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Abstract. Inthe model of Perfectly Secure Message Transmission (PSMT),
a sender Alice is connected to a receiver Bob via n parallel two-way chan-
nels, and Alice holds an ¢ symbol secret that she wishes to communicate
to Bob. There is an unbounded adversary Eve that controls ¢ of the chan-
nels, where n = 2t + 1. Eve is able to corrupt any symbol sent through
the channels she controls, and furthermore may attempt to infer Alice’s
secret by observing the symbols sent through the channels she controls.
The transmission is required to be (a) reliable, i.e., Bob must always be
able to recover Alice’s secret, regardless of Eve’s corruptions; and (b)
private, i.e., Eve may not learn anything about Alice’s secret. We focus
on the two-round model, where Bob is permitted to first transmit to
Alice, and then Alice responds to Bob.

In this work we provide upper and lower bounds for the PSMT model
when the length of the communicated secret ¢ is asymptotically large.
Specifically, we first construct a protocol that allows Alice to communi-
cate an £ symbol secret to Bob by transmitting at most 2(140¢— o0 (1))né
symbols. Under a reasonable assumption (which is satisfied by all known
efficient two-round PSMT protocols), we complement this with a lower
bound showing that 2nf symbols are necessary for Alice to privately and
reliably communicate her secret. This provides strong evidence that our
construction is optimal (even up to the leading constant).

1 Introduction

Background. Perfectly secure message transmission (PSMT) was first intro-
duced by Dolev et al. in [DDWY93]. This problem involves two parties, the
sender Alice and the receiver Bob. Alice wishes to communicate a secret to Bob
over n parallel channels in the presence of a computationally unbounded adver-
sary Eve. Eve is able to take control of up to ¢ channels in such a way that she
can listen to and/or overwrite the message passing through these ¢ corrupted
channels. Here, we assume Eve is static, i.e., she chooses up to ¢t channels to
corrupt before the protocol and will not change corrupted channels during the
protocol. The goal of PSMT is to devise a procedure permitting Alice and Bob
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to communicate the secret reliably and privately. More precisely, it is guaran-
teed that Bob always completely recovers the secret (reliability) and Eve learns
absolutely nothing about the secret (pm'vacy)ﬂ PSMT can be done in multiple
communication rounds. During each round, one party acts as the sender and the
other acts as the receiver. They are not permitted to change their roles in one
round.

It is clear that for ¢ > n/2, PSMT is not possible, regardless of how many
rounds the protocol uses. One can treat all the message transmitted over these
n channels as a codeword of length n. Assume c¢; represents the secret 1 and
co represents the secret 0 that Alice wants to communicate to Bob. Since the
distance of these two codewords is at most n and the number of errors ¢ is more
than the half the distance between c; and cg, unique decoding is not possible.

The original paper in [DDWY93| showed that one-round PSMT is possible if
n > 3t + 1. The same paper also showed that PSMT is possible when n > 2t +1
if two or more rounds are performed. There have since been a number of efforts
to devise improved PSMT protocols in various settings. The most challenging
case is two-round PSMT with n = 2t 4+ 1 channels. To measure the performance
of a PSMT protocol in this case, we use the metric of transmission rate, which is
the total number of bits transmitted divided by the length (in bits) of the secret
communicated.

Prior Work. In what follows, we focus on the case that n = 2t + 1. Sayeed
and Abu-Amara [SA96] first presented a two-round PSMT achieving transmis-
sion rate O(n?®). Agarwal et al. [ACdHO6] further improved it to O(n) which is
asymptotically optimal as a lower bound of n was proved in [SNRO04]. However,
implementing this protocol requires an inefficient exponential-time algorithm.
A breakthrough was achieved by Kurosawa and Suzuki [KS08] whose protocol
achieves transmission rate 6n, and can be run in polynomial time. Inspired by
this protocol, Spini and Zémor [SZ16] further reduced the transmission rate to
5n, and moreover their protocol is arguably simpler than those that preceded
it. Our protocol builds off of their ideas, as we discuss at the end of this intro-
duction. Their work also answers in the affirmative an open problem posed in
IKSO8] of whether it is possible to achieve O(n) transmission rate for a secret of
size at most O(n?logn).

Hence, in reviewing the literature on PSMT, we note that the only known
lower bound on the transmission rate for two-round PSMT is n, while the current
state-of-the-art construction in [SZ16] achieves transmission rate 5n. While both
bounds are ©(n), there is still a gap of 4n between the lower bound and the upper
bound.

Our Results. Our results are two-fold. Our first contribution is a two-round
PSMT protocol communicating a length ¢ secret with transmission rate 2(1 +

3 One can also consider the model of secure message transmission where privacy and/or
reliability is only guaranteed to hold with high probability [FW00]. However, in this
work, we focus exclusively on the case of perfect privacy and reliability.



Og_wc(l))nﬁ This protocol improves over the state-of-the-art protocol in [SZ16]
by 3n. Furthermore, our protocol reaches this transmission rate when Alice and
Bob merely communicate an w(nlogn)-bit secret, and moreover achieves trans-
mission rate O(n) when they communicate an £2(nlogn)-bit secret as in [SZ16].

Our second contribution is a lower bound on two-round PSMT protocols.
Specifically, under a reasonable assumption, we show that Alice and Bob have
to transmit at least 2nf bits so as to securely communicate an ¢-bit secret. Our
assumption comes from the observation that all known efficient constructions
such as [ACdHOG/KS08ISZ16] allow the adversary to learn the whole transmission
in the second round of communication. This means the adversary can recover the
transmission of all n channels by only listening to ¢ of them. The reason is that in
the second round, Alice encodes the message via an error correcting code which
ensures the correctness of the transmission but sacrifices privacy. Therefore, in
the security analysis of their protocols, they assume that the adversary could
learn the whole transmission in the second round. Under this assumption, our
two-round PSMT protocol actually achieves the optimal transmission rate. In
this sense, our lower bound argument reveals an inherent limit for optimizing
two-round PSMT: to beat our protocol, one must design a two-round PSMT
protocol bypassing this assumption.

Our Techniques. As mentioned above, we obtain tight upper and lower bounds
for communicating an ¢-bit secret in the model of two-round PSMT. We start
by outlining the upper bound proof.

Upper Bound. For the upper bound, we construct a two-round PSMT protocol
achieving transmission rate ~ 2n. Instead of presenting our optimal protocol im-
mediately, we first present a simplified protocol which allows for communicating
a log n bit secret securely, which we view as a symbol m € F, with ¢ > n.

Bob first sends ¢t + 1 codewords cy, ..., c;41 which are picked independently
and uniformly at random from a [n,t + 1,n — t], Reed-Solomon codeﬂ over F,.
Alice receives the corrupted codewords ¢; = c; + e;. She uses the parity check
matrix of this Reed-Solomon code to calculate the syndrome vectors He; = s;.
Since Eve can corrupt at most ¢ channels, there exist coefficients A1, ..., A1 €
F,, not all zero, such that Zfii Ais; = 0. From this one can show Zf: Aie; =0
and thus Zfi} \iC; = Z&} Ai€;. To simplify the following expressions, denote
¢ =Y Aiey = Y Aés

Let h € Fy be a vector of weight n that is not orthogonal to the [n,t4+1,n—t]
Reed-Solomon code. Alice broadcastsﬂ Aly ...y A1 together with (h,¢) +m
to Bob where m is the secret; (h,c) is a mask for the secret. Bob first uses

4 Here and throughout, 0¢—o0(1) denotes a quantity which tends to 0 as £ — oo,
holding n fixed.

> A [n,k,d], Reed-Solomon code has block-length n, dimension & and distance d =
n—k+1.

5 To broadcast A € Fq, Alice sends A through every channel; note that Bob can easily
recover A by choosing the majority symbol.



AL, ..., Atp1 to recover € and then obtains m by removing the mask (h, ¢) from
the last broadcasted message.

The privacy analysis is quite straightforward. First, Eve can calculate A\, ..., Ads41
by herself since each s; = He; is available to her. This means we can reduce the
privacy argument to the last message (h,c) 4+ m which is an immediate conse-
quence of the [n,t 4+ 1,n — t] Reed-Solomon code we use. This protocol allows
Alice and Bob to securely communicate the secret m € I, at the cost of n?logn
communication complexity (measured in bits).

