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Abstract. Group Merkle (GM) (PQCrypto 2018) and Dynamic Group
Merkle (DGM) (ESORICS 2019) are recent proposals for post-quantum
hash-based group signature schemes. They are designed as generic
constructions that employ any stateful Merkle hash-based signature
scheme. XMSS-T (PKC 2016, RFC8391) is the latest stateful Merkle
hash-based signature scheme where (almost) optimal parameters are
provided. In this paper, we show that the setup phase of both GM and
DGM does not enable drop-in instantiation by XMSS-T which limits
both designs in employing earlier XMSS versions with sub-optimal
parameters which negatively affects the performance of both schemes.
Thus, we provide a tweak to the setup phase of GM and DGM to
overcome this limitation and enable the adoption of XMSS-T. Moreover,
we analyze the bit security of DGM when instantiated with XMSS-T
and show that it is susceptible to multi-target attacks because of the
parallel Signing Merkle Trees (SMT) approach. More precisely, when
DGM is used to sign 264 messages, its bit security is 44 bits less than
that of XMSS-T. Finally, we provide a DGM variant that mitigates
multi-target attacks and show that it attains the same bit security as
XMSS-T.

Keywords: Digital signatures, Hash-based signature schemes, Group
signature schemes, Post-quantum cryptography, Merkle trees.

1 Introduction

A group signature scheme (GSS) incorporates N members in a signing scheme
with a single public key. GSS allows any group member to sign anonymously on
behalf of the whole group [16]. A group manager is assigned to perform system
setup, reveal the identity of a given signer when needed, add new members, and
revoke memberships when required. Remote attestation protocols, e-commerce,
e-voting, traffic management, and privacy preserving techniques in blockchain
applications [8, 35, 3] are applications that utilize group signature schemes. There
have been several proposals for group signature schemes [14, 15, 8, 6, 28, 29].
However, the majority rely on number theoretic assumptions that are not secure
against post-quantum attacks.



There is now an imperative need to replace the current public key infras-
tructure with quantum-secure algorithms. This is evidenced by the current
NIST post-quantum cryptography standardization competition (PQC) [33]. GSS
is a public key infrastructure primitive which has attracted research atten-
tion to provide quantum security. The first post-quantum lattice-based group
signature scheme was proposed in [20], and other schemes were proposed in
[25, 26, 30, 32, 27, 17]. However, unlike the lattice-based signature scheme PQC
finalists, their group signature structures are not as efficient [36]. Code-based
group signature schemes were developed to provide another alternative for quan-
tum secure GSSs [1, 2, 19], but they have very large signature sizes on the order
of Megabytes [4].

In 2018, El Bansarkhani and Misoczki introduced Group Merkle (GM), the
first post-quantum stateful hash-based group signature scheme [18]. A year
Later, Dynamic Group Merkle (DGM), the latest hash-based group signature
scheme, was introduced to solve some of the limitations of GM [12]. GM and
DGM provide quantum security with reasonable signature sizes on the or-
der of KBytes and both are general constructions that can be instantiated
with any stateful Merkle hash-based signature scheme. The security analysis
of both schemes included standard security notions of group signature schemes
(anonymity and full-traceability) [5, 13], but no bit security analysis was pro-
vided. XMSS+ [21], XMSSMT [23], and XMSS-T [24] are stateful hash-based
signature schemes that overcome the performance drawbacks of Merkle Signa-
ture Scheme (MSS) [31]. The last version of XMSS-T given in Internet Engi-
neering Task Force (IETF) RFC8391 [22] provides (almost) optimal parameters
and mitigates multi-target attacks [9].

Our contributions. The contributions of this work are as follows.

- We show that the setup phase of both GM and DGM restricts them from being
directly instantiated by XMSS-T which negatively affects the performance of
both schemes because they may use earlier XMSS versions with sub-optimal
parameters.

- We introduce simple tweaks to the GM and DGM setup phases that enable
their instantiation with XMSS-T.

- We analyze the bit security of DGM when instantiated with XMSS-T and
show that it is vulnerable to multi-target attacks due to allowing multiple
signing trees to branch out from the same intermediate initial Merkle tree
node. Concretely, when the scheme is used to sign 264 messages under the
same public key (similar to the NIST PQC requirement [34]), DGM has bit
security that is 44 bits less than that of the utilized Merkle signing scheme,
i.e. 212 bit security when instantiated with XMSS-T-SHA2 at 256 bit security.

- We propose a DGM variant that mitigates the described multi-target attacks
and show that such a variant maintains the same bit security as the utilized
Merkle signing scheme.

2 Preliminaries

In this section, we provide the security definitions of hash functions that will be
used throughout the paper and introduce the notion of unforgeability in GSSs.
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In addition to the standard one wayness, and strong and weak collision resis-
tance security notions, we consider the security notions of hash function families
introduced in [24, 9]. In what follows, let n ∈ N be the security parameter,
k = poly(n), m = poly(n), Hn = {HK(M) : {0, 1}k × {0, 1}m → {0, 1}n be a
keyed hash function family where K ∈ {0, 1}k is the hash key and M ∈ {0, 1}m
is the message. Hash-based signature schemes usually adopt parameterized hash
functions with m, k ≥ n. Note that the success probability of quantum adver-
saries assumes a Quantum Accessible Random Oracle Model [7].

Definition 1 (Post-Quantum) Distinct-function, Multi-target Second
Preimage Resistance (PQ-DM-SPR) Given a (quantum) adversary A who
is provided with p message-key pairs (Mi,Ki), 1 ≤ i ≤ p, the success probability
that A finds a second preimage of a pair (j), 1 ≤ j ≤ p using the corresponding
hash function key (Kj) is given by,

SuccPQ-DM-SPR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;
(j,M ′)← A((K1,M1), . . . , (Kp,Mp)) :

M ′ 6= Mj ∧H(Kj ,Mj) = H(Kj ,M
′)]

A generic attack by a classical (resp. quantum) DM-SPR adversary who makes
qh queries to an n bit hash function has success probability of qh+1

2n (resp.

