Computational self-testing for entangled magic states
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In the seminal paper [Metger and Vidick, Quantum ’21], they proposed a computational self-
testing protocol for Bell states in a single quantum device. Their protocol relies on the fact that
the target states are stabilizer states, and hence it is highly non trivial to reveal whether the other
class of quantum states, non-stabilizer states, can be self-tested within their framework. Among
non-stabilizer states, magic states are indispensable resources for universal quantum computation.
In this letter, we show that a magic state for the CCZ gate can be self-tested while that for the
T gate cannot. Our result is applicable to a proof of quantumness, where we can classically verify
whether a quantum device generates a quantum state having non zero magic.

Introduction.— In device-independent quantum infor-
mation processing, we treat a quantum device as a black
box and can only access it classically. By using classical
input-output statistics obtained through interacting with
the device, our goal is to make statements about the inner
workings of the quantum device. A scheme for character-
izing a quantum device provides an approach to achieve
device-independent quantum key distribution [IH7] and
delegated quantum computation [8| [9].

A stringent form of device-independent certification
for quantum devices is self-testing, which was intro-
duced by Mayers and Yao [10]. In traditional self-testing
protocols (see e.g., [ITHIJ]), a classical verifier certifies
that computationally unbounded devices, which are also
called provers, have prepared the target state up to some
isometry (i.e., a change of basis) and measured qubits
with the observable as required by the verifier. Their
crucial assumption is that there are multiple provers, and
each prover is allowed to be entangled but cannot classi-
cally communicate with others. In practice, however, this
non communication assumption is difficult to enforce.

Recently, a different type of self-testing was pro-
posed [I4], which replaces the non-communicating multi-
ple provers with a single computationally bounded quan-
tum prover who only performs efficient quantum compu-
tation. To remove the non communication assumption,
their protocol relies on a standard assumption in post-
quantum cryptography where the Learning with Errors
(LWE) problem [44] cannot be solved by quantum com-
puters in polynomial time [I5]. Since the prover is as-
sumed to be computationally bounded, the probability
of solving the LWE problem is negligibly small, which
we call the LWE assumption. Here, it is important to
note that unlike in classical public-key cryptography, this
LWE assumption must hold only during execution of the
self-testing protocol [45].

The self-testing protocol [14] consists of interactions
between the classical verifier and the prover, and after the
interactions, the verifier decides to either “accept” or “re-
ject” the prover. In general, a computationally bounded

single-device self-testing (CB-SD-ST') protocol must sat-
isfy two properties. One is completeness where the honest
prover (i.e., the ideal device) is accepted by the verifier
with high probability. The other is soundness where if
the verifier accepts the prover with high probability, the
device’s functionality is close to the ideal one, i.e., the de-
vice generates the target state and executes the measure-
ments on it with high precision as required by the veri-
fier. So far, the CB-SD-ST protocol has been constructed
only for Bell states (0% ® o%)(|0)|+) + [1)|—))/V/2 with
a,b € {0,1} [14], which are stabilizer states, and their
protocol measures the stabilizers oz ®ox and ox oz to
self-test them. Here, |+) := (]0) £|1))/v/2 with {|0),[1)}
being the computational basis, and oz and ox are the
Pauli-Z and X operators, respectively. The underly-
ing primitives of their protocol are the extended moisy
trapdoor claw-free function (ENTCF) families introduced
in [I6] [I7] that are constructed from the LWE problem.
The ENTCF families consist of two families of function
pairs, one used to check the Pauli-Z operator, and the
other used for checking the Pauli-X operator. Hence,
it should be straightforward to extend the result in [14]
to all the stabilizer states whose stabilizers are tensor
products of the Pauli-Z and X operators. However, for
other states, such as non-stabilizer states, constructing
CB-SD-ST protocols is non trivial.

Among non-stabilizer states, hypergraph states [I8],
generated by applying controlled-controlled-Z (CCZ)
gates on graph states [I9], are useful in various quan-
tum information processing tasks, such as preparing a
magic state [20] for quantum computation, decreasing
the number of bases for measurement-based quantum
computation [2I, 22], enhancing the amount of viola-
tion of Bell’s inequality [23], and demonstrating quantum
supremacy [24]. Experimentally, generating hypergraph
states with high fidelity is generally hard since it requires
CCZ gates. Hence, it is important to certify whether a
generated state is the target hypergraph state. Indeed,
several certification methods have been invented [25H27],
where the measurements are assumed to be trusted.



In this letter, we construct a CB-SD-ST protocol for
the entangled magic state CCZ|+)®3. This hypergraph
state is useful for use as a magic state or a building block
of Union Jack states [22], and for realizing the violation
of Bell’s inequality [23]. As for magic states, T'|+) with
T :=[0)(0] +€'™/4|1)(1] is a major one, but we show that
no CB-SD-ST protocol can be constructed for it within
the framework of [14].

We explain an intuitive idea of how to construct
the CB-SD-ST protocol for the entangled magic state
CCZ|+)®3. This state is a simultaneous +1 eigen-
state of O'X710Z23, O'X720Z137 and 0'X730Z12, which we
call generalized stabilizers. Here, ox ; and C'Zj;, denote
the Pauli-X operator acting on the i*" qubit and the
controlled-Z (CZ) gate acting on the ;" and k' qubits,
respectively. Since these three operators are not the ten-
sor products of Pauli-Z and X, the arguments in [I4]
cannot be directly applied. To overcome this problem,
we generalize the idea in [26]. This shows that expected
values of the generalized stabilizers for a state p can be
estimated by measuring the individual qubits of p with
the ideal Pauli-Z and X measurements followed by clas-
sical processing. Since the ideality of the measurements
is not assumed in the self-testing scenario, we generalize
the result in [26] so that it works even if the measure-
ments are untrusted.

In constructing CB-SD-ST protocols for n-qubit states,
there are two obstacles that must be overcome. Our con-
struction would overcome one of them, and we will dis-
cuss that at the end of this letter.

Recently, by exploiting the ENTCF families, various
protocols have been invented for the proof of quan-
tumness [16, 28H31], verification of quantum computa-
tions [I7), [32H34], remote state preparation [35] B6], and
zero-knowledge proofs for quantum computations [37-
39]. We show that our self-testing protocol for the en-
tangled magic state is applicable to another type of proof
of quantumness where the classical verifier can certify
whether the device generates a state having non zero
magic. The magic represents the non-stabilizerness, and
it is regarded as quantumness in the sense that im-
plementing non-Clifford gates via the injection of non-
stabilizer states upgrades classically simulatable Clifford
circuits to universal quantum circuits.

