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Abstract. Deep attestation is a particular case of remote attestation,
i.e., verifying the integrity of a platform with a remote verification server.
We focus on the remote attestation of hypervisors and their hosted vir-
tual machines (VM), for which two solutions are currently supported by
ETSI. The first is single-channel attestation, requiring for each VM an
attestation of that VM and the underlying hypervisor through the phys-
ical TPM. The second, multi-channel attestation, allows to attest VMs
via virtual TPMs and separately from the hypervisor – this is faster
and requires less overall attestations, but the server cannot verify the
link between VM and hypervisor attestations, which comes for free for
single-channel attestation.

We design a new approach to provide linked remote attestation which
achieves the best of both worlds: we benefit from the efficiency of multi-
channel attestation while simultaneously allowing attestations to be linked.
Moreover, we formalize a security model for deep attestation and prove
the security of our approach. Our contribution is agnostic of the precise
underlying secure component (which could be instantiated as a TPM or
something equivalent) and can be of independent interest. Finally, we
implement our proposal using TPM 2.0 and vTPM (KVM/QEMU), and
show that it is practical and efficient.
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1 Introduction

Network Function Virtualization (NFV) is a technology that promises to provide
better versatility and efficiency in large-scale networks.

⋆ This study was partially supported by the French ANR project ANR-18-CE39-
0019 (MobiS5), the French government research program “Investissements d´Avenir”
through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25), the IMobS3 Lab-
oratory of Excellence (ANR-10-LABX-16-01), the French ANR project DECRYPT
(ANR-18-CE39-0007) and SEVERITAS (ANR-20-CE39-0009).
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The core idea is to move from architectures in which physical machines are set
up to perform various roles in a network, to a design in which that configuration
is done virtually. As such, a machine could be configured and re-configured at
distance, and, by judicious use of virtual machines, it could perform a variety of
roles within the network infrastructure.

Virtualized platforms are set up in layers, including the following basic com-
ponents: physical resources, the virtualization layer and infrastructures, virtu-
alized network functions (VNFs), and the NFV management and orchestration
module.

At the bottom of the infrastructure are real, physical components, meant
for computations, storage and physical network functions. The virtualization
layer (also called hypervisor) manages the mapping between those physical com-
ponents and virtual equivalents. As such, the virtualized network functions –
hosted by virtual machines running inside the NFV infrastructure– never have
direct access to the physical resources. Instead, the VNFs access the virtual re-
sources. The NFV management and orchestration module runs the combined
infrastructure, including: the lifecycle of the instantiated VNFs, resource allo-
cation for VNFs, or overall management in view of particular, given network
services.

Deep Attestation (DA). Virtualization enables efficient, versatile remote net-
work configuration and administration; however, the fact that multiple virtual
processes share resources can introduce hazards to security. One way to ensure
that a component runs correctly is by using attestation. Attestation is a pro-
cess complementary to authentication: whereas the latter allows a platform to
prove that it is the entity it claims to be, the former ensures that the platform
runs a trustworthy code, i.e., it has not been breached. As described in [11],
“Attestation is the process through which a remote challenger can retrieve veri-
fiable information regarding a platform’s integrity state.” A property can be for
instance software integrity, geolocalisation, access control, etc.

Attestation relies on a root of trust (RoT), usually instantiated through a
trusted platform module (TPM) – or an equivalent mechanism. The root of trust
is responsible, amongst other things, for protecting sensitive cryptographic ma-
terials (such as private keys) and for running cryptographic operations in an
isolated way. The virtualization layer (hypervisor) has direct access to the RoT,
but the virtual machines it manages do not; instead they will have access to
the RoT by means of virtual Roots of Trust (vRoTs). Virtual Roots of Trust
are a combination of resources, some provided by the physical RoT, and other
managed by the hypervisor, which directs and mediates access to the RoT.

Fig. 1: The setup for DA.

In a nutshell, attestation is a process which al-
lows an independent, remote verifier to check that
a target platform still behaves in the desired way.
This is done by first authenticating the RoT, then
by comparing a measurement of the current state
of the component to a presumably-correct state,
as indicated in a Root of Trust for Storage (RTS).
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In addition, a guarantee must be given of the correctness of the RTS, which is
done by means of a Root of Trust for Reporting (RTR). The functionalities of
RTS and RTR can effectively be provided by a TPM. A TPM is an example
of implementation that could provide RTR and RTS by leveraging the specific
tampering detection properties of its Platform Configuration Registers (PCR)
and issuing signed reports, or quotes, of their content.

We consider the attestation of two types of components: virtual machines
(VMs), such as VNFs, and the hypervisor managing them, whose underlying
physical component includes a RoT providing an RTR and an RTS. This archi-
tecture is depicted in Figure 1.

To verify that the VMs and the hypervisor are running correctly, both these
types of components must undergo remote attestation. Not only must they be
attested in isolation, but a statement must be attested on the layer-binding : no-
tably, we should know which VMs run on which hypervisor. This is known as deep
attestation (DA). There are two typical ways of achieving deep attestation (as
described by ETSI standardization documents [11]): single- and multi-channel
VM-Based Deep Attestation.

Single/Multi-channel Deep Attestation. In single-channel deep attestation
the attestation is run only between the remote verifier and the virtual machines.
At each attestation, the VM (by querying its associated virtual TPM, or vTPM)
provides not only an attestation for itself, but also the hypervisor it runs on.

Fig. 2: Single vs multi-channel deep attes-
tation

Specifically the response forwarded
by the VM to the remote verifier
includes the (independent) attesta-
tion of the hypervisor, and the layer-
binding attestation between the VM
and its hypervisor. This is depicted
in Figure 2, on the left-hand-side.
Note that the quotes in this case are
both obtained from the (slow) physi-
cal TPM.

From the point of view of security, this solution is optimal; however, it scales
poorly. Given as few as 1000 VMs running on top of the hypervisor, we would
require that the hypervisor be attested 1000 times, once for each VM.

By contrast, in multi-channel deep attestation, the VMs are attested sepa-
rately and independently from the hypervisor. In this scenario, the VMs attest
to the remote verifier, thus proving they were not tampered with. Separately, the
hypervisor also attests to the remote verifier. This can be seen on the right hand
side of Figure 2. In this case, the efficiency is optimal: for 1000 VMs, we have
1000 VM-attestations and 1 hypervisor attestation. However, there is virtually
no layer-binding between the VMs and their hypervisor: there is no guarantee
that the VMs are really managed by the hypervisor. An attacker could therefore
“convince” a party (such as the owner of the infrastructure) that a VM still
exists on a given physical machine when it has, in fact, been removed.
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Our solution. We take the middle path between single- and multi-channel deep
attestation to obtain layer-binding between VMs and hypervisors with reason-
able efficiency. Our solution is simple, yet elegant, using standard cryptography
to ensure that a hypervisor’s single attestation is linkable to any number of
attestations of VMs managed by it. We give three contributions:

A cryptographic scheme. Our scheme ensures secure and efficient linked DA.
The hypervisor and VMs each attest only once. However, we also embed a list
of public keys (associated with the VMs managed by the hypervisor) within the
hypervisor attestation, which is established by the root of trust. In order to au-
thenticate the list of forwarded keys, we embed them into the attestation nonce,
forwarded by the attestation server. If the hypervisor’s attestation verifies, then
the attestation server can link that hypervisor with the (subsequently attesting
VMs) which use keys in the forwarded list. If the hypervisor’s attestation fails,
then the public keys cannot be trusted.

Provably secure authorized linked attestation. An important advantage
of our approach is that we have a fully-formalized provable-security guarantee.
We use a composition-based approach, constructing primitives that are increas-
ingly stronger out of weaker ones. At the basis of our construction is a yea-or-nay
basic attestation scheme, which we construct so that it is “secure” by assump-
tion. Its functionality is simple: whenever a component is compromised, the basic
attestation scheme tells us so by outputting a faulty attestation; whenever the
component is honest, the basic attestation outputs a correct attestation. In other
words, this basic attestation scheme is a compromise-oracle: when queried it (in-
directly) produces a proof of whether a component has been tampered with or
not.

Based on this assumption, we build a sequence of cryptographic mechanisms
that add security against stronger adversaries. A first step is to build authen-
ticated attestation: a scheme which allows us to authenticate the component
that provides the attestation, and additionally ensures that this component’s
attestations always verify prior to corruption, but fails to verify as soon as a
compromise occurs. Then, we consider linked attestation: a scheme that intro-
duces the hypervisor-VM relationship described above, and permits not only the
verification of individual attestations, but also (publicly) linking attestations.

We construct authorized linked attestation: a primitive that permits attes-
tation protocols between a component and authorized attestation server. The
latter will also then be able to link certain attestations together. Authorized
linked attestation will have three properties: authorization (only an authorized
server can query an attestation quote); indistinguishability (no Person-in-the-
Middle adversary can know even a bit of a quote exchanged during a legitimate
protocol with probability significantly better than 1

2 ); and linkability (no one
can fool an attestation server into believing that two unlinked components are
in fact linked).

