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Abstract. Identifiable abort is the strongest security guarantee that is achievable for secure multi-
party computation in the dishonest majority setting. Protocols that achieve this level of security ensure
that, in case of an abort, all honest parties agree on the identity of at least one corrupt party who can
be held accountable for the abort. It is important to understand what computational primitives must
be used to obtain secure computation with identifiable abort. This can be approached by asking which
oracles can be used to build perfectly secure computation with identifiable abort. Ishai, Ostrovsky, and
Zikas (Crypto 2014) show that an oracle that returns correlated randomness to all n parties is sufficient;
however, they leave open the question of whether oracles that return output to fewer than n parties
can be used.
In this work, we show that for t ≤ n − 2 corruptions, oracles that return output to n − 1 parties
are sufficient to obtain information-theoretically secure computation with identifiable abort. Using our
construction recursively, we see that for t ≤ n − ` − 2 and ` ∈ O(1), oracles that return output to
n− `− 1 parties are sufficient.
For our construction, we introduce a new kind of secret sharing scheme which we call unanimously
identifiable secret sharing with public and private shares (UISSwPPS). In a UISSwPPS scheme, each
share holder is given a public and a private share. Only the public shares are necessary for reconstruction,
and the knowledge of a private share additionally enables the identification of at least one party who
provided an incorrect share in case reconstruction fails. The important new property of UISSwPPS is
that, even given all the public shares, an adversary should not be able to come up with a different
public share that causes reconstruction of an incorrect message, or that avoids the identification of a
cheater if reconstruction fails.
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1 Introduction

In the setting of secure multiparty computation we have n parties, each with their own private input xi, that
would like to compute an arbitrary function f(x1, . . . , xn) of their inputs in the presence of an adversary,
who may actively corrupt up to t of the parties. In particular, the parties would like to compute the function
in a way that prevents the adversary from learning any unnecessary information, i.e. the corrupted parties
should learn no more than what they can deduce from their own inputs and outputs. From a correctness
point of view, we would ideally like to guarantee that the honest parties always obtain the output no matter
what the corrupted parties do, but unfortunately, such strong guarantees are unattainable when t ≥ n/2
parties are corrupt, as was shown by Cleve [Cle86].

For this reason, protocols tolerating this many corruptions usually aim for the weaker notion of active
security with unanimous abort (UA), where the honest parties either all obtain the correct output or all
unanimously output abort. The drawback of such protocols, however, is that they do not provide the honest
parties with a mechanism for determining who caused the abort in a failed execution, thus potentially
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allowing an adversary to perform a denial-of-service attack on the whole computation by only corrupting
a single party. To overcome this issue, Ishai, Ostrovsky, and Zikas [IOZ14] introduced the notion of active
security with identifiable abort (IA), which enables the honest parties to always unanimously agree on at
least one corrupted party that will be held responsible for an abort.

To eventually construct efficient protocols for either notion, it is important to understand the minimal
computationally secure building blocks necessary. Towards this goal, it is convenient to study the task of
constructing information-theoretically secure protocols in a world where the parties have access to oracles
that compute certain sub-functions correctly and securely on their behalf. In such a world, the question of
finding the minimal building blocks reduces to finding the “simplest” oracles. The hope of this approach
is that simpler oracles lead to computationally less expensive solutions in an oracle-free world, where the
oracles are replaced by computationally secure protocols that often represent the main efficiency bottleneck
of the overall protocol.

For secure n-party computation with UA or IA in the presence of an adversary that corrupts less than
half of the parties, i.e. t < n/2, no oracles are needed [RB89, Bea90].3 For UA and any t ≥ n/2, oracles
are necessary and oracles that realize two-party oblivious transfer [Rab81] are sufficient [Kil88, CvT95].
In contrast to this, an impossibility result by Ishai, Ostrovsky, and Seyalioglu [IOS12] rules out secure
computation with IA from any two-party oracle for t ≥ 2n/3.4 On the positive side, the authors of [IOZ14]
show that an n-party oracle for setting up correlated randomness is sufficient for secure computation with
IA for any t. For t ≥ n/2 and oracles that realize k-party functionalities for 2 < k < n, very little is known
about the feasibility of IA. The only known (upper) bounds are due to Brandt et al. [BMMMQ20], who
show that IA with security against t corruptions can be realized from certain (t + 2)-party oracles, when
n ∈ O(log λ/ log log λ), where λ is the security parameter. The authors conjecture that analogous results for
larger n are not possible unless P = NP .

1.1 Our Contribution

In this work, we make the first progress towards constructing n-party protocols with IA for any n ∈ poly(λ)
from k-party oracles for k < n. In particular, we show the following theorem.

Theorem 1 (Informal). Any number of parties n can securely compute any function f in the presence of t
corruptions with IA and information-theoretic security, when given access to oracles that compute arbitrary
k-party functions with IA for t ≤ n− `− 1 and k = n− ` for any constant ` > 0.

Our result refutes the conjecture of Brandt et al. mentioned above. As a technical tool, which may be
of independent interest, we introduce the notion of unanimously identifiable secret sharing with public and
private shares (UISSwPPS), which is inspired by the notion of unanimously identifiable secret sharing (UISS)
of Ishai, Ostrovsky, and Seyalioglu [IOS12].

Lastly, we remark that in our work, we only focus on oracles that provide us with IA, since oracles that
realize k-party functionalities with UA are of no help. To see this, observe that in our parameter settings
every call to an oracle necessarily includes a corrupted party, thus the adversary can guarantee that all those
calls abort without the honest parties learning anything.

1.2 Technical Overview

The starting point of our work is a result of Ishai, Ostrovsky, and Zikas [IOZ14], which shows that an n-
party oracle with IA for distributing correlated randomness is sufficient for general n-party computation

3 We assume that parties have access to point-to-point and broadcast channels, and we do not consider those as
explicit oracles in this paper.

4 In addition to their impossibility result, the authors of [IOZ14] also show that blackbox access to adaptively-secure
two-party oblivious transfer is sufficient for constructing protocols with IA for t > n/2. We note that assuming
blackbox access to a primitive is a stronger assumption than assuming oracle access, which is the focus of this
work.
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with IA. An n-party oracle generating correlated randomness takes no private inputs from the parties,
computes (r1, . . . , rn) using some setup function Setup, and returns ri to party i. To solve the general secure
computation problem with IA, we can thus focus on the problem of realizing those oracles specifically from
k-party oracles for k < n. We will require that the number of corruptions t is at most k − 1 to ensure that
every oracle call includes at least one honest party, which we need for our construction. Let us focus on the
case of k = n−1 for now, which can then be easily extended to any k = n−` for any constant ` via recursion.

From a high-level perspective, we proceed to construct functionalities of gradually increasing security
and expressiveness starting from a functionality that we have oracle access to as depicted in Figure 1.

FSetup′,n−1,x,O FSetup′,n,x FSetup,n Fn
Thm. 2 Thm. 3 Thm. 4 + [IOZ14]

Fig. 1. High-level overview of our approach. On the very left, we have an (n− 1)-party functionality FSetup′,n−1,x,O,
which we have oracle access to. On the very right, we have Fn for computing arbitrary functions among n parties
with IA.

The basic idea of our approach is to pick a party x ∈ [n] and exclude it from the computation. The
remaining n − 1 parties use their oracle access to compute a function FSetup′,n−1,x,O, which uses Setup to
generate correlated randomness, provides every party with its output and additionally secret shares the
output rx belonging to party x among the n− 1 parties. After calling the oracle, all parties send their share
of rx to party x, who reconstructs its correlated randomness. If all parties behave honestly, then everybody
receives the correct output. Privacy of the value rx is guaranteed, since at least one honest party participated
in the oracle call.

To make this approach work in the presence of an active adversary, we need to deal with malicious parties
sending incorrect shares to party x or that party itself being malicious and falsely claiming that some received
share was bad or not received at all. Through the use of an appropriate secret sharing scheme, we ensure
that any tampering of the shares is detectable during reconstruction by party x. If tampering is detected,
the excluded party x proceeds to a complain phase, which does not unanimously identify a malicious party,
but establishes conflicts between the n parties participating in the computation. After establishing those
conflicts, the parties again try to use oracle FSetup′,n−1,x,O to generate correlated randomness. The new
oracle invocation will also get a set O as input, which contains the (publicly known) indices of parties that
party x has a conflict with. Parties in the set O will not receive a share of the output of party x.

