
Stealing Neural Network Models through the Scan
Chain: A New Threat for ML Hardware

Seetal Potluri
Department of ECE

North Carolina State University
Raleigh, U.S.

spotlur2@ncsu.edu

Aydin Aysu
Department of ECE

North Carolina State University
Raleigh, U.S.

aaysu@ncsu.edu

Abstract—Stealing trained machine learning (ML) models is a
new and growing concern due to the model’s development cost. Ex-
isting work on ML model extraction either applies a mathematical
attack or exploits hardware vulnerabilities such as side-channel
leakage. This paper shows a new style of attack, for the first
time, on ML models running on embedded devices by abusing the
scan-chain infrastructure. We illustrate that having course-grained
scan-chain access to non-linear layer outputs is sufficient to steal
ML models. To that end, we propose a novel small-signal analysis
inspired attack that applies small perturbations into the input
signals, identifies the quiescent operating points and, selectively
activates certain neurons. We then couple this with a Linear
Constraint Satisfaction based approach to efficiently extract model
parameters such as weights and biases. We conduct our attack
on neural network inference topologies defined in earlier works,
and we automate our attack. The results show that our attack
outperforms mathematical model extraction proposed in CRYPTO
2020, USENIX 2020, and ICML 2020 by an increase in accuracy of
220.7×, 250.7×, and 233.9×, respectively, and a reduction in queries
by 26.5×, 24.6×, and 214.2×, respectively.

I. INTRODUCTION

Stealing trained machine learning (ML) models is a sig-
nificant challenge the industry faces given the exponential
increase in model development costs [1]. Indeed, prior work
has considered model stealing/extraction attacks in the context
of ML-based cloud services [2]–[4], where the motivation is to
exploit the commercial value of the ML model IP. Orthogonally,
others have proposed using the extracted model to craft superior
adversarial samples [5]–[7]. These works assume an ML-as-a-
Service application with the prediction application programmer
interface and publicly accessible query interfaces.

There is, however, a trend for edge intelligence where the
trained ML algorithms execute on embedded devices, instead
of on the cloud, to improve energy cost or response time. In
this paper, we expose a new threat vector for model extraction
on edge devices: scan-chain attacks. These attacks exploit the
scan-chain infrastructure that allows in-field testing of deployed
devices [8]–[10]. Although such attacks are well-known and
well-recognized for cryptographic implementations [11]–[15],
they have never been explored on ML hardware before.

We show that this extension is non-trivial—scan-chain access
can be course-grained and neural networks have unique func-
tions and floating-point arithmetic that do not occur in cryp-
tography. Therefore, a successful and efficient attack requires
innovative techniques to steal the weight and bias parameters
of a neural network (NN) with a high precision and with a low
number of queries.

A. Contributions

The contributions of this paper are as follows:

• We propose the first model stealing attack through scan-
chain access. This attack exploits the debug port to observe
the hardware internal states for model extraction.

• We show that the attack does not require accessing all
internal registers. Instead, observing non-linear (i.e., ac-
tivation layer or max-pooling layer) output is sufficient for
the attack with two proposed novel techniques:

1) Applying input perturbations and performing small-
signal analysis to systematically expose the model
parameters of each neuron.

2) Formulating selective neuron activation as a linear
constraint satisfaction (LCS) problem and using cou-
pled constraints for {negative weight, negative bias}
cases while using iterative constraint relaxation for
hard cases of the LCS problem.

• We show the attack’s feasibility on models used in earlier
works and defined for popular edge-device hardware IPs
such as Eyeriss [16]. We automate the proposed attack.

• The results show that on average, our proposed attack is
220.7×, 250.7×, and 233.9× more accurate and requires 26.5×,
24.6×, and 214.2× fewer queries compared to the attacks
proposed at CRYPTO 2020 [17], USENIX 2020 [18], and
ICML 2020 [19] respectively.

Our work lays the theoretical foundations of scan-chain
attacks on embedded ML hardware and quantifies its capability
and superiority over cryptanalytic attacks.

B. Organization

The rest of the paper is organized as follows. The next
section describes the threat model and Section III provides
some background on NNs. Sections IV-(A) to (E) explain the
proposed small-signal analysis inspired attack to extract the
NN model parameters using the information obtained through
scan-chains and Section IV-(F) describes automation in order
to scale the attack to large NNs of arbitrary depths and sizes.
Subsequently, Section V provides the results and comparison
with prior works. Following this, Section VI provides a brief
discussion of existing countermeasures, prior work, and how to
switch between functional and debug modes and Section VII
concludes the paper.

Fig. 1: Scan-chains enable accessing internal states and leaking inter-
mediate results, which can be used to efficiently extract parameters.

II. THREAT MODEL

We follow the standard threat model laid out in the seminal
work of scan-chain attacks on cryptographic circuits [11] and
detailed in subsequent works [12]–[15]. In this context, com-
panies that provide independent semiconductor assembling and
test manufacturing services have a multi-billion dollar market in
2020 [20]. Their system-level-test (SLT) [21] capability trans-
lates to the adversary’s ability to test the chip that contains the
NN models, both in the functional and scan modes of operation.
We assume that the adversary is such a third-party testing
service provider who has access to scan chains. Additionally,
following earlier work [11], [22], [23], we assume that the
adversary can find the positions of all scan elements in the
scan-chain through semiconductor reverse engineering [24].

The adversary targets the inference and its goal is to extract
trained model parameters such as weights and biases of a
deep neural network. We consider an adversary having physical
access to an edge device that performs the inference. The ad-
versary executes the classification for a certain number of func-
tional cycles, switches to debug mode, and uses the hardware
debug port of the edge device to leak internal states as shown
in Figure 1. The adversary then performs a statistical analysis
on these internal states to steal the NN model parameters.