Implementation. We used a regular laptop equipped with TPM 2.0 (as a root
of trust). We set up an architecture with one hypervisor and multiple VMs.
The VMs used full virtual TPM as a virtual root of trust. We made over 100
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experiments. This showed that our solution is more efficient that single chan-
nel approach and adds only insignificant charge (a hash function computation)
compared to traditional multi-channel DA.

Our work is, to our best knowledge, the first that attempts to provide a sound
cryptographic treatment of deep attestation. In many ways, this is much harder
than designing the scheme that we present, because attestation is a generic term
comprising an entire class of algorithms that have different goals. As such, we
are only scratching the surface here, and believe that –aside from the real, and
practical advantages of our presented construction– our cryptographic treatment,
primitives, and proofs, may be of independent interest to this line of research.

Limitations. A first fundamental limitation is the fact that we assume, in our
constructions, the existence of a basic attestation primitive that works infallibly
like an oracle, telling us if a component is compromised or not. Attestation is a
complex process, allowing for components to attest to many properties e.g.; “are
you based in the US?”. We explicitly require the strongest attestation possible,
which takes into account the state of an entire system, and then has a way of
telling whether it has been compromised or not.

We treat the existence of basic attestation as an assumption because we do
not see a way of constructing it with cryptographic tools. The cryptography
we put on top adds a lot of new properties: authenticity, confidentiality, au-
thorization, linkability, but not the simple fact of distinguishing a compromised
component from an honest one. Our result should therefore be interpreted as a
need for such a scheme to exist, as in fact required by ETSI [11].

Another limitation of our scheme lies in the way we modeled our linked-
attestation component. We consider classes of components which can be linked.
At the registration of each piece of hardware, a number of subcomponents of
each type is indicated – and (unique) keys are given to those components. As a
result, we cannot account for having two hypervisors that manage the same VM
on a given infrastructure. A future work could be to consider multi-hypervisor
VM as introduced in [12].

Related Work. Many attacks have been recently reported on remote attesta-
tion mechanism [9] or 5G standards standards [13]. Many tools such as formal
methods or cryptography can be used to model and prove the security of such
standards. However, this lack of formalization must today be now addressed
otherwise we will have more and more attacks. Provable cryptography is a nice
solution to solve this problem since it allows to better understand the security
model, what is the adversary goal and its means, which oracle can he query.
Some cryptographic primitives have already be nicely formalized such as Direct
Anonymous Attestation (DAA) which enables remote authentication of a trusted
computer (TPM for instance) while preserving the privacy of the platform’s user
in [8] by Brickell et al. It is a group signature without the feature that a signa-
ture can be opened, i.e., the anonymity is not revocable. Such primitive are well
described using cryptography as a variant of signature scheme. However, prov-
able cryptography has also been used successfully to formalize security protocols
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as authenticated key exchange [6, 10]. This is precisely our goal here to model
the different security components independently and to compose them to prove
the security of a new security mechanism. Indeed, the attestation server must
authenticate the whole platform, i.e., the hypervisor and the NFV running on
top. This problem has been addressed by others in the context of secure boot
or for instance in [5], where the authors propose an attestation mechanism for
swarms of device softwares in IoT and embedded environment. Software attes-
tation is different from remote attestation, as said in [4] since it cannot rely on
cryptographic secrets to authenticate the prover device. The first to have take
into account deep attestation are Lauer and Kuntze in [14] but their solution
miss a security proof and a rigorous analysis.

2 Towards authorized linked attestation

Our core contribution provides layer-binding in deep attestation. Cryptographi-
cally, we view this as a new primitive, which we call authorized linked attestation,
built in steps from increasingly-stronger primitives. We use a basic-attestation
primitive as a black box. This primitive is an abstraction of the algorithm by
which a single party (like a component of a virtualized platform) generates an
attestation of its state, given a fresh, honestly-generated nonce. To ease nota-
tion, we assume that all the registers are attested at each attestation, and that
the property we are attesting is that the entire component has not been com-
promised.

Authenticated attestation builds on basic attestation by associating parties
with identities. The attestation must now no longer indicate whether the party
is compromised: it must also authenticate the component. One step further, the
linked-attestation primitive built from authenticated attestation will allow two
different components to (a) attest their own states; (b) provide auxiliary material
that will make two separate attestations linkable.

We also add a new party into the system: the attestation server that serves as
a verifier. We then compose the linked-attestation primitive with a unilaterally-
authenticated authenticated key-exchange protocol, which will authenticate the
attestation server and permit the attestation itself to remain confidential with
respect to a Person-in-the-Middle (PitM) adversary.

2.1 Basic attestation

During basic attestation a single honest party is generated. This party can be
later compromised. A quote-generation algorithm will output a quote if the party
is still honest at that time, or a special symbol if it is not. Finally a (public)
verification algorithm will yield 1 (the component is honest) or 0 (otherwise).

Note that a party such as the one we describe could correspond in practice to
a combination of two parties: a virtual entity (like a VM or the hypervisor) and
an underlying, uncorruptible, secure part (the TPM), which actually generates
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the quote. At this stage, we importantly do not associate these entities with keys
as authentication will only appear in our next step (Section 2.2).

What we want to capture, formalized by the security of basic attestation, is
the minimal assumption that a compromised component will always yield an at-
testation that will fail the verification. This is why, when basic attestation is run
for a compromised component, it will yield the special symbol ℵ. We also demand
correctness: when a non-ℵ quote is generated, the latter will automatically verify.
Our basic attestation component thus becomes the minimal non-cryptographic
assumption that we need to make to prove our scheme secure.

Formalization. We consider an environment parametrized by a security pa-
rameter λ, in which we have a single party P. This party keeps track of a single
attribute, namely a compromise bit γ originally set to 0. Once this bit is flipped
to 1, it can never go back to 0. We define a primitive BasicAtt as a tuple of
algorithms: (aBSetup, aBAttest, aBVerif):
– aBSetup(1λ) → ppar: on input the security 1λ (in unary), this algorithm

outputs some public parameters ppar.
– aBAttest(ppar) → quote: on input the public parameters ppar, if P.γ = 0,

then this algorithm outputs an attestation quote quote ̸= ℵ for P, and if
P.γ = 1, then it outputs ℵ.

– aBVerif(ppar, (quote ∪ ℵ)) → 0 ∪ 1: on input public parameters ppar and a
value that is either a quote denoted quote or a special symbol ℵ, this algorithm
outputs a bit. By convention, an output of 0 means the attestation fails, while
if the output is 1, the attestation succeeds. We require by construction that
for all ppar: aBVerif(·, ·,ℵ) = 0.
This primitive is also depicted in Figure 3. We assume that if P.γ = 0 and

quote→ aBAttest(ppar), then aBVerif(ppar, quote) = 1.

Security. The only security we demand from this primitive is that, if a party
is compromised, then its attestation will always fail. This will happen by con-
struction (since this is an assumed primitive) and is embedded in the security
model. The adversary A will play a game against a challenger G. Initially, the
challenger sets the system up by running aBSetup to output ppar. This value is
given to A as well. The unique party is generated, such that its corrupt bit is
set to 1 (P.γ = 0).

Since A now has ppar, it can now run the aBAttest and aBVerif algorithms.
In addition, it has access to the OBAttest oracle: OBAttest()→ (quote∪ℵ). This
oracle calls the aBAttest() algorithm for the (corrupted) party P and returns

Target T Appraiser

Setup phase: aBSetup(1λ)→ ppar

aBAttest(ppar)→ quote
quote−−−−−−−−→ aBVerif(ppar, quote) → 0 if T compromised (T.γ = 1)

→ 1 if T uncompromised (T.γ = 0)

Fig. 3: Basic attestation description with an honestly-generated target. Notice
that there is no authentication involved.
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the output to the adversary A. The challenger stores the result in a database
DB. The adversary wins if, and only if, there exists a quote in DB (possibly with
quote = ℵ) such that aBVerif(ppar, quote) = 1. Note that by construction our
basic attestation primitive is secure, since once the compromise bit is set, the
output is ℵ, which always yields aBVerif(ppar,ℵ) = 0.

Basic attestation in reality. One may wonder at this point what our purpose
might be in constructing a security model for a primitive that is by definition
correct and secure. We need that security model in our reductions: we will use
the attestation primitive to build stronger, linked attestation, and then we will
want to make the argument that if an attacker can break the larger primitive,
it will also break the smaller primitive. As the smaller primitive is secure by
design, this is not possible, and hence, the larger primitive is also secure.

2.2 Authenticated Attestation

Basic attestation acts as a foolproof way of telling whether a device is compro-
mised or not. However, the security it provides is very weak. For one thing, it has
no authentication guarantees, so potentially one could use a quote that was hon-
estly generated for an honest component to attest a compromised one. Another
problem that is more subtle concerns the way components are compromised.
Because the basic quotes described in the previous section have no timestamp,
nor specific freshness, we cannot take into account adaptive tampering. In the
security notion, the party generating the quote is either honest or compromised
from the beginning. Yet, ideally we would like a primitive that ensures that a
party can start out as honest (and all the quotes generated at that time verify
as correct), and later be compromised (and all the quotes generated after that
moment will fail). We can do this by deploying cryptographic solutions (two
of which are described after the formal definition of the primitive we want to
achieve).

