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Abstract. SPHINCS+ is a state-of-the-art hash based signature
scheme, the security of which is either based on SHA-256, SHAKE-256 or
on the Haraka hash function. In this work, we perform an in-depth anal-
ysis of how the hash functions are embedded into SPHINCS+ and how
the quantum pre-image resistance impacts the security of the signature
scheme. Subsequently, we evaluate the cost of implementing Grover’s
quantum search algorithm to find a pre-image that admits a universal
forgery.

In particular, we provide quantum implementations of the Haraka and
SHAKE-256 hash functions in Q# and consider the efficiency of attacks
in the context of fault-tolerant quantum computers. We restrict our find-
ings to SPHINCS+-128 due to the limited security margin of Haraka.
Nevertheless, we present an attack that performs better, to the best of
our knowledge, than previously published attacks.

We can forge a SPHINCS+-128-Haraka signature in about 1.5·290 surface
code cycles and 2.03 · 106 physical qubits, translating to about 1.55 · 2101
logical-qubit-cycles. For SHAKE-256, the same attack requires 8.65 · 106
qubits and 1.6 ·284 cycles resulting in about 1.17 ·299 logical-qubit-cycles.

Keywords: Post-quantum cryptography · quantum implementation ·
resource estimation · cryptanalysis.
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1 Introduction

Overview and Related Work Ongoing research in the area of quantum tech-
nologies has led to the belief that quantum computers will be able to break
current public-key cryptosystems within the coming decades. On the contrary,
symmetric-key primitives are believed to be somewhat resistant against quantum
attacks, with the most promising generic attack being Grover’s search algorithm
[15]; Its quadratic improvement over a classical brute force search can easily be
countered by doubling the key length of the underlying primitives.

In order to prepare for the (public-key) quantum menace, the National Insti-
tute for Standards and Technology (NIST) started the post-quantum standard-
ization competition in 2017. The NIST competition features 5 security levels
[24,23]: The first level provides security equivalent to performing a key search
on AES-128, the second a collision attack on SHA-256 and the fifth a key search
on AES-256. Moreover they categorize attacks with quantum computers accord-
ing to the maximal circuit depth, where each level resembles a number of gates
that can be serially computed over a plausible time period. Specifically, NIST
estimates that quantum circuits up to a depth of 240 gates can be computed
within a single year, up to a depth of 264 in a single decade and up to 296 in
a millennium. Respectively, the number of quantum gates to break AES is es-
timated by NIST to be 2170/maxdepth, i.e. 2130, 2104 and 274. [17] gave precise
estimates for attacking AES-128 for different values of maxdepth and respective
parallelization. Equivalently, NIST estimates 2143 classical computational steps.
However, we note the most promising attack on AES-128 can be performed in
2126.1 classical steps as shown by [4].

From initial 69 submissions to the competition, only 7 were selected as final-
ists [24]. Additionally, 8 schemes were chosen as alternate candidates based on a
high confidence of their security, but with a drawback in performance compared
to the 7 finalists. Briefly speaking, they may be considered as backup candidates
for standardization. Among the alternate candidates is the stateless hash-based
signature scheme SPHINCS+ [16]. SPHINCS+ builds on the hardness of invert-
ing one-way functions, i.e., Haraka [20], SHAKE-256 [22] or SHA-256 [11], the
first of which can be derived from block-ciphers and thus is believed to provide
similar security guarantees against quantum adversaries.

An estimate of the security of SPHINCS+, based on cryptographic assump-
tions, was given within the scope of the NIST submission: The authors consid-
ered general attacks [16, Sec. 9.3.1] on the distinct-function multi-target second
pre-image resistance of the underlying hash functions and estimated the success
probability of such an attack as Θ

(
(qhash+1)2/2n

)
, where qhash is the number of

hash queries and n a security parameter. Generally, they quantify the security
based on the number of required hash function invocations and thus on the
probability of an successful adversary.

SPHINCS+ features parameters for each security levels, i.e. SPHINCS+-
SHAKE-256 and SPHINCS+-SHA-256 both provide a sufficient amount of secu-
rity for all 5 NIST security levels. On the other side, SPHINCS+-Haraka achieves
security level 1 or 2 at most.
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The security of SPHINCS+ is closely related to the security of the underly-
ing hash functions. An analysis of the security of SHAKE-256 has been given by
[1], whose result is the main motivation for our work. They present a quantum
circuit to implement a Grover search and attack the 256-bit pre-image resistance
of the SHA3-256 hash function and give concise and fault-tolerant estimates for
the resources required to implement such a circuit: They claim that their circuit
requires 2153.8 surface code cycles using 212.6 logical qubits, resulting in an over-
all requirement of about 2166.4 logical-qubit-cyles using 2128 black box queries
for a 256-bit pre-image search. Their results may be adapted to estimate the
work required to break the hash function for the SPHINCS+ signature scheme.
However, there is still considerable ambiguity on the specific construction to
forge a signature.

The quantum security of Haraka has not been explicitly analyzed yet. How-
ever, due to the capacity of the sponge construction in SPHINCS+-Haraka using
only 256 bits, attacking the second-pre-image-resistance as described in [3] only
requires about 2129.5 classical hash function invocations, producing a collision
on the internal state of the hash function in the process. The best known generic
quantum collision attacks on hash functions is the BTH algorithm by [7], which
finds a collision using O(2n/3) Grover iterations, (where n is a security parame-
ter), however, also requiring O(2n/3) quantum RAM (QRAM) . The concept of
QRAM is highly controversial, as quantum states that interact with the envi-
ronment eventually decay. [10, Thm 2] presented a trade-off using only Õ(n)1

QRAM but Õ(22n/5) Grover iterations, resulting in a work effort of about 2102

iterations for a collision search with n = 256 on Haraka.

The (quantum) invocation of the hash function induces a significant overhead
and has to be accounted for. Moreover the implementation on a fault-tolerant
quantum computer requires additional overhead to compensate for error correc-
tion within the circuit. In our analysis we adapt the concept of logical-qubit-
cycles as quantum cost metric, such that each cycle is roughly equivalent to a
single (classical) hash function invocation [1]. Briefly speaking, a logical-qubit-
cycle is the time-space product of the number of fault-tolerant quantum gates
(time) and the number of qubits (space) that is used during the computation.
Thus, we can consider the time-space product of Grover iterations and memory,
which is Õ(23n/5), resulting in a cost of about 2153.

Contribution In this work we consider attacks on SPHINCS+ based on in-
verting the underlying hash functions at specific points, i.e. attacking the XMSS,
WOTS or FORS structure or the message digest function. We chose particularly
Haraka, because of its placement as a potential component within the NIST
competition. Moreover, pre-image resistance of the Haraka [20] hash function
has not, to the best of our knowledge, been explicitly evaluated in the quantum
setting in any literature. We estimate the logical resources2 required to imple-

1 Õ(x) ignores logarithmic factors.
2 The estimated resources are based on assumptions on on the current (2021) state-
of-the art in quantum computing. We note that the results of our analysis may be
subject to change with further advances.
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Fig. 1: Overview of oracle depth for attacking different components in
SPHINCS+.

ment our attacks on the Haraka as well as the SHAKE-256 hash-functions and
further estimate the fault-tolerant cost to attack the SPHINCS+-128 scheme, us-
ing either of the hash functions. For the sake of completeness and comparability
we also present the numbers to attack the SPHINCS+-256 scheme.

The attacks on the different components differ in (1) the overhead intro-
duced by implementing the Grover oracle on the pre-image resistance, and (2)
by a classical overhead introduced when placing a forged signature into a valid
hypertree. In this work we focus mostly on (1), the results of which are summa-
rized in Fig. 1.