Computational self-testing of magic states.— First, we
show that it is impossible to construct a CB-SD-ST pro-
tocol for the magic state T|+) with the same usage of
ENTCF families in [14]. More specifically, with the cur-
rent usage of these families, the classical verifier can only
check Pauli-Z and X measurements, but the statistics of
the outcomes of these two measurements are the same
for T|+) and Tt|+) [46]. Therefore, the classical verifier
accepts the prover even when the prover generates T'|+),
which violates the aforementioned soundness.

Next, we turn to the CB-SD-ST protocol for the entan-
gled magic state. Before we describe it, we briefly intro-

duce the main properties of the ENTCF families [16] [17],
where the formal definitions are given in the supplemen-
tary material.

Let X and )Y be finite sets specified by a secu-
rity parameter (i.e., the value that determines the con-
crete hardness of solving the underlying LWE problem).
ENTCEF families consist of two families, F and G, of func-
tion pairs such that each of the functions injectively maps
an element of X to the one of Y [47]. A function f in these
families is injective, namely f(z) # f(a') if z # 2’ € X.
A function pair (fr0, fk1) In F = {(fr,0, fr,1)}x Is in-
dexed by a key k, which is public information specify-
ing parameters in the LWE problem, and f; o and fi 1
have the same image over X. Hence, given y € ),
there exists a claw (zo(k,y),z1(k,y)) in X satisfying
y = fro(zo(k,y)) = fr1(z1(k,y)). The function pair
is called claw-free if it is hard to find a claw in quan-
tum polynomial time. For a claw (zq(k,y),z1(k,y)) and
d € X, we define bit u(k,y,d) :=d- (zo(k,y) ® x1(k,v)).
A function pair (f,0, fr,1) in the other family of function
pairs G = {(fx,0, fx,1) }& is also indexed by a key k, but
fr,o and fr 1 have disjoint images over X. Because of
its disjointness, bit b(k,y) is uniquely determined such
that given k and y, there exists an element x satisfying
Y= fk,b(k,y)(ﬂf)-

Depending on the family of function pairs, the verifier
generates a key k and trapdoor information ;. The trap-
door is a piece of secret information that enables the ver-
ifier to efficiently compute an element = from y = fj ()
for any b € {0,1}.

Below, we describe Protocol 1, which consists of
a three-round interaction between the classical verifier
and the computationally bounded quantum prover (see
Fig. ). The target state of our CB-SD-ST protocol is
the Z-rotated entangled magic state, which is defined for
s1, 82,83 € {0,1} by

o35 ™)) = (03 @ oF © 0F)0CZIH. (1)

In the protocol description, z € T means that the vari-
able z is chosen from set 7 uniformly at random.
Protocol 1

1. The verifier chooses bases 8 := 660505 uniformly
at random from set B := {000, 001,010,100, 111}.
The basis choices 0 and 1 correspond to the compu-
tational and the Hadamard basis, respectively. We
call the basis choice 8 € {000,001, 010, 100} the test
case, and the basis choice 8 = 111 the hypergraph
case.

2. For each i € {1,2,3}, the verifier chooses the func-
tion family G (F) if 6; = 0 (6; = 1). Depending
on the chosen families, the verifier generates keys
k1, ko, k3 and trapdoors ty,, tg,, tk,. Then, the ver-
ifier sends keys ki, ko, k3 to the prover but keeps
trapdoors tg, , tk,, tk, secret from the prover.
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FIG. 1: This figure shows the procedures for the honest de-
vice that passes step (e). If the device executes the displayed
state preparation, measurements, and CCZ gate operation,
where the 3™ register |fr, »(x)) [2°¢ register |zp(ki,yi))] is
measured in the computational [Hadamard] basis, the entan-
gled magic state is prepared. The measurement with g = 100,
which requests Pauli-X (Z) measurement on the 1°° qubit
(2°¢ and 3" qubits), corresponds to measuring the general-
ized stabilizer of the entangled magic state. Therefore, the
outcomes wv1,v2,v3 of this honest device passes the check at

step (e).

3. The verifier receives y1,y2,y3 € )V from the prover.

4. The verifier chooses a round type from

{preimage round, Hadamard round} uniformly at
random and sends it to the prover.
(i) For a preimage round: the verifier receives
preimages (b1, x1;bg, x2; b3, x3) from the prover
with b; € {0,1} and x; € X. The verifier rejects
the prover and sets a flag flag < failp,e unless all
the preimages are correct (namely, fi, s, (i) = y;
holds for ¢ = 1,2, 3).

(ii) For an Hadamard round: the verifier receives
dy,ds,ds € X from the prover. Then, the verifier
sends measurement bases q1, g2, 93 €r {0,1} to the
prover, and the prover returns measurement out-
comes vy, vy, v3 € {0,1} to the verifier. Depending
on the bases 6, the verifier executes the following

checks. If the flag is set, the verifier rejects the
prover.
(a) @ =000: set flag <« failpes if for i €gr

{1,2,3}, ¢; = 0 and b(k;,y;) # v; hold.

(b) @ =100: set flag + failyest if g1 = 1 and
u(k1,y1,d1) © b(k2, y2) - b(k3, y3) # v1 hold.

(c) @ =010: set flag < failmest if g2 = 1 and
u(kz, y2,d2) ® b(k1,y1) - b(ks,ys3) # v hold.

(d) @ =001: set flag + failpest if g3 = 1 and
u(ks,ys,ds) ® b(k1,y1) - b(ka,y2) # vz hold.

(e) @ =111: set flag < failpyper if one of the
following holds:
q = 100 and u(kl,yl,dl) 7é V1D 51,2_’1 + U3,
q = 010 and u(ka,y2,d2) # va2 @ 0y, 1 - Vs,
g = 001 and u(ks,ys,ds) # vs ® by, 1 - V2,
with q := g1¢2¢3 and ¢, being the Kronecker
delta.

Completeness.— We show in Theorem [I] that Proto-
col 1 satisfies the aforementioned completeness.

