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Abstract—Erasure coding is a key tool to reduce the space and
communication overhead in fault-tolerant distributed computing.
State-of-the-art distributed primitives, such as asynchronous ver-
ifiable information dispersal (AVID), reliable broadcast (RBC),
multi-valued Byzantine agreement (MVBA), and atomic broad-
cast, all use erasure coding.

This paper introduces an erasure coding proof (ECP) sys-
tem, which allows the encoder to prove succinctly and non-
interactively that an erasure-coded fragment is consistent with
a constant-sized commitment to the original data block. Each
fragment can be verified independently of the other fragments.
Our proof system is based on polynomial commitments, with new
batching techniques that may be of independent interest. ECP
has a clean API and allows constructing fault-tolerant systems in
a modular way. To illustrate the benefits of our ECP system, we
show how to build the first AVID protocol with optimal message
complexity, word complexity, and communication complexity.

I. INTRODUCTION

Erasure coding is a fundamental building block in fault-
tolerant distributed computing. Erasure coding is used in
distributed systems to reduce the space and communication
overheads. An (m,n) erasure code encodes a block of data
into n fragments such that any m < n of them can be used
to reconstruct the original block.

This paper focuses on information dispersal and agree-
ment between n participants, or replicas, in completely asyn-
chronous settings with Byzantine failures. In this area, erasure
coding is used in almost all state-of-the-art fault-tolerant dis-
tributed computing protocols, e.g., asynchronous verifiable in-
formation dispersal (AVID) [1,2], reliable broadcast (RBC) [1,
3], multi-valued (validated) Byzantine agreement (MVBA) [4,
5], atomic broadcast (aka Byzantine fault tolerant, or simply
BFT) [6], read/write storage [7]–[9], and BFT storage [10].

Despite the popularity of using erasure coding in these
systems, there does not exist an efficient, generic way to apply
erasure coding as a building block in all of the above protocols.
The challenge is due to the difficulty of determining if a given
fragment corresponds to the original block. If the condition
is not guaranteed, then reconstructing from different set of
erasure-coded fragments lead to different blocks. (Note this is
not a problem for replication-based distributed systems, as one
can easily use majority voting to discover faulty fragments.)

Instead, various customized approaches have been intro-
duced to tackle this problem. Consider the case for AVID
consisting of a dispersal protocol and a retrieval protocol. In
the dispersal protocol, a client disperses a block among a set
of replicas and eventually replicas will receive a consistent
erasure coded fragment. In the retrieval protocol, a client can
retrieve fragments from replicas and reconstruct the original

block. The AVID protocol of Cachin and Tessaro (CT) [1]
generates for each fragment a Merkle tree. The fragment
verification, however, is interactive and expensive. CT AVID
uses an all-to-all broadcast of all fragments and to verify
a single fragment, it needs each replica to recover the full
block and verify the consistency of all fragments. The HGR
AVID protocol due to Hendricks, Ganger, and Reiter [2]
improves the approach of Cachin and Tessaro by building
fingerprinted cross-checksum, but the checksum includes O(n)
cryptographic elements for each fragment. The overhead in-
curs a large word complexity [11]1 and would easily dominate
for a large n.

A. Our Contributions

In this work, we make several contributions about erasure
coding and its application to distributed computing protocols.

Erasure coding proof system. First, we define and construct
a general-purpose erasure coding proof (ECP) system from
any linear erasure code. Consider an (m,n) erasure code that
encodes a message M into a set of n fragments d1, d2, . . . , dn.
Our proof system is designed to allow for efficient dispersal of
these fragments. A proof contains two parts: a constant-sized
commitment c plus a per-replica witness πi that is about as
long as di (namely, about |M |/m). Together, c and πi convince
replica i that di is the correct data fragment for the message
committed to by c. That is, reconstruction from any subset of
m valid fragments corresponding to the same commitment c
would lead to the same original message M .

We contribute two instantiations of ECP systems in this
work: ECP-1 provides optimal proof size but requires trusted
setup, whereas ECP-2 avoids the need for trusted setup at the
expense of a logarithmic overhead in proof size. In order to
achieve an optimal proof size for arbitrarily-large messages,
we also contribute a new batching technique for polynomial
commitment schemes that may be of independent interest.

While ECP systems do not strive to achieve agreement on
the large message M , they do ensure that it suffices to achieve
consensus over the short commitment c. For this reason, ECP
systems are a valuable building block in distributed protocols.

Novel constructions based on ECP systems. With an ECP
system, we can recast and improve almost all Byzantine fault-
tolerant distributed computing protocols that involve bulk data,
or alternatively, improve all protocols using erasure coding in

1A word is a constant number of domain values, signatures, and hashes,
etc.



protocol trusted setup dispersal communication dispersal word retrieval communication retrieval word
CT AVID [1] no O(Ln+ λn2 logn) O(n2 logn) O(L+ λn logn) O(n logn)

HGR AVID [2] no O(L+ λn3) O(n3) O(L+ λn2) O(n2)
Our AVID-1 yes O(L+ λn2) O(n2) O(L+ λn) O(n)
Our AVID-2 no O(L+ λn2) O(n2) O(L+ λn logn) O(n logn)

TABLE I: Comparison of AVID constructions. L is the input length and λ is the security parameter.

the presence of Byzantine failures, either asymptotically or
concretely.

To illustrate the benefits using ECP, we provide two new
asynchronous verifiable information dispersal (AVID) proto-
cols from our ECP constructions: AVID-1 and AVID-2. AVID-
1 is the first AVID protocol that has optimal word complexity
for both the dispersal and retrieval protocols. AVID-1 outper-
forms CT AVID and HGR AVID consistently in terms of all
known complexity measures. AVID-2 is strictly better than
HGR AVID in all aspects; AVID-2 outperforms CT AVID for
the dispersal protocol, while sharing the same complexities as
CT AVID for the retrieval protocol.