In Section 2 we recall parts of the SPHINCS+, Haraka and SHAKE-256
scheme, and review the Grover algorithm with respective metrics for fault-
tolerant quantum computing. In our work, we use the logical-qubit-cycles metric
(introduced in [1]) which compares to classical hash function invocations.

Section 3 shows the results for our implementation3 of the hash functions in
Q#. To construct a circuit for Haraka, we partially reused the work of [17] on
AES functions, resulting in the first implementation of the Haraka hash func-
tion in the quantum setting. The implementation for SHAKE-256 was built from
scratch. For both circuits, we consider the number of qubits as well as different
metrics based on the gate count and T-Depth. As a result, our implementation of
the Haraka512 permutation in the hash function consumes about 2.2 · 106 quan-
tum gates on 1144 logical qubits. Our Keccak permutation in the SHAKE-256
hash function consumes about 3.3 · 106 quantum gates on 3200 logical qubits.

In Section 4, we analyze the most promising points of attack in the
SPHINCS+ signature scheme. We propose that the weakest link is the XMSS
authentication path for a given WOTS+ public key, as this allows a univer-
sal forgery attack. Our most promising attack on SPHINCS+-128-Haraka re-
quires about 1.6 · 286 quantum gates. The same circuit to attack SPHINCS+-
128-SHAKE-256 has about 1.2 · 286 gates.

3 https://github.com/RobinBerger/Grover-Sphincs

https://github.com/RobinBerger/Grover-Sphincs
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In Section 5, we partially follow the approach of [1] to estimate the resources
for this attack in the context of fault-tolerant quantum computing. We compute
the amount of error correction in terms of surface code cycles and the optimal
scheme for magic state distillation.

For the Haraka hash function, our attack requires 3.91 · 1030 ≈ 1.55 · 2101
logical-qubit-cycles on 2.03 ·106 physical qubits, which is better than the generic
quantum collision attack on the hash function, which requires 2102 quantum
hash function invocations (without considering the cost of implementing the
hash function), or a time-space product of 2153, which appears to be the more
realistic comparison to the cost of logical-qubit-cycles. Performing our attack
with the SHAKE-256 hash function instead requires 7.44 · 1029 ≈ 1.17 · 299
logical-qubit-cycles on 8.65 · 106 physical qubits.

2 Preliminaries

2.1 The SPHINCS+ Signature Scheme

In this section we partially review the SPHINCS+ signature scheme as proposed
and submitted by [16] to the second and third round of NIST’s post-quantum
cryptography competition. The structure of the SPHINCS+-scheme combines a
hypertree (HT) of eXtended Merkle Signature Schemes (XMSS) and Winter-
nitz One-Time Signature schemes (WOTS) with a Forest Of Random Subsets
(FORS) as represented in Fig. 2.

XMSS tree 1

pkWOTS pkWOTS· · ·

pkHT

XMSS tree d

pkWOTS pkWOTS· · ·

. . .

σWOTS

pkFORS

FORS tree 1 FORS tree k· · ·

�σWOTS

Fig. 2: Overview of a SPHINCS+ hypertree.

In the following, we consider a signature σx
y using the scheme y to sign the

message x and a hash function H ∈ {SHAKE-256, Haraka-512, Haraka-sponge}
for all the subsequent hashes. Moreover, each scheme is associated with a
KeyGen(·), Sign(·) and V erify(·) functionality. Let pkSPHINCS+ , skSPHINCS+

be a SPHINCS+ key pair associated with seeds to deterministically generate the
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Algorithm 1: SPHINCS+ − KeyGen()

1 skseed
$←− {0, 1}n, skprf

$←− {0, 1}n, pkseed
$←− {0, 1}n

2 pkroot ← KeyGenHT(skseed, pkseed)
3 return (pkSPHINCS+ := (pkseed, pkroot), skSPHINCS+ := (skseed, skprf))

subsequent keys of the scheme. Then a signature of a message m is a tuple of
value the σr and signatures from the hypertree and signatures instances:

σm
SPHINCS+ :=

(
σr||σm

FORS ||σ
pkFORS

HT

)
. (1)

The sub-signature σ
pkFORS

HT itself consists of one XMSS signature for each layer in

the hypertree, e.g. (σ
pkXMSS,2

XMSS,1 , σ
pkXMSS,3

XMSS,2 , ..., σ
pkFORS

XMSS,i) for a hypertree height of i.
σr will be mostly ignored in the remaining paper. During signing, one generates
a FORS instance, signs a message digest with the FORS key, and signs the FORS
pk with the hypertree.

The hypertree consists4 of several layers of XMSS instances. Each XMSS
instance is a binary hash tree with WOTS schemes at the leaves, where the
value of each node is the output of hashing its child nodes. Each XMSS tree is
associated with a root node pkXMSS and a set of WOTS keys pkWOTS , skWOTS .

An XMSS signature consists of a WOTS signature and an authentication
path σx

XMSS := (σx
WOTS ,pathXMSS), where pathXMSS consists of all sibling

nodes on the path from a leaf to the root of the tree. The WOTS instances at
the leaf nodes are then used to sign the root node of the next layer, resulting
in a hypertree. The root node of the top tree is the public key of the hypertree.
The bottom WOTS instances represent the respective secret key of the hypertree

that is used to create the signature σ
pkFORS

HT .
To validate a signature σm

SPHINCS+ , one first computes a FORS public key

from σm
FORS and then verifies the hypertree signature σ

pkFORS

HT . For the lat-
ter, one has to compute the authentication path through the hypertree and
finally compare the resulting public key pk′HT to the key associated with the
SPHINCS+ signature scheme. The Algorithms 1, 2, 3 review these procedures
using the respective signature schemes and a function prf msg, that generates a
pseudo-random value as part of the signature. We note that the description is
not complete (as in [16]), i.e. it is restricted to a level appropriate to follow the
remaining paper.

2.2 Quantum Computing

We assume the reader to be familiar with the basics of quantum information the-
ory (e.g. see [25]). In the following we first describe the general attack strategy

4 The hypertree exists implicitly only, and a actual path in the tree is generated during
singing/ verification only.
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Algorithm 2: SPHINCS+ − Sign(m := {0, 1}∗, skSPHINCS+)

1 r
$←− {0, 1}n

2 σr ← prf msg(skprf, r,m)
3 md← H(σr, pkseed, pkroot,m)

4 σmd
FORS ← SignFORS(md, skseed, pkseed)

5 pkFORS ← pkFromSigFORS(σFORS ,m, pkseed)

6 σ
pkFORS
HT ← SignHT(pkFORS, skseed, pkseed,md)

7 return (σ := (σr||σmd
FORS ||σ

pkFORS
HT ))

Algorithm 3: SPHINCS+ − Verify

(σ := (σr||σmd
FORS ||σ

pkFORS

HT ),m,pkSPHINCS+)

1 md← H(σr, pkseed, pkroot,m)
2 pkFORS ← pkFromSigFORS(σFORS ,m, pkseed)
3 return V erifyHT(pkFORS , σHT , pkseed,md, pkroot)

using Grover’s algorithm [15]. Then, we recall the setup to estimate quantum
resources on a fault-tolerant quantum computing architecture based on the ex-
cellent description of [19] using surface codes [13] and magic state distillation
[8].