Observe that if the syndrome space spanned by si,...,s;+1 has dimension
r, Alice only needs to send r + 1 coefficients instead of ¢ + 1 so as to share a
common codeword with Bob. This observation leads to our most efficient two-
round PSMT.

We now present the general protocol. Assume Alice and Bob want to com-
municate an £log n-bit secret securely. We first split it into ¢ secrets mq, ..., my,
each of size logn, which we think of as lying in F, with ¢ > n. Bob first sends
t + ¢ codewords cq,...,c¢4p which are picked independently and uniformly at
random from a [n,t + 1,n — t] Reed-Solomon code over F,. Alice receives the
corrupted codewords €; = c; +e; for i € [t+ £]. She uses the parity-check matrix
of this Reed-Solomon code to calculate the syndrome vectors Hc; = s;.

Assume that the space spanned by s, . .., s;¢ has dimension r. Let S C [t+/]
be the index set of s; that form the basis of this syndrome space. Without loss
of generality, let us assume S ={t+¢—r+1,t+L—r+2,...,t+ £}, the last
r elements of [t + ¢]. For each i € [{], there exist not all zero coefficients \;;
for j € S such that s; = ). g Ai;s;. In analogy to what we did in the simpler
pI‘OtOCOl7 we let C,:=¢C; — ijes >\ijcj = él — Z]ES Aijéj-

Before entering into the second round, we do the same thing as [SZ16] so as to
reduce the communication complexity: we spot a corrupted codeword with error
weight at least r by applying linear operations to the éj’sm We take a different
approach which simplifies the argument; for details, please see Algorithm
Assume that Alice has managed to spot a corrupted codeword ¢ = 3 jes A;Cj
with error weight at least r. Alice first broadcasts the index set S together with
Aj for j € S and € to Bob. Then, Alice uses an [n,r 4+ 1,n — r] Reed-Solomon
code to encode the message data A;;,j € S and (h,¢;) +m; for i € [{].

Once Bob receives the messages, he can correctly recover the index set .S and
A; for j € S and ¢ as these messages are broadcasted. By applying the same
linear operation on the codewords in S, Bob will obtain ¢ = ) jes Ajc; which
is at least distance r away from ¢. Bob then ignores the r channels that cause
the inconsistency between ¢ and ¢. Bob can decode the rest of Alice’s messages

" Note that Eve has to corrupt at least  channels so as to make the syndrome space

have dimension r. To simplify our discussion here, we assume r < %; otherwise
the protocol will be little more complicated. Specifically, Alice first broadcasts a
corrupted codeword with error weight % and then sends all corrupted codewords in
S to Bob via a [n, £,n — £ 4 1] Reed-Solomon code. This extra cost will not affect
transmission rate as we can amortize it out by communicating ¢logn = w(n log n)-bit
secret. The interested reader can find the details in our proof.



correctly which were encoded by the [n,r + 1,n — r] Reed-Solomon code since
Eve can only cause r erasures and t — r errors now. The recovery procedure is
exactly the same as in the first protocol. The privacy argument is also quite
straightforward. First of all, the coefficients A;; can be computed by Eve on her
own. Then, the privacy of the secret m; can be reduced to the privacy of c; for
i € [r] which is guaranteed by the [n,t + 1,n — t] Reed-Solomon code.

It remains to bound the communication complexity. The first-round commu-
nication complexity is (£ +t)n logn. The second-round communication complex-

ity is nrlog(t+¢) + (r +n)nlogn+ 25 (r+1)¢log n. Thus, the transmission rate

is 2n + O(”Tf) which becomes 2(1 4 0¢—00(1))n if Alice communicates to Bob an
Llogn = w(nlogn)-bit secret.

Lower Bound. Let us first formalize PSMT by defining Alice and Bob’s moves.
Assume that Alice wants to communicate an ¢-bit secret s securely to Bob via
a two-round PSMT. In the first round, Bob sends a vector a = (aq,...,a,) to
Alice, and Alice receives a corrupted vector a. Based on & and the secret s € [2¢],
Alice sends back a vector b = (by,...,b,) to Bob. On receiving the corrupted
vector b, Bob tries to decode the correct secret s with the help of a.

Next, we justify our assumption that Eve learn the whole transmission in
the second round of communication. We design an adversary Eve to force Alice
and Bob to transmit at least 2¢n bits so as to securely send the ¢-bit secret. In
the first round, Eve does nothing. That means Alice will receive a correct vector
a. Moreover, she has no idea which channels are corrupted. She must therefore
assume that any subset of ¢ channels are equally likely to be corrupted in the
second round. Given a, Alice has to use a code of distance n = 2t + 1 to encode
the secret s € [2¢] so as to achieve reliability. This gives a lower bound ¢n on
the second round communication complexity. In the meanwhile, if the code of
distance n = 2t + 1 used by Alice and Bob in the second round is known to
Eve, Eve will learn a. In fact, all known efficient constructions use the same
code book in this situation. Their protocol only protect the correctness of the
transmission in the second round not the privacyEI In the following argument, we
assume that Eve knows b if there is no corruption in the first round. Therefore,
to achieve perfect security, Alice and Bob must share a private key of size ¢
in the first round. We also notice that the message sent by Bob in the first
round is independent of Eve’s strategy, which means that the lower bound on
the communication complexity of the first round can be applied to the case Eve
does nothing in the first round. We construct a secret sharing scheme by treating
a = (ay,...,a,) as n shares and this private key as a secret. Since Eve can listen
to t channels, this means any ¢ shares should learn nothing of this secret. This

8 It might be possible that Alice and Bob use different codes with same minimum
distance n = 2t + 1 in the second round. In this case, Bob and Alice must share the
code information which is kept secret from Eve. We are not aware of any construc-
tion with this property and can not be sure that such strategy will gain them any
advantage.



implies that such a secret sharing scheme has ¢-privacy. We next show that such
secret sharing scheme must have ¢ 4 1-reconstruction.

Let a; be any share vector of secret s; and ay be any share vector of secret
so. If a1 and ay are within distance ¢, Eve may inject ¢ errors to change a; to as.
Then, Alice can not detect any corruption and take the move as if no corruption
happens. However, This will lead to the situation that Alice and Bob share a
wrong key and thus Alice fails to recover the correct secret. This implies the share
vectors associated with different secrets must have distance ¢ + 1 and thus any
n—(t+1)+1 = t+1 shares can reconstruct the secret. As we have t-privacy and
t + l-reconstruction, our secret sharing scheme is threshold, which implies that
the number of bits communicated in the first round is also at least ¢n. Putting
it all together, we obtain the desired 2¢n lower bound on the communication of
the two-round PSMT. Although we do not pin down the actual value of optimal
two-round PSMT, our lower bound shows that any two-round PSMT beating our
lower bound must bypass this assumption. We leave this as a future direction.

Comparison to Previous Version. Our previous version does not include this
assumption and prove the same lower bound. However, one of the conference
referees points out that Eve may not learn the whole transmission in the second
round if the code used by Alice and Bob are not fixed in this situation. We thank
for his valuable comment which helps us to fix this bug. We also emphasize that
in all known efficient PSMT protocols, Eve can predict the code used by Alice
and Bob. This means our new assumption holds for these constructions. To beat
our construction, one has to design a PSMT protocol bypassing this assumption.

Technical Comparison to Previous Works. Our protocol achieving transmission
rate 2n utilizes ideas from prior works, and we would like to take a moment
here to properly acknowledge them. The idea of leveraging the syndrome space
and pseudobasis to correct errors was first introduced by Kurosawa and Suzuki
in [KS08]. They also proposed the idea of generalized broadcast to decrease
the communication cost of the second round. Spini and Zémor [SZ16] further
developed this idea by showing how to spot a codeword with large error. They
also abandon the dependency on the codeword communicated in the first round
in [KSO§| which greatly simplified the technique. These ideas also appear in our
protocol; in particular, the first round of our protocol matches that of [SZ16].
To obtain a more efficient PSMT protocol, we observe that the protocol in
[SZ16] divided the size of the global support of the errors into two cases: the
small and the big one. In the second round, Alice transmits information for both
of the potential cases. Thus, in some sense, half of her communication is wasted.
Dealing with both cases simultaneously required a more careful analysis of the
syndrome space to generate the required masks: we exploit linear dependencies
amongst the syndromes, unlike [SZ16] that used a decoding algorithm, which
itself was already a key improvement over the protocol in [KS0§]. Furthermore,
the approach in [SZ16] sends back syndrome vectors whose lengths are always
t+ 1. In our protocol, we exploit the codewords in the pseudobasis S to correct
the error, allowing us to only send back |.S| symbols to identify the vector. The



bigger |S] is, the more errors can be detected, permitting the use of more efficient
generalized broadcast.