Discussion on trusted setup. We provide two instantiations
for our ECP system, one of which relies on trusted setup. One
could, however, run a distributed protocol to avoid the trusted
setup. In fact, almost all efficient, high-level asynchronous
fault-tolerant protocols use trusted setup, as these protocols
would rely on threshold common-coin protocols for common
coins or use threshold signatures to reduce the communication
and authenticator complexities (e.g., HotStuff [12], SBFT [13],
all MVBA protocols except [14], and all known completely
asynchronous BFT protocols implemented except [15]).

Our contributions. In summary, this paper makes the follow-
ing three contributions.
• We introduce a formal notion of erasure coding proof

(ECP) systems. We provide a new batching technique for
additively homomorphic polynomial commitments, which
we use to instantiate two efficient ECP constructions.

• We leverage ECP to recast asynchronous Byzantine re-
silient protocols with asymptotically and concretely im-
proved efficiency. For instance, we show how to use ECP
to build asymptotically better AVID protocols (see Table
I).

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider distributed computing protocols consisting of
n replicas, where f out of them replicas may fail arbitrarily
(Byzantine failures). Furthermore, we assume the existence of
secure point-to-point channels between each pair of replicas.
We consider completely asynchronous systems making no
timing assumptions on message processing or transmission
delays.

This paper considers adaptive corruption, where the adver-
sary can choose its set of corrupted replicas at any moment
during the execution of the protocol, based on the information
it accumulated thus far. The static corruption is weaker, as the
adversary is restricted to choose its set of corrupted replicas at

the start of the protocol and cannot change this set later on. All
protocols we consider assume that f is a constant fraction of
n with f ≤ bn−13 c, which is optimal. A (Byzantine) quorum
is a set of dn+f+1

2 e replicas. Without loss of generality, this
paper may assume n = 3f + 1 and a quorum size of 2f + 1.

Asynchronous verifiable information dispersal (AVID).
AVID is introduced by Cachin and Tessaro [1] and used to
disperse a data block among a set of replicas.

AVID is the most fundamental (and arguably the most
simple) primitive in reliable distributed computing. AVID can
be used to build other primitives such as RBC, MVBA, and
atomic broadcast.

An AVID scheme consists of a dispersal protocol and a
retrieval protocol. The dispersal protocol is specified by avid-
disperse and avid-deliver. A client (may it be a replica) may
avid-disperse (id, M ), and replicas complete the dispersal
protocol and avid-deliver M for id. The retrieval protocol
is defined by avid-retrieve and avid-output. In the retrieval
protocol, a client ct may trigger avid-retrieve and eventually
avid-output the full block M .

An AVID scheme with tag id should satisfy the following
with overwhelming probability:
• Termination: If avid-disperse for id is initiated by a correct

client, then avid-disperse for id is eventually completed by
all correct replicas.
• Agreement: If a correct replica completes avid-disperse

for id, then all correct replicas eventually complete avid-
disperse for id.
• Availability: If f+1 correct replicas complete avid-disperse

for id, then a correct client that initiates avid-retrieve for id
eventually reconstructs some block B′.
• Correctness: After f + 1 correct replicas complete avid-

disperse for id, all correct clients that initiate avid-retrieve
for id eventually retrieve the same block B′. If the client
that initiated avid-disperse for id was correct, then B′ = B.
AVID can be used to build, e.g., reliable broadcast proto-

col [1], BFT protocols [16], and BFT storage [10].

III. REVIEW OF EXISTING AVID CONSTRUCTIONS AND
OBSTACLES

We use AVID as an example to illustrate the challenge
of using erasure coding. In particular, we discuss existing
techniques for AVID and their “limitations” (i.e., why they
are not “ideal”) and then motivates the design of an “ideal”
ECP system.
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A. Challenge of Using Erasure Coding

Let us consider an erasure coding scheme with n = 4 and
f = 1. Given a block m, one could apply a (2, 4) erasure
coding scheme to generate four fragments m1,m2,m3, and
m4. The system can allow us to tolerate two benign failures,
because any two fragments can be used to reconstruct the
original block m. Without loss of generality, we consider
a systematic erasure coding, where m1 and m2 are data
fragments and m = (m1,m2), while m3 and m4 are redundant
fragments. Crucially, m1,m2,m3, and m4 are "correlated:"
fixing an erasure coding scheme, m3 and m4 are generated
according to the specific generator matrix using m1 and m2

as input. If we consider linear erasure coding, m3 and m4 are
simply a linear combination of m1 and m2 with the columns
(or rows) of the generator matrix as coefficients.

To disperse m reliably in AVID with n servers, the most
intuitive and efficient way is to send erasure-coded fragments
to individual replicas. However, erasure coding creates a
fundamental (and unique) challenge. That is, in erasure-coded
systems, one must determine if a given fragment, for instance,
m3, corresponds to the original data block m. If this is
not guaranteed, then reconstructing from different subsets of
fragments may lead to different data blocks. For instance, if a
replica p3 provides an incorrect share m′3 (that is not a linear
combination of m1 and m2), the block reconstructed from m1

and m2 is different from the block from m′3 and m4.
Note this is not at all an issue for replication-based fault-

tolerated distributed systems, as assuming a minority of faulty
servers, one can use, for instance, majority voting to identify
inconsistent data from faulty servers.

B. CT AVID using Cross-Checksum and Merkle Tree

CT AVID has two AVID protocols: AVID based on cross-
checksum [17, 18] (a list of n hash functions) and more
efficient AVID based on Merkle tree. Both AVID proto-
cols follow the three-step communication pattern of Bracha’s
broadcast [19].

