
Accelerating the Delfs–Galbraith algorithm
with fast subfield root detection

Maria Corte-Real Santos1∗, Craig Costello2, and Jia Shi3†

1 University College London, London, UK
maria.santos.20@ucl.ac.uk

2 Microsoft Research, Redmond, USA
craigco@microsoft.com

3 University of Waterloo, Waterloo, Canada
j96shi@uwaterloo.ca

Abstract. We give a new algorithm for finding an isogeny from a given
supersingular elliptic curve E/Fp2 to a subfield elliptic curve E′/Fp,
which is the bottleneck step of the Delfs–Galbraith algorithm for the
general supersingular isogeny problem. Our core ingredient is a novel
method of rapidly determining whether a polynomial f ∈ L[X] has any
roots in a subfield K ⊂ L, while avoiding expensive root-finding algo-
rithms. In the special case when f = Φℓ,p(X, j) ∈ Fp2 [X], i.e., when f
is the ℓ-th modular polynomial evaluated at a supersingular j-invariant,
this provides a means of efficiently determining whether there is an ℓ-
isogeny connecting the corresponding elliptic curve to a subfield curve.
Together with the traditional Delfs–Galbraith walk, inspecting many ℓ-
isogenous neighbours in this way allows us to search through a larger pro-
portion of the supersingular set per unit of time. Though the asymptotic
Õ(p1/2) complexity of our improved algorithm remains unchanged from
that of the original Delfs–Galbraith algorithm, our theoretical analysis
and practical implementation both show a significant reduction in the
runtime of the subfield search. This sheds new light on the concrete hard-
ness of the general supersingular isogeny problem (i.e. the foundational
problem underlying isogeny-based cryptography), and has immediate im-
plications on the bit-security of schemes like B-SIDH and SQISign for
which Delfs–Galbraith is the best known classical attack.

Keywords: Isogeny-based cryptography, supersingular isogeny problem,
Delfs–Galbraith algorithm.

1 Introduction

In its most general form, the supersingular isogeny problem asks to find an
isogeny

ϕ : E1 → E2

∗Supported by EPSRC grant EP/S022503/1.
†Part of this work was done while Jia was an intern at Microsoft Research.

between two given supersingular curves, E1/F̄p and E2/F̄p. We emphasize that
this is the general problem, where we do not assume knowledge of the degree of
the isogeny, or any torsion point information. The best known classical attack
against the supersingular isogeny problem is the Delfs–Galbraith algorithm [13],
which, for two curves E1 and E2 defined over Fp2 , has two steps. The first
step computes random walks in the ℓ-isogeny graph (for some choice of ℓ) to
find isogenies ϕ1 : E1 → E′

1 and ϕ2 : E2 → E′
2, such that E′

1/Fp and E′
2/Fp are

subfield curves. There are around ⌊p/12⌋ supersingular curves up to isomorphism
and O(p1/2) of them are subfield curves, therefore this step runs in Õ(p1/2) bit
operations. The second step searches for a subfield isogeny ϕ′ : E′

1 → E′
2 that

connects ϕ1 and ϕ2, and it requires Õ(p1/4) bit operations [13]. It follows that the
entire algorithm runs in Õ(p1/2) operations on average, with the cost dominated
by the first step, i.e., the search for paths to subfield curves.

Solver. To our knowledge, a precise complexity analysis of the Delfs–Galbraith
algorithm has not been conducted. We fill this gap by presenting an optimised
implementation of the Delfs–Galbraith algorithm, called Solver, and conducting
experiments over many thousands of instances of the subfield search problem to
determine its concrete complexity. Though Solver finds the full path, we focus on
the optimisation and complexity of the bottleneck step: finding subfield curves.
These optimisations include:

– Choice of ℓ. In their high-level description of the algorithm, Delfs and Gal-
braith do not specify which ℓ-isogeny graph to walk in. Framing the problem
of taking a step in the ℓ-isogeny graph as computing the roots of a polyno-
mial of degree ℓ, in Solver we chose the simplest and most efficient choice:
ℓ = 2.

– Fast square root finding in Fp2 . We use the techniques presented in [25,
§5.3] to construct an optimised algorithm for finding square roots in Fp2 ,
which only requires two Fp exponentiations and a few Fp multiplications
and additions.

– Random walks in the 2-isogeny graph. We implement a depth-first search
to find subfield nodes in the 2-isogeny graph and give a precise complexity
analysis on the number of Fp operations required.

SuperSolver. The main contribution of this paper is a new state-of-the-art algo-
rithm for solving the general supersingular isogeny problem, called SuperSolver.
This is a variant of the Delfs–Galbraith algorithm that exploits a combination of
our new subfield root detection algorithm and the use of modular polynomials.
We show that we can efficiently determine whether a polynomial f ∈ L[X] has
a root in a subfield K ⊂ L, without finding any roots explicitly. Though this
algorithm works for general fields and polynomials (and may be of use in other
contexts), we apply it to the case where f = Φℓ,p(X, j) ∈ Fp2 [X], i.e., where f is
the ℓ-th modular polynomial evaluated at a supersingular j-invariant. This pro-
vides a means of quickly determining whether there is an ℓ-isogeny connecting

2

the corresponding elliptic curve to a subfield curve: we develop this Neighbour-
InFp subroutine in Section 4, and use it as the core of our SuperSolver algorithm
in Section 5.

In Section 7, we conduct extensive experiments using both our Solver and Su-
perSolver libraries, all of which show that SuperSolver performs much faster than
Solver. In Table 1, we give a taste of the types of improvements we see in search-
ing for subfield nodes over supersingular sets of various sizes, taking a number
of primes from the isogeny-based literature. These primes were specifically cho-
sen because the Delfs–Galbraith algorithm for the general supersingular isogeny
problem is the best known classical attack against the cryptosystems they target.

Our Solver and SuperSolver algorithms are written in Sage [30] and Python
and can be found at

https://github.com/microsoft/SuperSolver.

Cryptographic implications. This paper has implications on the classical
bit-security of any supersingular isogeny-based scheme for which the Delfs–
Galbraith algorithm is the best known attack; this includes the key exchange
scheme B-SIDH [11], the signature scheme in [16, §4], and the signature scheme
SQISign [15]. For any proposed instantiation of such schemes, our SuperSolver
suite allows the analysis in Section 7 to be conducted on input of any prime
p, and determines a precise estimate on the number of operations required (on
average) to solve the corresponding supersingular isogeny problem. This is es-
pecially accurate when the cardinality of the class group is known, which has
recently been shown to be feasible for primes up to 512 bits [5]. On the other
hand, we point out that the improvements in this paper have no direct impact on
the classical security of SIDH [14] and SIKE [19]. Though the Delfs–Galbraith
algorithm can be used to attack any supersingular isogeny-based cryptosystem,
there are much faster claw-finding algorithms (see [14,1]) for solving the special
instances of isogeny problems that arise in those schemes.

Roadmap. We give the preliminaries in Section 2. In Section 3, we present
our optimised instantiation of the traditional Delfs–Galbraith algorithm, called
Solver. In Section 4, we construct an efficient algorithm to detect whether a poly-
nomial has a root in a subfield. We use this algorithm to build SuperSolver in
Section 5. In Section 6, we present a worked example to highlight the differences
between both algorithms, and in Section 7 we present a number of implementa-
tion results that illustrate the concrete improvements offered by SuperSolver.

2 Preliminaries

In this section we briefly set notation and give the requisite background for this
paper. Readers familiar with the paragraph headings below are welcome to skip
to the final two paragraphs.

3

https://github.com/microsoft/SuperSolver

Solver SuperSolver

Prime p
Nodes Fp-mults. Fastest Nodes Fp-mults.

inspected per node Sets inspected per node

{3,5,7,9,11} 1,716,751 55.6

B-SIDH-p247 [11] 248,913 402 {3,5,7,9,11,13} 1,727,601 56.0

{3,5,7,11,13} 1,731,625 57.8

{3,5,7,9,11} 1,680,337 59.1

TwinSmooth-p250 [12] 233,507 427 {3,5,7,9,11,13} 1,699,825 59.1

{3,5,7,11,13} 1,697,769 59.8

{3,5,7,9,11} 1,716,751 55.7

SQISign-p256 [15] 248,915 403 {3,5,7,9,11,13} 1,727,601 55.9

{3,5,7,11,13} 1,731,625 57.8

{3,5,7,9,11,13} 1,529,025 63.1

TwinSmooth-p384 [12] 163,331 610 {3,5,7,9,11} 1,464,709 65.1

{3,5,7,9,11,13,17} 1,487,919 65.4

{3,5,7,9,11,13} 1,397,761 69.1

TwinSmooth-p512 [12] 127,511 784 {3,5,7,9,11,13,17} 1,391,645 70.0

{3,5,7,9,11,13,19} 1,351,509 72.1

Table 1. The number of nodes inspected per 108 field multiplications and for primes
targeting schemes where Delfs–Galbraith is the best known classical attack. The Solver
column corresponds to optimised Delfs–Galbraith walks in X (F̄p, 2) – see Section 3. The
SuperSolver columns correspond to enabling our fast subfield root detection algorithm
with the three fastest sets of ℓ’s (top to bottom) – see Section 5. We also give the
approximate number of Fp-multiplications per node inspected at each step, as computed
during the precomputation phase that predicts which sets will perform fastest; for Solver
we have use the empty set {}.

Modular polynomials. We will useΦℓ(X,Y) ∈ Z[X,Y] to denote the classical
modular polynomial (see [29]) that parameterises pairs of elliptic curves with
cyclic ℓ-isogeny in terms of their j-invariants: Φℓ(j1, j2) = 0 if and only if j1 and
j2 are the j-invariants of ℓ-isogenous elliptic curves. Readers unfamiliar with
modular polynomials are encouraged to look at Sutherland’s database4, which
contains Φℓ(X,Y) for all ℓ ≤ 300 and for all primes ℓ ≤ 1000. The polynomial
Φℓ is symmetric in X and Y , i.e., Φℓ(X,Y) = Φℓ(Y,X), and if ℓ =

∏n
i=1 ℓ

ei
i is

4See [28], a database computed using techniques from various joint works of
his [29,6].

4

ℓ’s prime decomposition, the degree of Φℓ(X,Y) in both X and Y is

Nℓ := deg (Φℓ(X,Y)) =

n∏
i=1

(ℓi + 1)ℓei−1
i . (1)

The difficulty in computingΦℓ(X,Y) is in the size, rather than the number, of its
coefficients. As discussed in [29], storingΦℓ(X,Y) requires O(ℓ3 log ℓ) bits, which
corresponds to several gigabytes for ℓ ≈ 1000 and many terabytes for ℓ ≈ 104.
Fortunately, for our purposes, the modular polynomials already contained in
Sutherland’s database are more than sufficient. Moreover, we will be using them
in the context of cryptanalysing instances of the supersingular isogeny problem
over a fixed finite field Fp2 , meaning we can reduce all of the large coefficients
modulo p as a precomputation. Indeed, even before the target j-invariants are
known, Φℓ(X,Y) ∈ Z[X,Y] will be preprocessed into

Φℓ,p(X,Y) ∈ Fp[X,Y],

where we note the additional subscript, defined by reducing all coefficients of
Φℓ(X,Y) modulo p. By the symmetry of Φℓ(X,Y), this means we must store
around N2

ℓ /2 coefficients in Fp, requiring only O(ℓ2 log p) bits.