To ensure that our protocol can establish “good” conflicts during the complain phase, we rely on our
new secret sharing notion of UISSwPPS. In a nutshell, this secret sharing scheme provides every participant
with a public and a private share. The public shares are used for reconstructing the secret and allow the
excluded party to detect if some share is malformed. The private shares allow honest share holders to agree
on a set of public shares they believe to be malformed; even if the adversary outputs its public shares after
seeing all other public shares.

Now if FSetup′,n−1,x,O aborts too many times, then the parties decide to switch to a different excluded
party and start over. All those executions corresponding to one excluded party x realize a functionality
FSetup′,n,x, which does not achieve IA, but a much more relaxed version thereof. Using a combinatorial
argument, we show that the honest parties can agree on at least one malicious party, if too many invocations
of FSetup′,n,x (for different x) have not produced the output.

The approach outlined above realizes our desired functionality FSetup,n with IA for generating correlated
randomness, albeit with a still slightly weaker security notion, where the adversary can chose one of several
possible outputs or abort5. We prove that such a functionality is secure enough to be used in combination
with the approach of Ishai, Ostrovsky, and Zikas [IOZ14] for realizing secure n-party computation with IA
of arbitrary functions, i.e. functionality Fn.

5 Note that in regular security with IA, the adversary gets to see one output and then has to decide, whether to
accept it or to abort.
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1.3 Notation

We write [n] to denote the set {1, . . . , n}.

2 Secure Multiparty Computation (MPC) Definitions

We follow the real/ideal world simulation paradigm.
An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic polynomial-time (PPT) interactive

Turing machines (ITMs), where each party Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈
{0, 1}∗. We let A denote a special ITM that represents the adversary and that is initialized with input that
contains the identities of the corrupt parties, their respective private inputs, and an auxiliary input. The
protocol is executed in rounds (i.e., the protocol is synchronous), where each round consists of the send phase
and the receive phase, where parties can respectively send the messages from this round to other parties and
receive messages from other parties. In every round parties can communicate either over a broadcast channel
or a fully connected point-to-point (P2P) network, where we additionally assume all communication to be
private and ideally authenticated.

During the execution of the protocol, the corrupt parties receive arbitrary instructions from the adversary
A, while the honest parties faithfully follow the instructions of the protocol. We consider the adversary A
to be rushing, i.e., during every round the adversary can see the messages the honest parties sent before
producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output, the corrupt parties produce no
output, and the adversary outputs an arbitrary function of its view. The view of a party during the execution
consists of its input, random coins and the messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party protocol and let C ⊆ [n],
of size at most t, denote the set of indices of the parties corrupted by A. The joint execution of Π under
(A, C) in the real world, on input vector x = (x1, . . . , xn), auxiliary input aux to A and security parameter
λ, denoted REALΠ,C,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux) resulting from the
protocol interaction.

Definition 2 (Ideal Computation). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let C ⊆
[n], of size at most t, be the set of indices of the corrupt parties. Then, the joint ideal execution of f
under (S, C) on input vector x = (x1, . . . , xn), auxiliary input aux to S and security parameter λ, denoted
IDEALf,C,S(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and S(aux) resulting from the interaction
to the ideal functionality F (Figure 2) with the simulator S and the honest parties. After interacting with F ,
the hones parties output the message received from F . The corrupt parties output nothing. The simulator S
outputs an arbitrary function of the initial inputs {xi}i∈C , the messages received by the corrupt parties from
the trusted party and its auxiliary input.

Definition 3. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π t-securely computes the
function f if for every real-world adversary A there exists a simulator S whose running time is polynomial
in the running time of A such that for every C ⊆ [n] of size at most t, it holds that{

REALΠ,C,A(aux)(x, λ)
}

x∈({0,1}∗)n,λ∈N≡
{
IDEALf,C,S(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N .

3 Unanimously Identifiable Secret Sharing with Public and Private Shares

A secret sharing schemes allows a dealer to split a message into shares such that certain authorized subsets
of those shares can be used to reconstruct the message, whereas unauthorized subsets reveal no information
about the message whatsoever.

Definition 4 (Secret Sharing Scheme). A secret sharing scheme for message space {0, 1}∗ consists of a
probabilistic polynomial-time algorithm Share and a deterministic polynomial-time algorithm LRec with the
following syntax:
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Functionality Ff,n

1. For i ∈ [n]\C receive xi from party Pi;
2. For i ∈ C receive xi from S;
3. Compute y = f(x1, . . . , xn);
4. Send y to S;
5. Receive either continue or (abort, ī) (for some ī ∈ C) from S;
6. If S sent continue: send y to each party i ∈ [n]\C;
7. If S sent (abort, ī): send (abort, ī) to each party i ∈ [n]\C.

Fig. 2. Functionality Ff,n for secure computation of function f among n parties with identifiable abort.

Share(msg)→ (s1, . . . , sn): takes as input a message msg ∈ {0, 1}∗ and outputs shares s1, . . . , sn.

LRec(si, {sj}j∈S)→ (msg, L): takes as input a share si and a subset of shares {sj}j∈S, where i ∈ S ⊂ [n],
and outputs a reconstructed message in {0, 1}∗ ∪ {⊥} and a set of accusations L ⊂ [n].

Furthermore, (Share, LRec) should satisfy correctness (Definition 8, with appropriate syntactic modifica-
tions and ignoring the requirements on Rec, which we do not have in a regular secret sharing scheme) and
privacy (Definition 9, with appropriate syntactic modifications).

We introduce the notion of unanimously identifiable secret sharing with public and private shares (UIS-
SwPPS). In such a scheme, each share holder will receive one private and one public share. On an intuitive
level, the public shares will correspond to a secret sharing of the message shared by the dealer. The private
shares, on the other hand, will be used by the share holders to detect any tampering with public shares. In
particular, having additional private shares for each share holder allows us to satisfy a stronger notion of
local identifiability, which we define below. We show a construction of UISSwPPS in Section 5.

Definition 5 (Secret Sharing Scheme with Public and Private Shares). A secret sharing scheme
with public and private shares for message space {0, 1}∗ consists of a probabilistic polynomial-time algorithm
Share and deterministic polynomial-time algorithms Rec and LRec with the following syntax:

Share(msg)→ (spub
1 , . . . , spub

n , spriv
1 , . . . , spriv

n ): takes as input a message msg ∈ {0, 1}∗ and outputs public shares

spub
1 , . . . , spub

n and private shares spriv
1 , . . . , spriv

n .

Rec({spub
i }i∈S)→ msg/⊥: takes as input a subset of public shares {spub

i }i∈S (where S ⊂ [n]) and outputs a
value in {0, 1}∗ ∪ {⊥}.

LRec(spriv
i , {spub

j }j∈S)→ (msg, L): takes as input a private share spriv
i and a subset of public shares {spub

j }j∈S
(where S ⊂ [n]) and outputs a reconstructed message in {0, 1}∗ ∪ {⊥} and a list of accusations L ⊂ [n].

Furthermore, (Share, Rec, LRec) should satisfy correctness (Definition 8), privacy (Definition 9), adap-
tive local identifiability (Definition 10), publicly detectable failures (Definition 11), consistent failures (Def-
inition 12) and predictable failures (definitions 13 and 14).

We will use our new secret sharing scheme in combination with a new access structure that effectively
corresponds to a threshold access structure with additional observers that hold no information about the
dealer’s message. Even though these observers are not helpful for reconstructing the message, they will still
be able to verify whether other published shares are valid or not.

Definition 6 (Threshold Access Structure). For an arbitrary but fixed threshold t ∈ [n], the t-threshold
access structure is defined as An,t = {S ⊂ [n] | |S| ≥ t}.
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Definition 7 (Threshold Access Structure with Observers). For an arbitrary but fixed threshold
t ∈ [n] and set O ⊂ {1, . . . , n}, the t-threshold access structure with observers O is defined as AOn,t = {S ⊂
{1, . . . , n} | |S \O| ≥ t}.

Definition 8 (Correctness). A secret sharing scheme with public and private shares (Share, Rec, LRec)
for access structure A is correct if for any S ∈ A, for any i ∈ S, for any message msg ∈ {0, 1}∗, there exists
a negligible function negl(·) such that

Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg), (msg,⊥)← LRec

(
spriv
i , {spub

j }j∈S
)

: msg = msg

]
= 1− negl(λ)

and

Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg),msg← Rec

(
{spub
j }j∈S

)
: msg = msg

]
= 1− negl(λ)

where the probability is taken over the random coins of the Share algorithm.