On the other hand, the lower bound argument is new, except that the need
for broadcast in the second round is also mentioned in the O(n) lower bound
argument [SNRO4].

2 Preliminaries

Notations. For an integer n > 1, we denote [n] := {1,2,...,n}. By default, log
denotes the base-2 logarithm.

Throughout, F; denotes the finite field with ¢ elements, for ¢ a prime power.
We let n denote the number of channels through which Alice and Bob may
communicate and ¢ the number of channels Eve may corrupt; we focus exclusively
on the n = 2t + 1 case. The complexity measure of a protocol that concerns us
is its transmission rate, defined as the total number of symbols communicated
divided by the number of symbols of the transmitted secret. The length of the
transmitted secret is denoted by . By 0y 00o(1) we refer to a quantity which
tends to 0 as ¢ — oo (fixing all other parameters, including n), and we write

f0) ~ g(0) if limp_ oo % =1 (again, fixing all other parameters).

Remark 1 As usual, a bit refers to an element of {0,1}, while in this work, a
symbol refers to an element from the field Fy, and we will need ¢ > n. While it
is most natural to measure the total communication in bits, as our protocols will
involve transmitting elements of F, it is more convenient for us to talk about
the number of symbols transmitted. Note that when we compute the transmission
rate and we assume the length of the secret is a growing parameter, whether we
measure the communication in bits or symbols does not matter. However, when
we present our lower bound proof in Section [{] it will be most convenient for us
to talk about bits.

Codes. As in previous works, our protocols rely crucially on linear codes with
desirable properties. For two vectors x and y in Fy, the (Hamming) distance
between them is d(x,y) := [{i € [n] : z; # y;}|. Given a vector x and a subset
Y C T} we denote d(x,)) := min{d(x,y) : y € V}. The (Hamming) weight of
a vector is wt(x) := d(x,0). The support of x is supp(x) := {i € [n] : z; # 0}.
Note that wt(x) = [supp(x)| and d(x,y) = [supp(x — y)|. For a vector x € Fy
and a subset S C [n], x|s := (x;)ics denotes the length |S| vector obtained by
projecting on the coordinates indexed by S. By a (linear) code, we refer to a
linear subspace C < Fy; n is the block-length, k = dim(C) is the dimension and
d = min{wt(c) : c € C\{0}} is the (minimum) distance. We refer to such a code
as an [n, k, d], code.

A code is called mazimum distance separable (MDS) if d =n — k + 1. Such
codes exist whenever ¢ > n and are furnished by the well-known Reed-Solomon
(RS) codes defined via the evaluations of degree < k — 1 polynomials. However,



in this work, we will not directly use the specific structure of RS codesﬂ SO we
will state our results for arbitrary linear MDS codes.

Any linear code C may be described as the kernel of a matrix, i.e., C = {x €

[y : Hx = 0}. Such a matrix H € an_k)xn is called a parity-check matriz.

Given two vectors x,y € Fy we define their inner product via (x,y) =
Yoi, iyi. We will need the following lemma from [SZI6]. It states that there
exists an MDS code C <y of dimension ¢ for n = 2¢ + 1 for which one can find
a vector h € Fy such that, even once t coordinates are revealed from a codeword
c € C, the inner-product (h,c) € Fy is completely unconstrained.

Lemma 1 (Lemma 1 from [SZ16]). For any n and any t < n there exists a
linear MDS code C of parameters [n,t + 1,n — t| and a vector h € Fy is such
that given a uniformly random codeword ¢ € C, the scalar product (h,c) is a
uniformly random element of F,, even when conditioned on any t symbols of c.

Formally, for any 1 < i <ig < -+ <4y <n and oy, qz,...,04, 08 € Fy, we
have

1
PI‘[<h,C> = 5|CIL‘1 = Oél,Ci2 = 2, .. '7Cit = at] = 6 s
where the randomness is over the uniformly random c € C.

Remark 2 We note that any such vector h must not lie in the dual of C, and
moreover that it must have weight at least t 4 1.

Broadcast. Next, observe that since Eve controls at most ¢ < n/2 of the channels,
if Alice transmits the same symbol through all n channels, then Bob can always
recover Alice’s intended symbol by choosing the majority symbol. Of course,
such a procedure does not guarantee any privacy, i.e., Eve will always learn the
symbol Alice transmits to Bob.

2.1 Pseudobases

An important technical tool in our protocols are pseudobases, as introduced
in the work of Kurosawa and Suzuki [KS08]. Before providing the definition,
we explain their utility. (A similar discussion of the utility of pseudobases is
available in Section 3.2 of [SZ16].) Consider the scenario where Bob has sent
a codeword ¢ € C to Alice by sending the i-th coordinate ¢; through the i-th
channel. In order to guarantee privacy, as Eve can observe ¢ of the channels, it
must be that dimC > ¢ + 1. However, by the Singleton bound, that forces the
distance of C to be at most n— (t+1)+1 = n—t =t + 1, which means that Bob
can uniquely decode Alice’s transmission only if Eve introduces < t/2 errors.
However, as Eve can introduce up to t errors, it appears that we do not have an
effective means of enforcing reliability.

However, consider the following scenario: instead of sending a single codeword
through the channel in this way, Bob sends many codewords cq, ..., c,. Privacy

9 Although in order to implement the protocol efficiently we will use the existence of
efficient encoding and decoding algorithms for RS codes.



is preserved so long as the transmissions are not correlated in any way (say, each
one is sampled independently and uniformly at random). However, Alice now has
an advantage in decoding: all of the corruptions introduced by Eve are confined
to the same set of ¢ coordinates. The idea is to exploit this fact to allow Alice
and Bob to agree on some codeword ¢ of which Eve knows at most ¢ coordinates
(which in turn means that (h,c) can effectively mask the secret m). Using the
concept of pseudobases, it turns out that this is possible (so long as the distance
of C is at least ¢ + 1, as is the case when C is MDS).
We now provide the formal definition of a pseudobasis.

Definition 1 (Pseudobasis [KS08]) Let y1,...,ys € Fy be vectors. A pseu-
dobasis for yi,...,¥s is a subcollection y;,,...,yi, with1l <i; <--- < i, <s
such that Hy;,, ..., Hy;_ € Fg_k is a basis for the linear space span{Hy, ..., Hy}.

In other words, one computes a basis for the space spanned by Hy,...,Hy, €
Fg_k, and then the preimage of the basis vectors in [ provides a pseudoba-
sis. Observe that, given access to H, such a pseudobasis can be found in time
polynomial in n, and furthermore that it consists of at most n — k vectors.

Remark 3 Note that if we have a code C < Fy with parity-check matriz H and
we write y; = ¢; + €; for each i € [s] with ¢; € C, then as

Hy; = H(c; + ;) = Hc; + He; = He; ,

we conclude that y;,,...,y:. forms a pseudobasis for yi,...,ys if and only if
€i,,...,€;. forms a pseudobasis for e, ..., es.

This observation will be crucial for us in our privacy analysis. We will be in
the scenario that Alice has received potentially corrupted codewords from Bob,
which we write as ¢; = c¢; + €;, where e; denotes the errors introduced by Eve.
Alice will then broadcast some information about a pseudobasis for her received
vectors to Bob. This does not leak any information to Eve, as she could have
computed the same pseudobasis from the error vectors e; that she knows.