To write a block m of size L, a client applies an (f + 1, n)
erasure coding scheme to generate n fragments (of size L

f+1 )
and computes the hash of each fragment, forming a cross-
checksum with n hashes. In the SEND phase, the client sends
each replica its fragment and the cross-checksum. In the
ECHO phase, each replica echoes the its fragment and cross-
checksum to all replicas. If receiving 2f + 1 fragments and
matching cross-checksum, a replica first decodes the original
block, encodes the block again to generate all n fragments,
computes the hashes of n fragments, and finally verifies if all
hashes matches the cross-checksum. In the READY stage, each
replica broadcasts the cross-checksum and its fragment to all
replicas. As in Bracha’s broadcast, if a correct replica receives
f +1 READY messages, it broadcasts the cross-checksum and
its fragment to all replicas.

The more efficient AVID construction proposed by Cachin
and Tessaro is simply to replace cross-checksum with Merkle
tree. Each message sent now carries a O(log n) hashes instead
of n hashes.

For both protocols, the communication complexity is dom-
inated by the all-to-all broadcast phases, namely ECHO and
READY phases. Note O(n) = O(3f + 1) = O(f). The
communication complexity for them is O(n2( L

f+1 + λn)) =

O(nL+n2λ) and O(n2( L
f+1 +λ log n)) = O(nL+n log nλ),

respectively. Above, λ is the security parameter and here
denotes the output length of the hash function. The word
complexity for the two schemes are O(n3) and O(n2 log n),
respectively.

C. Using Vector Commitment

We observe that one could extend the Merkle tree based
AVID protocol of Cachin and Tessaro for a more general
AVID using vector commitments [20], as Merkle tree can
be viewed a special case of vector commitment. Assuming
trusted setup, there exists vector commitment with a constant-
size commitment and a constant-size proof [20]. If directly
using the constant-size vector commitment, one would obtain
an AVID protocol with slightly better communication com-
plexity of O(n2( L

f+1 + λ)) = O(nL + n2λ). The resulting
protocol, however, needs interactive verification of erasure-
coded fragment, just as Merkle tree based AVID. Hence, the
protocol needs all-to-all communication of fragments.

D. HGR AVID using FPCC

Apparently, cross-checksum, Merkle tree, and vector com-
mitment are generic approaches to compressing any data
blocks. They are not specifically invented for erasure coding,
and the verification is non-interactive. Realizing the problem,
Hendricks, Ganger, and Reiter (HGR) introduce fingerprinted
cross-checksum (fpcc) that allows each replica to indepen-
dently verify that its fragment was generated from the original
block. As in CT AVID, HGR AVID needs to associate a
fragment with a proof. In HGR AVID, each proof for a
fragment (which is fpcc) now contains m universal hashes
of data fragments and n hashes of all fragments. Intuitively,
the n hashes serves as a commitment for all fragments, and
m universal hashes preserve the linearity of data fragments.
The independent verification property in HGR AVID makes
it possible to send bulk erasure-coded fragment only in the
SEND phase (which involves just a one-to-all communication).
In contrast, the ECHO and READY phases only need to agree
on the fpcc. This approach avoids all-to-all communication of
bulk erasure-coded fragments. Since fpcc itself contains m+n
words, HGR AVID has significantly larger word complexity
of O(n3). The corresponding communication complexity is
of O(L+ λn3). When n becomes large or the input size L is
small, the λ term easily dominates the communication.

E. What’s Desired for an Ideal Erasure-Coded System?

So far, we argue that none of the existing AVID protocols
and techniques seem ideal to build an AVID protocol, or more
generally, erasure-coded fault-tolerant distributed systems.

To directly solve the problem, we desire a proof system
specifically ensuring the consistency of the erasure-coded
fragment. Namely, such a proof must be able to prove that
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an erasure-coded fragment algebraically corresponds to some
original block. Moreover, the proof should be independent
of n or λ. Moreover, we desire the proof to be publicly
verifiable such that the recipient of the proof can verify its
correctness without using any pre-shared secret and the proof
is transferable.

IV. ERASURE CODING PROOF SYSTEM

In this section, we define and construct a general erasure
coding proof system based on any linear erasure code and
for any additively homomorphic polynomial commitment. We
provide two instantiations based on the Reed-Solomon code,
and we compare the difference in proof size for state-of-the-art
transparent vs non-transparent polynomial commitments.

A. Building Blocks

We begin by describing the erasure coding schemes upon
which we build proof system, plus the polynomial commit-
ments and hash functions that we will use in our construction.

Erasure coding scheme. An (m,n) erasure coding scheme
over an alphabet M is a pair of algorithms (encode, decode),
where encode : Mm → Mn and decode : Mm → Mm.
The encode algorithm takes as input a data block, consisting
of m data fragments, and outputs n > m coded fragments.
The decode algorithm takes as input any m-size subset of
coded fragments and outputs the original data block containing
m data fragments. Namely, if [d1, . . . , dn] ← encode(M),
then decode(di1 , . . . , dim) = M for any distinct i1, . . . , im ∈
[1..n]. A (m,n) erasure coding scheme is linear if each coded
fragment di (i ∈ [1..n]) is a linear combination of the first
m data fragments, i.e., di =

∑m
j=1 bijdj , where bij’s are

coding coefficients. The coding coefficients form a generator
matrix for the linear code. An (n, m) erasure coding scheme
is systematic, if the first m coded fragments are the original
m data fragments.

Reed-Solomon code. A (m,n) Reed-Solomon code is an
(m,n) linear erasure code whose generator matrix is the trans-
pose of the Vandermonde matrix. We present an alternative but
equivalent way to describe the encode and decode algorithms
that highlights the relationship between the Reed-Solomon
code and polynomial commitments. The encode algorithm
takes m data fragments and uses those as m coefficients
to produce a polynomial P of degree m − 1. The encode
algorithm produces n points by evaluating P on n different
evaluation points. The decode algorithm takes any m points,
interpolates P and produces the original m fragments.

