+Q, λP+Q) was given in Section 3.1 of [24] as{
xP+Q =

xP xQ
(xP+xQ)2 (λP + λQ),

λP+Q =
xQ(xP+Q+xP)2

xP+QxP
+ λP + 1.

One full point addition costs 11M+2S, one mixed point addition costs 8M+2S
and one point addition with both affine points costs 5M+2S. Furthermore,
evaluation of τ(P) costs 3S and τ -affine operation requires 2S.

C.1 New Formulas Using λ-Coordinates

New formulas for P ± Q We introduce efficient formulas of P ± Q in λ-
projective coordinates by Theorem 5.

26 Wei Yu and Guangwu Xu

Theorem 5 Let P = (xP , λP) and Q = (XQ, ΛQ, ZQ) where P 6= ±Q. Notice
that −Q = (XQ, ΛQ+ZQ, ZQ). The two operations of P+Q and P−Q ((P±Q)-
operation) can be computed as Equation (6) at the total cost of 12M+5S.

A =λPZQ + ΛQ M

B =(xPZQ +XQ)2 M+S

C =XQZQ M

D =xPC M

XP+Q =A2D M+S

ZP+Q =BAZQ 2M

ΛP+Q =(AXQ +B)2 + ZP+Q(λP + 1) 2M+S

XP−Q =XP+Q +DZ2
Q M+S

ZP−Q =ZP+Q +BZ2
Q M

ΛP−Q =ΛP+Q + C2 +BZ2
Q(λP + 1) M+S

(6)

Formulas for µτ̄ -operations An efficient formula for µτ̄P in λ-coordinates
has been obtained in Section 4 of [28] under the form of P − µτP . We shall

use their formula µτ̄P =
(
x2
P+1
xP

,
x2
P

x2
P+1

+ λP

)
with P = (xP , λP). Formulas for

(µτ̄)2P and (µτ̄)3P were also reported in Section 4 of [28] under the form of
P + µτP and P − τ2P , however in [28], these formulas were not based on the
one for µτ̄P . We can get a good improvement by designing efficient formulas of
(µτ̄)iP by utilizing (µτ̄)i−1P if it is already computed.

Theorem 6 Let P = (XP , ΛP , ZP). µτ̄P and (µτ̄)iP, i ≥ 2 can be computed at
the cost of 5M+3S and 3M+2S respectively.

Proof. 1. By µτ̄P =
(
x2
P+1
xP

,
x2
P

x2
P+1

+ λP

)
in Section 4.1 of [28], we have

µτ̄P =

(
(XPZP)2 + 1

XP
ZP

,
(XPZP)2

(XPZP)2 + 1
+
ΛP
ZP

)
.

Then µτ̄P can be calculated as Equation (7) at the cost of 5M+3S.

α =XPZP M

A1 =X2
P + Z2

P 2S

Xµτ̄P =A2
1 S

Λµτ̄P =αX2
P +XPΛPA1 3M

Zµτ̄P =A1α M

(7)

2. The values for computing previous point operations are utilized to compute a
new point operation in [19,28]. Motivated by their trick, some values for com-
puting µτ̄P are used to compute (µτ̄)2P . Let µτ̄P = (Xµτ̄P , Λµτ̄P , Zµτ̄P)

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 27

be computed as Equation (7) where xµτ̄P = A1

α . Notice that (µτ̄)2P =
µτ̄(µτ̄P). We have

(µτ̄)2P =

(
x2
µτ̄P + 1

xµτ̄P
,

x2
µτ̄P

x2
µτ̄P + 1

+ λµτ̄P

)

=

(
A2

1 + α2

A1α
,

A2
1

A2
1 + α2

+
Λµτ̄P
Zµτ̄P

)
=

(
Xµτ̄P + α2

Zµτ̄P
,

Xµτ̄P

Xµτ̄P + α2
+
Λµτ̄P
Zµτ̄P

)
.

Then (µτ̄)2P can be computed as Equation (8) at the cost of 3M+2S.