There are dedicated registers for storing the configuration bits
in neural network hardware accelerators [16]. These configura-
tion registers are tamper-proof, thus making it infeasible for
the adversary to ascertain the contents of the partial results. By
contrast, the contents of the ReLU activation-unit output register
can be ascertained because, after a fixed number of clock cycles,
it will contain the output of a certain neuron in a certain layer,
before sending it to the DRAM [16]. Therefore, our attack only
assumes access to the activation results shown in Figure 1.

Recent work categorizes model extraction attacks into high
fidelity vs. high accuracy [18]: our adversary performs a high
fidelity attack that aims for general agreement between the
extracted and victim models on any input. Following earlier
works on model extraction [4], [18], [25], we assume the hyper-
parameters of the model like the types/number of neural network
layers are either public or obtained by another attack [6], [26].

III. BACKGROUND

A neural network (NN) can be described as a series of
functional transformations, where the architecture and param-
eters completely describe the NN model. A training set is
used to train/tune the parameters of an adaptive NN model.
Once the training is complete, the network is used to perform

TABLE I. GLOSSARY OF SYMBOLS

Symbol Definition
T MS Test Mode Signal
SE Scan-Enable Signal
f PE filter row-size
p Accelerator array size

Wi Weight vector size for neuron in layer-(i)
T (i) Computation time of a neuron in layer-(i)
Tc(i) Cumulative computation time of a neuron in layer-(i)

d Depth of the neural network
NI Input dimension
Ni Number of neurons in layer-(i)

h(.) Non-linear activation function
xi Input to layer-(i)

x(i+1) Output of layer-(i)
Wi Weight matrix of layer-(i)
Wi Weight matrix of layer-(i)

Wi[m] Weight vector of (m+1)th neuron in layer-(i)
wi[j][k] (k+1)th weight of neuron-(j) in layer-(k)

bi Bias vector of layer-(i)
bi[k] Bias of kth neuron in layer-(i)

I Input to the neural network
Oi[m] Output of (m+1)th neuron in layer-(i)

δk Perturbation to kth element in the input I
4 Perturbation amplitude

Fig. 2: The connections between two hidden layers of an FCNN

classification or regression. This work focuses on NN models
for classification. A fully connected neural network (FCNN) is
a feed-forward neural network, consisting of fully connected
layers which connect every neuron in one layer to every neuron
in another layer. Figure 2 shows two hidden layers of an FCNN.
The outputs of neurons in (i+ 1)th (0 ≤ i < d) fully connected
layer can be described as:

xi+1 = h

(
Wi.xi +bi

)
(1)

where h(.) is the non-linear activation function, and d is
the number of hidden layers (refer Table I). Here, xi =

[xi
0 xi

1 . . .x
i
k . . .x

i
(D−1)]

T (column vector) is the input vector to
layer-(i), where each variable xi

k corresponds to the (k + 1)th

input feature to the layer and

D =

{
NI i=0
N(i−1) i 6= 0

where NI is the input dimension and N(i−1) is the num-
ber of neurons in layer-(i−1) (prior layer). Similarly, xi+1 =

[xi+1
0 xi+1

1 . . .xi+1
j . . .xi+1

(Ni−1)]
T (column vector) is the output vector

of layer-(i), where Ni is the number of neurons in layer-(i)
(current layer) and each variable xi+1

j corresponds to the output
of neuron-(j) in layer-(i). The secret model parameters are the

weight matrix coefficients, where Wi = {wi[j][k]} is the weight
matrix of layer-(i), whose (j+1)th row corresponds to the weight
vector of neuron-(j) in layer-(i) and bias coefficients, where
bi = [bi

0 bi
1 . . .b

i
j . . .b

i
(Ni−1)]

T (column vector) is the bias vector of
layer-(i), where bi

j is the bias value of neuron-(j) in layer-(i), as
shown in Figure 2. These weights and biases are obtained during
training and is then constant during inference. The weights,
biases, and activation values are represented as double-precision
floating-point (DPFP) numbers in this work.

The rectified linear unit (ReLU) [27] is the non-linear acti-
vation function h(.) we used. This is due to ReLU’s widespread
success and to be consistent with the earlier works on cryptana-
lytic model extraction [17], [18]. The ReLU activation function
is given below where x is the output of a neuron in a fully
connected layer and h(x) is the activation result:

h(x) = max(0,x) =

{
0 x < 0
x x≥ 0

The output layer uses softmax operation for generating the
confidence scores and subsequently selecting the output class
with the maximum confidence score. During inference, the
output layer performs an order-preserving transformation on
the output signals of the penultimate layer [17], [18] and uses
a max(.) operation over these transformations, and selects the
corresponding index as the output of the classifier.

IV. THE PROPOSED ATTACK

To steal NN model parameters, we apply an attack inspired
by small-signal analysis (SSA) used to extract analog sys-
tem model parameters like gain and transconductance [28].
We use SSA to identify the linear region of operations for
neurons where the ReLU returns a non-zero value. We then
use this to apply small perturbations into neural network input
signals to generate a system of linear constraints (SLC) with
known inputs and unknown parameters and solve the system
using a linear constraint solver. We address the challenges of
exposing multiple weights and the parameters in subsequent
layers through an iterative procedure. The iterative procedure
(a) uses the extracted parameters of the previous hidden layers
to generate the SLC for the current hidden layer, (b) solve the
SLC to identify the neuron quiescent operating point (Q-point),
(c) apply small perturbations into neural network input signals
around the Q-point, let them propagate until the current hidden
layer, and (d) use the black-box responses of the current hidden
layer to extract the model parameters through SSA. We finally
automate this iterative procedure to extend the proposed attack
to FCNNs of arbitrary topologies and depths.

