
Security Analysis on an El-Gamal-like
Multivariate Encryption Scheme

Based on Isomorphism of Polynomials

Yasuhiko Ikematsu1, Shuhei Nakamura2, Bagus Santoso3, and Takanori
Yasuda4

1 Institute of Mathematics for Industry, Kyushu University 744, Motooka, Nishi-ku,
Fukuoka 819–0395, Japan ikematsu@imi.kyushu-u.ac.jp

2 Department of Liberal Arts and Basic Sciences, Nihon University, 1-2-1 Izumi-cho,
Narashino, Chiba 275-8575, Japan
nakamura.shuhei@nihon-u.ac.jp

3 Department of Computer and Network Engineering, The University of
Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

santoso.bagus@uec.ac.jp
4 Institute for the Advancement of Higher Education, Okayama University of

Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan tyasuda@bme.ous.ac.jp

Abstract. Isomorphism of polynomials with two secrets (IP2S) prob-
lem was proposed by Patarin et al. at Eurocrypt 1996 and the problem
is to find two secret linear maps filling in the gap between two polyno-
mial maps over a finite field. At PQC 2020, Santoso proposed a problem
originated from IP2S, which is called block isomorphism of polynomials
with circulant matrices (BIPC) problem. The BIPC problem is obtained
by linearizing IP2S and restricting secret linear maps to linear maps
represented by circulant matrices. Using the commutativity of products
of circulant matrices, Santoso also proposed an El-Gamal-like encryption
scheme based on the BIPC problem. In this paper, we give a new security
analysis on the El-Gamal-like encryption scheme. In particular, we intro-
duce a new attack (called linear stack attack) which finds an equivalent
key of the El-Gamal-like encryption scheme by using the linearity of the
BIPC problem. We see that the attack is a polynomial-time algorithm
and can break some 128-bit proposed parameters of the El-Gamal-like
encryption scheme within 10 hours on a standard PC.

Keywords: Public Key Cryptography · Post Quantum Cryptography
(PQC) · Multivariate Public Key Cryptography (MPKC) · Isomorphism
of Polynomials

1 Introduction

RSA and ECC are widely-used public key cryptosystems and are based on
hard computational problems such as integer factorization problem and discrete
logarithm problem, respectively. In 1997, P. Shor [17] showed polynomial-time
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quantum algorithms to solve their problems using a large scale quantum com-
puter. Therefore, before a large scale quantum computer realizes, we need to
develop cryptosystems having a resistance to quantum computer attacks. The
research area to study such cryptosystems is called post quantum cryptography
(PQC) [2].

Multivariate public key cryptography (MPKC) [5] is considered as one of
main candidates of PQC and is constructed based on hard computational prob-
lems on multivariate polynomials over finite fields. A main hard computational
problem is MQ problem, which is one to find a solution to a system of multi-
variate quadratic equations over a finite field. So far, there have been proposed
various schemes based on the MQ problem. In particular, regarding signature
schemes, Rainbow [6], GeMSS [12] and MQDSS [16] were selected as second
round candidates of NIST PQC standardization project [9]. (Rainbow recently
became a finalist of the project [4].) However, it is considered that there is no
notable multivariate encryption scheme since most of the proposed schemes were
not secure or had a large public key size.

Isomorphism of polynomials with two secrets (IP2S) problem is another prob-
lem in MPKC and was proposed by Patarin et al. at Eurocrypt 1996 [10]. The
IP2S problem is to find two secret invertible linear maps representing the iso-
morphism between two multivariate polynomial maps over a finite field. Similar
to the zero-knowledge interactive proof of graph isomorphism, Patarin proposed
an interactive proof based on the IP2S problem. An authentication scheme based
on the interactive proof scheme with its proof against impersonation attack is
proposed in [13] and the security of the signature scheme based on the authen-
tication scheme against quantum adversary in quantum random oracle model is
proven in [15]. When the secret solutions of the IP2S problem are not restricted
to invertible maps, we get another computational problem called Morphism of
Polynomials (MP) problem which is proven to be an NP-hard problem [11].
Wang et al. [19] proposed a paradigm of constructing a public key encryption
(PKE) scheme by using the Diffie-Hellman like algebraic structure derived from
restricting the secrets/solutions of the MP problem into circulant matrices to ob-
tain the commutativity. However, as the circulant matrices can be represented
with few variables, it suffers from degradation of complexity as one can obtain
a sufficient system of equations to solve the problem efficiently. Using this fact,
Chen et al. [8] proposed an algebraic attack algorithm.