A relevant question is why we did not include these security aspects in the
basic attestation primitive considered above. To answer this, recall that we have
constructed the basic attestation tool to be secure by design. As such, it is an
assumption, rather than a solution. To additionally suppose that this primitive
also ensures authentication, for instance would be to go against the principle of
using minimal assumptions.

Formalization. The precise formalization of this primitive is in Appendix A.
We consider an environment containing up to N parties. The parties keep track
of the compromise bit γ used also for basic attestation, and a pair of public and
secret keys denoted, for each party P, P.pk (the public key) and P.sk (the private
key). Intuitively, the security we require for this primitive will be that a valid
authenticated quote for a party P and fresh auxiliary information (used as nonce)
is hard to forge by an adversary which knows all the the public information, can
register and compromise users, and query an attestation oracle that returns a
valid quote or ℵ. In particular, in a secure scheme,verification should fail if either
the authentication or the attestation fails.
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Construction. We construct an authenticated attestation scheme out of basic
authentication, a large set of nonces N := {0, 1}ℓ (with ℓ chosen as a function
of the security parameter λ), and an EUF-CMA-secure signature scheme Sig =
(aSigKGen, aSigSign, aSigVerif). We thus instantiate AUX := N , and our
AuthAtt scheme is as follows:

– aAuthSetup(1λ) → ppar: this algorithm runs aBSetup(1λ) a number N of
times, outputting ppar1, ppar2, . . . , pparN . Each time ppari is created, a party
handle Pi is also created (it will be the party associated with the instance of
BasicAtt run for those parameters). It sets ppar := (ppar1, ppar2, . . . , pparN ,
N), and outputs this value.

– aAuthKGen(Pi) → (Pi.pk,Pi.sk): it keeps a counter (starting from 0), which
indicates how many times this algorithm has been run. If at the time this
algorithm is queried counter < N , then aAuthKGen runs aSigKGen as a black
box and outputs the resulting (pk, sk) (public and private) keys. It sets Pi.pk :=
pk and Pi.sk := sk. Party Pi is then initialized with these keys.

– aAuthAttest(ppar,P.sk, R)→ authQuote∪ℵ: on input the public parameters
ppar, a private key P.sk of a party P (which has already been registered), and

a value R
$← N , this algorithm first runs quote ← aBAttest(ppar), then the

algorithm signs σ ← aSigSign(P.sk, (quote, R)), that is, it signs a concate-
nation of the nonce and the obtained quote. The output of this algorithm is
authQuote := (quote, σ). If the required party or key does not exist, the value
ℵ is output by default. If quote = ℵ, then we instantiate authQuote = ℵ.

– aAuthVerif(ppar,P.pk, R, (authQuote ∪ ℵ)) → 0 ∪ 1: on input public pa-
rameters ppar, a public key P.pk of a party P, an auxiliary value R ∈ N ,
this algorithm first checks if the last input is ℵ; if so, the algorithm out-
puts 0 by default. Else, the algorithm parses authQuote = (quote, σ) (with
quote ̸= ℵ by construction), then runs b ← aSigVerif(P.pk, quote, σ) and
d ← aBVerif(ppar, quote). The algorithm outputs b ∧ d as its response. No-
tably, 1 is output if, and only if, the signature and the basic attestation verify
concomitantly.

Theorem 21 (Secure Authenticated Attestation) The AuthAtt scheme is
secure assuming that (1) BasicAtt scheme is secure (2) the size of N is large
and (3) the Sig signature scheme is EUF-CMA secure.

The proof is given in Appendix A

2.3 Linked Attestation

Authenticated attestation allows the attestation of one (out of many) compo-
nents, based on that component’s unique secret key. If we define now parties as
being either VMs or hypervisors, the notion of authenticated attestation suffices
to capture the basic guarantees of multi-channel deep-attestation. However, in
this paper our goal is to allow parties to link their attestations (a hypervisor’s
attestation should, e.g., , be linkable to that of a number of VMs also hosted on
that platform).
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Target T Appraiser

Setup phase: aAuthSetup(1λ)→ ppar

aAuthKGen→ (T.pk,T.sk)

aAuthAttest(ppar,T.sk, aux)→ (quote, σ)
authQuote=(quote,σ)−−−−−−−−−−−−−→ aAuthVerif(ppar,T.pk, aux, (quote, σ))

→ 0 if T compromised (authQuote = ℵ or σ invalid)
→ 1 if T uncompromised (authQuote ̸= ℵ and σ valid)

Fig. 4: Authenticated attestation built upon basic attestation (Figure 3).

In this section we describe our next primitive: linked attestation. The latter
takes place in an environment where several parties are registered in a linked way
– this corresponds to a single platform. A first step is platform registration, by
which several parties are linked on the same underlying hardware. Each entity
later generates a linkable attestation – verifiable on its own, and linkable with
other linkable attestations.

Although our application scenario is that of linking VM and hypervisor at-
testations, we make our framework more generic than that. Instead of just two
types of components, we consider linkable sets S1,S2, . . . ,SL, which resemble
equivalence classes. These sets are defined such that any party in one set (say
PS1) can produce an attestation that is linked to attestations produced by par-
ties in sets S2, . . . ,SL. We write P ⋄ Q to say that two parties are linked. The
relation is reflexive (P ⋄ P), symmetric (if P ⋄ Q, then Q ⋄ P), and transitive (if
P ⋄ Q and Q ⋄ R, then P ⋄ R).

We formalize a linked-attestation scheme LinkedAtt as a tuple of algorithms
LinkedAtt = (aLSetup, aLReg, aLAttest, aLVerif, aLLink), defined for some
auxiliary set AUX . The detailed formalization is given in Appendix B.

The setup algorithm outputs public parameters ppar, including the maxi-
mal number L of sets considered for linking. One can register platforms includ-
ing subsets of components of each type: this algorithm generates keys for each
party. A linked attestation algorithm produces a linked quote linkedQuote and
an auxiliary linking value lkaux. Finally, the verification algorithm checks the
attestation in each individual linkedQuote and the linking algorithm outputs 1 if
several linked attestations seem to belong to the same registered platform, and
0 otherwise. This syntax is also depicted in Figure 5.

The security of linked attestation informally states that an adversary, which
has Person-in-the-Middle capabilities and can compromise devices at will, cannot
make it appear that two devices are linked when they are not, in fact, so.

A significant limitation on the adversary’s capabilities is that compromising
a device will not leak its private keys (which are assumed to be held by a TPM).
However, the adversary will gain a limited oracle access to those keys upon
compromising the device. The limitations to those queries follow rules of access
to an actual TPM.

More formally, we define the security of linked attestation as a game LinkSecλ,F
parametrized by a security parameter λ and a set of functions F , which we call
the permitted key-access functions. The adversary wins if it is able to make attes-
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P1,1

P1,2 P1,3

S1

Q1,1 Q1,2

S2
P2,1 P2,2

S1

Q2,1

S2

Verif: (⊤,P1,2)

linkedQuote lkaux

Verif: (⊤,Q1,1)

linkedQuote lkaux

Verif: (⊤,P2,2)

linkedQuote lkaux

Link : ⊤ Link : ⊥

Platform 1 Platform 2

Fig. 5: Linked attestation primitive. The dashed line indicates a platform un-
der the same registration. In this example, both platforms are composed of
two subsets (namely S1 and S2). There are a total of three quote verifications
(P1,2,Q1,1,P2,2). The link verification outputs true when the devices are regis-
tered under the same platform and false otherwise.

tations stored in LAtt for parties registered on different platforms (P and Q) link.
However, at this point the adversary is constrained to a change-one-change-all
kind of game: it cannot, for instance, append an lkaux component of its choice
to an honestly-generated linkedQuote, nor vice-versa.

In the security game, the adversary registers platforms and can compromise
some of their components. When a component is compromised, the adversary
gets oracle access to a set of permitted functions of the component’s private key.
As a result, the strength of the security proof depends on the function space
F . The more functions the adversary is able to query once it compromises a
component, the more security our primitive is able to provide. However, note
that we cannot give the adversary access to some functions, such as the identity
function on the component’s private key.