A. Identifying neuron quiescent operating point (Q-point)

The goal of Q-point identification is to search for an input that
activates desired neurons and deactivates the remaining neurons
in a stable way. In this context, stability refers to the activated
neurons remaining active and the inactive neurons remaining
inactive even in the presence of small-signal perturbations at
the input. ReLU makes inactive neuron to always produce a
“0” output, which does not provide useful information about
the NN model. By contrast, an activated neuron’s output is a
linear function of its model parameters, which leaks information
and can be extracted. Such carefully selected inputs, popularly

−1 −0.5 0 0.5 1 1.5 2
0

2

4

6
·10−2

Q-point (cop
0 = 1.4)

c
′

0 = 0.61

c0

f(
c 0
)

w0[0][0]

(a) Neuron output signal when attacking its 1st filter weight.

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

Q-point (cop
6 =−1.1)

c
′

6 =−0.32

c6

f(
c 6
)

w0[0][6]

(b) Neuron output signal when attacking its 7th filter weight.

Fig. 3: Varying neuron signal behaviors, depending on the weight-
under-attack. Please note the Y-axis range.

known as quiescent operating points (Q-points) in the analog
signal processing literature, are coupled with SSA to extract cir-
cuit model parameters. Our model extraction is inspired by this
strategy. This section describes Q-point identification/search.

The weighted summation operation of a neuron can be
considered as a filtering operation, and the array of weights can
be considered as a neural filter [16]. Suppose we are interested
in the output signal of the first neuron in the first hidden layer
of an FCNN with the filter defined as:

W0[0] =
[

w0[0][0] w0[0][1] . . . w0[0][NI −1]
]

If we are interested to attack w0[0][0] (the superscript “0”
denotes the first hidden layer, the first index “0” indicates the
first neuron in the layer, and the second index “0” indicates
the first weight in the filter), we can make all the entries in
the input vector I zero except the first entry containing a user-
defined variable c0, represented as:

I =
[

c0 0 . . . 0
]

We refer to the classifier as an oracle, to which we make
queries and record the corresponding internal states. If we make
a query to the oracle by applying this input and observe output
of first neuron in the first layer (O0[0]) through the debug port,
we notice that the signal is purely a function of c0:

f (c0) = O0[0] = ReLU(c0.w0[0][0]+b0[0]) (2)

Figure 3(a) shows the response of neuron-(0) in layer-(0)
for varying input (c0). The example reflects the case where an
FCNN trained on MNIST and mapped to an accelerator (e.g.,
Eyeriss [16]), where our attack makes oracle queries with
different values of c0 and observes the debug port output. We
make the following observations from this signal characteristic:
• The neuron output signal is “0” for c0 < 0.61 and behaves

as a linear function of the weight w0[0][0] with any further
increase in c0. This threshold is denoted as c

′

0.
• Positive perturbations to c0 around c

′

0 activate the neuron,
while negative perturbations do not. Thus, c0 is sensitive

around c
′

0 and the operating point of c0 should be set to a
value reasonably higher than c

′

0 so that small perturbations
either way (positive or negative) do not disturb the linear
behavior of the neuron.

If we denote the operating point of c0 as cop
0 , then how greater

it has to be as compared to c
′

0 depends on the magnitude of
the small-signal. If we denote small-signal on c0 as δ0 and the
amplitude of δ0 as 4, then we can safely define the operating
point as cop

0 = c
′

0 + β .4, where β > 1, is a tuning parameter
used to adjust the Q-point to the stable region of operation
(i.e., both positive and negative perturbations with amplitude 4
on c0 around the Q-point are acceptable). By this definition of
operating point, we know for sure that f (c0) = f (cop

0 ± δ0) > 0,
hence forcing the neuron to operate in the linear region of
operation. Although we have so far explained the procedure to
extract w0[0][0], the methodology is clearly generic. Figures 3(a)
and 3(b) show the stable neuron operating points in the linear
region, when attacking weights w0[0][0] (1st weight in the filter
of neuron-(0) in layer-(0)) and w0[0][6] (7th weight in the filter
of neuron-(0) in layer-(0)) respectively.

B. Small-Signal Analysis (SSA)

The connection between two neurons has two unknown
variables: weight vector and bias, where bias is fixed for all the
connections to a neuron in the current hidden layer. Therefore,
obtaining two linear equations is sufficient to solve and extract
an unknown weight for a given neuron. After computing a
stable neuron operating point (Q-point) in the linear region of
operation, we achieve this with an SSA that consist of primarily
two phases:

1) Applying input I to the neuron (since it is the first hidden
layer, I is directly applied to the neuron input; for the
subsequent hidden layers, a transformed version of I gets
applied) and computing its output.

2) Applying a small perturbation δ <4 to I to produce Ip,
applying Ip to the neuron and computing its output.

The results computed in these two stages will be useful for
the extraction of model weights and biases. In our example, we
obtain f (cop

0) and f (cop
0 +δ0) in these two phases. The difference

between these two signals gives:

f (cop
0 +δ0)− f (cop

0) = ReLU((cop
0 +δ0).w0[0][0]+b0[0])

−ReLU(cop
0 .w0[0][0]+b0[0])

= ((cop
0 +δ0).w0[0][0]+b0[0])

− (cop
0 .w0[0][0]+b0[0]) = δ0.w0[0][0] (3)

Hence f (cop
0 +δ0)− f (cop

0) = δ0.w0[0][0] (this has become plausi-
ble because of the linear operating point). Thus, the filter weight
can extracted as:

w0[0][0] =
f (cop

0 +δ0)− f (cop
0)

δ0
(4)

If we substitute this value for w0[0][0] in Equation 2, we obtain
the bias using:

b0[0] = f (cop
0)− cop

0 .w0[0][0] = (1+
cop

0
δ0

). f (cop
0)− (

cop
0
δ0

). f (cop
0 +δ0)

(5)
The above calculations return b0[0] =−2.36e−2 and w0[0][0] =

3.85e−2, which are indeed the correct values for the target

0 0.2 0.4 0.6 0.8 1 0

0.2

0.40

2

·10−2

Q-point (cop
0 ,cop

1) = (0.75,0.2)

c0

c1

f θ
(c

0,
c 1
)

Fig. 4: fθ (c0,c1) is a surface, and the linear region is a hyperplane in
the 3-dimensional space.

