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Abstract

This paper presents a new public key cryptography scheme using multivariate polynomials over a
finite field. Each multivariate polynomial from the public key is obtained by secretly and repeatedly
composing affine transformations with series of quadratic polynomials (in a single variable). The
main drawback of this scheme is the length of the public key.

1 Introduction

Since the publication of the Diffie–Hellman key exchange [1] and the RSA cryptosystem [2], public key
cryptography has been a major field of cryptography with thousands of applications.

A new threat has appeared with the emergence of quantum computing, leading to the development
of post-quantum cryptography, aiming to replace current standards (RSA and Elliptic-curve protocols).
Many directions have been explored: lattice-based cryptography, code-based cryptography, supersingular
isogeny cryptography, multivariate cryptography...

The scheme presented in this article is part of multivariate cryptography: it is based on the supposedly
hard computational problem of finding the roots of a system of multivariate polynomials over a finite
field. Famous schemes at the origin of multivariate cryptography are due to Jacques Patarin, including
Hidden Field Equations [3] and Unbalanced Oil and Vinegar (UOV) [4] (with Louis Goubin). Most of
the multivariate public key schemes, like UOV, are based on the same idea: the secret key consists of two
affine transformations and quadratic multivariate polynomials with a trapdoor, hidden by composing
both types of functions. The resulting public key is a set of quadratic multivariate polynomials.

This paper proposes a new public key scheme using a different approach. This time, the multivariate
polynomials from the public key have a degree greater than 2. This means that the public keys generated
by this protocol are quite long. As a consequence, this new scheme does not claim to overpass the best
known protocols in multivariate cryptography.

In this protocol, the public multivariate polynomials are generated by iterating the following process:

• Apply an affine transformation.

• Apply a quadratic polynomial (in a single variable) to each output of the affine transformation.

A python implementation of the scheme is available here: github.com/ewile/pkc-quadratic-composition
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2 Preliminaries

2.1 Public-key cryptography

A public key cryptography protocol generates two keys: a secret key and a public key. The secret key
must be kept private, while the public key can be shared publicly. Everyone can use the public key to
encrypt a message. Only the owner of the secret key must be able to reverse the operation and decrypt
the message.

Figure 1: Example of communication using public key cryptography: only Alice can decrypt the message
sent by Bob thanks to her secret key.

2.2 Context and notations

For what follows, let p be an odd prime number. We will place ourselves over Fp, the finite field of p
elements.

We will use the ring of polynomials in i variables x1, ..., xi. However, this scheme also involves polynomials
in one variable. For the sake of clarity, the number of variables in the polynomials will always be specified.

We will consider that two multivariate polynomials in Fp are equal when they share the same coefficients
(even though two multivariate polynomials, q1 : (Fp)i → Fp and q2 : (Fp)i → Fp, may take the same
values, ∀x̄ ∈ (Fp)i, q1(x̄) = q2(x̄), without sharing the same coefficients).

If f is a function from X to Y ,

• we denote by f [U ] the image of a set U ⊆ X under f : f [U ] = {f(x) : x ∈ U}

• we denote by f−1[V ] the preimage of a set V ⊆ Y under f : f−1[V ] = {x ∈ X : f(x) ∈ V }

If J is a finite set, we denote by card(J) the number of its elements.

When a ∈ Fp is a quadratic residue (modulo p), we denote by
√
a one of its square roots:

√
a = x ∈

Fp with x2 = a. If a 6= 0, there are two possible values for
√
a. We use this symbol when either of the

values can be used interchangeably.

2.3 Compute square roots in Fp

Checking if a ∈ Fp is a quadratic residue (modulo p) can be done quickly with Euler’s criterion:

a
p−1
2 =

{
1 (mod p) when a is a quadratic residue

−1 (mod p) otherwise

This test requires O(log(p)) modular multiplications with fast exponentiation.

The computation of a square root in Fp is also quick:

2



• If p = 3 (mod 4),
√
a = ± a

p+1
4 (again O(log(p)) modular multiplications with fast exponentiation)

• Otherwise p = 1 (mod 4), and the Tonelli–Shanks algorithm [5] will compute a square root of a
in O(log(p) + l2) modular multiplications [6], where l is defined by p − 1 = 2lh, with h odd. For
general values of p, l is negligible compared to log(p), and the Tonelli–Shanks algorithm requires
also O(log(p)) modular multiplications.

2.4 Solve quadratic equations in Fp

To solve a quadratic equation in Fp: ax2 + bx + c = 0, we do as if we were in R: we compute the
discriminant: ∆ = b2− 4ac. If ∆ is a quadratic residue, we compute the 2 solutions with the well known
formula: x = (−b±

√
∆)/2a, otherwise the equation has no solution. The computational complexity lies

in the square root, which involves O(log(p)) modular multiplications (as mentioned in section 2.3).

With y in Fp, the equation (with unknown x) ax2 + bx+ c = y has:

• 1 solution when ∆ = 0⇔ b2 − 4a(c− y) = 0⇔ y = c− b2

4a : it happens only for one value of y

• 2 solutions for n different values of y

• 0 solutions for p− n− 1 different values of y

As there are p different values for x, we have 1 + 2n+ 0×(p− n− 1) = p which leads to n = p−1
2 .

As a result, a random quadratic equation (with a single unknown) in Fp has 1 solution with probability
1/p, 2 solutions with probability (p− 1)/(2p) and no solutions with probability (p− 1)/(2p). When p is
big, with a reasonable approximation, a random quadratic equation (with a single unknown) in Fp has
no solutions with probability 1/2 and 2 solutions with probability 1/2.