Construction. We provide a construction for platforms that have two types of
components: virtual machines (VMs) and their managing hypervisor. Thus, in
our instantiation, L = 2.We use an authenticated attestation scheme (aAuthSetup,
aAuthKGen, aAuthAttest, aAuthVerif) as a black box. The basic construction
is depicted in Figure 6. During setup, our linked-attestation scheme first runs
aAuthSetup and outputs ppar and L = 2. Note that by construction aAuthSetup

must output a number N , denoting the maximal number of parties that can be
set up. This counter will represent a global maximum to parties of all types that
will exist in our ecosystem. Following setup, one can register a subset of VMs
together with a hypervisor. The algorithm runs the key-generation algorithm
aAuthKGen of the underlying authenticated attestation scheme for each party,
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aLSetup(1λ):

ppar′ ← aAuthSetup(1λ)
Return ppar← ppar′

// Attest hypervisor P on platform (s1, s2)
with nonce aux
aLAttest(ppar,PK,P.sk, (s1, s2), aux):
Parse PK as PK[1],PK[2]
// PK[1] is the set of all VM pks

Parse PK[1] as PK1,PK2...PK|S1|

// PKi contains the keys of all VMs on platform i

Set lkaux← PKk with k the index of s1 in S1
// lkaux is now the list of all VM keys on that platform
aux∗ ← H(aux||lkaux)
// Embed lkaux into a new attestation nonce
authQuote← aAuthAttest(ppar′,P.sk, aux∗)
linkedQuote ← authQuote
Return (linkedQuote, lkaux)

aLReg(s1, s2): // Registers a platform with a set s1 of VMs

and the hypervisor in s2
For each i ∈ {1, 2}:

For each j ∈ si:
(Pj.pk,Pj.sk)← aAuthKGen(Pj)

Group all Pj.pk into PKi and all Pj.sk into SKi

Return{(PK1, SK1), (PK2, SK2)}

// Attesting VM P on platform (s1, s2) for nonce aux

aLAttest(ppar,PK,P.sk, (s1, s2), aux):
Get P.pk matching P.sk from PK
lkaux← P.pk // The linking information is P’s public key
aux∗ ← H(aux||lkaux) // Embed lkaux into attestation nonce
authQuote← aAuthAttest(ppar′,P.sk, aux∗)
linkedQuote ← authQuote
Return (linkedQuote, lkaux)

aLVerif(ppar,P.pk, linkedQuote, aux, lkaux):

// Verify attestation quote of party P
aux∗ ← H(aux||lkaux); authQuote← linkedQuote
Return aAuthVerif(ppar′,P.pk, authQuote, aux∗)

aLLink(ppar,PK,⨿1,⨿2):

// Link VM quotes from ⨿1 and the hypervisor quote from ⨿2

Initialize AUXvm ← ∅
For each (Pj.pk, aux, linkedQuote, lkaux) ∈ ⨿1:

Return 0 if aLVerif(ppar′,Pj.pk, linkedQuote, aux, lkaux) returns 0
Return 0 if lkaux ̸= Pj.pk
// Linking fails if quotes fail to verify or authenticate each VM
Add lkaux to AUXvm // Each lkaux here is a VM public key.

Parse ⨿2 as (Pj.pk, aux, linkedQuote, lkaux)
Return 0 if aLVerif(ppar′,Pj.pk, linkedQuote, lkaux) returns 0
AUXhym ← lkaux // This lkaux is a list of VM public keys.
Return 0 if AUXvm is not a subset of AUXhym

// Linking fails if the hypervisor’s list of PKs does not include all VM keys.
Return 1

Fig. 6: Our linked attestation scheme for platforms with 2 types of components:
VMs (stored in S1) and hypervisors (stored in S2). Each type of component
attests via a different aLAttest algorithm, the main difference between them
being that the hypervisor embeds a list of public keys in its nonce.

independently (note that this also ensures that the total number of parties re-
mains at most N). Finally, keys are grouped by types of parties: keys of VMs
are output in a set of public keys PK1 and the key of the hypervisor is output
as PK2.

The VMs and hypervisor generate linked attestations differently. The hyper-
visor first fetches the public keys of all the components registered with it on the
same platform. It computes a new nonce as the hash of two concatenated values:
the original auxiliary value aux and the list of the public keys. The component
then runs aAuthAttest on the public parameters, this new nonce, and its pri-
vate key, outputting the authenticated quote. By contrast, when a VM attests,
it computes a new nonce from the original auxiliary value aux and (only) its own
public key. The authenticated quote obtained as a result is provided as the VM’s
linked quote.

A VM (or a set of VMs) are considered to be linked to a hypervisor if,
and only if, the following conditions hold simultaneously: (1) the attestations of
all the purportedly-linked parties verify individually (if we run aAuthVerif it
returns 1 for each individual attestation); (2) the public key that was successfully
used to verify each of the VMs’ attestation is part of the auxiliary value lkaux
forwarded by the hypervisor.

Security. We prove (in AppendixB) the security of our scheme with respect to a
single permitted function, FSign that takes in input a message M from a message
spaceM and outputs, when queried for a compromised party P, a signature on
the message M with the private key P.sk. We demand that the message space
M be disjoint from the range of any basic attestation scheme.

Theorem 22 (Secure Linked Attestation) The LinkedAtt scheme is secure
assuming that AuthAtt scheme is secure and that the hash function H is collision
resistant.
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2.4 Authorized Linked Attestation

So far, attestation has been viewed as a primitive, run by a single party (which
can be of various types) and outputting an attestation. However, one of the most
important requirements of attestation is that the actual quote only be given to
authorized parties – which we call attestation servers [14].

We will define an authorized linked attestation protocol, which allows an
attestation server to act as a verification party in the attestation procedures.
The same server will also be the one to generate the auxiliary values required
for the attestation (this provides freshness to the protocol). The server will also
be responsible for linking multiple attestations.

Intuition. We provide a full formalization of authorized linked attestation be-
low. However, we also believe it is useful to first give an intuitive understanding
of what this primitive is and the security it wants to achieve.

In authorized linked attestation we consider a (single) attestation server S
and platforms consisting of several types of components (as shown for linked
attestation). The server will keep track of an evolving state, which is initially
empty. However, as the server starts to attest various components, at every ex-
ecution of the authorized attestation protocol, the server will output a verdict
(indicating whether the component’s individual attestation has failed or suc-
ceeded) and may – or may not – update its internal state. Intuitively, the state
is meant to contain the linking information provided by each of the attesting
components. After a number of attestations have taken place, the server might
have enough information in its state to decide whether some of the components
are linked or not.

The security notion we require for authorized linked attestation is threefold:
(1) we require that parties only provide attestation guarantees to the actual
attestation server; (2) we require that the contents of the attestation be actually
indistinguishable from random for all unauthorized parties; (3) we require a
similar kind of linking security as demanded in linked attestation see Section 2.3.
However, as opposed to linked attestation, the adversary in this case can also
play a Person-in-the-Middle role between honest components and the honest
server, or it may attempt to replay messages or impersonate one or both parties.
Finally, the adversary will be able to have oracle access to the secret key of
any compromised component (this oracle access is parametrized in terms of a
function space F of allowed functions).

Formalization.The complete formalization of authorized linked attestation is
given in Appendix C. Components on platforms are either VMs or hypervisor.
In addition, we consider a S, which stores a tuple consisting of a public and
a private key S.pk = pk and S.sk = sk respectively, and a state S.st. Parties
interact with each other in sessions, which are run by an instance of the server
and an instance of a given component. Instances of each party use that party’s
long-term public and private keys, as well as potential local randomness, such
as instance-specific nonces. An instance of a component and an instance of the
server are partnered if they essentially run the same session (formally, if they
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share a session identifier, which consists of the concatenation of a number of
session-specific values).

Authorized linking attestation is defined as the tuple ALA = (ASetup,AReg,
AAttest, aALink). The first, second, and last of these are algorithms, while AAttest
is a protocol. The setup algorithm generates parameters (keys and public sys-
tem values) for all the involved parties. The registration algorithm allows the
VMs and hypervisor on a single platform (defined as sets s1 for the VMs on the
platform and s2 for the hypervisor) to be associated with each other. For ad-
ministration purposes, the public keys of all VMs on a platform (i.e., , all VMs
in some s1) and respectively the public key of the platform’s hypervisor (the
hypervisor in the corresponding s2) are stored respectively in subsets PK1,PK2

(i = 1 for VMs and i = 2 for the hypervisor). Together all the subsets PKi for
all the components form a set PK[i] (for i = 1, 2).

The authorized attestation protocol is run by an instance of a component
and an instant of the server, yielding, for the component, an acceptance bit
(corresponding to the authentication of its partner as the authorized server) and
for the server, a tuple verdict,S.st: the verdict verdict is 1 or 0 depending on
whether the component attested successfully or not, and the state is an update
of the server’s current internal state. Finally, the server state can be used on a
subset of components in the aALink algorithm, yielding either 1 (the components
are linked) or 0 otherwise.

Construction. Our construction of the ALA primitive can be seen in the Fig-
ure 7. We consider the existence on an underlying LinkedAtt scheme that we
use for the aLSetup, aLReg and aLLink in a straightforward manner. However,
the aLAttest algorithm is no longer a primitive, but a protocol between two
instances of two parties, P and Q. For simplicity of exposition, we assume that
the instance of Q is the server attesting the component identified by P.