Polynomial commitments. In this work, we use determin-
istic homomorphic polynomial commitments following the
definitions used by Haven [21]. Specifically, this commit-
ment scheme contains seven algorithms (Setup, Com, Eval,
VerifyEval, Open, VerifyOpen, Hom) such that:
• Setup(1λ, D)→ pp takes a security parameter λ and an

upper bound D on the degree of any polynomial to be
committed, and generates public parameters pp.

• Compp(P (x), d) → P̂ is given a polynomial P (x) of
degree d ≤ D. It outputs a commitment string P̂ .

• Evalpp(P, i) → (P (i), wi) is given a polynomial P as
well as an index i. It outputs the evaluation P (i) and a
corresponding witness string wi.

• VerifyEvalpp(P̂ , i, P (i), wi, d) → True/False is given a
commitment P̂ as well as the inputs and outputs of Eval,
and it outputs a Boolean.

• Openpp(P, i) → (Pi, w̄i) is given a polynomial P as
well as an index i. It outputs the ith coefficient Pi and a
corresponding witness string w̄i.

• VerifyOpenpp(P̂ , i, Pi, w̄i) → True/False determines
whether Pi is the ith coefficient of the polynomial whose
commitment is P̂ .

• Hompp(a, P̂1, P̂2)→ P̂ ∗ receives a scalar a and commit-
ments to two polynomials P1 and P2 of degrees d1 and
d2. It outputs a commitment Compp(P

∗,max{d1, d2}) to
the polynomial P ∗ = aP1 + P2.

Polynomial commitment schemes satisfy three properties
for any polynomial P and corresponding commitment P̂ .
• Correctness states that the witness produced by Eval is

successfully verified by VerifyEval if degP ≤ D.
• Evaluation binding states that for each input i, there exists

only one opening P (i) that can be verified.
• Degree polynomial says that if degP > D then it is

computationally infeasible to find any point (i, P (i)) that
causes VerifyEval to succeed.

All of these properties are required both for commitments
generated directly from Com and those produced homomor-
phically using Hom. We remark that this work only considers
non-hiding commitments.

Hash. We also use a collision-resistant hash function hash
mapping a message of arbitrary length to a fixed-length output.

B. Defining ECP systems

In this section, we formally define an erasure coding proof
(ECP) system based on an erasure coding scheme. We also
describe its efficiency goals and security properties.

Syntax of an ECP system. An (m,n) ECP system, with an
associated (m,n) erasure coding scheme (encode, decode),
consists of three algorithms (ecsetup, ecprovepp, ecverifypp).

1) The ecsetup algorithm is optional. It receives a security
parameter λ and sets up the system parameters pp.

2) The ecprovepp algorithm takes as input a block of data
M and outputs (c,d,π) where |d| = |π| = n. Here, c
is a binding commitment to all erasure-coded fragments
d ← encode(M), and each πi is intended to serve as a
proof that the corresponding di is the ith data fragment
with respect to the commitment c.

3) The ecverifypp algorithm takes as input (c, di, πi) and
outputs a bit. If ecverifypp(c, di, πi) = 1, then we say
di is a valid fragment with respect to c.

By abuse of notation, we sometimes omit the parameter pp
when no ambiguity arises in describing our algorithms.
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Fig. 1: Dealer distributing fragments of a message M

Efficiency goals. For efficiency, we desire ECP constructions
whose commitment c is constant size — more precisely, O(λ)
but independent of |M |— while still being sufficient to verify
the (di, πi) fragments sent to each of the n replicas. We also
desire that |πi| be equal or close to |di| = |M |/m so that
the proofs have low communication overhead. In particular,
we require that the proof size not scale multiplicatively in the
number of replicas n. Finally, we levy no restrictions on who
may run the ecverifypp algorithm; the algorithm is publicly
verifiable.

Definitions of security. An ECP system (ecsetup, ecprovepp,
ecverifypp) is secure if the following properties hold with
overwhelming probability:

1) EC correctness: If a correct encoder runs ecprovepp
(M, pp) and obtains (c,d,π) and a correct decoder
reconstructs M ′ from a set of m valid fragments (di, πi)
with respect to c, then M = M ′.

2) EC consistency: If a correct decoder reconstructs M1

from a set of m valid fragments with respect to c and
another correct decoder reconstructs M2 from a set of
valid fragments with respect to c, then M1 = M2.

Both properties defined above, EC correctness and EC
consistency, are intuitive. The former requires if an encoder
correctly generates proofs for all fragments, then reconstruct-
ing from any m valid fragments will lead to the original
block. The latter ensures reconstructing from different subsets
of valid fragments will lead to the same block, even if the
encoder is faulty.

C. Overview of our construction

In this section, we build up in stages the ideas for an efficient
ECP scheme. Our construction is based upon any (m,n)
systematic linear erasure coding scheme whose fragments are
of size equal to the security parameter, i.e. λ = dlog |M|e.
Warm-up: fixed-length messages. We begin with a warm-
up exercise about constructing an erasure coded proof system

for messages M of a fixed size |M | = mλ. As a result, the
message can be partitioned into m fragments M = d1 ‖ d2 ‖
· · · ‖ dm, where ‖ denotes concatenation. These fragments
can be encoded into d1, · · · , dn ← encode(M) due to the
systematic property.

The dealer wants to produce n witnesses, each of which will
convince one of n verifiers p1, . . . , pn that one of the corre-
sponding fragments d1, · · · , dn has been generated correctly.
Specifically, the dealer needs to prove that di =

∑m
j=1 bijdj

for each i, where bij’s are public coding coefficients specific
to the linear erasure coding scheme used. Written differently,
di = 〈v, bi〉 is the inner product of v = [d1, · · · , dm] and bi,
the ith column in the public matrix of coefficients.

Notice that v, the vector encoding the message, is the same
for all n verifiers. So, one way for the prover to convince the
verifier about the value of the inner product of v with a public
vector bi is for the prover to send v to every verifier, each
verifier can then compute the inner product herself and agree
with all other verifiers that they hold the same v. But this
approach is inefficient in communication because |v| = |M |.