Definition 9 (Privacy). A secret sharing scheme (Share, LRec) for access structure A is private if for
any S 6∈ A, any two messages msg,msg′ ∈ {0, 1}∗ with |msg| = |msg′|, any possible vector of shares

{(s̃pub
i , s̃priv

i )}i∈S, it holds that

Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg) : {(̃spub

i , s̃priv
i )}i∈S = {(spub

i , spriv
i )}i∈S

]
−Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg′) : {(̃spub

i , s̃priv
i )}i∈S = {(spub

i , spriv
i )}i∈S

]
≤ negl(λ) ,

where the probability is taken over the randomness of the secret sharing algorithm.

For our new notion of (adaptive) local identifiability, we consider an adversary that can see all public
shares before outputting any tampered shares.

Definition 10 (Adaptive Local Identifiability). Consider the game described in Figure 3. A secret
sharing scheme with public and private shares (Share, Rec, LRec) for access structure A has adaptive local
identifiability if for any message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·)
such that

Pr[A wins gameali(A)] ≤ negl(λ)

where the probability is taken over the random coins of the C and A.

Remark 1. We will assume that local reconstruction outputs message ⊥ whenever the list of accusations is
not empty.

We require a UISSwPSS to satisfy a mild notion of error detection for outside parties that receive a set
of potentially tampered shares and attempt to reconstruct the secret.

Definition 11 (Publicly Detectable Failures). Consider the game described in Figure 4. A secret sharing
scheme with public and private shares (Share, Rec, LRec) has publicly detectable failures if for any message
msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamepdf(A)] ≤ negl(λ)

where the probability is taken over the random coins of Share and A.

Finally, we require that Rec fails whenever LRec fails.
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Game gameali(A)

A C[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n]

C ⊂ [n]

{spriv
i }i∈C

{s̃pub
i }i∈C

Define s̃pub
i := spub

i for all i ∈ [n]\C.
A wins unless for each S ∈ A with S 6⊂ C, one of the following happens:

(1) ∀i ∈ [n] : (msg,⊥) = LRec
(
spriv
i , {s̃pub

j }j∈S
)

(2) ∀i, j ∈ S \ C : ∅ 6= Li = Lj ⊂ [n],where

(msgi, Li)← LRec
(
spriv
i , {s̃pub

k }k∈S
)

and

(msgj , Lj)← LRec
(
spriv
j , {s̃pub

k }k∈S
)

Fig. 3. Security game for adaptive local identifiability.

Game gamepdf(A)

A C

C ⊂ [n]

[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈C

{s̃pub
i }i∈C

Define s̃pub
i = spub

i for all i ∈ [n]\C and set {s̃pub
i }i∈[n].

A wins if ∃ S ∈ A : S ∩ C 6= ∅ and Rec({s̃pub
i }i∈S) 6∈ {msg,⊥}

Fig. 4. Security game for publicly detectable failures.
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Game gamecf(A)

A C[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n]

C ⊂ [n]

{spriv
i }i∈C

{s̃pub
i }i∈C

Define s̃pub
i = spub

i for all i ∈ [n]\C.

A wins if ∃ S ∈ A ∃ i ∈ S : Rec({s̃pub
j }j∈S) = ⊥ and

LRec(spriv
i , {s̃pub

j }j∈S) 6= (⊥, L)

Fig. 5. Security game for consistent failures.

Definition 12 (Consistent Failures). Consider the game described in Figure 5. A secret sharing scheme
with public and private shares (Share, Rec, LRec) for access structure A has consistent failures if for any
message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamecf(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Definition 13 (Predictable Failures with respect to LRec). Consider the game described in Figure 6.
A secret sharing scheme (Share, LRec) for access structure A has predictable failures if there exists a prob-
abilistic polynomial-time algorithm SLRec such that for any message msg ∈ {0, 1}∗ and adversary A, there
exists a negligible function negl(·) such that

Pr[A wins gamepflrec(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Definition 14 (Predictable Failures with respect to Rec). Consider the game described in Figure 7. A
secret sharing scheme with public and private shares (Share, Rec, LRec) for access structure A has predictable
failures with respect to Rec if there exists a probabilistic polynomial-time algorithm SRec such that for any
message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamepfrec(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

4 Bootstrapping MPC With Identifiable Abort

In this section, we describe how to instantiate MPC with identifiable abort for n parties and t ≤ n− 2 given
MPC with identifiable abort for n − 1 parties and t ≤ n − 2. In Section 4.1, we describe the protocol. In
Section 4.2, we prove its security.

8



Game gamepflrec(A)

A C

C ⊂ [n], C /∈ A

[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n], {s

priv
i }i∈C

{s̃pub
i }i∈C , S ∈ A, S 6⊂ C and i∗ ∈ S

Define (b, L′) := SLRec(C, S, i∗, {spub
i }i∈[n], {s

priv
i }i∈C , {s̃

pub
i }i∈S∩C)

Define s̃pub
i := spub

i for all i ∈ [n]\C and (msg, L) := LRec(spriv
i∗ , {s̃

pub
j }j∈S)

A wins unless any one of the following happens:

− b = 1 and msg = msg

− b = 0 and L = L′ 6= ⊥

Fig. 6. Security game for predictable failures with respect to LRec.

Game gamepfrec(A)

A C

C ⊂ [n], C /∈ A

[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n], {s

priv
i }i∈C

{s̃pub
i }i∈C , S ∈ A and S 6⊂ C

Define b := SRec(C, S, {spub
i }i∈[n], {s

priv
i }i∈C , {s̃

pub
i }i∈S∩C)

Define s̃pub
i := spub

i for all i ∈ [n]\C and msg := Rec({s̃pub
j }j∈S)

A wins unless any one of the following happens:

− b = 1 and msg = msg

− b = 0 and msg = ⊥

Fig. 7. Security game for predictable failures with respect to Rec.
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4.1 Protocol

Ishai et al. [IOZ14] show that given correlated randomness, it is possible to securely compute any func-
tion with any threshold t, with identifiable abort and with information-theoretic security. Let Setup() →
(r1, . . . , rn) be the randomized function that produces the appropriate correlated randomness. Setup takes no
inputs (since correlated randomness is independent of the parties’ inputs), and outputs n correlated objects,
one for each party.

We would like to make use of the availability of MPC with identifiable abort for n − 1 parties to run
Setup (for n parties). In order to do this, we define Setup′x to be Setup augmented to return shares of rx
to parties i ∈ [n]\{x}, and nothing to party x. We then expect parties i ∈ [n]\{x} to send those shares to
party x. Of course, we need to make sure that party x won’t accept incorrect shares; so, we use UISSwPPS
to authenticate the shares.

If party x is dissatisfied with the shares she receives, she broadcasts all the shares. Then, one of two
things happens. Either (1) all parties acknowledge that they sent the broadcast shares to party x, in which
case, because of the adaptive local identifiability (Definition 10) of the secret sharing, we obtain identifiable
abort among the parties who participated in the MPC; or (2) one of the parties (say, party i) claims that
party x misrepresented the share she sent, in which case we have established a conflict between parties i and
x, and can repeat the MPC excluding party i from the set of parties who hold shares of rx.

We define Setup′x,O to be the augmented correlated randomness setup function that distributes shares
of rx to parties i ∈ [n] with observers O ⊆ [n] (where x ∈ O). (We only create an observer share for party x
for ease of notation; this share is never used.) Setup′x,O is described in Figure 8.

Algorithm Setup′x,O

(r1, . . . , rn)← Setup()
{spub
i , spriv

i }i∈[n] ← Share(AOt , rx)

return {(ri, spub
i , spriv

i )}i∈[n]\{x}

Fig. 8. Algorithm Setup′x,O

Figure 9 describes the functionality FRS(k),Setup,n that computes Setup with identifiable abort; the sub-
script RS(k) signifies that we allow rejection sampling by the adversary, who is able to request fresh outputs of
Setup up to k times. Figure 13 describes the protocol ΠRS(k=n2),Setup,n that realizes FRS(k),Setup,n for k = n2.
This protocol calls upon a weaker ideal functionality FRS(k=n),Setup,n,x, which is described in Figure 10; this
ideal functionality only has identifiable abort among n− 1 of the parties (party x cannot necessarily identify
a cheater). FRS(k=n),Setup,n,x either (1) distributes the correlated randomness successfully, (2) identifiably
aborts, or (3) identifiably aborts only among [n]\{x}, in which case ΠRS(k=n2),Setup,n calls FRS(k=n),Setup,n,x

again with a different x. Figure 12 describes the protocol ΠRS(k=n),Setup,n,x that realizes FRS(k=n),Setup,n,x.
ΠRS(k=n),Setup,n,x in turn calls upon an ideal functionality FSetup′,n,x,O; this ideal functionality computes
Setup′ among n− 1 parties with identifiable abort (without rejection sampling). We do not give a protocol
realizing FSetup′,n,x,O, as we assume that secure protocols with identifiable abort exist for any (n− 1)-party
function.