Supersingular isogeny graphs. Following [13, §1], let p > 3 be a prime and
let Sp2 denote the set of all supersingular j-invariants in Fp2 . The number of such
j-invariants is #Sp2 = ⌊p/12⌋+ b, where b ∈ {0, 1, 2} is determined by the value
of p mod 12 [27, Theorem V.4.1(c)]. For any positive integer ℓ with p ∤ ℓ, we use
X (F̄p, ℓ) to denote the supersingular isogeny graph whose nodes correspond to
the j-invariants in Sp2 and whose edges are ℓ-isogenies defined over F̄p. When ℓ
is prime, these graphs are fully connected [23], and (with the possible exception
of a few nodes) are (ℓ+ 1)-regular expander graphs that satisfy the Ramanujan
property [24]. Crucial to both the Delfs–Galbraith algorithm and this paper is
the subset Sp of supersingular j-invariants defined over Fp. The size of this set is

#Sp = Õ(p1/2) [13, Equation 1], and since #Sp2 = O(p), the expected number
of randomly chosen elements in Sp2 we would have to take before finding one in

Sp is in Õ(p1/2).

The Delfs–Galbraith algorithm. The Delfs–Galbraith paper largely focusses
on the problem of finding an isogeny ϕ′ : E′

1 → E′
2 between two supersingular

curves, E′
1/Fp and E′

2/Fp, whose j-invariants are in Sp. One of their main re-

sults is an algorithm [13, Algorithm 1] that computes such a ϕ′ in Õ(p1/4) bit
operations. At the end of their paper [13, Section 4], they show how this can be
used as a subroutine to give an algorithm for the general supersingular isogeny
problem, which asks to find an isogeny

ϕ : E1 → E2

between two supersingular curves, E1/Fp2 and E2/Fp2 , whose j-invariants are in
Sp2 . The idea is to perform simple non-backtracking random walks in X (F̄p, ℓ)

5

until hitting an elliptic curve with a j-invariant defined over Fp. Finding a walk
from E1/Fp2 to E′

1/Fp yields an isogeny ψ1 : E1 → E′
1, and finding a walk from

E2/Fp2 to E′
2/Fp yields an isogeny ψ2 : E2 → E′

2. A full isogeny ϕ : E1 → E2

is then found as the composition ϕ = (ψ̂2 ◦ ϕ′ ◦ ψ1), where ψ̂2 : E
′
2 → E2 is the

dual of ψ2, and ϕ
′ : E′

1 → E′
2 is the subfield isogeny above that can be computed

in Õ(p1/4) bit operations. The bottleneck in the Delfs–Galbraith algorithm is
finding the paths from the curves with j ∈ Sp2 \ Sp to the curves with j ∈ Sp.
From the above discussion, the number of j-invariants in Sp2 we expect to search

over before finding one in Sp is Õ(p1/2). Following [13, Section 4], the steps
taken in X (F̄p, ℓ) are non-backtracking, meaning that one stores the current j-
invariant, jc, and the previous j-invariant jp. To take the next step, one then
chooses one of the Nℓ − 1 roots (see Equation 1) of

Φℓ(X, jc)/(X − jp)

at random. Since ℓ and Nℓ are fixed and small, it follows that the asymptotic
complexity of the search for subfield j-invariants is Õ(p1/2). Before presenting our
improved search for subfield j-invariants, in Section 3 we present an optimised
version of this algorithm, and subsequently replace the Õ above with a precise,
concrete complexity.

Factoring polynomials in finite fields. Let f(X) ∈ Fq[X] be a monic poly-
nomial of degree ℓ with q = pk for a prime p, and for the purposes of this paper,
assume that p is very large (i.e., cryptographically sized) and ℓ is relatively small
(i.e., ℓ < 100). The literature contains a number of methods for finding the ir-
reducible factors of f in Fq[x], and we briefly mention the most applicable and
well-known algorithms for our scenario. Berlekamp’s algorithm [4] factors f using
an expected number of O(ℓ3+ℓ2 log ℓ log q) operations in Fq [26, Theorem 20.12].
This appears to be superior to the Cantor-Zassenhaus algorithm [8], which uses
an expected number of O(ℓ3 log q) operations in Fq [26, Theorem 20.9], however
one can take advantage of certain time-memory trade-offs to implement Cantor-
Zassenhaus so that it requires O(ℓ3 + ℓ2 log q) operations in Fq [26, Exercise
20.13]. Note that both of these big-O complexities hide a number of subtleties,
that Fq-inversions are included as Fq operations, and moreover that both of these
algorithms are probabilistic. Their deterministic variants have worse complexi-
ties [26, §20.6].

Polynomial GCD. Euclid’s integer GCD algorithm is easily adapted to com-
pute polynomial GCD’s [26, §17.3]. Computing the GCD of two polynomials
g, h ∈ Fq[x] requires O(deg(g) · deg(h)) operations in Fq. Again, here each Fq

inversion is counted as an Fq operation. In order to make our algorithms run
as fast as possible, one of the necessary subroutines we derive in Section 4 is
an inversion-free polynomial GCD algorithm, for which we state a tight upper
bound on the concrete complexity.

6

Measuring complexity. Throughout this paper we will avoid stating asymp-
totic (i.e., big-O-style) complexities in favour of stating concrete ones. One of
our goals in Section 3 is to replace the Õ(p1/2) complexity of the original Delfs–
Galbraith algorithm with a closed formula that can be used to give precise
estimates on the classical security of the relevant cryptographic instantiations.
We will use the metric of Fp multiplications as convention, noting that it is rel-
atively straightforward to convert this into a more fine-grained metric (e.g. bit
operations, machine operations, cycle counts, gate counts, circuit depth, etc.)
depending on the context and on the implementation of the Fp arithmetic. For
simplicity, we will count Fp squarings as multiplications and ignore additions.
We justify this by noting that, roughly speaking, the ratio of multiplications to
additions in all of the algorithms in this work are similar, and the complexity of
Fp additions have a minimal impact on any of the aforementioned metrics.

Subfield search complexity determines concrete bit security. Both the
Solver implementation detailed in Section 3 and the SuperSolver implementation
detailed in Section 5 solve all instances of the general supersingular isogeny
problem. On input of any prime p and any two supersingular j-invariants in
Sp2 , both implementations will always terminate with an isogeny that solves
the corresponding problem. We emphasise that henceforth our sole focus is on
the Õ(p1/2) subfield search phase of the Delfs–Galbraith algorithm. Finding a
path between subfield nodes requires Õ(p1/4) operations, which is negligible in
both the asymptotic sense and in the sense of obtaining cryptographic security
estimates. To see this, suppose the asymptotic Õ(p1/2) complexity of the first
phase is replaced by a concrete complexity of cp·p1/2, and the asymptotic Õ(p1/4)
complexity of the second phase is replaced by a concrete complexity of dp · p1/4,
where cp and dp are polynomials in log p. The total complexity of the Delfs–
Galbraith algorithm is then

cp · p1/2 + dp · p1/4.

For primes of cryptographic size, small changes in cp have an immediate influence
on the total runtime of the algorithm, while much larger changes in dp will not
play a part in the bit security of the problem. For p > 2200, a factor 2 change in
cp changes the bit security of the problem by 1, while dp would have to change
by a factor of at least 250 to have the same impact on the bit security.

3 Solver: optimised Delfs–Galbraith subfield searching in
X (F̄p, 2)

Recall from the previous section that the non-backtracking walks in X (F̄p, ℓ)
store the current j-invariant, jc, and the previous j-invariant jp, and then take
a step in X (F̄p, ℓ) by choosing one of the Nℓ − 1 roots of Φℓ(X, jc)/(X − jp).

In determining the asymptotic Õ(p1/2) complexity of these walks, Delfs and
Galbraith did not need to analyse the cost of a single step. However, to set the

7

stage for our improved search in Section 5, we must optimise this process and
determine its concrete cost. The first parameter that must be specified is ℓ, i.e.,
the isogeny graph to walk around in. Considering both Equation (1) and the
complexity of the factorisation algorithms in Section 2, we chose ℓ = 2 to obtain
most efficient and simplest choice where we are able to take advantage of fast
explicit methods for computing square roots in Fp2 .

Scott’s fast square roots in Fp2 . Optimal computation of square roots in
extension fields of large characteristic requires careful attention to detail. A 2013
paper by Adj and Rodŕıguez-Henŕıquez [2] cost the process of computing square
roots in Fp2 at two Fp residuosity tests, two Fp square roots, and one Fp inver-
sion, for a total of five exponentiations in Fp. In [25, §5.3], Scott shows that these
operations can be combined in a clever way to significantly reduce this cost. The
inputs into the Tonelli-Shanks Fp square root algorithm [22, Algorithm 3.34] can
be tweaked in such a way that the two residuosity tests are absorbed into the
two square roots. Moreover, he shows that most of the inversion cost can also
be absorbed by application of Hamburg’s combined ‘square-root-and-inversion’
trick [17]. This reduces the bulk of cost of an Fp2 square root from five Fp expo-
nentiations to just two. In addition, there are a handful of Fp multiplications and
additions that either update the Tonelli-Shanks outputs depending on the resid-
uosity outcomes or collect and combine the results according to the “complex”
formula in [25, §5.3]. We use this to construct a general square root algorithm in
our implementation that is highly optimised with respect to the number of Fp

operations it incurs5.

Taking a step in X (F̄p, 2). After stepping from jp ∈ Fp2 to jc ∈ Fp2 , a non-
backtracking walk in X (F̄p, 2) will step to one of two new nodes: j0 and j1. These
are computed by solving the quadratic equation that arises from the modular
polynomial Φℓ(X,Y) with ℓ = 2:

Φ2(X,Y) = −X2Y 2 +X3 + Y 3 + 1488 · (X2Y + Y 2X)− 162000 · (X2 + Y 2)

+ 40773375 ·XY + 8748000000 · (X + Y)− 157464000000000.

The three neighbours of jc in X (F̄p, 2) are jp, j0, and j1, meaning that Φ2(X, jc)
factorises as

Φ2(X, jc) = (X − jp)(X − j0)(X − j1).

This yields a quadratic equation, whose solutions are j0, j1, defined by X2 +
αX + β = 0, where

α = −j2c + 1488 · jc + jp − 162000,

β = j2p − j2c jp + 1488 · (j2c + jcjp) + 40773375 · jc − 162000 · jp + 8748000000.

5Note that the fixed exponentiations that take place in the calls to Tonelli-Shanks
could be further optimised for a specific p by tailoring a larger window or a different
addition chain, but the impact (for our purposes and comparisons) of this improvement
would be minor.