Theorem 1 There exists a computationally bounded
quantum prover that is accepted in Protocol 1 with proba-
bility 1 —negl(\). Here, negl(X) is a negligible function in
the security parameter X\, namely a function that decays
faster than any inverse polynomial in .

The device is accepted in Protocol 1 if all the checks in
the preimage and Hadamard rounds are passed, whose
details are given in the supplementary material. Here,
we particularly explain the procedures for the honest de-
vice that can pass step (e). Since step (e) corresponds
to the check of the generalized stabilizers, the honest de-
vice passes this check if it generates the entangled magic
state. Figure [l shows how to generate this state. After
returning di, do, d3, the state of the honest device is close
to a tensor product of three Pauli- X basis eigenstates due
to the claw-free property of function family F, and hence
applying the CCZ gate to this state results in the entan-
gled magic state up to Pauli-Z operators.

Soundness.— We next show in Theorem [ that Pro-
tocol 1 satisfies the aforementioned soundness. For the
purpose of self-testing, we are interested in the last round
of the interaction [step 4 (ii)] when 8 = 111. Here, the
verifier sends the measurement bases ¢ € {0,1}? to the
device and receives the outcomes v := vivov3 € {0,1}3.
We can model the behavior of the device in step 4 (ii)
when @ = 111 by the unnormalized state o(51:52:53) on
the device’s Hilbert space H with s1, s2,s5 € {0,1} and

projective measurements {Pév)}v on this state that out-
put v given inputs q to the device. Here, s; is determined
by bit u(k;,y;,d;) for i € {1,2,3}.

The goal of Protocol 1 is to ensure that the state
o'(s1:82,83) .= G(s1,52,:83) [tr[5(51:52:3)] i close to the en-
tangled magic state defined in Eq. (), which is the tar-
get state to certify, and measurements Pév) are specific
tensor products of Pauli measurements, up to an isom-
etry and a small error. This error is quantified by the
probabilities that the verifier rejects the prover, namely
the verifier sets a flag to failpre, failres; or failpyper-
We now present the soundness as follows, where p, :=
Pr{flag < fail,} with a € {Pre,Test, Hyper}, || - ||1 be-
ing the trace norm, and P[|-)] :=|-){:|.



Theorem 2 Consider a device that is rejected by the ver-
ifier with probabilities ppre, PTest aNd PHyper, and make

the LWE assumption. Let \¢S1’52’S3)> be the target en-
tangled magic state to certify with si,$2,s3 € {0,1},
state o'(*152:53) defined above, \ the security parameter,
H the device’s Hilbert space, and H' some Hilbert space.
Then, there exists an isometry V : H — C8 @ H’, states
7({3,1’52’53) on H', and a constant r > 0 such that in the
case of @ = 111 (hypergraph case),

"Va,/(sl,sz,53)v’r B |¢S1,82783)><¢§;1782733)| ® Cq(j/l,szass)

S O(p%’re + p’TIl‘est +pﬁyper) + negl()‘)7 (2)
and for any a,b,c € {0,1} and q1,q2,q3 € {0,1},
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|¢H ><¢H | Ha"hv q2 CQS>] ® CH/
S O(pf)rc + p%cst +p;—1ypcr) + HEgl()‘) (3)

Here, |aq,) with a,q1 € {0,1} is|ag,) :=|a) if 1 = 0 and
lagy) = (10)+(=1)*11))/VZ if 1 = 1. |bg,) and |cg,) are
defined analogously.

Here, Eq. (2)) guarantees how precisely the prover gener-
ates the entangled magic state under the isometry V,
and Eq. @) how precisely it implements the specific
single-qubit measurements on it according to the mea-
surement bases q. Using VIV = I, Eq. @) also re-
veals that the actual probability distribution of the de-
vice {tr[Pq(fgzcggU’(51752’53)]}a’b’5 is close to the ideal one
obtained by measuring |¢{**>**)) in the Pauli-Z and X
bases. Note that Egs. [2) and (@) are analogous to the
statements in the traditional self-testing (see e.g., [I1-
13]). One notable difference from the traditional self-
testing is that our isometry V is allowed to be a global
operation acting on the whole device’s Hilbert space H
because we do consider the single quantum device. We
give the proof of Theorem [2]in the supplementary mate-
rial.

Applications to the proof of quantumness.— Recently,
various protocols have been invented to enable the clas-
sical verifier to certify the quantumness of the de-
vice [16 17, 28] [30, 31, B3]. Here, the meaning of quan-
tumness differs depending on the protocols. For instance,
the protocols [16, B0, BI] verify whether the prover has
a superposed state or not, the protocols [I7), B3] verify
whether the prover can efficiently solve BQP problems,
and the protocol [28] verifies that the prover can query
to an oracle in superposition. Importantly, if the prover
is accepted by the verifier, then the prover has quantum
capability.

Our CB-SD-ST protocol given as Protocol 1 can be
used for the proof of magic under the IID scenario where
the device’s functionality is the same for each repeti-
tion of the protocol. To measure the magic, we focus
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on the max-relative entropy of magic [40]. We adopt
this measure for simplicity, but our arguments can be
applied to any reasonable measure of the magic. Let
Dmax(p) := log (1 4+ Ry(p)) be the max-relative entropy
of magic of an n-qubit state p, where Ry(p) is defined by
the minimum of ¢ > 0 such that p € (14 ¢t)STAB — ¢S,
STAB C S is the convex hull of all n-qubit stabilizer
states, and S is the set of n-qubit states. If p is a sta-
bilizer state, R4(p) = 0, and hence Dpax(p) = 0. By
contraposition, if D,.x(p) > 0, state p is a non-stabilizer
state.

Based on above observations, we outline the protocol
for the proof of magic as follows [48] (see the supplemen-
tary material for the details).

1. The verifier and prover repeat Protocol 1 a constant
number of times, and the verifier estimates the er-
ror probabilities ppre, PTest and PHyper using Hoeffd-
ing’s inequality from the numbers of set flags.

2. If the estimated trace norm Test [the square root of
the right-hand side of Eq. ()] is strictly less than
1/3, then the verifier accepts the prover. Other-
wise, the verifier rejects the prover.