Θ( (qh+1)2

2n )). Note that if the keys of the hash function family are chosen ran-
domly, then the security notion in Definition 1 is referred to as Multi-Function,
Multi-target Second-Preimage Resistance (MM-SPR).

Definition 2 (Post-Quantum) Multi-target Extended Target Collision
Resistance (PQ-M-eTCR) Given a (quantum) adversary A who is given a
target set of p key-message pairs (Ki,Mi), 1 ≤ i ≤ p and is required to find
a different message-key pair (with possibly the same key), whose image collides
with any of the pairs in the target set, the success probability of A is given by,

SuccPQ-M-eTCR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;
(j,K ′,M ′)← A((K1,M1), . . . , (Kp,Mp)) :

M ′ 6= Mj ∧H(Kj ,Mj) = H(K ′,M ′)]

A generic attack by a classical (quantum) M-eTCR adversary who is given p
targets and makes qh queries to an n bit hash function has a success probability

of p(qh+1)
2n + pqh

2k
(resp. Θ(p(qh+1)2

2n +
pq2h
2k

)) when k ≥ n.

Definition 3 ((Post-Quantum) M-eTCR with Nonce (PQ-NM-eTCR))
Given a (quantum) adversary A who is given a target set of p key-message-nonce
tuples (Ki,Mi, i), 1 ≤ i ≤ p, and are required to find a different key-message-
nonce tuple (K ′,M ′, j) whose image collides with the j-th tuple in the target set
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(with possibly the same key), the success probability of A is given by,

SuccPQ-NM-eTCR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;
(K ′,M ′, j)← A((K1,M1, 1), . . . , (Kp,Mp, p)) :

M ′ 6= Mj ∧H(Kj ||j,Mj) = H(K ′||j,M ′)]

A generic attack by a classical (quantum) NM-eTCR adversary who is given p
targets and makes qh queries to an n bit hash function has a success probability

of (qh+p)
2n + pqh

2k
(resp. Θ( (qh+p)2

2n +
pq2h
2k

)) when k ≥ n

Definition 4 ((Post Quantum) Pseudorandom Function (PQ-PRF))
Hn is called a PRF function family if it is efficiently computable and for any
(quantum) adversary A who can query a black-box oracle O that is initialized
with either Hn function or a random function G, where G : {0, 1}m → {0, 1}n,
the success probability of A distinguishing the output of O by determining which
function it is initialized with, is negligible. Such a success probability is given by,

Succ PQ-PRF
Hn

(A) =| Pr[O ← Hn : AO(·) = 1]− Pr[O ← G : AO(·) = 1] |

A generic attack by a classical (resp. quantum) PQ-PRF adversary who makes

qh queries to an Hn has a success probability of qh+1
2n (resp. Θ( (qh+1)2

2n )).

Unforgeability in group signature schemes. A basic security notion of a
(group) digital signature scheme is that signatures cannot be forged. More pre-
cisely, it is computationally infeasible for an adversary A who does not know
the secret key and is allowed unrestricted queries to the signing oracle to gen-
erate a message signature pair (M ′,Σ′) that passes as valid by the verification
algorithm.

In what follows, we give the definition of the unforgeability game
EXPforge

GS,A (n,N) for a group signature scheme, GS, with N members and se-
curity parameter n. Such a game was described by Bellare et al. in [5] as an
adaptation from the traceability game where A is not allowed to corrupt mem-
bers. Intuitively, A is successful in winning EXPforge

GS,A if the forged message is
either traced to a group member or cannot be traced to a member.

Definition 5 (Unforgeability) A group signature scheme GS is unforgeable
if for any ppt adversary A that is given unrestricted access to the signing and
opening oracles, A cannot generate a valid signature for a message that was not
previously queried. A has a negligible advantage in the experiment ExpforgeGS,A as
given in Figure 1

AdvforgeGS,A (n,N) =| Pr[ExpforgeGS,A (n,N) = 1] |≤ negl(n)

3 Specification of Related Schemes

In this section, we provide a brief description of XMSS-T, GM and DGM, the
related signing schemes used throughout this paper. Details are given only for
the procedures that are relevant to our analysis. For more information, the reader
is referred to [24, 22, 18, 12].
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ExpforgeGS,A (n,N)

- (GPK, sk∗)← G.KGen(1n, 1N )
- Unrestricted queries:

* Sign(M, ·)
* G.Open(M,Σ)

- Generate (M ′,Σ′)
- If G.V erify(Σ′,M ′, gpk) == 1 Return 1
Else Return 0

Fig. 1: Unforgeability experiment

3.1 Extended Merkle Signature Scheme-Tightened (XMSS-T)

XMSS-T is a multi Merkle tree construction where the tree leaf nodes are the
public keys of the Winternitz One-Time Signature Scheme with Tightened se-
curity (WOTS-T) [10]. In what follows, we consider the specification of one tree
instance of XMSS-T because this is used in GM and DGM. XMSS-T has a
public addressing mapping scheme, ADRS, that maps a public seed, pk.seed,
a leaf/internal node index, i, and a level, j, to generate a (distinct) new hash
randomizer, r, and bit-mask, q, for each hash call in the scheme (the hash-
ing in the WOTS-T scheme and the Merkel tree hashing). Such a distinct
randomizer enables the scheme to mitigate multi-target attacks. Precisely, a
Merkle tree of height h has 2h leaf nodes (WOTS-T.pk) and the i-th node
at level j is denoted by Xi,j , where 0 ≤ i < 2h−j , 0 ≤ j ≤ h. The internal
nodes are generated by Xi,j = H(ri,j , (X2i,j−1||X2i+1,j−1) ⊕ qi,j), where ri,j
and qi,j are the hash randomizer and bit-mask generated by the addressing
scheme (ri,j , qi,j)← ADRS(pk.seed, i, j). The XMSS-T addressing scheme (see
Appendix A for details), takes the leaf index, i, and calculates j according to
the hashing sub-structure i.e., OTS hash chains, L-tree hashing or Merkle tree
hashing. Then, it generates the required hash randomizer and bit mask. For
simplicity, ADRS takes the node level j as input.