At PQC 2020, Santoso [14] proposed a new computational problem origi-
nated from the IP2S problem, which is called block isomorphism of polynomials
with circulant matrices (BIPC) problem. The BIPC problem is obtained by lin-
earizing IP2S and restricting secret linear maps to linear maps represented by
circulant matrices. Moreover, similar to Wang et al.’s idea, using the commu-
tativity of products of circulant matrices, Santoso proposed an El-Gamal-like
BIPC encryption scheme [14] and provided the security proof of the scheme
based on the hardness of a Computational Diffie-Hellman (CDH)-like problem
derived from the BIPC problem. In the BIPC problem, the secret solution is in
the form of pairs of circulant matrices, instead of only one pair of matrices as
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in the IP2S problem. Therefore, although the secret solutions are circulant ma-
trices, the number of variables can be adjusted to be sufficiently large to avoid
Chen et al.’s algebraic attack. In [14], Santoso gave two attacks against the BIPC
problem and selected four types of parameters which are called (a) conservative,
(b) alternative, (c) extremely aggressive, and (d) moderately aggressive.

In this paper, we analyze the security of the El-Gamal-like BIPC encryption
scheme. We discuss a new attack, which is to find an equivalent key of the
El-Gamal-like encryption scheme by using the linearity of the BIPC problem
(called linear stack attack). Our core idea is to show that there exists in fact
an equivalent secret solution of the CDH-BIPC problem which consists of a set
of pairs of circulant matrices. Note that the target of the linear stack attack is
not for the BIPC problem but for the CDH-BIPC problem. Based on this idea,
we can construct an equivalent key by randomly choosing enough set of pairs
of circulant matrices and taking appropriately their scalar multiplications. We
show that the linear stack attack is a polynomial-time algorithm and confirm
that the attack is efficient for the proposed parameters (a),(b),(c) and (d). In
fact, our experimental results showed that the 128-bit security parameters [14]
in (b),(c) and (d) were broken within 10 hours with a standard PC. Regarding
(a), the 128-bit security parameter [14] did not finish. Instead, we performed
experiments for the 80-bit security parameter in (a) and confirmed that it was
broken within 5 days.

Our paper is organized as follows. In Section 2, we briefly recall the IP2S
problem, the BIPC problem and the El-Gamal-like encryption scheme. Moreover,
we review the previous security analysis against the BIPC problem. In Section
3, we describe the linear stack attack and perform experiments for the proposed
parameters in [14]. Finally, we conclude our paper in Section 4.

2 IP2S and BIPC Problems

In this section, we mainly recall the IP2S and BIPC problems. In Subsection 2.1,
we review the IP2S problem proposed by Patarin et al. in [10]. In Subsection 2.2,
we describe the BIPC problem proposed by Santoso [14] as a problem originated
from IP2S. Moreover, we recall the encryption scheme associated to the BIPC
problem, which is our main concern in this paper. In Subsection 2.3, we revisit
the previous security analysis against the BIPC problem following the original
paper [14].

2.1 IP2S problem

Let F be a finite field with q elements and let n and m be positive integers. We
denote by F[x1, . . . , xn] the polynomial ring in n variables over the finite field
F. We also denote by GLn(F) the general linear group over F with size n. Any
element of GLn(F) can be considered as a linear map from Fn to Fn. In order
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to describe the IP2S problem, we need the following set:

MQ(n,m) :=

{
f = (f1, . . . , fm)

∣∣∣∣fi ∈ F[x1, . . . , xn] (1 ≤ i ≤ m)
quadratic polynomial

}
.

