
Noname manuscript No.
(will be inserted by the editor)

Sycon: A New Milestone in Designing ASCON-like
Permutations

Kalikinkar Mandal · Dhiman Saha · Sumanta Sarkar · Yosuke Todo

the date of receipt and acceptance should be inserted later

Abstract ASCON is one of the elegant designs of au-

thenticated encryption with associated data (AEAD)

that was selected as the first choice for lightweight ap-

plications in the CAESAR competition, which also has

been submitted to NIST lightweight cryptography stan-

dardization. ASCON has been in the literature for a

while, however, there has been no successful AEAD

which is secure and at the same time lighter than AS-
CON. In this article, we have overcome the challenge of

constructing a permutation that is lighter than the AS-
CON permutation while ensuring a similar performance,

and based on which we achieve a more lightweight AEAD

which we call Sycon. Extensive security analysis of Sycon
confirms that it provides the same level of security as

that of ASCON. Our hardware implementation result

shows that the Sycon permutation has 5.35% reduced

area, compared to the ASCON permutation. This leads

to a remarkable area reduction for Sycon AEAD which

is about 14.95% as compared to ASCON AEAD. We

regard Sycon as a new milestone as it is the lightest

among all the AEADs belonging to the ASCON family.

Keywords: ASCON, Lightweight cryptography, AEAD,

Hardware implementation, Diffusion, S-box

1 Introduction

With the proliferation of the Internet of Things (IoT),

a new branch of cryptography called lightweight cryp-

tography has emerged. Lightweight cryptography aims

to provide security to resource constrained IoT devices.

University of New Brunswick, E-mail: kmandal@unb.ca · IIT
Bhilai, E-mail: dhiman@iitbhilai.ac.in · University of War-
wick, E-mail: sumanta.sarkar@warwick.ac.uk · NTT Social
Informatics Laboratories, E-mail: todo.yosuke@gmail.com

Over the years, numerous lightweight symmetric-key ci-

phers have been proposed, and interest has been shown

by both industry and academia. Standardization ef-

forts are on to incorporate lightweight cryptography

into practice. For example, lightweight block ciphers

PRESENT [19] and CLEFIA [38] have been standardized

by ISO/IEC 29192. Later, the CAESAR competition

was launched to standardize Authenticated Encryption

with Associated Data (AEAD) algorithms [1]. At the

end of the competition, ASCON was selected as the first

choice for lightweight applications. Notably, National

Institute of Standards and Technology (NIST) also has

taken up an initiative to standardize lightweight cryp-

tographic algorithms (NIST-LWC) [31]. In this regard,

they announced a call for submissions of lightweight

AEAD and hashing algorithms. Currently, in the final

round, there are 10 submissions competing for the stan-

dardisation.

In recent years, several lightweight block ciphers

have been proposed, for example, GIFT [9], SKINNY [12],

and MIDORI [6], to name a few. Apart from block ci-

phers or AEAD constructions, literature has also been

enriched with lightweight modes of operation for au-

thenticated encryption such as BEETLE [20] and SUN-
DAE [7]. In fact, several AEAD schemes in the NIST-

LWC competition have combined existing lightweight

block ciphers or permutations with lightweight modes.

For instance, SUNDAE-GIFT [8] combines GIFT and the

SUNDAE mode, and PHOTON-BEETLE [10] combines

the PHOTON permutation [26] and the BEETLE mode.

One can refer to [32] for more such examples.

Sponge mode and its variants [15,14,17] are popular

choices as they provide the flexibility of constructing

both AEAD and hash functionalities. ASCON built a

lightweight permutation of 320 bits and used it in a

MonkeyDuplex type mode. This permutation is based on

a substitution-permutation network (SPN). It is nicely

designed to provide a great flexibility in both hardware

and software. ASCON is also competing in the NIST-

LWC competition and currently is in the second round.

Other contemporary designs that were inspired by

ASCON are DRYGASCON [34], SHAMASH [33] and

Sycon v1.0 [36]. DRYGASCON attempted to general-

ize ASCON with a permutation-equivalent S-box and

a slightly modified diffusion layer. SHAMASH also fol-

lowed the same design principle by replacing ASCON’s

S-box and diffusion layer.

Our contribution. We revisit our construction Sycon
v1.0 which was a round 1 candidate in the NIST-LWC

competition. After a careful analysis we observe that

it lacks in good diffusion property. We find a 3-round

differential trail with 10 active S-boxes which is 1 less

than what was claimed in the submission document.

Our analysis also finds a 4-round differential with only

21 active S-boxes (see Figure 10), which is much less

than the heuristic upper bound of 51 as provided for

4-round Sycon v1.0. In this article, we design a new

permutation that provides concrete security guarantees

while rendering low hardware cost and name it Sycon
that supersedes Sycon v1.0.

– Design rationale. To design a permutation that is

lighter than ASCON, we need to construct a lighter

S-box layer and a diffusion layer. First, we gener-

ate many new lightweight S-boxes having the same

cryptographic properties as that of ASCON. The

lightest one we obtain has a hardware cost of 27.34

GE (UMC 65nm technology), which is even lighter

than the ASCON S-box. Next, we investigate the dif-

fusion layer of the form X ⊕ (X ≪ u)⊕ (X ≪ v)

as used in ASCON. We observe that restricting our

choice of rotation constants to (u, v) = (u, 2u) sig-

nificantly reduces the hardware cost. However, this

choice of rotation constants decreases the number

of active S-boxes. To compensate that, we introduce

additional word rotations which are chosen in accor-

dance with the S-box. This additional word rotation

does not introduce any overhead in hardware. As a

result, we obtain a diffusion layer which elevates the

number of active S-boxes significantly. We apply the

MonkeyDuplex [14] mode to construct AEADs and

sponge mode [17] for hashing from the Sycon per-

mutation.

– Security analysis. We perform an extensive secu-

rity analysis of the Sycon permutation against pow-

erful cryptanalytic attacks such as differential, lin-

ear, integral and differential-linear attacks. We ap-

ply the mixed integer linear programming (MILP)

tool [28,39,3] to determine the number of active S-

boxes. For the 3-round permutation, Sycon has 16

differentially and linearly active S-boxes, whereas

ASCON has 15 and 13 active S-boxes, respectively.

Our analysis shows that the 12-round Sycon permu-

tation is resistant to the state-of-the-art cryptan-

alytic attacks, thereby achieving the same level of

security as of ASCON.

– Optimized hardware implementation. We im-

plement the Sycon permutation, two AEAD modes

and one hash mode in both ASIC (UMC 65nm) and

FPGA (Kintex-7) to demonstrate their efficiency,

and provide an extensive evaluation result and com-

parison results. The area for the Sycon permutation

is 5303 GE. The areas for two AEAD algorithms and

one hash algorithm are 6436, 6537, and 6038 GE,

respectively. Comprehensive performance results in-

cluding power and energy are furnished in Section 6.

– Comparative analysis. We provide a detailed com-

parison with those similar designs that are not bro-

ken yet (see Table 1). To have a fair comparison, we

implement ASCON in the same technology. Our re-

sult shows that the Sycon permutation has an area

improvement of about 5.35% over the ASCON per-

mutation. When the AEAD and hashing of Sycon
and ASCON with a rate of 64 are compared, the area

improvements are about 14.95% and 4.45%, respec-

tively. As regards the maximum frequency reported

by the ASIC synthesis tool, Sycon achieves 1.826

GHz against 1.242 GHz by ASCON which trans-

lates to an improvement of 48.3% and is primarily

attributed to the mode of operation. In the pro-

cess of making the hardware extremely lightweight,

we loose the software speed of the Sycon permu-

tation approximately 10% slower than that of AS-

CON. This results in about 10% reduction in soft-

ware speed when we compare both ASCON and Sycon
modes for the rate of width 64 and large messages.

We emphasize that the savings in hardware is abso-

lute in the sense that they are fixed and not amor-

tized. Hence it directly translates to low manufac-

turing costs. Therefore, we believe that gaining such

a hardware cost by sacrificing as little as 10% in

software speed-up is a reasonable trade-off.

Overall, Sycon is well-placed for lightweight applica-

tions. Our construction shows how to push the bound-

ary of hardware cost of a permutation that belongs to

the ASCON family.

2 Preliminaries

The Substitution-Permutation Network (SPN) has been

widely followed in constructing block ciphers. For exam-

ple, AES [21] is built on the same principle. A similar

approach can be followed to construct cryptographic

2

Table 1: Comparing Sycon with other contemporary ciphers of comparable state-sizes. Comparisons are made with

those similar designs that are not broken yet.

Primitive State-Size

FPGA ASIC

References
Technology

Slice FMax

(MHz)
Technology

AREA

(GE)

FMax

(GHz)LUT Registers

Sycon-AEAD-64 320

Kintex-7

754 328 354

UMC 65nm

6436 1.826

This

Paper

Sycon-AEAD-96 320 734 328 429 6537 1.826

Sycon-Hash-64 320 646 326 483 6038 1.884

ASCON-128 320 1055 328 303 7567 1.242

ASCON-128a 320 1107 328 312 7614 1,246

ASCON-Hash 320 629 326 429 6319 1.884

DRYGASCON 320 Zynq-7000 1647 625 153.8 −− −− −− [34]

Gimli† 384 Spartan-6 587 394 202 ST 28nm 8097 0.939 [13]

ACE 320 Spartan 6 1272 365 123 ST Micro 65nm 4250 0.720 [2]

ISAP-A-128 320 −− −− −− −− UMC 130nm 12780 0.169 [22]

† Results are for the permutation.

permutations. Basically in an SPN, there is one sub-

stitution layer which is nonlinear and a diffusion layer

which is linear. The substitution layer applies S-boxes

in parallel that induce the confusion property, and the

linear diffusion layer is largely responsible for diffus-

ing the plaintext into the cipher. Using the wide-trail

strategy of AES [21], one can measure the strength of

SPN ciphers against two basic attacks such as differ-

ential cryptanalysis [18] and linear cryptanalysis [30].