A2 =Xµτ̄P + α2 S

X(µτ̄)2P =A2
2 S

Λ(µτ̄)2P =Xµτ̄PZµτ̄P + Λµτ̄PA2 2M

Z(µτ̄)2P =Zµτ̄PA2 M

(8)

3. When i ≥ 3, (µτ̄)iP = µτ̄((µτ̄)i−1P). We have

(µτ̄)iP =

(
x2

(µτ̄)i−1P + 1

x(µτ̄)i−1P
,

x2
(µτ̄)i−1P

x2
(µτ̄)i−1P + 1

+ λ(µτ̄)i−1P

)
.

Some values of calculating (µτ̄)i−1P are used to calculate (µτ̄)iP . When i =

3, x(µτ̄)i−1P = Ai−1

Z(µτ̄)i−2P
and X(µτ̄)i−1P = A2

i−1 are computed by Equation

(8); when i > 3, x(µτ̄)i−1P = Ai−1

Z(µτ̄)i−2P
and X(µτ̄)i−1P = A2

i−1 are computed

by Equation (9). (µτ̄)iP can be computed as (Ai−1

Z(µτ̄)i−2P
)2 + 1

Ai−1

Z(µτ̄)i−2P

,
(Ai−1

Z(µτ̄)i−2P
)2

(Ai−1

Z(µτ̄)i−2P
)2 + 1

+
Λ(µτ̄)i−1P

Z(µτ̄)i−1P


=

(
X(µτ̄)i−1P + Z2

(µτ̄)i−2P

Z(µτ̄)i−1P
,

X(µτ̄)i−1P

X(µτ̄)i−1P + Z2
(µτ̄)i−2P

+
Λ(µτ̄)i−1P

Z(µτ̄)i−1P

)
.

Then (µτ̄)iP , i ≥ 3 can be computed as Equation (9) at the cost of 3M+2S.

Ai =X(µτ̄)i−1P + Z2
(µτ̄)i−2P S

X(µτ̄)iP =A2
i S

Λ(µτ̄)iP =X(µτ̄)i−1PZ(µτ̄)i−1P + Λ(µτ̄)i−1PAi 2M

Z(µτ̄)iP =Z(µτ̄)i−1PAi M

(9)

28 Wei Yu and Guangwu Xu

Notice that µτ̄P = P − µτP , (µτ̄)2P = −(P + µτP), and (µτ̄)3P = −(P −
τ2P). Trost and Xu showed that P −µτP , P +µτP , and P − τ2P cost 5M+3S,
7M+5S, and 5M+3S respectively. Their formula of P −µτP is still the state-of-
the-art. The costs of (µτ̄)2P and (µτ̄)3P are 3M+2S and 3M+2S which largely
improves their costs of 7M+5S and 5M+3S.

When Z-coordinate of P is 1, by Λ(µτ̄)2P = Xµτ̄PZµτ̄P + Λµτ̄PA2 =
A2Zµτ̄PλP +xP in Equation (8), the formulas of µτ̄P and (µτ̄)2P are shown as
Equation (10) at the total cost of 4M+3S.

β =x2
P S

Xµτ̄P =β2 + 1 S

Zµτ̄P =xPβ + xP M

Λµτ̄P =(λP + 1)Zµτ̄P + xP M

A2 =Xµτ̄P + β

X(µτ̄)2P =A2
2 S

Z(µτ̄)2P =A2Zµτ̄P M

Λ(µτ̄)2P =Z(µτ̄)2PλP + xP M

(10)

C.2 Pre-Computation Schemes Using λ-Coordinates

Our pre-computation scheme for window τNAF in λ-coordinates is the same as
that on a µ4-Koblitz curve except Q5 and Q7 for window width 6 in Table 7
and Q35 for window width 8 in Table 15. Q5 and Q7 are computed as Q5 =
µτP + Q31 and Q7 = µτP − Q31 with c5 = −7 + 2µτ and c7 = 7 by one
(P ±Q)-operation. Q35 is computed as µτP +Q125 with c35 = −13 + 8µτ . Our
pre-computation scheme requires 7M+5S, 26M+16S, 66M+36S, 135M+72S,
and 282M+148S using λ-projective coordinates for window τNAF with widths
from 4 to 8 respectively.