We first show that if our protocol is passed, with a
small significance level [49], which can be set to any
value such as 107!0, the verifier can guarantee that
the prover generates a state having non zero magic up
to the isometry. If state p has no magic, we have
<¢(§1’32’s3)|p|¢g1’52’s3)> < 9/16 because for any stabilizer
state |¢), F = |(h|¢\7"%)) 2 < 9/16 [2]. Since F <

9/16 results in [|p — |off" ")) (p{f*>* |||, > 1/2 [3],
Hoeffding’s inequality with precision 1/6 implies that
Test < 1/3 holds with probability 1071°. Therefore, such
a state p is accepted with probability of at most 10710,

On the other hand, there is a strategy that passes this
protocol with probability 1 — 10719, This is because
Theorem [I] states that there exists a prover’s strategy
that achieves all of the error probabilities ppre, Prest and
PHyper being negl(\), and hence from Hoeffding’s inequal-
ity, Test < negl(A)+1/6 < 1/3 holds except for probabil-
ity 10719,

Discussion.— In this letter, we have constructed a
CB-SD-ST protocol for the three-qubit entangled magic
state. To generalize [I4] to n-qubit states, there seems to
be two obstacles that must be overcome. (1) The verifier
chooses the bases 6;...0,, €g {0,1}", i.e., the Pauli-Z or
X basis with which the prover is requested to generate
the state for n times. Since the target state is prepared
only when all the #’s are 1, it takes exponential time
on average to generate the target state. (2) The verifier
checks all the patterns of measurements, namely it checks
the correctness of Pauli-Z and X measurements for each
qubit, which takes 2" times.

Our construction would solve the first problem. We
have shown for n = 3 that the number of bases 0 is



sufficient to be n + 2, which are 8 = 000, 8 = 111, and
6’s with a single 1. Our construction could be generalized
to n-qubit hypergraph states, where the target state can
be prepared on average by repeating the protocol (n +
2) times. We leave its rigorous analysis and the second
problem as future work.
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I. PRELIMINARIES

A. Notations

Throughout the paper, we use the following notations. We use the bold symbol A meaning A; A>As. Fori € {1,2,3},
A; denotes A except for A;. Let the Kronecker delta be

5 = Oifz#£y
DY 1if z=v.

We denote by |S| the cardinality of set S. For a bit b € {0,1}, b denotes b @ 1. We denote wt(z) by the number of
1’s in a bit string x.

We denote H by an arbitrary finite-dimensional Hilbert space. The set of linear operators on the Hilbert space H
is denoted by L(H). For A, B € L(H), we denote the commutator by [4, B] = AB — BA and the anti-commutator
by {A4,B} = AB + BA. Pos(H) denotes the set of positive semidefinite operators on H, and we denote the set of
density matrices on H by D(H) = {A € L(H)|A € Pos(H), tr[A] = 1}. A binary observable is defined as an observable
(Hermitian operator) that only has eigenvalues € {1,0, —1}. For any binary observable O and b € {0,1}, O® denotes
the projector onto the (—1)’-cigenspace of O. We denote the Pauli-Z and X observables by o7 = Z;ZO(—l)b|b><b|
and ox =3, (=1)"|(=)"){(=)"|, respectively. Here, |(=)") := (|0) + (=1)*|1))/v2.

Let negl(A) be a negligible function in the security parameter A\, namely a function that decays faster than any
inverse polynomial in A. For a countable set X', x <— X denotes that x is chosen uniformly at random from X.

B. Cryptographic Primitives

Here, we explain the noisy trapdoor claw-free function family, which is the cryptographic primitive underlying our
self-testing protocol described in Sec. [TIl

Definition 1 (Hellinger Distance) For two probability densities fi and fo over finite set X, the Hellinger distance
between fi and fo is defined as

H(f1,f2) = 1= \/fi(z)fa(x).

rzeX

Definition 2 (Noisy Trapdoor Claw-free Family [1]) Let A € N be a security parameter. Let X and ) be finite
sets. Let Kx be a finite set of keys. A family of functions

F ={fep: X = Dylrexrpefo,1}
is called a noisy trapdoor claw-free (NTCF) family if the following conditions hold:

e Ffficient Function Generation: there exists an efficient probabilistic algorithm GENx that generates a key k € Kr
together with a trapdoor ty, (k,tr) < GENz(1*).

e Trapdoor Injective Pair: for all k € Kx, the following conditions hold.

— Trapdoor: for all b € {0,1} and x # 2’ € X, Supp(frp(x)) N Supp(frp(x’)) = 0. Moreover, there exists
an efficient deterministic algorithm INV g such that for all b € {0,1}, x € X and y € Supp(frp(x)),
|NV]:(tk,b, y) =x.



— Injective Pair: there exists a perfect matching Ry C X X X such that fro(xo) = fei1(z1) if and only if
(1‘0, xl) € Ry.

e FEfficient Range Superposition: for all k € Kz and b € {0,1} there exists a function f,’mb : X = Dy such that

— For all (zg,21) € R, and y € Supp(f,;b(xb)), INV£(tr, b, y) = xp and INV£(tr, b D 1,y) = zpg1-

— There exists an efficient deterministic procedure CHKx that on input k, b € {0,1}, x € X, and y € Y,
returns 1 if y € Supp(f,;b(x)) and 0 otherwise. Note that CHK £ is not provided the trapdoor tj.

— For every k € Kr and b € {0,1},

EI(—X[HQ(fhb(w)a fl::,b(x))] = negl()‘)

for some negligible function negl(-), where the expectation is taken over x <+ X. Here H?(-,-) is the
Hellinger distance. Moreover, there exists an efficient procedure SAMPx that on input k and b € {0, 1},
prepares the state

\/— Z fkb (Y)|z)y).

zeX,yey

e Adaptive Hardcore Bit: for all k € Kz the following conditions hold for some integer w that is a polynomially
bounded function in X.

— For all b € {0,1} and v € X, there exists a set Gp . € {0,1}" such that Prg_qo,1ye{d & Grpe} is
negligible in A\, and moreover there exists an efficient algorithm that checks for membership in Gy p 5 given
k,b,x and the trapdoor tj,.