A better approach is for the prover to generate a commit-
ment to the vector v and send every verifier i the commitment
and a succinct proof that proves that the inner product of v
with the public vector bi is equal to di. That way, each verifier
can verify the proof and agree with all other verifiers that they
hold the same v by agreeing on the commitment of v. The
DARK transformation by Bünz et al. [22] provides a way to
transform the problem of proving inner products to the prob-
lem of proving polynomial evaluations. The transformation
begins by creating new polynomials V (x) and Bi(x) whose
coefficients are equal to the elements of the vectors v and
bi, respectively. Then, the inner product of the two length-m
vectors 〈v, bi〉 is equal to the mth coefficient of the polynomial
Z(x) = V (x) ∗ Bi(x). This property can be proved after
providing the verifier with the polynomial commitment V̂ , the
mth coefficient and the constant size witness w̄m. Note that Bi

doesn’t have to be sent to the verifier because it is public. The
resulting proof of correctness of the inner product achieves
our efficiency goals: it only requires a constant overhead over
the witness size of the underlying polynomial commitment
scheme.

Scaling to variable-length messages. This proof that di has
been generated correctly does work for a fixed-size message
M , but it relied crucially on the fact that M fits precisely
within the vector v. As a result, it is tricky to scale this proof
to handle larger messages, say of size |M | = kmλ that are a
factor k larger than in our warm-up example because there is
no place to store M within the current vector v for a fixed
fragment alphabet λ bits.

To support large messages, we must either: (1) switch to
an erasure coding scheme with a larger fragment size kλ, (2)
create a longer vector v of length km, or (3) partition M
across k vectors that are each of length m. We consider each
approach in turn, and we will ultimately adopt the last one.
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Approach 1: We could increase the alphabet M for the
erasure coding scheme so that its size grows linearly with
k. With this change, all of the analysis from the warm-up
example would continue to hold. However, efficiency would
be ruined: the commitments and proofs of the resulting scheme
would now also scale linearly in the message length.

Approach 2: Alternatively, we could partition the long
message M into a single vector v of length km. This approach
requires a different change to the erasure code: each fragment
remains of length λ as in the warm-up, but we now require
a (km, kn) erasure code in order to encode v. With this
change, the technique from the warm-up would produce a
valid proof, but our efficiency is harmed in a different way.
Committing to an unbounded-length v makes it difficult to
use polynomial commitment schemes that require (bounded)
trusted setup [23]. Also, the length and proving time for each
witness grows with the size of M , making the scheme less
practical.

Approach 3: Finally, the approach we actually take in this
work is for the dealer to break M into multiple messages
M1 . . .Mk, each of size mλ as in the warm-up example. This
approach requires no change to the erasure coding scheme
itself. The dealer encodes each message into a separate vector
v1, . . . ,vk, as shown in the rows of Figure 1. Each verifier
j receives a fragment containing k field elements, as shown
in the columns of Figure 1. We stress that k only depends on
the message size |M | and is independent of n.

It remains only to design a new method to prove that each
fragment has been generated correctly, based upon all k poly-
nomial commitments V̂ 1, . . . , V̂ k. If done naively, this would
result in each verifier receiving k witnesses. By exploiting
additively homomorphic polynomial commitments, we show
in the next section how to reduce the cost to a single witness.

D. Succinct Multi-Point Proofs

Consider a set of n polynomial commitments {P̂1 . . . P̂n}
and a single evaluation point j. If a prover wants to prove that
Pi(j) = yi for all i ∈ {1 . . . n}, then naively the prover has
to send n witnesses, one for each (yi, P̂i). In this section, we
construct a generic, succinct proof that exploits the additive
homomorphism of the polynomial commitment scheme so that
a verifier can be convinced using only one witness.

We first explain the scheme in terms of a public coin
interactive argument system between a prover and a verifier.
The scheme contains three steps: 1) a commitment 2) a public
coin challenge and 3) a response.

1) Commitment: prover commits to n different polynomials
{P1 . . . Pn} with the same degree d. For each i ∈
{1, . . . , n}, the prover runs P̂i = Compp(Pi, d) and sends
the pair (Pi(j), P̂i).

2) Challenge: verifier generates a random point c ∈ F
3) Response: prover interpolates Pc from {P1 . . . Pn} and

sends the witness w after running Evalpp(P̂c, j)

The verifier computes Pc(j) by interpolating all Pi(j) where
i ∈ {1 . . . n}. The verifier then computes P̂c =

∑n
i=1 P̂i∗li(c)

where li is the Lagrange basis polynomial. The verifier can
compute P̂c because of the addititive homomorphic property
of the polynomial commitment used. The Verifier accepts,
if VerifyEvalpp(P̂c, (j, Pc(j), w), d) returns True and rejects
otherwise.

The completeness of this protocol follows from Lagrange
interpolation and the correctness of the underlying polynomial
commitment scheme Πpc. We call this scheme BatchProofpp
using the same public parameters pp as the underlying poly-
nomial commitment scheme, and we make it non-interactive
by using the Fiat-Shamir heuristic.

Theorem 1. The BatchProofpp protocol has a negligible
soundness error of at most n−1

|F| + n · AdvevalBind
polycom .

Proof. Consider a statement consisting of the n points
{y1, . . . , yn}, n polynomial commitments {P̂1 . . . P̂n}, and a
single evaluation point j. This statement also serves as the
contents of step 1 of the interactive BatchProofpp protocol.

We observe that if the individual polynomial commitments
would have been arguments of knowledge, then this claim
would be straightforward to prove. One could extract the
polynomials {P1, . . . , Pn} from the underlying commitments,
compute the polynomials corresponding to both the claimed
yi points and the real Pi(j) evaluations, and use the Schwartz-
Zippel lemma to argue that these polynomials are unlikely to
intersect.