The costs of different pre-computation schemes for window τNAF with
widths from 4 to 6 are summarized in Table 18. Trost and Xu’s pre-computation
scheme requires 12M+8S, 44M+18S, and 108M+36S for w = 4, 5, and 6 based
on their efficient formulas for P − µτ(P), P + µτ(P) and P − τ2(P). Both
theoretical analysis and experimental results show that our pre-computation
scheme is about 40% faster than Trost and Xu’s scheme using λ-coordinates.

C.3 Scalar Multiplications Using Window τNAF in λ-Coordinates

The Montgomery trick transferring n pre-computations in λ-projective coordi-
nates to λ-coordinates costs I+(5n − 3)M. Let the costs of pre-computation
schemes for window τNAF with width w be denoted by Preλw.

Constant-time scalar multiplication using window τNAF has two situations.

1. Scalar multiplication uses pre-computations in λ-projective coordinates. It
requires m τ -operations, m

w−1 point additions, and the pre-computation.

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 29

Scalar multiplication is expected to cost

3mS +
m

w − 1
(11M + 2S) + Preλw.

2. Scalar multiplication uses pre-computations in λ-coordinates. It requires m
τ -projective operations, m

w−1 mixed additions, Montgomery trick, and the
pre-computation. Scalar multiplication is expected to cost

3mS +
m

w − 1
(8M + 2S) + I + (5 · 2w−2 − 8)M + Preλw.

We summarize the lowest costs of constant-time scalar multiplications on
K1-163, K-233, K-283, K1-283, K-409, and K-571 using our pre-computation
scheme in Table 19. Our experimental results show that our constant-time scalar
multiplication on Koblitz curves using λ-coordinates saves up to 6.5% compared
to Trost and Xu’s work using λ-coordinates.

30 Wei Yu and Guangwu Xu

Table 15. Novel pre-computation for w = 8

ci Qi a = 0/a = 1
186M+123S/198M+123S

c91 = 1− µτ c91 = µτ̄ Q91 = µτ̄P 2M+2S
c89 = −1− µτ c89 = µτ̄c91 Q89 = (µτ̄)2P 2M+2S
c93 = 3− µτ c93 = −µτ̄c89 Q93 = −(µτ̄)3P 2M+2S
c15 = 1− 3µτ c15 = µτ̄c93 Q15 = −(µτ̄)4P 2M+2S
c85 = −5− µτ c85 = µτ̄c15 Q85 = −(µτ̄)5P 2M+2S
c55 = −7 + 5µτ c55 = µτ̄c85 Q55 = −(µτ̄)6P 2M+2S
c115 = −3− 7µτ c115 = −µτ̄c55 Q115 = (µτ̄)7P 2M+2S
c75 = −1 + 2µτ c75 = −µτ − c15 Q75 = −µτP −Q15

c105 = 1− 4µτ c105 = −µτ + c15 Q105 = −µτP +Q15 10M+3S+3S/11M+3S+3S
c87 = −3− µτ c87 = −µτ̄c75 Q87 = −µτ̄Q75 2M+2S
c19 = 5− 3µτ c19 = −µτ̄c87 Q19 = (µτ̄)2Q75 2M+2S
c63 = 1 + 5µτ c63 = −µτ̄c19 Q63 = −(µτ̄)3Q75 2M+2S
c101 = 11− µτ c101 = µτ̄c63 Q101 = −(µτ̄)4Q75 2M+2S
c25 = −9 + 11µτ c25 = −µτ̄c101 Q25 = (µτ̄)5Q75 2M+2S
c83 = −7− µτ c83 = µτ̄c105 Q83 = µτ̄Q105 2M+2S
c127 = 9− 7µτ c127 = −µτ̄c83 Q127 = −(µτ̄)2Q105 2M+2S
c37 = −5− 9µτ c37 = µτ̄c127 Q37 = −(µτ̄)3Q105 2M+2S
c3 = 3 c3 = −µτ − c87 Q3 = −µτP −Q87