3 The Protocol

In this section, we present our protocol which allows Alice to privately and re-
liably transmit an ¢ symbol secret (mq,...,mg) € ]Ff; to Bob. In order to ease
readability, we present two simplifications of our full protocol first before pre-
senting the full construction. The first construction, presented in Section [3.1
allows Alice to transmit a one symbol secret m € F,. Despite being fairly sim-
ple, it already introduces a crucial idea, which is a method for Alice and Bob to
agree on a random codeword that is not completely revealed to Eve. As we elab-
orate upon further in Remark [5] this means of extracting this secret codewords
represents our core improvement over [SZ16].

Next, in Section we show how to generalize the protocol to the case of
£ > 1, and achieve communication rate (4 + 0y o0 (1))n. Intuitively, this requires



Alice and Bob to agree on ¢ random codewords that are not completely known
to Eve. In order to guarantee small transmission rate, we need a few more tricks.
As in [SZ16], one useful technique we employ is a method for Alice to find a vec-
tor which indicates many of the channels that Eve is corrupting, allowing Bob
to safely ignore those channelsE Informally, this transforms symbol corruptions
into erasures, and erasures are easier to recover from. In particular, Alice can
encode her data with a code of higher rate and Bob will still be able to uniquely-
decode. To get our final protocol achieving transmission rate (2 + 0y—00(1))n,
we note that we only need to do something different if Eve invests many cor-
ruptions in the first round [T In order to handle this, we ask Alice to send a
bit more information to Bob to indicate a larger number of corrupted channels,
which transforms more of the symbol corruptions into erasures in the subsequent
transmissions, and hence allows Alice to use an error-correcting code of higher
rate. We describe the necessary modifications in Section [3.3

Notations for this section. Throughout, C < F denotes an MDS code of di-
mension ¢ + 1 and h € Fy a vector satisfying the conclusion of Lemma [I} Also,
He IFZX” denotes a parity-check matrix for C. The datum (C,h, H) is public,
fixed prior to the execution of the protocol and available to Alice, Bob and Eve
throughout the execution. Lastly, we denote by E C [n] the set of ¢ channels
that Eve controls. Of course, this set is unknown to Alice and Bob; we introduce
this notation exclusively for the analysis.

3.1 A Simple Protocol for £ =1

We begin by providing a simple protocol which allows Alice to transmit one
secret symbol m € F, to Bob. While this does not achieve our main goal, we
find that it clarifies our means of extracting a codeword known to both Alice
and Bob but secret from Eve, which we call ¢ and ¢’. As we discuss further in
Remark [5] this idea is the core of what allows us to go beyond the protocol of
[SZ16] and eventually compress Alice’s communication to just ~ nf symbols.
The details of the protocol are provided in Algorithm [T}
We now sketch why the protocol indeed yields a PSMT.

Reliability. First, we argue that Lines [§] and [J] from Algorithm [I] are justified,
i.e., that Alice can indeed find p € [t + 1] and A; € F, for j € [t + 1] \ {p} such
that s, = Zj# sj. As si,...,8:41 € IF; are ¢t + 1 vectors in a t-dimensional

space, they must satisfy a nontrivial linear dependence Ztﬂ'll Aisj = 0. Alice

can thus pick any p € [t + 1] for which A}, # 0, and then set A\; = —\’/\}, for
jelt+1\{p}.
10 There is a procedure with the same guarantee in [SZ16]; however, we believe our

procedure is simpler, and moreover does not use the specific structure of RS codes.
1 More precisely, if the dimension of the syndrome space exceeds ¢/3.

10



Algorithm 1 A first protocol for transmitting a one symbol secret m € F,.

1: procedure ROUND 1: BOB TRANSMITS

2: Bob samples c1, ..., cty1 € C independently and uniformly at random.
3: For j =1,...,t+ 1, Bob transmits the i-th coordinate of c; through the i-th
channel.

4: end procedure

5: procedure ROUND 2: ALICE TRANSMITS

6: For j =1,...,¢t+ 1, Alice receives the vectors ¢; where d(c;,¢;) < t.
T For j=1,...,t+ 1, Alice computes s; = H¢; € Fé.

8: Alice finds a coordinate p € [t + 1] such that s, € span{s; : j # p}.
9: Alice finds \; € Fq for j € [t + 1]\ {p} such that s, =3, A;s;.
10: é(—épfz]#p A;Cj

11: Alice broadcasts p, (\; : j # p) and the symbol m’ < m + (h,¢).
12: end procedure

13: procedure OUTPUT PHASE

14: Bob receives p, (\; : j # p) and the symbol m/.

15: ¢y =30, NG

16: return m’ — (h,c’).

17: end procedure

Now, the important observation is that since the code C has distance ¢ + 1,
we have ¢’ = ¢. Indeed, first note that ¢ € C, as

He=H (& - > \é | =He, — > NHE =s,— > Njs; =0,
J#P J#p J#p

Now, recalling that E C [n] denotes the channels that the adversary controls,
the coordinates on which each c; can disagree with ¢; are confined to the set £.
Thus, the support of (cp — D itp /\jcj) — (ép =D itp )\jéj) is also contained in
the set E. As |E| <, we conclude that the codewords ¢’ = ¢, — ., Ajc; and
€ =¢p— >4, A;€C; are distance at most ¢ from one another; as C has distance
t + 1, they must be the same vector.

Thus, in particular, (h,c¢’) = (h,¢), so m'— (h,c¢’) = m+(h,¢c)—(h,c’) =m,
i.e., Bob returns Alice’s intended secret m.

Privacy. In the first round of the protocol, Eve can only see |E| < ¢ symbols
from each transmitted codeword. As the code C has dimension ¢+ 1 and is MDS,
Eve learns only learns these |E| symbols from cq, ..., cq1.

In the second round, Eve sees (p,\; : j # p). However, she already knows
e1,...,e,4q1 and H and, using the fact that s; = He; = He; for j € [t + 1],
(p,A\j : j # p) can be computed from eq,...,e,41 and H. Thus, she does not
learn anything from the second transmission.

We conclude that after the protocol, Eve has only learned the symbols in-
dexed by the corrupted channels F from ci,...,ciq1. In particular, Eve only
knows ¢ symbols of ¢’ = € = ¢, — >, A;€¢; which is a codeword distributed
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uniformly at random in C, and so Lemma [I] guarantees that Eve has no infor-
mation on (h,c). Thus, even after observing m + (h,€), she has no information
on m, as desired.

Communication Cost. In the first round, Bob transmits (t+1)n ~ n?/2 symbols.
In the second round, Alice transmits log,(t + 1) + tn + n ~ n?/2 symbols.
Hence, to communicate a single symbol, the total communication requirement
of Algorithm [1]is ~ n2. In terms of bits, as we require ¢ > n, we conclude that
Alice and Bob must transmit ~ n?logn bits.

3.2 A Protocol with (4 + 0y—,0(1))n Transmission Rate

In this subsection, we provide a protocol that will allow Alice to transmit an
¢ symbol secret to Bob requiring only ~ 4nf symbols to be communicated. We
begin by outlining some of the new ingredients we need.

Generalized Broadcast. One technique that we will use in our protocol is gen-
eralized broadcast, as introduced in previous works [KSO8ISZ16]. The situation
that motivates the idea of generalized broadcast is the following: imagine that
in some way, Bob has become aware that Eve is controlling some set R C [n]
of the channels. Then, when decoding a transmission from Alice, he can replace
the symbols he receives through the channels in R by an erasure symbol. Thus,
instead of decoding from ¢ symbol corruptions, he only has to perform the easier
task of decoding from ¢ — r symbol corruptions and r erasures, where r = |R).

In particular, to uniquely decode from t errors where n = 2t + 1, if Alice
wants to guarantee that the codeword she transmits can be uniquely-decoded
by Bob, then she must use a code with distance 2¢ + 1 = n: by the Singleton
bound, she must use an MDS code of dimension 1, i.e., she can only send a single
symbol. A natural example of a dimension 1 MDS code is the repetition code:
this precisely recovers broadcast as introduced earlier.

However, if Bob knows a subset R as above, then he can uniquely decode so
long as the code has distance at least 2(t —r) +7+1 = n —r. Thus, if Alice uses
an MDS code of dimension r + 1, Bob can recover her intended transmission.
We refer to this as r-generalized broadcast, which we now formally define.