FCNN. Thus, we have successfully and accurately obtained
both the filter weight and neuron bias. Note that this is possible
given scan-chain access to the output of the non-linear layer of
activation results. In our example, we have chosen the non-
zero entry in location-(0) of the input signal I, hence we
are able to extract the 1st filter weight in neuron-(0) w0[0][0]
successfully. In fact, we can choose any location-(k) in neuron-
(j) and successfully extract corresponding filter weight w0[j][k],
∀ j ∈ [0,N0), ∀ k ∈ [0,NI). We will show later in Section IV-D,
that this can indeed be generalized to other layers as well.

C. Exposing multiple filter weights using a common Q-point

So far, for simplicity, we have seen the analysis corresponding
to exposing one filter weight at a time. Although this method
works well for the {positive weight, positive bias} (case-1),
{positive weight, negative bias} (case-2) and {negative weight,
positive bias} (case-3) cases, this method does not extend to the
{negative weight, negative bias} (case-4) case in the subsequent
hidden layers1. This is because all subsequent layers receive
only non-negative inputs due to the ReLU activation. To address
this limitation, it is important to find a common Q-point for
multiple weights inside a neuron, and then expose the individual
weights. Consider the simple example of applying the following
input with only two non-zero entries at locations (0) and (1):

I =
[

c0 c1 0 . . . 0
]

In this scenario, the output signal (of neuron-(0) in layer-(0))
is a function of both c0 and c1:

f (c0,c1) = O0[0] = ReLU(c0.w0[0][0] + c1.w0[0][1] + b0[0]) (6)

Since f (c0,c1) is a rectified linear function of the 2 user-
defined variables c0 and c1, the neuron output function is
a surface and the linear region is a hyperplane, both in 3-
dimensional space as shown on Figure 4. Going a step forward,
if we allow as many non-zero entries as the number of filter
weights at corresponding locations, then I = C where

C =
[

c0 c1 . . . c(NI−1)

]
then the corresponding neuron output signal is given by:

f (C) = O0[0] = ReLU(C�W0[0]+b0[0]) (7)
1It was possible for the case shown in Figure 3(b), because negative inputs

are possible for the first hidden layer.

where � is the element-by-element (scalar) multiplication be-
tween the vectors. Here also, f (C) is a rectified linear function of
the elements in C. If n be the dimension of the vector space for
C, then f (C) is a surface and the linear region is a hyperplane,
both in (n+1)-dimensional space.

Let Cop be the linear operating point (Q-point), and let Cp(k)
be the perturbed vector with perturbation only in location-(k).
Suppose we are interested in attacking weight w0[0][0], we can
then define Cp(0) as:

Cp(0) =
[

c0 +δ0 c1 . . . c(NI−1)

]
In that case, the weight w0[0][0] can be extracted as follows:

f (Cp(0))− f (Cop) = ReLU(Cp(0)�W0[0]+b0[0])

−ReLU(Cop�W0[0]+b0[0])

= (Cp(0)�W0[0]+b0[0])

− (Cop�W0[0]+b0[0]) = w0[0][0].δ0 (8)

In Equation 8, the ReLU function disappears because the
neuron is operating around Q-point, and is thus in linear region
of operation. This means the filter weight can be calculated as:

w0[0][0] =
f (Cp(0))− f (Cop)

δ0
(9)

All weights within the filter W0[0] can be extracted similarly:

w0[0][k] =
f (Cp(k))− f (Cop)

δk
,0≤ k < D (10)

Subsequently, the neuron bias for the neuron-(0) in layer-(0)
can be extracted using:

b0[0] = f (Cop)−Cop�W0[0] (11)

This can further be generalized to all neurons in layer-(0).

D. Exposing model parameters beyond the first hidden layer
In the first layer, the entries of the input and the filter have a

one-to-one mapping hence exposing exactly one weight through
SSA was possible. By contrast, the small-signal of any given
index in the input I gets broadcasted to all inputs to the second
layer. For example, if we apply a small-signal δ0 to c0, we know
that O0[0] will be a function of δ0. Similarly, {O0[j]}, 0≤ j < N0
are all functions of δ0, thereby each weight of a given neuron
in the second layer gets multiplied by a function of δ0. This not
only restricts direct exposing of weights like the first layer but
also results in an under-determined system of linear equations,
hence difficult to solve.

1) Under-determined system of equations: If we consider
again the single perturbation scenario:

Cp(0) =
[

c0 +δ0 c1 . . . c(NI−1)

]
The SSA analysis on (j+1)th input to any second layer neuron

is given as 5Cp
1, j = δ0.w0[j][0]. The SSA output of neuron-(0) in

layer-(1), as a function of its input features and filter weights,
can be computed as:

5O1[0] =
N0−1

∑
j=0

(5Cp
1, j)×w1[0][j]) =

N0−1

∑
j=0

(δ0.w0[j][0])×w1[0][j])

= δ0.
N0−1

∑
j=0

(w0[j][0])×w1[0][j]) (12)

Thus, independent of δ0, it results in exactly one equation,
which is not sufficient to solve for N0 unknowns. Going further,
if we consider the multiple perturbation scenario:

Cp(0,1, . . . ,(NI −1)) =
[

c0 +δ0 c1 +δ1 . . . c(NI−1)+δ(NI−1)

]
it is possible to generate NI linearly-independent equations, but
this system is also under-determined if NI < N0.