Without extractable commitments, we require a more de-
tailed reduction to learn the “real” evaluations embedded
inside the prover’s responses. For any prover who succeeds
with noticeable probability q at its task of producing a response
proof in step 3 that is successfully verified, our goal is to show
how to extract n independent witnesses demonstrating whether
all yi are contained in the polynomials P̂i with probability
q − n−1

|F| + n · AdvevalBind
polycom , thereby proving the theorem.

Let c1 be the challenge used in the actual received proof and
w1 = Evalpp(Pc1 , j) be the corresponding witness received in
step 3 of the interactive protocol. Next, our reduction will
rewind and rerun the prover on steps 2 and 3 until it receives
n−1 additional challenges and witnesses of the form (ci, wi)
for i ∈ {2, . . . , n}. This will take 1/qn−1 time in expectation,
which is acceptable since q is noticeable.

From these n total polynomial commitments P̂ci and asso-
ciated witnesses wi, it is possible to compute the witnesses
associated with any other row using Lagrange interpolation:
Pl(x) =

∑n
i=1 Pci(x) ∗ li(l). In particular, it is possible to

compute the evaluations and associated witnesses for each of
the original polynomials P1, . . . , Pn at evaluation point j.

Next, we compare these evaluations Pi(j) with the cor-
responding claimed evaluations yi from the prover’s origi-
nal statement. If all of them are equal, then the witnesses
{wi}i∈[1..n] demonstrate that the statement is true, up to the
evaluation binding error of these n witnesses.

However if there exists at least one index i∗ such that
Pi∗(j) 6= yi∗ , then the statement is false and must be caught
in order for the BatchProofpp to be sound. In this case, we
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compute the probability that the prover broke soundness and
managed to provide a challenge witness that was verified.

Let Y denote the vertical polynomial formed by interpolat-
ing the claimed points (i, yi), and let E denote the vertical
polynomial formed by interpolating the known evaluations
(ci, Pci(j)). We know that E 6= Y because these polynomials
disagree at the point i∗. If these polynomials also disagree at
the challenge point c1, then the prover has provided witnesses
that Pc1(j) equals both E(c1) and Y (c1) and thus broken
evaluation binding. (For the remaining n − 1 queries to
the prover, we obtained witnesses at E(ci) but not Y (ci)
so there is no issue with evaluation binding.) Finally, the
polynomials E and Y of degree n−1 intersect at the randomly-
chosen challenge point with probability n−1

|F| by the Schwartz-
Zippel lemma. By a union bound, the prover succeeds with
probability at most n−1

|F| + n · AdvevalBind
polycom as desired.

E. Our ECP construction

Our ECP construction in Algorithm 1 is built from a
BatchProofpp scheme, which in turn requires an additively
homomorphic polynomial commitment scheme Πpc. We use
Reed-Solomon erasure coding and polynomial commitments,
so that the proof of correctness of each fragment reduces to
just a polynomial evaluation (see definition: IV-A). As such,
we drop the need for the DARK transformation [22].
• ecsetup: Initializes the polynomial commitment and sets

the maximum degree of the polynomial commitment to
be m− 1.

• ecprovepp: Takes the messsage M and breaks it
into k polynomials P (1) . . . Pk each of degree m −
1. For each fragment di consisting of k points
P1(i) . . . Pk(i), ecprovepp batches a proof πi by calling
BatchProofpp(P1(i) . . . Pk(i), i). Since each πi contains
the same k polynomial commitments P̂1 . . . P̂k, the con-
struction picks arbitrarily π1 and extracts them from it.
The polynomial commitments are then hashed to produce
c. c is a constant size commitment with respect to the
security parameter λ. The method returns the ordered list
of fragments d and their corresponding ordered lists of
proofs and c the hash.

• ecverifypp: Takes a fragment di, a proof πi and a hash c.
The method first extracts the fragments and polynomial
commitments from the proof πi and checks that they are
equal to the ones provided. If both of these checks pass
the BatchProofpp.verify(πi) is called to verify the proof
πi.

Theorem 2. Given a secure polynomial commitment scheme
Πpc, the ECP system described in Algorithm 1 is secure.

Proof. EC-correctness follows directly from the completeness
and soundness property of the BatchProofpp scheme. For any
arbitrary message M , a correct prover can run ecprovepp
on M , which produces k polynomials that encode M . In
Algorithm 1, ecprovepp calls BatchProofpp.prove to produce n
valid proofs for n fragments with the same c. Any di fragment

with a valid proof would imply having one point on each of k
different polynomials whose hash is c. Since each polynomial
is of degree m − 1, then any m fragments with valid proofs
would reconstruct the same k polynomials and therefore the
same message M .

To show EC-consistency, consider any two sets of fragments
s1 and s2 with cardinality m together with two sets of
valid proofs π1 and π2 with respect to the same c. Validity
means that all fragments of s1 and s2 can pass ecverifypp
and therefore also BatchProofpp.verify. Since c is the same
for all fragments in s1 and s2, then by the collision re-
sistance property of the hash function we have the same
set of k polynomials being passed to BatchProofpp.verify
with overwhelming probability. By the soundness property
of BatchProofpp.verify (cf. Theorem 1), all points in s1 and
s2 must be contained in the same set of k polynomials of
degree m−1, which means that decode(s1) = decode(s2), so
consistency is satisfied.

F. Two instantiations of ECP

In this work, we consider two instantiations of Algorithm 1
based on different types of polynomial commitments.

1) Our first instantiation, ECP-1, achieves better efficiency
in scenarios that allow for trusted setup. Specifically, we
instantiate our construction with KZG polynomial com-
mitments [23], which have constant size commitments
and witnesses. This will make the size of each πi in ECP-
1 to be O(di) = O(M/n). Hence, the cumulative cost
of sending all πi witnesses is absorbed completely by di
and does not depend on either n or λ.