Definition 2 (Generalized Broadcast) For an integer r > 0, r-generalized
broadcast refers to the procedure where Alice uses an [n,r + 1,n — r], code
C, to transmit v + 1 symbols (x1,...,2,41) € FZH by encoding the message
(x1,...,Zr11) into a codeword ¢ € C,., and sending the i-th symbol of ¢ through
the i-th channel for each i € [n].

For succinctness, we write Alice r-broadcasts (x1,...,x,41) to indicate that
Alice uses the r-generalized broadcast to transmit the data (x1,...,2.41) to Bob.

Remark 4 Assuming Alice and Bob communicate with a dimension r+1 Reed-
Solomon code, then both encoding the message and decoding from r erasures and
t —r symbol corruptions can be done in polynomial time [WB80).
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Thus, r-generalized broadcast allows Alice to reliably transmit r + 1 times
more information to Bob than standard (i.e., 0-)broadcast, which can greatly
improve the transmission rate of the protocol if r is sufficiently large.

Finding a Set of Corrupted Channels. In light of the above discussion, we would
like to allow Bob to find a large set of corrupted channels. For general ¢, we will
have Bob transmit ¢ 4+ ¢ uniformly random codewords in the first round, and
Alice receives the corrupted codewords ¢; = c; + e;, where the support of each
e; is contained in the ¢ channels Eve controls, E.

Now, if Alice were aware that e; has large weight for some j, then she could
just broadcast ¢; and the index j to Bob. Bob could then compute the set
supp(€; —c;) and subsequently ignore the transmissions sent through those chan-
nels. However, one problem is that there might not be an e; that has sufliciently
large weight. More concerningly, Alice does not actually know ey, ..., e; 14!

Dealing with the first issue, note that it actually suffices to find multipliers
Aj such that }°; Aje; has large weight: then Alice can broadcast the A;’s and
y = >_;Aj€;, and then Bob can compute supp (y -2 /\jcj) and ignore the
subsequent transmissions sent through those channels.

Actually, in order to ensure a good transmission rate it will be important that
the linear dependency is chosen to be relatively short; in particular, it should be
independent of ¢. It will turn out that we can find such a vector y which is a
linear combination of a pseudobasis for the vectors €4, ..., Ct1¢. Recalling that
the dimension of the syndrome space is at most ¢, this guarantees that we don’t
need to transmit too many multipliers A;.

However, we still haven’t addressed the issue that Alice does not have direct
access to the e;’s. But it turns out that this is not an problem: given a set of
vectors with linearly independent syndromes, we will be able to find a linear
combination ) j A;€; that is far from every codeword. So, in particular, it will
be far from } . Ajc;, as required.

Specifically, if r < t/3 and y1,...,y, € [, are vectors such that the syn-
dromes Hy,,...,Hy, € FfI are linearly independent, then Algorithm {4 finds a
vector y in the span of y1,...,y, that satisfies d(y,C) > r. This procedure and
its analysis are presented in Appendix [A]

Remark 5 There is a procedure in [SZ16] with the same guarantee; however,
we believe our algorithm is a bit simpler, so we have chosen to present it. In
particular, we do not need to apply a unique-decoding algorithm as is required by
the procedure in [SZ16]; we just use simple linear-algebraic operations.

A more significant difference between our protocols concerns the communica-
tion of the masked secrets. For each of the message symbols my, ..., my, the most
efficient protocol of [SZ10] requires Alice to broadcast two symbols zy), zéi) e,
which each mask the message symbol m; in a different way. The symbol zil) uses
the mask (h,y,,); zgz)

or zéi) is just set to O if the decoding failed. Bob then chooses which mask to

open, depending on the size of the pseudobasis. The authors comment they could

uses the mask (h,¢,,) where €, is the decoding of yp,,
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use generalized broadcast for these symbols (as we do) to somewhat decrease the
communication cost; however, even this change would not bring the second round
communication down to ~ nf. Thus, a key difference between our protocols can
be observed: by more carefully exploiting the structure of the pseudobasis, our
extraction of the codewords ¢, = c;,. to yield the masks (h,¢;) prevents us from
needing to use two different masks to guarantee that Bob can reliably recover the
message symbols.

The Protocol. We are now in position to give our PSMT for transmitting an ¢
symbol secret: the details are in Algorithm

Algorithm 2 A protocol for transmitting an ¢-symbol secret (mq,...,my) € Ffl,
which achieves transmission rate (4 + 0y—00(1))n.
1: procedure ROUND 1: BOB TRANSMITS

2: Bob samples c1,...,ci+¢ € C independently and uniformly at random.

3: For j = 1,...,t + ¢, Bob transmits the i-th symbol of c; through the i-th
channel.

4: end procedure

5: procedure ROUND 2: ALICE TRANSMITS

6: For j =1,...,t+ £, Alice receives the vectors ¢; where d(c;,¢;) < t.

T For j =1,...,t+ £, Alice computes s; = H¢; € F..

8: Alice computes a pseudobasis for €1, ..., Cite. Let S C [t+£] index the elements

of the pseudobasis.

9: r < |S] and v’ < min{r, [¢/3]}.

10: Let S’ C S denote a subset of size 7.

11: Let y + MANY-ERRORS(C; : j € §'); write y = > jes Ai€i- > Of course, for
j€S\S, wemay put A\; = 0.

12: Let T < {p1,...,pe} denote the £ smallest elements of [t + ] \ S.

13: For ¢ € [¢], choose coeflicients \;; € F, such that s, = >~ . _4 Aijs;, and define
Cpi ¢ Cp, = D e Nig€-

14: Alice broadcasts the information (S, (\; : j € S),y).

15: For each i € [{], Alice r’-broadcasts the data (\;; : 7 € S) and m; < m; +
(B, p,).

16: end procedure

17: procedure OUTPUT PHASE

18: Bob recovers (S,(A; : j € S),y) and defines z < 37, ¢ Ajc;. He also lets
T = {p1,...,pe} denote the £ smallest elements of [t + ¢] \ S.

19: Bob ignores the channels in the set supp(y — z), a set of cardinality at least r'.

jES

20: For each ¢ € [{], Bob recovers the information (\;; : j € S) and mj, defines
Cp, < Cp, — D e AijCy, and then defines m; «— mj — (h, cy,).
21: return (mq,...,mye).

22: end procedure

Theorem 1 Algorithm[d is a PSMT with transmission rate (4 + 04—00(1))n.
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Proof. We first verify that the protocol is reliable. After, we show that it is
private. Lastly, we compute its transmission rate. Throughout the proof, we let
E C [n] denote the set of ¢ channels that Eve is corrupting.

Reliability. We first make a few observations to justify the algorithm. First, we
note that the definition of T' on Line [12]is valid: indeed, r = |S| < ¢ since a
pseudobasis has size at most ¢, so there are at least ¢ elements in [t + ¢] \ S.
Also, we note that z = ZjES Ajc; € C, so since y is at distance at least r’ from
C, we have [supp(z — y)| = d(z,y) > r/, as stated in Line Furthermore, as
Y = 2 esAi€j, if B C [n] denotes the set of channels that Eve controls, then
supp(y — z) C E. Hence, for each i € [{], the transmission from Alice to Bob of
(Aij 7 €8) and (h,cp,) +m,; via 1’-generalized broadcast is reliable.

As in the analysis in Section the reliability of Algorithm [2] follows from
the fact that for i = 1,...,¢, we have ¢,, = c;i. And once again, the argument
proceeds by demonstrating that both ¢,, and c;i are elements of C. This is clear
for c;,i; for ¢,,, we use the parity-check matrix H:

Hép,i =H Cp;, — E AijC]‘ = Sp;, — E )\iij =0.
jes JjES

Now, since supp(c; — ¢;) C E for each j € [t + /], we also have

supp(c, —Cp,) =supp | [ cp =D Nije; | = [ &, =D _Ny& | | CF,
jeS jes

which implies d(cj,,,€p,) < |[E| < t. As C has distance ¢ + 1, it follows that
¢y, = €p,. In particular, we have (h,c, ) = (h,¢,,).
Hence, for each i € [¢], m} — (h,c},,) = m; + (h,¢;,) — (h,c},) = m;, demon-

strating reliability.