The protocol proceeds as follows. First, P and Q execute the TLS protocol,
with P playing the role of the client and Q playing the role of the server. The
role of the TLS protocol is two-fold: first, P authenticates the server, so that
they can determine whether this party is allowed to obtain attestation data.
Second, it leads to the establishment of a secure channel, such that the following
messages can be passed on in a secure manner. Once the traffic key(s) estab-
lished, the protocol continues as follows. First, the server uniformly randomly

ASetup(1λ):

ppar← aLSetup(1λ)
Create S
(S.pk, S.sk)← aSigKGen(1λ)
Return (ppar, S.pk, S.sk, S)

AReg(s1, s2):

{(PK1, SK1), (PK2, SK2)} ← aLReg(s1, s2)
Return {(PK1,SK1), (PK2,SK2)}

aALink(ppar,PK,S.S.st, s1, s2):
Parse S.S.st as ⨿1,⨿2

Return aLLink(ppar,PK,⨿1,⨿2)

AAttest(ppar,PK, πi
P, π

j
Q):

Component Server

Establish TLS channel

(linkedQuote, lkaux)← aLAttest(ppar,PK,P.sk, (s1, s2), aux)
aux←−−−−−−−−−−−−−−−−

AttestationRequest
aux

$←− AUX

(linkedQuote,lkaux)−−−−−−−−−−−−−−−−→
AttestationResponse

verdict← aLVerif(ppar,P.pkj , linkedQuote, aux, lkaux)

Add (Pj.pk, aux, linkedQuote, lkaux) to ⨿i in S.st

Fig. 7: Our authorized linked attestation scheme for 2 types of components.
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samples a nonce aux, which is embedded in the first message of the protocol,
AttestationRequest. In response, the party P executes the aLAttest algorithm
and the output, consisting of a linkedQuote and the linkage information lkaux, is
then sent to the server. The server will subsequently update his state.

In order for two components to be linked by the server successfully, the fol-
lowing conditions have to be met. First, the two components’ attestation must
be valid (their associated verdicts equals 1). Second, the two lkaux must be sub-
sets of each other; essentially, the key that the VM used as part of its attestation
must be found in the lkaux provided by the hypervisor.

We note that if the server has at some point accepted the attestation of a
component (thus updating its state to add the linking information), and if later a
failed attestation occurs with respect to that component, the server updates state
as follows: it ignores the linking information provided in the second attestation;
and it removes prior linking information provided by that component.

Security. There are three fundamental properties we want ALA schemes to have:
an authenticity guarantee for the attestation server (authorization); a confiden-
tiality guarantee for the contents of the attestation (indistinguishability); and a
linkability guarantee for honestly-behaving components (linking-security). The
first notion, authorization, captures the fact that before reaching an accepting
state, a (non-server) party must be sure that it is speaking to the legitimate
server (game AuthSecλ,F). The second notion, indistinguishability, essentially
covers Person-in-the-Middle confidentiality for the attestation protocol (game
AuthIndλ,FSign

). The last property, linking-security, refers to the fact that no
PitM adversary with the ability to compromise components can convince an
attestation server that a component is linked to another if that is not the case
in reality (game AuthLinkλ,F). Although this last property might seem similar
to the security notion for our linked attestation primitive, there is one impor-
tant difference between the two: in linked attestation the adversary has access
to essentially two ways to generate an attestation (depending on whether the
component is honest or compromised), whereas in authorized linked attestation
the adversary will have more leeway in combining attestation material across
sessions. The stronger adversary in this section will thus make for a stronger
primitive in the end. The three security games are defined in Appendix D.

Theorem 23 Our construction is AuthSecλ,FSign
secure if the TLS protocol pro-

vides server authentication: Pr[A wins AuthSecλ,F] ≤ εTLS-auth.

Proof. (sketch) Note that in order to win this game, the adversary must make
a party accept a session with the server, such that no matching server instance
exists. This is against the server authentication property we assume of the TLS
protocol.

Theorem 24 Our construction is AuthLinkλ,FSign
secure if the underlying prim-

itive LinkedAtt is LinkSecλ,FSign
and TLS is at least (s)ACCE secure.

Proof. (sketch) A key observation for this game is that the adversary cannot
impersonate a server or determine it to provide bad randomness. Instead, the
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adversary can compromise components and run TLS sessions on their behalf
with the server, or try to obtain input from honest components instead. We
distinguish between two types of adversary behaviours.

Say A has never queried OCompromise for some party P. If the adversary
prompts P to run a session, then A will not actually know anything about the
messages (so it cannot misbehave on the quote, the nonce, or anything else).
If A runs the TLS session instead of P, it will learn the channel key, but will
not be able to prompt P for the quote (since P wants to run TLS and not the
attestation protocol, and since A cannot impersonate the server).

Say A queries OCompromise for some party P. Then the adversary can run
TLS sessions on behalf of that party and query OUseKey in an attempt to get
information on the quotes. However, in that case, the attestation of that com-
ponent fails, except again if we break linked authentication security.

This essentially means that the adversary has no way to maul honestly-
generated input to suit its purposes.

Theorem 25 Our construction is AuthIndλ,FSign
secure if the TLS channel pro-

vides (minimally) (s)ACCE security. Let qsessions be the number of sessions.

Pr[A wins AuthIndλ,FSign
] ≤ 1

qsessions
εTLS-sACCE.

Proof. Like in the proof of authorization, the reduction here is immediate. The
property of sACCE (which is already provided by TLS 1.2, whereas TLS 1.3
gives even stronger guarantees) implies that messages exchanged across the TLS
channel are secure.

3 Implementation

We provide a proof of concept implementation of our authorized linked attes-
tation scheme. The implementation consists of three parts, a client for the hy-
pervisor, a client for the Virtual Machines, and an attestation server written
in Python 3. We do not consider the underlying NFV or cloud infrastructure,
since our scheme abstracts those environments and can be used in any kind
deep-attestation scenario. Therefore, any computer equipped with a TPM 2.0
(which can also be emulated) and which has virtualization capacities suffices for
the purposes of our implementation. We provide our code as well as a detailed
tutorial on how to install and configure both the infrastructure [3].

The infrastructure. We summarize our testing architecture in Figure 8. Al-
though only two VMs are represented in this diagram, some of our tests will use
3 or 4.

Fig. 8: Architecture for tests.

Our hypervisor is a laptop running Ubuntu
20.04.1 (kernel version 5.4.0-58) with an Intel
i5-10210U CPU, 8GB RAM and a Nuvoton
TPM NPCT75X. We used KVM to turn this
laptop into a hypervisor.
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Table 1: Minimum, median, mean and maximum time in second for attestation
of a hypervisor and a virtual machine for 100 trials.

min median mean max

Hypervisor 3.22 5.30 5.68 11.55

VM 0.66 0.97 1.03 1.41

In order to achieve a high attestation per-
formance, we used a full virtual TPM imple-
mentation, using QEMU [1] with libtpms [7]
version 0.7 and swtpm [15] version 0.5.

All virtual machines are QEMU virtual machines (version 4.2.1) with 2 cores
and 4G RAM running Ubuntu 20.04.1.

The hypervisor, server, and VMs communicate through a virtual network.
A virtual bridge on the hypervisor redirects packets on the appropriate virtual
interface. Thus, connection time is not considered in our tests.

To communicate with the TPM we used tpm2-tss, tpm2-abrmd and tpm2-
tools from the tpm2-software [2]. Note that the tpm2-tss project implements the
TPM software stack (TSS), which is an API specified by the Trusted Computing
Group to interact with a TPM. The tpm2-abrmd implements the access broker
and resources to manage concurrent access to the TPM and manage memory
of the TPM by swapping in and out of the memory as needed (hardware TPM
have limited memory). tpm2-tools are a set of command-line tools based on
TSS, which are used to send commands to the TPM. We used Python to wrap
tpm2-tools commands.

The attestation server is also a virtual machine, with the same characteristics
as those above. This allows us to test our implementation on a single machine. We
establish a secure connection between the client and the server by using Python’s
SSL library and then sending protocol messages as encoded json strings directly
into TLS socket.

Tests. We perform three types of experiments. The first is a comparison of
hypervisor attestation time and VM attestation time. Although both those pro-
cesses have some (very small) amount of noise, our values faithfully show the
difference between attesting a component through the physical TPM – hypervi-
sor attestation – and attesting it by using a virtual TPM – VM attestation.

We ran 100 attestations for the hypervisor and 100 attestations for a virtual
machine. The results have high variance so Table 1 presents the minimum, the
maximum, mean and the median value of those 100 trials. As expected, time
for an attestation using a hardware TPM is much higher than using a Virtual
TPM.

As our second and third experiments we wanted to see how the overall run-
time of our scheme evolves with the number of virtual machines that need to be
attested, when the attestation is sequential or parallelized for the VM attesta-
tions. In both cases, each experiment run first executed the attestation of the
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hypervisor, and then (sequentially or in parallel) the attestations of a varying
number of VMs (between 1 and 4). For both experiments we did 100 runs of the
experiment. The median runtime was calculated in each experiment (sequential
or parallel) for each number of VMs (1 through 4), and the results are plotted
in Figure 9
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Fig. 9: Attestation time for 1, 2,
3 and 4 VMs.

We note that the runtime is not entirely
linear. This is because in experiments 2 and 3
the initial attestation of the hypervisor (which
only occurs once) takes a much larger time
than the subsequent VM runtimes.