2.5 Invert affine transformations in Fp

Let T be an affine transformation from (Fp)u to (Fp)v (with u ≥ 1 and v ≥ 1), that is to say a function
of the form:

T : (Fp)u → (Fp)v

(x1, ..., xu) 7−→ (λi,0 +

u∑
j=1

λi,jxj)1≤i≤v

Let r be the rank of the matrix (λi,j)1≤i≤v , 1≤j≤u. The image of T is an r-dimensional affine subspace
of (Fp)v, containing pr elements. For ȳ = (y1, .., yv) ∈ T [(Fp)u], T−1[{ȳ}] is a (u− r)-dimensional affine
subspace of (Fp)u, containing pu−r elements (according to the rank–nullity theorem). As a result, if Ȳ
is a random variable following the discrete uniform distribution over (Fp)v:

T−1[{Ȳ }] =

{
a set of pu−r elements of (Fp)u with probability pr/pv

∅ with probability 1− pr/pv

In this protocol, the domain of an affine transformation is always smaller than its codomain: u ≤ v.
Moreover, we only consider full rank affine transformations: r = min(u, v) = u. As a result, in this
protocol, when T is an affine transformation from (Fp)u to (Fp)v, and Ȳ is a random variable following
the discrete uniform distribution over (Fp)v:

T−1[{Ȳ }] =

{
a singleton {τ} with τ ∈ (Fp)u with probability pu/pv

∅ with probability 1− pu/pv

In practice, computing T−1[{Ȳ }] requires O(u2v) modular multiplications with Gaussian elimination.
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3 The scheme

3.1 Parameters of the scheme

This protocol is defined by the following parameters:

• p, an odd prime number

• m ≥ 3

• (a1, a2, ..., am) ∈ Nm with 2 ≤ a1 ≤ a2 ≤ ... ≤ am
All calculations are made modulo p.

The message we want to encrypt will be represented by a1 elements of Fp: (x1, ..., xa1). The encrypted
message will be represented by am elements of Fp: (y1, ..., yam). Encryption can be seen as a flow: the
initial a1-variable message will successively pass through layers of a2, a3, ... and finally am variables.

3.2 Generate the secret key

The secret key is obtained by repeatedly choosing an affine transformation and a series of univariate
quadratic polynomials. There is one univariate quadratic polynomial for each output of the affine trans-
formations.

The secret key consists of T1, ..., Tm−1 and Q1, ..., Qm−2, defined as follows:

• For k ∈ {1, ...,m− 1}, Tk is an affine transformation from (Fp)ak to (Fp)ak+1

Tk : (Fp) ak → (Fp) ak+1

(x1, ..., xak) 7−→ (λi,0k +

ak∑
j=1

λi,jk xj)1≤i≤ak+1

• For k ∈ {1, ...,m− 2}, Qk applies a different quadratic polynomial (in one variable) to each of its
ak+1 inputs.

Qk : (Fp)ak+1 → (Fp)ak+1

(x1, ..., xak+1
) 7−→ (αikxi

2 + βikxi + γik)1≤i≤ak+1

Thus, the secret key is created by randomly choosing (in Fp) the following values:

• λi,jk for k ∈ {1, ...,m− 1}, i ∈ {1, ..., ak+1} and j ∈ {0, 1, ..., ak}

• αik, β
i
k, γ

i
k for k ∈ {1, ...,m− 2} and i ∈ {1, ..., ak+1}

Finally, we require the affine transformations to have full rank.

3.3 Generate the public key

The public key is obtained by alternatively composing the affine transformations (Tk)1≤k≤m−1 with the
series of univariate quadratic polynomials (Qk)1≤k≤m−2:

Tm−1 ◦Qm−2 ◦ Tm−2 ◦Qm−3 ◦ ... ◦Q2 ◦ T2 ◦Q1 ◦ T1(X1, ..., Xa1)

The resulting function has am outputs. Each output Mi (1 ≤ i ≤ am) is a multivariate polynomial with
variables (X1, ..., Xa1) over Fp. The degree of each multivariate polynomial is 2m−2.

The multivariate polynomials of the public key are given in their expanded form:

(Mi(X1, ..., Xa1))1≤i≤am =
( ∑
u1+...+ua1

≤ 2m−2

η
(u1,...,ua1 )
i ×Xu1

1 × ...×X
ua1
a1

)
1≤i≤am
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3.4 Encrypt a message

Let’s consider a message (x1, ..., xa1) ∈ (Fp)a1 and a public key (M1, ...,Mam).

For each i ∈ {1, ..., am}, we evaluate the multivariate polynomialMi with the message: yi = Mi(x1, ..., xa1)

The encrypted message is (y1, ..., yam) ∈ (Fp)am .

3.5 Decrypt a message

Both types of function of the secret key are easily invertible:

• For k ∈ {1, ...,m − 1}, the affine transformation Tk : (Fp) ak → (Fp) ak+1 is easily invertible with
Gaussian elimination. Furthermore, Tk is injective because it has full rank and ak ≤ ak+1. This
injectivity is important to keep the number of collisions under control (see section 4.4 for details).