2) Solution: This challenge can be solved through localiza-
tion, where we place exactly one neuron in layer-(0) in the
linear region of operation. For example, if we are interested in
extracting w1[0][j] (the (j+ 1)th weight in W1[0], i.e., the filter
corresponding to neuron-(0) in layer-(1)), we need to search for
a Q-point that does activate only the (j+1)th neuron in layer-
(0), and does not activate the remaining neurons in layer-(0).
In that case, Equation 12 simplifies to:

5O1[0] = δ0.(w0[j][0]×w1[0][j]) (13)

and hence the unknown weight in the second layer neuron can
be extracted using the known values as:

w1[0][j] =
5O1[0]

(δ0.w0[j][0])
(14)

In general, any weight w1[m][j] (the weight at the (j + 1)th

position of W1[m], i.e., the filter corresponding to the (m+1)th

neuron in the second layer) can be extracted/attacked in three
steps.

1) Finding Q-point that activates only the (j+1)th neuron in
the first layer, and does not activate remaining neurons in
the first layer.

2) Applying perturbation δk at any arbitrary location-(k) in
the input I to the neural network.

3) And subsequently observing O1[m], i.e., the activated
output of (m+1)th neuron in the second layer.

and finally extracting the model weight using:

w1[m][j] =
5O1[m]

(δk.w0[j][k])
(15)

Although this subsection discusses the second layer, this
localization method to extract model weights is generic and can
be extended to any layer of the FCNN, iteratively, by searching
for a Q-point that activates only one neuron in the prior layer.
Once the weights are extracted, the biases can be successfully
extracted similar to the technique used in Equation 11.

E. Linear Constraint Satisfaction

The activation of exactly one neuron in the first layer corre-
sponding to the weight-under-attack (WUA) in the second layer
neuron is basically a constraint satisfaction problem. The neu-
ron function is itself linear, hence the constraint corresponding
to the WUA index is a linear constraint with > inequality and
constraints for the remaining weights are also linear with ≤
inequality. Hence, all the constraints are linear. Thus, we can
formulate the problem of selective neuron’s activation as a linear
constraint satisfaction (LCS) problem2. In order to extract model
parameters with high fidelity corresponding to cases-(1),(2),(3),

2Without SLC formulation, the results will not converge. A random search
on IBM BladeCenter® High-Performance Cluster visited > 10 billion solutions
occupying 1T B of disk-space without convergence after 1 week of execution.

we will need to generate SLC that activates only one neuron in
the prior layer (layer-(0)), and can be described as:

W0[j].Iᵀ >−1∗b j +η , j = jWUA

W0[j].Iᵀ ≤−1∗b j +α, j ∈ [0,N0−1)−{ jWUA}
(16)

However, in order to extract model parameters corresponding
to case-(4), since isolated activation leads to the oracle response
being “0”, we will need to generate SLC that activates multiple
neurons in the prior layer and reformulate on-the-fly as:

W0[j].Iᵀ >−1∗b j + τ, j = jWUA,τ ∈ [ν ,κ]

W0[j].Iᵀ >−1∗b j +η , j = j f p,η � κ

W0[j].Iᵀ ≤−1∗b j +α, j ∈ [0,N0−1)−{ j f p, jWUA}
(17)

Here f p corresponds to the first positive weight in the layer-
(1) neuron and ν < κ << η to ensure the effect of negative
weight will not dominate that of the positive weight, and hence
ensure ReLU activation. This analysis is generic and extends to
any layer-(i). Thus, for each neuron in layer-(i), (a) we generate
an SLC for selective neuron activation in the layer-(i− 1), (b)
solve the SLC, (c) extract the solution and make oracle queries
to capture outputs of layer-(i) through scan-chains and finally
(d) apply SSA to extract the model parameters of layer-(i).
These steps need automation to enable model-extraction of large
FCNNs of arbitrary depths and sizes.

F. Automation

Algorithm 13 shows the proposed automation to extract
θ̂(i) (model-subset for layer-(i)), given θ̂(i−1) (model-subset for
already extracted layer-(i−1)). Apart from θ̂(i−1), the algorithm
also accepts other user-tunable parameters δ (the small-signal),
η (target for cases-(1),(2),(3)), [ν ,κ] (target range for case-(4)),
α (to prevent numerical errors due to the neurons being at
the boundary between deactivation and activation). During our
experiments, we have also encountered hard cases (case-(5))
when the solver could not successfully solve some of the SLC
instances and returns “Infeasible”.

We note that the algorithm has different procedures for dif-
ferent cases. For cases-(1), (2), (3) (discussed in Section IV-C),
isolated activation is used where we use an exclusive Q-point
for higher fidelity. For case-(4), we are forced to use a common
Q-point. During our experiments, we have also encountered
hard cases (case-(5)) when the solver failed to solve some
of the SLC instances and returns “Infeasible”. To address
case-(5), we have devised a strategy to relax constraints in
Equations 16 and 17 for values of i corresponding to weights
already successfully extracted. This is acceptable, because if
those model parameters appear in Equation 12, we can substitute
the extracted parameters and solve for the unknown parameters.

V. EXPERIMENTAL SETUP AND RESULTS

To evaluate and compare our results with earlier work using
mathematical model extraction, we follow the approach of Car-
lini et al. [17]. We build the same neural network configurations
with the same training process, apply our automated attack, and
report the number of queries used and the maximum error rate
(max|θ − θ̂ |) of the extracted parameters. This will effectively
extend their results table and compare our work with the

3Simplified notation compared to Section IV-E.