2.3 Grover’s Algorithm on Pre-image Resistance

For a fixed n, given a predicate p : {0, 1}n → {0, 1} marking M elements x ∈
{0, 1}n, Grover’s algorithm finds an element x, for which p (x) = 1. Let the initial
superposition be |ϕ⟩ =

√
(N−M)/N |{x|p(x) = 0}⟩+

√
M/N |{x|p(x) = 1}⟩. Then

the algorithm of Grover operates in the space spanned by |ϕ⟩ and |{x|p(x) = 1}⟩,
where ⟨ϕ| |{x|p(x) = 1}⟩ = sin(θ). The initial value is θ = arcsin(

√
M/N), and

is increased in every iteration by roughly
√

M/N, where the advance diminishes
during the last few iterations. Thus the probability to measure a marked element

is the largest after R =
⌊
π/4

√
N/M

⌋
Grover iterations. Our implementation of

the Grover iteration 5 follows the principle construction for oracle invocations.
If the number of matches M is not (exactly) known, and one performs too

many iterations, the value of θ decreases. Instead one can run Grover’s algorithm
multiple times with different values for M . [6, Theorem 3] have shown that the
expected number of iterations remains in O(

√
N/M).

In the context of hash functions and the random oracle model, we assume
the number of matches to be M = 1, i.e. we are given a single value y and we
are looking for a value x, so that y = H (x). Whereas there is no guarantee that
there are no collisions (i.e. M > 1), M = 1 is to be expected, since the input
and output domain of the hash functions are of equal size in our case.

5 A circuit describing the implementation Grover’s Algorithm is given in Appendix A.
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Physical
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Quantum Error Correction

Logical

Application

Physical qubits, processes

Faulty qubits, gates

Reliable qubits, basic gates

Reliable qubits, universal gates

Surface code
distance d

pin

pout

Surface code constants

C1, C2, εtresh

Distillation layer 1 Distillation layer 2

Surface code
distance d1

Surface code
distance d2

poutpinpout

Magic state distillation

pgate

pgate, pin
Logical error rate

ε
ε

Fig. 3: Layered architecture for quantum computers including parameters for the
error correction layer (left) and exemplary magic state distillation (right).

2.4 Fault-tolerant Resource Estimation

The layered architecture in [19] describes the physical design of a fault-tolerant
quantum computer. The first and second layer cover the physical processes and
the virtual interfaces of the hardware and are not considered in the analysis. The
third layer provides reliable QubitClifford-gates, but not T-gates, by performing
a series of measurements and faulty gate applications on physical qubits to cor-
rect errors. Each of these intervals is called a surface code cycle. Then, the logical
layer provides a universal gate set. The final layer consists of the application of
Grover’s algorithm.

In the following we describe the top three layers in more detail, review the
cost metrics of [1] in our setting and explicitly mention the assumptions (since
quantum benchmarks are not available) required for the analysis. Our description
of the different layers, which are pictured in Fig. 3, is tailored to our resource
estimate. We combine these with the cost metrics used by [1] for comparability.

Assumption 1 The cost for a computation of a large-scale fault-tolerant quan-
tum computer is well approximated using surface codes [1,26,18].

The following parameters approximate today’s state of the art [1,12]. We use
these for comparability, but note that other values have also been suggested [19].
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Assumption 2 pin is the initial error probability of a quantum state, i.e. before
any layer of error correction pin ≈ 10−4. pgate ≈ pin/10 is the gate error rate.
tsc = 200ns is the approximate time for a single surface code cycle.

Assumption 3 All quantum gates are distributed uniformly across all layers.

While Assumption 3 does not hold for our oracle implementation per se, it
does so for the Grover algorithm over multiple Grover iterations.

Quantum Error Correction Let C1, C2, εthresh be parameters determined by the
implementation of the surface code with distance d. Given an initial error rate
of pin (provided by the underlying layer, or as the resulting error probability
after some error correction) one can calculate the distance d for a targeted error

rate pout as per pout ≈ C1 (C2
pin/εthresh)

⌊d+1/2⌋
[19, Sec. IV.B]. We follow the

suggestion in [14, Fig. 8] and estimate that each logical qubit requires 2 · (d+1)2

physical qubits to be implemented in a surface code with distance d.

Logical layer We deploy the Reed-Muller-15-to-1 distillation introduced by
[8], each layer uses 15 magic states with an input error rate of pin and produces
one magic state with lower error rate pdist ≈ 35pin

3. We follow the work of [1] and
assume that the amount of logical errors introduced during distillation is already
covered in the process resulting in pout = (1 + ε) pdist, hence pin ≈ 3

√
pout/35(1+ε)

The distillation is repeated in multiple layers i until pout reaches a target value.
Let di be a surface code distance for layer i with i = 1 being the top (=

output) layer of distillation, where each distillation requires 10 · di cycles. For
this, [12, Sec. II] gives an example calculation, [1, Alg. 4] gives an explicit
algorithm that takes an initial gate error pgate and calculates the number of
layers of magic state distillation as well as their respective surface code distance.
Each layer i requires 16 · 15(i−1) logical qubits. The number of physical qubits
in the code is calculated based on the respective surface code.

Application Layer
For our implemented circuits we consider the total count for T-, CNOT- and

QubitClifford gates, along with the T-depth and T-width, motivated in [17,1].
For a circuit implementing our attacks, i.e. using Grover’s algorithm, let gd be
the total depth (i.e. number of layers) of a circuit and let scc be the number of
surface code cycles for each layer. First, we consider the total number of surface
code cycles as

costSCC = scc · gd .

Then, we consider the number of logical qubits qlog
G required to implement the

Grover algorithm and the number of logical qubits qlog
MD to perform the magic

state distillation. Finally, we consider the metric of logical-qubit-cycles from [1,
As. 4 and Cost Metric 1], where each cycle is comparable to one (classical) hash
function invocation. The number of logical-qubit-cycles is considered to be the
total cost of the attack:

costlqc = costSCC · (qlog
G + qlog

MD) .
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Algorithm 4: Haraka512Permutation(A[x] : {0, 1}128 , 0 ≤ x < 4)

1 for 0 ≤ i < 5 do
2 for 0 ≤ j < 4 do
3 A[j] := aesEnc(aesEnc(A[j], keyi,j,1), keyi,j,0)

4 A := mix(A)

5 return A

We consider this metric to be the most fitting in comparison to the time-space
product given for the best generic attack in [10].

3 Reversible Implementations

We implemented6 the Haraka and SHAKE-256 hash functions in Q#. We briefly
review the schemes and describe our reversible implementations. To the best of
our knowledge, this is the first reversible implementation of Haraka. A resource
estimate for carrying out a pre-image attack on these hash function is in Ap-
pendix A.

3.1 Haraka

Haraka, as specified in [20], consists of AES encryptions (aesEnc) and a mixing
step (mix) for the permutation, which is used in turn to instantiate a sponge
construction with a capacity of 256 bits, resulting in the Haraka-Sponge hash
function. The Haraka512 hash function is defined as the truncated XOR of the
input value and the output of the Haraka512 permutation on said input. Al-
gorithm 4 describes the Haraka512 permutation. We partially reuse the AES
implementation from [17] and adjust it to our use case.

For the AES encryption[21], we implement each of its four steps. The
SubBytes step consists of applying the AES S-Box on each 8-bit block of the
input. We use the implementation of [17] for the S-Box and additionally imple-
ment its inverse based on the proposed circuit in [5] using 120 ancillary qubits.
This allows us to compute the output of the operation into new qubits and then
using the adjoint inverse S-Box to reset the input qubits. In contrast to the
implementation in [17], this allows us to recursively apply AES multiple times
without needing additional qubits for every application, at the cost of additional
quantum gates required. The ShiftRows step swaps qubits, thus we simply ap-
ply all following gates to different qubits (resulting in no additional cost). The
MixColumns operation is the same implementation as the one by [17]. The
AddKey operation is implemented using classically controlled NOT gates, as
we use classical AES round keys, whereas [17] use quantum round keys. Fig. 4a
shows the complete circuit for the AES encryption.