Privacy. First, we describe Eve’s view of the protocol. In the first round, she
observes (¢1)|g, ..., (ct+¢)|g. In the second round, she first observes (S, (A; : j €
S),y). Then, for each i € [{], she observes (A;; : j € S) and m] = (h,¢,,) + m,.

We wish to establish that Eve learns nothing about the symbols m; for each
i € [¢]. To establish this, it suffices to show that, conditioned on Eve’s view,
(h,cp,) is a uniformly random element of F,. And to do this, according to
Lemma |I|7 it suffices to show that from Eve’s perspective, €,, is a uniformly
random codeword from which Eve has observed only ¢ coordinates.

First of all, as cq,...,c;1¢ are sampled independently and uniformly from
C and C has dimension ¢ + 1 and is MDS, after the first round Eve only learns
(cj)|g for each j € [t +4].

Next, we consider the second round. We begin by noting that Eve can com-
pute S from H and ey,...,e:;,, which she knows. Indeed, as s; = H¢; = He;,
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Eve can also compute the pseudobasis S. So she learns nothing from this trans-
mission. Once she has computed S Eve can then compute the set T" and subse-
quently (\;; : j € S) for each ¢ € [£], as the \;;’s are a function of the sets S and
T and the syndromes sy, ...,S;1¢, to which she has access.

Next, consider revealing to Eve the codewords (c; : j € S). Then, she can
compute the corrupted codeword ¢; = c;+e; for j € S, so she can then compute
the vector y and the multipliers (); : j € S). Hence, what Eve sees in the second
round is at most as informative as (c; : j € S).

Hence, at the termination of the protocol, what Eve can infer from her view
about the masks (h,¢,,) for i € [{] is no more than what she can infer about
them from the following data:

— The codewords (c; : j € S);

— The coordinates of all the codewords indexed by E, i.e., (¢;)|g for j € [t+£].
Recall that, for each i € [{], ¢,, = ¢}, = ¢;, — D5 Aijcj. On the one hand,
from the two pieces of data above, we have shown that Eve can compute exactly
Zjes Aijc;. On the other hand, as the c;’s are sampled independently, the above
data reveals nothing about c,, other than the coordinates indexed by F. Thus,
from Eve’s perspective, €,, = cp, — > jes Aijc; is a uniformly random codeword
from which she has only observed the coordinates indexed by E. Therefore the
messages m; = m;+ (h, €,,) reveal nothing about the secret vector (myq, ..., my).
This concludes the proof of the assertion that the protocol is private.

Transmission Rate. In the first round, Bob sends (£+4 ¢)n symbols. In the second
Tloli;igf) + 7 + n symbols and then r’-broadcasts
£(r + 1) symbols, where we recall that r denotes the size of the pseudobasis and

r’ = min{r, [t/e]}. This requires her to send

round, Alice first broadcasts

n
r+1

nrlog(t + ¢)

og q +(r+n)n+ (r+1)¢

elements from F,. Thus, if N is the total number of symbols transmitted, then
N

T s
t—n—l—n—&— nrlog(t + ¢) n n? +1rn n (r4+1)n <dn+0O n72+ n?log(n + ¢) 7
14 llog q 12 r+1 l llogn

(1)

where the inequality uses ¢ > n, r < t < n and :,‘:11 < 3. Hence, assuming

¢ = w(n) we have & ~ 4n, as promised. O

Remark 6 Note that if we had been in the case that r = r', i.e., r < %, then
the transmission rate of Algorithm[4 would have been ~ 2n. Hence, in order to
get our desired transmission rate of 2n, we will only have to amend the protocol
in the case that r > % This is what we do in the following subsection.

16



3.3 Protocol with (2 4+ 0y, (1))n Transmission Rate

In order to decrease the transmission rate to ~ 2n, we look more carefully at
the transmission rate as computed in . We have a factor of ~ n from the
first round when Bob communicates to Alice, and then a factor of ~ 3n when
Alice replies to Bob in the second round. In our lower bound argument, we will
show that both parties will have to communicate n¢ symbols in each round;
hence, our only hope of getting a ~ 2n transmission rate will be to decrease the
communication of Alice in the second round.

Now, we note that the dominant term in Alice’s communication is the (rtl)n

r'+1
term which comes from the £ r’-generalized broadcasts from Line as r’ < %
and r can be as large as t, this term could be as large as 3nf. If Alice used r-
generalized broadcast for each of these transmissions, then this communication
would cost only ~ nf symbols, and we would get the ~ 2n transmission rate
we desire. However, as y only informs Bob of 7’ corrupted channels, if r > 7/ =
min{r, |¢/3|} then Alice will have to communicate some more information for
Bob to learn of r corrupted channels, which will guarantee the reliability of the
transmission.

The solution for this is rather simple. We assume from now on that r > 1/,
which is the same as saying r > % First, Alice broadcasts (y,S,\; : j € S) as
before (see Line ; thus, t/3-generalized broadcast is now reliable. Next, we
have Alice t/3-generalized broadcast the entire pseudobasis to Bob, i.e., all the
vectors ¢; for j € S. We claim that this implies that r-generalized broadcast will
now be reliable. Indeed, this follows from the following simple lemma.

Lemma 2. Let ¢; = c; +e; for j € S with c; € C and put s; = He; = He;.
Assume that dim (span{s; : j € S}) =r. Then ‘Ujes supp(e;)| > r.

Proof. Let d; € Fy; denote the vector whose i-th coordinate is 1 and the remain-
ing coordinates are 0. Let R = {J,gsupp(e;); then clearly span{d, : i € R} 2
span{e; : j € S}, so also

span{Hd; : i € R} D span{He; : j € S} = span{s,; : j € S}.

As dim (span{Hd; : ¢ € R}) < |R|, we conclude |R| > dim (span{s; : j € S}) =
r, as desired. a

Thus, suppose Alice reliably transmits to Bob the vectors ¢; for j € S. From
this, Bob can compute the set UjES supp(c; — ¢;) = UjES supp(e;); this set
has cardinality at least r, and moreover it is contained in F (where, as usual,
E denotes the set of channels Eve controls). Hence, there are now r channels
that Bob can safely ignore, so Alice may reliably r-broadcast the ¢ transmissions
(Xij :j € S) and (h,Cp,) 4+ m;, as in Line[L5]

It is reasonable now to wonder if this will negatively impact the privacy of
the protocol, as more information is revealed to Eve. However, by observing the
proof of Theorem [1} one can see that even if Eve learns of ¢; for j € S, the
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inner-product (h,¢,,) is still wholly unknown to her, implying that they yield
an effective mask for the secrets m;.

Instead of completely rewriting the protocol, we just indicate in Algorithm [3]
the changes that need to be made to Algorithm[2|to obtain the ~ 2n transmission
rate.

Algorithm 3 Our final protocol for transmitting an ¢-symbol secret
(mq,...,myg) € Ffi, which achieves transmission rate (24 0y 00(1))n. We just in-
dicate what needs to be changed from Algorithm [2] when r > 7/ = min{r, [t/3]}.

1: procedure ROUND 1: BOB TRANSMITS
Bob performs lines from Algorithm
end procedure
procedure ROUND 2: ALICE TRANSMITS
Alice performs lines from Algorithm
if r =’ then
Alice performs Line [[5] from Algorithm [2]
else
9: Alice r'-broadcasts ¢; for each j € S.
10: For each i € [¢], Alice r-broadcasts the data (A; : j € S) and (h, €p,) +m;.
11: end if
12: end procedure
13: procedure OUTPUT PHASE
14: Bob performs lines from Algorithm
15: Let r + |S].
16: if » <t/3 then Bob performs line

17: else

18: Bob recovers ¢; for each j € S.

19: Bob ignores the channels in the set [, 5 supp(¢; —c;), which has cardinality
at least r.

20: For each ¢ € [{], Bob recovers the information ()\;; : j € S) and mj, defines
Cp, < Cp, — D e AijCy, and then defines m; < mj — (h, c;,).

21: end if

22: return (mq,...,me).

23: end procedure

Theorem 2 Algorithm[3 is a PSMT with transmission rate (2 + 0p—00(1))n.

Proof. As usual, we first establish reliability, then privacy, and lastly compute
the transmission rate. We just indicate the changes required to the proof of
Theorem [1| to obtain Theorem [2, as most of the ideas are the same.