The nodes at level 0, Xi,0, are the leaf nodes, and they are the public keys
of the WOTS-T which also utilizes the addressing scheme, ADRS, to evaluate
the required hash randomizers and bit masks for its hashing. For details of the
WOTS-T signing scheme and addressing schemes, the reader is referred to [24]
and Appendix A, respectively. Figure 2 depicts a simplified example of XMSS-T
with one tree of 8 signing leaves L0, · · · , L7. A signature by leaf L2 (colored in
black) has all the gray nodes in its authentication path.

3.2 Group Merkle (GM)

Group Merkle (GM) is the first post-quantum hash-based group signature
scheme. It is a one Merkle tree construction that can be instantiated by any
stateful one-tree Merkle hash-based signature scheme that employs a One-Time
Signing (OTS) scheme as the underlying signing algorithm. The group manager
in GM is responsible for the setup procedure of N group members. In this phase,
a member j, 1 ≤ j ≤ N , generates their own B OTS keys and sends the corre-
sponding public keys (OTS.pk(j−1)B+1, OTS.pk(j−1)B+2, . . . , OTS.pkjB) to the
group manager who labels all the received NB keys from the N members by
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Leaf Node
OTS.pk

Internal Node

Level0

Level2

Level3

Level1

PK.Root

L0 L3 L4 L5 L6 L7L1 L2

PK.Root

Fig. 2: A one layer XMSS-T, where the leaf nodes are the WOTS-T public keys.
The nodes colored in gray are the authentication path for signing with leaf node
L2.

(1, 2, · · · , NB), where each consecutive (j − 1)B + 1, (j − 1)B + 2, . . . , jB set of
keys belongs to the j-th member.

To ensure signer anonymity, the OTS public keys are shuffled by
encrypting the corresponding labels by a symmetric encryption algo-
rithm, posi = Enc(i, skgm), where skgm is the group manager’s se-
cret key, and 1 ≤ i ≤ NB. Thus, the group manager has the pairs
(OTS.pk1, pos1), · · · , (OTS.pkN ·B , posN ·B). These pairs are reordered in ascend-
ing order of the encrypted positions to perform the pair permutation. Then, the
GM tree is constructed where a leaf node, denoted by Li = Xi,0 contains the
pair (OTS.pkj , posj) and i is the new permuted position of OTS.pkj . Accord-
ingly, the p-th node at level 1 is calculated by Xp,1 = H(X2p,0||X2p+1,0) =
H(OTS.pkx, posx||OTS.pkz, posz) for 0 ≤ p ≤ NB

2 − 1, i.e. L2p = X2p,0 =
(OTS.pkx, posx) and L2p+1 = X2p+1,0 = (OTS.pkz, posz), because after the
permutation, position x is mapped to 2p and position z is mapped to 2p + 1.
Hashing neighboring nodes continues up the levels until the tree root is evalu-
ated which is the group public key GM.gpk. Note that the encrypted position is
included in the signature, and is used by to group manager to reveal the identity
of the signer. Figure 3 shows a simplified example of a GM tree of two members
colored in red and blue where each has 2 OTS key pairs.

3.3 Dynamic Group Merkle (DGM)

DGM [12] combines two types of Merkle trees, one Initial Merkle Tree (IMT)
and multiple Signing Merkle Trees (SMTs). The IMT has height 20 and random
values for its leaves in order to build the tree whose root is the group public
key DGM.gpk. The SMTs have variable height and their leaves are OTSs which
are used by group members to sign messages. Initially, a group member asks the
group manager for B OTS signing keys the group manager randomly chooses
B internal nodes from the IMT, i.e. nodes at levels 1, 2, . . . , 19, and assigns an
OTS from each SMT that is linked to these internal nodes. If all the OTSs of
an existing SMT are assigned or an IMT internal node does not have an SMT
yet, then a new SMT is generated. The height of an SMT is equal to the level
of the internal node that it is linked to.
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Internal Node

Level0

Level2

Level1

GM.gpk

pk0 pos0 pk1 pos1

GM.gpk

posi

X0,1 X1,1

Leaf node Xi,0

X0,0 X1,0 X2,0 X3,0

pk2 pos2 pk3 pos3

OTS.pki

Fig. 3: GM with two members colored in red and blue, each of which has two
signing leaves, The leaf Permutation is done by sorting the encrypted positions.

SMT generation. The SMT is constructed in the same manner as the GM
tree. However, in DGM, the OTS secret and public key pairs are generated by
the group manager and the whole SMT is built without input from the group
members. Let OTS.pki denote the i-th OTS public key, 0 ≤ i ≤ z, where z
denotes the total number of signatures supported by the scheme. Let i = (v, u)
where u denotes the OTS number within the v-th SMT.

All the OTS public keys are generated and indexed by DGM.i = (v, u).
Such indexes are then encrypted with a symmetric encryption algorithm to gen-
erate DGM.posi = Enc(DGM.i, skgm), where skgm is the group manger secret
key. The OTS public keys are then shuffled by sorting the encrypted positions
DGM.pos. Afterwards, the SMT leaves are generated, precisely, the j-th SMT
leaf node is the hashing of the concatenation of the i-th OTS public key and their
encrypted position, Lj = H(OTS.pki||DGM.posi), where j is the new position of
the the i-th OTS after the permutation. These leaves are used to build the SMT
and evaluate its root rSMT which is then linked to an IMT internal node called
the fallback node, Fn, using a symmetric encryption algorithm. More precisely,
rSMT , is linked to Fn by evaluating the fallback key as Fk = Dec(Fn, rSMT )
which is included in the signature. Note that the verifier has to communicate
with the group manager to check the validity of the received Fk and then cal-
culate Fn = Enc(Fk, rSMT ) to complete the verification process. After all the
leaves of an SMT are used, a new SMT is generated and linked to the same Fn.
Note that different SMTs linked to the same fallback node Fn have different
fallback keys.