8

Computing these coefficients costs a small, constant number of Fp operations,
so the process of computing both j0 and j1 from jp and jc boils down to solving
the quadratic equation, which essentially requires one Fp2 square root. Since this
square root incurs two Fp exponentiations and a few additional Fp operations, it
follows that the cost of computing each new j ∈ Sp2 during the walks in X (F̄p, 2)
is (on average) approximately one Fp exponentiation.

The depth first search in X (F̄p, 2). Repeating the process described above
allows us to perform the search for subfield nodes using a depth first search in
a binary tree with d levels as follows. We write jm,n for the n-th node at level
m, where 0 ≤ m ≤ d and 0 ≤ n ≤ 2m − 1. The first three levels are depicted in
Figure 1. We initialise the root node j0,0 as the target j ∈ Sp2 , and set j1,0 and

j0,0

j1,0

j2,0 j2,1

j1,1

j2,2 j2,3

Fig. 1. Levels 0, 1, and 2 of the binary tree in the depth first search of X (F̄p, 2).

j1,1 as two of its three neighbours6 in X (F̄p, 2). The depth first search starts by
setting jc = j1,0 and jp = j0,0. We then solve the quadratic equation above to
obtain j2,0 and j2,1, and repeat this procedure with jc = ji+1,0 and jp = ji,0 for
1 ≤ i ≤ d− 1 until the leftmost leaf jd,0 is computed and the path stack is fully
initialised as

path = [j0,0, j1,0, . . . , jd−1,0, jd,0].

To avoid any waste, we also maintain a stack of the other solution to the
quadratic equations that were computed along the way, which we call sibling
nodes

siblings = [j1,1, . . . , jd−1,1, jd,1].

The algorithm then proceeds back up the levels by popping path until its last
element is the root of a subtree that has not been checked in its entirety. At
this point siblings is popped and pushed into path. When the last element
of path is the root of a subtree that has not been exhausted, we initialise the
process of solving quadratic equations, pushing one of the two solutions into

6Initially we do not have a jp, so all three neighbours can be computed using generic
root finding; our code does this during the setup phase.

9

path and the other into siblings until path contains d + 1 elements. Each
time the quadratic equation solver is called, the two roots (i.e., j-invariants)
are immediately checked; if either of them lie in Fp, it is added to path and
the process is terminated. Otherwise, the process is repeated recursively until
path = [j0,0], in which case the 2d+1 − 1 nodes in the tree have been exhausted
without finding a solution. To guarantee that a solution is found, one could
increase d and start again, but our code proceeds by simply storing the first
(leftmost) leaf and its parent in separate memory so that the process can restart
here and avoid recomputing any prior j’s. As Delfs and Galbraith point out,
setting the depth d = 1

2 log2 p should be enough. Since the number of nodes
in the tree is 2d, increasing d by ϵ makes the failure probability diminish by
1/2ϵ. Setting ϵ = 10 was sufficient in all of our experiments. Finally, as pointed
out by Delfs and Galbraith in [13, §4], this process parallelises perfectly. For P
processors, one can simply compute a binary tree of depth ⌈log2 P ⌉ during setup
and distribute P of the leaf nodes as individual starting points.

The concrete complexity of Delfs–Galbraith. Table 2 reports on exper-
iments conducted using Solver, the optimised instantiation of the traditional
Delfs–Galbraith walk. For each bitlength between 21 and 40, we solved 10,000
instances of the subfield search. In each case we chose 100 random primes and,
for each prime, 100 pseudo-random j-invariants in Sp2 . The numbers in each
column report the averages (as base-2 logarithms) of these search complexities.

Bitlengths of primes p 21 22 23 24 25 26 27 28 29 30

Av. number of nodes visited 8.8 9.4 10.0 10.3 10.9 11.4 11.9 12.3 13.1 13.5

Av. number of Fp-multiplications 14.5 15.0 15.7 16.0 16.7 17.2 17.8 18.2 19.0 19.5

Bitlengths of primes p 31 32 33 34 35 36 37 38 39 40

Av. number of nodes visited 13.5 14.2 14.7 15.3 15.8 16.3 17.1 17.3 17.6 18.1

Av. number of Fp-multiplications 19.5 20.5 20.8 21.3 21.9 22.4 23.2 23.6 24.1 24.6

Table 2. The concrete cost of the subfield search phase of the Delfs–Galbraith over
small fields of various bitlengths. Further explanation in text.

In all cases the number of Fp multiplications is found to be

#(Fp muls.) = c · √p · log2 p,

with 0.75 ≤ c ≤ 1.05. In Section 7, we shed more light on the concrete complexity
of both Solver and SuperSolver.

Remark 1 (Vélu’s formulas). There is no traditional elliptic curve arithmetic
found in either Solver or SuperSolver. All of the steps taken within X (F̄p, 2)

10

and the rapid inspections conducted in X (F̄p, ℓ) use the modular polynomials.
We point out there may be specific instances of p where one could perform
walks faster than repeatedly solving the Φ2,p(X, j) quadratic by, say, employing
Vélu’s formulas [31] with the optimal strategies of De Feo–Jao–Plût [14]. For
example, with a prime p = 2e3f − 1, the price of computing a 2e-isogeny (i.e.,
walking through e nodes in X (F̄p, 2)) in this way may be cheaper than the
price of computing e square roots in Fp2 (note that the latter reveals 2 nodes
each time). However, we argue that these scenarios are likely to only exist for
special instances of the supersingular isogeny problem that are geared towards
cryptosystems like SIDH [14] and SIKE [19]. As discussed in Section 1, here
there are claw-finding algorithms that are much faster than the Delfs–Galbraith
algorithm (though the number of Fp operations required to compute an ℓe-
isogeny still grows with p, and therefore our fast subfield root detection would
also be useful in that context). In the case of both general primes and the types
of primes in Table 1, it is highly unlikely that using Vélu’s formulas [31] will
be competitive with the binary tree depth-first search in X (F̄p, 2); computing
general (

∏
ℓeii)-isogenies from kernel elements is much more expensive than ℓe-

isogenies when ℓ ∈ {2, 3}, and one travels through fewer nodes in Sp2 per (
∏
ℓeii)-

isogeny when the ℓi grow larger.

Remark 2 (Radical isogenies). Another alternative to solving the quadratic equa-
tion that arises from Φ2(X, jc)/(X − jp) is to instead take steps in X (F̄p, 2)
using formulas for radical isogenies [10]. For example, given a supersingular
Montgomery curve parameterised as EA : y2 = x3 + Ax2 + x or as Eα =
x(x − α)(x − 1/α), one can compute non-backtracking chains of 2-isogenies as
either A → A′ → A′′ . . . , or as α → α′ → α′′ . . . , rather than computing the
chain of j-invariants j → j′ → j′′ . . . , as we do. Computing the next value
in all of these chains requires one square root (which dominates the cost for
primes of cryptographic size) and a small handful of additional field operations,
the number of which depends on the choice of chain. In the case of computing
the chains A → A′ → A′′ . . . or α → α′ → α′′ . . . , the number of additional
operations are fewer (see [9] and [7]) than those which we incur using the mod-
ular polynomial, however we have not opted to exploit this minor speedup for
the following reasons. Indeed, it is not true in general that j(EA) ∈ Fp implies
A ∈ Fp or that j(Eα) ∈ Fp implies α ∈ Fp. Since j(EA) = 256(A2−3)3/(A2−4),
in general there are six values of A corresponding to a given j. Similarly, since
j(Eα) = 256(α4 − α2 + 1)3/(α4(α2 − 1)2), in general there are twelve values
of α corresponding to a given j. For large primes it is typically the case that
most (or all) of the A’s and α’s corresponding to a given j ∈ Sp are not defined
over Fp. Thus, if radical isogenies were used to compute chains of α’s or A’s in
the context of Delfs–Galbraith, we would need to compute a value that deter-
mines whether the corresponding j lies in Fp. We note that this can be achieved
without inverting the denominators in the expressions for j(Eα) or j(EA), i.e.,
(a+b·β)/(c+d·β) is in Fp if and only if ad = bc for a, b, c, d ∈ Fp and Fp2 = Fp(β).
Thus, the original Delfs–Galbraith walk in X (F̄p, 2) is likely to save a small, fixed
number of multiplications per 2-isogeny by computing chains of A’s or α’s instead

11

of j’s. However, when invoking our fast subfield root detection in the sections
that follow, it is critical (for Algorithm 2) that the j-invariants of each node
are computed explicitly, so that the higher ℓ-degree modular polynomials can be
used to probe for ℓ-isogenous subfield neighbours. This subsequent computation
of the j-invariant seems to require an additional field exponentiation (we could
not see a way to merge the square roots and inversions into one exponentiation
in these instances), which would kill the potential advantage of radical isogenies
in the optimised SuperSolver algorithm.

Remark 3 (Alternative modular functions). There are several well-known mod-
ular functions other than the j-function – see [29]. A natural question in the
context of this paper is whether any such functions can be used to make the
search for subfield nodes in supersingular isogeny graphs more efficient. For ex-
ample, the modular polynomials for Weber’s f -function [28] are the same degree
as those of the j-function, but have much smaller coefficients, many of which
are zero. If these more compact modular polynomials could be used in the same
way as those for the j-function, the practical gains would be significant. How-
ever, their applicability in the context of SuperSolver appears to be hampered
by reasons similar to those discussed in Remark 2. Weber’s f is related to j via
j = (f24− 16)3/f24, meaning there can be as many as 72 f ’s corresponding to a
single j-invariant, and it is not true in general that given j ∈ Fp, the correspond-
ing f ∈ Fp. Although this makes the Weber polynomials unreliable replacements
in the context of the SuperSolver algorithm, our search for alternative modular
functions that would be compatible with SuperSolver was far from exhaustive,
and it is likely that the j-function is not optimal across all of them. We leave
any further investigations in this direction as future work.

4 Fast subfield root detection

In this section we derive a method for determining whether a polynomial f(X) =
anX

n + ... + a1X + a0 ∈ Fqd [X] with d ≥ 2 has a root lying in the subfield
Fq, where q is a power of prime p. Though this can be achieved by factoring
the polynomial, the methods described in Section 2 become too costly for our
purposes; the number of Fq operations required depends on the size of q, which
hampers their relative efficiency as q grows large. Our aim in this section is to
detail a much faster algorithm that detects whether a root lies in a subfield and
show that the number of Fq operations required by our algorithm only depends
on the degree of f and the degree of the extension d.

As the algorithms in this section may be of independent interest, we leave
them as general as possible before specialising back to the application at hand
in Section 5. The results up to Proposition 1 are presented for general finite
field extensions of the form Fqd/Fq, but we will later specialise to the quadratic
extensions of prime fields, i.e., where q = p and d = 2. The inversion-free GCD
in Algorithm 1 is derived for an arbitrary polynomial ring K[x], but we will only
need to use it in Fp[x].