Reliability. In light of the reliability of Algorithm [2] in order to verify the reli-
ability of Algorithm [3|it suffices to check that Bob can recover the information
(Aij : j € S) and m] for each ¢ € [¢]. That is, even if r > t/3, we need to
ensure that r-generalized broadcast is reliable, i.e., that Bob knows at least r
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channels that Eve controls. But this is exactly what is guaranteed by Lemma [2}
Ujes supp(€; — ¢;) is the set of r channels controlled by Eve that Bob knows.

Privacy. When |S| > t/3, Eve learns the vectors ¢, for j € S. However, as argued
in the proof of Theorem [1| (see the justification for the second bullet-point), it is
still the case that the vectors €,, = €, — > ;e g Aij€j = Cp, — ;g AijC; look like
uniformly random codewords from which Eve has only observed t coordinates.
So Lemma [1|still guarantees that the masks (h, ¢,,) look like uniformly random
elements of I, to Eve, ensuring privacy of the transmission.

Transmission Rate. As the first round is unchanged from Algorithm [2] we simply
need to establish that in the second round, Alice sends at most nf + O(n? +
nlog?/logn) symbols. As noted in Remark @ if » = 1’ then this is the case.
Hence, we now assume 7 > 7’. In this case, Alice first 7'-broadcasts the r = |S]

vectors ¢; for 7 € S in Line@ this requires Trlrfl < 3n? symbols. Lastly, in
Line she uses ¢ invocations of r-generalized broadcast to transmit r + 1
(r+1)nt

symbols: this requires “——4— = nf symbols. Thus, Alice always communicates

at most n¢ + O(n? + nlog¢/logn) symbols in the second round, as desired. O

4 Lower Bound

In this section, we prove a lower bound on the transmission rate of any two-round
PSMT under an assumption which we now formally introduce.

Our starting point is the observation that in our two-round PSMTs from Sec-
tion [3] we always have Alice broadcast her desired transmission to Bob which
completely sacrifices the privacy of her transmission. That is, the adversary com-
pletely learns the transmission from the second round. And this is not unique
to our protocols: all of the efficient two-round PSMT protocols from the litera-
ture [ACdHO6/KSO8ISZ16] sacrifice the privacy of Alice’s transmission.

Therefore, we make the assumption that the adversary learns the entire trans-
mission of the second round and prove a 2n lower bound on the transmission rate
under this assumption. This argument shows that among all two-round PSMTs
satisfying this assumption, the one guaranteed by Theorem [2]is actually optimal.
In other words, if one want to design a more efficient PSMT, the second round of
this protocol must somehow bypass this assumption and keep something hidden
from Eve. In this sense, we prove an inherent limitation for the line of optimizing
two-round PSMT protocols [ACAHO6/KS08/SZ16].

Assumption 1 The adversary learns the whole transmission of the second round.

More precisely, there is a function mapping the symbols Alice transmits through
t of the channels to the symbols she sends through the other channels.

Theorem 3 Under Assumption[d], any two-round perfectly secure message trans-
mission of an (-bit secret requires communicating 2nf bits.
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An important step in our lower bound argument involves extracting a t-
threshold secret-sharing scheme from a PSMT protocol. In order to make this
precise, we provide in the Appendix [B| the definition of a ¢-threshold secret-
sharing scheme, as well as the observation that the share size must exceed the
secret size. The reader that is familiar with these notions may safely proceed.

Proof. First of all, we formalize the behaviours of the sender Alice and the
receiver Bob in a two-round PSMT.

1. In the first round, Bob runs a randomized algorithm A(¢) to generate a
message a = (a1,...,a,) € Ay X -+ x A, where the randomness is only
available to Bob. Bob sends a to Alice such that a; is sent through the i-th
channel.

2. Alice receives the corrupted vector a and runs the algorithm B(a, s) to gen-
erate the message b = (by,...,b,) € By x---x B, where s € [2] is the secret.
Then Alice sends b to Bob such that b; is sent through the i-th channel.

3. Bob receives the corrupted vector b and runs the algorithm C(b, a) to recover
the secret. The protocol succeeds if C' outputs s and Eve learns nothing about
the secret.

Note that if B(a,s) = b then we must have C(b,a) = s, i.e., the protocol must
succeed if the adversary Eve injects no errors.

Next, we characterize the capabilities of the adversary Eve in this protocol.
Eve is static, which means she has to choose up to ¢t channels to corrupt be-
fore the beginning of this protocol. During the protocol, she can listen to the
messages and change the messages transmitted through the corrupted channels.
Eve succeeds if she learns anything about the secret or Bob fails to recover the
secret. The total communication complexity is Y., (log |.4;] + log |B;|).

We first analyze the communication complexity of the second round in the
scenario that Eve does nothing in the first round. In this scenario, Alice will
receive the correct vector a and learns nothing about Eve. That means, from
Alice and Bob’s perspective, Eve can corrupt any ¢ channels in the second round.
We now demonstrate that one can extract from Bob’s transmission a code with
distance 2t + 1 = n.

Claim. Let by = B(a, s) for s € [2°]. The set of codewords {b, : s € [2]} forms
a code with minimum distance 2¢ + 1.

Note that this claim implies min;log|B;| > ¢ and thus the communication
complexity of the second round Y ;" log|B;| > ¢n.

Proof. We note that, for s; # s3, bs, and b, must not agree on any index.
Otherwise, Eve can inject t errors to cause Bob to receive the same vector b if
b, or b, was sent. In one of the two cases, the C(f), a) does not output the
correct secret, contradicting reliability. a

Now, we turn to lower-bounding the necessary communication in the first round.
Under Assumption [l we have that the adversary learns Alice’s entire transmis-
sion in the second round. However, the ¢ bits of her secret must somehow be
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transmitted to Bob and kept secret from Eve. Intuitively, this means that Alice
must use a perfectly-secure encryption scheme to send her secret message. This
implies that Bob and Alice must have shared a private key of length ¢ in the
first round, and moreover it must be shared in such a way that the adversary
Eve observing ¢t symbols from the transmission cannot learn anything about this
private key. We formalize this intuition by showing that Bob’s transmission in
the first round yields a (¢,n)-threshold secret sharing scheme with domain of
secrets [2°].

Claim. Fix bg € By x --- x B,,. Consider the following pair of algorithms:

— Share, on input s € [2¢], samples according to A(¢) arandom a € A; x---x A,
conditioned on the event B(a,s) = by, and outputs a.

— Recon, on input (T,ar) with T' C [n] of size |T'| >t + 1 and ar € [],c A,
finds the unique s € [2¢] for which there exists a* € A; x --- x A,, agreeing
with ap on the coordinates in 7" and satistying C'(bg,a*) = s.

Then (Share, Recon) provides a (¢,n)-threshold secret-sharing scheme with do-
main of secrets [2¢] and share space A; X -+ x A,.

Proof. We verify privacy and reconstruction.

— t-Privacy. Let s1,55 € [2] and let at) := Share(s;), for j = 1,2, denote the
random sharings of the secrets. Let T C [n] be any set with |T| < ¢. As
|T| < t, we can consider an adversary Eve corrupting the channels indexed
by T.

For j = 1,2, consider an execution of the PSMT protocol where Bob sends
al?) and Eve introduces no corruptions in the first round. By the definition
of Share, this means that Alice responds with b(®). Therefore Eve sees a(Tj )
in the first round, and then bgpo ) in the second round. By Assumption (1} we
have that b(®) is completely revealed to Eve. Thus, by the privacy of the
PSMT protocol it must be that for any fixed vector ar € [[;op A,

(0)

Prlay. )

= ar|Alice transmits b(”)] = Pr[a};) = ar|Alice transmits b(?)].
This establishes the privacy of the secret-sharing scheme.

— (t + 1)-Reconstruction. We must verify that Recon is well-defined. That is,
if a is output by Share on input s and B C [n] has size at least ¢ + 1, then
there is indeed a unique s € [2¢] such that one can find a* € A; x --- x A,
agreeing with ar on the coordinates in T' and satisfying C'(a*,bg) = s. Once
we establish this property, it is clear that Pr[Recon (T, Share(s)r) = s] = 1,
as required.