Figure 4 depicts a simplified DGM example where the IMT, colored in blue,
has height 4. The figure has one SMT colored in red which is linked to the IMT
first internal node at level 3, Fn = X0,3. When L2 is used to sign a message
M , the resulting signature is given by Σ = (indx,OTS.σindx, DGM.posi, Auth),
where indx = 2 is the signing leaf index with respect to the IMT to enable
calculating which node is concatenated on its right and left in both the SMT and
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IMT from the authentication path in the verification process. OTS.σindx denotes
the OTS signature by the leaf index indx, Auth = AuthSMT , Fk,AuthIMT ,
where AuthSMT = L3, SMT.X0,1, SMT.X1,2 is the SMT authentication path
(colored in pink), and AuthIMT = IMT.X1,3, colored in light blue, is the IMT
authentication path for the fallback node Fn.

IMT root

IMT leaf

Internal Node

SMT root

SMT leaf

Fallback key
FK

DGM.gpk

Fk = Dec(Fn, rSMT )

rSMT

Fn = X0,3

L3L2

Level0

Level2

Level3

Level4

Level1

Fig. 4: DGM Example.

4 Instantiating GM And DGM with XMSS-T

In both GM and DGM, the signing leaves which contain the public keys of the
OTS used by the group members are first generated and then permuted. Af-
terwards, the Merkle tree (SMT in DGM) is built using the permuted leaves.
In GM, the group members generate their own OTS keys and send the corre-
sponding OTS public keys to the group manager who permutes them and then
builds the GM tree. Finally, the group manager distributes all GM tree signing
leaves to all the members. On the other hand, in DGM, the group manager gen-
erates the OTSs on behalf of the group members, evaluates the signing leaves
and permutes them, then constructs the SMTs, and assigns OTSs at random
from randomly chosen SMTs.

XMSS-T is the latest stateful MSS variant and has (almost) optimal parameters
when compared to other MSS variants which translates to smaller signatures.
For instance, with the same parameters (SHA-256 hash function, Winternetiz
parameter w=16, tree height 20), the bit security of XMSS-T (resp. XMSS [11]) is
256 (resp. 196). With a bit security of 196, XMSS-T (resp. XMSS) has a signature
size of 14,328 (resp. 22,296) bits. XMSS-T uses WOTS-T as the underlying OTS
signing scheme which requires the signing leaf index, i, within the Merkle tree
to generate the OTS public keys. More precisely, XMSS-T uses an addressing
scheme that utilizes the signing leaf index within the Merkle tree as input to
generate a distinct hash randomizer and bit mask for each hash call in the
hash chains of WOTS-T [24] (see Appendix A). These hash randomizers and
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bit masks are used in evaluating the WOTS-T public keys which represent the
signing leaves (see Section 3.1).

Instantiating GM and DGM by XMSS-T is not directly achievable because
in the specifications of these schemes, a signing leaf index, i, is known only after
its corresponding OTS public key has been generated and the associated leaf
permuted, while in XMSS-T, WOTS-T requires the leaf index i to evaluate the
OTS public key and generate its corresponding leaf. One solution is to employ an
earlier XMSS version with an OTS variant that does not require the position of
the leaf within the Merkle tree to evaluate the OTS public keys. Such a solution
results in using OTS with larger parameters than WOTS-T which negatively
affects the performance of the group signature scheme.

GM and DGM with XMSS-T. We provide a tweak in the the setup phase
of both GM and DGM which enables their instantiation with XMSS-T. In GM,
the setup phase is interactive so we add an extra communication step between
the group manager and the group members where the permuted indexes are first
sent to the members who can then generate their WOTS-T public keys. More
precisely, the permutation in GM is done by encrypting a given position that
is associated with an OTS public key, but the encryption itself is independent
from the value of the public key, i.e. posi = Enc(i, skgm). Accordingly, the group
manger can initially permute the indexes of the leaves for all group members be-
fore the OTS keys are generated. Afterwards, the permuted indexes are assigned
to group members in a manner similar to the original setup phase (see Section
3.2). Each group member uses the assigned indexes within the whole tree as an
input to the WOTS-T addressing scheme, ADRS, to generate the required hash
randomizers and bit masks which are required to generate their WOTS-T public
keys. Finally, the WOTS-T public keys are sent back to the group manager who
constructs the GM tree using XMSS-T.

In DGM, no extra communication is needed because the group manger gener-
ates the OTS signing keys for the group members and their corresponding public
keys. Accordingly, the manager may first permute the indexes using symmetric
encryption then generate the OTS public keys using the permuted indexes. In
other words, the specification of the setup phase stays the same with only the
permutation and OTS key generation order swapped.

5 DGM with XMSS-T Security Analysis

In [12], DGM was analyzed with respect to security notions of group digital
signature schemes, i.e. anonymity and traceability. However, since DGM was
not instantiated with a specific Merkle signing scheme, no bit security analysis
for its unforgeability was provided. In this section, we analyze the bit security
of the unforgeability of DGM when it is instantiated with XMSS-T. Note that
the same analysis is valid if DGM is instantiated with earlier XMSS versions.
Henceforth, we refer to DGM when instantiated with XMSS-T as simply DGM.