12

In this section, for a polynomial in Fqd [X], we will reduce the the problem
of detecting a root in Fq to computing the greatest common divisor of d related
polynomials g1, ..., gd. In the case where d > 2, we will need to compute the
GCD of more than two polynomials. This can be done by recursively computing
the GCD of two polynomials and using the following identity:

gcd(g1, g2, ..., gd) = gcd(g1, gcd(g2, ..., gd)). (2)

We aim to minimise the number of Fq multiplications needed to compute the
GCD and so we construct these polyomials so that they are defined over Fq. To
achieve this, we will will need two results. The first is a theorem by Lidl and
Niederreiter [21, Theorem 2.24].

Theorem 1. Let F be a finite extension of a finite field K, both considered
as vector spaces over K. Then the linear transformations from F into K are
exactly the mappings Lβ(α), for β ∈ F , where Lβ(α) = TrF/K(βα) for all
α ∈ F . Furthermore, we have Lβ ̸= Lγ whenever β, γ are distinct elements of
F .

The second result we will need is the following lemma.

Lemma 1. For n ∈ N, let f1, ..., fn ∈ Fqd [X] be polynomials and A ∈ GLn(Fqd).
Defining (g1, ..., gn) := A · (f1, ..., fn), we have

gcd(f1, ..., fn) = gcd(g1, ..., gn).

Proof. If a polynomial h ∈ Fqd [X] divides f1, ..., fn, then h divides any linear
combination of the f1, ..., fn. Therefore, h divides g1, ..., gn. Since A is invertible,
by swapping the roles of gi and fi we see that the converse holds. ⊓⊔

We are now ready to present the main result of this section.

Proposition 1. For some d ≥ 2, let π be the q-power Frobenius endomorphism
in Gal(Fqd/Fq) and consider a polynomial f(X) = anX

n + ... + a1X + a0 ∈
Fqd [X]. Let β be a primitive element of the extension Fqd/Fq, in the sense that
the field extension is generated by a single element β, i.e., Fq(β) = Fqd . For
i = 1, .., d, define the following polynomials over Fqd :

gi :=

d−1∑
j=0

πj(βi−1f).

Then gi(X) ∈ Fq[X], and gcd(g1, ..., gd) divides f . In particular, if gcd(g1, ..., gd)
is of degree 1, then f has a root in Fq. Furthermore, if gcd(g1, ..., gd) = 1, then
f(X) does not have any roots in Fq.

Proof. Using the notation in Theorem 1, we have

gi(X) = [(βi−1an + · · ·+ πd−1(βi−1an))X
n + · · ·+ (βi−1a0 + · · ·+ πd−1(βi−1a0))]

=

n∑
m=0

Lβi−1(am)Xm.

13

By Theorem 1, for all i = 1, ..., d and m = 0, . . . n, we have Lβi−1(am) ∈ Fq,
implying that gi(X) ∈ Fq[X]. Setting (d× d) matrix A to be

A =


1 1 . . . 1
β π(β) . . . πd−1(β)
...

...
. . .

...
βd−1 π(βd−1) . . . πd−1(βd−1)

 =


1 1 . . . 1

β βq . . . βqd−1

...
...

. . .
...

βd−1 (βd−1)q . . . (βd−1)q
d−1

 ,
we have (g1, ..., gd) := A · (f, π(f)..., πd−1(f)). As for Vandermonde matrices [18,

§6.2], we find det(A) =
∏

0≤i<j≤d−1(β
qj − βqi), which is non-zero for β a prim-

itive element of the extension Fqd/Fq and so A ∈ GLd(Fqd). By Lemma 1, we
have

gcd(f, π(f), ..., πd−1(f)) = gcd(g1, ..., gd),

therefore gcd(g1, ..., gd) | f . If gcd(g1, ..., gd) is of degree 1, then (X − r) | f for
some r ∈ Fq, and so f has a root in Fq.

We further note that gcd(f, π(f), ..., πd−1(f)), and therefore gcd(g1, ..., gd),
is precisely the largest divisor of f that is defined over Fq. As a result, if
gcd(g1, ..., gd) = 1, then f(X) does not have any roots in Fq. ⊓⊔

Applying Proposition 1 to detect subfield nodes. The proof of Proposi-
tion 1 tells us that gcd(g1, ..., gd) is precisely the largest divisor of f ∈ Fqd [X]
that is defined over Fq[X]. In our target application of searching for subfield
nodes in large supersingular isogeny graphs, i.e., when d = 2 and q = p, we will
most commonly encounter gcd(g1, g2) = 1, which immediately rules out subfield
neighbours in the ℓ-isogeny graph. Non-trivial GCD’s will, with overwhelmingly
high probability, be of degree 1 and reveal a single subfield node; this is why
our implementation of Algorithm 1 below terminates and returns true when the
degree of the GCD is 1.

For large supersingular isogeny graphs, the only way for the degree of gcd(g1, g2)
to be larger than 1 is when a given j-invariant is ℓ-isogenous to multiple subfield
nodes, or when a given j-invariant is ℓ-isogenous to conjugate j-invariants in
Fp2 .7

In our scenario where d = 2, we see that π(β)+β = 0, meaning that πk(β) =
(−1)kβ. As a result, to detect a subfield root, we compute gcd(g1, βg2) where
g1 = f + π(f) and g2 = f − π(f). In this case we do not need to calculate any
more powers of β and we only need to do one GCD computation.

Inversion-free polynomial GCD. To complete the detection of roots in a
subfield, we must compute the GCD of polynomials in polynomial ring K[X],

7A real-world attack should check any non-trivial GCD, since either of these scenar-
ios are a win for the cryptanalyst; the latter case reveals information about the secret
endomorphism ring of the target isomorphism class (see [20, §5.3]), and the former case
gives multiple solutions to the subfield search problem.

14

where K is a field. In Algorithm 1, we modify Euclid’s polynomial-adapted
algorithm [26, §17.3] to compute the GCD of two polynomials g, h ∈ K[X] while
avoiding inversions in K. We use LC(f) to denote the leading coefficient of the
polynomial f . Note that, for the purposes of incorporating it into our target
application of subfield searching in the next section, the algorithm outputs the
boolean true when the GCD has degree 1 in K[X].

Algorithm 1 InvFreeGCD(): Inversion-free GCD

Input: Polynomials g, h ∈ K[X], such that deg g ≥ deg h

1: Initialise r, s← LC(h) · g,LC(g) · h
2: while deg r ≥ 1 and r ̸= s do
3: r ← r −Xdeg r−deg s · s
4: r, s← LC(s) · r,LC(r) · s
5: if deg r ≤ deg s then
6: r, s← s, r
7: return ¬(deg r = 1 and r ̸= s)

Proposition 2. Given input g, h ∈ K[X] such that deg g ≥ deg h, Algorithm 1
terminates using at most

1

2
(deg g + deg h+ 2)(deg g + deg h+ 3)− 6

multiplications in K.

Proof. Line 1 incurs at most deg g + deg h + 2 multiplications in K. Setting
r0 := r, s0 := s, we define this to be loop 0. For i ≥ 1, we denote by ri, si (where
deg si ≥ deg ri) the polynomials in loop i of Lines 2-6. Using this notation, we
move to Line 7 when deg ri ≤ 1 or ri = si. Now, in loop i ≥ 1 we replace ri by
ri −Xdeg ri−deg sisi, meaning deg ri−1 − deg ri ≥ 1, and compute ri ·LC(si) and
si ·LC(ri). This requires deg ri+deg si+2 multiplications inK. In the worst case,
we have deg ri−1−deg ri = 1 for i ≥ 1, where the number of multiplications will
decrease by exactly 1 after each loop. In the final loop we have deg ri,deg si = 1,
so we compute 4 multiplications in K. In summary, in the worst case we begin
with deg g+deg h+2 multiplications, decreasing by 1 until we get to 4. Therefore,
the total number of multiplications is at most

∑deg g+deg h+2
n=4 n, which is the

bound above. ⊓⊔

In summary, Proposition 1 shows that detecting subfield roots of f ∈ Fqd [X]
amounts to computing the GCD of d related polynomials in Fq[X]. We showed
that computing this GCD is simpler when d = 2. Proposition 2 gives an upper
bound on the number of Fq multiplications required to compute such a GCD
in Fq[X]. In the next section we use these tools to build a faster algorithm for
finding subfield nodes in supersingular isogeny graphs.

15

5 SuperSolver: optimised subfield searching with fast
subfield root detection in X (F̄p, ℓ)

SuperSolver is an algorithm which, given two j-invariants in Sp2 corresponding to
two supersingular curves E1/Fp2 and E2/Fp2 , will, on average, solve the supersin-
gular isogeny problem with lower concrete complexity than the traditional Delfs–
Galbraith Solver algorithm described in Section 3. As in the Delfs–Galbraith
algorithm, SuperSolver takes non-backtracking walks in X (F̄p, 2) until they hit
a j-invariant in Fp. However, at each step of the random walk, SuperSolver also
inspects X (F̄p, ℓ), for carefully chosen ℓ > 2, to efficiently detect whether j has
any ℓ-isogenous neighbours in Fp. Traditionally, inspecting X (F̄p, ℓ) for a sub-
field neighbour requires fully factoring a degree-Nℓ polynomial and determining
whether any of the roots lie in Fp. Performing this for each ℓ would require
O(ℓ3 + 2ℓ2 log p) operations in Fp2 using the modified Cantor-Zassenhaus algo-
rithm (see Section 2), which is prohibitively costly. Following the results from
Section 4, however, SuperSolver conducts the inspection of X (F̄p, ℓ) with O(ℓ2)
multiplications in Fp. We make this count precise later in this section. Crucially,
the number of Fp operations is no longer dependent on the size of p, and this
means that as p grows large, the set of ℓ’s that are optimal to use also grows,
and the more profitable (relatively speaking) SuperSolver becomes. We reiter-
ate that, although both Solver and SuperSolver return the full isogeny between
E1/Fp2 and E2/Fp2 , our discussion focusses on the bottleneck problem of finding
an isogeny from E1/Fp2 (resp. E2/Fp2) to E′

1/Fp (resp. E2/Fp). If, at some node
j, we detect an ℓ-isogenous neighbour in Fp, SuperSolver will then factorise the
degree-Nℓ polynomial Φℓ,p(X, j) to determine the subfield j-invariant. We view
this as a post-computation step, since we are only interested in the concrete
complexity of the average step taken in the walk (which we assume does not find
a subfield node). Note that the paths between E1/Fp2 and E2/Fp2 returned by
both Solver and SuperSolver both look the same: in general, both start and finish
with a chain of 2-isogenies that is connected in the middle by a chain of different
prime-degree isogenies. The main difference, as the results in Section 7 illustrate,
is that 2-isogeny chains at each end are much shorter. Recall that in the original
Delfs–Galbraith algorithm, each step consists of finding the roots of a quadratic
equation in Fp2 [X], which reveals two neighbouring nodes in X (F̄p, 2). In Super-
Solver, after forming a list of carefully chosen ℓ > 2, each step will also include
the rapid inspection of X (F̄p, ℓ) for every ℓ in this list. Though the inspection
of the neighbours in X (F̄p, ℓ) increases the total number of Fp multiplications
at each step, more nodes are checked. We first describe the process of taking a
step in SuperSolver, and then move to describing how to choose the list of ℓ > 2
in order to minimise the number of Fp multiplications per node inspected.