This basically counts the number of active S-boxes for

some rounds.

Differential and linear cryptanalysis. Let Fm2 be

the vector space formed by the 2m binary m-tuples. An

S-box of m-bit is a mapping S : Fm2 → Fm2 . Differen-

tial and linear cryptanalysis are the basic attacks that

the designer needs to take care of. To resist the dif-

ferential cryptanalysis, the S-box should have low dif-

ferential uniformity defined as follows. Let DS(δ,∆) =

#{x : S(x) ⊕ S(x ⊕ δ) = ∆}. The differential uni-

formity is defined as DU(S) = maxδ 6=0,∆6=0DS(δ,∆).

An S-box is called k-differential uniform if DU(S) = k.

On the other hand, in linear cryptanalysis, the attacker

exploits probabilistic linear relations, called linear ap-

proximations. The linear approximation table (LAT)

keeps the record of biases of the relations of the form⊕m−1
i=0 aixi =

⊕m−1
i=0 biyi, where (x0, . . . , xm−1) and

(y0, . . . , ym−1) are the input and output of an S-box re-

spectively, and (a0, . . . , am−1) ∈ Fm2 and (b0, . . . , bm−1) ∈
Fm2 are called input and output mask respectively. The

maximum probability for all the nonzero input and out-

put mask pairs is called the linear probability of S de-

noted by LS .

For any α, β ∈ Fm2 , the correlation coefficient of S-

box S with respect to (α, β) is given by CS(α, β) =∑
x∈Fm

2
(−1)β·S(x)+α·x.

Differential and linear branch numbers. For an

m-bit S-box S, its differential branch number is defined

as

DBN(S) = min
x,y∈Fm

2 , x 6=y
{wt(x⊕ y) + wt(S(x)⊕ S(y))}

where wt(z) is the Hamming weight of z ∈ Fm2 . For an

m-bit S-box S, its linear branch number, denoted as

LBN(S), is defined as

LBN(S) = min
α,β∈Fm

2 \{0}, CS(α,β)6=0
{wt(α) + wt(β)}.

3 Specification of Sycon

In this section, we provide a complete specification of

the Sycon permutation and briefly describe its AEAD

and hash modes. We design Sycon to be small in hard-

ware with high throughput and to be fast on software

platforms.

3.1 The Sycon Permutation

Sycon permutation is an iterative permutation of 320

bits whose round function is based on SPN. To pro-

duce the output of a 320-bit input, the input is loaded

into the internal state of the permutation and then the

round function is applied iteratively.

3

The State. The internal state is viewed as a 5 × 64

array of bits (see Fig. 2). We denote the 320-bit state

by s = s4‖s3‖s2‖s1‖s0, which is by concatenating the

rows where each si = (si,63, si,62, · · · , si,0) ∈ {0, 1}64
is a row. Therefore, a 320-bit state is of the form s =

s4,63, s4,62, · · · · · · , s0,1, s0,0, where s4,63 is the MSB and

s0,0 is the LSB of the state.

The Round Function. The round function (R) of

the Sycon permutation consists of a sequence of three

distinct transformations: SBox (SB), SubBlockDiffusion
(SD) and AddRoundConst (RC), i.e., R = RC◦SD◦SB. The

ρ-round permutation, denoted by Πρ, is constructed as

Πρ = R ◦ · · · ◦R︸ ︷︷ ︸
ρ times

.

Fig. 11 presents a block diagram of the round function

whose components are detailed below.

SBox (SB). The substitution box is a nonlinear trans-

formation that provides confusion in the permuta-

tion. A 5-bit S-box of Sycon v1.0 is applied to each

column of the state. Table 2 provides the decimal

representation of the S-box. A circuit representa-

tion of the S-box is given in Figure 1. The SB layer

is applied to the state s by applying 64 S-boxes in

parallel on bi = (s4,i, s3,i, s2,i, s1,i, s0,i), 0 ≤ i ≤ 63.

Symbolically, s is updated as

s← SB(s) = S[b63]S[b62] · · ·S[b0],

where bi ← S(bi), 0 ≤ i ≤ 63.

Table 2: The 5-bit S-box [36]

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S[x] 8 19 30 7 6 25 16 13 22 15 3 24 17 12 4 27

x 16 17 18 19 20 21 22 23 24 25 26 27 28 19 30 31
S[x] 11 0 29 20 1 14 23 26 28 21 9 2 31 18 10 5

x0

x1

x2

x3

x4

⊕
⊕
⊕
⊕
1

⊕
1

⊕
1

⊕
⊕
⊕
⊕

1

1

1

�
�
�
�
�
�

⊕

⊕

⊕
⊕
⊕
⊕
⊕

y0

y1

y2

y3

y4

1

Fig. 1: A circuit representation of Sycon S-box

s4,0
s3,0
s2,0
s1,0
s0,0

s4,0
s3,1
s2,1
s1,1
s0,1

s4,63
s3,63
s2,63
s1,63
s0,63

s4,1
s3,1
s2,1
s1,1
s0,1

(a) SB layer operation

s4,0
s3,0
s2,0
s1,0
s0,0

s4,1
s3,1
s2,1
s1,1
s0,1

s4,63
s3,63
s2,63
s1,63
s0,63
s1,63 s1,1 s1,0

(b) SD layer operation

Fig. 2: A 5× 64 array view of the state and the SB and

SD layers

SubBlockDiffusion (SD). The diffusion layer is a linear

transformation that is applied independently on five

64-bit subblocks si, 0 ≤ i ≤ 4. The linear transfor-

mation has the form L(x) = (x⊕ (x≪ u)⊕ (x≪
2u)) ≪ t where 0 ≤ u, t ≤ 63 are positive integers,

and ≪ is the left rotation operation. Note that our

linear transformations are different from ASCON’s

ones.

s0 ← (s0 ⊕ (s0 ≪ 59)⊕ (s0 ≪ 54)) ≪ 40

s1 ← (s1 ⊕ (s1 ≪ 55)⊕ (s1 ≪ 46)) ≪ 32

s2 ← (s2 ⊕ (s2 ≪ 33)⊕ (s2 ≪ 2)) ≪ 16

s3 ← (s3 ⊕ (s3 ≪ 21)⊕ (s3 ≪ 42)) ≪ 56

s4 ← (s4 ⊕ (s4 ≪ 13)⊕ (s4 ≪ 26)).

AddRoundConst (RC). We generate the round constants

using a 4-bit LFSR defined by the primitive polyno-

mial x4 + x+ 1 over F2. The LFSR state is denoted

as rc = (rci+3, rci+2, rci+1, rci) where rci+4 = rci⊕
rci+1. We start with the initial state rc = (0, 1, 0, 1)

to generate ρ = 12 round constants where each state

of the LFSR is served as distinct constants. A 4-bit

LFSR with state (rc3, rc2, rc1, rc0) is converted to a

byte as (0, 0, 0, 0, rci+3, rci+2, rci+1, rci). For exam-

ple, the 4-bit LFSR state (0, 1, 0, 1) is converted to

a byte as (0, 0, 0, 0, 0, 1, 0, 1)= 0x05, and then a 64-

bit round constant is constructed by concatenating

the resultant 0x05 with a 56-bit constant value as

0xaaaaaaaaaaaaaa‖0x05 = 0xaaaaaaaaaaaaaa05.

The round constants are given in Table 3.

Table 3: The round constants for the Sycon permutation

Rnd Constants Rnd Constants

0 0xaaaaaaaaaaaaaa05 6 0xaaaaaaaaaaaaaa03

1 0xaaaaaaaaaaaaaa0a 7 0xaaaaaaaaaaaaaa01

2 0xaaaaaaaaaaaaaa0d 8 0xaaaaaaaaaaaaaa08

3 0xaaaaaaaaaaaaaa0e 9 0xaaaaaaaaaaaaaa04

4 0xaaaaaaaaaaaaaa0f 10 0xaaaaaaaaaaaaaa02

5 0xaaaaaaaaaaaaaa07 11 0xaaaaaaaaaaaaaa09

Number of Rounds. The number of rounds ρ for the

Sycon full permutation is set to 12. The full round as

well as a reduced-round Sycon permutation is used to

construct AEAD instances.

4

Πρ Πρ Πρ Πι Πι Πι Πι Πι Πι Πρ Πρ· · · · · ·

K0

∆0

K1

∆1

A0

∆1

An−1

∆2

M0

∆2

Mm−1

∆3

K0

∆3

K1

∆3

An−2

∆1

Mn−2

∆2

C0 Cm−2 Cm−1

K

IV

N

T

Fig. 3: The authenticated encryption (AEAD) mode of Sycon for ι = 6 and 7 for Sycon-AEAD-64 and Sycon-

AEAD-96, respectively. The domain separators are: ∆0 = 0c for initialization, ∆1 = 100‖0c−3 for AD processing,

∆2 = 010‖0c−3 for message, ∆3 = 001‖0c−3 for tag generations. If the AD is empty, ∆1 is replaced by ∆2.

Πρ Πρ Πρ Πρ Πρ Πρ Πρ Πρ· · ·

M0 M1 Mm−1 D0 D1 D2 D3

IV2

Fig. 4: The hash mode for the Sycon permutation.

3.2 The Sycon Modes

We propose two instances of AEAD based on the Sycon
permutation in the MonkeyDuplex mode [14] for resource-

constrained applications. More specifically, we use a

mode, as shown in Figure 3, which is an amalgamation

of NORX [5] and sLiSCP [4]. Like the sLiSCP mode,

the key is absorbed through the rate, instead of the ca-

pacity as done in the ASCON mode, which saves the

hardware cost of 128 XORs. We use the identical do-

main separation constants as used in the NORX mode.