5.1 Multi-target attacks and XMSS-T

If an n bit hash function is used once in a cryptographic primitive with a security
parameter λ whose security is dependent on the second preimage resistance of the
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hash function, then finding a second preimage of the generated digest requires
2n computations, thus it suffices that n = λ. However, if the same hash function
is used t times in the cryptographic primitive, i.e. an adversary has access to
t digests generated with the same hash function, then a second preimage may
be obtained on any of these t targets with 2n/t computations. Assuming that
n = λ, the security of the scheme is reduced from n to n− log t. A naive remedy
to reach n bit security is to use message digests of length n+log t. Alternatively,
one may enforce that each hash application is different such that each digest
for the t targets is evaluated using a different hash function so that finding
a second preimage for any function, i.e. using the same hash key, requires 2n

computations.

In XMSS-T, the addressing scheme, ADRS, generates a hash randomizer and
bit mask for each hash function call depending on the hash node index in the tree
or WOTS-T chain iteration. For a tree with height h, the i-th node at level j is
denoted by Xi,j where 0 ≤ i < 2h−j , 0 ≤ j ≤ h. ADRS is given by (ri,j , qi,j)←
ADRS(pk.seed, i, j) where ri,j and qi,j are the hash randomizer and bit mask
used. The internal nodes are generated as Xi,j = H(ri,j , (X2i,j−1||X2i+1,j−1)⊕
qi,j), i.e., Hri,j is unique for Xi,j . Accordingly, if an adversary collects all the
signatures supported by the scheme, each element in the WOTS-T signatures and
each node in any authentication path is generated by a different hash function.
Consequently, finding a forgery requires finding a second preimage of a given
node using the corresponding hash function where other nodes are no longer
applicable targets.

5.2 Multi-target attacks on DGM

DGM allows multiple SMT trees to branch out of any IMT internal node, fallback
node. Accordingly, one may regard DGM as several overlapping parallel trees
with heights ranging from 1 to 20. The IMT tree is the only tree with height 20
and the SMTs have heights ranging from 1 to 19. To visualize such a structure,
Figure 5 depicts a reduced DGM instance with an IMT, colored in blue, of height
4 and 42 SMTs, colored red, yellow and green. We assume a uniform distribution
in the selection of the IMT internal nodes from which keys are assigned from the
linked SMTs. Hence, each IMT internal node has the same number of assigned
OTS keys (i.e. leaf nodes), and the number of SMTs per node in level j is
double the number of SMTs per node in level (j + 1). There are 4, 2, and 1
SMTs branching out from internal IMT nodes at levels 1, 2, and 3, respectively,
and their respective colors are green, yellow, and red. This simplified example
has 112 signing leaves which can be used to sign 112 messages under the same
public key (IMT root). Note that there is no maximum number of SMTs so if
more signing leaves are needed, new SMTs can be constructed and linked to a
random internal node.

Following the NIST PQC recommendation, a signature scheme should be secure
to sign up to 264 messages under the same public key [33]. In what follows,
we assume that DGM is used to sign 264 messages. According to the design
specifications, when a group member needs B signing keys (leaves), the group
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IMT root

IMT leaf

Internal Node

SMT root

SMT leaf

DGM.gpk

Fn

Level0

Level2

Level3

Level4

Level1

Fig. 5: Simplified DGM example of height 4 with 42 SMTs, 112 signing leaves,
and fallback nodes uniformly distributed across the internal IMT nodes

manager randomly selects B internal nodes of the IMT and assigns to that
member the next unassigned OTS of each SMT linked to that internal node.
The total number of internal nodes excluding the root in an IMT of height 20
is 219 + 218 + · · · + 4 + 2 = 220 − 2. Recall that if the SMT OTS leaves linked
to any randomly chosen internal node are used up, then a new SMT tree is
generated, linked to that fallback node and one of its leaves is assigned. Accord-
ingly, assuming a uniform distribution in the random fallback node selection,
to assign 264 OTSs to all group members, each IMT internal node is chosen
264/(220 − 2) > 244 times. This means that each IMT internal node at level j,
1 ≤ j ≤ 19, has 244−(j−1)−1 = 244−j SMT trees each of height j, i.e. 243 SMTs
of height 1 for each IMT internal node at level 1, 242 SMTs of height 2 for each
IMT internal node at level 2, up to 225 SMTs of height 19 for each IMT internal
node at level 19.

When DGM is instantiated with XMSS-T, to enable verification of a given
signature, a DGM instance is seen as one tree of height 20 which means that
wherever the signing SMT is located with respect to the IMT, the leaf indexing
is in the set {0, 1, . . . , 220 − 1}, i.e. leaf indexing is considered relevant to the
IMT where the signing SMT is considered a part of the IMT. Such an indexing
restriction is required to enable the verifier to evaluate the position of the nodes
in the authentication path of the IMT up to its root (the pale blue nodes in
Figure 4), which is essential in determining which nodes are concatenated on its
right and left. Consequently, different SMTs that are linked to the same IMT
internal node have the same indexing, and accordingly their parallel nodes at
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the same position are evaluated with the same hash function, i.e. the same hash
randomizer and bit mask. For instance, in Figure 5, any 4 green SMT roots
branching from the same level 1 IMT blue node are evaluated with the same
hash function as they share the same index within the IMT. Moreover, there
are SMT nodes that share the same indexes and nodes of the SMTs that are
connected to upper IMT internal nodes, for example, in Figure 5, any 4 green
SMT roots at an IMT level one intermediate node share the same indexes with 2
intermediate yellow SMT nodes and one intermediate red SMT node. Therefore,
even though XMSS-T is secure against multi-target attacks, employing several
parallel instances of it with the same indexing in the form of SMTs makes DGM
vulnerable to multi-target attacks. Intuitively, a forgery adversary who collects
a set of message-signature pairs, can group them in t-target sets that share
common indexes, and then they can find another message whose digest collides
with any of the message digests in the set. Note that such sets have t messages
with authentication paths that share nodes with the same IMT indexes, so with
complexity 2n/t a forgery is obtained.