• For k ∈ {1, ...,m− 2}, Qk : (Fp) ak+1 → (Fp) ak+1 is also easily invertible:

For (y1, ..., yak+1
) fixed in (Fp) ak+1 , we are looking for (x1, ..., xak+1

) ∈ (Fp) ak+1 such that:

Qk(x1, ..., xak+1
) = (y1, ..., yak+1

)⇔ ∀i ∈ {1, ..., ak+1}, αikxi
2 + βikxi + γik = yi

As mentioned in section 2.4, for i ∈ {1, ..., ak+1}, we can easily compute Λi, the set of solutions of
the equation αikxi

2 + βikxi + γik = yi (with unknown xi). Λi contains 0, 1 or 2 elements of Fp. The
set of solutions of the equation Qk(x1, ..., xak+1

) = (y1, ..., yak+1
) (with unknowns x1, ..., xak+1

) is
Λ1 × Λ2 × ... × Λak+1

. This set is empty if one Λi is empty, that is to say if one of the previous
quadratic equations has no solutions.

As a consequence, we can decrypt a message by recursively inverting the functions of the secret key:
Let’s consider an encrypted message (y1, ..., yam) ∈ (Fp)am and a secret key corresponding to the public
key used for encryption: T1, ..., Tm−1, Q1, ..., Qm−2. We are looking for (x1, ..., xa1) ∈ (Fp)a1 such that:

Tm−1 ◦Qm−2 ◦ Tm−2 ◦ ... ◦Q1 ◦ T1(x1, ..., xa1) = (y1, ..., yam)

⇔ Qm−2 ◦ Tm−2 ◦ ... ◦Q1 ◦ T1(x1, ..., xa1) ∈ T−1m−1[{(y1, ..., yam)}]

⇔ Tm−2 ◦ ... ◦Q1 ◦ T1(x1, ..., xa1) ∈ Q−1m−2 ◦ T
−1
m−1[{(y1, ..., yam)}]

...

⇔ (x1, ..., xa1) ∈ T−11 ◦Q−11 ◦ ... ◦ T
−1
m−2 ◦Q

−1
m−2 ◦ T

−1
m−1[{(y1, ..., yam)}]

The decryption may find more than one possible message (more than one possible value for (x1, ..., xa1)).
Section 4.4 shows that the risk of collision is drastically reduced when a1 < a2.

4 Practical aspects

4.1 Size of the keys

For k ∈ {1, ...,m− 1}, the affine transformation Tk has ak+1(ak + 1) parameters. For k ∈ {1, ...,m− 2},
the ak+1 quadratic polynomials (in one variable) of Qk contain 3 ak+1 parameters. In total, the number
of parameters (elements of Fp) that define the secret key is:

m−1∑
k=1

ak+1(ak + 1) +

m−2∑
k=1

3 ak+1 = am(am−1 + 1) +

m−2∑
k=1

ak+1(ak + 4)

The main drawback of this protocol is the length of the public key. Each multivariate polynomial

Mi (1 ≤ i ≤ am) from the public has a degree of 2m−2, with a1 input variables, resulting in
(
2m−2+a1

a1

)
monomials. As a result, the public key consists of am ×

(
2m−2+a1

a1

)
elements of Fp.
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4.2 Complexity of encryption

The encryption of (x1, ..., xa1) ∈ (Fp)a1 requires O(am ×
(
2m−2+a1

a1

)
) modular multiplications and addi-

tions.

Proof. The encryption of (x1, ..., xa1) consists of the evaluation of am multivariate polynomials over Fp.
A classical approach for a fast evaluation is:

• Evaluate first all the monomials without considering the coefficients of the polynomial (compute
X3Y 2Z5, not 134.X3Y 2Z5).

• To do so, start from the monomials of low degree: degrees 0 and 1 require no multiplications.

• Compute the monomials (without coefficient) of degree k + 1 from those of degree k (stored in
memory), as it only involves one multiplication: to compute X3Y 2Z5, multiply X by X2Y 2Z5

(already calculated).

This process requires
(
2m−2+a1

a1

)
− a1 − 1 multiplications (each polynomial has a1 variables and a degree

of 2m−2, resulting in
(
2m−2+a1

a1

)
monomials). If we now consider the polynomial’s coefficients, we obtain

a total of 2×
(
2m−2+a1

a1

)
− a1 − 2 multiplications.

Finally,
(
2m−2+a1

a1

)
− 1 additions are needed to get the result of the evaluation.

4.3 Complexity of decryption

In a similar way to encryption, the number of additions needed during decryption is close to the number
of multiplications. For simplicity’s sake, the complexity estimation will be limited to multiplications,
which are the most expensive. The proof of the following result is quite technical and is let at the end
of this article (section 8.2):

The total number of modular multiplications required to decrypt a message is on average:

O(a2m−1am +

m−2∑
k=1

(
log(p) ak+1 + 2ak+1a2kak+1 + (log(p) + a2kak+1)×

m−1∑
v=k+2

pak+1−av (2av − 1)

)
)

4.4 Implementation suggestions

Because of the length of the public key, we cannot afford too many consecutive compositions: a reasonable
value for m is probably between 3 and 10.

a1 should share a similar order of magnitude, for the same reason.

Choosing a big value for p seems natural to compensate for the small number of variables representing
the message (simply to prevent brute force attacks). Note that this protocol can work very well with
p ≈ 101000, or even more.

With the values suggested above, the probability of message collision can be drastically reduced by using
a1 < a2. With a large value for p, choosing a2 = a1 + 1 is enough to guarantee a probability of collision
almost equal to zero.