6 https://github.com/RobinBerger/Grover-Sphincs

https://github.com/RobinBerger/Grover-Sphincs
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(a) Quantum circuit of the AES encryption step.
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(b) Quantum circuit of the Keccak round function.

Fig. 4: Implementation of the round function components of Haraka and
SHAKE-256.

Table 1: Resources for our implementation of the Haraka512 permutation and
hash function. The width of the circuit includes the input and output qubits.

T CNOT QubitClifford T-Depth Width

Permutation 609 289 1 383 040 189 440 69 125 1144
Hash Function 1 218 560 2 767 616 378 880 138 250 1912

Similarly to the ShiftRows operation, we implemented the mixing step for
the Haraka permutation by redirecting the quantum wires.

The AES encryption operation computes the output into a new set of qubits,
freeing up the input qubits. We apply this twice on each input block, alternating
the input and output qubits, followed by the mixing step. This completes the
round function that is repeated a total of 6 times for the Haraka512 permutation.

We implement the Haraka512 hash function by copying the input into an-
cillary qubits using CNOT gates, then applying the Haraka512 permutation on
these qubits. Next, the relevant qubits from the output of the permutation and
the input of the hash function are XORed into the output qubits using CNOT
gates. Finally, the ancilla qubits are freed up again by applying the adjoint
Haraka512 permutation. The Haraka-based sponge construction is implemented
by instantiating a sponge construction with the Haraka512 permutation.

The quantum gate count for our implementations of the Haraka permuta-
tion and hash function can be seen in Table 1. Note that Q# optimizes the
width of the quantum circuit, reusing ancillary qubits whenever possible, even
if this results in a significantly higher depth of the quantum circuit. As the
exact amount of quantum gates required depends on the SPHINCS+ instance,
all round constants for determining the gate count here and in the rest of this
work are assumed to be zero. When using the default round constants, 2582
additional NOT gates are required for every application of the Haraka512 per-
mutation, which is negligible compared to the gates required for the rest of the
implementation.
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Algorithm 5: KeccakPermutation(A[x][y][z] : {0, 1} , 0 ≤ x, y <
5, 0 ≤ z < 64)

1 for 0 ≤ i < 24 do
2 A := ι ((χ ◦ π ◦ ρ ◦ θ) (A) , i)

3 return A

3.2 SHAKE-256

The SHAKE-256 hash function, as specified in [22], consists of the Keccak per-
mutation, which is used to instantiate a sponge construction. The Keccak per-
mutation consists of iterating the steps θ, ρ, π, χ and ι 24 times. The complete
permutation is described in Algorithm 5, where the five steps are defined as

θ : C[x][z] :=
⊕

0≤j<5

A[x][j][z]

D[x][z] := C[x− 1][z]⊕ C[x+ 1][z − 1]

A′[x][y][z] := A[x][y][z]⊕D[x][z]

ρ : A′[x][y][z] := A[x][y][z + c[x][y]]

π : A′[x][y][z] := A[x+ 3y][x][z]

χ : A′[x][y][z] := A[x][y][z]⊕ ((A[x+ 1][y][z]⊕ 1) ·A[x+ 2][y][z])

ι : A′[x][y][z] :=

{
A[x][y][z]⊕RCi[z] x = 0 ∧ y = 0

A[x][y][z] otherwise
.

We note that our implementation follows closely the definition in [22] and
thus has a similar structure to the one used by [1]. The operation θ is split into
three parts θ1,2,3. θ1 and θ2 are a straight forward implementation of the SHA-3
specification, where we compute intermediate values in step θ1 which are used in
θ2 to compute the output of the θ step. θ3 implements θ−1 to uncompute inter-
mediate values and is based on the KeccakTools reference implementation[2]. All
XOR operations are implemented using CNOT gates. ρ and π are permuting the
input and output bits by adjusting the subsequent quantum wires. The χ step of
the Keccak permutation is a straight forward implementation of the specification
with binary addition and multiplication based on CNOT and Toffoli gates, χ−1

is the respective inverse, where the adjoint χ−1 uncomputes the input qubits.
This is the design also used by [1]. The ι step XORs a round constant on the
state, which is implemented using classically controlled NOT gates.

The padding for the sponge construction is implemented using classically
controlled NOT gates on the state.

The quantum circuit for the round function is represented in Fig. 4b. The
Keccak permutation consists of applying this implementation 24 times while
alternating input and output qubits.

The quantum gates for our implementation of the Keccak permutation and
a comparison with [1] can be seen in Table 2. The most notable differences are
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Table 2: Quantum gate count for our implementation of the Keccak permutation
and for the work by [1]. Gate counts for θ and χ are given for one round. Gate
counts for ι, and the complete Keccak permutation are given for all 24 rounds.

step T CNOT QubitClifford T-Depth Width

Our implementation

θ1,2,3 0 63 040 0 0 2240
χ 11 200 19 200 3200 25 3200

χ−1 13 440 23 360 3840 30 3200
ι 0 0 86 0 1600

Keccak 591 360 2 534 400 169 046 1176 3200

Implementation in [1]
Keccak 591 360 33 269 760 169 045 792 3200

optimized 499 200 34 260 480 169 045 432 3200

that we use more than an order of magnitude fewer CNOT gates, because we
use ancilla qubits for the θ operation and that we use the T-depth 5 Toffoli gate
provided by Q# while [1] use a T-depth 3 Toffoli gate. More details on applying
Grover for a pre-image attack are presented in Appendix A.

XMSS tree i

WOTS WOTS· · ·

σpkFORS
WOTS

pkHT

pkFORS

FORS1 FORSk· · ·

�
H(m, ...) = y

σy
FORS

(a) Simplified hypertree structure
showing the positions of the distinct
signatures but excluding the vast
majority of the XMSS hypertree.

pkSPHINCS+

σ̃ := (..., σpk
1 , σ̃pk1

2 , ...)

m̃

existing

˜forged

(b) Generic structure of a forged
SPHINCS+ signature evaluating to a
valid public-key.

Fig. 5: Simplified SPHINCS+ structure for forging a signature.
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4 Attacking the SPHINCS+ Signature Scheme

We analyzed the WOTS, FORS and XMSS components of the SPHINCS+

scheme to identify weak points and then compared the required resources to
mount an attack. Our attacks all admit the same structure as in Fig. 5b, where
a set of forged sub-signatures evaluate to an existing, valid public key: One or

multiple sub-signatures σ̃
pki−1

i are generated from scratch using the canonical
Sign algorithm (Algorithm 2). Then a single signature is forged to connect the
generated sub-signatures with the existing public key. The generated and forged
signature will be marked with the σ̃ accordingly.

Briefly speaking, we determined that forging an XMSS signature path re-
quires the fewest logical resources to forge a complete SPHINCS+ signature
when considering Grover like pre-image attacks. In the following we describe
attacks on the XMSS and WOTS components in more detail. The procedure to
forge signatures based on the message digest (B.1) and the FORS component
(B.2) are covered in the appendix.

4.1 Forging a SPHINCS+ Signature on the XMSS-component

To compute a universal forgery for a signature of a message m̃, we create a new
SPHINCS+ instance associated with a secret key s̃kSPHINCS+ . The root node
of the topmost XMSS instance of our new hypertree evaluates to the original
public key pkSPHINCS+ as in Fig. 6.

Forged XMSS
signature

p̃kWOTS

pkHT

XMSS tree d̃

p̃kWOTS p̃kWOTS
· · ·

. . .

σ̃WOTS

p̃kFORS

FORS tree 1̃ FORS tree k̃· · ·

�
σ̃WOTS

Signed with
s̃kSPHINCS+

Fig. 6: Forged SPHINCS+ signature using a forged XMSS signature.