Namely, MQ(n,m) is the set of multivariate quadratic polynomial maps from
Fn to Fm. Any f = (f1, . . . , fm) ∈ MQ(n,m) is said to be homogeneous if all
f1, . . . , fm are homogeneous. We define the operation of GLn(F) and GLm(F) to
MQ(n,m):

(S, T ) · f := T ◦ f ◦ S, (S, T ) ∈ GLn(F)×GLm(F).

It is clear that for any S ∈ GLn(F) and T ∈ GLm(F),

f ∈MQ(n,m) =⇒ (S, T ) · f ∈MQ(n,m).

Namely, the operation of GLn(F) and GLm(F) holds the setMQ(n,m). Then,
the IP2S problem is defined as follows:

Isomorphism of polynomials with two secrets (IP2S) [10]
Given two quadratic polynomial maps f ,g ∈ MQ(n,m), find two linear
maps S ∈ GLn(F) and T ∈ GLm(F) such that

g = (S, T ) · f . (1)

In [10], Patarin proposed the basic idea of an authentication scheme and a signa-
ture scheme based on the IP2S problem. The concrete authentication scheme is
refined in [13] and the security against quantum adversary in quantum random
oracle model is proven in [15].

2.2 BIPC problem and El-Gamal-like BIPC encryption scheme

In this subsection, we recall a problem originated from IP2S (called BIPC) and
an El-Gamal-like public key encryption scheme, which were proposed by Santoso
at PQC 2020 [14].

Let Mn(F) be the matrix ring with size n × n over F. We also denote by
Cn(F) the subalgebra of circulant matrices in Mn(F). Thus, any element A in
Cn(F) is written by

A =


a11 a12 . . . a1n
a1n a11 . . . a1n−1

...
...

. . .
...

a12 a13 . . . a11

 .

Note that Cn(F) is a commutative ring, that is,

A,B ∈ Cn(F) =⇒ AB = BA.

To describe the BIPC problem, we need the following definition:
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Definition 1. Let k be a positive integer and let f = (f[1], . . . , f[k]) ∈MQ(n,m)k

be a k-tuple of elements ofMQ(n,m). For any two k-tuples A = (A1, . . . , Ak) ∈
Cn(F)k and B = (B1, . . . , Bk) ∈ Cm(F)k, we define the operation

(A,B) ∗ f :=


∑k

j=1 Bj ◦ f[j mod k] ◦Aj∑k
j=1 Bj ◦ f[j+1 mod k] ◦Aj

...∑k
j=1 Bj ◦ f[j+k−1 mod k] ◦Aj


T

=


B1 ◦ f[1] ◦A1 +B2 ◦ f[2] ◦A2 + · · ·+Bk ◦ f[k] ◦Ak

B1 ◦ f[2] ◦A1 +B2 ◦ f[3] ◦A2 + · · ·+Bk ◦ f[1] ◦Ak

...
B1 ◦ f[k] ◦A1 +B2 ◦ f[1] ◦A2 + · · ·+Bk ◦ f[k−1] ◦Ak


T

It is clear that (A,B) ∗ f is also an element ofMQ(n,m)k.

Remark 1. The operation ∗ does not hold the associativity. That is, in general

(A,B) ∗ ((A′,B′) ∗ f) ̸= (AA′,BB′) ∗ f ,

where AA′ = (A1A
′
1, . . . , AkA

′
k), BB

′ = (B1B
′
1, . . . , BkB

′
k). Thus, the operation

∗ is not an action of Cn(F)k × Cm(F)k toMQ(n,m)k.

In the same way as IP2S, the BIPC problem is defined as follows:

Block isomorphism of polynomials with circulant matrices (BIPC) [14]
Let k be a positive integer. Given two k-tuples of quadratic polynomial maps
f ,g ∈ MQ(n,m)k, find two k-tuples of circulant matrices A ∈ Cn(F)k and
B ∈ Cm(F)k such that

g = (A,B) ∗ f . (2)

We can consider that the BIPC problem is obtained by linearizing the IP2S prob-
lem and restricting secret linear maps to linear maps represented by circulant
matrices.