Proof. The equation (?) (Section 8.2, Part 2), applied to k = 1, gives the average number of solutions
at the end of the decryption: when (y1, ..., yam) is a random encrypted message, the average number of
messages (x1, ..., xa1) whose encryption gives (y1, ..., yam) is:

1 +

m−1∑
v=2

pa1−av (2av − 1)

This value must be very close to 1 to avoid collisions. This requires a1 < a2, as shown below:
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• This is a necessary condition. Because otherwise, we would have a1 = a2 (reminder: we always

have a1 ≤ a2 ≤ ... ≤ am), leading to: 1 +

m−1∑
v=2

pa1−av (2av − 1) ≥ 1 + pa1−a2(2a2 − 1) = 2a1 ≥ 4.

• This is a sufficient condition. If a1 < a2, then 1 ≤ a2−a1 and pa1−av ≤ 1/p for all v ∈ {2, ...,m−1}.
As a result,

1 +

m−1∑
v=2

pa1−av (2av − 1) ≤ 1 +

m−1∑
v=2

(2av − 1)/p ≤ 1 + (m− 2)(2am − 1)/p ≤ 1 +m2am/p

In practice, am does not exceed a few dozen, as well as for m, while p is reasonably above 10100.
As a result, m2am/p� 1, meaning the probability of collision is very low.

5 Security

The security of this protocol lies in the difficulty of finding the roots of the system of multivariate
polynomials used to encrypt messages. However, these polynomials are not fully random, as they are
obtained by successively composing affine transformations and series of quadratic polynomials (in one
variable). The most promising attack is probably to try to recover a secret key from a public key. If we
consider the coefficients of the secret keys ((λi,jk ), (αik), (βik) and (γik), see section 3.2) as unknowns, and
if we develop Tm−1 ◦Qm−2 ◦ ... ◦Q1 ◦T1(X1, ..., Xa1), we get am multivariate polynomials with variables
X1, ..., Xa1 . Each coefficient of these multivariate polynomials is also a multivariate polynomial with
variables (λi,jk ), (αik), (βik) and (γik). If we identify these coefficients with the ones of the public key, we
obtain a system of multivariate polynomials. This system contains:

• am ×
(
2m−2+a1

a1

)
multivariate polynomials, because the public key is composed of am multivariate

polynomials, each with
(
2m−2+a1

a1

)
coefficients (see section 4.1).

• am(am−1 + 1) +

m−2∑
k=1

ak+1(ak + 4) unknowns, corresponding to the the number of values in (λi,jk ),

(αik), (βik) and (γik) (see section 4.1).

An efficient attack exists when the affine transformations (Tk) between the (Qk) are removed (see section
8.1). Although the use of these intermediate affine transformations makes the secret key more complex,
further work needs to be conducted to assess the security of this protocol, to understand how it behaves
against some classical attacks (Gröbner basis for instance).

6 Conclusion

A new public key protocol in multivariate cryptography has been introduced. It is based on the ease of
solving quadratic equations (in one variable) modulo p. Due to the size of the public key, this scheme
is not intended to compete with the best known protocols in multivariate cryptography. The choice of
the right parameters in order to guarantee security remains unclear. Finally, it would be interesting
to assess to what extent the idea of composition with univariate quadratic polynomials can be used
alongside another existing multivariate cryptosystem, to reinforce its security.
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8 Appendix

8.1 An attack showing the importance of the intermediate affine transfor-
mations

This attack was proposed by Charles Bouillaguet (LIP6, Sorbonne University), on a previous version [7]
of this protocol.

In the previous version, we only applied one secret affine transformation, at the beginning of the scheme.
By keeping the previous notation for Q and T , the public key was obtained as follows:

Qm ◦Qm−1 ◦ ... ◦Q2 ◦Q1 ◦T(X1, ..., Xi)

Without the affine transformations between the (Qk), the secret quadratic polynomials (in one variable)
of each line were composed together, independently of the other lines. As a result, each multivariate
polynomial of the public key was obtained by secretly composing:

(αmX
2 + βmX + γm) ◦ (αm−1X

2 + βm−1X + γm−1) ◦ ... ◦ (α1X
2 + β1X + γ1) ◦ (λ0 + λ1X1 + ...+ λiXi)

The attack recovers a secret key from a public key, using the collisions between the keys: each public
key was the consequence of numerous secret keys, allowing to restrict considerably the search for the
parameters of the secret key.

At the beginning of the attack, we are looking for values of (α), (β), (γ) and (λ) such that the development
of the secret compositions corresponds to a given multivariate polynomial from the public key:

∑
u1+...+ui≤ 2m

publicly available︷ ︸︸ ︷
η(u1,...,ui)×Xu1

1 × ...×X
ui
i =

(αmX
2 + βmX + γm) ◦ ... ◦ (α1X

2 + β1X + γ1) ◦ (λ0 + λ1X1 + ...+ λiXi)

(1)

Part 1: λ0, γ1, γ2, ..., γm can be fixed

If q is a given value in Fp, every quadratic polynomial (in one variable) can be expressed in the form:

aX2 + bX + c = a(X − q)2 + b′(X − q) + c′

(By taking b′ = b+ 2aq and c′ = c+ aq2 + bq).

Let’s now consider the first composition in the secret key:

(α1X
2 + β1X + γ1) ◦ (λ0 + λ1X1 + ...+ λiXi)

= (α1(X − λ0)2 + β′1(X − λ0) + γ′1) ◦ (λ0 + λ1X1 + ...+ λiXi)

= (α1X
2 + β′1X + γ′1) ◦ (λ1X1 + ...+ λiXi)

In the secret key, replacing β1 by β′1, γ1 by γ′1 and λ0 by 0 will not change the resulting public multivariate
polynomial.