Comparison to single-channel attesta-
tion. We did not implement single-channel
attestation. However, since we have imple-
mented hypervisor and VM attestations, we
can theoretically estimate the runtime of
single-channel attestation for a varying num-
ber of VMs – which we plot in Figure 9. In-
deed, a single-channel attestation process for
a single VM includes a VM attestation and a
hypervisor attestation. If we want to run it for 2 VMs, then we need to perform
2 hypervisor attestations and 2 VM attestations. This cannot be easily paral-
lelized either, because the same TPM has to run the attestations. This yields a
much higher runtime, as depicted in Figure 9.

Comparison to multi-channel attestation.. Although our method follows
basic multi-channel attestation approaches, we do add an extra computation (a
hash function computation) compared to traditional multi-channel attestation.
In addition, we require a little extra memory overhead for both the attestation
server and for each platform, so that the additional attestation keys are stored
for each VM. There is also a slight transmission overhead, since those keys are
also sent upon attestation. However, the transmission overhead is negligible since
it only appears for the hypervisor attestation (which occurs only once).

4 Conclusions and Future Work

We proposed a layer-binding in deep-attestation without running into the com-
plexity of single-channel attestation. Our construction achieves the best of both
worlds, with a complexity similar to that of multi-channel attestation, but with
the strong linkage properties provided in single-channel attestation.

We accompany our construction by a proof-of-concept implementation that
clearly shows the viability and scalability of our solution, especially if VM at-
testations are run in parallel.

In addition, we are the first to present a full, formal treatment of our new
protocol, which we call authorized linked attestation. Our construction of autho-
rized linked attestation is modular, built on primitives which have increasingly
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stronger properties. Our underlying assumption is a primitive called basic attes-
tation. We show that in order to be able to prove security, we need that attes-
tations be able to reflect compromise of the component. In addition, we rely on
a collision-resistant hash function, an EUF-CMA-secure signature scheme, and
the sACCE security of a TLS protocol (having AKE properties would be even
better).

However, our model (and scheme) does not immediately account for other
features of virtual infrastructures, such as privacy CAs, migrating VMs, multiple
hypervisors managing the same VM, or even replacing TPMs. These aspects are
left as future work.
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A Authenticated Attestation

We consider an environment parametrized by a security parameter λ, which will
contain up to N parties. Parties keep track of two attributes: the compromise
bit γ used also for basic attestation, and a set of public and secret keys (pk, sk):
a public key pk (assumed to be unique per party, and known to all other parties
including the adversary) and a private key sk known only to that party. We use
P.pk/P.sk to indicate the public/secret key of party P. We require that this prim-
itive be correct in two ways: aAuthVerif(·, ·, ·,ℵ) = 0 for all possible input values
in the first three parameters, and: for all ppar ← aAuthSetup(1λ), (pk, sk) ←
aAuthKGen(P), aux ∈ AUX , if authQuote → aAuthAttest(ppar,P.sk, aux) and
authQuote ̸= ℵ, aAuthVerif(ppar,P.pk, aux, authQuote) = 1.

Security. Formally, A will play the AuthSec game against a challenger G, which
begins the game by running aAuthSetup and outputting ppar to A. The chal-
lenger also initializes N to 1. The adversary then has access to the following
oracles:

– OAuthReg()→ (Pi,Pi.pk) : if i ≤ N , it runs aAuthKGen(Pi)→ (Pi.pk,Pi.sk). It
outputs Pi.pk to all parties and keeps Pi.sk private, stored in the keys attribute
of party Pi. A handle (in practice the index) of this party is also returned to
A.

– OAuthAttest(Pi, aux) → authQuote ∪ ℵ : this oracle runs the aAuthAttest

algorithm on ppar, Pi.sk and input aux, and returns the output. On adver-
sarially chosen input Pi and aux, the oracle updates a list LAtt ← LAtt ∪
(Pi, aux, authQuote).

– OCompromise(Pi)→ OK : this oracle allows an adversary to compromise party
Pi, thus changing Pi.γ to 1.

– OAuth(Pi,M)→ σM : this oracle can only be queried for a party whose com-
promise bit is 1, and it outputs an EUF-CMA-secure signature keyed with
Pi.sk on a message M . We require that M be outside the range of any basic

https://github.com/stefanberger/swtpm
https://github.com/stefanberger/swtpm
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attestation scheme. This last oracle reflects the fact that compromised parties
can access a signing function within the TPM.

Finally the adversary outputs a tuple (P, aux, authQuote). It is said to win
if and only if the following condition holds: aAuthVerif(ppar,P, aux, authQuote)
= 1 and there exist no tuples (P, aux, authQuote) such that (authQuote ̸= ℵ) →
OAuthAttest(ppar,P, aux) for the current public parameters ppar (output by the
challenger G).

Proof of Theorem 21.

Proof. Let A be a probabilistic polynomial-time algorithm. The goal of A is to
provide a signed quote with correct auxiliary value (a nonce) such that the quote
and the signature are valid for a fresh nonce.

We propose a proof using a sequence of game hops as introduced in [16]. The
initial game corresponds to the security game AuthSec. The successive games
are slight modification to its previous one to end up with a game corresponding
to generic primitive game (such as EUF-CMA).

Game 0. This is the original security game

Game 1 (transition based on indistinguishability). This game is defined

as the previous one except that the challenger aborts the game if a compromised
component is able to generate a valid attestation quote. Suppose that A has a
non-negligible advantage ϵB of winning the basic attestation game. This means
that there exists a party P such that P.γ = 1 (i.e., P is compromised) but
quote ∈ DB with aBVerif(ppar, quote) = 1 (note that quote = ℵ potentially).
By difference lemma we have: |Pr[A wins G0]− Pr[A wins G1]| ≤ εB
Game 2. This game is defined as the previous one except that the game aborts if

A can generate a valid signature. We show that: |Pr[A wins G1]−Pr[A wins G2]| =
εEUF-CMA

N where εEUF-CMA is the advantage of EUF-CMA security game. The
proof is done by reduction. Assume that A can generate a valid authQuote∗, i.e.,
aAuthVerif(ppar,P∗, aux∗, authQuote∗) = 1 with (P∗, aux∗, authQuote∗) ̸∈ LAtt.
We then show that there exists adversary B using A as a sub-routine with non-
negligible advantage of winning the EUF-CMA security game.

Adversary B simulates the game of A thus acting as the challenger in the
AuthAtt game. The behavior of B is defined as follows:

– receives pk from its own challenger of the EUF-CMA game.

– runs the aAuthSetup algorithm to get ppar (and also N).

– randomly selects i∗
$← {1, . . . , N}. Two cases need to be studied depending

on the ithquery of A :

case 1: i ̸= i∗. When A calls oracle OAuthReg() then B runs aAuthKGen(Pi) to
retrieve (Pi.pk,Pi.sk). B sends back Pi.pk toA. WhenA calls oracle OAuthAttest()
then B runs algorithm aAuthAttest (which is possible since B has the cor-
responding secret key). B sends back to A the output of the algorithm. Note
that in this case, the simulation is the same as the original game since B uses
the same algorithm of the oracles.



22 G. Arfaoui et al.

case 2: i = i∗. In this case, B will inject its own material to use it in its EUF-
CMA game. When A calls oracle OAuthReg(Pi∗) then B simply returns pk.
Note that in this case, B does not have access to sk. Thus when A calls oracle
OAuthAttest(), B cannot sign the quote. Instead, B runs aBAttest(ppari∗) and
sends to its challenger quote||aux. In response, its challenger will send a signed
value of it using sk. B then forward this to A. The view of A that is different
from the original game in this case is the output of the OAuthAttest() ora-
cle. The latter runs algorithm aAuthAttest which generate a quote quote←
aBAttest(ppari) and a signature σ ← aSigSign(Pi.sk, (quote, aux)). In the
simulation, B has access to algorithm aBAttest() but the signature scheme
is different. Yet, both signature schemes are EUF-CMA thus their outputs
are indistinguishable (meaning that A cannot decide from which schemes the
output comes from with non-negligible probability) since the keys have the
same probability distribution. Hence, the simulation of the game by B and
the real game are indistinguishable.

– When A returns its forgery on query i, B parses authQuotei as authQuotei :=
(m∗||aux∗, σ∗).

– Finally B returns (m∗||aux∗, σ∗) to its challenger and wins if A forges the
i∗query (meaning that i = i∗).
By combining the results, we have: Pr[A wins G0] ≤ εB + εEUF-CMA

N which is
negligible.

B Linked attestation

We formalize a linked-attestation scheme LinkedAtt as a tuple of algorithms
LinkedAtt = (aLSetup, aLReg, aLAttest, aLVerif, aLLink), defined for some
auxiliary set AUX .
– aLSetup(1λ) → ppar: on input the security parameter 1λ (in unary), this

algorithm outputs public parameters ppar. This security parameter includes
the maximal number of allowed disjoint linkable sets, which we denote as L.