To construct an El-Gamal-like encryption scheme based on BIPC, we need
to see that the operation ∗ is commutative:

Lemma 1. [14, Lemma1] For any f ∈ MQ(n,m)k and A,A′ ∈ Cn(F)k and
B,B′ ∈ Cm(F)k, we have

(A,B) ∗ ((A′,B′) ∗ f) = (A′,B′) ∗ ((A,B) ∗ f).

This lemma follows from the definition of ∗ and the commutativity of products
of circulant matrices.
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Before we recall the construction of the El-Gamal-like encryption scheme,
we define a subset of MQ(n,m), which is useful to reduce the key size of the
encryption scheme. Let ℓ be a divisor of k. We define the set

MQ(n,m)kℓ :=

{
(f[1], . . . , f[k]) ∈MQ(n,m)k

∣∣∣∣ f[i] = f[i mod ℓ]

∀i = 1, . . . , k

}
.

In particular, if ℓ = 1, then we have f[1] = f[2] = · · · = f[k]. It is clear that the

size of an element of MQ(n,m)kℓ is 1/ℓ of that of an element of MQ(n,m)k.
Moreover, we have

f ∈MQ(n,m)kℓ =⇒ (A,B) ∗ f ∈MQ(n,m)kℓ

for A ∈ Cn(F)k and B ∈ Cm(F)k. Thus, we can define the variant of the BIPC
problem by replacing MQ(n,m)k with MQ(n,m)kℓ , which reduces the size of
the instance (f ,g) to 1/ℓ.

In the following, we describe the construction of the El-Gamal-like BIPC en-
cryption scheme [14] based on the hardness of the BIPC computational problem.

El-Gamal-like BIPC encryption scheme [14]

– Public parameters : n,m, k, ℓ ∈ N.
– Secret Key: (A,B) ∈ Cn(F)k × Cm(F)k.
– Public Key: f ,g ∈MQ(n,m)kℓ such that g = (A,B) ∗ f .
– Encryption: to encrypt a plaintext h ∈ MQ(n,m)kℓ , one chooses a random

(A′,B′) ∈ Cn(F)k × Cm(F)k and computes:

c0 ← (A′,B′) ∗ f , c1 ← h+ (A′,B′) ∗ g.

The ciphertext is given by c = (c0, c1).

– Decryption: to decrypt a ciphertext c = (c0, c1), using the secret key (A,B) ∈
Cn(F)k × Cm(F)k, one computes:

ν ← c1 − (A,B) ∗ c0.

The decryption result is ν.

It is clear from Lemma 1 that the decryption process produces the correct plain-
text, that is, ν = h.

In [14], it is proven that the El-Gamal-like encryption scheme is proven secure
against OW-CPA attacks under the assumption that the CDH-BIPC problem,
i.e., the analogy of Computational Diffie-Hellman (CDH) problem for Discrete
Logarithm problem in BIPC case, is hard. One can actually easily see that as
similar to the case of El-Gamal encryption scheme and the CDH problem, the
converse is also true, i.e., if the CDH-BIPC problem is easy then breaking the
encryption scheme is also easy.
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2.3 Previous analysis

In this subsection, we recall the security analysis against the BIPC problem in
the original paper [14]. In [14], two attacks were proposed under the assumption
the finite field F = F2. The first one (i) is by using the result of Bouillaguet
et al. [3], and the second one (ii) is an algebraic attack using a Gröbner basis
algorithm.

(i) First attack: The first attack is based on the work by Bouillaguet et al. [3] on
breaking a homogeneous IP2S instance, which we summarize as follows. Given a
homogeneous IP2S instance (f ,g) described in (1), Bouillaguet et al. [3] attempt
to find a pair of vectors α, β ∈ Fn such that S−1α = β. Under the assumption
F = F2, Bouillaguet et al. [3] showed how to obtain such α, β in high probability
using a graph theory based algorithm with the complexity O(n52n/2). Once
such a pair α, β is discovered, we can define (f ′,g′), i.e., f ′(x) = f(x + α) and
g′(x) = g(x+ β), which have the same isomorphism as (f ,g) but are no longer
homogeneous. Thus, we can easily find the isomorphism between f ′ and g′ using
the algorithm of Faugére and Perret [7] on solving inhomogeneous instances of
IP2S.