— There is an efficiently computable injection J : X — {0,1}* such that J can be inverted efficiently on its
range, and such that the following holds. Let

Hk = {(b, Ty, d, d- (J(.To) (&) J(l‘l)» |b S {0, 1}, (1‘0,331) S Rk,d S Gk70,i€o N Gk,l,wl} s
Hk = {(b7 Tp,d,c D 1)|(b, Ty, d, C) S Hk}
Then for any efficient quantum algorithm A, there exists a negligible function negl(-) such that

1Pr i 1) ceny (1) {AK) € Hi} — Prig s ceny() {A(k) € Hi}| = negl(X). (1)

Definition 3 (Trapdoor Injective Function Family [1]) Let A € N be a security parameter. Let X and ) be
finite sets. Let KCg be a finite set of keys. A family of functions

G = {fop: X = Dy}rexg vefo,1}
is called a trapdoor injective function family if the following conditions hold:

e Ffficient Function Generation: There exists an efficient probabilistic algorithm GENg which generates a key
k € Kg together with a trapdoor ty, (k,tx) < GENg(1*).

e Disjoint Trapdoor Injective Pair: For all k € Kg, for all b,b' € {0,1} and z,2’ € X, if (b,z) # (V,2'),
Supp(fr,p(x)) N Supp(fip (z') = 0. Moreover, there exists an efficient deterministic algorithm INVg such that
for allb € {0,1}, x € X and y € Supp(fxp(z)), INVg(tr,y) = (b, ).

e FEfficient Range Superposition: For all k € g and b € {0, 1},

1. There exists an efficient deterministic procedure CHKg that on input k, b € {0,1}, z € X, and y € Y,
outputs 1 if y € Supp(frp(x)) and 0 otherwise. Note that CHKg is not provided the trapdoor ty.

2. There exists an efficient procedure SAMPg that on input k and b € {0,1} returns the state

LS Ja@) @)l



Definition 4 [Injective Invariance [I]] A NTCF family F is injective invariant if there exists a trapdoor injective
function family G such that

o The algorithm CHKz and SAMPx are the same as the algorithms CHKg and SAMPg.
e For all quantum polynomial-time procedures A, there exists a negligible function negl(-) such that
|Pr (k) cen(n) LAK) = 0} = Prx ) ceng 1y {A(K) = 0}] < negl(X).

Definition 5 (Extended Trapdoor Claw-free Family [1]) A NTCF family F is an extended trapdoor claw-free
family if

o F is injective invariant.

e Forallk € Kr and d € {0,1}Y, let

Hj, 4= {d- (J(zo) ® J(x1))|(z0, 1) € Ry }-
For all quantum polynomial-time algorithms A, there exists a negligible function negl(-) such that
Prii ) ceny ) TAK) € Y 1) — 5| < negl(\).

Definition 6 (Decoding maps for the ENTCF families [2]) We define the following maps that decode the out-

put of an ENTCF.

o ForakeykeKg andy € Y, let B(k, y) be the bit such that y is in the union of the supports of the distributions
fi bk y)(x) over x € X. This is well-defined because the function pairs in G have disjoint images.

o forakeyk € Kxr or Kg, y € Y, and b € {0,1}, let &,(k,y) be the preimage of the function such that y is in
the support of the distribution fip(Zp(k,y)). If y is not in the support, then nothing is defined for &y(k,y) (so
instead we define &p(k,y) = L).

e Forakeyk e Kr,y€Y andd € X, we define i(k,y,d) ;= d- (Zo(k,y) ®Z1(k,y)), where the preimages &o(k,y)
and %1 (k,y) can be efficiently computed by using the trapdoor information ty.

C. Definitions

Throughout the paper, we adopt the following definitions.

Definition 7 (State-dependent inner product). Let H be a finite-dimensional Hilbert space, A,B € L(H) and ¢ €
Pos(H). We define the state-dependent (semi) inner product of A and B with respect to ¢ as

(A, B)y := tr[ATBy).
Definition 8 (Distance measures)
(i) For A € L(H), the schatten-p norm is defined by
14]lp = tx[| APTH?,

where |A] :== VATA. Note that ||Al|1 is called the trace norm, and ||A||s is called the operator norm (largest
singular value).

(ii) For A € L(H) and 1) € Pos(H), we define the state-dependent (semi) norm of A with respect to 1 as

[|A]ly =/ tr[ATAY].

Definition 9 (Approzimate equality) We use the following symbol for describing an approzimate equality.



(i) For a,b € C, we define
amebs |a—bl =0(e) + negl(N).
(i) For A, B € L(H), we define
A=, B ||A- B3 = 0(e) + negl(\).
(iii) For A, B € L(H) and ¢ € Pos(H), we define
Arcy B ||A— B[}, = O(c) + negl(\).

Definition 10 (Computational indistinguishability) The two states 1,4’ € D(H) are computationally indistinguish-
able up to O(9) if any efficient distinguisher, which takes as input either v or ¢’ and outputs the bit b, satisfies

Pr{b = 0|y} =~ Pr{b = 0[¢'}.

We use the notation

II. AUXILIARY LEMMAS

In this section, we summarize auxiliary lemmas that will be used in the soundness proof in Sec. [Vl All the lemmas
in this section have been derived in [2]. We state them here just for the self-consistency of this paper.

Lemma 11 Let A; and As be efficient commuting binary observables. Then AiAs is also an efficient binary observ-
able.

Lemma 12 Let ¢,¢)' € D(H) such that ¢ ~s ) for some 5. If {M(@},cs is an efficient measurement on H, then

Z MDA 25 Z M@y prla),
a€S a€S

Lemma 13 (i) Let v € Pos(H), and A, B € L(H). For C € L(H) such that CTC < I we have
A e B=CA Re,p CB.

(it) Let ¢; € Pos(H) for i € {1,...,n} with constant n, and A, B € L(H). Define v» =", 1;. Then,
Vi € {1, ,’I'L} tA %6,1/11' Bs A e B.
Lemma 14 Let vy € Pos(H), {M(“)}aeg a projective measurement with index set S, and O denotes a binary observable

O=> (1) "M,

where s, € {0,1}. Suppose there exists an o’ € S such that
tr[My] ~ trfy].
Then,
O~y (—1)%1.

Lemma 15 Let Hq, Ho be Hilbert spaces with dim(H1) < dim(Hs2) and V : H1 — Ha an isometry. Let A and B be
binary observables on H1 and Ha, respectively, Y € Pos(H1), 12 € Pos(H2), and € > 0. Then,

tr [VTBVA1/J1] ~. tr[y] = viBYV Reyn A,
tr [VAVIBo] mc trfys] = VAV x4, B.