– aLReg(s1, s2, . . . , sL)→ {(PK1,SK1), . . . (PKL,SKL)}: this algorithm keeps as
state a number L of sets Si originally set to ∅, and a vector of sets of public keys
PK (also initialized to ∅). On input a number of subsets si (i = 1, 2, . . . , L),
this algorithm first checks that ∀i, j, si∩Sj = ∅ (else the algorithm outputs ⊥).
If the relation is true, then the algorithm generates for each party Pj ∈ si, (for
all j, i) a tuple of public and private keys Pj.pk,Pj.sk, initializing Pj with those
keys. We require the unicity of all the generated public keys. The subsets si
are each added to greater sets Si. The algorithm groups the keys of all parties
Pj ∈ si in a pair of private/public key subsets: (PKi,SKi), updating the i-th
component PK[i] of PK as PK[i] ∪ PKi. All parties are given access to the
public-key subsets (and more generally, to PK).

– aLAttest(ppar,PK,P.sk, (s1, . . . , sL), aux) → (linkedQuote ∪ ℵ, lkaux): on in-
put public parameters ppar, the current set of public keys PK, the private key
P.sk of some party P, subsets si ∈ Si, and an auxiliary value aux ∈ AUX ,
this algorithm outputs either a linked quote linkedQuote or a special failure
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symbol ℵ, and a different value lkaux (this last entry could be used to store
linkage-related information).

– aLVerif(ppar,P.pk, (linkedQuote ∪ ℵ), aux) → 0 ∪ 1: On input the public pa-
rameters ppar, a public key P.pk, a linked quote (or a failure symbol ℵ), and an
auxiliary value aux, this algorithm outputs a verification bit. By convention,
0 means failure and 1 means acceptance of the attestation.

– aLLink(ppar,PK,⨿1, . . . ,⨿L) → 0 ∪ 1: on input the public parameters ppar,
the set of public keys PK, and subsets ⨿i containing elements of the form
(Pj.pk, aux, (linkedQuote ∪ℵ), lkaux), this algorithm outputs 1 if the quotes in
all the indicated subsets can all be linked (thus also indicating the parties are
linked) or 0 otherwise.

By convention, we allow the use of ∅ to indicate that any of the input or
output (sub)sets to also be empty.

Formalization. The security of linked attestation informally states that an ad-
versary, which has Person-in-the-Middle capabilities and can compromise devices
at will, cannot make it appear that two devices are linked when they are not, in
fact, so.

A significant limitation on the adversary’s capabilities is that compromising
a device will not leak its private keys (which are assumed to be held by a TPM).
However, the adversary will gain a limited oracle access to those keys upon
compromising the device. The limitations to those queries follow rules of access
to an actual TPM.

More formally, we define the security of Linked Attestation as a game LinkSecλ,F
played by an adversary A against its challenger G. The game is parametrized
by a security parameter λ and a set of functions F , which we call the permitted
key-access functions. The challenger begins by running aLSetup(1λ), returning
ppar to the adversary, and then it instantiates two lists: a list of parties LReg = ∅
and a list of linkable attestations LAtt = ∅. The adversary then plays its game
by using the following oracles adaptively:

– OLReg(n1, . . . nL)→ (PK1, . . .PKL): the linked user-registration oracle creates
a linked platform consisting of ni components of the type indicated by Si.
The challenger first instantiates a counter Ni = 0 for all i; it also instantiates
subsets si as a tuple of ni handles Pi,j , with Ni + 1 ≤ j ≤ Ni + ni and then
runs the algorithm aLReg(s1, s2, . . . , sL), instantiating the parties with their
keys and outputting the public keysets to the adversary. The subset consisting
of the list of subsets is added to LReg. We note that this way of registering
parties ensures by construction that no party finds itself in multiple sets, nor
on multiple platforms.

– OLHAttest(P, (s1, . . . , sL), aux)→ (linkedQuote∪ℵ, aux∗): this oracle first ver-
ifies that P.γ = 1. If the condition is false (P is compromised), then this
oracle outputs an error symbol ⊥ (compromised parties must use the oracle
OLCAttest described below). If the condition is true, then this algorithm runs
aLAttest(ppar,PK,P.sk, (s1, . . . , sL), aux), and returns the output to the ad-
versary. The tuple (P, (s1, . . . , sL), aux, linkedQuote, aux

∗) is stored in LAtt.
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– OCompromise(P)→ OK: this oracle allows an adversary to compromise party
P, thus changing P.γ to 1.

– OLCAttest(P, (s1, . . . , sL), aux, f) → (ℵ, aux∗): this oracle first checks that
P.γ = 1 (else, ⊥ is returned as an output). If the condition holds, then
this oracle first checks that f ∈ F and if so, it runs f on P.sk and input
aux to output aux∗. Then it runs OLHAttest(P, (s1, . . . , sL), aux) to obtain
linkedQuote (the second output is discarded). Note that by the security of
the linked attestation primitive, we will have that linkedQuote = ℵ. The tuple
(P, (s1, . . . , sL), aux, linkedQuote, aux

∗) is added to LAtt and (linkedQuote, aux∗)
is returned to A.
At the end of its interaction, A outputs a party P and a tuple of sub-

sets (s̃1, . . . , s̃L) with an index i⋆ such that ∀i ̸= i⋆, si := s̃i and si⋆ :=
s̃i⋆ ∪ {P}. In addition the adversary outputs for every party P ∈ s1 ∪ · · · ∪
sL (parties being indexed as Pi,j) a tuple (aux, linkedQuote, aux∗) such that
(·, ·, aux, linkedQuote, aux∗) ∈ LAtt.

We say the adversary wins if all the following conditions hold simultaneously:
– For each si the parties inside this set are all registered i.e., they were output

by OLReg. In addition P is registered;
– There exists at least one party Q ∈ sj such that P and Q were issued from

different OLReg queries;
– By setting⨿i := (P.pk, aux, (linkedQuote∪ℵ), aux∗) and, for k ̸= i, for all Pk,j ∈

sj , ⨿k := (Pk,j.pk, aux, (linkedQuotek,j ∪ℵ), aux∗k,j), it holds that aLLink(ppar,
PK,⨿1, . . . ,⨿L) = 1.
In other words, the adversary wins if it is able to make attestations stored in

LAtt for parties registered on different platforms (P and Q) link. Note that there
are two ways that an attestation can end up in LAtt: either it is issued for an
honest component (and then it should hold that linkedQuote ̸= ℵ), or it is issued
for a compromised party, for an adversarially-chosen evaluation of a permitted
function f on a secret key (in which case linkedQuote = ℵ). In other words, at
this point a compromised component cannot just bind the output aux∗ from the
function evaluation oracle with a different quote. The adversary will gain this
ability at the next step (when the freshness aux will no longer be chosen by the
adversary).

Proof of Theorem 2.We will now prove our construction is secure with respect
to the LinkSecλ,FSign

experiment.

Proof. Game 0. The original security game LinkSecλ,FSign
.

Game 1.We guess parties P,Q output by the adversary in the last part of its

game. In other words, the challenger must draw at random two values between
1 and N , such that those values correspond to those chosen by the adversaries.
We lose a factor 1

N2 .
Game 2.We now rule out thatH(·, lkaux) = (·, lkaux′) for any lkaux ̸= lkaux′.

Trivially, if the converse were true,we could break the collision resistance of H
with equal probability.
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Note that now, since parties P and Q are registered on different platforms,
since lkaux keys are unique, and since we have ruled out collisions, any honestly-
generated attestations for P and Q will not link. The adversary’s only hope is to
forge an attestation for either one of those parties.

Game 3.At this point we rule out the fact that P’s tuple (aux, linkedQuote, aux∗)

was in fact part of a tuple (P′, ·, aux, linkedQuote, aux∗) ∈ LAtt (with P ̸= P′). If
that were so, we could construct an adversary against the authenticated attes-
tation scheme (since P purports to be P′). In so doing an important oracle will
be the signature oracle OAuth added artificially in the authenticated attesta-
tion primitive; the latter will allow us to simulate OLCAttest queries. We lose
εAuth-attest.

Game 4. We repeat the previous game hop for party Q, and lose εAuth-attest.

At this point, the adversary can no longer win the game.

C Formalization of Authorized Attestation

We will consider parties of multiple categories as for the linked-attestation prim-
itive. We also define a special server entity, denoted S, which stores the following
attributes:

– (pk, sk): a tuple consisting of a public key pk (assumed to be unique and known
to all other parties including the adversary) and a private key sk known only
to the server. We use S.pk to indicate the public key of party S, and S.sk to
indicate its private key.

– S.st: a value called state, which stores tuples of linked attestations which are
susceptible to be linkable to each other.

We will consider an environment in which parties interact with each other in
sessions. The session is run by two party instances, one of the attesting party
and the other, of the attestation server. For a party P we denote by πi

P the i-th
instance of party P.

Just as in the case of linked attestation, parties store a set of keys (pk, sk),
as well as a compromise bit γ.

Party instances use the same keys and have the same compromise bit as the
party itself, but in addition keep track of the following session-specific attributes:

– sid: a session identifier, which will be useful in understanding which two party
instances converse together.