Algorithm 1: Algorithm to attack target layer in FCNNs

Input: oracle, θ̂(i−1), δ , η , κ,ν (η � κ)

m := 0;
while m < Ni do

j := 0;
while j < N(i−1) do

Generate constraints that activate only neuron-(j) in
layer-(i−1) with η as target activation;

Run constraint-solver for Q-point search;

// Cases-(1),(2),(3)
Apply SSA(oracle,Q,δ) to extract wi[m][j] weight;
Mark index of first positive weight of neuron-(m) in

layer-(i) as f p;

// Coupled Constraints for case-(4)
if extracted weight = 0.0 then

Generate constraints that activate neuron-(j) with
target activation τ ({ν ≤ τ ≤ κ}) and
neuron-(f p) with target activation η (and none
of the others) in layer-(i−1);

Run constraint-solver for Q-point search;
Apply SSA(oracle,Q,δ) to extract the negative

weight.
end
j := j+1;

end
// Iterative constraint relaxation for

case-(5)
j := 0;
while j < N(i−1) do

if Constrained solution ”Infeasible” then
Relax constraints for already solved weights;
Run constraint-solver for Q-point search;
Apply Incremental extraction() along with

SSA(oracle,Q,δ) to extract the weight.
end
j := j+1;

end
Apply SSA to extract bias of neuron-(m) in layer-(i);
m := m+1;

end
Result: θ̂(i)

three earlier attacks proposed at CRYPTO 2020 [17], USENIX
2020 [18], and ICML 2020 [19].

Our C implementation exploits the register-level information,
by simulating the neural network accelerator functions, similar
to the Eyeriss Chip Simulator [29]. We have used TensorFlow
Graphics Processing Unit (GPU) as the backend, with a Keras
front end to train and evaluate the accuracy of the FCNN
models. We train and evaluate FCNN models on a computer
with 64 GB of Random Access Memory (RAM), an NVIDIA
2080 Ti graphics card, and an Intel i7 9700K Processor.

We use a categorical cross-entropy as our loss function with
Adagrad as the optimizer with a learning rate of 0.1. Using
Adagrad allows the learning rate to be adjusted dynamically
as the model is training. Thus, even with a large learning
rate, the optimizer will update it to the appropriate value. The
average time to train the models is around 10 minutes to achieve
over 99% accuracy. We have used MNIST digit-recognition
database [30] to train the 784-32-1 and 784-128-1 architectures
(first two entries of Table II). The remaining architectures are
benchmarks borrowed from [17].

The input Q-points are calculated using the ILOG constraint
solver. Our C implementation invokes the solver and applies

TABLE II. Efficacy of our extraction attack, which is orders of magni-
tude more precise and query-efficient than prior work. Models denoted
a−b−c are fully connected neural networks with input dimension a,
one hidden layer with b neurons, and c outputs. Entries denoted with
a † were unable to recover the network after ten attempts. Here, θ and
θ̂ denote the original and extracted FCNN models respectively.

Architecture Parameters Approach Queries max|θ − θ̂ |
784-32-1 25,120 [18] 218.2 2−1.7

[17] 219.2 2−30.2

Ours 213.9 2−53.3

784-128-1 100,480 [18] 220.2 2−1.8

[17] 221.5 2−29.4

Ours 215.4 2−49

10-10-10-1 210 [19] 222 2−12

[17] 216 2−36

Ours 28.8 2−45.9

10-20-20-1 420 [19] 225 ∞†
[17] 217.1 2−37

Ours 210.2 2−45.4

40-20-10-10-1 1,110 [17] 217.8 2−27.1

Ours 211.1 2−43.5

80-40-20-1 4,020 [17] 218.5 2−39.7

Ours 213 2−44.2

the RLC uncompressed versions of Q-points calculated by the
solver iteration of Algorithm-1 through system calls similar to
“IO2.py” of EyerissF [29], and reads back the calculated Q-
points using DPFP representations. We have performed neuron-
by-neuron and layer-by-layer computation through iterative calls
to oracle nn lx(. . .) functions in a cycle-accurate fashion, similar
to “EyerissF.py” which iteratively reuses the PE class defined
in “PE.py”.

Our implementation captures the activation results (shown in
Figure-1) similar to “Activation.py” of EyerissF. The configu-
ration parameters including the number of layers, number of
neurons per layer, number of weights per neuron, and other
parameters like α,η ,δ ,κ,ν are defined as macros, similar to
“conf.py” of EyerissF.

Table II presents the results of our attack and its comparison
with the mathematical model extraction. The “parameters”
column in Table II indicates the number of parameters in the
NN model. The results clearly demonstrate the superiority of
our attack across all the considered architectures. On average,
our proposed attack is 220.7×, 250.7× and 233.9× more accurate
and requires 26.5×, 24.6× and 214.2 less queries compared to [17],
[18], and [19] respectively.

The results depend on the user-tunable parameters η ,κ,ν ,
while the dependence on δ is observed to be small. We used the
IBM® ILOG CPLEX constraint-solver for solving the SLCs.
Algorithm 1 was implemented in C and the constraint-solver
was invoked through system-calls. The results shown in Table II
correspond to δ = 1.0, α =−1.0, η = 10.0, κ = 2.0 and ν = 1.0—
these values are constant across all the FCNN architectures. The
accuracy can be further improved by a suitable choice of these
parameters, which we leave for future investigation.

Since ReLU also uses max(.) operation, we assume ReLU
activation-unit [16] can be re-used to compute the output layer,
and hence the output of the last layer also leaks information. We
have contacted authors of prior papers [17], [18] and confirmed
that our assumption on the output layer is consistent with theirs.