Lemma 16 Let O be a binary observable on H and 1) € Pos(H). Then,
O ey (1)1 =0 x4 T and O® =~ 0.
Lemma 17 (Replacement lemma,)
(i) Let ¢ € Pos(H), and A, B,C € L(H). If Amcy B and ||C||c = O(1), then
tr[CAY] ~ f tr[CBY],
tr[ACY] ~ s tr[BCY).
(i1) Let 1,9’ € Pos(H), and A € L(H). If ¢ ~c ¥ and ||Al|lo = O(1), then
tr[AY] ~ e tr[AY].

Lemma 18 Let A,B € L(H) be linear operators, C € L(H) a linear operator with constant operator norm, and
1 € Pos(H) with tr[y)] < 1. Then,

A=,y B= AYC =, ByYC and CpAT ~, CyBT.

Lemma 19 Let Hq, Ha be Hilbert spaces with dim(H1) < dim(Hs), V : H1 — Ha an isometry, and A and B binary
observables on Hy and Ha, respectively. Then, the following holds for any 1 € Pos(H1):

VAV =, yyvi B= A~y VIBY,
Ay VIBV = VAV & vyt B.

Lemma 20 Let Hq, Ho be Hilbert spaces with dim(H1) < dim(Hs) and V : Hy — Ha an isometry. Let A and B be
binary observables on H1 and Ha, respectively, b € Pos(H1), and € > 0. Then, for any b € {0,1}:

VIBV .y A= VIBOV =, A,
B, yyyi VAVI = BO® x_ v VAO VT
Lemma 21 (Lifting lemma) Let 1, ' € D(H) be computationally indistinguishable: ¢ ~g 1)
(i) Let A be an efficient binary observable on H. Then,
e[ Av] s AW
(i) Let A, B be efficient binary observables on H. Then,
A=y B=> A=siey B.
(iii) Let A, B be efficient binary observables on H. Then,
[A,B] =cy 0= [A, B] ®sqey 0.
(iv) Let A, B be efficient binary observables on H. Then,
{A,B} =y 0= {A,B} =54cy 0.

(v) Let H' be another Hilbert space with dim(H') > dim(H), A an efficient binary observable on H, B an efficient
binary observable on H', and V : H — H' an efficient isometry. Then

Ay VIBV = A 15, VIBV.

(vi) Let H' be another Hilbert space with dim(H') > dim(H). Also, let 1,1’ € D(H') such that ¥ ~5 ', A be an

efficient binary observable on H, B an efficient binary observable on H', and V : H — H' an efficient isometry.
Then

VAV  ~cy B= VAV ~a/4,5, B.



IIT. SELF-TESTING PROTOCOL OF MAGIC STATE FOR CCZ GATE

Here, we formally describe our computationally bounded single-device self-testing protocol for the entangled magic
state CCZ|+)®3.
Protocol 1

1. The verifier chooses the bases 8 = 6,0,05 € B with the set of bases being defined as
B := {000, 001,010,100, 111}. (2)

The basis choices 0 and 1 correspond to the computational basis and the Hadamard basis, respectively. We call
the basis choice 8 € {000,001,010,100} the test case, and the basis choice 8 = 111 the hypergraph case.

2. The verifier samples public keys k1, k2, k3 and trapdoors tk,, tr,, tk, as

(ki;tki) < GENg(l)‘) if 91 = 0,
(ki,tr,) + GENz(1*) if 6, =1

Then, the verifier sends k1, ko, k3 to the prover but keeps trapdoors ty, , tk,, tr, secret from the prover.
3. The verifier receives y1,y2,y3 € Y from the prover.

4. The verifier chooses the round type from {preimage round, Hadamard round} uniformly at random and sends
the round type to the prover.

(i) For a preimage round: The verifier receives (b1, x1;ba, z2;bs,23) from the prover with b; € {0,1} and
x; € X. The verifier sets a flag flag + failp,e except CHK(k;, y;, bi, x;) = 1 holds for all ¢ € {1,2, 3}.

(ii) For an Hadamard round: The verifier receives dy, da, ds € {0,1}" from the prover. Then, the verifier sends
the questions q1, 2,93 €r {0, 1} to the prover, and the prover returns the answers vy, vy, v3 € {0, 1} to the
verifier. Depending on the basis choice 0, the verifier executes the following checks.

Basis choice Verifier’s check
6=000 Set flag < failTest if the following is true for i €g {1,2.3}:
g =0 A blki,y:) # vi.

6=100 Set flag < failrest if the following is true:
=1 A ki, y,di) ® b(ka, y2) - b(ks, ys) # vi.
6=010 Set flag < failrest if the following is true:
@2=1 AN a(ka,y2,d2) ® Z;(kil,y1) 'i)(l{?g,y3) # va.
60=001 Set flag < failrest if the following is true:
=1 A ks, ys,dz) ®b(kr,y1) - b(ka, y2) # vs.
0=111 Set flag < failuyper if one of the following is true:

q =100 A ﬁ(k17y1,d1)7év16951,2,1~v3,
q=010 A ﬂ(kz,yz,dz)#l)g@(;vhl - U3,
q=001 A d(ks,ys,d3) # v3 D Ov;,1 - V2.

IV. COMPLETENESS OF THE PROTOCOL

In this section, we prove our Theorem 1 in the main text. Specifically, we show that there exists an honest prover’s
strategy, which is accepted by the verifier with probability negligibly close to 1.

First, after receiving the keys ki, ko, k3 from the verifier, the prover treats each key separately and prepares the
following state for ¢ € {1, 2, 3}:

b 0 zeX,ycy



The preparation of this state can be efficiently done up to negligible error using the procedures from the definition of
ENTCEF families (definition 4.2 in [I]). Then, the prover measures the y-register and returns the outcomes y1, y2,ys € Y
to the verifier. At this point, the post-measurement state for each i € {1,2, 3} is written as

bz, y2)) | (ki i) if k; € Kg,
%(mﬂfo(k‘i,yi» + )21 (ki yi))) i ki € Kr.

Note that bit I;(k, y) for k € Kg and y € ), and preimage Z(k,y) with b € {0,1}, k € KgUKx and y € Y are defined
in Definition[6 For simplicity of notation, we define & (k,y) := Tj k.0 (k,y). If the verifier chooses the preimage round,
it is easy to figure out that the prover is accepted by the verifier with probability negligibly close to 1.