2) ECP-2 is an alternate instantiation of Algorithm 1 based
on polynomial commitment schemes with transparent
setup and logarithmic-sized witnesses, such as Bul-
letproofs [24] or the DARK polynomial commitment
scheme [22]. The size of each witness πi in ECP-2 is
O(M/n + λ log n), which is O(λ log n) larger in bits
than the witnesses in ECP-1.

Notice that both instantiations have the πi = O(M/n) term.
This is because our constructions use the BatchProofpp scheme
(cf. §IV-D), in which the prover sends d Mmλe commitments and
each polynomial commitment is of size O(λ).

V. AVID WITH OPTIMAL WORD COMPLEXITY

In this section, we present a new asynchronous verifiable
information dispersal (AVID) protocol based on the (m,n)
ECP proof system. We let m = f + 1 and n ≥ m + 2f .
AVID consists of two phases: a dispersal and retrieval phase.
We present the protocol formally in Algorithm 2 and describe
both phases below.

In the dispersal phase for a given message M with an asso-
ciated ID tag of id, a correct dealer pk will use the ECP proof
system in order to generate fragments of M that are consistent
with a commitment c that is also dispersed to all replicas.
The protocol begins with an initialization step where every
replica runs the ecsetup algorithm of the ECP proof system
and creates an empty dictionary fragments whose keys are
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Algorithm 1 ECP based on a polynomial commitment scheme
Πpc an (m,n) Reed-Solomon code and a message M that is
a multiple of m.

� ecsetup (1λ)
return Πpc.Setup(1λ,m− 1)

� ecprovepp (M )
k ← M

(m)∗λ
for 0 ≤ i < k
Pi ← M [i ∗ m, (i + 1) ∗ m] {coefficient polynomial of degree

m− 1}
for 1 ≤ i < n
di ← P1(i) . . . Pk(i)
πi ← BatchProofpp.prove([P1, . . . , Pk], i)

c← hash(P̂1, . . . , P̂k) {recall that P̂i = Compp(Pi, d)}
return (c,d,π)

� ecverifypp (c, di, πi)
return (c

?
= hash(extractc(πi)) and {extract commitments from πi}
di

?
= extractdi

(πi) and {extract points from π1 step 1}
BatchProofpp.verify(πi))

Algorithm 2 AVID with identifier id and sender pk. Code is
shown for replica pi, who might or might not be the sender.

Initialization
pp← ecsetup(1λ) {initialize ECP scheme (optional)}
fragments← ⊥ {dictionary id 7→ di, πi, c}

� dispersal
upon avid-disperse(id,M) and party is pk {Step 1: send}

(c,d,π)← ecprovepp(M)
for 1 ≤ j ≤ n

send (id,SEND, c, dj , πj ) to pj
upon receiving (id,SEND, c, πi, di) from pk for first time {Step 2: echo}

if ecverify(c, di, πi)
?
= 1

fragments[id]← (di, πi, c)
send (id,ECHO, c) to all replicas

upon receiving (id,ECHO, c) from pj for first time {Step 3: ready}
if not yet send (id,READY, c) and received 2f + 1 Echo with same c

send (id,READY, c) to all replicas
upon receiving (id,READY, c) from pj for the first time

if not yet send (id,READY, c) and received f + 1 Ready with same c
send (id,READY, c) to all replicas {amplification step}

if received 2f + 1 READY with the same c
if fragments[id] contains a different commitment
fragments[id]← ⊥

avid-deliver(id)
� retrieval
upon avid-retrieve(id, p) {broadcast fragments}

if fragments[id] 6 ?= ⊥
(di, πi, c)← fragments[id]
send (id,RETRIEVE, di, πi, c, i) to p

upon receiving (id,RETRIEVE, dj , πj , c, j) {verify and decode}

if ecverify(c, dj , πj)
?
= 1

B.add(dj)

if len(B)
?
= f + 1

M ← decode(B)
avid-output(M)

ids of the messages. fragments will hold the fragment of
each message, together with its proof and commitment. Our
protocol follows the three phases of Bracha’s RBC protocol
[19] and CT AVID protocol.

• In the SEND phase, the dealer pk breaks the message M
into fragments, their proofs and commitment vector using
(c,d,π) ← ecprovepp(M). The dealer then broadcasts
each piece c, di, πi to each replica pi.

• In the ECHO phase, every replica pi checks that the
fragment di is consistent with the vector c and π using
ecverify(c, di, πi). If the fragment is valid, then replica
pi saves the data and echoes c to everyone else with the
goal of reaching agreement over it.

• In the READY phase, the protocol behaves similar to
Bracha’s reliable broadcast in the sense that a correct
replica will send a READY message only if it receives
2f +1 ECHO messages, or if f +1 READY messages for
the same c and if the replica has not done so already.

• Finally, a correct replica delivers only if it receives 2f+1
READY messages for the same c. If a replica receives
2f + 1 READY messages with some c that is different
from the commitment it received from the dealer in
the broadcast phase, then that replica destroys its own
fragment di because it is no longer useful to contribute
toward retrieval.

The retrieval for a given message M with an associated
ID tag of id provides the message to a retrieving party p.
It operates as follows. If an honest party has some data for
a given message tag stored in fragments[id] then that party
must send that data to the party with id p. The party p will wait
for fragments from replicas. Once it receives valid fragments
with a matching c from at least f + 1 replicas, it begins to
decode from the fragments and reconstruct M .

Our new AVID protocol illustrated above carries fragment
data only in the first SEND phase. The new AVID protocols
from our ECP constructions ECP-1 and ECP-2 are called
AVID-1 and AVID-2, respectively.

We compare AVID-1 and AVID-2 with existing AVID
constructions in Table I (in the introduction). AVID-1 is the
first AVID protocol that has optimal word complexity for both
the dispersal and retrieval protocols. It is easy to see that
AVID-1 outperforms CT AVID and HGR AVID consistently in
all complexity measures. AVID-2 is strictly better than HGR
AVID in all aspects. AVID-2 outperforms CT AVID for the
dispersal protocol, while sharing the same complexities as CT
AVID for the retrieval protocol. Moreover, compared to prior
constructions, our constructions gain in modularity: our AVID
protocols simply use ECP systems in a black-box manner.