Theorem 2. Protocol Π
FSetup′,n−1,x,O

RS(k=n),Setup,n,x (Figure 12) securely realizes the functionality F(k=n),Setup,n,x (Fig-

ure 10) against t ≤ n− 2 corruptions, assuming the availability of a broadcast channel and oracle access to
FSetup′,n−1,x,O.
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Functionality FRS(k),Setup,n

1. Let ` := 1;
2. Run (r`1, . . . , r

`
n)← Setup();

3. Send {r`i}i∈C to S;
4. Receive either retry, continue or (abort, ī) (for some ī ∈ C) from S;
5. If S sent retry: increment ` by one (` := ` + 1). We only allow up to k retries, so we

never get ` > k. Restart from step 2.
6. If S sent continue: send ri to each party i ∈ [n]\C;
7. If S sent (abort, ī): send (abort, ī) to each party i ∈ [n]\C.

Fig. 9. Functionality FRS(k),Setup,n for secure computation of the correlated randomness setup function Setup among
n parties with identifiable abort, which allows the simulator to reject the output (requesting a redo) at most k times.

Functionality FRS(k),Setup,n,x

1. Let ` := 1;
2. Run (r`1, . . . , r

`
n)← Setup();

3. Send {r`i}i∈C to S;
4. Receive either retry, continue or (abort, ī) (for some ī ∈ C) from S;
5. If S sent retry: increment ` by one (` := ` + 1). We only allow up to k retries, so we

never get ` > k. Restart from step 2.
6. If S sent continue: send ri to each party i ∈ [n]\C;
7. If S sent (abort, ī):

(a) If ī = x: send (abort, x) to each party i ∈ [n]\C;
(b) If ī 6= x:

i. Send (gadgabort, ī) to each party i ∈ [n]\({x} ∪ C)
ii. Send gadgabort to party x if x /∈ C.

Fig. 10. Functionality FRS(k),Setup,n,x for secure computation of the correlated randomness setup function Setup

among n parties with identifiable abort among all the parties except for x which allows the simulator to reject the
output (requesting a redo) at most k times.

Functionality FSetup′,n−1,x,O

1. Compute {(ri, spub
i , spriv

i )}i∈[n] ← Setup′x,O();

2. Send {(ri, spub
i , spriv

i )}i∈C to S;
3. Receive either continue or (abort, ī) (for some ī ∈ C) from S;
4. If S sent continue: send (ri, s

pub
i , spriv

i ) to each party i ∈ [n]\({x} ∪ C);
5. Otherwise: send (abort, ī) to each party i ∈ [n]\({x} ∪ C).

Fig. 11. Functionality FSetup′,n−1,x,O for secure computation of function Setup′x,O with identifiable abort among n−1
parties (parties i ∈ [n]\{x}).
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Theorem 3. Protocol Π
F(k=n),Setup,n,x

(k=n2),Setup,n (Figure 13) securely realizes the functionality F(k=n2),Setup,n (Fig-

ure 9) against t ≤ n − 2 corruptions, assuming the availability of a broadcast channel and oracle access to
F(k=n),Setup,n,x.

Theorem 4. If a protocol Π securely realizes Ff,n given a single oracle access to FSetup,n as a first action,
then Π also securely realizes Ff,n given a single oracle access to FRS(k=n2),Setup,n as a first action (where
FRS(k=n2),Setup,n replaces FSetup,n).

Given these three theorems, if we have a protocol ΠRS(k=n2),Setup,n realizing FRS(k=n2),Setup,n, we can
use that setup to achieve secure computation with identifiable abort of any function f using the approach of
Ishai et al. Since ΠSetup,n only requires oracle access to FRS(k=n),Setup,n,x — which in turn can be realized
given only oracle access to FSetup′,n−1,x,O — we can claim the following corollary.

Corollary 5. For any function f , there exists a protocol that securely realizes the functionality Ff,n (with
identifiable abort) against t ≤ n− 2 corruptions, given oracle access to FSetup′,n−1,x,O.

By using our construction recursively to realize FSetup′,n−1,x,O given oracle access to a (n−2)-party ideal
functionality, and so on, we can claim the following corollary.

Corollary 6. For any function f , for any constant `, there exists a protocol that securely realizes the func-
tionality Ff,n (with identifiable abort) against t ≤ n− `− 2 corruptions, given oracle access to (n− `)-party
ideal functionalities (with identifiable abort).

We require that the recursion depth ` be constant because every (n− l)-party instance calls at most n− l
(n− l− 1)-party instances, and additionally may require p′(n− l, λ) = p(λ) work for some polynomials p′, p.
Thus, we can only guarantee that the protocol is polynomial time if p`(λ) ∈ poly(λ), which is only true when
` is constant.

Conflict Graphs Before presenting our protocol ΠSetup,n, which requires keeping tack of conflict graphs,
we introduce some notation that we use for such graphs. We let Sx be the set of conflicts (denoted as tuples
(i, j)) occurring among parties [n] \ {x}. These conflicts result from a call to a functionality with identifiable
abort among these n−1 parties. Parties i and j are considered to be in conflict if they accuse different parties
of aborting the functionality. Since we do not allow a party to accuse itself, this includes the case when one
of them accuses the other. For simplicity, we let Six denote the set of parties that party i is in conflict with
within Sx.

4.2 Security

Proof of Theorem 2 We prove this theorem by demonstrating a sequence of hybrids. In the first hybrid,

a dummy simulator interfaces with a real-world adversary A, executing the protocol Π
FSetup′,n−1,x,O

RS(k=n),Setup,n,x on

behalf of the honest parties exactly as in the real world. In the last hybrid, the simulator SRS(k=n),Setup,n,x

interfaces with the real-world adversary A and the ideal functionality FRS(k=n),Setup,n,x. We show a num-
ber of intermediate hybrids, wherein the simulator “imagines” interfacing with a partially-functional ideal
functionality.

H0 is the real world, where S0 acts on behalf of the honest parties in the protocol. Note that at this point, S0

is already responsible for running the ideal functionality FSetup′,n−1,x,O; it does so honestly (by running

{(ri, spub
i , spriv

i )}i∈[n] ← Setup′x,O()).
H1 is the same as H0, except that the simulator S1 starts using a partially-functional ideal functionality F ′ in

its head. F ′ excepts the command retry. In case F ′ receives this command she runs (r1, . . . , rn)← Setup()
and sends {ri}i∈C to S1. S1 uses (r1, . . . , rn) to respond to the calls to FSetup′,n−1,x,O (note that by the

construction of the protocol Π
FSetup′,n−1,x,O

RS(k=n),Setup,n,x the simulator S1 does not receive more than n calls to

FSetup′,n−1,x,O and therefore she will not sends retry more than n times to F ′).
Of course, since (r1, . . . , rn) is picked from the same distribution (whether by an honest run of FRS(k=n),Setup,n,x

or by a partially-functional F ′), H1 is indistinguishable from H0.
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Protocol Π
FSetup′,n−1,x,O

RS(k=n),Setup,n,x

Let GS = [n] \ {x}. Let O = {x}. (GS denotes the fixed set of parties calling the ideal
functionality; O denotes the set of parties who do not get a share of rx, which might
change over time.)
The parties repeat the three phases described below until one of the following termination
conditions occurs:

1. The parties i ∈ GS receive a special broadcast message done from party x. When this
happens, each party i ∈ [n] outputs ri.

2. All of the parties i ∈ GS identify party x as a cheater. When this happens, the parties
i ∈ GS output (abort, x).

3. One of the calls to FSetup′,n−1,x,O results in an (identifiable) abort. When this happens,
the parties i ∈ GS output (abort, ī) (where ī = min(Li) and Li is the list of parties
identified by party i).

4. Though FSetup′,n−1,x,O did not abort, the honest parties among the n− 1 parties who
called the functionality unanimously identify (a) cheater(s). When this happens, the
parties i ∈ GS output (abort, ī) (where ī = min(Li) and Li is the list of parties identified
by party i).