If the verifier chooses the Hadamard round, the prover measures the z-register in the Hadamard basis, obtains the
outcomes dy,ds,ds € {0,1}" and returns these to the verifier. At this point, the prover’s state for each i € {1,2,3}

is given by

b(ki, i) if k: € Ko,
|(_)ﬂ(k¢,yi,di)> if k; € Kx.

Here, we define
ks, yi, di) = di - (2o (ki, yi) ® T1(kis yi))-

Now, the prover performs the CCZ gate (an entangling three-qubit gate that applies oz to the target qubit if the
other qubits are in state |1)) among the three qubits and obtains

|b(kr, 91)) [b(k2, y2)) |b(ks, y3)) if ki, ko, ks € Kg,
|(=)alkrvr.d)@bhaw2) b(ks.us) ) |b(ky, yo) ) |b(ks, y3))  if ki € Kr, ke, ks € Kg,

[b(k1, )| (=) 2wz d2) @b w) ko va)y B(ky, ) if ky € Kg, ka € K, ks € K, 3)
|b(ky, 31)) [b(ka, yo))|(—) 20 ws d) @bty blhkaw)) if Ky ky € Kg, ks € K,
|¢§{ﬁ(k1,y1,dl),ﬁ(k2,y2,d2)7ﬁ(k3,ys,d3))> if oy ko, ks € K,

where we define
67"} = (0% ® o © 05)CCZ|4)%*.

It is easy to find that in the first four cases of Eq. (B]), the prover’s answer is accepted by the verifier. For the last
case of Eq. ([B)), by rewriting |¢§{“(k1’yl’dl)’u(kg’yQ’d2)’u(k3’y3’d3))> depending on ¢ as (we use the simplified notations:

ur = k1, y1,dr), ue = u(ks, y2,da), us = u(ks, ys, ds))

(=) )10} [10) + (=1)"s[1)] + (=1)*2 [|(=)")[D)[0) + (=D)** |(=)" ) [D)[1)}]

q =100 :

2 )
q=010: |0>|(_)u2> [|0> + (_1)u3|1>] + |1> [(_1 ;1 |(—)u2>|0> + (—1)“1@U3|(_)uz®1>|1>} ’
g= oo, 120+ CLIBIE)) + 1 (™ ONE)™) + (i) =)

and if the honest prover measures the qubits in the Pauli-Z or X basis depending on ¢; = 0 or ¢; = 1, by returning the

measurement outcome as the answer v;, it is straightforward to figure out that the prover is accepted by the verifier.
|

V. SOUNDNESS OF THE PROTOCOL

In this section, we provide the proof of our Theorem 2 presented in the main text.



A. Devices

Definition 22 An arbitrary prover can be modeled by a device D := (S, 11, M, P), which are specified as follows.
1. (State just after returning images y) We define the set of states S := {’(/J(e)}ge{o’l}S as
W@ = v @ly)(yly € DHp @ Hy). (4)
yey?

Note that (9 with @ € B represents the state of the prover just after step 3 of Protocol 1, namely the state just
after returning images y to the verifier. The state V@) is implicitly averaged over the keys (K1, k2, ks) chosen
by the verifier, and all the statements we make in terms of the device D hold on overage over the keys.

2. (Measurement in the preimage round) A projective measurement on systems Hp @ Hy performed in the preimage
round is defined as

M=% = 3" 1P @ |y)(yly
yey? b,x

Here, Hq(,b’m) represents the projective measurement to obtain outcomes b € {0,1}* and x € X® given the images
ye )

3. (Measurement and post-measurement states in the Hadamard round) A projective measurement on systems
Hp @ Hy performed in the Hadamard round to obtain d € {0,1}3% is defined as

M= MY =" M @ |y)(yly
yey? d

For any 6 € {0,1}3, the post-measurement normalized state after measurement M is written as
PO= > MIPMP @y d)y.dyr. (5)
yeY3,def{0,1}3w

For simplicity, we adopt the following definition

0) . a0 pr(d)
Oy.a = My by My™.

4. (Measurement after receiving questions q in the Hadamard round) Given the verifier’s questions q € {0,1}3, P,
denotes the projective measurement on systems Hp @ Hy @ Hp:

Pa={PM= 3 P olydydyr

3 3w
yeY?,def0, 1} ve{0,1}3

By performing this measurement, the prover obtains the outcomes v € {0,1}® that are returned to the verifier
in the protocol.

B. Marginal observables

Definition 23 For D = (S,II, M, P), we define the following binary observables using the projective measurement
Py. A set of binary observables regarding the answer v; € {0,1} fori € {1,2,3} given questions q € {0,1}> is defined
by

Aig= Y ()" PY . (6)

3
ve{0,1} qe{0,1}2



We call {A; g—000};_; and {A; q=111}3_, the non-tilde observables. Any other binary observables {A; 4}: 4 are called
the tilde observables. Note that all the {4; q}:q act on the same Hilbert space regardless of ¢ and g. The only
difference lies in classical post-processing of the answers v, where {41 q}q, {A2,4}q and {As q}q respectively focus
only on the first outcome v; (ve and vs are marginalized), the second outcome vy (v; and v are marginalized), and
the third outcome v3 (v1 and vy are marginalized).

C. Success probabilities of a device

In the self-testing protocol described in Sec. [TI} if the prover’s answer is incorrect, the verifier sets a flag. Here, we
relate the probabilities that the prover passes these checks to the states and measurements defined in Secs. [V Al and

VBl

Lemma 24 (Preimage check) Let D = (S,11, M, P) be a device. The probability of passing the it" preimage check
(namely CHK(k;, yi, bi,x;) = 1) conditioned on the basis choice @ € B and the preimage round is written as

Pr{Prover passes the i*" preimage check|@, preimage round}

=80 > tr [ngi,yim(ki,yi>;bz,wz>¢§e>} R [Héb,azm,yi);b;,mz)w;@)}, (7)

y,@7,b; y,@7,b,b
Let pmin denote the minimum probability of Eq. (1) over i € {1,2,3} and 6 € B, and we define
vp(D) := 1 = pumin. (8)
Then, the upper bound on yp(D) is obtained as
vp(D) < 15 - Pr{flag = failp,c|preimage round}. (9)