Let σ̃m̃
SPHINCS+ := (σ̃m̃

FORS , σ̃
p̃kFORS

HT ) be this new signature. The FORS sig-
nature is a freshly generated signature, the validation of which depends only
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pkHT

ph′−1

v2

p̃kWOTS

v1

vh′−1

Fig. 7: Structure of a forged XMSS signature.

on the new key pair. To make this a valid signature, we modify the σ̃XMSS in

the topmost layer of the hypertree signature σ̃
p̃kFORS

HT . In that layer, we use the

public key of the WOTS instance generated from s̃kSPHINCS+ and replace the

respective XMSS authentication path with a forged one ˜pathXMSS obtaining a
new XMSS signature σ̃XMSS : Therefore, we need to find an authentication path
˜pathXMSS for σ̃XMSS , so that computing the root node of the tree along the

path with the respective WOTS public key results in the given XMSS public key
as in Fig. 7.

Let p1 . . . ph′ be the nodes on the path from the given WOTS public key node
to the root of the XMSS tree with p1 being the leaf and ph′ being the root node.
Also, let v1 . . . vh′−1 be the respective sibling nodes. p1 is the WOTS public key
and pi is computed from pi−1 and vi−1 for i > 0.

To find values vi for an authentication path, we select the first h′ − 2 values
v1 . . . vh′−2 at random from {0, 1}n. This results in fixed values p1 . . . ph′−1. Then
we can forge the authentication path ˜pathXMSS if we can find a value vh′−1 to
complete the path. This can be seen in Fig. 7. We can estimate the probability
of such a pre-image vh′−1 existing for a fixed v1 . . . vh′−2 and a given public key,
if we assume that the deployed hash function behaves like a random oracle, i.e.
with each value H (x) being chosen uniformly at random independently from
each other:

P (∃x ∈ {0, 1}n : H (x) = pk) = 1− P (∀x ∈ {0, 1}n : H (x) ̸= pk)

≥ 1− 1

e

(2)

This means that a pre-image vh′−1 exists with probability ≥ 1−1/e. Therefore,
forging a valid signature for a message depends only on finding the value vh′−1.
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Table 3: Gate count for our implementation of the Grover components in one
Grover iteration.

T CNOT QubitClifford T-Depth Width

SPHINCS+-128-Haraka 2 438 891 5 535 202 758 282 275 713 1400
SPHINCS+-128-SHAKE-256 1 184 491 5 071 842 338 614 3635 3456
SPHINCS+-256-Haraka 2 440 683 5 538 274 758 794 276 865 1656
SPHINCS+-256-SHAKE-256 1 186 283 5 076 450 339 126 4787 3712
Grover Diffusion (128 bit) 1771 2530 1022 1139 –
Grover Diffusion (256 bit) 3563 5090 2046 2291 –

In the remaining paper we are concerned with estimating the resources to find
this value using Grover’s algorithm on a fault-tolerant quantum computer.

While this attack can be modified by generating WOTS instances for one half
of the attacked XMSS instance, allowing to easily forge signatures for multiple
messages if they fall on that side of the XMSS tree, the setup and the cost for
the pre-image search is the same, so we will not go into more detail with this.

Resource Estimate To forge the XMSS signature, we need to find a pre-image
of the Haraka-based sponge or the SHAKE-256 hash function using Grover’s
algorithm. In the following estimate, let n be the security parameter in bits.

For the Haraka instantiation, the input to the hash function consists of a 256
bit address and two n-bit values, one of which is the hash value of a node in
the XMSS tree, the other one is the value searched for by Grover’s algorithm
to forge the signature. For the SHAKE-256 instantiation, the input to the hash
function consists of a n-bit public key seed and the same inputs as with Haraka.

Using n = 128 for the Haraka instantiation, we can save resources by precom-
puting one iteration of the Haraka512 permutation. As the rate of the sponge
instantiation is 256 bits, the first iteration absorbing the address can always
be precomputed, so the quantum circuit is implemented using a different ini-
tial state, skipping this iteration. Using the same security parameter for the
SHAKE-256 instantiation, none of the iterations can be precomputed. The gate
count for the implementation of these Grover oracles as well as for the Grover
diffusion operator for the SPHINCS+-128 and SPHINCS+-256 parameter sets as
determined by Q# are shown in Table 3. While we include the 256-bit parameter
sets for comparison, we want to note that for the Haraka hash function, more
efficient attacks exist for that parameter set.

For n = 128, Grover’s algorithm requires roughly 1.6 · 263 iterations. Com-
bining these gate counts with the amount of Grover iterations, we can evaluate
two cost metrics for this attack. These results are shown in Table 4.

We can see that the attack using the SHAKE-256 hash function performs
better on both cost metrics than the attack using Haraka. This results from the
additional iterations of the Haraka permutation compared to SHAKE-256.
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Table 4: Resource estimate for a pre-image search to forge an XMSS signature,
where the target column indicates if the left or right node of the hash tree is
attacked.

SPHINCS+ instantiation Gate count T-Depth T-Depth-Times-Width

SPHINCS+-128-Haraka 1.6 · 286 1.7 · 281 1.1 · 292
SPHINCS+-128-SHAKE-256 1.2 · 286 1.8 · 275 1.5 · 287
SPHINCS+-256-Haraka 1.6 · 2150 1.7 · 2145 1.4 · 2156
SPHINCS+-256-SHAKE-256 1.2 · 2150 1.4 · 2140 1.2 · 2152

4.2 Forging a SPHINCS+ Signature on the WOTS component

An alternate approach to forging SPHINCS+ signatures is to attack the WOTS
component. Similarly to the previous attack, this is a universal forgery at-
tack, however we also require a message m, that already has a valid signature
σSPHINCS+ .

The general attack strategy is similar to [9], i.e. the selection of the WOTS
instance and the construction of the SPHINCS+ signature from the other com-
ponents: We generate a SPHINCS+ signature for a new message using a new
secret key, making sure that this signature uses the first-layer WOTS instance
at the same position as the one in σSPHINCS+ . We then forge a WOTS signature,
that authenticates our second-layer XMSS public key for the first-layer WOTS
public key in the original structure. In comparison to [9], who use a fault injection
attack, we forge the WOTS signature using a quantum pre-image attack.

Custom Selection of WOTS instances Similarly to [9], when creating a
SPHINCS+ signature σ̃SPHINCS+ for a message m̃, we need to use a FORS in-
stance, that results in σ̃SPHINCS+ using the first-layer WOTS instance at the
same position as σSPHINCS+ does. They state that this is possible on a classical
computer with feasible effort. In the setting of SPHINCS+-128 [16], this takes
an average of ≈ 29 hash function invocations.

Forging WOTS Signatures As the WOTS signature scheme divides a mes-
sage into message and checksum blocks and then signs each block individually,
forging a WOTS signature requires forging a signature for each block. A signa-
ture for a block containing a message mi consists of the mi-th element of a hash
chain as shown in Fig. 8.

Let mi and m̃i be the message in the i-th block of m and m̃ respectively.
For mi ≤ m̃i, a signature for block i can be computed, by advancing in the hash
chain m̃i − mi times by applying the hash function. For mi > m̃i, we need to
go back mi − m̃i times in the hash chain. To do this, we can apply Grover’s
algorithm.

Such a pre-image to a value of the hash chain must exist, as the original
signature σFORS was generated using this value. As it might not be unique,
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v0 v1 vmi vw−2 vw−1
H · · ·H · · ·H H

skWOTS,i σmi pkWOTS,i

Fig. 8: Structure of one hash chain of a WOTS instance. skWOTS,i, pkWOTS,i,mi

and σmi
are the secret key, public key, message and signature of the i-th block

of the WOTS scheme with block length log2 w.

only the value used to generate σFORS is guaranteed to have a pre-image again,
this means that instead of applying Grover’s algorithm multiple times, to go
back in the hash chain once in each step, we need to do a pre-image search on a
recursive application of the hash function in a single step. If multiple pre-images
of the recursive application of the hash function exist, any one of them produces
a valid signature for that block.