Now, we explain the first attack in [14] against a BIPC instance (f ,g) de-
scribed in (2). Assume that g is written as

g = (g[1], . . . ,g[k]) = (A,B) ∗ f ,

g[i] =

k∑
j=1

Bj ◦ f[j+i−1 mod k] ◦Aj ,

and each Aj is invertible. Then, the first attack finds vectors αj , βj ∈ Fn (1 ≤ j ≤
k) such that A−1

j αj = βj , i.e., αj = Ajβj . In [14], it is estimated that such vectors

can be found with the complexity O(k2n52nk/(k+1)) combining Bouillaguet et
al. [3] and Suzuki et al. [18]. (See [14] for the detail.)

In [14], it is described that the next step is to force the use of the algorithm
of Faugére and Perret [7] on solving inhomogeneous instances of IP2S. However,
we point out in this paper that actually such step is not necessary, since Aj is a
circulant matrix. Namely, by solving the linear equation αj = Ajβj with respect
to components of Aj , we can easily recover the circulant matrix Aj . Therefore,
we conclude that the complexity of the first attack against the BIPC problem is
given by

O(k2n52nk/(k+1)).

(ii) Second attack: Here, we review the algebraic attack using a Gröbner
basis algorithm in [14]. In [14], it is assumed that there exist circulant matrices

B̃1, . . . , B̃k such that the BIPC instance (f ,g) satisfies the following:

k∑
j=1

B̃j ◦ g[i] =

k∑
j=1

f[j+i−1 mod k] ◦Aj , (i = 1, . . . , k). (3)
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Note that B1, . . . , Bk can be computed easily once we obtain Aj , B̃j for all

j = 1, . . . , k. If we identify each component of Aj , B̃j as variables, then we
obtain the system of at most n(n + 1)mk/2 quadratic equations in (n + m)k
variables. In [14], it is estimated based on [1] that the complexity to solve the
system with a Gröbner basis algorithm is given by

O(2k log(nm)/(4m)).

However, it should be noted that we do not know exactly whether we can
construct the system of quadratic equations shown in (3) since so far there is no

proof for the existence of such circulant matrices B̃1, . . . , B̃k.

Remark 2. In the IP2S problem (1), we have

g = (S, T ) · f =⇒ (1n, T
−1) · g = (S, 1m) · f

since the operation · holds the associativity. Similarly, if the operation ∗ satisfies
the associativity, then we have

g = (A,B) ∗ f =⇒ (1kn,B−1) ∗ g = (A, 1km) ∗ f ,

where we have set B−1 = (B−1
1 , . . . , B−1

k ), 1kn = (1n, . . . , 1n) and 1km = (1m, . . . , 1m).

Then (3) holds as B̃i = B−1
i . However, as we stated in Remark 1, the operation

∗ does not hold the associativity.

Selected parameters: Based on two attacks (i) and (ii) against the BIPC
problem, the paper [14] sets four types of parameters:

(a) Conservative Type: In this type, f[1], . . . , f[k] are chosen randomly (namely
ℓ = k) and the parameters are set such that the estimated complexity of per-
forming first attack (i) and that of second attack (ii) are both larger than
the targeted complexity for security. More precisely, here n,m, k = ℓ are set
such that the following holds:

k2n52nk/(k+1) ≧ 2λ, 2k log(nm)/(4m) ≧ 2λ,

where λ is the targeted bit security.
(b) Alternative Type: In this type, f[1], . . . , f[k] are chosen randomly and the

parameters are set such that the complexity of performing only second attack
(ii) is larger than the targeted complexity for security. More precisely, here
n,m, k = ℓ are set such that the followings holds:

2k log(nm)/(4m) ≧ 2λ,

where λ is the targeted bit security.
(c) Extremely Aggressive Type: In this type, the multivariate quadratic

polynomials f[1], . . . , f[k] are set such that f[1] = f[2] = · · · = f[k], i.e., ℓ = 1.
The other parameters n,m, k are set based on the conservative type.
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(d) Moderately Aggressive Type: In this type, we assume that k is an even
number and set ℓ = 2. The multivariate quadratic polynomials f[1], . . . , f[k]
are set such that f[1] = f[3] = · · · = f[2i−1] and f[2] = f[4] = · · · = f[2i] hold for
i ∈ [1, k/2]. The other parameters are set based on the conservative type.

Below, we summarize the recommended parameters in [14] according to each
type mentioned above for 128- and 256-bit security. Here, the finite field F was
took as F2.

Table 1. 128-bit security parameters proposed in [14]

Type n m k ℓ
Public key Secret key
size (KByte) size (KByte)

(a) Conservative 84 2 140 140 241 1.4
(b) Alternative 16 2 205 205 12.8 0.45
(c) Extremely Aggressive 84 2 140 1 1.7 1.4
(d) Moderately Aggressive 84 2 140 2 3.4 1.4

Table 2. 256-bit security parameters proposed in [14]

Type n m k ℓ
Public key Secret key
size (KByte) size (KByte)

(a) Conservative 206 2 236 236 2445 5.9
(b) Alternative 16 2 410 410 25.6 0.9
(c) Extremely Aggressive 206 2 236 1 10.3 5.9
(d) Moderately Aggressive 206 2 236 2 20.7 5.9

3 Linear stack attack

In this section, we propose a new attack (called linear stack attack) for the El-
Gamal-like BIPC encryption scheme in Subsection 2.2. In Subsection 3.1, we
show a key lemma to propose the linear stack attack. In Subsection 3.2, we
describe the algorithm of the linear stack attack based on the key lemma. In
Subsection 3.3, we estimate the complexity of the linear stack attack and show
some experimental results.

3.1 Key lemma

In this subsection, we give a key lemma to propose the linear stack attack.
Let (f ,g) be a public key of the El-Gamal-like encryption scheme in Subsec-

tion 2.2. To break the encryption scheme, an attacker only has to compute a pair
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(A′,B′) ∈ Cn(F)k × Cm(F)k such that g = (A′,B′) ∗ f , namely, an equivalent
key. However, by the following lemma, we show that there are other kinds of
equivalent keys.

Lemma 2. Let (f ,g) be an public key of the El-Gamal-like encryption scheme.

If there are an integer t ∈ N and a t-tuple (Ai,Bi)i=1,...,t ∈
(
Cn(F)k × Cm(F)k

)t
such that

g =

t∑
i=1

(Ai,Bi) ∗ f ,

then the t-tuple (Ai,Bi)i=1,...,t works as an equivalent key for the public key
(f ,g).

Proof. Let c0 = (A′,B′) ∗ f and c1 = h + (A′,B′) ∗ g be an ciphertext of the
El-Gamal-like encryption scheme as in Subsection 2.2. To recover the plaintext
h, an attacker computes secret information (A′,B′) ∗ g from known information
(Ai,Bi)i=1,...,t and c0 as follows:

t∑
i=1

(Ai,Bi) ∗ c0 =

t∑
i=1

(Ai,Bi) ∗ ((A′,B′) ∗ f)

=

t∑
i=1

(A′,B′) ∗ ((Ai,Bi) ∗ f)

=(A′,B′) ∗

(
t∑

i=1

(Ai,Bi) ∗ f

)
=(A′,B′) ∗ g

Thus, the attacker can compute the plaintext h by

c1 −
t∑

i=1

(Ai,Bi) ∗ c0.

Therefore, the t-tuple (Ai,Bi)i=1,...,t is an equivalent key. □

This lemma implies that by stacking (Ai,Bi) ∗ f , we can finally find an equiva-
lent key. In the next subsection, we show a concrete procedure to construct an
equivalent key (Ai,Bi)i=1,...,t.