The security bounds of Sycon AEAD instances for con-

fidentiality, integrity and authenticity are derived using

the beyond birthday-bound security [29] and the secu-

rity of the keyed sponge mode [16]. Table 4 presents

the parameters and the corresponding security level for

both AEAD instances, derived using the security bound

min{2b/2, 2c, 2κ} provided in [29], where b, c, κ denote

state size, capacity and key size respectively. The data

limit 2d satisfies c ≥ κ + d + 1 and d << c
2 [16]. Each

instance is determined by the key length, the nonce

length, the tag length, the rate length, and an initial

vector (IV) (see Table 12). For both instances, we limit

processing the number of plaintexts and associated data

blocks to 264 per key.

We use the Sycon permutation in the unified sponge

mode [17] to construct a hash function (see Figure 4).

For the sponge-based hash function, the generic attack

complexities are as follows. The collision attack com-

plexity is min{2`h/2, 2c/2}, preimage attack complexity

is min{2min{`h,b},max{2min{{`h,b}−r, 2c/2}}, and second

pre-image complexity is min{2`h , 2c/2} using the bounds

in [26,17], where `h is the hash digest size. Using these

formulae and the choice of the parameters for the Sycon
hash, the exact security level are presented in Table 5.

We limit processing the number of message blocks for

hashing to 2128 (using r × 2c/2), as used in [11], where

r is the rate. We present a detailed description of the

AEAD and hash modes in Appendix A.

Table 4: Recommended parameters and security claims

for Sycon AEAD instances

Instances Key Nonce Tag Capacity Rate Rounds Confiden Integ Authen

(κ) (n) (τ) (c) (r) ρ ι -tiality -rity -ticity

Sycon-AEAD-64 128 128 128 256 64 12 6 128 128 128

Sycon-AEAD-96 128 128 128 224 96 12 7 128 128 128

Table 5: Recommended parameters for the Sycon hash

Algorithm Digest Rate Capacity Rounds Preimage 2nd preimage Collision

(`h) (r) (c) (ρ) resistance resistance resistance

Sycon-Hash-64 256 64 256 12 192 128 128

4 Design Rationale for Sycon

In this section, we discuss the rationale behind choosing

each component of the Sycon permutation, AEAD and

hash modes. We focus on choosing the components so

that they lead to a low hardware implementation cost

while maintaining a high-speed in software.

4.1 Choice of the S-boxes

In our design, we decide to use a 5 × 5 S-box with

good cryptographic properties along with differential

and linear branch number 3 to ensure faster diffusion.

ASCON used such an S-box that is affine equivalent

to Keccak S-box [17]. One possible attempt to find a

hardware efficient S-box is to exhaustively search the

affine equivalent class of ASCON S-box. However, this

exhaustive search is difficult to complete due to a high

computational complexity as the number of binary non-

singular 5 × 5 matrices is ≈ 224. On the other hand,

a more systematic method was presented in [35] for

finding 5 × 5 and 6 × 6 S-boxes with differential and

linear branch number 3 using the relationship between

1-resilient Boolean functions and S-boxes with linear

branch number 3. We revisit the latter approach and

5

generate quadratic 5 × 5 S-boxes with differential and

linear branch number 3 along with nonlinearity 8 and

differential uniformity 8. In this process, we obtain many

such S-boxes and their hardware cost range from 27.34

GE to 48.44 GE. Note that the cost of ASCON S-box

is 28.12 GE. Thus, we choose the S-box with the cost

27.34 GE which gives the first upper hand over ASCON.

This S-box is also efficient in software which is evident

from its bit-slice form as given in Appendix B.

The cryptographic properties of the chosen S-box

are as follows: differential uniformity 8, nonlinearity 8,

algebraic degree 2, differential branch number 3, and

linear branch number 3.

4.2 Choice of the SubBlockDiffusion Layer

Sycon inherits some design philosophies from ASCON,

but there are important differences in the choice of the

linear diffusion layer SD. The linear diffusion layer of

ASCON consists of five different linear diffusion layers,

and the ith layer denoted by SDi is represented as

SDi : Yi = Xi ⊕ (Xi ≪ ri)⊕ (Xi ≪ r′i).

ASCON chose the parameters (ri, r
′
i) such that it achieves

high security.

In the SD layer of Sycon, we restrict ourselves to

choose r′i = 2ri. Then, since we can have many share-

able XORs, this choice enables us to reduce the area

size for hardware implementation. On the other hand,

this restriction is not welcome when we focus on the

diffusion performance. For example, when the diffusion

of differences is taken into account, it allows efficient

differential transitions such as the Type II diffusion in

Fig. 5. To compensate for this security degradation, ad-

ditional rotations are applied and it increases the num-

ber of active S-boxes in both differential and linear

characteristics. Moreover, to minimize the cost on spe-

cific software platforms, byte-wise rotations are used.

In summary, the SDi of Sycon is represented as

SDi : Yi = (Xi ⊕ (Xi ≪ ri)⊕ (Xi ≪ 2ri)) ≪ vi,

where vi is a multiple of eight. We first introduce five

criteria to pick the rotation numbers r4, . . . , r0. Then,

in each candidate of the rotation numbers r4, . . . , r0
satisfying five criteria, we pick the rotation numbers

v4, . . . , v0 such that the numbers of active S-boxes are

16 in both 3-round differential and linear trails.

Choice of ri. Clearly, using the same rotation num-

bers is not preferable. Therefore, the number of choices

for five rotation numbers, r4, . . . , r0, is
(
64
5

)
.

First of all, we choose ri from odd numbers because

SDi cannot diffuse the whole of 64 bits when ri is even

number.

SDiSDi SDi SDi

ri ri 2ri2ri

SDiSDi SDi SDi

ri ri 6ri2ri 2ri

SDiSDi SDi

3riri

Type I

Type II

Type III

Fig. 5: Three diffusion properties whose number of ac-

tive bits is small.

Criterion 1 For any i ∈ {4, 3, 2, 1, 0}, ri is odd num-

ber.

Criterion 1 decreases the number of choices to
(
32
5

)
.

Next, we analyze the property of SDi. We expect

that many active bits are obtained by applying SDi,

but there are efficient differential trails as summarized

in Fig. 5 and we cannot avoid these trails1. As S-boxes

diffuse each active bit to multiple rows, each SDi should

not have the common efficient trails.

Criterion 2 For any (i, j) with i 6= j and any (α, β) ∈
{1, 2, 3, 6} × {1, 2, 3, 6} except for (2, 6) and (6, 2),

(α× ri mod 64) 6= (β × rj mod 64),

(α× ri mod 64) 6= 64− (β × rj mod 64).

Criterion 2 prevents two efficient trails from being con-

nected via active S-boxes. While (α, β) = (2, 6) and

(α, β) = (6, 2) should be included, it is not included

because the number of candidates becomes zero. Crite-

rion 2 decreases the number of choices to 8704.

There are still many choices. Therefore, we next fo-

cus on the inverse of SDi. Let us consider a Type II

trail. We expect that there are many active S-boxes in

one round before this efficient trail. Therefore, we apply

SD−1j to a 64-bit value whose Hamming weight is 2 and

their distance is ri and guarantee many active bits.

Criterion 3 For any i and j, the Hamming weight of

SD−1j (1⊕ (1 ≪ ri)) is at least 10.

Note that the value 10 is the maximum possible value

among 8704 choices, and Criterion 3 decreases the num-

ber of choices to 512.

Hereinafter, we consider how to assign each rotation

number to each row, i.e., we take the property of the

Sycon S-box into consideration, and the number of can-

didates for SD is now 512×5!. Recall Criterion 2, where

we cannot include (α, β) = (6, 2) and (α, β) = (2, 6). To

avoid efficient trails exploiting this property, we use the

property of S-box. In both DDT and LAT, there is no

possible propagation when input and output active bits

are chosen from the same subspace from the following,

V (e1, e4) V (e2, e3) V (e4, e5),

1 We have almost the same efficient linear trails, where the
input and output of SDi are replaced.

6

where ei = (ei1, ei2, ei3, ei4, ei5) ∈ {0, 1}5 such that

eij = 1 if and only if i = j. Here V (ei, ej) means

the vector space with basis {ei, ej}. One can note that

V (e1, e4) = {00000, 10000, 00010, 10010}, and there is

no possible transition from any value of V (e1, e4) to

any value of V (e1, e4).

Criterion 4 Only if (i, j) ∈ {(1, 4), (4, 1), (2, 3), (3, 2),

(4, 5), (5, 4)},

(2× ri mod 64) = (6× rj mod 64),

(2× ri mod 64) = 64− (6× rj mod 64)

are possible.

Criterion 4 guarantees that exploiting 2ri = 6rj mod 64

(resp. 2ri = 64− 6rj mod 64) forces at least one row of

other three rows to be active, and we can expect enough

active bits are generated by additional active rows.

We further extend Criterion 3 to exploit the prop-

erty of the S-box.

Criterion 5 For any i, j1 and j2 such that

1. (Differential criterion) there is some x ∈ {0, 1}5
satisfying

S(x)⊕ S(x⊕ (1 ≪ j1)⊕ (1 ≪ j2)) = (1 ≪ i)

and

2. (Linear criterion)

#{x ∈ {0, 1}5|〈x, (1 ≪ i)〉
= 〈S(x), (1 ≪ j1)⊕ (1 ≪ j2)〉} 6= 24,

then max(wt(SD−1j1 (1⊕(1 ≪ ri))), wt(SD
−1
j2

(1⊕(1 ≪
ri)))) is at least 26.

When we have a Type-II trail with a single active

row, Criterion 5 guarantees at least 26 active S-boxes

one round before. After we applied these all criteria,

2048 candidates are left. Concering all of these candi-

dates, we next evaluate vi and decide the good combi-

nation of (r4, r3, r2, r1, r0) and (v4, v3, v2, v1, v0).