Without loss of generality, we can thus assume that λ0 = 0.

We can apply this trick for the next composition: with appropriate values for β2 and γ2, we can assume
that γ1 = 0.

Iterating this process shows that, without loss of generality, we can assume that λ0, γ1, γ2, ..., γm−1 are
all equal to 0.

Finally, γm can be easily deduced because it becomes the only value constituting the constant coefficient
in the multivariate polynomial in the second line of (1), leading to γm = η(0,...,0), publicly available.

8



Part 2: α1, ..., αm can be also be fixed

Let’s u be a fixed quadratic non-residue (use Euler’s criterion (section 2.3) to determine one).

We consider the coefficient of X2m

1 in both multivariate polynomials of (1):

η(2
m,0,...,0) = αm × α2

m−1 × α4
m−2 × ...× α2m−1

1 × λ2
m

1 (2)

• Suppose first that η(2
m,0,...,0) is a quadratic residue.

Then αm =
(√

η(2m,0,...,0)/(αm−1 × α2
m−2 × ...× α2m−2

1 × λ2m−1

1 )
)2

is also a quadratic residue.

As a consequence:

(αmX
2 + βmX + γm) ◦ (αm−1X

2 + βm−1X + γm−1)

= (X2 +
βm√
αm

X + γm) ◦ (
√
αmαm−1X

2 +
√
αmβm−1X +

√
αmγm−1)

• Otherwise, η(2
m,0,...,0) is not a quadratic residue.

Then u×αm =
(√

u× η(2m,0,...,0)/(αm−1 × α2
m−2 × ...× α2m−2

1 × λ2m−1

1 )
)2

is a quadratic residue.

(The product of two quadratic non-residues, u× η(2m,0,...,0), is always a quadratic residue).

As a consequence:

(αmX
2 + βmX + γm) ◦ (αm−1X

2 + βm−1X + γm−1)

= (u−1X2 +
βm√
u× αm

X + γm) ◦ (
√
u× αmαm−1X2 +

√
u× αmβm−1X +

√
u× αmγm−1)

In both cases, (αmX
2 +βmX+γm)◦ (αm−1X

2 +βm−1X+γm−1) admits an equivalent expression where
αm ∈ {1, u}. Without loss of generality, we can thus assume that αm ∈ {1, u}. We know which of the two
values to choose because we can easily determine whether η(2

m,0,...,0), publicly available, is a quadratic
residue or not with Euler’s criterion (see section 2.3).

Using (2) again, we get:
√
η(2m,0,...,0)/αm = αm−1 × α2

m−2 × α4
m−3 × ...× α2m−2

1 × λ2m−1

1

• Suppose first that
√
η(2m,0,...,0)/αm, is a quadratic residue.

Then αm−1 is also a quadratic residue, with the same reasoning as above.

As a consequence:

(αm−1X
2 + βm−1X + γm−1) ◦ (αm−2X

2 + βm−2X + γm−2)

= (X2 +
βm−1√
αm−1

X + γm−1) ◦ (
√
αm−1αm−2X

2 +
√
αm−1βm−2X +

√
αm−1γm−2)

• Otherwise, we treat the case where
√
η(2m,0,...,0)/αm is not a quadratic residue in the same way

we did above, by artificially multiplying by u−1 × u.

In both cases, (αm−1X
2 +βm−1X+γm−1)◦ (αm−2X

2 +βm−2X+γm−2) admits an equivalent expression
where αm−1 ∈ {1, u}. Without loss of generality, we can thus assume that αm−1 ∈ {1, u}. We know

which of the two values to choose because we have access to
√
η(2m,0,...,0)/αm (αm was revealed above)

and we can thus determine whether it is a quadratic residue or not.

By iterating this process, without loss of generality, we can thus assume that αm, αm−1, ..., α2 are known
values in {1, u}.

At the end of the iteration, we can fix α1 with the same trick:

9



As we did above, we can now deduce whether α1 is a quadratic residue or not, because we have access
to: √√√√

...

√√√
η(2m,0,...,0)/αm/αm−1/... /α2 = α1 × λ21

• If α1 is a quadratic residue:

(α1X
2 + β1X + γ1) ◦ (λ0 + λ1X1 + ...+ λiXi)

= (X2 +
β1√
α1
X + γ1) ◦ (

√
α1λ0 +

√
α1λ1X1 + ...+

√
α1λiXi)

• Otherwise, we treat the case where α1 is not a quadratic residue in the same way we did above, by
artificially multiplying by u−1 × u.

To conclude, without loss of generality, we can assume that all α1, ..., αm are known values in {1, u}.

Part 3: Deducing λ1, ..., λi

Let b ∈ {1, ..., i}.

We consider the coefficient of X2m

b in both multivariate polynomials of (1):

η

2mis in position b︷ ︸︸ ︷
(0, ..., 0, 2m, 0..., 0) = αm × α2

m−1 × α4
m−2 × ...× α2m−1

1 × λ2
m

b

⇔ λ2
m

b = η(0,...,0,2
m,0...,0)/(αm × α2

m−1 × α4
m−2 × ...× α2m−1

1 )

η(0,...,0,2
m,0...,0) is a known value from the public key. As explained in part 2, we can consider that

α1, ..., αm are known values in {1, u}. As a consequence, the 2mth power of λb is known. On average,
this leaves m+ 1 possibilities for λb.