c79 = 3 + 2µτ c79 = µτ − c87 Q79 = µτP −Q87 10M+3S/11M+3S
c17 = 3− 3µτ c17 = µτ̄c3 Q17 = µτ̄Q3 2M+2S
c11 = −3− 3µτ c11 = µτ̄c17 Q11 = (µτ̄)2Q3 2M+2S
c23 = 9− 3µτ c23 = −µτ̄c11 Q23 = −(µτ̄)3Q3 2M+2S
c45 = 3− 9µτ c45 = µτ̄c23 Q45 = −(µτ̄)4Q3 2M+2S
c21 = 7− 3µτ c21 = µτ̄c49 Q21 = µτ̄Q79 2M+2S
c119 = 1− 7µτ c119 = µτ̄c21 Q119 = (µτ̄)2Q79 2M+2S
c73 = −3 + 2µτ c73 = −µτ − c17 Q73 = −µτP −Q17

c107 = 3− 4µτ c107 = −µτ + c17 Q107 = −µτP +Q17 10M+3S/11M+3S
c13 = −1− 3µτ c13 = −µτ̄c73 Q13 = −µτ̄Q73 2M+2S
c97 = 7− µτ c97 = −µτ̄c13 Q97 = (µτ̄)2Q73 2M+2S

c123 = 5− 7µτ c123 = µτ̄c97 Q123 = (µτ̄)3Q73 2M+2S
c9 = −5− 3µτ c9 = µτ̄c107 Q9 = µτ̄Q107 2M+2S
c51 = −11 + 5µτ c51 = µτ̄c9 Q51 = (µτ̄)2Q107 2M+2S
c33 = −1 + 11µτ c33 = µτ̄c51 Q33 = (µτ̄)3Q107 2M+2S
c77 = 1 + 2µτ c77 = −µτ − c13 Q77 = −µτP −Q13

c103 = −1− 4µτ c103 = −µτ + c13 Q103 = −µτP +Q13 10M+3S/11M+3S
c95 = 5− µτ c95 = µτ̄c77 Q95 = µτ̄Q77 2M+2S
c59 = −3 + 5µτ c59 = −µτ̄c95 Q59 = −(µτ̄)2Q77 2M+2S
c7 = −7− 3µτ c7 = −µτ̄c59 Q7 = (µτ̄)3Q77 2M+2S
c125 = −13 + 7µτ c125 = µτ̄c7 Q125 = (µτ̄)4Q77 2M+2S
c99 = 9− µτ c99 = −µτ̄c103 Q99 = −µτ̄Q103 2M+2S
c49 = 7− 9µτ c49 = µτ̄c99 Q49 = −(µτ̄)2Q103 2M+2S
c5 = 5 c5 = −µτ − c85 Q5 = −µτP −Q85 6M+2S/7M+2S
c57 = −5 + 5µτ c57 = −µτ̄c5 Q57 = −µτ̄Q5 2M+2S
c67 = 5 + 5µτ c67 = µτ̄c57 Q67 = −(µτ̄)2Q5 2M+2S
c47 = −15 + 5µτ c47 = −µτ̄c67 Q47 = (µτ̄)3Q5 2M+2S
c71 = −5 + 2µτ c71 = −µτ − c19 Q71 = −µτP −Q19

c61 = −1 + 5µτ c61 = µτ̄c71 Q61 = µτ̄Q71 2M+2S
c109 = 5− 4µτ c109 = −µτ + c19 Q109 = −µτP +Q19 10M+3S/11M+3S
c81 = −9− µτ c81 = −µτ̄c61 Q81 = −(µτ̄)2Q71 2M+2S

c53 = 11− 9µτ c53 = −µτ̄c81 Q53 = (µτ̄)3Q71 2M+2S
c65 = 3 + 5µτ c65 = −µτ̄c109 Q65 = −µτ̄Q109 2M+2S
c27 = 13− 3µτ c27 = µτ̄c65 Q27 = −(µτ̄)2Q109 2M+2S
c69 = −7 + 2µτ c69 = −µτ − c21 Q69 = −µτP −Q21