Let the length of each block be log2 w. As the messages for the WOTS signa-
ture scheme are outputs of a hash function and therefore the message blocks mi

and m̃i are blocks of an output of a hash function, it is reasonable to assume,
that they are distributed uniformly at random from the set {0, . . . , w − 1}, inde-
pendently from each other. However we cannot assume this assumption to hold
for the checksum blocks. Using this assumption for the message blocks, we can
estimate the recursion depth of the hash function required for this attack. We
will follow a simple approach, only considering a single pre-image search for a
message block, neglecting the amount of pre-image searches required for check-
sum blocks and the possibility of searching for weak instances. A more detailled
approach also considering the aforementioned aspects is beyond the scope of this
work.

For the recursion depth required for a pre-image search we take the value d,
so the probability of a recursion depth of ≥ d and ≤ d being required for the
pre-image search is ≥ 1/2. For the SPHINCS+ parameters proposed in [16] with
logw = 4, this results in d = 5.

Resource Estimate For forging a WOTS signature and carrying out this at-
tack, we need to do multiple pre-image searches of a recursive application of the
SHAKE-256 or Haraka512 hash function. Let n be the security parameter in bits
in the following resource estimate.

For the Haraka instantiation, the input to the hash function consists of a
256 bit address and the n bit value searched for. The SHAKE-256 instantiation
additionally gets an n bit public key seed as input.

Using n = 128, we will only go into detail for a hash function recursion depth
of 5, as calculated previously. The gate count required for the Grover oracles for



Forging SPHINCS+ Signatures on a Fault-tolerant QC 19

Table 5: Gate count required by our implementation of the Grover oracles for a
recursion depth 5 of the hash functions.

T CNOT QubitClifford T-Depth Width

SPHINCS+-128-Haraka 12 187 371 27 667 810 3 789 310 1 369 814 1912
SPHINCS+-128-SHAKE-256 11 828 971 50 694 370 3 381 550 26 098 3968
SPHINCS+-256-Haraka 12 189 163 27 674 850 3 789 822 1 357 142 2680
SPHINCS+-256-SHAKE-256 11 830 763 50 700 770 3 382 062 27 250 4736
Grover Diffusion (128 bit) 1771 2530 1022 1139 –
Grover Diffusion (256 bit) 3563 5090 2046 2291 –

Table 6: Resource estimate for a pre-image search to forge a WOTS signature.

SPHINCS+ instantiation Gate count T-Depth T-Depth-Times-Width

SPHINCS+-128-Haraka 1.0 · 289 1.0 · 284 1.9 · 294
SPHINCS+-128-SHAKE-256 1.5 · 289 1.3 · 278 1.3 · 290
SPHINCS+-256-Haraka 1.0 · 2153 1.0 · 2116 1.3 · 2159
SPHINCS+-256-SHAKE-256 1.5 · 2153 1.4 · 10142 1.6 · 2154

this attack for both of the hash functions and for the diffusion operator are
shown in Table 5.

As with the previous attack, for n = 128, ≈ 1.6 · 263 Grover iterations are
required for one pre-image attack. We can again combine this with the gate
counts from Table 5 to evaluate the cost metrics for this attack. This is shown
in Table 6. As mentioned previously, the cost metric does not capture that this
attack requires multiple pre-image attacks of variable recursion depths.

As the Haraka512 hash function is used here and not the Haraka-Sponge hash
function used in the previous attack, the amount of applications of the underlying
permutation is the same for the Haraka and SHAKE-256 instantiation, with the
Haraka permutation requiring fewer quantum gates explaining the results of the
gate count metric. As in the previous attack, Haraka performs worse in the T-
Depth-Times-Width metric, as the Haraka permutation has a significantly higher
T-Depth.

5 Fault-tolerant Cost

In this section, we give tight cost estimates of carrying out the most promis-
ing attack on XMSS signatures in Section 4.1. In particular, we analyze the
resource requirements for the SPHINCS+-128 parameter sets, i.e. Haraka and
SHAKE-256 hash function. A comparison of all results can be found in Table 7.
The analysis follows the approach by [1], but optimizes the parallelization of the
magic state distillation.
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(a) Distance of the error correcting
code di and number of logical and
physical qubits for each layer i.

Layer i di q
log
i qphy

i

Top 1 19 16 12800
Bottom 2 9 240 48000

(b) Pipelining the production of 3 magic states al-
lows to reuse the qubits from the bottom layer in
the top layer.

90
4.8·104

90
4.8·104

90
4.8·104

190

1.28·104

190

1.28·104

190

1.28·104
460.0
cycles

4.8·104 qubits

Layer 1

Layer 2

Fig. 9: Magic state distillation scheme for attacking SPHINCS+-128.

5.1 Haraka

Setup The entire Grover circuit for the attack using the Haraka hash function
consists of tHaraka = 3.54 · 1025 T-gates, gcnot

Haraka = 8.02 · 1025 CNOT-gates, and
gc
Haraka = 1.1 · 1025 QubitClifford-gates, with the Hadamard-gates dominating

the QubitClifford gates, thus other types of gates are ignored. The circuit has a
width of qw

Haraka = 1400and a T-depth of td
Haraka = 4.01 · 1024.

Magic State Distillation Given the desired output error rate relative to the size
of the circuit pout = 1/td

Haraka and the assumptions given in Section 2.4 one can
determine the number of layers of magic distillation required. We require two
layers as in Fig. 9a, each with a surface code distance di, number of logical qlog

i

and respectively physical qubits qphy
i . In total, the number of logical qubits for

a single distillery is qlog
MD, Haraka = 240.

The layers can be optimized based on the cost metrics from Section 2.4, i.e.
costlqc = costSCC · (qG + qMD) and costSCC = scc · gd, thus increasing the
number of cycles scales the cost by both, cycles and qubits. Consider an increase
of cycles by a factor X and an increase of qubits by a factor Y . Then the optimal
distillery can be found by computing min

X,Y
XqG +XY qMD.

Surface Code The gates in the circuit are embedded into a surface code of
distance dG,Haraka = 25, with pout = 1/ (gcnot

Haraka + gc
Haraka) as targeted error

rate. This results in each of the qlog
G,Haraka = 1400 logical qubits to require 1352

physical qubits. In total, the algorithm requires qphy
G,Haraka ≈ 1.89 · 106 physical

qubits.
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Results On average, about 9 T-gates are applied in each layer of T-depth. The
number of physical qubits is dominated by the surface code, therefore we suggest
to compute all magic states in parallel using 3 magic state distilleries and qphy

MD =
3 · 48000 = 1.6 · 104 physical qubits in sccm

Haraka = 460 cycles.
The average number of gates per layer of T-depth for each CNOT

gcnot
Haraka/qw

Haraka·t
d
Haraka ≈ 0.0143

and each and QubitClifford gate

gc
Haraka/qw

Haraka·t
d
Haraka ≈ 0.002

is significantly smaller than the number of surface code cycles required to im-
plement a single layer required for magic state distillation.

Therefore, the total number of surface code cycles for the entire algorithm is
dominated by the magic state distilleries, which is

costSCC = sccm
Haraka · td

Haraka = 460 · 4.01 · 1024 ≈ 1.5 · 290 .

The total number of logical qubits required is 2120. With 200ns per surface code
cycle, this would take 1.17 · 1013 years. The total cost of running the attack is
then

costlqcHaraka = costSCC·(1400+3·240) = 1.5·290·(2120) ≈ 3.91·1030 ≈ 1.55·2101 .