5.3 DGM bit security

Consider that DGM is used to sign 2y messages where y > 20. Accordingly,
each internal IMT node is chosen 2y/(220 − 2) times by the group manager to
assign the next available OTS from the linked SMT. Assume an adversary A is
able to collect all 2y signatures generated by the scheme. The signature given by
Σ = (R, indx,OTS.σindx, DGM.posi, Auth) is signed with the i-th OTS key pair
and has index indx relative to its IMT position, i.e. indx ∈ {0, 1, . . . , 220 − 1}
(see Section 3.3). A can then group the signatures along with their corresponding
messages in sets that share the same signing index, indx, where each set is
expected to have t target message-signatures pairs, i.e. a given target set is
denoted by ts = {(M0,Σ0), (M1,Σ1),. . . , (Mt−1,Σt−1)}. Assuming a uniform
distribution in selecting IMT Fn positions, the number of targets t per set is
given by,

t =

j=19∑
j=1

2y/(220 − 2)

2j
< 2y−20 (1)

We assume a fully filled tree similar to the example in Figure 5 where all IMT
internal nodes have an equal number of assigned leaves, e.g. 2y/(24 − 2) =
112/14 = 8. Otherwise, the index that has the maximum number of signatures
is considered. The maximum number of overlapping SMT nodes is given by
8
2 + 8

22 + 8
23 = 7, so t = 7.

In XMSS-T, to sign a message M , its message digest md is initially calculated
as md = Hmsg(R||DGM.root||indx,M) where Hmsg : {H(K,M) : {0, 1}m ×
{0, 1}∗ → {0, 1}n, R is the hash randomizer chosen by the signer and index is
the leaf index relative to the IMT. Since ts has t (M,Σ) pairs all with the same
indx, A can search for (M ′, R′) pair such that M ′ /∈ ts, and the corresponding
md′ collides with a message digest of any of the messages in ts. Specifically, A
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finds (M ′, R′) such that

Hmsg(R′||DGM.root||indx,M ′) ∈ {(Hmsg(R0||DGM.root||indx,M0)), . . . ,

(Hmsg(Rt−1||DGM.root||indx,Mt−1))}.

Thus, A can successfully find a forgery for (M ′, R′) with probability 2−n+log2 t.
Similar multi-taget attacks can be applied on the OTS public keys or authenti-
cation paths in ts. In what follows, we give the security reduction of DGM when
it is used to sign 2y messages with y > 20. For completeness and consistency
with XMSS-T notation [24], the hash functions used in different contexts within
the signature scheme are defined as follows.

– F : {F (K,M) : {0, 1}n × {0, 1}n → {0, 1}n used in OTS hash chains
– H : {H(K,M) : {0, 1}n × {0, 1}2n → {0, 1}n used to calculate the Merkle

tree hash nodes
– Hmsg : {H(K,M) : {0, 1}m×{0, 1}∗ → {0, 1}n used to calculate the message

digests
– Fn (resp. Fm) is a pseudorandom function family that takes a secret seed

as input and outputs the OTS secret keys (resp. the message digest hash
randomizer R) each of n bits (resp. m bits (m = n+ y)).

Theorem 1 For security parameter n ∈ N and parameters y, t as defined above,
DGM is unforgeable against an adaptive chosen message attacks if

- F and H are PQ-DM-SPR hash function families,
- Fn and Fm are post-quantum pseudorandom function families, and
- Hmsg is a PQ-NM-eTCR hash function family.

The insecurity function, InSecPQ-forge(DGM, ξ, 2y), that describes the maximum
success probability over all adversaries running in time ≤ ξ against the PQ-forge
security of DGM and making a maximum of qs = 2y queries is bounded by

InSecPQ-forge(DGM, ξ, 2y) ≤ InSecPQ-PRF(Fn, ξ) + InSecPQ-PRF(Fm, ξ)+

max[t× (InSecPQ-DM-SPR(H, ξ) + InSecPQ-DM-SPR(F, ξ) + InSecPQ-NM-eTCR(Hmsg, ξ))]

Proof. The proof is based on the approach of the proof given in [24]. Note that
we do not include the proof of Fn and Fm with respect to PQ-PRF because they
are not affected by instantiating DGM with XMSS-T, hence, the proof is similar
to that of XMSS-T in [24]. Assume the adversary A is allowed to make 2y queries

to a signing oracle running DGM with XMSS-T. A wins the EXPforge
GS,A , as shown

in Figure 1, if they find a valid forgery (M ′,Σ′) where the message M ′ is not
in the queried set of 2y messages. A initially groups the signatures that share a
given indx in a set ts. Forgery occurs in the following three mutually exclusive
cases.

– The message digest of M ′ under indx results in M ′ being a second preimage
of one of the message digests of the messages in ts. More precisely

md = Hmsg(R′||DGM.root||indx,M ′) = Hmsg(Rj ||DGM.root||indx,Mj)
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where Mj ∈ ts. This occurs with success probability t ×
InSecPQ-NM-eTCR(Hmsg) (see Definition 3), i.e. A is able to break the
security of NM-eTCR of the message hash function used, Hmsg.

– The OTS public key of the forged signature, OTS.pk′, exists in the
set of OTS public keys of the signatures in ts, i.e. OTS.pk′ ∈
{OTS.pk0, · · · , OTS.pkt−1}. This occurs with success probability t ×
InSecPQ-DM-SPR(F) (see Definition 1), i.e. A is able to break the security
of DM-SPR of hash function F .

– The forged signature contains a node in the authentication path (X ′i,j ,
the i-th node in level j), that collides with a node at the same position
in the set of authentication paths in ts (Xi,j , the i-th node in level j),
e.g. H(ri,j , (X

′
2i,j−1||X ′2i+1,j−1)⊕ qi,j) = H(ri,j , (X2i,j−1||X2i+1,j−1)⊕ qi,j),

where the nodes (X ′2i,j−1, X
′
2i+1,j−1) are from the forged signature authenti-

cation path, the nodes (X2i,j−1, X2i+1,j−1) are from an authentication path
of a signature in ts, and ri,j , qi,j are the hash randomizer and bit mask used

for hashing. This occurs with success probability t× InSecPQ-DM-SPR(H) (see
Definition 1). Thus, A is able to break the security of the second preimage
resistance of hash function H.