Choice of vi. The additional byte-wise rotation is in-

troduced to increase the number of active S-boxes, and

our goal is to guarantee 16 active S-boxes in both 3-

round differential and linear trails. To choose each ro-

tation number, we focus on the following four specific

differential trails:

SB−−→ 1
SD−−→ 3

SB−−→ 3
SD−−→ X

SB−−→,
SB−−→ 2

SD−−→ 2
SB−−→ 2

SD−−→ Y
SB−−→,

SB−−→ 4
SD−−→ 2

SB−−→ 2
SD−−→ Z

SB−−→,
SB−−→W

SD−−→ 4
SB−−→ 4

SD−−→ 4
SB−−→,

where each number shows the number of active columns

in each state. Rotation numbers vi’s are chosen such

that X, Y, Z, and W are maximized, i.e., X ≥ 12,

Y ≥ 12, Z ≥ 10, and W ≥ 8 are necessary to guarantee

16 active S-boxes. We simultaneously focus on similar

four specific linear trails and choose rotation numbers

such that they also have enough active S-boxes.

We try out all byte rotations, where the rotation

number for the last row is fixed to 0 and there are no

common rotation numbers. As a result, we have 1088

candidates.

Criteria 2, 4 and 5 are independent of the choice

of vi. These criteria basically focus on the property of

Y = SD◦SB ◦SD(X), but we never focus on the num-

ber of active columns in Y and X, where X and Y are

seen as a 5×64 array. Instead, our focus is the number of

active bits in each row of Y and X. Then, the additional

rotation vi does not impact the number of active bits

in each row of Y and X as it only rotates active-bit po-

sitions. The main observation is that the number of ac-

tive columns in Y (respectively X) is always larger than

the number of active bits in max{Y0, Y1, Y2, Y3, Y4} (re-

spectively max{X0, X1, X2, X3, X4}). Therefore, guar-

anteeing many active bits in each Yi and Xj directly

contributes to the number of active columns in Y and

X. Note that directly analyzing the number of active

columns in Y and X will require to consider the im-

pact of vi. However, in that case, the search space will

be exploded. Thus, the motivation of these criteria is

to reduce the number of candidates for SD layer effi-

ciently before choosing vi to avoid the explosion of the

search space.

Finally, our parameter uses one of these candidates,

which are given by (r4, r3, r2, r1, r0) = (13, 21, 33, 55, 59)

and (v4, v3, v2, v1, v0) = (0, 56, 16, 32, 40). Note that we

are not sure that our design criteria is sufficient con-

dition for 16 active S-boxes in 3 rounds. Therefore, we

evaluated the lower bound of the number of active S-

boxes by using a MILP. As a result, using our param-

eter guarantees 16 active S-boxes in 3-round for both

differential and linear trails.

4.3 Choice of the AddRoundConst Layer

The purpose of the round constants is to break the sym-

metry in the round function of the permutation. As the

maximum number of rounds is 12, we choose a linear

feedback shift register (LFSR) with a primitive polyno-

mial of degree 4 to generate the round constant values.

Thus the hardware cost for this is minimal.

4.4 Choice of the Sycon Modes

Our choice is a hardware efficient mode for the Sycon
permutation. We leverage the existing provably secure

7

modes to instantiate the Sycon permutation to obtain

two AEAD with different rates and one hash function.

There are several lightweight variants of the sponge con-

struction that are targeted to make the modes efficient

and secure while keeping several other factors in mind

such as efficient key absorption, proper domain separa-

tion for preventing attacks, and reducing the number of

rounds of the permutation for efficiency. The mode of

the Sycon AEAD algorithms is similar to SpongeWrap
[15] and MonkeyDuplex [14], where the key absorption

is inspired from the sLiSCP lightweight mode [4], and

the domain separation is inspired from NORX [5]. Note

that the key absorption at the rate part that happens

before the absorption of AD gives additional security.

For instance, if the attacker is able to get an internal

state, then while inverting that to reach the initial state

where key, nonce and IV were loaded, she has to exhaust

the two 64-bit subkeys, meaning to exhaust 2128 option

of possible keys.

For the hashing, we use the sponge mode of opera-

tion [17]. These modes are widely used and have been

proven secure.

Choice of Initial Vectors. We constructed two AEAD

instances and one hash instance using the Sycon per-

mutation. An initial vector is used to uniquely iden-

tify an AEAD or hash instance of Sycon. The initial

vectors “iv0” used in Sycon-AEAD-64, “iv1” used in

Sycon-AEAD-96 and “iv2” used in Sycon-Hash-64 are

obtained by taking the output of the Riemann Zeta

function [25] evaluated at 2 and 3, respectively, and

then taking the 19 decimal places in the hex represen-

tation to construct 64-bit initial vectors.

5 Security Analysis

In this section, we analyze the security of the Sycon
permutation against cryptanalytic attacks such as dif-

ferential and linear cryptanalysis, integral attack, cube

attack, and differential-linear attack.

Differential and Linear Cryptanalyses. We esti-

mated the minimum number of differentially and lin-

early active S-boxes by using MILP[39,3]. Both num-

bers of differentially and linearly active S-boxes are

16 in 3 rounds. However, it is practically difficult to

show the exact minimum number of active S-boxes in

4 rounds. Instead, we guarantee that the lower bound

of the minimum number of active S-boxes in 4 rounds.

We first generate the MILP model for 4 rounds and re-

strict the position of the active S-boxes in the 1st round.

Then, we guarantee the number of active S-boxes in the

last 3 rounds. By using this approach, we successfully

guarantee that there are no differential and linear trails

whose number of active S-boxes is lower than 24. Again,

the number 24 is the lower bound of the minimum num-

ber of active S-boxes in 4 rounds. Therefore, we expect

that the tight minimum number of active S-boxes is

much higher. Actually, our heuristic search shows the

existence of 4-round differential and linear trails with

42 and 43 active S-boxes, respectively.

Since there are 24 active S-boxes in 4 rounds, there

are 64 (= 24 + 24 + 16) and 72 (= 24 + 24 + 24) active

S-boxes in 11 and 12 rounds, respectively.

Table 6: Minimum number of active S-boxes

rounds 1 2 3 4

Differential 1 4 16 24 ≤, ≤ 42
Linear 1 4 16 24 ≤, ≤ 43

Higher-order Differential, Integral, and Cube At-

tacks. These attack methods exploit the low degree of

the S-box, and the division property [40] is the most

promising and powerful tool to evaluate the security

against these attack methods. We evaluate whether the

initialization is secure or not under the chosen nonce

attack.

Due to the S-box with degree 2, the trivial upper

bound of the degree is 2r in r rounds. Seven rounds

are not enough and the sum is independent of the se-

cret key because 27 = 128. Therefore, we evaluated the

propagation of the division property for 8 rounds when

all nonce bits are active. As a result, there is a division

trail to any output, and it implies that the division

property cannot find an 8-round integral distinguisher.

Cube attack is a kind of extension of the higher-

order differential attack. The number of active bits is

smaller than 128 and the goal is to recover the poly-

nomial that is obtained by the sum of the output. The

degree evaluation above already shows 8 rounds might

involve terms whose degree is at least 128. Due to the

substantial security margin, the cube attack is unlikely

applied to Sycon.

Differential-Linear Attacks. Since the differential-

linear attack is often applicable to ASCON, we also eval-

uated the security against the differential-linear attack.

Like [23], we evaluated the experimental differential-

linear distinguisher from 1-bit differential to 1-bit lin-

ear mask. As a result, there is a 4-round distinguisher

whose correlation is 2−2.8, but we cannot observe a sig-

nificant bias for 5 rounds experimentally. This result is

almost the same as ASCON, and Sycon is as secure as

ASCON against the differential-linear attack.

8

Impossible Differential Attacks. We searched for

an impossible differential from 1 S-box active value to

1 S-box active value by using the MILP-based tool [37].

As a result, we found 5-round impossible differentials

of the permutation, but we cannot find 6-round im-

possible differentials. As a similar observation is made

by the ASCON designers in [24], we have not found any

practical attack using this property of the permutation.

6 Implementation Results

In this section, we present extensive hardware and soft-

ware implementation results of Sycon, along with a de-

tailed comparison with ASCON.

6.1 Hardware Implementation

We have implemented all variants of Sycon on ASIC

and FPGA platforms along with the variants of AS-
CON for a fair comparison while optimizing the designs

with respect to area. The hardware implementations

were carried out using Verilog HDL. For FPGA, the

design was synthesized using Xilinx Vivado while the

ASIC synthesis was done using Mentor LeonardoSpec-

trum with 65nm logic process. The following are the

details of the tool-chain:

- ASIC Synthesis: Mentor LeonardoSpectrum Level

3 (2018a.2)

- FPGA Synthesis: Xilinx Vivado v2018.3 (64-bit)

- Simulation: ModelSim/Vivado Simulator.

- FPGA platform: Xilinx Kintex-7 (xc7k70tfbv676-
2)

- ASIC Cell library: UMC 65 nm Low-Power RVT

(Regular VT) Standard Performance Generic Core

Cell Library from Faraday

The implementation of Sycon in both AEAD and

hash modes is based on the standard round based iter-

ative architecture. The entire state is processed using

64 parallel S-boxes. The round function is realized com-

binatorially. We use a 320-bit register to store the state

after every iteration of the round function. For the au-

thenticated encryption mode, after one application of

the permutation, the message is absorbed into the state

and domain separators are applied before the message is

fed back. The ciphertext blocks and the tag are output

as per the specification. The hashing mode is similar

except the fact that the message is now XORed only in

the absorption phase while the hash output happens in

the squeezing phase as per the sponge construction. We

furnish the datapaths of both the modes in Figure 6.

//

/

/
/

/

One
Round

/

/

/

/

Domain
Separator

320

320

/

320

320

Message

64

643

3

/0
64

0 /
128

128
Tag

Ciphertext

64

128

(a) Sycon-AEAD-64 datapath for authenticated encryption
mode.

//

/

/
/

/

One
Round

/

/

320

320

320

320 64

64

0 /
64

64
Hash

64

/ Message
64

/ 0
64

(b) Sycon-Hash-64 datapath for hashing mode.

Fig. 6: Datapath for AEAD and hash modes of Sycon.