Call the Ideal Functionality:
1. The parties i ∈ GS invoke the ideal functionality FSetup′,n−1,x,O to compute

Setup′x,O, so that each party i ∈ GS learns (ri, s
pub
i , spriv

i ).
2. If FSetup′,n−1,x,O aborts, we are in termination condition 3; otherwise the parties

proceed to the reconstruct phase.
Reconstruct:

3. Each party i ∈ GS \O sends spub
i to party x.

4. Party x runs rx ← Rec({spub
i }i∈GS\O). If rx 6= ⊥, party x broadcasts done. (We

are now in termination condition 1; the parties all output ri.) If rx = ⊥, party x
broadcasts complain and the parties proceed to the complain phase.

Complain:
1. Party x broadcasts the shares it received as {s̃pub

i }i∈GS\O.

2. Each party i ∈ GS \O broadcasts spub
i .

3. If there is an i such that s̃pub
i 6= spub

i :
(a) All parties set O = O ∪ {i}

i∈GS s.t. s̃
pub
i 6=s

pub
i

.

(b) If O = GS (that is, all parties have had conflicting claims with party x), all
parties output (⊥, {x}).

4. Otherwise:
(a) If Rec({s̃pub

i }i∈[n]\O) 6= ⊥: all parties i ∈ GS identify party x as a cheater.
(We are now in termination condition 2; the parties broadcast and output
(abort, x).)

(b) Otherwise: all parties i ∈ GS compute (⊥, Li) ← LRec(spriv
i , {spub

j }j∈GS), and
broadcast and output (abort, ī) where ī = min(Li). (We are now in termination
condition 4.)

Fig. 12. Protocol Π
FSetup′,n−1,x,O

RS(k=n),Setup,n,x for secure computation of the correlated randomness setup function Setup among

n parties (with identifiable abort among all of the parties except for x, with threshold t = n− 2) given access to an
ideal functionality FSetup′,n−1,x,O that distributes the output of Setup′ to n− 1 parties (with identifiable abort, with
threshold t = n− 2).
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Protocol Π
FRS(k=n),Setup,n,x

RS(k=n2),Setup,n

1. For x ∈ [n]: the parties i ∈ [n] invoke the ideal functionality FRS(k=n),Setup,n,x to
compute Setup. One of the following occurs:
(a) Each party i ∈ [n] receives and outputs ri.
(b) Each party i ∈ [n] receives and outputs (abort, x).
(c) Each party i ∈ [n] \ {x} receives (gadgabort, ī) (for ī 6= x), and party x receives

gadgabort. In this case, each party i ∈ [n] \ {x} broadcasts ī as īi.
i. A. If there exists a party i ∈ [n] \ {x} such that īi = i: all parties output

(abort, i).
B. Otherwise: the parties record the obtained conflict graph Sx: (i, j) is added

to Sx if īi 6= īj .
2. For i ∈ [n]:

(a) For j ∈ [n]:
i. If Sji ∩ S

i
j 6= ∅: let ī := min(Sji ∩ S

i
j).

A. If i ∈ Skj and j ∈ Ski : party k outputs (abort,min({i, j})).
B. Otherwise: party k outputs (abort, ī).

Fig. 13. Protocol ΠRS(k=n2),Setup,n for secure computation of the correlated randomness setup function Setup among
n parties (with identifiable abort, with threshold t = n − 2) given access to an ideal functionality FRS(k=n),Setup,n,x
that distributes the output of Setup to n parties (with identifiable abort amongall the parties except for x, with
threshold t = n− 2).

H2 is the same as H1, except that the simulator S2 modifies the partially-functional ideal functionality F ′.
The partially-functional F ′ expects either retry, continue or (abort, ī) after S2 sends {ri}i∈C . It responds
to retry exactly as it did in H1. If it receives continue or (abort, x), F ′ does nothing further; otherwise,
it sends (a) (gadgabort, ī) to each (simulated) honest party i ∈ [n]\({x} ∪ C) and (b) gadgabort to
(simulated) party x if x 6∈ C. Those simulated parties use that output. If the execution reaches step 2,
S2 sends (abort, ī) to F ′, where (abort, ī) is the output of FSetup′,n−1,x,O.
H2 is indistinguishable from H1 since the distributions are identical.

H3 is the same as H2, except that, if the execution reaches step 4b, S3 sends (abort, ī) to F ′, where ī is

computed as ī := min(Li) for i = min(GS\C) and (⊥, Li)← LRec(spriv
i , {spub

j }j∈GS).
We observe that the only way in which H3 can differ from H2 is when, in the protocol, termination
condition 4 occurs. In H3, if termination condition 4 occurs, each party i ∈ [n]\({x} ∪ C) outputs
(abort, ī) for the same index ī. The same is true in H2 because (1) in H3 (in case of a termination
condition 4) Rec outputs ⊥ and by the consistent failure property of UISSwPPS we can be sure that
LRec outputs a list of cheater(s); (2) from the locally identifiable property of UISSwPPS it follows that
each party i ∈ [n]\({x} ∪ C) agrees on the same set of cheater(s).

H4 is the same as H3, except that the simulator S4 augments the (simulated) partially-functional F ′ so that
if it receives (abort, x), it sends (abort, x) to each (simulated) honest party i ∈ [n]\C. Those simulated
parties use that output. If the execution reaches step 4a, S4 sends (abort, x) to F ′.
The output of H4 is distributed identically to that of H3 because when termination condition 2 occurs,
S4 in H4 acts in the exact same way as the honest parties in H3.

H5 is the same as H4, except that the simulator S5 augments the (simulated) partially-functional F ′ so that
if it receives continue, it sends ri to each (simulated) honest party i ∈ [n]\C. Those simulated parties use
that output. If the execution reaches step 4, S5 sends continue to F ′.
We observe that the only way in which H5 can differ from H4 is in protocol termination condition 1,
which is when party x recovers the output rx. Note that, in H4, if party x /∈ C outputs rx, then rx must
be the message secret shared during the execution of Setup′x,O(). The above observation follows form the
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Simulator SRS(k=n),Setup,n,x
Let GS := [n]\{x}, and O := {x}. SRS(k=n),Setup,n,x repeatedly starts with the “call the ideal functionality”
phase until it terminates.

Call the Ideal Functionality: Upon receiving a call to FSetup′,n−1,x,O from A, SRS(k=n),Setup,n,x does
the following:
1. SRS(k=n),Setup,n,x obtains {ri}i∈C from FRS(k=n),Setup,n,x;

(a) If x ∈ C: SRS(k=n),Setup,n,x computes {(spub
i , spriv

i )}i∈[n] ← Share(AOt , rx);

(b) Otherwise (if x /∈ C): SSetup,n,x computes {(spub
i , spriv

i )}i∈[n] ← Share(AOt , 0).

2. SRS(k=n),Setup,n,x sends {(ri, spub
i , spriv

i )}i∈GS∩C (on behalf of FSetup′,n,x,O) to A.
3. If A sends (abort, ī): SRS(k=n),Setup,n,x sends (abort, ī) to FRS(k=n),Setup,n,x and terminates returning
A’s output.

Reconstruct:
4. If x ∈ C:

(a) For each i ∈ GS\(O ∪ C), SRS(k=n),Setup,n,x sends spub
i to A (on behalf of party i).

(b) If A broadcasts done (on behalf of party x): SRS(k=n),Setup,n,x terminates returning A’s output.
5. Otherwise (if x /∈ C):

(a) SRS(k=n),Setup,n,x receives s̃pub
i from A on behalf of each party i ∈ GS ∩ C\O.

(b) Let s̃pub
i := spub

i for i ∈ GS\(C ∪O). SRS(k=n),Setup,n,x computes rx ← Rec({s̃pub
i }i∈GS\O).

i. If rx 6= ⊥: SRS(k=n),Setup,n,x broadcasts done (on behalf of party x) and terminates returning
A’s output.

ii. Otherwise (if rx = ⊥): SRS(k=n),Setup,n,x broadcasts complain (on behalf of party x) and
proceeds to the complain phase.

Complain:
1. If x ∈ C: SRS(k=n),Setup,n,x receives {s̃pub

i }i∈C\O from A (on behalf of party x).

2. Otherwise (if x /∈ C): SRS(k=n),Setup,n,x broadcasts the shares it received as {s̃pub
i }i∈GS\O (on behalf

of party x).
3. For each party i ∈ GS\(O ∪ C), SRS(k=n),Setup,n,x sets spub

i := spub
i and broadcasts spub

i .

4. SRS(k=n),Setup,n,x receives {spub
i }i∈GS∩C\O from A.

5. If there is an i such that s̃pub
i 6= spub

i : SRS(k=n),Setup,n,x sets O = O ∪ {i}
i∈GS s.t. s̃

pub
i 6=s

pub
i

.