3.2 The algorithm of the linear stack attack

We propose an attack to find an equivalent key, which is called linear stack
attack, based on Lemma 2. The attack takes a public key (f ,g) and a positive

integer t as input, and a t-tuple (Ai,Bi)i=1,...,t ∈
(
Cn(F)k × Cm(F)k

)t
as output.

The strategy of the algorithm is the following:
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Linear stack attack

Step 1. Randomly choose tk elements (A1, B1), · · · , (Atk, Btk) from Cn(F) ×
Cm(F).

Step 2. Let α1, . . . , αtk be variables over F. Set t-tuples as follows:

A1 ← (A1, . . . , Ak) B1 ← (α1B1, . . . , αkBk)

A2 ← (Ak+1, . . . , A2k) B2 ← (αk+1Bk+1, . . . , α2kB2k)

...
...

At ← (Atk−k+1, . . . , Atk) Bt ← (αtk−k+1Btk−k+1, . . . , αtkBtk)

Step 3. Find a solution to the following linear equations in variables α1, . . . , αtk:

g =

t∑
i=1

(Ai,Bi) ∗ f (4)

Step 4. If there is a solution (α1, . . . , αtk), then output the t-tuple

(Ai,Bi)i=1,...,t.

Otherwise, t← t+ 1 and go back to Step1. □

The linear stack attack is able to find an equivalent key by linearly stacking
(Ai,Bi) ∗ f . In the following theorem, we discuss the input number t such that
the linear equations (4) has a solution with a high probability.

Theorem 1. Set t = ⌈ 12n(n+ 1)mℓ/k⌉ in the linear stack attack. Then we can
find an equivalent key with a high probability.

Proof. The vector space MQ(n,m) is of dimension 1
2n(n + 1)m over F, and

MQ(n,m)kℓ is the vector space with dimension 1
2n(n+1)mℓ. Thus, the subspace

V := SpanF
{
(A,B) ∗ f ∈MQ(n,m)kℓ

∣∣ A ∈ Cn(F)k,B ∈ Cm(F)k
}

in MQ(n,m)kℓ is at most of dimension 1
2n(n + 1)mℓ. Therefore, if we set t =

⌈ 12n(n+ 1)mℓ/k⌉, then the linear equation (4)

g =

t∑
i=1

(Ai,Bi) ∗ f

in Step 3 has a solution with a high probability since the equations (4) have
tk ≒ 1

2n(n+ 1)mℓ variables and 1
2n(n+ 1)mℓ equations. □

Remark 3. It is should be noted that the linear stack attack does not break the
BIPC problem. However, as we explained in Subsection 2.2, in order to break
the El-Gamal-like encryption scheme, it is sufficient for an attacker to break the
CDH-BIPC problem, which the linear stack attack actually does efficiently.
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3.3 Complexity and Experimental results

In this subsection, we estimate the complexity of our attack proposed in Sub-
section 3.1 and show some experimental results.

Proposition 1. The complexity of the linear stack attack is given by at most

O(n6m3ℓ3).

Proof. It is clear that the dominant part is Step 3. In Step 3, we need to com-
pute tk composites Bi ◦ f[j] ◦ Ai (i = 1, . . . , tk, j = 1, . . . , ℓ). The number of
multiplications of F in each composite is at most

2n3 + 1
2n(n+ 1)m2.

Since tk ≒ 1
2n(n+ 1)mℓ, the complexity is

O
(
(2n3 + 1

2n(n+ 1)m2) · ( 12n(n+ 1)mℓ)
)
≤ O(n5m3ℓ).

In Step 3, we also solve the linear system with size tk ≒ 1
2n(n+1)mℓ. Then the

complexity is
O(
(
1
2n(n+ 1)mℓ

)ω
) ≤ O(n6m3ℓ3),

where 2 < ω ≤ 3 is a linear algebra constant.
As a result, we conclude that the total complexity of the linear stack attack

is at most
O(n6m3ℓ3).