The FPGA and ASIC implementation results are

summarized in Table 1. The component-wise details of

ASIC area requirements for Sycon-AEAD-64 and Sycon-

AEAD-96 are furnished in Figure 7. It is worth men-

tioning that the difference in area between the two vari-

ants primarily arises from the Message Absorption and

Output Generation modules which is expected since it

is directly correlated with the increase in the rate of

absorption.

2.09%

26.12%

3.87%

15.66%

0.75%

22.37%

1.26%

27.35%

0.52%

Message Absorption - 134 GE

State Register - 1681 GE

Output Generation - 249 GE

SD Layer - 1008 GE

RC Layer - 48 GE

Multiplexer - 1440 GE

Control Logic - 81 GE

SB Layer - 1760 GE

Other Library Gates - 34 GE

Sycon AEAD-64 (6436 GE)

3.04%

25.72%

4.42%

15.42%

0.74%

22.03%

1.24%

26.93%

0.47%

Message Absorption - 198 GE

State Register - 1681 GE

Output Generation - 289 GE

SD Layer - 1008 GE

RC Layer - 48 GE

Multiplexer - 1440 GE

Control Logic - 81 GE

SB Layer - 1760 GE

Other Library Gates - 31 GE

Sycon AEAD-96 (6537 GE)

Fig. 7: Component-wise ASIC area footprint for Sycon-

AEAD-64 and Sycon-AEAD-96 in UMC 65nm technol-

ogy

9

6.2 Hardware Optimization Rationale: Sycon vs

ASCON

Our primary motivation while designing Sycon is to

look at ASCON and find a scope for possible improve-

ments. The point of investigation concentrated on the

design of the internal permutation. Our research has

led to optimized area footprint while achieving a higher

maximum-frequency (FMax), staying within an ASCON-

type framework (see Table 1). One should compare the

variants according to their exact or comparable block-

sizes.

Round Function. The S-box selected for Sycon has

an area footprint of 27.34 GE as compared to 28.12 GE

for ASCON S-box in UMC 65nm ASIC technology. The

savings in GE are amplified when we look at the entire

substitution layer of Sycon consisting of 64 S-boxes for

the 320-bit internal state of the permutation. The sec-

ond and the most important optimization in Sycon is

the choice of the inner rotation constants which intro-

duces a high number of common subexpressions in the

SubBlockDiffusion (SD) layer. This implies that many

3-input XOR gates have two inputs which are common

and hence can be reused while computing 3-input XOR

gates. The gain due to the resource sharing in the form

of reusable 2-input XORs is immediately reflected in

the FPGA and ASIC implementations of ASCON and

Sycon round functions as captured in Table 7 and Fig-

ure 8, respectively. One can observe the absence of 3-

input 64 bit XORs in Sycon as opposed to ASCON. This

is due to the increase in 2-input 1-bit XORs owing to

common subexpressions as stated above. In terms of

ASIC design, one round of Sycon is 300 GE lighter than

that of ASCON as depicted in Figure 8. The maximum

area (around 89%) is saved in the SD layer which is

a direct benefit of the subexpression elimination. The

lighter S-box contributes to around 10% of the overall

savings.

Table 7: RTL XOR component statistics comparison for

one round of ASCON and Sycon permutation on Xilinx

Kintex−7 (xc7k70tfbv676-2) platform

XOR Type ASCON Sycon

2-input 64-bit 1 1

3-input 64-bit 5 0

2-input 1-bit 448 920

3-input 1-bit 128 112

Slice LUT 486 410

41%

57.5% 1.5%

SD Layer - 1279 GE

SB Layer - 1792 GE

RC Layer - 46.8 GE

Ascon 1-Round (3118 GE)

36%

62.5% 1.5%

SD Layer - 1012 GE

SB Layer - 1760 GE

RC Layer - 46.4 GE

Sycon 1-Round (2817 GE)

SD Layer - 267 GE

89%

SB Layer - 32 GE

10.5%

RC Layer - 1.5 GE0.5%

Savings in 1-Round Sycon (300 GE)

Fig. 8: Comparative analysis of ASIC area savings of

one round of Sycon and ASCON permutations.

Mode of Operation. Our idea behind the design op-

timization in the mode of operation is to avoid adding

the key to the capacity part of the internal state.

As the key is absorbed through the rate part of the

internal state, this saves XOR gates to the tune of the

key-size thereby leading to significant gains for Sycon in

terms of area. The same is reflected in Table 1 where we

observe the major difference in the LUT count between

Sycon-AEAD-64 and ASCON-128. For a fair compari-

son, we carried out the implementations with as much

similarity as possible across instances and ciphers.

For the purpose of this analysis we perform a rough

segregation of the ASIC design modules. We take into

account the part of the design exclusively employed to

implement the mode. This includes the handling of the

message absorption phase. It can be noted that this

is the place where Sycon differs sharply from ASCON
which is attributed to the fact that Sycon absorbs the

second whitening key through the rate part as opposed

to ASCON which uses the capacity part. This leads to⌈
Key-Size

Block-Size

⌉
extra permutation calls but saves real-

estate in terms of valuable area footprint. The analysis

is captured in the form of Figure 9 which shows a mas-

sive gain of 832 GE in Sycon mode. Finally, as can be

seen from Table 1, the overall area footprint for Sycon-

AEAD-64 stands at 6436 GE as compared to 7567 GE

for ASCON-128 which translates to substantial savings

of 14.95% in area.

Another interesting observation from Table 1 is the

difference between Sycon and ASCON as regards the

maximum frequency reported for ASIC. We did a crit-

ical path analysis for the same. In case of ASCON the

critical path consists of the message absorption mod-

ule finally leading up to the 320-bit buffer that is being

used in the design. On the contrary, the critical path

for Sycon is between the round-counter module (which

houses the control logic for keeping track of the cur-

10

49.8%

37.2%
13%

Message Absorption - 965 GE

Multiplexer - 720 GE

Output Generation - 250 GE

Ascon-128 Mode (1936 GE)

12.1%

65.3%

22.6%

Message Absorption - 134 GE

Multiplexer - 720 GE

Output Generation - 249 GE

Sycon-64 Mode (1104 GE)

Message Absorption - 830.5 GE 99.8% Output Generation - 1.5 GE0.2%

Savings in Sycon-64 Mode (832 GE)

Fig. 9: Comparative analysis of ASIC area savings of the

mode of operation of Sycon permutation with respect

to ASCON.

rent round and also generates the permutation-done

signal) and the 320-bit buffer. The inclusion of the mes-

sage absorption module in the critical path of ASCON
showcases the additional delay it incurs due to adding

the key in the capacity part. One can note that in case

of ASCON, the key is added to various parts of the

capacity part based on the domain of operation. This

translates to additional MUX-es in hardware which are

supposed to contribute to the delay. In contrast, the

mode chosen by Sycon only requires the domain sepa-

rators to be added thereby saving additional gates (as

prevalent from the area savings) and signal delay. To ap-

preciate this further note that ASCON and Sycon hash-
ing modes have same FMax since the capacity part no

longer differs due to the same mode being used. To put

things into perspective Sycon-64 clocks a frequency of

1.826 GHz as against 1.242 GHz by ASCON-128 thereby

registering an huge improvement of 42.8%.

6.3 Hardware Performance Analysis

Latency, Throughput, Power and Energy Mea-

surement. We adopt a different philosophy while mea-

suring the latency of our design. This is motivated by

the fact that a single block latency for authenticated

ciphers that have both initializations and finalization

does not seem to paint the right picture. For instance,

in case of ASCON, a single block computation entails

an additional overhead of two permutation calls (one

each for initialization and finalization) resulting in an

additional 24 clock-cycles. For Sycon the same figure is

60. However, if we use longer messages and then scale

it back to a single block, then the additional overhead

is amortized and we get a more comparable setting. In

line with this, we calculate the amortized latency which

is a function of the message-size to calculate other de-

pendent parameters like throughput and energy. As a

rule of thumb for lightweight designs, we calculate the

results for the conventional 100 KHz frequency and re-

peat the same for the maximum frequency of a variant

reported by the synthesis tool. For power, we rely on

the standard power of 5.68 (nW/MHz/GE) as per the

data available for 65nm CMOS technology node [27].

Comparative Performance Metrics. We give a de-

tailed comparative analysis across various standard pa-

rameters in terms of hardware performance which is

captured in Tables 8 and 9. It is worth noting that laten-

cies depicted in the tables are actually the amortized la-

tencies determined by the corresponding message-sizes

as stated earlier. It can be observed that as the message-

size increases the latencies of ASCON and Sycon vari-

ants of comparable block-sizes start to converge. This

is due to the fact that the effect of the extra overhead

in terms of additional permutation calls that Sycon em-

braces to avoid adding the key to the capacity part (to

save XOR gates) slowly diminishes as the message size

increases. This in turn leads to the visible increase in

hardware efficiency at higher message lengths as seen in

both Tables 8 and 9. For instance, for a message-size of

256 bits at 100 KHz Sycon-AEAD-64 has an efficiency of

47.35 Kbps/KGE as compared to 70.48 Kbps/KGE for

ASCON-128. On the other hand, when the message-size

increases to 4096 bits, the efficiency of Sycon-AEAD-64

increases to 143.34 Kbps/KGE surpassing ASCON-128

which is at 132.67 Kbps/KGE.

Remark 1 From the above, it is evident that Sycon per-

forms better than ASCON for reasonable and quite prac-

tical message-sizes, which is attributed to about 48%

higher maximum-frequency and 14.95% lower area that

Sycon is able to achieve.

6.4 Efficiency in Software

Bit-slice Efficiency on 64-bit CPUs. We report

the speed of the Sycon permutation, AEAD and hash

algorithms and compare it with other permutations.