As a result, we can restrict (λ1, ..., λi) to a set of about (m + 1)i possibilities in (Fp)i. This is very
reasonable in practice because both m and i are small values (probably around 5, otherwise the public
key is too long).

Part 4: Deducing β1, ..., βm

With Part 1, we know λ0, γ1, γ2, ..., γm. With Part 2, we know α1, ..., αm. Part 3 reduces λ1, ..., λi to a
small set of possibilities. We iterate over these possibilities until we find correct values for β1, .., βm:

Given (γ), (α) and (λ), we can deduce β1, .., βm as follows:

• For k ∈ {1, ...,m}, by considering the coefficient of X2m−2k−1

1 in (1), we get a multivariate polyno-
mial equation with unknowns β1, ..., βk, where βk is never raised to a power greater than 1. These
equations are easily solvable by successively considering k = 1, k = 2, ..., k = m.

• Finally, we need to check that the values of β1, .., βm we found match with the public key, that is
to say if the the equation (1) is verified.

8.2 Proof of the complexity of decryption

Part 1: Inverting Q ◦ T

The decryption of a message involves successively inverting functions of the form Γ = Q ◦ T , with:

• u ≤ v two natural integers (u ≥ 1).

• T : (Fp)u → (Fp)v an affine transformation with full rank.

• Q : (Fp)v → (Fp)v a function that applies a different (univariate) quadratic polynomial to each of
its v inputs: Q(x1, ..., xv) = (q1(x1), ..., qv(xv)) with qi(x) = αix

2 + βix+ γi (1 ≤ i ≤ v).

10



Lemma 1: If Ȳ is a random variable following the discrete uniform distribution over (Fp)v, then:

E(card(Γ−1[{Ȳ }])) = pu−v

Proof. Let Ȳ = (Y1, ..., Yv) be a random variable following the discrete uniform distribution over (Fp)v.

For i ∈ {1, ..., v}, as explained in section 2.4, the equation (with unknown xi) qi(xi) = Yi has no solutions
with probability 1/2, and 2 solutions with probability 1/2.

With probability 1/2v, for all i ∈ {1, ..., v}, qi(xi) = Yi admits a pair of distinct solutions {ai, bi}, leading
to Q−1[{Ȳ }] = {a1, b1} × ...× {av, bv}.

Otherwise, with probability 1− 1/2v, there exists i ∈ {1, ..., v} such that the equation qi(xi) = Yi has no
solutions, leading to Q−1[{Ȳ }] = ∅.

As a result:

Q−1[{Ȳ }] =

{
a set of 2v elements of (Fp)v : {c1, ..., c2v} with probability 1/2v

∅ with probability 1− 1/2v

• Suppose Q−1[{Ȳ }] = ∅:

Then Γ−1[{Ȳ }] = T−1 ◦Q−1[{Ȳ }] = T−1[∅] = ∅

Which leads to: E(card(Γ−1[{Ȳ }]) | Q−1[{Ȳ }] = ∅) = E(card(∅)) = 0

• Suppose Q−1[{Ȳ }] 6= ∅:

Therefore, Q−1[{Ȳ }] = {c1, ..., c2v} with c1, ..., c2v 2v distinct elements of (Fp)v.

Hence, Γ−1[{Ȳ }] = T−1 ◦Q−1[{Ȳ }] = T−1[{c1, ..., c2v}] = T−1[{c1}]
⋃
...
⋃
T−1[{c2v}]

The ci being distinct: card(Γ−1[{Ȳ }]) = card(T−1[{c1}]) + ...+ card(T−1[{c2v}])

T is an affine transformation with full rank, from (Fp)u to (Fp)v (u ≤ v). As explained in section
2.5, for i ∈ {1, ..., 2v}, card(T−1[{ci}]) is following the Bernoulli distribution of parameter pu−v,
which leads to:

E(card(Γ−1[{Ȳ }]) | Q−1[{Ȳ }] 6= ∅) = E(card(T−1[{c1}])) + ...+ E(card(T−1[{c2v}])) = 2vpu−v

So, with the law of total expectation:

E(card(Γ−1[{Ȳ }])) = P(Q−1[{Ȳ }] 6= ∅)× E(card(Γ−1[{Ȳ }]) | Q−1[{Ȳ }] 6= ∅)
+ P(Q−1[{Ȳ }] = ∅)× E(card(Γ−1[{Ȳ }]) | Q−1[{Ȳ }] = ∅)

= (1/2)v × (2vpu−v) + 0 = pu−v

�

Lemma 2: If Ȳ is a random variable following the discrete uniform distribution over (Fp)v, the average
number of modular multiplications needed to compute Γ−1[{Ȳ }] is O(log(p) + u2v).

Proof. Let Ȳ = (Y1, ..., Yv) be a random variable following the discrete uniform distribution over (Fp)v.

For i ∈ {1, ..., v}, as explained in section 2.4, solving the equation (with unknown xi) qi(xi) = Yi requires
O(log(p)) modular multiplications, leading to 2 solutions with probability 1/2, and no solutions with
probability 1/2.