(a) If O = GS: SRS(k=n),Setup,n,x sends (abort, x) to FRS(k=n),Setup,n,x.
(b) Otherwise: SRS(k=n),Setup,n,x sends retry to FRS(k=n),Setup,n,x, and goes back to step 1a of the

“call the ideal functionality” phase.
6. Otherwise:

(a) If Rec({s̃pub
i }i∈[n]\O) 6= ⊥ (and thus x ∈ C): SRS(k=n),Setup,n,x sends (abort, x) to

FRS(k=n),Setup,n,x, and broadcasts (abort, x) (on behalf of each party i ∈ GS\C). SSetup,n,x ter-
minates returning A’s output.

(b) Otherwise: SRS(k=n),Setup,n,x chooses an (arbitrary) index i ∈ GS\C, and lets

(⊥, Li) ← LRec(spriv
i , {spub

j }j∈GS). SRS(k=n),Setup,n,x sends (abort, ī) (where ī = min(Li)) to
FRS(k=n),Setup,n,x, and broadcasts (abort, ī) (on behalf of each party i ∈ GS\C). SRS(k=n),Setup,n,x
terminates returning A’s output.

Fig. 14. The simulator SRS(k=n),Setup,n,x.
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detectable failure property of UISSwPPS. We can conclude that, in H5, if termination condition 1 occurs,
the simulated party x outputs rx which corresponds to the value that party x would have reconstruct
via Rec in H4.

H6 is the same as H5, except that the simulator S6 augments the (simulated) partially-functional F ′ to use

rx = 0 to generate the shares {(spub
i , spriv

i )}i∈[n] ← Share(AOt , rx) if x 6∈ C. Note that, at this point, F ′ is
the same as FRS(k=n),Setup,n,x.
The view of A in H6 is distributed statistically close to the view of A in H5. To see that this is true,
observe that: (1) Due to the privacy property of UISSwPPS, the shares {(spub

i , spriv
i )}i∈[C] do not reveal any

information about the secret shared message; (2) Due to the predictable failure property of UISSwPPS,
if the reconstruction algorithms Rec and LRec fail, no information about the secret shared message is
revealed.

H7 is the ideal game. S7 = SRS(k=n),Setup,n,x uses FRS(k=n),Setup,n,x instead of F ′. At this point, FRS(k=n),Setup,n,x

returns output directly to the honest parties, so SRS(k=n),Setup,n,x never sees the honest party values.
H7 is indistinguishable from H6 because the distributions are identical.

Simulator SRS(k=n2),Setup,n

1. For each x ∈ [n]: upon receiving a call to FRS(k=n),Setup,n,x from A, SRS(k=n2),Setup,n does the following:
(a) SRS(k=n2),Setup,n obtains {ri}i∈C from FRS(k=n2),Setup,n;
(b) SRS(k=n2),Setup,n sends {ri}i∈C (on behalf of FRS(k=n),Setup,n,x) to A.
(c) If A responds with retry: the simulator sends retry to FRS(k=n2),Setup,n, and goes back to Step 1a.

(Recall that the functionality FRS(k=n),Setup,n,x only accepts at most n retry commands.)
(d) If A responds with continue: the simulator sends continue to FRS(k=n2),Setup,n and terminates.
(e) If A responds with (abort, x): the simulator sends (abort, x) to FRS(k=n2),Setup,n and terminates.
(f) If A responds with (gadgabort, ī):

i. SRS(k=n2),Setup,n broadcasts īi := ī on behalf of each party i ∈ [n]\({x} ∪ C).
ii. Let īi be the accusation broadcast by A on behalf of each party i ∈ C\{x}.

iii. If there exists an i ∈ C\{x} such that īi = i: SRS(k=n2),Setup,n sends (abort, i) to FRS(k=n2),Setup,n

and terminates.
iv. SRS(k=n2),Setup,n records the obtained conflict graph as Sx.

v. If x = n: SRS(k=n2),Setup,n finds the first (i, j) such that Sji ∩ S
i
j 6= ∅.

A. If i ∈ Skj and j ∈ Ski for every k ∈ [n] \ C: SRS(k=n2),Setup,n sets ī∗ := min(i, j).

B. Otherwise: SRS(k=n2),Setup,n sets ī∗ := min(Sji ∩ S
i
j).

SRS(k=n2),Setup,n sends (abort, ī∗) to FRS(k=n2),Setup,n and terminates.
vi. Otherwise: SRS(k=n2),Setup,n sends retry to FRS(k=n2),Setup,n. (We now proceed to the next x.)

Fig. 15. The simulator SRS(k=n2),Setup,n.

Proof of Theorem 3 We start by making several simple observations about conflict graphs.

Observation 1 Within a given conflict graph Sx, all honest parties are in conflict with the same other
parties. This is apparent because all honest parties accuse the same party — the one who really aborted the
functionality; thus, any party who disagrees with one honest party disagrees with them all.

Observation 2 If two parties i and j are in conflict within a given conflict graph Sx, then every other
participating party k is in conflict with at least one of these two parties:

j ∈ Six ⇒ ∀k ∈ [n] \ {i, j, x}, k ∈ Six ∨ k ∈ Sjx.
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This is true because, assuming no party accuses themselves, two parties who are in conflict always make
different accusations; every other party must thus disagree with at least one of them.

As before, we prove Theorem 3 by demonstrating a sequence of hybrids. In the first hybrid, a dummy

simulator interfaces with a real-world adversary A, executing the protocol Π
FRS(k=n),Setup,n,x

RS(k=n2),Setup,n on behalf of the

honest parties exactly as in the real world. In the last hybrid, the simulator SRS(k=n2),Setup,n (described in
Figure 15) interfaces with the real-world adversary A and the ideal functionality FRS(k=n2),Setup,n. We show
a number of intermediate hybrids, wherein the simulator “imagines” interfacing with a partially-functional
ideal functionality.

H0 is the real world, where S0 acts on behalf of the honest parties in the protocol. Note that at this point,
S0 is already responsible for running the ideal functionality FRS(k=n),Setup,n,x; it does so honestly (by
running (r1, . . . , rn)← Setup()).

H1 is the same as H0, except that the simulator S1 starts using a partially-functional ideal functionality F ′ in
its head. F ′ excepts the command retry. In case F ′ receives this command she runs (r1, . . . , rn)← Setup()
and sends {ri}i∈C to S1. S1 uses (r1, . . . , rn) to respond to the calls to FRS(k=n),Setup,n,x (note that by

the construction of the protocol Π
FRS(k=n),Setup,n,x

RS(k=n2),Setup,n the simulator S1 does not receive more than n2 calls

to FRS(k=n),Setup,n,x and therefore she will not send retry more than n2 times to F ′).
Of course, since (r1, . . . , rn) is picked from the same distribution, H1 is indistinguishable from H0.

H2 is the same as H1, except that the simulator S2 augments the (simulated) partially-functional F ′ to
expect either retry, continue or (abort, ī) after sending {ri}i∈C . It responds to retry exactly as it did in
H1. If it receives (abort, ī), F ′ does nothing further; otherwise (if it receives continue), it sends ri to each
(simulated) honest party i ∈ [n] \ C. Those simulated parties use that output. If the execution reaches
step 1b, S2 sends continue to F ′.
H2 is indistinguishable from H1 because the distributions are identical.

H3 is the same as H2, except that the simulator S3 augments the (simulated) partially-functional F ′ to send
(abort, ī) to each (simulated) honest party i ∈ [n] \ C if it receives (abort, ī) from S3. Those simulated
parties terminate, returning (abort, ī). If the execution reaches step 1c, S3 sends (abort, ī) to F ′.
H3 is indistinguishable from H2 because the distributions are identical.

H4 is the same as H3, except that the simulator S4 sends (abort, ī) to F ′ if the execution reaches step 1(c)iA.
H4 is indistinguishable from H3 because the distributions are identical.

H5 is the same as H4, except that the simulator S5 sends (abort,min({i, j})) to F ′ if the execution reaches
step 2(a)iA.
H5 is indistinguishable from H4 because the only thing that might change is that if, in the previous
hybrid, parties disagreed about whom to blame in this step, now F ′ forces unanimity. However, thanks
to the broadcast accusations, all parties have the same view of the conflict graphs. By Observation 1, if it
holds for one, it holds for all honest parties k that i ∈ Skj and j ∈ Ski ; so, the honest parties unanimously
accuse min({i, j}).