We have implemented the Sycon permutation, AEAD

and hash algorithms in the bit-sliced fashion using the

SIMD Intel Intrinsics including SSE2 and AVX2. The

SSE2 supports operations on 128-bit XMM registers

and AVX2 supports operations on 256-bits YMM reg-

isters. The codes were compiled using the gcc 5.4.0

11

Table 8: Performance metrics analysis of of Sycon and ASCON at UMC 65nm technology at standard frequency

of 100 KHz for lightweight constructions

Primitive
Message Size

(bits)

Frequency

(KHz)
Block-Size

Latency

(Cycles/block)

Throughput

(Kbps)

Area

(GE)

Efficiency

(Kbps/KGE)

Power

(µW)

Energy

(µJ)

Sycon-AEAD-64

256

100

64 21.00 304.76 6436 47.35 3.66 1.20

Sycon-AEAD-96 96 27.00 355.56 6537 54.39 3.71 1.04

Sycon-Hash-64 64 24.00 266.67 6038 44.16 3.43 1.29

ASCON-128 64 12.00 533.33 7567 70.48 4.30 0.81

ASCON-128a 128 20.00 640.00 7614 84.06 4.32 0.68

ASCON-Hash 64 24.00 266.67 6319 42.20 3.59 1.35

Sycon-AEAD-64

1024

64 9.75 656.41 6436 101.99 3.66 0.56

Sycon-AEAD-96 96 12.45 770.80 6537 117.91 3.71 0.48

Sycon-Hash-64 64 15.00 426.67 6038 70.66 3.43 0.80

ASCON-128 64 7.50 853.33 7567 112.77 4.30 0.50

ASCON-128a 128 11.00 1163.64 7614 152.83 4.32 0.37

ASCON-Hash 64 15.00 426.67 6319 67.52 3.59 0.84

Sycon-AEAD-64

4096

64 6.94 922.52 6436 143.34 3.66 0.40

Sycon-AEAD-96 96 8.40 1143.49 6537 174.93 3.71 0.32

Sycon-Hash-64 64 12.75 501.96 6038 83.13 3.43 0.68

ASCON-128 64 6.38 1003.92 7567 132.67 4.30 0.43

ASCON-128a 128 8.75 1462.86 7614 192.13 4.32 0.30

ASCON-Hash 64 12.75 501.96 6319 79.44 3.59 0.72

Table 9: Performance metrics analysis of of Sycon and ASCON at UMC 65nm technology at maximum frequency

(FMax) reported by synthesis tool for each variant

Primitive
Message Size

(bits)

Frequency

(GHz)
Block-Size

Latency

(Cycles/block)

Throughput

(Gbps)

Area

(GE)

Efficiency

(Gbps/KGE)

Power

(mW)

Energy

(mJ)

Sycon-AEAD-64

256

1.826 64 21.00 5.56 6436 0.86 66.75 21.90

Sycon-AEAD-96 1.826 96 27.00 6.49 6537 0.99 67.80 19.07

Sycon-Hash-64 1.884 64 24.00 5.02 6038 0.83 64.61 24.23

ASCON-128 1.242 64 12.00 6.62 7567 0.88 53.38 10.01

ASCON-128a 1.246 128 18.00 8.86 7614 1.16 53.89 7.58

ASCON-Hash 1.884 64 24.00 5.02 6319 0.80 67.62 25.36

Sycon-AEAD-64

1024

1.826 64 9.75 11.99 6436 1.86 66.75 10.17

Sycon-AEAD-96 1.826 96 12.45 14.07 6537 2.15 67.80 8.80

Sycon-Hash-64 1.884 64 15.00 8.04 6038 1.33 64.61 15.14

ASCON-128 1.242 64 7.50 10.60 7567 1.40 53.38 6.26

ASCON-128a 1.246 128 9.00 17.72 7614 2.33 53.89 3.79

ASCON-Hash 1.884 64 15.00 8.04 6319 1.27 67.62 15.85

Sycon-AEAD-64

4096

1.826 64 6.94 16.85 6436 2.62 66.75 7.24

Sycon-AEAD-96 1.826 96 8.40 20.88 6537 3.19 67.80 5.93

Sycon-Hash-64 1.884 64 12.75 9.46 6038 1.57 64.61 12.87

ASCON-128 1.242 64 6.38 12.47 7567 1.65 53.38 5.32

ASCON-128a 1.246 128 6.75 23.63 7614 3.10 53.89 2.84

ASCON-Hash 1.884 64 12.75 9.46 6319 1.50 67.62 13.47

12

compiler with -g -Wall -O2 -fomit-frame-pointer

-funroll- all-loops flags (Skylake, i7-6700 CPU).

The implementation details are given in Appendix B.

Benchmarking. We report the speed of the Sycon per-

mutation, authenticated encryption and hash algorithms

for both SSE2 and AVX2 implementations. The speed

is measured in terms of the number of clock cycles per

byte (c/B). Table 10 presents the speed for the Sycon
permutation. The best speed achieved by the Sycon per-

mutation is 2.20 c/B in the AVX2 implementation. We

also implement the ASCON permutation using SSE2

and AVX2 and compared our result with it. As our dif-

fusion layer has four extra left rotations, the speed of

the Sycon permutation is slightly decreased compared

to ASCON. We use Gimli and ACE codes and run on the

same machine for a fair comparison. When measuring

the speed of Sycon-AEAD-64 with AVX2 implementa-

tions, we choose plaintext messages of lengths 64 and

1536 bytes and an associated data of length 128 bits

where the speed computation includes all four phases.

Table 11 presents the speed of two AEAD instances and

the hash instance. In Appendix B, Table 13 presents the

software efficiency on three different microcontrollers.

Table 10: A speed-comparison of the Sycon permuta-

tion with others on 64-bit Skylake CPUs. The speed is

measured in terms of clock cycles per byte (c/B).

Permutation Speed (c/B) Ref

AVX2 SSE2
Sycon (four instances) 2.20 4.22 this paper
ASCON (four instances) 1.98 3.72 this paper, [24]
Gimli (four instances) 1.57 4.18 [13]
ACE (eight instances) 9.97 15.66 [2]

Table 11: The speed of the AEAD and hash algorithms

on 64-bit Skylake CPUs.

Message length
64 bytes 1536 bytes

Speed (c/B) Speed (c/B)

Algorithms AVX2 SSE2 AVX2 SSE2
Sycon-AEAD-64 20.19 30.72 7.33 11.28
Sycon-AEAD-96 13.02 22.45 6.26 9.57
Sycon-Hash-64 25.42 41.19 10.96 22.50

7 Conclusions and Future Work

In this paper, we have proposed Sycon which is the

lightest member in the ASCON family. We have ana-

lyzed the Sycon permutation against the powerful dis-

tinguishing attacks and showed that it withstands those

attacks well. Our performance comparisons demonstrate

that Sycon is much lighter in hardware than ASCON
while at the same time receives a better maximum fre-

quency. So this puts Sycon ahead of ASCON for real

world applications.

An interesting future work will be the side-channel

and fault attack resistance on Sycon.

Acknowledgement. The authors would like to thank

the JCEN reviewers for their insightful comments and

suggestions that have improved the quality of the pa-

per.

References

1. CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2012), https://

competitions.cr.yp.to/caesar.html

2. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit,
R.: ACE: An authenticated encryption and hash algo-
rithm. NIST Lightweight Cryptography Round 2 (2019)

3. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M.,
Youssef, A.M.: MILP modeling for (large) s-boxes to op-
timize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99–129 (2017).
https://doi.org/10.13154/tosc.v2017.i4.99-129, https://

doi.org/10.13154/tosc.v2017.i4.99-129

4. AlTawy, R., Rohit, R., He, M., Mandal, K., Yang,
G., Gong, G.: sLiSCP: Simeck-based permutations for
lightweight Sponge cryptographic primitives. In: Adams,
C., Camenisch, J. (eds.) Selected Areas in Cryptography
– SAC 2017. pp. 129–150. Springer International Pub-
lishing, Cham (2018)

5. Aumasson, J.P., Jovanovic, P., Neves, S.: Norx: parallel
and scalable AEAD. In: European Symposium on Re-
search in Computer Security. pp. 19–36. Springer (2014)

6. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hi-
watari, H., Akishita, T., Regazzoni, F.: Midori: A block
cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.)
Advances in Cryptology - ASIACRYPT, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9453,
pp. 411–436. Springer (2015)

7. Banik, S., Bogdanov, A., Luykx, A., Tischhauser, E.:
SUNDAE: small universal deterministic authenticated
encryption for the internet of things. IACR Trans. Sym-
metric Cryptol. 2018(3), 1–35 (2018)

8. Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim,
S.M., Tischhauser, E., Todo, Y.: SUNDAE-GIFT. NIST
Lightweight Cryptography Round 2 (2019)

9. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M.,
Todo, Y.: GIFT: A small present - towards reaching the
limit of lightweight encryption. In: Fischer, W., Homma,
N. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES. Lecture Notes in Computer Science, vol.
10529, pp. 321–345. Springer (2017)

10. Bao, Z., Chakraborti, A., Datta, N., Guoa, J., Nandi,
M., Peyrin, T., Yasuda, K.: PHOTON-BEETLE. NIST
Lightweight Cryptography Round 2 (2019)

11. Beierle, C., Biryukov, A., Cardoso dos Santos, L.,
Großschädl, J., Perrin, L., Udovenko, A., Velichkov,

13

V., Wang, Q.: Lightweight aead and hashing using
the sparkle permutation family. IACR Transactions on
Symmetric Cryptology 2020(S1), 208–261 (Jun 2020).
https://doi.org/10.13154/tosc.v2020.iS1.208-261, https:

//tosc.iacr.org/index.php/ToSC/article/view/8627

12. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi,
A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The
SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances
in Cryptology - CRYPTO, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 9815, pp. 123–153.
Springer (2016)

13. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C.,
Mendel, F., Nawaz, K., Schneider, T., Schwabe, P., Stan-
daert, F.X., Todo, Y., et al.: Gimli: a cross-platform per-
mutation. In: International Conference on Cryptographic
Hardware and Embedded Systems. pp. 299–320. Springer
(2017)

14. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.:
Permutation-based encryption, authentication and au-
thenticated encryption. Presented at DIAC (2012)

15. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.:
Duplexing the Sponge: single-pass authenticated encryp-
tion and other applications. In: International Workshop
on Selected Areas in Cryptography. pp. 320–337. Springer
(2011)

16. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.:
On the security of the keyed Sponge construction. In:
Symmetric Key Encryption Workshop. vol. 2011 (2011)

17. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Kec-
cak specifications (2009)

18. Biham, E., Shamir, A.: Differential cryptanalysis of DES-
like cryptosystems. In: Proceedings of the 10th An-
nual International Cryptology Conference on Advances
in Cryptology. pp. 2–21. CRYPTO (1991)

19. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkel-
soe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2007. LNCS,
vol. 4727, pp. 450–466. Springer (2007)

20. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Bee-
tle family of lightweight and secure authenticated en-
cryption ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 218–241 (2018)

21. Daemen, J., Rijmen, V.: The Design of Rijndael: AES -
The Advanced Encryption Standard. Information Secu-
rity and Cryptography, Springer (2002)

22. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F.,
Mennink, B., Primas, R., Unterluggauer, T.: ISAP v2.0.
NIST Lightweight Cryptography Round 2 (2019)

23. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.:
Cryptanalysis of ASCON. In: Nyberg, K. (ed.) Topics
in Cryptology - CT-RSA. Lecture Notes in Computer
Science, vol. 9048, pp. 371–387. Springer (2015)

24. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.:
ASCON v1.2. NIST Lightweight Cryptography Round 2
(2019), CAESAR, finalist

25. Edwards, H.: Riemann’s Zeta function. Dover Publica-
tions (2001)

26. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON fam-
ily of lightweight hash functions. In: Rogaway, P. (ed.)
Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 6841, pp. 222–239. Springer (2011).

https://doi.org/10.1007/978-3-642-22792-9 13, https://

doi.org/10.1007/978-3-642-22792-9_13

27. Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I., Mani-
favas, C.: A review of lightweight block ciphers. J. Cryp-
tographic Engineering 8(2), 141–184 (2018)

28. Inc., G.O.: Gurobi optimizer. Official webpage, http://

www.gurobi.com/

29. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 se-
curity in Sponge-based authenticated encryption modes.
In: International Conference on the Theory and Applica-
tion of Cryptology and Information Security. pp. 85–104.
Springer (2014)

30. Matsui, M.: Linear cryptanalysis method for DES cipher.
In: Workshop on the Theory and Application of Crypto-
graphic Techniques on Advances in Cryptology. pp. 386–
397. EUROCRYPT ’93, Springer-Verlag New York, Inc.
(1994)

31. NIST: NIST Lightweight Cryptography project. https:

//csrc.nist.gov/Projects/Lightweight-Cryptography/

(2019)

32. NIST: Round 1 of the NIST lightweight cryptogra-
phy project (2019), https://csrc.nist.gov/Projects/

Lightweight-Cryptography/Round-1-Candidates

33. Penazzi, D., Montes, M.: SHAMASH. NIST Lightweight
Cryptography Round 1 (2019)

34. Riou, S.: DRYGASCON. NIST Lightweight Cryptogra-
phy Round 2 (2019)

35. Sarkar, S., Mandal, K., Saha, D.: On the relationship be-
tween resilient Boolean functions and linear branch num-
ber of S-boxes. In: Hao, F., Ruj, S., Gupta, S.S. (eds.)
Progress in Cryptology - INDOCRYPT. Lecture Notes
in Computer Science, vol. 11898, pp. 361–374. Springer
(2019)

36. Sarkar, S., Mandal, K., Saha, D.: SYCON v1.0. NIST
Lightweight Cryptography Round 1 (2019)

37. Sasaki, Y., Todo, Y.: New impossible differential search
tool from design and cryptanalysis aspects - revealing
structural properties of several ciphers. In: Coron, J.,
Nielsen, J.B. (eds.) Advances in Cryptology - EURO-
CRYPT, Proceedings, Part III. Lecture Notes in Com-
puter Science, vol. 10212, pp. 185–215 (2017)

38. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata,
T.: The 128-Bit Blockcipher CLEFIA (Extended Ab-
stract). In: Biryukov, A. (ed.) Fast Software Encryption
FSE. Lecture Notes in Computer Science, vol. 4593, pp.
181–195. Springer (2007)

39. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song,
L.: Automatic security evaluation and (related-key)
differential characteristic search: Application to simon,
present, lblock, DES(L) and other bit-oriented block
ciphers. In: Sarkar, P., Iwata, T. (eds.) Advances in
Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I. Lecture Notes
in Computer Science, vol. 8873, pp. 158–178. Springer
(2014). https://doi.org/10.1007/978-3-662-45611-8 9,
https://doi.org/10.1007/978-3-662-45611-8_9

40. Todo, Y.: Structural evaluation by generalized integral
property. In: Oswald, E., Fischlin, M. (eds.) Advances in
Cryptology - EUROCRYPT, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 9056, pp. 287–314.
Springer (2015)

14

A Description of Sycon AEAD and Hash

Modes

Sycon AEAD mode. The authenticated encryption al-
gorithm accepts as input a secret key K of length κ, a public
nonce N of length n, an (optional) associated data A, and a
plaintext message M and outputs a ciphertext C of the same
length as of the message and a tag T of length τ . Similarly,
The decryption algorithm accepts as input a secret key K, a
public nonce N , an (optional) associated data A, a ciphertext
message C, and a tag T and computes a tag T ′. It outputs the
plaintext message M if the verification of the tag succeeds,
otherwise, outputs ⊥. A high-level overview of the encryption
algorithm is provided in Fig. 3. The encryption/decryption
process consists of four distinct phases, namely the initializa-
tion phase, processing associated data, encrypting the mes-
sage and generation of the tag.

Rate and capacity parts: The internal state is divided into
two parts, called rate part and capacity part. Any input
that is absorbed into the state is done through the rate
part. Given the internal state s = s4‖s3‖s2‖s1‖s0, for r =
64, s0 serves as the rate part and the remaining part is the
capacity part. For r = 96, the entire s0 and the first half
of s1 serves as the rate part in the state, i.e., s0‖bs1c32,
and the remaining part of the state is the capacity.

Padding: When the length of the plaintext or associated
data is not a multiple of r, padding is mandatory to make
the message block multiple of r. For empty associated
data, no padding is applied, otherwise, the padded asso-
ciated data A is padr(A) = A‖1‖0r−1−|A| mod r. For the
plaintext messageM , the padding is applied as padr(M) =
M‖1‖0r−1−|M| mod r. For κ = 128 and r = 64, when the
key is absorbed into the state, no padding is required.
Whereas, for r = 96, the padding for the key is required,
which is described as padr(K) = K‖1‖0r−1−|K| mod r =
K0‖K1.

Initialization: The initialization phase consists of a loading
phase that loads the key and nonce to the state and ab-
sorbs the key into the state. The key in s0 and s1, nonce
in s2 and s3 and initial vector in s4 are loaded and then
the full round Sycon permutation applied on the state,
followed by absorbing the padded key through the rate
part with two permutation calls.

Processing associated data: This algorithm is applied after
the initialization phase if the associated data is nonempty.
It accepts the associated data (AD) and the current state
as input and returns the state of the permutation. The
padding on associated data A is applied as padr(A) =
A0‖ · · · ‖An−1 where n is the number of blocks. For each
block of the padded associated data, it is XORed with
the rate part of the current state, followed by applying
the permutation. Note that there is no output during the
AD processing.

Encryption/decryption: After processing the associated
data, the encryption algorithm is applied on the plaintext
M . First, the padding rule (10∗) is applied on the plain-
text M , and the padding on M returns a padded message
which is a multiple of r, i.e., padr(M) = M0‖ · · · ‖Mm−1,
where m is the number blocks for the padded message.
The encryption algorithm produces a ciphertext of length
m corresponding to the input plaintext. For each mes-
sage block Mi, the contents in the rate part serves as
a keystream to which the message block Mi is XORed,
which is the ciphertext Ci. Then the Sycon permutation
is applied to update the state to encrypt the next mes-
sage block. The decryption process is the same, except the

message is replaced by the ciphertext and the contents in
the rate part is replaced by the ciphertext block.

Finalization: After the encryption or decryption algorithm,
the finalization phase is applied to output a 128-bit tag.
In this phase, the key is again absorbed to the state
through the rate by two permutation calls. Given the state
s = s4‖s3‖s2‖s1‖s0, the tag extraction function, denoted
by ExtTag(s), extracts the tag from the state by concate-
nating contents from s2 and s3, i.e, ExtTag(s) = s2‖s3.

Table 12: The initial vectors (IVs) used in the Sycon
modes

IV ID Initial vector IV used in algorithm

iv0 0x0000000000000000 Sycon-AEAD-64
iv1 0x5980A92AFC5D9D2C Sycon-AEAD-96
iv2 0x1C0A80D42C6E63C5 Sycon-Hash-64

Sycon hash mode. A message digest computation con-
sists of the following two steps, namely absorbing/processing
the message and squeezing/outputting the hash value or di-
gest.

Processing message: To process a message M , the padding
is applied, i.e., padr(M) = M0‖ · · · ‖Mm−1 where m is the
number blocks for the padded message. Before start pro-
cessing the message, the predefined initial vector (iv2)
is loaded into s2 of the state and the remaining state
bits are set to zero, followed by applying the Sycon per-
mutation. After that, sequentially each message block is
XORed with the rate part and then the permutation is
applied until the last message block.

Outputting digest: After absorbing the message in the
state, it outputs a message digest of 256 bits by out-
putting four blocks of r = 64 bits from the rate part
where the permutation is invoked after taking r-bits from
the rate part.