Assume not and there are two distinct z,y € [2¢] with x,y € A} x -+ x A,
such that xy = yr, Recon(T,xy) = x and Recon(T,yr) = y. Then, the
vectors x and y differ in at most ¢t coordinates. Let F C [n] denote the
coordinates where they disagree, and suppose the adversary Eve corrupts
the channels in F. Consider an execution of the protocol where Bob first
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tries to transmit x. The adversary Eve, controlling the channels in E, can
change the vector x to the vector y. Then, if Alice wants to send the secret y
to Bob, she will transmit B(y,y) = bg to Bob; assume Eve does not corrupt
this transmission. When Bob receives by, the algorithm C(x, bg) will output
x instead of y. This contradicts the reliability of the PSMT.

O

As mentioned earlier (and proved in Appendix , in any (¢, n)-threshold secret
sharing scheme, the share size must be at least the secret size. We thus conclude
>or  log|A;| > nt, ie., we obtain another nf communication complexity in
the first round. Lastly, we emphasize that the message sent by Bob in the first
round is independent of Eve’s strategy. That means, the lower bound on the
communication complexity of the first round can be applied to the case Eve
does nothing in the first round. Therefore, we obtain the lower bound 2n¢ on
the communication complexity of two-round PSMT, as desired. a
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A Procedure for Finding a Vector Far from Code

In this section, we present our algorithm for finding a vector that is far from the
code.

Algorithm 4 A procedure for Alice to find a vector whose distance from C is
at least r for r < %

1: procedure MANY-ERRORS(y1,...,¥r)

2: For i =1,...,r, let x; € C denote the codeword agreeing with y; on the last
t + 1 coordinates. > This is possible, as every subset of ¢ + 1 coordinates forms an
information set for C.

3: Fori=1,...,7r € < yi— X;.
4: Let M denote the matrix in F;X" whose rows are e, ...,e.,.
5: Using Gaussian elimination, put M in reduced row echelon form; let ej, ..., e

denote the rows.

6: if 3i € [r] s.t. wt(ej) > r then e < €]

T else

8: for j =2,3,...,r do

9: if wt (23:1 ef) >rthene« Y/ _ e
10: end if

11: end for

12: end if

13: Choose A1, ..., A € Fg such that e =37, Aje;.
14: YD iy

15: return y

16: end procedure
Lemma 3. Lety,...,y, have linearly independent syndromes and assume r <

%. Then the vector y returned by Algorithm has distance at least r from C.
Proof. By assumption, we have that the syndromes s; = Hy; € IFZ for i =

1,...,r are linearly independent. We claim that the vectors ey, ..., e, € [y are
linearly independent. Suppose Ai,..., A, € [, are such that 21:1 e, = 0.
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Then , . i,
i=1 i=1 i=1

As sy, ...,s, are linearly independent, this implies A\ = --- = A\, = 0, as desired.
Now, we note that if e = Y_;_, \;e; is found such that d(e,C) > r, then it
also follows that y = Y _._, A\;y; satisfies d(y,C) > r. Indeed,

d(y,C)=d <e + inxi,c> =d <e,c + Z/\ixi> =d(e,C) > r
i=1 i=1
as > A\ix; € C.

Now, for e € span{ey,...,e,}, to ensure d(e,C) > r, note that it is sufficient
to show that r < wt(e) <t —r + 1. Indeed, as we have d(0,e) = wt(e) > r, it
suffices to verify that for all nonzero codewords ¢ € C \ {0} we have d(e,c) > r.
And indeed, this follows as

t+1<4d(0,c) <d(0,e)+d(ec)<t—r+1+d(ec),

and so d(e,c) > r.
Hence, we now show how the algorithm finds a vector e € span{ey,...,e.}
which satisfies r < wt(e) < ¢t —r + 1. Consider the matrix

€1
€9 %
M=1.]¢€ F, "
eT'
whose rows are given by vectors eq,...,e,.

Consider putting the matrix M into reduced row echelon form; denote the
resulting rows ej, ..., e*. By the definition of row operations, span{ei,...,e.} =
span{ef,...,e’}, so it suffices to find a vector e* € span{ej,..., e’} satisfying
r<wt(e*) <t—r+1.

As the vectors eq, ..., e, are linearly independent, there is a set R C [n] of

r pivot points: that is, we have indices 1 < j; < jo < -+ < j < n such that for

each i,p € [r]:
1 ifi=p
e;)i = .
(Z)]’) {0 otherwise

Therefore, for each ¢ € [r] we have supp(e}) C ([E]\R)U{j;}, so wt(e}) < t—r+1.
Thus, if we are in the case that for some i € [r] we have r < wt(e}), we can just
return the vector e;.

Assume now that for each i we have wt(e}) < r. Consider the sequence of vec-
tors 7, e} for j =2,...,r. Note that supp (};_, ef) D R,sowt(>_|_, ef) >
|R| = r. Hence, there exists 2 < j < r such that:

— Wt( J e*) >

=1 "1
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~forall 1 </ < j, wt (L0, ef) <.

We claim that e* := 3:1 e} satisfies r < wt(e*) < ¢+ 1 — r. The lower bound
is obvious by the definition of j. For the upper bound, we note that

J Jj—1
wt <Zef) < wt (Zef) +wt(el) <r+r<t+l-r,
i=1 i=1

where the upper bound on the weight of 22;11 e} is again by the definition of
j and the upper bound on wt(e;) follows from our earlier assumption. That
2r <t+1—r follows from r < ¢/3. a

B Background on Secret-Sharing Schemes

Informally, a t-threshold secret-sharing scheme is a method for a secret to be
distributed amongst n parties so as to guarantee (a) t-privacy, which guarantees
that any set of ¢ parties can learn nothing about the secret; and (b) (¢t + 1)-
reconstruction, which guarantees that any set of (¢ + 1) parties can fully recover
the secret.

Given a vector x = (x1,...,2,) and a subset B C [n], we denote by xp =
(z; : i € B) € [[;c5 Ai the vector projected onto the coordinates indexed by the
set B. We now provide the definition of a ¢-threshold secret-sharing scheme.

Definition 3 (t-Threshold Secret-Sharing Scheme) Lett, n be integers sat-
isfying 1 <t < n, and let S, Xy,..., X, be finite sets with |S| > 2. A (t,n)-
threshold secret-sharing scheme consists of:

— a randomized algorithm Share which takes as input a secret s € S, and
outputs a vector of shares x € Xy X +-- X Xy;

— a deterministic algorithm Recon which takes as input a subset B C [n] satis-
fying |B| > t+1 and a vector of shares xp € [[;cg Xi, and outputs a secret
s €S or a failure symbol L.

The algorithms satisfy the following properties:

— t-privacy: Given any subset T C [n] with |T'| <t and any two secrets s1,s2 €
S, we have
Pr[Share(s1)r = x| = Pr[Share(s2)r = x7],

where the probability is over the randomness of the algorithm Share.
— (t 4 1)-reconstruction: Given any subset T C [n] with |T| > t+ 1 and any
s €S, we have
Pr[Recon (T, Share(s)r) = s] = 1,

where the probability is over the randomness of the algorithm Share.

We call S the domain of secrets and Xy x --- X X, the share space.
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Finally, we will require the following observation, which (to the best of our
knowledge) is folklore. It states that the size of each share must exceed the size
of the secret.

Observation 1 Let (Share,Recon be a (t,n)-threshold secret-sharing scheme

with domain of secrets S and share space Xy X -+ X X,. Then for all i € [n],
|4 = |S].

For completeness, we include the brief justification for this fact.

Proof. Suppose that for some i € [n], |X;| < |S]|, and let T C [n]\ {i} be any set
of size t. Let x € X} X --- X X, be a any tuple such that for some secret s € S,
Pr[Share(s) = x| > 0.

For each y; € X;, we denote by xrl|ly; € HjeTU{i} X; the vector obtained
by adding coordinate y; to the vector xp. By (¢ + 1)-reconstruction, we have a
function ¢ : X; = SU L defined by sending y; € &; to the output of Recon(T U
{i}, x7|ly;). As |X;| < |S|, there is a secret s’ not in the image of ¢. But this
then means that

Pr[Share(s')r = xr] = 0 # Pr[Share(s)r = x7],

contradicting t-privacy.
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