The above proof shows that if DGM is instantiated with the parameters of
XMSS-T (RFC 8391), i.e. the message digest length equals the security param-
eter n, then DGM does not achieve the same bit security level as XMSS-T. In
particular, the bit security of DGM decreases by log2 t bits compared to that
of XMSS-T, so for XMSS-T with security parameter n = 256 and DGM used
to sign 264 messages, the DGM bit security decreases by log2(

∑j=18
j=0 243−j) =

44 bits, i.e. DGM achieves 212 bits of security. Therefore, if DGM is required
to achieve n bits of security, then XMSS-T should use a hash function with
output size n + log2 t which decreases the signing performance and increases
the signature size. In the following section, we propose a solution that allows
DGM to attain optimal parameters whereas XMSS-T attains (almost) optimal
parameters [9].

6 DGM+ with Optimal Parameters

In this section we propose DGM+, a DGM-XMSS-T variant that mitigates multi-
target attacks (per index) as discussed in Section 5. We modify the addressing
scheme such that it outputs different hash randomizers and bit masks for the
same hash call location in different SMTs branching from the same IMT internal
node, and for overlapped SMTs that share the same indexing for some leaves.

The DGM public parameters contain two values DGM.root and DGM.seed,
where DGM.root is the IMT root (group public key), and DGM.seed is the
public key seed that is used in the XMSS-T addressing scheme to generate the
hash randomizers ri and bit masks qi for each hash call at address adi in the
IMT, i.e. (ri, qi)← ADRS(DGM.seed, adi). To enable opening, each SMT leaf
has index (v, u) which is encrypted to generate DGM.pos, where v is the SMT
number and u is the leaf index within the SMT. Note that both u and v are
secrets but DGM.pos is not because it is sent in the signature. If we assume

14



that the bit size of v is equal to the block length, b, of the encryption algorithm
used, then we can get ev as the first b bits from DGM.pos, where ev denotes
the encryption of v. Accordingly, we propose the following.

– IMT uses DGM.seed directly as the seed to generate the hash randomizers
and bit masks for each hash call within the IMT.

– Each SMT utilizes (publicly calculated) a different seed, SMT.seedv for its
hash randomizer and bit mask generation. SMT.seedv is unique for the v-th
SMT and is calculated by SMT.seedv = PRF (DGM.seed, ev).

For all SMTs that share indexing, we utilize different seed values with each SMT
and keep the XMSS-T addressing scheme unchanged [22] (see Section A). Thus,
different hash randomizers and bit masks are used at the same IMT location
but for different SMTs. Note that for signing, the IMT utilizes DGM.seed in its
construction, while the v-th SMT utilizes SMT.seedv = PRF (DGM.seed, ev)
in its construction. Let SMT.root.level denote the level of the fallback node
for a given signing SMT. The signature authentication path, Auth, contains the
whole SMT authentication path, Auth.SMTv and the top 20− SMT.root.level
nodes from the IMT. The latter authentication path starts from the neighboring
node of the fallback node linked to the SMT root and up to DGM.root.

For verification, the verifier uses two seeds. DGM.seed is used for hash eval-
uations of the authentication path from the fallback node and up. Moreover,
the verifier calculates STM.seedv = PRF (DGM.seed, ev) which is used in the
WOTS-T hash iterations and the SMT authentication path, Auth.SMTv, hash
evaluations.

6.1 Message hashing with DM-SPR

It was shown in Section 5 that the security of DGM depends on the NM-eTCR of
the hash function used where the number of targets, t, is considered per index.
We tweak the message hashing such that the security of DGM depends on the
DM-SPR of the hash function used (see Definition 1), to prevent multi-targets
attacks. This is achieved by using the message hash randomizer R = Fw−1(sk1)
as follows

md = Hmsg(R||DGM.root||idx,M) = Hmsg(Fw−1(sk1)||DGM.root||indx,M)

where Fw−1(sk1) is the last iteration, w − 1, of the first secret key of WOTS-T
(see [24] for the details of WOTS-T).

Message hashing tweak rationale. The elements (R||DGM.root||idx) serve
as the hash key where R is chosen at random for each new message hashing
and DGM.root is fixed. If an adversary A who has access to the signing oracle
is able to get the hash randomizer R before querying the signing oracle, then
A can search to find two messages that have the same image using the same
R, i.e. A looks for a collision. Therefore, A queries the signing oracle with one
message and the other message has the same signature. Nevertheless, as R is
chosen randomly and is known to the adversary only after querying the signing
oracle, A works to find a second primage of any of the queried messages when
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any hash randomizer R′ is used, i.e. for a valid forgery the adversary needs to
break the NM-eTCR security of the hash function used.

If we replace the hash randomizer R with the last iteration of the first secret
key of the OTS used, pk1 = Fw−1(sk1) (see [24] for details), then R is not chosen
at random and is known publicly only after signing. Accordingly, for a valid
forgery, the adversary is restricted to using the same message hash randomizer,
R = Fw−1(sk1) (that is sent in the signature), to find a message digest collision
with the queried set. Hence, the adversary is required to break the security of
MM-SPR of the hash function used which has a lower probability of success than
breaking the NM-eTCR security of the hash function. Note that the last chain
iteration of the first OTS secret key, Fw−1(sk1), is not a public parameter and
is known only after signing with the corresponding leaf node, i.e. it is different
than the OTS public key which is the root of the L-Tree (see [24] for the details
of the L-Tree).