H6 is the same as H5, except that the simulator S6 sends (abort, ī) to F ′ if the execution reaches step 2(a)iB.
H6 is indistinguishable from H5 because the only thing that might change is that if, in the previous
hybrid, parties disagreed about whom to blame in this step, now F ′ forces unanimity. However, due to
the same logic as in the previous hybrid, unanimity is guaranteed in this hybrid as well.
Informally, in H5 the honest parties are guaranteed to unanimously accuse a corrupt party because an
honest party j knows that all honest parties but party i are aleady in conflict with ī (by Observation 1),
and i is now also in conflict with ī. Similarly, an honest party i knows that all honest parties but party
j are aleady in conflict with ī (by Observation 1), and j is now also in conflict with ī.

H7 is the ideal game. S7 = SRS(k=n2),Setup,n uses FRS(k=n2),Setup,n instead of F ′. At this point, FRS(k=n2),Setup,n

returns output directly to the honest parties, so SRS(k=n2),Setup,n never sees the honest party values.
To argue that H7 is indistinguishable from H6, we need to show that we always end up in one of the
termination conditions already covered in previous hybrids; in other words, that, if we reach step 2, we
are guaranteed to have parties i, j such that Sji ∩ Sij 6= ∅.
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We prove this by contradiction. Assume that all of the calls to FRS(k=n),Setup,n,x result in an abort, and

that Sji ∩ Sij = ∅ for all i, j ∈ [n], i 6= j. That is, i ∈ S īj ⇔ j 6∈ S īi . We make Observation 3 under this
assumption, which is a clear contradiction.

First, we define a clique. Let a clique C in a conflict graph Sx be a set of parties all of whom share a
conflict with the same party.

Observation 3 If there exists a size-c clique in some conflict graph Si, then there also exists a size-(c+1)
clique in some (different) conflict graph.

Proof. Let Ci = {j1, . . . , jc} be the size-c clique in Si.

By definition, there exists l such that l ∈ Sjki for k ∈ [c]. (Otherwise, the relevant call to the ideal
functionality cannot have resulted in an abort.)

Now, consider the conflict graph Sl. By assumption,

l ∈ Sjki ⇒ i 6∈ Sjkl .

We know that Sil 6= ∅; without loss of generality, say m ∈ Sil ,m 6∈ Ci.
By Observation 2, for k ∈ [c], m ∈ Sil ⇒ jk ∈ Sml ∨ jk ∈ Sil . Since jk 6∈ Sil , it follows that jk ∈ Sml .

Therefore, Ci ∪ {i} form a size-(c+ 1) clique all of are in conflict with m in Sl.

Note that Observation 3 is a contradiction, since the base case of a size-1 clique trivially exists, and since
Observation 3 will lead to cliques larger than n− 1, which is the number of parties participating in each
call to the ideal functionality.

Proof of Theorem 4 We prove this by contradiction. Imagine that we have an adversary A that breaks
the security of Π with a single oracle access to FRS(k=n2),Setup,n; that is, there does not exist a simulator
which successfully simulates A’s output in the ideal world. Given A, we build another adversary A′ that
breaks the security of Π ′ with a single oracle access to FSetup,n by acting as a proxy between FSetup,n and A
(which A′ runs internally). We do this by having A′ guess the iteration on which A will accept the output it
is given. In more detail, A′ guesses k′ ∈ [n2]. In its head, A′ runs Setup k′ − 1 times. In the beginning, and
when A queries the FRS(k=n2),Setup,n oracle with the command retry, A′ feeds A the next set of simulated
Setup outputs; after these k′ − 1 outputs have been exhausted, A′ feeds A the actual outputs given to it
by FSetup,n. If A responds with continue before reaching the actual outputs, or if A does not respond with
continue when given the actual outputs, A′ aborts; otherwise, it runs A to completion, and outputs whatever
A outputs. If A′ guesses k′ correctly, then the view of A is perfectly indistinguishable from its view in an
ideal world execution with FRS(k=n2),Setup,n, where by assumption no simulator exists.

By the security of Π ′, there exists a simulator S ′ for A′. Observe that S ′ in combination with A′ defines
a simulator S for A. More concretely, S has black-box access to A and internally runs S ′ and A′, while
emulating FRS(k=n2),Setup,n. However, S modifies A′ not to guess k′ and never to abort unless A aborts. We
note that if S ′ correctly simulates the view of A′, then S correctly simulates the view of A.

The existence of S contradicts our initial assumption.

5 Building UISSwPPS

In this section, we build a unanimously identifiable secret sharing scheme with public and private shares.
In Section 5.1, we describe two building blocks: unanimously identifiable commitments and unanimously
identifiable secret sharing. In Section 5.2, we describe our construction and prove its security.
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5.1 Building Blocks

Unanimously Identifiable Commitments Unanimously identifiable commitments (UIC) have been in-
troduced by Ishai, Ostrovsky, and Seyalioglu [IOS12]. Such commitments allow a trusted dealer to commit
to a message msg by distributing com1, . . . , comn among n recipients and providing a sender with decommit-
ment information dec. From a security point of view, we require that the joint view of all recipients should
contain no information about msg and that any decommitment information dec′ published by the sender
either causes all honest parties to reconstruct msg or all parties to unanimously abort. Ishai, Ostrovsky, and
Seyalioglu have shown how to construct such commitments with information-theoretic security.

Definition 15 (Unanimously Identifiable Commitments). A UIC scheme consists of a probabilistic
polynomial-time algorithm Commit and a deterministic polynomial-time algorithm Open with the following
syntax:

Commit(s)→ (com1, . . . , comn, dec): takes as input a message msg ∈ {0, 1}∗, and outputs n commitments
com1, com2, . . . , comn, and decommitment information dec.

Open(comi, dec)→ msg/⊥: takes as input comi and the decommitment information dec, and outputs a value
in {0, 1}∗ ∪ {⊥}.

Furthermore, (Commit, Open) should satisfy correctness (Definition 16), privacy (Definition 17), and
binding with agreement on abort (Definition 18).

Definition 16 (Correctness). A UIC (Commit, Open) is correct if for any msg ∈ {0, 1}∗ and any i ∈ [n],

Pr[(com1, com2, . . . , comn, dec)← Commit(msg) : Open(comi, dec) = msg] = 1.

Definition 17 (Privacy). A UIC (Commit, Open) is private if for any msg,msg′ ∈ {0, 1}∗ with |msg| =
|msg′|

{(com1, . . . , comn) | (com1, com2, . . . , comn, dec)← Commit(msg)}
≡{(com1, . . . , comn) | (com1, com2, . . . , comn, dec)← Commit(msg′)}.

Definition 18 (Binding with Agreement on Abort). Consider the security game described in Figure 16.
A UIC (Commit, Open) is binding with agreement on abort if for any message msg ∈ {0, 1}∗ and adversary
A, there exists a negligible function negl(·) such that

Pr[A wins gamebaa(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Remark 2. For technical convenience, we slightly modified the security game gamebaa(A) by allowing the
adversary to first obtain dec and then query the set C. The original UIC construction of Ishai, Ostrovsky,
and Seyalioglu [IOS12] directly satisfies our new notion and if necessary all of our proofs can also be done
with the original security definition; albeit with a slightly larger security loss.

Unanimously Identifiable Secret Sharing Unanimously identifiable secret sharing (UISS) is another
primitive that has been introduced and constructed with information-theoretic security by Ishai, Ostrovsky,
and Seyalioglu [IOS12].

Definition 19 (Unanimously Identifiable Secret Sharing Scheme). A unanimously identifiable secret
sharing scheme for message space {0, 1}∗ is a secret sharing scheme (Definition 4) that additionally satisfies
local identifiability (Definition 20) and predictable failures (Definition 14 with the appropriate syntactic
modifications).

A secret sharing scheme is said to be unanimously identifiable if all share holders either reconstruct the
correct message, or unanimously agree on some subset of shares which they consider to be invalid.
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Game gamebaa(A)

A C
(com1, com2, . . . , comn, dec)← Commit(msg).

dec

C ⊂ [n]

{comi}i∈C

dec′

A wins unless

∀i ∈ [n]\C : Open(comi, dec
′) = msg or

∀i ∈ [n]\C : Open(comi, dec
′) = ⊥

Fig. 16. Security game for binding with agreement on abort.

Definition 20 (Local Identifiability). Consider the game described in Figure 17. A secret sharing scheme
(Share, LRec) for access structure A is locally identifiable if for any message msg ∈ {0, 1}∗ and adversary
A, there exists negligible function negl(·) such that

Pr[A wins gameli(A)] ≤ negl(λ)

where the probability is taken over the random coin of C and A.