Remark 4 (Odd ℓ only). With the exception of the leaf nodes in the last level of
the binary tree, it is redundant to perform rapid node inspections in X (F̄p, 2ℓ)
if rapid inspections in X (F̄p, ℓ) are also part of the routine, since the latter
inspections will detect (or exclude) subfield nodes at the next level of the walk
down the tree. We therefore find it optimal to only include odd ℓi in the lists

16

constructed at the end of this section. Note that there is no redundancy in
including odd composite ℓi’s in our lists, even if they have proper divisors that
are also in the list.

Rapid inspection of the ℓ-isogenous neighbours. Here we describe Algo-
rithm 2: NeighbourInFp. On input of ℓ, j ∈ Fp2 and p, it outputs true if j is
ℓ-isogenous to a j′ ∈ Fp, and false otherwise. Recall from Equation (1) that
the degree of Φℓ,p in X and Y is Nℓ. The first subroutine of NeighbourInFp is
EvalModPolyj(ℓ, j, p): it evaluates Φℓ,p(X,Y) at Y = j by computing j2, ..., jNℓ ,
and then multiplying these by the corresponding coefficients of Φℓ,p, returning
the coefficients aNℓ

, ..., a0 of X in Φℓ,p(X, j). Note that, since we typically have
a list of multiple ℓ, i.e., ℓ1 < · · · < ℓt, the powers of j (up to Nℓt) are computed
once-and-for-all at every j, and recycled among the ℓi < ℓt. We follow Section 4
to detect whether Φℓ,p(X, j) ∈ Fp2 [X] has a root in Fp. Letting β ∈ Fp2 be such
that Fp2 = Fp(β), we first compute the related polynomials

g1 := (1/2) · [Φℓ,p(X, j) + π(Φℓ,p(X, j))] and

g2 := (−β/2) · [Φℓ,p(X, j)− π(Φℓ,p(X, j))],

where π ∈ Gal(Fp2/Fp) is the Frobenius endomorphism. By Proposition 1, we
have g1, g2 ∈ Fp[X] and

deg (gcd(g1, g2)) = 1 =⇒ Φℓ,p(X, j) has a root in Fp.

We then complete the inspection of X (F̄p, ℓ) by using Algorithm 1 to calculate
gcd(g1, g2). If gcd(g1, g2) ̸= 1, then (for large enough p) it is overwhelmingly
likely that deg (gcd(g1, g2)) = 1, which is why our implementation uses the
degree of the GCD as the criterion for terminating the subfield search. Another
possibility is to terminate whenever gcd(g1, g2) is non-constant, and then to
inspect the higher degree GCD according to the two possible scenarios discussed
in Section 4.

Note that if we have a polynomial f(X) = anX
n+an−1X

n−1+...+a1X+a0 ∈
Fp2 [X] then

1

2
[f + π(f)] = Re(an)X

n +Re(an−1)X
n−1 + ...+Re(a1)X +Re(a0) ∈ Fp[X],

−β
2

[f − π(f)] = Im(an)X
n + Im(an−1)X

n−1 + ...+ Im(a1)X + Im(a0) ∈ Fp[X],

where, for a+ bβ ∈ Fp2 , Re(a+ bβ) = a and Im(a+ bβ) = b, in analogy with the
notation used for complex numbers. As a result, we can obtain g and h directly
from f = Φℓ,p by computing

g1 = XNℓ + ...+Re(a0), and g2 = Im(aNℓ−1)X
Nℓ−1 + ...+ Im(a0).

This avoids having to compute any Fp2 multiplications to calculate the related
polynomials g1, g2.

17

Algorithm 2 NeighbourInFp(): Detect whether j ∈ Fp2 is ℓ-isogenous to a j′ ∈
Fp

Input: ℓ, j, p

1: aNℓ , ..., a0 ← EvalModPolyj(ℓ, j, p)
2: g1 ← XNℓ + ...+Re(a0)
3: g2 ← Im(aNℓ−1)X

Nℓ−1 + ...+ Im(a0)
4: return InvFreeGCD(g1, g2)

Cost of Inspecting the ℓ-isogeny Graph. Evaluating Φℓ,p(X,Y) at Y = j
with EvalModPolyj requires at most 9Nℓ(Nℓ−1) multiplications in Fp, noting that
one Fp2 multiplication is equivalent to 3 Fp multiplications. By Proposition 2, we
compute InvFreeGCD(g1, g2) with at most (2Nℓ+1)(Nℓ+1)−6 Fp multiplications.
Therefore, for a fixed ℓ, the cost of inspecting X (F̄p, ℓ) is

costℓ =
1

Nℓ
[#Fp multiplications needed to inspect ℓ-isogenous neighbours]

≤ 1

Nℓ
[11N2

ℓ − 6Nℓ − 5],

which depends only on ℓ. This means that, for each ℓ, costℓ can be computed
once for all primes. In Table 3 we present the ℓ with the lowest cost, ordering
them by increasing costℓ from left to right.

ℓ 3 5 7 9 11 13 17 19 15 23

Nℓ 4 6 8 12 12 14 18 20 24 24

Fp muls per node 16.3 24.5 32.6 48.8 48.8 56.8 72.8 80.9 96.9 96.9

ℓ 25 29 21 31 27 37 41 43 33 35

Nℓ 30 30 32 32 36 38 42 44 48 48

Fp muls per node 120.9 120.9 128.9 128.9 144.9 152.9 168.9 177.0 192.9 192.9

Table 3. The cost of inspecting ℓ-isogenous neighbours, costℓ, for ℓ ordered by increas-
ing cost from left to right.

The important takeaway from Table 3 is that the number of Fp multiplica-
tions incurred by our algorithm does not grow with p. This count is fixed and
depends only on ℓ. Looking back at the root solving algorithms in Section 2,
we see a stark difference in expected performance. Those algorithms have many
constants hidden by the big-O, have a leading ℓ3 term (compared to our ℓ2

term), and, importantly, the number of field operations they incur grows as the
field grows due to their implicit dependency on log p. Moreover, as mentioned
in Section 2, the complexities cited are for probabilistic root finding algorithms.
Their deterministic variants have even worse complexities [26, §20.6].

18

Choosing the ℓi to minimise the cost of a step. We consider the cost of
each step in SuperSolver, which we denote by the ratio

cost =
total # of Fp multiplications

total # of nodes revealed
. (3)

The aim of this section is to describe how to construct a list of ℓi that minimises
the cost. Recall from in Table 3 that the ℓ’s that give the cheapest cost per node
inspected are (from left to right)

[3, 5, 7, 11, 13, 9, 17, 19 . . .]. (4)

We will use Lb to denote each list of ℓi and costLb
to denote the corresponding

cost, where the bit representation of b specifies the set of ℓ’s from Equation (4);
the least significant bit of b determines if 3 is included, the second least significant
bit of b determines if 5 is included, and so on. For example, L0 = {}, L2 = {5},
and and L11 = {3, 5, 7}. Each step will always include revealing 2 neighbours in
X (F̄p, 2), therefore for a node j we have for each step:

total # of Fp muls. ≥ #Fp muls. needed to find roots of Φ2,p(X, j);

total # of nodes revealed ≥ 2.

Here, equality holds only when we take the list to be L0, which corresponds to the
original Delfs–Galbraith algorithm. Minimising the cost in Equation (3) is a non-
trivial task. We first restrict the Lb to only contain ℓ such that costℓ < costL0

,
otherwise it would be more advantageous to take another step by moving to a
neighbouring node in X (F̄p, 2). We emphasise that costL0 grows with p, whereas
costℓ stays fixed. This signifies that the condition on ℓ becomes less restrictive
as p increases. Suppose that, imposing this condition we get Lb ⊆ [ℓ1, ..., ℓn]. We
then exhaust all b < 2n, corresponding to subsets of [ℓ1, ..., ℓn], to determine the
Lb that minimise Equation (3). It is important to note that, as this optimisation
depends only on the prime p, Lb can be determined in the precomputation.

6 A worked example

We now use a worked example to illustrate how the Solver and SuperSolver pro-
grams solve the supersingular isogeny problem, and to highlight the differences
between them. Our SuperSolver suite is written in Sage/Python and a boolean
variable supersolver specifies whether Solver or SuperSolver is used. For a prime
p, and two supersingular j-invariants j1 and j2 defined over Fp2 = Fp(β), Solver
runs by entering

Solver(p, j10, j11, j20, j21, false)

and SuperSolver runs by calling

Solver(p, j10, j11, j20, j21, true),

where j10 = Re(j1), j11 = Im(j1) and similary for j20, j21.

19

We picked
p = 220 − 3,

the smallest of the primes from Table 4 (of Section 7), and generated two pseudo-
random8 j-invariants in Sp2 \ Sp:

j1 = 129007β + 818380 and j2 = 97589β + 660383.

Preprocessing. The preprocessing phase of both programs starts by construct-
ing the extension field Fp2 = Fp(β), where β

2 is the first non-square in the
sequence −1,−2,2,−3,3,. . . . It then computes a list of constants for the Tonelli-
Shanks subroutine, most notably the exponent (p− 2e − 1)/2e+1, where e is the
maximum integer such that 2e | (p−1). This exponent is Scott’s ‘progenitor’ [25,
p. 3], which essentially determines the complexity of Fp square roots, and there-
fore of Fp2 square roots. As a result, it determines the cost of taking a step in
X (F̄p, 2) – see Section 3. The preprocessing phase then computes a set of integers
ℓ ≥ 3 (according to the optimisations in Section 5 and the relevant heuristics
in [13]), fetches the associated files (originally from Sutherland’s database [28])
containing Φℓ(X,Y) ∈ Z[X,Y] and reduces all of the coefficients to store a set
of new, more compact files containing elements of Fp that define each of the
Φℓ,p(X,Y) ∈ Fp[X,Y]. Note that this is done for both Solver and SuperSolver,
since both of these programs use the original Delfs–Galbraith subfield path al-
gorithm [13, Algorithm 1] after the searches for subfield nodes is complete. It is
important to note, especially in the cryptanalytic context, that all of these pre-
processing steps only depend on p and can therefore be done without knowledge
of j1 and j2.

Solver. The optimised walk in X (F̄p, 2) proceeds exactly as described in Sec-
tion 3, i.e., using the depth first search through the binary trees rooted at j1
and j2, until both searches find the subfield nodes j′1 ∈ Fp and j′2 ∈ Fp. In the
case of our example, paths were found to j′1 = 760776 and j′2 = 35387, depicted
in Figure 2 and Figure 3. They correspond to ϕ1 : E1 → E′

1 and ϕ2 : E2 → E′
2,

where j(E1) = j1, j(E
′
1) = j′1, j(E2) = j2, and j(E

′
2) = j′2.