c111 = 7− 4µτ c111 = −µτ + c21 Q111 = −µτP +Q21 10M+3S/11M+3S
c121 = 3− 7µτ c121 = −µτ̄c69 Q121 = −µτ̄Q69 2M+2S
c117 = −1− 7µτ c117 = µτ̄c111 Q117 = µτ̄Q111 2M+2S
c113 = 9− 4µτ c113 = −µτ + c23 Q113 = −µτP +Q23 6M+2S/7M+2S
c43 = 1− 9µτ c43 = µτ̄c113 Q43 = µτ̄Q113 2M+2S
c39 = 11− 6µτ c39 = −µτ − c51 Q39 = −µτP −Q51 6M+2S/7M+2S
c35 = 1 + 11µτ c35 = −µτ̄c39 Q35 = −µτ̄Q39 2M+2S
c29 = 1− 6µτ c29 = −µτ − c61 Q29 = −µτP −Q61 6M+2S/7M+2S
c31 = 3− 6µτ c31 = −µτ − c59 Q31 = −µτP −Q59 6M+2S/7M+2S
c41 = 13− 6µτ c41 = µτ − c125 Q41 = µτP −Q125 6M+2S/7M+2S

Pre-Computation Scheme of Window τNAF for Koblitz Curves Revisited 31

Table 16. Cost of pre-computations using LD coordinates with a = 0/a = 1
w = 4 w = 5 w = 6

Solinas 15M+21S 45M+52S -
Hankerson, Menezes,

Vanstone
15M+21S 54M+49S 125M+105S

Trost, Xu 15M+19S 48M+39S 120M+79S
Ours 5M+6S/5M+3S 19M+19S/19M+13S 51M+40S/51M+29S

Table 17. The expected costs of constant-time scalar multiplications using our pre-
computation in LD coordinates on K1-163, K-233, K-283/K1-283, K-409, and K-571
in M

K1-163(w) K-233(w) K-283(w)/K1-283(w) K-409(w) K-571(w)
regular τNAF 1304 1864 2264 3272 4568

S=0M Trost, Xu 416(5,M) 556(5,M) 654.8(6,M) 856.4(6,M) 1115.6(6,M)
Ours 387(5,M) 505.8(6,M) 585.8(6,M) 787.4(6,M) 1022.3(7,M)

regular τNAF 1564.8 2236.8 2716.8 3926.4 5481.6
S=0.2M Trost, Xu 563.8(5,M) 763.3(5,M) 900(6,M) 1202.4(6,M) 1591.2(6,M)

Ours 529.6(5,M) 703.2(6,M) 823.2(6,M)/821(6,M) 1125.6(6,M) 1481.5(7,M)
regular τNAF 1956 2796 3396 4908 6852

S=0.5M Trost, Xu 908(6) 1214.1(5,M) 1407.8(6,M) 1861.4(6,M) 2444.6(6,M)
Ours 808.5(6) 1100(7) 1300(7)/1288.5(7) 1772.9(6,M) 2310.3(7,M)

Table 18. Cost of pre-computations using λ-coordinates
w = 4 w = 5 w = 6

Solinas 15M+12S 44M+31S -
Hankerson, Menezes, Vanstone 15M+12S 50M+29S 117M+63S

Trost, Xu 12M+8S 44M+18S 108M+36S
Ours 7M+5S 26M+16S 66M+36S

Table 19. The expected costs of constant-time scalar multiplications using our pre-
computation in λ-coordinates on K1-163, K-233, K-283/K1-283, K-409, and K-571 in
M

K1-163(w) K-233(w) K-283/K1-283(w) K-409(w) K-571(w)
regular τNAF 1304 1864 2264 3272 4568

S=0M Trost, Xu 412(5,M) 552(5,M) 642.8(6,M) 844.4(6,M) 1103.6(6,M)
Ours 394(5,M) 520.8(6,M) 600.8(6,M) 802.4(6,M) 1058.3(7,M)

regular τNAF 1467 2097 2547 3681 5139
S=0.2M Trost, Xu 529.7(5,M) 718.7(5,M) 842.4(6,M) 1129.7(6,M) 1499.1(6,M)

Ours 511.3(5,M) 686.4(6,M) 800.4 (6,M) 1087.7(6,M) 1453.4(7,M)
regular τNAF 1711.5 2446.5 2971.5 4294.5 5995.5

S=0.5M Trost, Xu 755.6(6) 1026(6) 1219.1(6) 1697.7(6,M) 2232.3(6,M)
Ours 713.6(6) 982.9(7) 1157.1(7) 1596.1(7) 2160.6(7)

	Pre-Computation Scheme of Window NAF for Koblitz Curves Revisited