5.2 SHAKE-256

Setup When using the SHAKE-256 hash function, our quantum circuit for the
entire Grover algorithm for the attack contains gT

SHAKE-256 = 1.72 · 1025 T-
gates and gcnot

SHAKE-256 = 7.35 · 1025 CNOT-gates. It also contains gc
SHAKE-256 =

4.92·1024 QubitClifford gates, most of which are Hadamard-gates. We will ignore
any QubitClifford gates, that are not Hadamard-gates. The quantum circuit has
a logical width of qw

SHAKE-256 = 3456 qubits and a T-Depth of td
SHAKE-256 =

6.92 · 1022.

Magic State Distillation The number of layers and thus the values for magic
state distillation are reminiscent to those of Section 5.1, in particular, of Fig. 9a.

Surface Code The distance of the surface code remains as dG,SHAKE-256 = 25,

with the same targeted error rate. This results in each of the qlog
G,SHAKE-2563456

logical qubits to require 1953 physical qubits. In total the algorithm requires
qphy
G,SHAKE-256 ≈ 6.75 · 106 physical qubits.

Results On average, about 249 T-gates are applied in each layer of T-depth.
Therefore, we suggest to use 83 distilleries each generating 3 states in parallel,
using a total of qphy

MD = 83 ·48000 = 3.98 ·106 physical qubits in sccm
SHAKE-256 =

460 cycles.
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Table 7: Fault-tolerant cost for our attack from Section 4.1 using the SHAKE-256
and Haraka hash functions. The collision attack of [10] refers to attacking the
internal state of Haraka.

SPHINCS+- SHAKE-256 Haraka

Collision Attack
[10]

#Grover Iterations − 1.32 · 2102

Time-Space Product − 1.51 · 2153

#Classical hash function invocations − 2129.5

Our Attack on
128

#Distilleries ϕ 83× 3 3× 3

#Log. Qubits qlog 23876 2120

#Total Phys. Qubits qphy 8.65 · 106 2.03 · 106

#Total ECC cycles costSCC 1.6 · 284 1.5 · 290

logical-qubit-cycles costlqc 1.17 · 299 1.55 · 2101

Our Attack on
256

#Distilleries ϕ 42× 4 9× 1

#Log. Qubits qlog 1.7 · 105 0.38 · 105

#Total Phys. Qubits qphy 5.8 · 107 1.5 · 107

#Total ECC cycles costSCC 1.02 · 2152 3.95 · 2154

logical-qubit-cycles costlqc 1.31 · 2169 1.44 · 2171

The average number of gates per layer of T-depth for each CNOT

gcnot
SHAKE-256/qw

SHAKE-256·t
d
SHAKE-256 ≈ 0.31

and each and QubitClifford gate

gc
SHAKE-256/qw

SHAKE-256·t
d
SHAKE-256 ≈ 0.021 .

Again, magic state distillation dominates, resulting in a total number of

costSCC = sccm
SHAKE-256 · td

SHAKE-256 = 460 · 6.92 · 1022 ≈ 1.6 · 284

surface code cycles. The total number of logical qubits required is 23876. With
200ns per surface code cycle, this would take 2.02 · 1011 years. The total cost of
running the attack is then

costlqcSHAKE-256 = costSCC·(3456+83·240) = 1.6·284·(23876) ≈ 7.44·1029 ≈ 1.17·299 .

6 Conclusion

We presented quantum implementations for the Haraka (and respectively
SHAKE-256) hash function in the context of the SPHINCS+ signature scheme.
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Subsequently, we proposed and reviewed multiple points of attack in the
SPHINCS+-128-Haraka signature scheme based on applying Grover’s algorithm
to find pre-images. A tight estimate of the resources required to carry out the
most promising attack on a fault tolerant quantum computer is given. Our at-
tack, that forges a signature in 1.55 · 2101 steps, improves over the previously
best known attack on SPHINCS+-128-Haraka.

Following the suggestion by NIST to review the security in terms of a maximal
depth for quantum circuits, it is clear that for a depth of 296 the attack can be
implemented without any further constraints and would be more efficient than
the classical counter part. For a depth of 240 and 264 the overhead induced by
error correction needs to be reevaluated and optimized to the respective depth.
A detailed analysis is out of scope for this paper and left as future work.
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A pre-image Attack on the Hash Functions using
Grover’s Algorithm

Grover The Grover iteration consists of evaluating the predicate on the input
qubits and flipping their phase if the predicate evaluates to 1. The predicate first
applies our implementation of the hash function H and then applies a classically
controlled NOT-gate on the output qubits of H, followed by a multi-controlled
NOT-gate to flip the phase of the target elements. We apply the adjoint imple-
mentation of the previous operations to uncompute any ancillary registers. The
second step is the Grover diffusion operator.

The implementation for a Grover oracle for a pre-image search can be seen
in Fig. 10. The last step of the Grover iteration is the diffusion operator, which
is omitted from the description.
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Fig. 10: Implementation of our Grover oracles for a pre-image search for y =
H (x).

Pre-image Attack A pre-image attack on the hash functions is implemented by
using Grover’s algorithm. The gate counts for the implementation of the Grover
oracles for the SHAKE-256 and the Haraka-based sponge hash function for an
input and output length of 128 and 256 bits, as well as the diffusion operator is
shown in Table 8.

Combining this with the ≈ 1.6 · 263 Grover iterations, that are required for
this, we can evaluate the gate count and T-Depth-Times-Width cost metrics

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
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Table 8: Resource requirements for a Grover oracle for a pre-image attack on
SHAKE-256 and the Haraka-based sponge hash function with different input
and output lengths.

Hash function length T CNOT QubitClifford T-Depth Width

Haraka-Sponge 128 1 220 331 2 769 122 379 402 138 327 1400
SHAKE-256 128 1 184 491 5 071 842 338 614 3635 3456
Haraka-Sponge 256 2 440 683 2 769 122 758 794 276 865 1656
SHAKE-256 256 1 186 283 5 074 914 339 126 4787 3712
Grover diffusion 128 1771 2530 1022 1139 –
Grover diffusion 256 3563 5090 2046 2291 –

Table 9: Resource estimate for a generic pre-image search of SHAKE-256 and
the Haraka-based sponge hash function with input and output length of 128 and
256 bit.

Hash function length Gate count T-Depth T-Depth-Times-Width

Haraka-Sponge 128 1.6 · 285 1.7 · 280 1.1 · 291
SHAKE-256 128 1.2 · 286 1.8 · 275 1.5 · 287
Haraka-Sponge 256 1.6 · 2150 1.7 · 2145 1.4 · 2156
SHAKE-256 256 1.2 · 2150 1.2 · 2152 1.4 · 2140

for finding a 128 bit pre-image for these two hash functions. The results for
this can be seen in Table 9. While we include all these resource estimates for
completeness, we want to empathize again, that more efficient attacks exist for
Haraka in the 256-bit case.

B Further Attacks

In addition to the two attacks proposed in Section 4, we also considered an
attack attack using a colliding message digest and an attack using forged FORS
signatures.

B.1 Forging SPHINCS+ signatures using a colliding message digest

We only cover this attack for completeness. More efficient attacks exist both for
SPHINCS+ and for finding a colliding message digest.

If we can find a new message, that results in the same primary message digest
as a given message with a given valid signature, we can find a new message, where
the same signature is valid.

Given a SPHINCS+ public key pkSPHINCS+ , a message m with a valid sig-
nature σSPHINCS+ , we can find a new message m̃ which results in the same
primary message digest when verifying σSPHINCS+ for m̃ than when verifying
σSPHINCS+ for m. To do this, we first compute the primary message digest for
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m and σSPHINCS+ . We can do this, as m,σSPHINCS+ and pkSPHINCS+ contain
everything required to do this. We can then apply Grover’s algorithm to the
hash function used to compute the message digest, to find a new message m̃,
that results in the same primary message digest.