To compute Q−1[{(Y1, ..., Yv)}], we begin by solving the equation α1x
2 + β1x + γ1 = Y1. This costs

O(log(p)) modular multiplications. With probability 1/2, the previous equation has solutions, and we
solve the next equation α2x

2 + β2x + γ2 = Y2. Again , this costs O(log(p)) modular multiplications.
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With probability (1/2)2, both previous equations have solutions, and we solve the next equation... As a
result, the average number of modular multiplications required to compute Q−1[{(Y1, ..., Yv)}] is:

O(

v−1∑
i=1

i (1/2)ilog(p) + v (1/2)v−1log(p)) = O((2− 1/2v−1) log(p)) = O(log(p))

As explained in the previous proof, Q−1[{(Y1, ..., Yv)}] has 2v solutions with probability 1/2v. Otherwise,
with probability 1−1/2v there are no solutions. For each solution c, we need to compute T−1[{c}], which
requires O(u2v) modular multiplications with Gaussian elimination. As a result, inverting T requires on
average a total of O((1/2v) 2v u2v) = O(u2v) modular multiplications.

Considering both Q and T , the average number of modular multiplications required to compute Γ−1[{Ȳ }]
is O(log(p) + u2v).

�

Lemma 3: If Ȳ is a random variable following the discrete uniform distribution over (Fp)v, then:

E(card(Γ−1[{Ȳ }]) | Γ−1[{Ȳ }] 6= ∅) = 1 + pu−v(2v − 1)

Proof. Let Ȳ = (Y1, ..., Yv) be a random variable following the discrete uniform distribution over (Fp)v.
Let’s suppose that Γ−1[{Ȳ }] 6= ∅.

Then Q−1[{Ȳ }] 6= ∅ (because otherwise: Γ−1[{Ȳ }] = T−1 ◦Q−1[{Ȳ }] = T−1[∅] = ∅).

What follows is similar to the proof of Lemma 1:

Q−1[{Ȳ }] = {c1, ..., c2v} with c1, ..., c2v 2v distinct elements of (Fp)v.

Because Γ−1[{Ȳ }] 6= ∅, we know for sure that there is c ∈ {c1, ..., c2v} such that T−1[{c}] 6= ∅. For this
particular value, card(T−1[{c}]) = 1 (see section 2.5).

For the other c′ ∈ {c1, ..., c2v} \ {c}, card(T−1[{c′}]) is following the Bernoulli distribution of parameter
pu−v.

As a result: card(Γ−1[{Ȳ }]) = card(T−1 ◦Q−1[{Ȳ }])
= card(T−1[{c1, ..., c2v}])
= card(T−1[{c1}]) + ...+ card(T−1[{c2v}])

= card(T−1[{c}])︸ ︷︷ ︸
=1

+
∑

c′∈{c1,...,c2v}\{c}

card(T−1[{c′}])

Which leads to:

E(card(Γ−1[{Ȳ }]) | Γ−1[{Ȳ }] 6= ∅) = 1 +
∑

c′∈{c1,...,c2v}\{c}

E(card(T−1[{c′}]))

= 1 +
∑

c′∈{c1,...,c2v}\{c}

pu−v

= 1 + pu−v(2v − 1)

�

Lemma 4: If Ȳ is a random variable following the discrete uniform distribution over (Fp)v, the number
of modular multiplications required to compute Γ−1[{Ȳ }] given that Γ−1[{Ȳ }] 6= ∅ is O(log(p)v+2vu2v).

Proof. Let Ȳ = (Y1, ..., Yv) be a random variable following the discrete uniform distribution over (Fp)v.
Let’s suppose that Γ−1[{Ȳ }] 6= ∅.
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For i ∈ {1, ..., v}, as explained in section 2.4, solving the equation (with unknown xi) qi(xi) = Yi requires
O(log(p)) modular multiplications, and always leads to two solutions (because otherwise Γ−1[{Ȳ }] = ∅).
As a result, computing Q−1[{Ȳ }] requires O(v × log(p)) modular multiplications.

As explained in the proof of Lemma 1, Q−1[{Ȳ }] is a set of 2v elements of (Fp)v. For each c ∈ Q−1[{Ȳ }],
computing T−1[{c}] requires O(u2v) modular multiplications with Gaussian elimination. As a result,
inverting T requires a total of O(2vu2v) modular multiplications.

Considering both Q and T , the number of modular multiplications required to compute Γ−1[{Ȳ }] given
that Γ−1[{Ȳ }] 6= ∅ is O(log(p)v + 2vu2v).

�

Part 2: Average number of possible solutions at each step of the decryption

Suppose Bob chooses a message X̄ = (X1, ..., Xa1) represented as a random variable following the discrete
uniform distribution over (Fp)a1 . Bob encrypts X̄ with Alice’s secret key. Let Ȳ = (Y1, ..., Yam) ∈ (Fp)am
be the corresponding encrypted message. To decrypt it, Alice uses her secret key T1, ..., Tm−1, Q1, ..., Qm−2
and computes:

T−11 ◦Q−11 ◦ ... ◦ T
−1
m−2 ◦Q

−1
m−2 ◦ T

−1
m−1[{Ȳ }]

To simplify the notations, we define: Γk = Qk ◦ Tk : (Fp)ak → (Fp)ak+1 for k ∈ {1...,m− 2}.

The set Alice must compute to find X̄ can now be written as: Γ−11 ◦ .... ◦ Γ−1m−3 ◦ Γ−1m−2 ◦ T
−1
m−1[{Ȳ }]

• First, Alice computes Λm−1 = T−1m−1[{Ȳ }].

• Then, she computes Λm−2 = Γ−1m−2[Λm−1].

• Then, she computes Λm−3 = Γ−1m−3[Λm−2].