Classification Scan Out

CLK

TMS

SE

Classification

Debug Mode

Shift Mode

Query
Tc(i)

Fig. 5: Timing diagram for switch between functional and debug modes

Although it is an orthogonal threat, an interesting comparison
of our attack can be made with the side-channel analysis,
which seems to be more powerful as it can directly attack
individual floating-point multiplications. It is reported that a
few thousand queries are sufficient to extract the mantissa but
direct comparison is hard because the attack was conducted on
single-precision floating-point variables and the maximum error
rate and queries are not given for the complete network [31].

VI. DISCUSSION
This section provides a brief discussion on existing counter-

measures, prior work, and how to switch between functional
and debug modes to extract layer-wise information.

A. Existing Countermeasures on Cryptographic Accelerators
It is possible that existing countermeasures on cryptographic

accelerators such as Secure Scan [32], Mode-reset [33], Scan-
cell/Output Swapping [34] etc. can prevent our proposed attacks
but such defenses have to be adapted/implemented for the new
ML accelerators and the designers have to accept the related
overheads. But the first step is to show that such attacks
do exist. Unless the attacks are shown, the defenses will be
omitted to avoid the overheads. This is currently happening
for other ML threats—cryptanalytic [17] and side-channel at-
tacks [31]—where the newly discovered vulnerabilities have
resulted in applying earlier defenses (although discussions con-
tinue on how to tune defenses to minimize their costs). Our
work demonstrates the capability of the scan-chain threat for
the first time and motivates that the same discussions should
start for scan-chain attacks.

B. Prior Work
The most recently published attacks include CRYPTO

2020 [17], USENIX 2020 [18], and ICML 2020 [19]. In
CRYPTO 2020 [17], the authors use a cryptanalytic extraction
method through the API using a finite difference method, and
error overapproximation through mixed-integer linear program-
ming (MILP). In USENIX 2020 [18], the authors use a query-
based supervised training of substitute model for high-accuracy
extraction and second-derivative based high-fidelity extraction,
but the technique is restricted to only two layers and results in
significant errors which need to be recovered through another
phase of learning. In ICML 2020 [19], the authors propose a
hyperplane separation method for ReLU networks, but results in
exponential increase in error with increase in number of layers
and number of neurons-per-layer. Our proposed attack, on the
other hand, is correct by construction and does not introduce
any errors suggested above. Since we use finer-grained scan-
chain access, the accuracy is greatly improved. Additionally,
we use LP formulation whose complexity is O(n.log(n)), which
is clearly easier to solve unlike MILP, which is NP-Hard.

C. Switch between modes to extract layer-wise information
The activation register scan-chain vulnerability illustrated

earlier in Figure 1 can be exploited only in the chip’s debug/test
mode of operation. However, the NN classification takes place
in the chip’s functional mode of operation. Hence, it is important
to understand how to carefully switch between these two modes
through the appropriate timing of the multiple control signals
involved. Figure 5 shows the timing of the clock (CLK),
test mode (TMS), and scan enable (SE) signals. For each
applied input, the NN accelerator is configured to execute the
classification task using a fast (system) clock and subsequently
the results of interest captured at the activation registers are
scanned-out using a slow (shift) clock.

This {classi f ication, scan−out} sequence is repeated until all
the activation results corresponding to the applied inputs are
available. To facilitate the switch between functional mode and
debug mode, the clock is gated-off (grey region) between the
classification mode and scan-out mode, and the chip is switched
from functional mode to debug mode by transitioning T MS from
0→ 1 and SE from 0→ 1 as shown in Figure 5. The switch
between functional and debug modes also exists in the prior
works on scan-chain attacks for cryptographic accelerators [11],
but the timing of the clock and other control signals is unique
to NN accelerators.

1) Timing of Control Signals: The NN accelerator contains
a total of p PEs (refer Table I) executing in parallel, with each
PE containing a multiply-and-accumulate (MAC) unit. Assume
a filter-size of Wi for a neuron in layer-(i), filter-row size of
f within each PE. If there were an unlimited number of PEs,
each PE reduces f summands to one in (f −1) clock cycles and
there are dlog f (Wi + 1)e reduction stages. Thus, the number of
functional clock cycles of classification for a neuron in layer-
(i) is Ti = (f − 1) ∗ dlog f (Wi + 1)e. Because the NN accelerator
contains only p PEs [16], it takes more functional clock cycles:

T (i) = (f −1)∗
dlog f (Wi+1)e

∑
m=1

⌈
(Wi +1)

f m.p

⌉
(18)

Since we do not scan-in, in order to scan-out layer-(i), we will
need to execute the classification from layer-(0) all the way till
layer-(i). Hence, the total number of functional clock cycles of
classification needed to capture the response to a query, for a
neuron in layer-(i) is given by:

Tc(i) =
i

∑
k=0

T (i) = (f −1)∗
i

∑
k=0

dlog f (Wi+1)e

∑
m=1

⌈
(Wi +1)

f m.p

⌉
(19)

Considering DPFP representation, the number of clock cycles
spent in scanning out the activation register is 64. Thus, both
T MS and SE signals will be turned high during the clock gated
phase (grey region) prior to scan-out and will remain high for
64 cycles of the slow clock, and will be turned off during the
clock gated phase (grey region) post-scan-out.

VII. CONCLUSIONS AND FUTURE WORK

This paper has uncovered and quantified the effectiveness
of a new threat vector for model stealing from ML hardware.
The proposed attack abuses the debug ports (i.e., scan-chain
access) that may be active after deployment to conduct in-field
tests, and it observes intermediate states of the neural network
inference for efficient model extraction. Although such attacks

are well-known for cryptographic circuits, they have not been
explored before for ML. We have revealed that ML has unique
challenges due to the number of parameters, non-injective non-
linear functions, and floating-point arithmetic, which are not
seen in cryptographic systems. But these challenges can be
overcome with novel attack algorithms such as the ones we have
proposed and with automation. The results have shown clear
advantages of our proposed attack over cryptanalytic extraction
both in terms of accuracy and the number of queries needed.
This paper, therefore, calls for defenses against such attacks,
e.g., by extending the ones built for cryptographic circuits.