How to choose an AEAD mode. We proposed two
AEAD variants for different application scenarios. A variant
will be chosen based on the length/amount of data to be en-
crypted and authenticated from applications. For instance,
we recommend to use Sycon-AEAD-96 when the data length
is large as it is 1.5× faster than Sycon-AEAD-64. When both
AEAD and hashing functionalities are required, we recom-
mend to use Sycon-AEAD-64. In an application where the
data length is smaller and know in advance (e.g., RFID, smart
meters), a variant will be chosen so that the minimum number
of permutation invocations is required to process the data.

B Details on Efficiency in Software

Round function. We briefly explain how the Sycon per-
mutation is implemented in AVX2. We use five YMM reg-
isters (Ri), pacing four instances of the permutation, where
si = si4‖si3‖si2‖si1‖si0 represents the state of the i-th instance,

15

and register contents are:

R0 = s30‖s20‖s10‖s00;

R1 = s31‖s21‖s11‖s01;

R2 = s32‖s22‖s12‖s02;

R3 = s33‖s23‖s13‖s03;

R4 = s34‖s24‖s14‖s04;

The S-box is chosen so that the permutation has an efficient
bit-slice implementation. The bit-slice form of the S-box is as
follows.

t0 = x2 ˆ x4 t1 = t0 ˆ x1 t2 = x1 ˆ x3 t3 = x0 ˆ x4 t4 = t1&x3

t5 = t3 ˆ t4 x1 = ~x1 x1 = x1&x3 t6 = ~t2 t6 = t6&x0

x1 = x1 ˆ t1 x1 = x1 ˆ t6 t3 = ~t3 t6 = t3&x2 t1 = t6 ˆ t2

t0 = ~t0 x3 = t0&x3 x3 = x3 ˆ x0 x2 = ~x2 x3 = x3 ˆ x2

x4 = ~x4 x4 = x4&x0 x4 = x4 ˆ t2 x0 = t5 x2 = t1

We need 23 logical instructions including not operations
to implement the Sbox, which is the same as ASCON’s S-
box. For the SB layer, the instructions such as vpxor, vpand

and vpandn among the registers are used according to the
bit-slice representation of the S-box to implement this layer.
On the other hand, for the SD layer, the instructions vpsllq

and vpsrlq are used to implement it, and there are no cross-
register operations required.

Efficiency on microcontroller. To assess the software
performance of Sycon on microcontrollers, we have imple-
mented the Sycon authenticated encryption and hash algo-
rithms on the 8-bit Atmel Atmega32 and a 32-bit MIPS32
from MIPS Technologies. The 8-bit Atmel Atmega32 micro-
controller has 2 Kbytes of flash, 32 KBytes of RAM and 32
8-bit general purpose registers. MIPS32 has 32 32-bit general
purpose registers. We implement the Sycon instance in as-
sembly, and the AVR Simulator IDE was used to write the
code. In our implementations, we implement the S-box in the
bitsliced fashion, instead of a look-up table, to achieve high-
est efficiency while reducing memory. We use a plaintext of
72 bytes in our experiment to obtain cycles for AEAD and
hash instances. For instance, the Sycon permutation evalu-
ation requires 12,097 cycles on the MIPS32 microcontroller,
and the throughput of the permutation is 302.43 cycles/byte.
Table 13 presents the cycle counts, code sizes in bytes and cy-
cles per byte for the Sycon permutation and the AEAD and
hash algorithms.

C Efficient Differential Trail of Sycon v1.0

The main reason why we tweaked the design from v1.0 is find-
ing of an efficient 4-round differential trail. Figure 10 shows a
4-round differential trail with only 21 active S-boxes. Consid-
ering the best differential trail in [36] has 51 active S-boxes,
this differential trail is dramatically efficient. This negative
result of Sycon v1.0 comes from heuristic design of the dif-
fusion layer. As a result, very efficient differential trails were
overlooked. In our new design, we carefully analyzed the con-
dition that efficient trails happen, and the diffusion layer is
designed more systematically.

D Test Vectors

We present the test vectors for two authenticated encryption
algorithms and the hash algorithms. Table 14 lists the step-
by-step input-output of the Sycon permutation for 12 rounds.
Table 15 lists test vectors of Sycon-Hash-64 for a nonempty
message and the empty message. Table 16 lists a set of test
vectors of Sycon-AEAD-64 for different combinations of empty
or nonempty AD and message. Table 17 lists a test vector of
Sycon-AEAD-96 for a pair of an AD and a message.

Sycon permutation. The input and output after 12 rounds
of the permutation are:

Input:
00

AA

Output:

347654D629FC982F0F085496C5612910670008CA

C78234FCC7743998FB35A737384442DDB1E9F498

16

s s

⊕

64

⊕

64

⊕

64

⊕

64

56 6031 6213 2611 22 6 12

56 6031 6213 2611 22 6 12

56 6031 6213 2611 22 6 12

⊕

64

⊕ RCon

s s

s s

⊕

64

⊕

64

⊕

64

⊕

64

⊕

64

⊕ RCon

⊕

64

⊕

64

⊕

64

⊕

64

⊕

64

⊕ RCon

s s

Fig. 10: Sycon v1.0 has the 4-round differential trail whose number of active S-boxes is only 21.

17

Table 13: Performance of the Sycon permutation and its AEAD and hash modes on 8-bit Atmel Atmega32 and

32-bit MIPS32 microcontrollers

Sycon Sycon-AEAD-64 Sycon-AEAD-96 Sycon-Hash-64

Platform 8-bit 32-bit 8-bit 32-bit 8-bit 32-bit 8-bit 32-bit

Cycles 20,009 12,097 217,254 129,113 202,969 122,349 260,915 159,362

Code Size(Bytes) 978 1,210 1,267 1,481 1,271 1,495 1,173 1,401

Cycles/Byte 500.23 302.43 3,017.29 1,793.24 2,819.01 1,699.29 3,623.82 2,213.36

Table 14: Step-by-step input-outputs of the permutation for 12 rounds

00AA

575555BF020000EAAAFE5755FFAB020050FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5555555555555555

DC075F5875055F17D7FBA2AA07A4E24723E5AA5483257A54EA076A0540ADC0AF9704EDDF3DAE4775

6DD1BD1281961443C862E256306CAE761D9411A81A5652B2F04DD274F25F62BD49806561AD842AE7

20CFDA31715EA6FF341CC603A4D2FA1775C61E155D50AB50A06D7EA9636D3B3ED38BB1C831F82111

0F7631EE64765DCA3BFD95583E7AA5B8FCB34E476FCA3392049CE1564C533D48C38B20868BEE6C96

031AF2926118A7AB0ACBCD9E71083F063E98836A0B00DF64DD48B0BD4BEE77518263988CB1B15188

5E2107360E5110648263DAA11CA3B8A0A030E334C55CA15A27D8A0A8CB443B1DA68D757990BCBBED

480B2B1D19EFC0B6835B9576AA9A091B45EA0B7534222D10BB3407BCAA1EBE897A565959ABB548BC

CD746EF5623C07A81024EDAF8A057B113CAE114151358AC63442AC9BDAB15EFA8897C5B38AC1EA0D

3A2C5CB10A72A0CD663E012E5C1DAD9F9286F5466CB3114011265EBEE6DE28442589CAF96649EB62

F3C0ED761E8CEB13347C8C40E66168B7795485B4C59C3D971A990E082C5286A690D2A3BCC85E20A7

347654D629FC982F0F085496C5612910670008CAC78234FCC7743998FB35A737384442DDB1E9F498

Table 15: Test vectors for Sycon-Hash-64

Message is nonempty

Plaintext “To authenticate, or not to authenticate”
Plaintext (byte) 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465

Digest 236B1F60C9871D0D5894E2FEFE12515D3B391E4A70FA70C1C7935325A103BCEC

Message is empty

Plaintext empty

Digest 2B04CA328D41EC9EA39FCE4D9053932F86E2183C12F57DC72FAC7B28C1B8A2B0

18

Table 16: Test vectors for Sycon-AEAD-64

Both message and AD are nonempty

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

Associated data 05AE023DC3105DA62894A16A0E260956

Plaintext “To authenticate, or not to authenticate”
Plaintext (byte) 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465

Ciphertext 12B0BA35C8A86C1E99CBAA08155E188E99C85AA82A1967D6745DBC0195F69F9FAC0942D7F233C4

Tag 62140577EFC0C8741F55BF5CB6E7851B

Message is nonempty

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

Associated data empty

Plaintext “To authenticate, or not to authenticate”
Plaintext (byte) 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465

Ciphertext C38D58B95C04BD445BE10F1418E794EEF2A59DAFFC9D9F864D79FFE6594D68BF58FF2306E7CB25

Tag 80922236EB36EF3286EF768D31B4298F

AD is nonempty

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

Associated data 05AE023DC3105DA62894A16A0E260956

Plaintext empty

Ciphertext empty

Tag 154C33E2B768A74E18C0E1C90E266825

Both AD and message are empty

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

Associated data empty

Plaintext empty

Ciphertext empty
Tag 87D93CB5442AC330EBB37DA338D6CDC9

Table 17: Test vectors for Sycon-AEAD-96

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

Associated data 05AE023DC3105DA62894A16A0E260956

Plaintext “To authenticate, or not to authenticate”
Plaintext (byte) 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465

Ciphertext F2EB484C06258D6CEAC157A8360656AE50BBC1636028373A285D8B1E3FDFA7C803803ADDA4B1F1

Tag 30795DBE0B22B4AA2CF2880222A36946

19

⊕6
4

⋘
59

⋘
5
4

⊕64

⋘
5
5

⋘
46

⊕64

⋘
33

⋘
2

⊕64

⋘
21

⋘
42

⊕64

⋘
13

⋘
26

⋘5
6

⋘1
6

⋘3
2

⋘4
0

⊕
R
C
i

s 4
,6
3
s 4

,6
2
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
s 0

,1
s 0

,0

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

Roundi

Fig. 11: The holistic view of the round function of the Sycon permutation

20