• ...

• Finally, she computes Λ1 = Γ−11 [Λ2].

If one Λk was empty, the following Λk−1, ...,Λ1 would also be empty, which is impossible because Λ1

must contain X̄. As a result, for all k ∈ {1, ...,m− 1},Λk 6= ∅.

Let Nk be the random variable counting the number of elements found in Λk: Nk = card(Λk) for
k ∈ {1, ...,m− 1}.

T−1m−1[{Ȳ }] = {τ} with τ ∈ (Fp)am−1 . τ exists because Λm−1 is not empty and is unique as explained in
section 2.5. As a consequence, Nm−1 = card(Λm−1) = card({τ}) = 1.

Let k ∈ {1, ...,m− 2}.

Λk+1 is a set of Nk+1 distinct elements of (Fp)ak+1 : τ1, ..., τNk+1
.

Λk = Γ−1k [Λk+1] = Γ−1k [{τ1, ..., τNk+1
}] = Γ−1k [{τ1}]

⋃
...
⋃

Γ−1k [{τNk+1
}]

Because Λk 6= ∅, we know for sure that there is τ ∈ {τ1, ..., τNk+1
} such that Γ−1k [{τ}] 6= ∅. For this

particular value, E(card(Γ−1k [{τ}])) = 1 + pak−ak+1(2ak+1 − 1) (see Lemma 3).

We can reasonably consider that:

• The identically distributed random variables: card(Γ−1k [{τ ′}]) for τ ′ ∈ {τ1, ..., τNk+1
} \ {τ}, with

expectation pak−ak+1 (see Lemma 1), are independent.

• Nk+1 is independent of the sequence (card(Γ−1k [{τ ′}]))

13



Wald’s equation leads to:

E(Nk) = E(card(Γ−1k [{τ}])) + E

 ∑
τ ′∈{τ1,...,τNk+1

}\{τ}

card(Γ−1k [{τ ′}])


= 1 + pak−ak+1(2ak+1 − 1) + pak−ak+1(E(Nk+1)− 1)

As a result, we get: (E(Nk)− 1)/pak︸ ︷︷ ︸
uk

= (2ak+1 − 1)/pak+1 + (E(Nk+1)− 1)/pak+1︸ ︷︷ ︸
uk+1

By using uk = (2ak+1 − 1)/pak+1 + uk+1, we obtain uk =

m−1∑
v=k+1

(2av − 1)/pav + um−1

And because um−1 = (E(Nm−1)− 1)/pam−1 = (E(1)− 1)/pam−1 = 0, we finally obtain:

E(Nk) = 1 + pakuk = 1 +

m−1∑
v=k+1

pak−av (2av − 1) (?)

Part 3: Average number of operations to decrypt a message

Lemma 5: For k ∈ {1, ...,m − 2}, the average number of modular multiplications to compute Λk =
Γ−1k [Λk+1], given Λk+1, is:

O

(
log(p) ak+1 + 2ak+1a2kak+1 + (log(p) + a2kak+1)×

m−1∑
v=k+2

pak+1−av (2av − 1)

)

Proof. Let k ∈ {1, ...,m− 2}.

We suppose known Λk+1, a set of Nk+1 distinct elements of (Fp)ak+1 : Λk+1 = {τ1, ..., τNk+1
}. Computing

Γ−1k [Λk+1] requires to compute Γ−1k [{τ1}], ...,Γ−1k [{τNk+1
}]

As explained in section 4.3.2, we know for sure that there is τ ∈ {τ1, ..., τNk+1
} such that Γ−1k [{τ}] 6= ∅.

For this particular value, O(log(p) ak+1 + 2ak+1a2kak+1) modular multiplications are required to compute
Γ−1k [{τ}] (see Lemma 4).

For the other values τ ′ ∈ {τ1, ..., τNk+1
} \ {τ}, O(log(p) + a2kak+1) modular multiplications are required

to compute Γ−1k [{τ ′}] (see Lemma 2).

In total, O(log(p) ak+1+2ak+1a2kak+1)+(Nk+1−1)(log(p)+a2kak+1)) modular multiplications are required
to compute Γ−1k [Λk+1]. As a result, the average number of modular multiplications required to compute
Γ−1k [Λk+1] is:

O(log(p) ak+1 + 2ak+1a2kak+1 + (E(Nk+1)− 1)× (log(p) + a2kak+1))

=
using (?)

O(log(p) ak+1 + 2ak+1a2kak+1 + (1 +

m−1∑
v=k+2

pak+1−av (2av − 1)− 1)× (log(p) + a2kak+1))

= O(log(p) ak+1 + 2ak+1a2kak+1 + (log(p) + a2kak+1)×
m−1∑
v=k+2

pak+1−av (2av − 1))

�

Decrypting a message requires computing Λm−1 = T−1m−1[{Ȳ }], then Λm−2 = Γ−1m−2[Λm−1], then Λm−3 =

Γ−1m−3[Λm−2] ...

The first inversion T−1m−1[{Ȳ }] requires O(a2m−1am) modular multiplications with Gaussian elimination.
The other inversions are treated with Lemma 5.
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As a result, the total number of modular multiplications required to decrypt a message is on average:

O(a2m−1am +

m−2∑
k=1

(
log(p) ak+1 + 2ak+1a2kak+1 + (log(p) + a2kak+1)×

m−1∑
v=k+2

pak+1−av (2av − 1)

)
)

Which ends the proof of the complexity of decryption.
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