To be consistent with earlier attacks and to evaluate NN
achieving the best accuracy results, we used NN with floating-
point weights and biases. An interesting extension of this work
could be analyzing quantized networks.

REFERENCES
[1] C. Li, “OpenAI’s GPT-3 language model: A technical overview,” 2020.

[Online]. Available: https://lambdalabs.com/blog/demystifying-gpt-3/
[2] F. Tramèr et al, “Stealing Machine Learning Models via Prediction APIs,” in

USENIX Security Symposium, 2016, pp. 601–618.
[3] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,” in

IEEE Symposium on Security and Privacy (SP), May 2018, pp. 36–52.
[4] M. Juuti et al, “PRADA: Protecting Against DNN Model Stealing Attacks,” in

IEEE European Symposium on Security and Privacy, 2019, pp. 512–527.
[5] D. Lowd and C. Meek, “Adversarial learning,” in ACM KDD, 2005, pp. 641–647.
[6] N. Papernot et al, “Practical black-box attacks against machine learning,” in

AsiaCCS, 2017, pp. 506–519.
[7] T. Gu et al, “BadNets: Evaluating Backdooring Attacks on Deep Neural Net-

works,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.
[8] “Texas Instruments: IEEE Std. 1149.1 (JTAG) Testability Primer,” 2016.

[Online]. Available: https://www.ti.com/lit/an/ssya002c/ssya002c.pdf
[9] “Tessent Boundary Scan,” 2019. [Online]. Available: https://www.mentor.com/

products/silicon-yield/products/boundary-scan
[10] “1149.1-2013 - IEEE Std. for Test Access Port and Boundary-Scan,” 2013.

[Online]. Available: https://standards.ieee.org/standard/1149 1-2013.html
[11] B. Yang et al, “Scan based side channel attack on dedicated hardware implemen-

tations of Data Encryption Standard,” in ITC, 2004, pp. 339–344.
[12] M. Agrawal et al, “Scan Based Side Channel Attacks on Stream Ciphers and

Their Counter-Measures,” in INDOCRYPT, 2008, pp. 226–238.
[13] K. Rosenfeld and R. Karri, “Attacks and Defenses for JTAG,” IEEE Design and

Test of Computers, vol. 27, no. 1, pp. 36–47, 2010.
[14] R. Nara et al, “Scan-based attack against elliptic curve cryptosystems,” in ASP-

DAC, 2010, pp. 407–412.
[15] J. D. Rolt et al, “A Novel Differential Scan Attack on Advanced DFT Structures,”

ACM TODAES, vol. 18, no. 4, pp. 36–47, 2013.
[16] Y. Chen et al, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for

Deep Convolutional Neural Networks,” IEEE JSSC, no. 1, pp. 127–138, 2017.
[17] N. Carlini et al, “Cryptanalytic Extraction of Neural Network Models,” in

CRYPTO, vol. 12172, 2020, pp. 189–218.
[18] M. Jagielski et al, “High accuracy and high fidelity extraction of neural net-

works,” in USENIX Security Symposium, 2020, pp. 1345–1362.
[19] D. Rolnick and K. P. Körding, “Identifying Weights and Architectures of

Unknown ReLU Networks,” ICML, vol. abs/1910.00744, 2020.
[20] “ASE Tech. Holding Revenue 2006-2020,” 2020. [Online]. Available: https:

//www.macrotrends.net/stocks/charts/ASX/ase-technology-holding/revenue/
[21] “ASE Group Test Service,” 2021. [Online]. Available: https://ase.aseglobal.

com/en/products/test
[22] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-resistant smart-

card processors,” in Smartcard. USENIX Association, 1999.
[23] L. Alrahis, M. Yasin, H. Saleh, B. Mohammad, M. Al-Qutayri, and O. Sinanoglu,

“Scansat: Unlocking obfuscated scan chains,” in ASPDAC, 2019, p. 352–357.
[24] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse engi-

neering,” in DAC, 2011, pp. 333–338.
[25] A. Dubey et al, “MaskedNet: A Pathway for Secure Inference against

Power Side-Channel Attacks,” HOST, 2020. [Online]. Available: https:
//arxiv.org/abs/1910.13063

[26] H. Yu et al, “DeepEM: Deep Neural Networks Model Recovery through EM
Side-Channel Information Leakage,” in HOST, 2020.

[27] V. Nair et al, “Rectified Linear Units Improve Restricted Boltzmann Machines,”
in ICML. Omnipress, 2010, pp. 807–814.

[28] S. E. Laux, “Techniques for small-signal analysis of semiconductor devices,”
IEEE Transactions on Electron Devices, vol. 32, no. 10, pp. 2028–2037, 1985.

[29] “Eyeriss Chip Simulator,” 2020. [Online]. Available: https://github.com/jneless/
EyerissF

[30] “The MNIST database of handwritten digits.” 2020. [Online]. Available:
https://www.tensorflow.org/datasets/catalog/mnist

[31] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse Engineering
of Neural Network Architectures Through Electromagnetic Side Channel,” in
USENIX Security Symposium, 2019, pp. 515–532.

[32] B. Yang, K. Wu, and R. Karri, “Secure scan: A design-for-test architecture for
crypto chips,” IEEE TCAD, vol. 25, no. 10, pp. 2287–2293, 2006.

[33] D. Hely, F. Bancel, M. Flottes, and B. Rouzeyre, “Test control for secure scan
designs,” in ETS, 2005, pp. 190–195.

[34] S. S. Ali et al, “Novel test-mode-only scan attack and countermeasure for
compression-based scan architectures,” IEEE TCAD, vol. 34, no. 5, pp. 808–
821, 2015.