Solver then computes a connecting path between the subfield nodes following
Delfs–Galbraith [13, Algorithm 1]. This is depicted in Figure 4. Solver simply

reverses the steps in ϕ2 to obtain its dual, ϕ̂2, and outputs the full path as
ϕ : E1 → E2 as ϕ = ϕ̂2 ◦ ϕ′ ◦ ϕ1.

SuperSolver. With p = 220−3, the preprocessing phase determined that Super-
Solver is optimal with L3 = {3, 5} (see also Table 4 in the next section). Before
departing the starting node j1 = 129007β + 818380, SuperSolver performs the
rapid inspection of its 3- and 5-isogenous neighbours as described in Section 5.
It then takes steps in X (F̄p, 2) as in Section 3, but at each new node it performs

8We do this by taking long walks in X (F̄p, 3) away from a known subfield curve.

20

ϕ1 : j1 219247β + 863507 489342β + 132142

174188β + 794346 291380β + 146098 148602β + 24450

263095β + 184707 37438β + 90559 1027930β + 498080

612554β + 208821 994015β + 681197 206051β + 982009

649416β + 751358 203489β + 43055 393773β + 1028490

318158β + 140927 175225β + 937858 971263β + 725197

348684β + 935077 341898β + 405481 274229β + 367729

j′1 = 760776

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Fig. 2. A walk through X (F̄p, 2) for p = 220 − 3 during Solver. The walk starts at
j1 = 129007β + 818380 ∈ Sp2 and finds the subfield node j′1 = 760776 ∈ Sp after 21
steps.

21

ϕ2 : j2 867493β + 220256 252807β + 1011175

657423β + 286117 440840β + 706619 953362β + 11601

734841β + 660440 919529β + 442520 219960β + 646080

638727β + 940073 219719β + 594710 619876β + 961666

407014β + 868179 535787β + 1046047 138865β + 8726

1016378β + 696447 289439β + 170877 665078β + 700037

895198β + 793471 562302β + 547814 68076β + 946405

j′2 = 35387

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Fig. 3. A walk through X (F̄p, 2) for p = 220 − 3 during Solver. The walk starts at
j2 = 97589β+660383 ∈ Sp2 and finds the subfield node j′2 = 35387 ∈ Sp after 21 steps.

ϕ′ : j′1 815910 848568 157399 451011 820763

j′2 286978 76159

31 17 31 29 31

31

17 37

Fig. 4. A path connecting two subfield j-invariants by taking steps in X (F̄p, ℓ) with
ℓ ∈ {17, 29, 31, 37}. The walk starts at j′1 = 760776 ∈ Sp and connects to j′2 = 35387 ∈
Sp after 8 steps.

22

the rapid inspection of the 3- and 5-isogenous neighbours. In our example, both
walks found a subfield node after 2 steps in X (F̄p, 2). The walk from j1 found a
3-isogenous neighbour and the walk from j2 found a 5-isogenous neighbour. The
final step that finds ϕ′ is implemented in SuperSolver exactly as it was for Solver.
The three isogenies ϕ1, ϕ2, and ϕ

′, comprising the full isogeny ϕ = ϕ̂2 ◦ ϕ′ ◦ ϕ1,
are depicted in Figure 5.

ϕ1 : j1 219247β + 863507 489342β + 132142 j′1 = 35387

ϕ2 : j2 867493β + 220256 252807β + 1011175 j′2 = 292917

ϕ′ : j′1 658300 343840 560315

j′2 439276

2 2 3

2 2 5

17 29 31

17

37

Fig. 5. The three paths found comprising an isogeny from E1 to E2 as found by Su-
perSolver.

To illustrate the core idea in this paper, we focus on the isogeny ϕ1 depicted
at the top of Figure 5 and walk through the steps of the NeighbourInFp algorithm.
Evaluating the third modular polynomial at the intermediate j-invariants (Step 1
of Algorithm 2) yields

Φ3,p(X, 219247β + 863507) = X4 + (212814β + 479338)X3 + (408250β + 920025)X2

+ (811739β + 93038)X + 942336β + 847782;

Φ3,p(X, 489342β + 132142) = X4 + (872004β + 13960)X3 + (1031755β + 822066)X2

+ (969683β + 747785)X + 813010β + 255391.

Though the theory tells us that these two polynomials split over Fp2 [X], to the
naked eye there is no way to distinguish which (if any) of these polynomials has
a root in Fp. In both cases, setting g1 = 1/2 · (Φ3,p + π(Φ3,p)) (Step 2 of Algo-
rithm 2) and g2 = −β/2 · (Φ3,p − π(Φ3,p)) (Step 3 of Algorithm 2) respectively
yields

g1 = X4 + 479338X3 + 920025X2 + 93038X + 847782;

g2 = 425628X3 + 816500X2 + 574905X + 836099,

and

g1 = X4 + 13960X3 + 822066X2 + 747785X + 255391;

g2 = 695435X3 + 1014937X2 + 890793X + 577447.

23

In the first case, Step 4 of Algorithm 2 outputs gcd(g1, g2) = 1, meaning that
Φ3,p(X, 219247β + 863507) has no subfield roots. In the second case, we see
gcd(g1, g2) = X+1013186, meaning that −1013186 = 35387 is a subfield root. In
our example, we note that the total number of steps between j1 and j2 returned
by SuperSolver is 10, which is much shorter than the 50 steps taken by Solver.
Since the middle subfield path finding algorithm is the same in both routines,
there is no guarantee that the total path will always be smaller for SuperSolver.
It is worth pointing out, however, that the two outer paths from elements in
Sp2 \ Sp to Sp (i.e., ϕ1 and ϕ2) returned by SuperSolver will never be longer
than those returned by Solver. Indeed, Solver can be viewed as a special case of
SuperSolver where the list of ℓ’s is chosen to be L0. Finally, we note that both
Solver and SuperSolver always conclude by checking the correctness of the full
path from j1 to j2.

7 Implementation results

In this section we present some experimental results highlighting the efficacy
of SuperSolver. The experiments focus solely on the search for subfield nodes
(i.e., the bottleneck step of Delfs–Galbraith) and come in two flavours: many
j-invariants over small primes, and one j-invariant over a large, cryptographic
prime.

Small primes and many walks. Table 4 and Table 5 report experiments that
were run on the largest primes of the 30 bitlengths from 20 to 49. We started
at 5000 pseudo-random9 supersingular j-invariants in Sp2 \ Sp for the primes of
bitlengths 20-24, at 1000 j’s for the primes of bitlengths 25-29, at 500 j’s for the
primes of bitlengths 30-34, at 100 j’s for the primes of bitlengths 35-39, at 50 j’s
for the primes of bitlengths 40-44, and at 10 j’s for the primes of bitlengths 45-49.
For every j, we ran both Solver and SuperSolver (with the five sets of ℓ’s that were
predicted to perform best during preprocessing) until all walks hit a subfield j-
invariant. Throughout, we will denote these fast sets of ℓ’s by Lb, as in Section 5.
In all cases we counted the exact number of Fp multiplications, squarings and
additions required to find the subfield node. Following our metric in Section 2,
Table 5 reports the average number of Fp multiplications by counting squarings
as multiplications, and highlights in bold which of the five predicted sets of ℓ’s
performed best on average.

Table 4 reports the average number of nodes visited in each of the walks,
along with

⌈
#Sp2/#Sp

⌉
, the expected number of random elements in Sp2 that

would need to be sampled to find a subfield element in Sp. Here, the primes
are small enough that Sp can be computed precisely (see Section 2). For each
prime, Table 4 highlights in bold the column that matches up with the least
multiplications reported in Table 5. Note that, for SuperSolver, the number of

9Just as in Section 6, we used long walks in X (F̄p, 3) away from a known starting
curve to achieve uniformity in Sp2 .

24

nodes visited is the number of nodes that are actually walked onto in X (F̄p, 2),
not the number of nodes inspected using our fast subfield detection algorithm.
Thus, in general, the lowest average number of nodes visited does not correspond
to the lowest average number of multiplications. Indeed, the walks with fewer ℓ’s
spend less compute time inspecting ℓ-isogenous neighbours and therefore move
onto new nodes faster, but do not cover as much of the supersingular set during
the fast inspection.

Solver SuperSolver

Prime p
p

⌈
#S

p2

#Sp

⌉
Fp-mults. Fastest Lj ’s L0 L(i) L(ii) L(iii) L(iv) L(v)

mod8 per step [L(i) . . . , L(v)]

220 − 3 5 530 54 [L3, L1, L7, L5, L2] 812 127 257 76 107 193

221 − 9 7 156 53 [L3, L1, L7, L5, L2] 459 86 218 53 87 111

222 − 3 5 584 60 [L3, L7, L1, L5, L6] 885 170 108 288 146 145

223 − 15 1 583 71 [L3, L7, L5, L6, L1] 838 172 106 169 121 430

224 − 3 5 1277 64 [L3, L7, L5, L1, L6] 1897 318 209 311 618 273

225 − 39 1 1231 71 [L3, L7, L5, L1, L6] 1873 360 223 359 933 259

226 − 5 3 732 62 [L3, L7, L1, L5, L6] 1362 352 194 691 271 233

227 − 39 1 2348 73 [L3, L7, L5, L6, L1] 3455 917 438 579 497 1766

228 − 57 7 2965 64 [L3, L7, L1, L5, L6] 9748 1788 1022 3065 1314 1306

229 − 3 5 2953 74 [L3, L7, L5, L6, L1] 4384 1053 526 712 603 2161

230 − 35 5 3965 75 [L3, L7, L5, L6, L1] 5555 1443 749 961 849 2825

231 − 1 7 9009 75 [L3, L7, L5, L6, L1] 27103 4501 2602 3755 3136 8794

232 − 5 3 5142 75 [L3, L7, L5, L6, L1] 10149 2520 1445 2108 1702 5335

233 − 9 7 6638 77 [L3, L7, L5, L6, L1] 20387 3832 2342 3756 2676 10562

234 − 41 7 10526 78 [L3, L7, L5, L6, L1] 32640 6443 3790 6094 4531 16320

235 − 31 1 117571 99 [L7, L3, L5, L6, L23] 150101 14893 27873 23076 20921 9850

236 − 5 3 29040 83 [L3, L7, L5, L6, L23] 63384 15929 9127 11974 10807 5249

237 − 25 7 70328 84 [L3, L7, L5, L6, L23] 218775 26241 16098 29226 24153 10405

238 − 45 3 100268 86 [L3, L7, L5, L6, L23] 217145 43595 21343 27187 26982 14897

239 − 7 1 174817 96 [L7, L3, L5, L6, L23] 230235 28802 48488 36770 38318 19677

240 − 87 1 266662 95 [L7, L3, L5, L6, L23] 394908 49855 80764 66646 56901 28016

241 − 21 3 205227 92 [L7, L3, L5, L6, L23] 448887 52656 105639 69940 62212 27395

242 − 11 5 557046 99 [L7, L3, L5, L6, L23] 720206 93920 189498 147651 102116 64309

243 − 57 7 198777 95 [L7, L3, L5, L6, L23] 705224 69021 153095 95778 81922 44112

244 − 17 7 307870 98 [L7, L3, L5, L6, L23] 808057 131220 285136 145263 142750 72964

245 − 55 1 3120225 108 [L7, L3, L5, L6, L23] 2298828 301730 410169 579449 404520 226542

246 − 21 3 2759728 102 [L7, L3, L5, L6, L23] 9075335 516826 788898 957832 730020 382101

247 − 115 5 4234340 108 [L7, L3, L5, L6, L23] 5182631 650377 866413 650377 801837 781907

248 − 59 5 2706129 111 [L7, L3, L5, L6, L23] 6739857 546014 899553 756358 651990 491312

249 − 81 7 1239417 107 [L7, L3, L5, L6, L23] 3582205 288124 660449 326050 319641 252270

Table 4. The average number of nodes visited in the search for subfield j-invariants
in Solver and SuperSolver. Further explanation in text.