While we do not know if such a pre-image exists, we can make a similar
argument as in Section 4, if the length of m̃ is the same as the length of the
primary message digest. Assuming the hash function behaves like a random
oracle, we can adapt Eq. (2) and have a lower bound of 1−1/e for the probability,
that a pre-image exists. While it is possible to search for a message with length
longer than the primary message digest to have a higher probability of a pre-
image existing, this increases the size of the resulting quantum circuit. For the
two SPHINCS+-128 parameter sets given in [16], the length of the primary
message digest is 240 and 272 bits respectively.

When verifying the signature σSPHINCS+ for m̃, first the primary message
digest is computed. This message digest is equal to the primary message digest
computed when verifying σSPHINCS+ for m, because m̃ was chosen, so these
message digests are equal. All later computations, that are done to verify a
signature only use the primary message digest and derived values, but not the
message itself. This means that after computing the primary message digest, the
signature verification for m and for m̃ use the same values therefore returning
the same result. As we assumed σSPHINCS+ is valid for m, σSPHINCS+ is also
valid for m̃.

The success probability of this attack is equal to the success probability of
being able to find a m̃ that has the same primary message digest as m with
σSPHINCS+ . We again consider the success probability of Grover’s algorithm to
be 1. Therefore, the attack is successful if a pre-image exists for a given hash
value, which is the case with probability ≥ 1− 1/e.

Resource estimate For finding a message, that has the same primary message
digest, we need to do one pre-image search of the SHAKE-256 hash function or
the Haraka-based sponge hash function using Grover’s algorithm. Let n be the
security parameter and let N be the length of the primary message digest.

For the Haraka instantiation, the input to the hash function consists of the
n bit value from σSPHINCS+ , a n bit root public key value and a N bit value for
m̃, which is the message m̃ we are searching for using Grover’s algorithm. For
the SHAKE-256 instantiation, the input to the hash function consists of a n bit
value from σSPHINCS+ , a n bit public key seed, a n bit root public key value and
a N bit value.

For the two SPHINCS+-128 parameter sets given in [16], the primary message
digest has a length 240 and 272 bits respectively. We will restrict ourselves to
the SPHINCS+-128s parameter set with N = 240. In a similar analysis than the
one for the forged XMSS signatures, we can find out that this attack using the
Haraka hash function requires two applications of the Haraka512 permutation,
but one of these can be precomputed resulting in a total of three applications of
the permutations for computing the hash value and another three applications
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for uncomputation. The attack using the SHAKE-256 hash functions requires
one application of the Keccak permutation. The gate counts for implementing
these Grover oracles can be seen in Table 10.

Table 10: Gate count required by our implementation of the Grover oracles and
the diffusion operator.

T CNOT QubitClifford T-Depth Width

SPHINCS+-128s-Haraka 1 221 899 2 771 810 379 850 139 335 1624
SPHINCS+-128s-SHAKE-256 1 186 059 5 074 530 339 062 4643 3680
Grover diffusion (240 bits) 3339 4770 1918 2147 –

For N = 240, Grover’s algorithm requires ≈ 1.6 · 2119 iterations. Using this,
we can evaluate the cost metrics. The results for this can be seen in Table 11.

Table 11: Resource estimate for a pre-image search for reusing an existing sig-
nature for a new message.

SPHINCS+ instantiation Gate count T-Depth-Times-Width

SPHINCS+-128s-Haraka 1.6 · 2141 1.3 · 2147
SPHINCS+-128s-SHAKE-256 1.2 · 2142 1.2 · 2144

For the gate count metric, we can see that for both hash functions, the
attack requires approximately the same amount of quantum gates. Looking at
the depth-times-width cost metric, the attack using the Haraka hash function
performs worse than the attack using the SHAKE-256. This is again caused by
the implementation of the Haraka hash function having a significantly higher
T-depth.

B.2 Forging SPHINCS+ signatures on the FORS component

Our fourth and final approach for forging SPHINCS+ signatures is to attack the
FORS component. This is again a universal forgery attack and as with previous
attacks, we require a message m with an existing signature σSPHINCS+ . As this
attack has a lot of similarities as the attack on WOTS and XMSS, we will not
go into much detail with this attack, but only give an outline of how it works.

FORS uses multiple hash trees, where the leaves of each tree are the hash
of pseudorandomly generated secret values. Each hash tree signs a block of the
message. The FORS public key is the hash of all root nodes. Let mi be the value
in the i-th block of the message, then the i-th hash tree signs mi by revealing
the mi-th secret value in the hash tree along with the authentication path of
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the corresponding leaf node. A signature for a block mi is verified by using
the secret value at position mi in the hash tree along with the authentication
path to recompute a candidate root value for the hash tree. This is then used
to recompute a candidate FORS public key, which is verified against the reail
FORS public key.

If we are given a valid SPHINCS+ signature σSPHINCS+ for a message m
and we can forge a FORS signature for a different message digest also using the
same FORS instance, we can reuse the hypertree signature σHT in σSPHINCS+

for forging a SPHINCS+ signature for a different message m̃.

Custom selection of a FORS instance When forging a signature for a
message m̃ given m with its signature σSPHINCS+ , the attack only works, if the
address computed from the message digest of m̃ with our forged signature points
to the same FORS instance as the address from m with σSPHINCS+ . We can do
this with the same argument as in the attack onWOTS in Section 4.2. In contrast
to that attack, the estimated amount of steps required for this custom selection
of a FORS instance is between 262 and 266, depending on the used parameter
set. While this is a large amount of steps, as we will see later on, it is still by far
less than the classical resources required for the quantum attack.

Forging a FORS signature To forge a FORS signature, we proceed as follows:
We first select all secret values and values for the authentication paths at random,
except for the topmost sibling-node in the authentication path of the last hash
tree. This value is selected, so that when using it to compute a candidate public
key for a given message results in the given WOTS public key. Again, we do this
using Grover’s Algorithm.

This attack is comparable to the XMSS attack, as we apply Grover’s algo-
rithm to the same node in a hash tree as in that attack. The difference is, how-
ever, that in this attack, we need to apply the hash function twice. In the first
application of the hash function, we compute the root node r̃k of the k-th hash
tree and in the second application, we compute a FORS public key pkFORS as
depicted in Fig. 11. This means that we either need to do two pre-image searches
or we need to do one pre-image search with a recursion depth of 2. In contrast
to the WOTS attack in Section 4.2, where we knew that a pre-image exists, we
do not know that in this case. Therefore both are valid approaches and we do
not need to choose one over the other.

What we do however want to know is the probability that a pre-image exists.
In previous attacks, we used Eq. (2) for this, but as we need to do two pre-
image searches here (or a pre-image search on a recursive application of a hash
function) cannot apply this equation directly. What we can however do is apply
this equation for each application of the hash function. This means that for a
matching value to exist, a pre-image has to exist and this pre-image needs to
have a pre-image itself. This translates to a probability of ≥ (1 − 1/e)2 for a
pre-image existing for the two applications. If we assume the success probability
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Fig. 11: Position of the forged FORS signature in the SPHINCS+ tree and of
the forged values in the respective FORS tree. Note that the leaves of the tree
depend on the forged message, thus the roots that are hashed into the pkFORS

cannot be chosen freely. The first node that can be used for a pre-image attack
the sibling s1 on a second level of a hash tree.

of Grover’s algorithm to be 1, as in previous attacks, we can calulate the success
probability for this attack to be ≥ (1− 1/e)2.
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