Game gameli(A)

A C

C ⊂ [n]

(s1, . . . , sn)← Share(msg)

{s′i}i∈C

Define s′i := si for all i ∈ [n]\C.
A wins unless for each S ∈ A, one of the following happens:

− ∀i ∈ [n] : (msg,⊥) = LRec(si, {s′j}j∈S)

− ∀i, j ∈ S \ C : ∅ 6= Li = Lj ⊆ C,
where (msgi, Li)← LRec(si, {s′k}k∈S) and (msgj , Lj)← LRec(sj , {s′k}k∈S)

Fig. 17. Security game for local identifiability.
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UISSwPPS

Share(msg):
1. Compute {si}i∈[n]\O ← UISS.Share(msg);
2. For each i ∈ [n] \O, compute

(
com1

i , . . . , com
n
i , deci

)
← Commit(si);

3. If i ∈ O, then spub
i := ⊥; otherwise, spub

i := (si, deci);
4. Set spriv

i := ({comi
j}j∈[n]\O, spub

i ).

LRec(spriv
i , {spub

j }j∈S):

1. Let Li := ∅;
2. For each j ∈ S \O, if Open(comi

j , decj) 6= sj , then Li = Li ∪ {j};
3. If Li 6= ∅, then return (⊥, Li);
4. If i ∈ O, then

(a) Set s′ := sj where j = min(S);
(b) Return (msg,⊥), where msg = UISS.Rec(s′, {sj}j∈S).

5. Otherwise, if i 6∈ O, then return (msg,⊥), where msg = UISS.Rec(si, {sj}j∈S).

Rec({spub
j }j∈S):

1. For each i ∈ S, compute (msgi, Li) = UISS.Rec(si, {sj}j∈S);
2. If ∃ i, j s.t. msgi 6= msgj output ⊥, otherwise output msgk with k = min(S).

Fig. 18. UISSwPPS construction.

5.2 Construction

Theorem 7. Let AOn,t be a threshold access structure with k observers, where k < n. Let (UISS.Share, UISS.Rec)
be a UISS for Am,t, where m = n− k. Let (Commit, Open) be a n-party UIC. Then, the construction in Fig-
ure 18 is a UISSwPPS for AOn,t.

Proof. We will now proceed to prove all the properties of the UISSwPPS.

Correctness. Follows by inspection.
Privacy. Follows by the privacy of UIC and UISS.
Adaptive Local Identifiability. Suppose for contradiction that the adversary A wins the game in Fig-

ure 3.
Reduction R. Let us first recall that a public share spub

j of our UISSwPPS is of the form spub
j = (sj , decj)

and the corresponding private share is of the form spriv
j = ({comi

j}j∈[n]\O, s
pub
j ). We show a reduction R

that will act as a proxy between the challenger C of the game described in Figure 16 and A which is
playing the game in Figure 3.
R picks a random index i∗ ∈ [n] and a random message msg ∈ {0, 1}∗. She then computes {si}i∈[n]\O ←
UISS.Share(msg) and sends si∗ to C obtaining back deci∗ . R sets spub

i∗ = (si∗ , deci∗); for all i ∈ [n]\{i∗}, R
computes spub

i honestly (Figure 18). R receives the corrupted set C from A and forward it to C; C sends

back the set {comj
i∗}j∈[n]. R aborts if i∗ /∈ C or i∗ ∈ O. Otherwise, R uses the honestly generated shares

and the ones received from C to compute the private shares honestly. R sends {spriv
j }j∈C to A receiving

the set {s̃pub
j }j∈C . R retrieves dec′ from s̃pub

i∗ , which she forwards to C. We finish the proof observing
that since by hypothesis A has a non-negligible probability of winning the game in Figure 3, R has a
non-negligible advantage of winning the game in Figure 16 (in particular, R provides dec′ which will
make cause some — but not all — parties to abort). The reduction has a loss of 1

n .
If a list Li is empty then step 3 in of LRec (Figure 18) is not executed, and by the correctness of UIC
and UISS we are guaranteed that a correct message is reconstructed.
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Publicly Detectable Failures. Suppose for contradiction that with non-negligible probability A wins the
game in Figure 4. Then ∃S ∈ AOn,t (which contains an index not corrupted by A) s.t. Rec returns a
message msg /∈ {⊥,msg}. If this is the case A could be used to break the local identifiability of UISS.

Reduction R. Let us first recall that the public share spub
j of our UISSwPPS is of the form spub

j = (sj , decj).
We show a reductionR that will act as a proxy between the challenger C of the game described in Figure 17
and A which is playing the game in Figure 4. R receives the corrupted set C from A and forward it to C
receiving back the shares {sj}j∈C . R acting as a challenger for A computes Commit on input sj for j ∈ C
to complete the public shares {spub

j }j∈C that R forwards to A. R receives from A the set {s̃pub
j }j∈C and

uses it to constructs the set {s̃j}j∈C that she forwards to C. We finish the proof observing that since by
hypothesis A has a non-negligible probability of winning the game in Figure 4 R has a non-negligible
advantage of winning the game in Figure 17 (in particular, R provides shares that are able to make
reconstruct a different message from the one shared).

Consistent Failures. Suppose for contradiction that A wins the game in Figure 5. Then ∃S ∈ AOn,t s.t.

Rec({spub
j }j∈S) outputs ⊥.

Looking at Rec defined in Figure 18 if it returns ⊥, then it must be the case that there exist i, j s.t.
msgi = UISS.Rec(si, {sk}k∈S), msgj = UISS.Rec(sj , {sk}k∈S) and msgj 6= msgi, since UISS is perfect
correct we can conclude that at least one share, say sj with j ∈ S, was changed by A. Considering the

public share spub
j of our UISSwPPS are of the form spub

j = (sj , decj) we observe that A could have left deci
unchanged or not. In the first case from the correctness of UIC we can conclude that LRec outputs ⊥;
in the second case from the binding with agreement on abort property of UIC follows that LRec outputs
⊥ (the reduction follows very closely to the one described for adaptive local identifiability).

Predictable Failure.
Predictable failure for LRec. Roughly speaking, the predictable failure property requires the existence

of an algorithm SLRec which “predicts” the output of the adversary when she run LRec. Below we
show the algorithm SLRec.
SLRec(C, S, i∗, {spub

j }j∈[n], {spriv
j }j∈C , {s̃

pub
j }j∈S∩C) computes the following steps:

1. Parse spriv
j as ({comj

k}k∈[n]\O, s
pub
j ) and spub

j as (sj , decj) for j ∈ C.

2. Parse s̃pub
j as (s̃j , decj) for j ∈ S ∩ C.

3. Let Li∗ := ∅;
4. If i∗ ∈ C :

(a) For each j ∈ C \O, if Open(comi∗

j , decj) = ⊥, then Li∗ = Li∗ ∪ {j}.
(b) If Li∗ 6= ∅: (bi∗ , Li∗) = UISS.SRec(C, S, i∗, {sj}j∈C , {s̃j}j∈S∩C).
(c) If Li∗ = ∅ output (1,⊥) otherwise output (0, Li∗)

5. Otherwise:
(a) For randomly selected k ∈ C: for each j ∈ C \O, if Open(comi

j , decj) 6= sj , then Lk = Lk∪{j}.
(b) If Lk = ∅ output (1,⊥) otherwise output (0, Lk)

It remain to observe that if A has a non-negligible probability of winning in the predictable failure
game, then when i ∈ C we could construct a reduction that wins binding with agreement on abort
property of UIC; otherwise (when i /∈ C) we could construct a reduction that wins the predictable
failure game of UISS.

Predictable failure for Rec. Roughly speaking, the predictable failure property requires the existence
of an algorithm SRec which ”predicts” the output of the adversary when she run Rec. Therefore we
show how the algorithm SRec works, intuitively SRec relys on the algorithms UISS.SRec which it
exists by the predictable failure property of UISS.
The algorithm SRec(C, S, {spub

j }j∈C , {s̃
pub
j }j∈S∩C) computes the following steps:

– Parse spub
j as (sj , decj) for j ∈ C.

– Parse s̃pub
j as (s̃j , ˜decj) for j ∈ S ∩ C.

– For each i ∈ C, compute bi = UISS.SRec(C, S, i, {sj}j∈C , {s̃j}j∈S∩C);
– If ∃ j s.t. bj = 0 output 0, otherwise output 1.

It remain to observe that if A has a non-negligible probability of winning in the predictable failure game,
then we could construct a reduction that wins the predictable failure game of UISS.
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