The key trend to highlight is that, relatively speaking, SuperSolver gains more
advantage over Solver as the primes get larger. This is not as evident for the small
primes in Tables 4 and 5 as it is for the larger primes below.

Remark 5 (X (Fp, 2) clusters in X (F̄p, 2)). An interesting trend to highlight in
Table 4 is that the average number of nodes visited in the optimised Delfs–
Galbraith walk through X (F̄p, 2) is significantly more than the expected number
of elements one would need to select randomly from Sp2 in order to find an
element of Sp. The reason for this is that components of X (Fp, 2) cluster together

25

Solver SuperSolver

Prime p

⌈
#S

p2

#Sp

⌉
Fp-mults.

per step

Fastest Lj ’s

[L(i) . . . , L(v)]
L0 L(i) L(ii) L(iii) L(iv) L(v)

220 − 3 530 54 [L3, L1, L7, L5, L2] 44848 20601 22585 22235 23459 24951

221 − 9 156 53 [L3, L1, L7, L5, L2] 24187 13648 18578 15453 18770 14064

222 − 3 584 60 [L3, L7, L1, L5, L6] 52385 28062 31962 26410 32555 38348

223 − 15 583 71 [L3, L7, L5, L6, L1] 59691 30508 32883 39703 33370 44556

224 − 3 1277 64 [L3, L7, L5, L1, L6] 112878 53900 62725 70482 59206 73117

225 − 39 1231 71 [L3, L7, L5, L1, L6] 128703 63021 68210 83333 94434 70878

226 − 5 732 62 [L3, L7, L1, L5, L6] 85437 59484 58286 65813 61261 62216

227 − 39 2348 73 [L3, L7, L5, L6, L1] 251304 164036 135672 136633 137780 185819

228 − 57 2965 64 [L3, L7, L1, L5, L6] 631157 305345 308003 298049 299314 351102

229 − 3 2953 74 [L3, L7, L5, L6, L1] 326888 199985 171489 173335 177986 235902

230 − 35 3965 75 [L3, L7, L5, L6, L1] 412457 260188 232753 228089 236360 301541

231 − 1 9009 75 [L3, L7, L5, L6, L1] 1998840 809040 807306 889210 871068 934319

232 − 5 5142 75 [L3, L7, L5, L6, L1] 758637 455571 449889 501335 474549 572203

233 − 9 6638 77 [L3, L7, L5, L6, L1] 1564701 700390 733705 900515 751310 1153911

234 − 41 10526 78 [L3, L7, L5, L6, L1] 2537688 1184024 1191084 1467113 1276654 1799292

235 − 31 117571 99 [L7, L3, L5, L6, L23] 15272705 5037679 5790782 6109529 6396752 6213090

236 − 5 29040 83 [L3, L7, L5, L6, L23] 5244914 3006618 2913909 2942626 3099020 3211580

237 − 25 70328 84 [L3, L7, L5, L6, L23] 18322417 4979176 5155517 7211517 6950196 6375918

238 − 45 100268 86 [L3, L7, L5, L6, L23] 18402937 8315681 6856578 6735588 7791309 9143526

239 − 7 174817 96 [L7, L3, L5, L6, L23] 22505327 9627241 9879376 9587856 11562406 12332858

240 − 87 266662 95 [L7, L3, L5, L6, L23] 38602102 16664021 16455546 17377853 17169885 17559520

241 − 21 205227 92 [L7, L3, L5, L6, L23] 41185437 17284297 20890068 17817383 18399209 17006068

242 − 11 557046 99 [L7, L3, L5, L6, L23] 70760036 31439715 38704883 38573868 30864574 40337712

243 − 57 198777 95 [L7, L3, L5, L6, L23] 66820000 22863425 30733754 24686759 24474388 27514948

244 − 17 307870 98 [L7, L3, L5, L6, L23] 79795521 43991657 58381667 38022655 43217829 45803624

245 − 55 3120225 108 [L7, L3, L5, L6, L23] 247697962 103871110 87674099 156886333 126109617 144250917

246 − 21 2759728 102 [L7, L3, L5, L6, L23] 923415913 174816651 163893709 198006728 205399202 220786555

247 − 115 4234340 108 [L7, L3, L5, L6, L23] 550653552 222915969 183895536 175113230 248769348 272706341

248 − 59 2706129 111 [L7, L3, L5, L6, L23] 729589278188237971 192728454 205161765 251091015 310387211

249 − 81 1239417 107 [L7, L3, L5, L6, L23] 385982057 99186957 141171527 88278361 99648273 160633132

Table 5. The average number of Fp multiplications used to search for subfield j-
invariants in Solver and SuperSolver. Further explanation in text.

in X (F̄p, 2). Thus, with respect to finding subfield nodes, walks in X (F̄p, 2) are
significantly different from selecting nodes at random from Sp2 . The types of
clusterings in X (F̄p, 2) depend on the value of p mod 8 [13, Theorem 2.7], which
is why this value is given alongside p in each row. Write N for the ratio between
the number of nodes we visited on average (i.e., the bold column) and the number
of elements we would expect to draw at random from Sp2 before finding one in
Sp (i.e., #Sp2/#Sp). Table 4 shows that (i) when p ≡ 1 mod 4, we typically see
1 ≤ N ≤ 2; (ii) when p ≡ 3 mod 8, we typically see 2 ≤ N ≤ 3; and (iii) when
p ≡ 7 mod 8, we often see N > 3. For more experimental data illustrating this
phenomenon, see [3, §4.3]. In practice, we do not see the N > 1 as enough of a
reason to incur the significant overhead of walking in X (F̄p, ℓ) for ℓ > 2 instead.
In any case, the method of fast subfield root detection proposed in this paper
will work regardless of the ℓ-isogenies that are used to take steps in a given walk.
In fact, if walking in X (F̄p, ℓ) for ℓ > 2 results in better concrete performance
than for ℓ = 2, the greater cost of taking a step in X (F̄p, ℓ) is likely to increase
the size of the set of “fast ℓ’s” and the relative efficacy of invoking subfield root
detection.

26

Large primes and optimal node coverage. Table 6 illustrates the increased
efficacy of SuperSolver over Solver as the supersingular isogeny graphs get larger.
Recall that we reported some of the results from this table up front in Section 1,
namely from the experiments using primes from the isogeny literature. We chose
the largest prime below 2k for k ∈ {50, 100, . . . 800}, and started from a pseudo-
random j-invariant in Sp2 \ Sp as usual. Since these instances are too large to
actually run the full subfield search until it terminates, in each case we ran both
Solver and SuperSolver (for the three sets of ℓ’s that were predicted to perform
best during preprocessing) until the number of Fp multiplications used exceeded
108, and then immediately stopped. The numbers reported in bold in Table 6
are the total number of nodes covered (i.e., both walked onto and inspected)
during these walks. For the smallest prime p = 250 − 27, SuperSolver covers
between 3 and 4 times the number of nodes that Solver does; for the largest
prime p = 2800 − 105, SuperSolver covers between 18 and 19 times the number
of nodes. Though primes beyond this size are unlikely to be of cryptographic
interest, it is worth pointing out that this trend continues: the larger p grows,
the more profitable it becomes to keep adding ℓ’s in the fast subfield inspection
algorithm.

Storing and accessing the reduced modular polynomials. The unre-
duced modular polynomials Φℓ(X,Y) ∈ Z[X,Y] require a significant amount of
storage, but recall that the preprocessing phase immediately reduces all of the
coefficients into Fp to produce Φℓ,p(X,Y) ∈ Fp[X,Y]. This can be done once-
and-for-all for a specific prime, and this makes the storage and access of the
Φℓ,p(X,Y) a non-issue. Storing Φℓ,p(X,Y) requires at most (N2

ℓ /2)·log2(p) bits.
For example, the largest Φℓ,p(X,Y) for the 250-bit prime above is Φ13,p(X,Y),
which requires the storage of at most N2

13/2 = 142/2 = 98 elements of Fp, around
3KB. The largest Φℓ,p(X,Y) for the 800-bit prime above requires the storage of
at most N2

19/2 = 202/2 = 200 elements of Fp, around 20KB. Any of these would
comfortably fit into the L1 cache on a modern CPU.

Concrete security of the supersingular isogeny problem. Our Super-
Solver suite makes it straightforward to obtain precise estimates on the concrete
classical security offered by the general supersingular isogeny problem in Sp2 , for
any prime p. Combining a small experiment (like those reported in Table 6) with
the expected number of nodes one must cover before reaching a subfield node al-
lows us to obtain accurate counts on the expected number of Fp multiplications,
squarings and additions that must be carried out during a full cryptanalytic
attack. It is then a matter of costing these Fp operations with respect to the
appropriate metric, whether that be bit operations, cycle counts, gate counts, or
circuit depth.

Take, for example, the 256-bit prime

p = 73743043621499797449074820543863456997944695372324032511999999999999999999999

underlying SQISign [15] to illustrate how our software can be used to obtain pre-
cise security estimates. The precomputation phase of SuperSolver (which takes

27

a few seconds on input of p) reveals that taking an optimised step in X (F̄p, 2)
costs 407 multiplications in Fp. Based on this cost, the precomputation further
determines that the fastest set of ℓ’s to proceed with are

ℓ ∈ {3, 5, 7, 11, 13}.

On average, the combination of this set of ℓ’s and Algorithm 2 reduces the cost of
the subfield search from 407 multiplications in Fp per node to 58.0 multiplications
in Fp per node (see Table 1). Thus, on average, solving the supersingular isogeny
problem costs

58.0×
(
#Sp2

#Sp

)
Fp multiplications.

Since p ≡ 7 mod 12, we have #Sp2 = ⌊p/12⌋+1 [27, Theorem V.4.1(c)], and since
p ≡ 7 mod 8, #Sp is exactly the class number of the imaginary quadratic field
Q(

√
−p) [13, Equation 1]. We suppose this class number is N , i.e., #Sp = N .