– pidpk: the public key belonging to this instance’s intended communication
partner.

– T: a transcript of messages exchanged throughout a protocol session, in plain-
text. Even if encryption is used at some point, parties append messages to
their transcripts only after decrypting.

– α: this bit is originally set to 0, but can be changed to 1 if this party instance
has accepted its partner as a legitimate entity to run the authorized linked
attestation with.
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– lst: this local state variable stores instance- (and protocol-) specific values,
such as encryption keys, randomness, etc.

In addition server instances πj
S keep track of the following attribute, which

is the output of the immediate attestation process taking place:
– verdict: this attribute stores a bit, initially set to 0, which is flipped to 1 if

the attestation server’s instance has accepted the attestation received during
that session.

We call two instances πi
P and πj

Q partnered if, and only if, the following
conditions hold simultaneously: exactly one of P and Q is in fact the attestation
server S; πi

P.pidpk = Q.pk and πi
Q.pidpk = P.pk; and πi

P.sid = πj
Q.sid.

Authorized linking attestation is defined as the tuple of algorithms and pro-
tocols ALA = (ASetup,AReg,AAttest, aALink) described as follows:
– ASetup(1λ) → (ppar,S.pk,S.sk,S) : on input the security parameter 1λ (in

unary), this algorithm outputs public parameters ppar, as well as the server
handle S (such that S is equipped with newly generated keys pk, sk). The value
ppar includes the maximal number of allowed disjoint linkable sets of parties,
which we denote as L. The values ppar,S.pk, and S are public, S.sk remains
private. The value S.pk is added as the first value in the set PK.

– AReg(s1, s2, . . . , sL)→ {(PK1,SK1), . . . , (PKL,SKL)}: this algorithm keeps as
state a number L of sets Si originally set to ∅, and a vector of sets of public keys
PK (also initialized to ∅). On input a number of subsets si (i = 1, 2, . . . , L),
this algorithm first checks that ∀i, j, si∩Sj = ∅ (else the algorithm outputs ⊥).
If the relation is true, then the algorithm generates for each party Pj ∈ si, (for
all j, i) a tuple of public and private keys Pj.pk,Pj.sk, initializing Pj with those
keys. We require the unicity of all the generated public keys. The subsets si
are each added to greater sets Si. The algorithm groups the keys of all parties
Pj ∈ si in a pair of private/public key subsets: (PKi,SKi), updating the i-th
component PK[i] of PK as PK[i] ∪ PKi. All parties are given access to the
public-key subsets (and more generally, to PK).

– AAttest(ppar,PK, πi
P, π

j
Q) → (verdict,S.st): this protocol is an interaction be-

tween two party oracles, such that exactly one of P,Q is S. The protocol yields
a tuple of values verdict and S.st to the server (and no output for the other
party). Both party oracles are assumed to update their attributes accordingly
as the protocol unfolds.

– aALink(ppar,PK,S.S.st, s1, . . . , sL) : 0 ∪ 1 : given the public parameters and
public-key set, the server’s current state, and a number of subsets of (purportedly-
linked) parties, this algorithm outputs either 0 (the parties are not linked) or
1 (the parties are linked).
We require two types of correctness properties. First, we require that running

the protocol between two honest parties yields a verdict of 1 (accept) on the side
of the attestation server. Secondly, we require that components that are linked
at registration will be viewed as linked by the aALink algorithm. More formally,
we require that schemes ALA = (ASetup,AReg,AAttest, aALink) be such that:
– For all (ppar,S.pk,S.sk,S) ← ASetup(1λ) and for all parties P ∈ Si for some

1 ≤ i ≤ L, it holds that (verdict, ·) = AAttest(ppar,PK, π·
P, π

·
S) (any legitimate

party will successfully attest to the legitimate server);
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– For all (ppar, ·, ·,S)← ASetup(1λ), for all subsets s̃1, s̃2, . . . , s̃L such that there
exist sets si for i = 1, 2, . . . , L such that s̃i ⊂ si and AReg(s1, s2, . . . , sL) was
called and did not result in ⊥, it holds that:
aALink(ppar,PK,S.S.st, s̃1, . . . , s̃L) = 1 (parties that are registered together
can be linked through the server’s state).

D Security games for AuthAtt

The three security games we define are parametrized by a function space F
and a security parameter λ. They start with the challenger running the setup
algorithm and outputting ppar as well as the handle S and its public key S.pk to
the adversary. Note that this will not give the adversary black-box access to S’s
attributes: it simply allows the adversary to later instantiate new attestation-
protocol sessions for that server.

The adversary will then have access to some, or all of the following oracles:

– OALAReg(n1, . . . nL)→ (PK1, . . .PKL) : the authorized linked user-registration
oracle creates a linked platform consisting of ni components of the type indi-
cated by Si. The challenger first instantiates subsets si as a tuple of ni handles
Pi,j , with 1 ≤ j ≤ ni and then runs the algorithm AReg(s1, s2, . . . , sL), in-
stantiating the parties with their keys and outputting the public keysets to
the adversary. The subset consisting of the list of subsets is added to LReg.

– ONewSession(P,Q) → πi
P : on input the identity of a target party P and a

partnering party Q, if both entities are correctly registered and exactly one of
them is the server, then this oracle instantiates an instance of P whose partner
will be instantiated as pidpk= Q.pk. Note that in order to observe an honest
session between two parties, an adversary would have to create two partnered
instances, one of P and the other of Q.

– OSend(M,πi
P) → M ′ : this oracle simulates sending a message M to an in-

stance πi
P, and outputs the response M ′ of the party instance. If the input

message takes a special value M = prompt and P is the initiator of the pro-
tocol (i.e., the first party to have to send a message), this will trigger πi

P to
output the first message in the protocol. We note that some messages, when
sent, might trigger errors, leading to an outputM ′ = ⊥. Other messages might
trigger the attributes of the party (or instance) to be modified.

– ORevealState(πi
P) → lst : on input a valid party instance, this oracle returns

the value stored by the attribute lst of that instance.
– OUseKey(P, f, aux)→ aux′ : on input a compromised party P (not the server),

a function f ∈ F , and an auxiliary input value aux, this oracle evaluates f on
P.sk and aux.

– OCompromise(P) → OK ∪ ⊥ : on input a registered party P ̸= S, this oracle
turns the party’s compromise bit to 1 and returns OK. If P = S or the party
has not been registered, the output is an error symbol ⊥.
We now proceed to describe each of the three security experiments we con-

sider for our authorized linked attestation primitive.



28 G. Arfaoui et al.

In the authorization game AuthSecλ,F, after the challenger runs the setup
algorithm, the adversary A gets access to all the oracles described above. It
ultimately stops with a stop message. We say A wins if, and only if, there
exists an instance πi

P such that P ̸= S, for which the following conditions hold
simultaneously:
– πi

P ends in an accepting state, i.e., πi
P.α= 1;

– There exists no server instance πj
S such that πj

S is partnered with πi
P.

In other words, the adversary wins if it can make a registered party believe it
has talked to the server when this is not the case.

In the linking game AuthLinkλ,F, after the challenger runs the setup algo-
rithm, the adversary A gets access to all the oracles above. It ends by out-
putting a tuple (P, s1, . . . , sL) : such that for all 1 ≤ i ≤ L, si ⊂ Si and
there exists a unique i∗ such that P ∈ Si∗ and si∗ = ∅. The challenger sets
s̃i := si for all i ̸= i∗, and s̃i := P. Then the challenger evaluates: b ←
aALink(ppar,PK,S.S.st, s̃1, . . . , s̃L). The adversary is said to win if, and only
if the following conditions hold simultaneously:
– b = 1;
– There exists a party Q and an index j∗ ̸= i∗ such that Q ∈ ˜sj∗ and P and Q

were not output by the same OALAReg query.
In other words, for this second game, the adversary has to run several sessions

between (potentially compromised) parties and the (honest) server, thus bringing
the server’s state to a point where linkage can be verified based on that state.

Finally, for the indistinguishability game AuthIndλ,F, once the challenger has
finished the setup, it also draws a bit b at random. The adversary gets once more
access to the oracles described above. It finally outputs a tuple (πi

P,m0,m1),
consisting of a party instance and two messages, such that: |m0| = |m1| and
πi
P.α = 1. The challenger uses its knowledge of πi

P’s state on input mb (which
is m0 or m1 depending on the challenger’s hidden bit) to simulate outputting
a message Mb which corresponds to the next protocol message of πi

P as that
party would have sent it. Clearly if the protocol requires messages be sent in
plaintext, Mb = mb. The instance πi

P, as well as any of its partnering instances,
are closed and may no longer be used in any oracle. The adversary may sub-
sequently continue to use oracles at will (except on the instances closed above)
and eventually outputs a guess d ∈ {0, 1}. We say the adversary wins if, and
only if, the following conditions hold simultaneously:
– d = b;
– No ORevealState query was made for either πi

P, nor for any instance πj
S of the

server such that πi
P and πj

S are partnered.
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