In the verification procedure, the verifier checks if pk1 = Fw−a1−1(σ1)]
?
= R,

where σ1 is the first signature element in the OTS signature, otherwise, it returns
invalid signature. Accordingly, for a valid forgery the adversary is required to
find a second primage using the hash key Fw−1(sk1)||DGM.root||idx, i.e. break
the MM-SPR of the hash function (see Definition 1).

Note that using the above message hashing to generate R from the OTS
public keys may be used to enable XMSS-T [9] to attain optimal parameters.
Specifically, when R is bound to a specific signing leaf, it suffices that R is n bits
to provide n bit security.

6.2 DGM and DGM+ comparison

This section provides a comparison between DGM and DGM+ when both are
instantiated with XMSS-T to provide n bit security and support 2y messages
where y ≥ 20, and the IMT height is 20.

Secret and public keys sizes. For DGM to achieve n bit security requires a
hash output size of n+ log2 t bits where t is given by Equation 1. Thus, its tree
nodes and secret keys will also be n+log2 t bits. The DGM public key is the pair
(pk.seed, IMT.root) each of n + log2 t bits, and the secret key contains sk.prf
to generate the message hash randomizer and sk.seed to generate the WOTS-T
secret keys. Accordingly, the secret key size is 2(n+ log2 t) bits.

For DGM+, the size of the tree nodes and secret keys is n bits. The DGM+

public key size is 2n bits, i.e. (pk.seed, IMT.root) each of n bits. The secret key
contains only sk.seed of n bits because it does not require sk.prf as the message
hash randomizer is the last hash iteration of the first WOTS-T secret key.

Signature size. A DGM signature contains the message hash randomizer, R,
the leaf index, the encrypted position, the WOTS-T signature, the authentication
path, and the fallback key. The signature element sizes in DGM+ is n bits while
in DGM it is n+log2 t bits. This has another impact as the message digest size is
increased, the number of WOTS-T elements, l, is increased. This increases both
the signature size and the computational cost.
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Table 1 provides the size of the keys and signature for both DGM+and DGM
at 128, 192, and 256 bit security when they are used to support up to 264

signatures where the signature size is (22 + l)n + 4 Bytes and l is the number
of elements in the OTS signature. The index is 4 Bytes and we consider the
encrypted position and message hash randomizer, R, equal to the node size in
the scheme.

Table 1: DGM and DGM+ keys and signature sizes in Bytes at 128, 192, and 256 bit
security and 264 signatures.

Algorithm bit security node size pk sk l signature size

DGM

128 22 44 44 47 1522

192 30 60 60 63 2554

256 38 76 76 79 3842

DGM+

128 16 32 16 35 916

192 24 48 24 51 1756

256 32 64 32 67 2852

7 Conclusion

In this paper, we discussed the challenges of instantiating GM and DGM
with XMSS-T and provided a tweak in the setup phases of GM and DGM to
overcome the discussed challenges. Moreover, we analyzed the bit security of
DGM when instantiated with XMSS-T and showed that because of the parallel
multiple XMSS-T instances construction, DGM is vulnerable to multi-target
attacks that may enable forgery with 44 bits less effort than that of XMSS-T
when the scheme is used to sign 264 messages. Finally, we proposed a solution
that mitigates these multi-target attacks and presented a new message hashing
mechanism that reduces the associated signature and secret key sizes.
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A XMSS-T Addressing Scheme

XMSS-T utilizes a hash function addressing scheme that enumerates each hash
call in the scheme and outputs a distinct hash randomizer r and bit mask q
for each hash call to mitigate multi-target attacks [22]. XMSS-T has three main
substructures, WOTS-T, L-tree, and Merkle tree hash. The first substructure
requires for each hash call a hash randomizer and bit mask, each of n bits. The
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other two substructures require a hash randomizer of n bits and 2n bits for the
bit mask. The hash function address consists of 256 bits. There are three address
types for the three substructure mentioned above which are described below.

1. WOTS-T hash address: The first field (32 bits) is the tree layer address
which indexes a given layer in which the WOTS-T exists (this value is set
to zero for DGM). The tree address (64 bits) indexes a tree within the
layer (this value is set to zero for DGM), and the addressing type (32 bits)
which is equal to zero. The key pair address (32 bits) denotes the index of
the WOTS-T within the hash tree. The chain address (32 bits) denotes the
number of the WOTS-T secret key on which the chain is applied. The hash
address (32 bits) denotes the number of the hash function iterations within
a chain. The last field is KeyAndMask (32 bits) which is used to generate
two different addresses for one hash function call (it is set to zero to get
the hash randomizer R and it is set to one to get the bit mask, each of n bits).

2. L-tree hash address: The first field (32 bits) is the layer address which
indexes the layer in which the WOTS-T exists (this value is set to zero for
DGM). The tree address (64 bits) indexes a tree within the layer (this value
is set to zero for DGM), and the addressing type (32 bits) which is equal
to one. The L-tree address (32 bits) denotes the leaf index that is used to
sign the message. The tree height (32 bits) encodes the node height in the
L-tree, and the tree index (32 bits) refers to the node index within that
height. The last field is KeyAndMask (32 bits) which in this substructure
is used to generate three different addresses for one hash function call (it is
set to zero to get the hash randomizer R, one to get the first bit mask and
two to get the second bit mask, each of n bits).

3. Merkle tree hash: The first field (32 bits) is the layer address which indexes
the layer in which the WOTS-T exists (this value is set to zero for DGM).
The tree address (64 bits) indexes a tree within the layer (this value is set
to zero for DGM), and the addressing type (32 bits) which is equal to two.
Then a padding of zeros (32 bits). The tree height (32 bits) encodes the
node height in the main Merkle tree and the tree index (32 bits) refers to
the node index within that height. As the L-tree addressing, the last field
is KeyAndMask (32 bits) which is used to generate three different addresses
for one hash function call (it is set to zero to get the hash randomizer R,
one to get the first bit mask and two to get the second bit mask, each of n
bits).
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