Writing N = 2k, where k is correct to 3 decimal places, we would obtain that the
average cost of breaking this instance of SQISign is 2257.622−k multiplications in
Fp.

10

In Table 7 we give average counts for the cost of breaking the supersingular
isogeny problem using SuperSolver for a number of primes underlying either B-
SIDH or SQISign.

Acknowledgements. Thanks to Sam Frengley, Michael Naehrig, Krijn Rei-
jnders, Benjamin Smith, Greg Zaverucha, and the CRYPTO2022 reviewers for
their valuable comments on an earlier version of this paper. We also thank Drew
Sutherland for answering our questions about alternative modular functions.

References

1. G. Adj, D. Cervantes-Vázquez, J. Chi-Domı́nguez, A. Menezes, and F. Rodŕıguez-
Henŕıquez. On the cost of computing isogenies between supersingular elliptic
curves. In International Conference on Selected Areas in Cryptography, pages 322–
343. Springer, 2018.

2. G. Adj and F. Rodŕıguez-Henŕıquez. Square root computation over even extension
fields. IEEE Transactions on Computers, 63(11):2829–2841, 2013.

3. S. Arpin, C. Camacho-Navarro, K. Lauter, J. Lim, K. Nelson, T. Scholl, and
J. Sotáková. Adventures in supersingularland. Experimental Mathematics, pages
1–28, 2021.

4. E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of
computation, 24(111):713–735, 1970.

5. W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based
signatures through class group computations. In S. D. Galbraith and S. Moriai,
editors, ASIACRYPT 2019, volume 11921 of Lecture Notes in Computer Science,
pages 227–247. Springer, 2019.

10For large, cryptographic sized primes p, computing class numbers is very com-
putationally expensive. Indeed, a recent class group computation for a 512-bit prime
terminated in ≈ 52 core years.

28

6. J. H. Bruinier, K. Ono, and A. V. Sutherland. Class polynomials for nonholomor-
phic modular functions. Journal of Number Theory, 161:204–229, 2016.

7. J. Burdges and L. De Feo. Delay encryption. In A. Canteaut and F. Standaert,
editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes
in Computer Science, pages 302–326. Springer, 2021.

8. D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, pages 587–592, 1981.

9. W. Castryck and T. Decru. CSIDH on the surface. In J. Ding and J. Tillich,
editors, Post-Quantum Cryptography - 11th International Conference, PQCrypto
2020, Paris, France, April 15-17, 2020, Proceedings, volume 12100 of Lecture Notes
in Computer Science, pages 111–129. Springer, 2020.

10. W. Castryck, T. Decru, and F. Vercauteren. Radical isogenies. In S. Moriai and
H. Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume 12492
of Lecture Notes in Computer Science, pages 493–519. Springer, 2020.

11. C. Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In ASIACRYPT, pages 440–463. Springer, 2020.

12. C. Costello, M. Meyer, and M. Naehrig. Sieving for twin smooth integers with
solutions to the Prouhet-Tarry-Escott problem. In EUROCRYPT, volume 12696,
pages 272–301. Springer, 2021.

13. C. Delfs and S. D. Galbraith. Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography, 78(2):425–440, 2016.

14. L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. J. Math. Cryptol., 8(3):209–247, 2014.

15. L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. SQISign: compact
post-quantum signatures from quaternions and isogenies. In ASIACRYPT, pages
64–93. Springer, 2020.

16. S. D. Galbraith, C. Petit, and J. Silva. Identification protocols and signature
schemes based on supersingular isogeny problems. J. Cryptol., 33(1):130–175, 2020.

17. M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309, 2012. https://ia.cr/2012/309.

18. R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge university
press, 1994.

19. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, and
D. Urbanik. SIKE: Supersingular Isogeny Key Encapsulation. Manuscript available
at sike.org/, 2017.

20. C. Leonardi. Security Analysis of Isogeny-Based Cryptosystems. PhD thesis, Uni-
versity of Waterloo, Ontario, Canada, 2020.

21. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, 1994.

22. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC press, 2018.

23. J-F. Mestre. La méthode des graphes. exemples et applications. In Proceedings of
the international conference on class numbers and fundamental units of algebraic
number fields (Katata), pages 217–242. Citeseer, 1986.

24. A. K. Pizer. Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society, 23(1):127–137, 1990.

29

https://ia.cr/2012/309
sike.org/

25. M. Scott. A note on the calculation of some functions in finite fields: Tricks of the
trade. IACR Cryptol. ePrint Arch., page 1497, 2020.

26. V. Shoup. A computational introduction to number theory and algebra. Cambridge
university press, 2009.

27. J. H. Silverman. The arithmetic of elliptic curves, volume 106. Springer, 2009.
28. A. V. Sutherland. Modular Polynomials. https://math.mit.edu/~drew/

ClassicalModPolys.html. Online; accessed 30 September 2021.
29. A. V. Sutherland. On the evaluation of modular polynomials. The Open Book

Series, 1(1):531–555, 2013.
30. The Sage Developers. SageMath, the Sage Mathematics Software System (Version

9.2), 2021. https://www.sagemath.org.
31. J. Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB,

273(A238-A241):5, 1971.

30

https://math.mit.edu/~drew/ClassicalModPolys.html
https://math.mit.edu/~drew/ClassicalModPolys.html

Solver SuperSolver

Prime p
Nodes Fp-mults.

Fastest Sets
Nodes Fp-mults. Improv.

inspected per node inspected per node Factor

{3,5,7} 2,859,221 35.0

250 − 27 883,007 113 {3,5} 2,736,601 36.5 2.8 - 3.2x

{3,7} 2,533,945 39.4

{3,5,7} 2,165,681 46.0

2100 − 15 443,951 223 {3,5,7,11} 2,121,313 47.1 4.5 - 4.9x

{3,5,7,9} 1,988,731 47.1

{3,5,7,9,11} 1,847,413 51.8

2150 − 3 317,215 315 {3,5,7,11} 1,895,201 52.9 5.6 - 6.0x

{3,5,7,9} 1,776,751 52.9

{3,5,7,9,11} 1,700,749 56.2

2200 − 75 241,987 415 {3,5,7,9,11,13} 1,715,449 56.3 7.0 - 7.1x

{3,5,7,11,13} 1,716,767 58.3

{3,5,7,9,11,13} 1,607,145 60.1

2250 − 207 191,115 521 {3,5,7,9,11} 1,561,645 61.1 8.2 - 8.4x

{3,5,7,11,13} 1,586,495 63.0

{3,5,7,9,11,13} 1,531,993 63.0

2300 − 153 164,273 610 {3,5,7,9,11} 1,468,279 65.0 8.0 - 8.4x

{3,5,7,9,11,13,17} 1,489,991 65.3

{3,5,7,9,11,13} 1,452,529 66.5

2350 − 113 141,097 709 {3,5,7,9,11,13,17} 1,432,345 68.0 9.7 - 10.3x

{3,5,7,9,11} 1,372,351 70.0

{3,5,7,9,11,13} 1,380,849 70.0

2400 − 593 123,649 809 {3,5,7,9,11,13,17} 1,378,991 70.6 10.8 - 11.2x

{3,5,7,9,11,13,19} 1,339,805 72.8

{3,5,7,11,13,9,17} 1,330,891 73.2

2450 − 501 110,407 906 {3,5,7,11,13,9} 1,317,849 73.3 11.9 - 12.1x

{3,5,7,11,13,9,17,19} 1,309,703 74.8

{3,5,7,9,11,13,17} 1,274,503 76.4

2500 − 863 97,209 1032 {3,5,7,9,11,13,17,19} 1,266,275 77.3 12.8 - 13.1x

{3,5,7,9,11,13} 1,245,721 77.5

{3,5,7,9,11,13,17} 1,239,501 78.6

2550 − 5 90,031 1111 {3,5,7,9,11,13,17,19} 1,238,921 79.0 13.3 - 13.8x

{3,5,7,9,11,13} 1,201,873 80.3

{3,5,7,9,11,13,17,19} 1,200,945 81.5

2600 − 95 81,253 1230 {3,5,7,9,11,13,17} 1,191,549 81.7 14.4 - 14.8x

{3,5,7,9,11,13,19} 1,166,297 83.6

{3,5,7,9,11,13,17,19} 1,176,411 83.3

2650 − 611 76,207 1314 {3,5,7,9,11,13,17} 1,161,061 83.9 14.9 - 15.4x

{3,5,7,9,11,13,19} 1,137,873 85.7

{3,5,7,9,11,13,17,19} 1,148,963 85.2

2700 − 1113 71,037 1408 {3,5,7,9,11,13,17} 1,127,317 86.4 15.8 - 16.2x

{3,5,7,9,11,13,17,19,23} 1,123,125 87.5

{3,5,7,9,11,13,17,19} 1,121,045 87.4

2750 − 161 66,237 1510 {3,5,7,9,11,13,17} 1,093,351 89.0 16.5 - 16.9x

{3,5,7,9,11,13,17,19,23} 1,101,767 89.3

{3,5,7,9,11,13,17,19} 1,095,195 89.4

2800 − 105 62,163 1610 {3,5,7,9,11,13,17,19,23} 1,081,825 90.9 16.2 - 17.6x

{3,5,7,9,11,13,17,19,15} 1,008,481 90.9

Table 6. The number of nodes inspected per 108 field multiplications for the largest
primes of various bitlengths. The Solver column corresponds to optimised Delfs–
Galbraith walks in X (F̄p, 2) – see Section 3. The SuperSolver columns correspond to
enabling our fast subfield root detection algorithm with the three fastest sets of ℓ’s (left
to right) – see Section 5. Numbers in round brackets are the approximate number of
Fp multiplications per node inspected, as computed during the precomputation phase
that determines which sets of ℓ’s will perform fastest.

.

31

Prime p p mod 8
Average number of

Fp-mults. per node
#Sp2 #Sp Average cost of SuperSolver

B-SIDH-p247 [11] 7 55.6 2242.559 2k1 2248.356−k1

TwinSmooth-p250 [12] 1 59.1 2246.220 2k2−1 2252.105−k2

SQISign-p256 [15] 7 55.7 2251.764 2k3 2257.564−k3

TwinSmooth-p384 [12] 1 63.1 2379.735 2k4−1 2385.715−k4

TwinSmooth-p512 [12] 5 69.1 2507.896 2k5−1 2514.007−k5

Table 7. The average number of Fp multiplications required to solve the supersingular
isogeny problem using SuperSolver. When p ≡ 1 mod 4, we assume that N = 2k is the
class number of Q(

√
−4p), where k correct to 3 decimal places. Otherwise, it is the

class number of Q(
√
−p). As N varies for each prime, we will index N and k by the

row in the table, i.e., Ni = 2ki will be the class number of the i-th prime in the table.
The number of Fp multiplications per node using SuperSolver is taken from Table 1.

32

	Accelerating the Delfs–Galbraith algorithm with fast subfield root detection