□

This proposition indicates that our attack is a polynomial-time algorithm. In
Tables 3 and 4, we show the complexity of the proposed parameters in Tables 1
and 2 against our linear stack attack.

Table 3. The complexity of the linear stack attack in Section 3 for the 128-bit security
parameters proposed in [14]

Type n m k ℓ
linear stack
attack (bits)

(a) Conservative 84 2 140 140 62.7
(b) Alternative 16 2 205 205 50.0
(c) Extremely Aggressive 84 2 140 1 41.3
(d) Moderately Aggressive 84 2 140 2 44.3

Experimental results
We confirm experimentally that our attack is valid and efficient enough to

break the El-Gamal-like encryption scheme. All experiments were performed on
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Table 4. The complexity of the linear stack attack in Section 3 for the 256-bit security
parameters proposed in [14]

Type n m k ℓ
linear stack
attack (bits)

(a) Conservative 206 2 236 236 72.7
(b) Alternative 16 2 410 410 53.0
(c) Extremely Aggressive 206 2 236 1 49.1
(d) Moderately Aggressive 206 2 236 2 52.1

a 3.5 GHz 8 Core Intel Xeon W with Magma V2.25-7. Table 5 is the experimen-
tal results. We basically performed our attack on the 128-bit security parameters
in Table 1. However, the attack against the conservative type (a) did not finish,
since its complexity against the linear stack attack is around 62.7 bits. Instead,
we chose the 80-bit security parameter (q, n,m, k, l) = (2, 42, 2, 102, 102) follow-
ing the security analysis in [14], and confirmed that our attack is valid for the
conservative type (a). We note that the complexity of the linear stack attack
against the parameter (q, n,m, k, l) = (2, 42, 2, 102, 102) is 55.4 bits.

Table 5 shows the average time of 5 experiments on the linear stack attack
for each type as t = ⌈ 12n(n+1)mℓ/k⌉. According to our experiments, there were
no loops from Step 4 to Step 1 in the algorithm of our attack in Subsection 3.2.

Table 5. The average times (seconds) of 5 experiments on the linear stack attack for
the 80-bit security parameter in (a) and the 128-bit security parameters [14] (b),(c),(d)
in Table 1.

Type n m k ℓ Average time (sec)

(a) Conservative 42 2 102 102 419408.490
(b) Alternative 16 2 205 205 35963.190
(c) Extremely Aggressive 84 2 140 1 1732.240
(d) Moderately Aggressive 84 2 140 2 6801.210

4 Conclusion

At PQC 2020, Santoso proposed an El-Gamal-like public key encryption scheme
based on the BIPC problem, which is a problem originated from the IP2S prob-
lem. The BIPC problem is obtained by linearizing IP2S and restricting secret
linear maps to linear maps represented by circulant matrices. Moreover, the El-
Gamal-like encryption scheme was constructed by utilizing the commutativity of
products of circulant matrices. Santoso gave four types of practical parameters
which are called (a) conservative, (b) alternative, (c) extremely aggressive, and
(d) moderately aggressive. In this paper, we proposed a new attack against the
El-Gamal-like encryption scheme, which is called linear stack attack. The linear
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stack attack finds equivalent keys of the El-Gamal-like encryption scheme by
using the linearity of the BIPC problem. We showed that the linear stack attack
is polynomial time and confirmed that the attack is valid and efficient for the
proposed parameters (a),(b),(c) and (d). Our experimental results showed that
the 128-bit security parameter in (b),(c) and (d) were broken within 10 hours.
While the 128-bit security parameter in (a) did not finish, instead, the 80-bit
security parameter in (a) was broken within 5 days.

As future work, we aim to construct another encryption scheme based on the
BIPC problem directly without relying on the CDH-BIPC problem. Such scheme
may withstand the linear stack attack, as the linear stack attack does not break
the BIPC problem itself, but only the CDH-BIPC problem.

Acknowledgements This work was supported by JST CREST Grant Num-
ber JPMJCR14D6, JSPS KAKENHI Grant Number JP19K20266, JP20K19802,
JP20K03741, JP18H01438, and JP18K11292

References
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