VI. PROOF OF AVID

Proof. We now prove that our AVID protocol satisfies termi-
nation, agreement, availability, and correctness. Without loss
of generality we assume optimal resiliency of n = 3f + 1.

Termination. On a high level, termination follows from
Bracha’s reliable broadcast and the correctness property
of the ECP proof system. If a correct replica runs avid-
disperse for id then all correct replicas will pass the check
ecverify(c, di, πi) = 1 because of the correctness property
of the ECP system. Hence, all correct replicas will echo the
same message c. Therefore, all 2f + 1 correct replicas will
receive enough ECHO messages to send a READY of their
own. Therefore, all correct replicas will receive 2f+1 READY
messages for the same c and they can all avid-deliver for id.
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Agreement. If a correct replica pi completes the dispersal
protocol, then it must have received 2f + 1 READY messages
with some c. At least f + 1 READY messages of c come
from correct replicas. Hence, all correct replicas will receive
f + 1 READY messages for the same c. Therefore, all correct
replicas will send a READY message due to the amplification
step. Since we have 2f+1 correct replicas, all correct replicas
will receive 2f + 1 consistent READY messages for the same
c. As a result, all correct replicas will eventually complete the
dispersal protocol.

Availability. If f + 1 correct replicas complete avid-disperse
for id, then at least one correct replica pi has completed
the dispersal protocol. Hence, pi must have received 2f + 1
READY messages of c. Since the maximum number of faulty
replicas is f , at least f + 1 messages with the same c must
have came from correct replicas. Thus, at least one correct
replica has sent a READY message for c. (If not, at most f
READY messages would be received by any correct replica.)
Again, since f is the maximum number of malicious replicas,
f + 1 echo messages must have came from correct replicas.
So at least f + 1 correct replicas have received proofs that are
consistent with their fragments that are associated with the
same c. In particular, every replica pj of those correct replicas
has passed the check ecverify(c, dj , πj) = 1. Therefore, if any
arbitrary client p were to initiate avid-retrieve for id, at least
f + 1 replicas will pass the check "fragment 6= ⊥" and will
send f + 1 valid fragments and proofs with a matching c that
will allow p to decode a message B.

Correctness. We first prove the first part of the property.
To prove this, we first show correct replicas will store the
same c. Suppose, on the contrary, that some correct replica
stores c1, while some other correct replicas stores c2. Suppose
2f + 1 replicas have echoed c1 and among these replicas,
at least f + 1 were correct. Meanwhile, we know at least
2f + 1 replicas have echoed c2 and among these replicas, at
least f + 1 were correct. Thus, at least one correct replica
has echoed more than once, which is prohibited from our
protocol. Hence, any block decoded must have the same c.
Due to the EC consistency property, all blocks decoded must
be the same with overwhelming probability. For the second
part of the property, if a correct client initiates the dispersal
protocol, the decoded block must be equal to the original
block dispersed with overwhelming probability, due to the
EC correctness property. (Note the proof for correctness is
more modular and concise than prior constructions, hiding the
concrete implementation details.)

VII. APPLICATIONS

We argue ECP is indeed what is needed in erasure-coded
distributed system. ECP can be used in many other fault-
tolerant distributed computing settings. We briefly mention a
few applications below.

BFT storage. In one example, BEAT3 is a BFT storage system
in the BEAT family [10]. It uses HGR AVID and has a word

complexity of O(n4). If using our AVID protocol, BEAT3
only needs O(n3) words.

AVID with fast read. Duan, Reiter, and Zhang proposed an
AVID protocol with fast read. In such a protocol, a non-MDS
(maximum distance separable) erasure coding scheme is used
such that the retrieval is possible using less than f+1 erasure-
coded fragments [10]. Our ECP system equally applies to this
protocol, reducing the word complexity by a factor of O(n).

Read/Write (R/W) storage. In another example, one can di-
rectly replace fingerprinted cross-checksum in the Byzantine-
resilient atomic register system by Hendricks, Ganger, and
Reiter [25] using our ECP, yielding a system that reduces the
word complexity by an order of magnitude.

RBC. It is also easy to build a 3-step Byzantine reliable
broadcast protocol using our technique, achieving a commu-
nication complexity of O(nL+ λn2). This result matches the
asymptotic complexity of a recent protocol of Das, Xiang, and
Ren [3], and slightly improves their protocol concretely (6nL
vs. 7nL for the nL terms).

VIII. ADDITIONAL RELATED WORK

Much related work has been discussed in the course of
the paper. The section discusses additional related work on
commitments and batch proofs.

Commitments and batch proofs. Several works have con-
structed polynomial [23], vector [20], or inner product [26]
commitment schemes. Some of them also considered batch
proofs for the same point z across different commitments, but
all were done for specific constructions as opposed to our
generic approach. Maller et al. [27] were the first to introduce
the concept which they applied to their own polynomial
commitments that are based on KZG [23] and which they
used for building their own SNARK. Bünz et al. [22] defined
batching for their own multivariate polynomial commitments,
and Yurek et al. [28] showed how to do it with Bulletproofs
[24] which they used to build their AVSS. Boneh et al. [29]
generalized batching from a fixed point z to arbitrary subset
of points across multiple polynomials, for their own variant
commitment scheme of KZG.

IX. CONCLUSION

In this work, we introduce the concept of erasure coding
proofs (ECP) and present efficient ECP constructions using
polynomial commitments together with a novel batching pro-
cedure. ECP provides a clean and simple API, allowing one to
build fault-tolerant distributed systems in a modular manner.
As an example, we show how to use ECP to build efficient
AVID protocols that outperform existing ones.
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