Note that Pr{flag = failp.|preimage round} can be estimated through repeating the self-testing protocol.
(Proof) The probability of obtaining failp,. conditioned on choosing the preimage round is written as

Pr{flag = failpye|preimage round}
=1 — Pr{CHK(k1,y1,b1,21) = 1 A CHK(k2, y2, b2, 22) = 1 A CHK(k3, y3, b3, z3) = 1|preimage round}. (10)

To upper-bound the second term of Eq. (I0), we consider a virtual scenario ! where the verifier checks only the 4!
(1 € {1,2,3}) preimage, whose index ¢ is chosen with probability Pr{i} = 1/3. This procedure is virtual in the sense
that only the i*" preimage check is conducted while all of the i*" preimage checks are performed in the actual protocol
described in Sec. [[TTl Since the probability of passing only the i*" preimage check is larger than that of passing all the
preimage checks, we have

Pr{CHK(k1,y1,b1,21) = 1 A CHK(k2, y2, ba, x2) = 1 A CHK(ks, ys, b3, x3) = 1|preimage round}

3
1
Sg Z Pr{Prover passes the i'" preimage check|i, preimage round}
i=1
13
=3 Z Pr{Prover passes the i*h preimage check|preimage round}
i=1
13
=3 Z Z Pr{6} - Pr{Prover passes the i"" preimage check|@, preimage round}
i=10eB
13
:% Z Z Pr{Prover passes the i*" preimage check|@, preimage round}. (11)
i=1 0eB

1 This virtual procedure appears just for proving this lemma, and we do not employ this procedure in the rest of this paper.
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In the second equality, the index ¢ is omitted from the condition. This is guaranteed by the fact that the only
difference between the virtual and the actual protocols lies in the probability of choosing i and once conditioned on 1,
the probability of passing the i*? preimage check is obviously equal. By using Eq. [§), Eq. (II)) is upper-bounded by

vp(D)
38|

1+1 ml=1-
3|B|[(3|B| ) X 141 X pmin]

Hence, Eq. (I0) leads to

1r(D)
318]

Pr{flag = failpyc|preimage round} >

By noting |B| =5 from Eq. (@), this results in
vp(D) <15 - Pr{flag = failp.|preimage round}.
]

Lemma 25 (Test case) Let D = (S,II, M, P) be a device. We define

yr(D):=1—minT (12)
with
. (vs) 0,01:0,02:0,v (v1) 1,v1;0,v2;0,v
T = Z [A ,qlql—OO-( A 3)} U Z [A al= jothoiovs 3)}
ve{0,1}3 0"a; ve{0,1}? 42,93
(v2) (0,v131,v2;0,v3) (vs) (0,0150,v2i1,v3)
U Y Al U Y Al e o
veloiys s ve@1 -
where for vy, ve,v3 € {0,1}
v1;0,v2;0,v, 000
O'(O’ 1;0,v2;0,v3) = Z ( )® |ya ><yad‘> (13)
. . y,d: R
b(k1,y1)=v1,b(k2,y2)=v2,b(ks,y3)=vs
01:0.09:0.0 100
e 3 Oy @y, d)(y.dl, (14)
~ ~ y d
(k1,y1,d1)Bb(k2,y2)-b(k3,ys)=v1,b(ka,y2)=v2,b(ks,ys)=vs
0_(0,111;1,112;071)3) — Z (010) & |ya ><y7d|7 (15)
. . y,d: . )
W(k2,y2,d2)Db(k1,y1)-b(k3,ys3)=v2,b(k1,y1)=v1,b(k3,y3)=v3
o (0.01:0,0231,03) . 3 oV @ |y, d)(y, d|. (16)
y.,d:

(k3 ,ys,ds)®b(k1,y1)-b(k2,y2)=v3,b(k1,y1)=v1,b(k2,y2)=v2
Then, the upper bound on yr(D) is given by
yr(D) <96 - Pr{ flag = failrest| Test, Hadamard round}. (17)

Note that Pr{flag = failrest|Test, Hadamard round} can be estimated through repeating the self-testing protocol.
(Proof) The probability of obtaining failrest conditioned on choosing the test case and the Hadamard round is written
as

Pr{flag = failrest|Test, Hadamard round} =Pr{@ = 000, flag = failres;|Test, Hadamard round}
+Pr{wt(0) =1, flag = failyest|Test, Hadamard round}. (18)
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We calculate the first and second terms in turn. First, we focus on the first one:

Pr{6 = 000, flag = failres;| Test, Hadamard round}
:Pr{H = OOO|Test, Hadamard round} - Pr{flag = failres;|@ = 000, Hadamard round}

1 . _
=13 Z Z Z Pr{¢; = 0,b(k;,y;) = b,v; = b|@ = 000, Hadamard round, 7}
=1 b6=0 y;

. R _
T12x 23 Z Z > Y Pr{b(ki,y;) = b,v; = b|6 = 000, Hadamard round, i, ¢; = 0, g}
X i=1b=0 yi q;€{0,1}2

3 1

1 1 .

3 % E E E E Pr{b(k;,y;) = v; = b|@ = 000, Hadamard round, i, g; = 0, q;}. (19)
i=1b=0 vy gq;€{0,1}2

Here, Zzl,:o > Pr{b(k:,y;) = v; = b|@ = 000, Hadamard round,i,q; = 0,¢;} represents the probability that the
prover’s answer v; is accepted by the verifier conditioned on measuring the state p(°°%) when the input to the device
is g with ¢; = 0. This probability can be rewritten by using the expressions of the states and measurements as

y(vi=b 4 wi=b 000
Ztr AL S (il i) Ztr ALY Y W ely.dy.d|. (20

yi:b(ki,yi)=b y,d:b(k;,yi)=b
By using the definition in Eq. (I3]), Eq. (20) is rewritten as
Z tr(AE:Ul;I)inOO—(Ov'“l;07112;0,113)).
ve{0,1}3

Substituting this to Eq. ([[3) results in

3
1 v; 0.00:
Pr{0 = 000, flag = failres;| Test, Hadamard round} = - — % E E tr(AE ;ﬁqion(O’vl’O’Uz’O’US))- (21)

i=1 q;€{0,1}2 ve{0,1}3

| =

Next, we calculate the second term of Eq. (I8):

Pr{wt(0) = 1, flag = failrest| Test, Hadamard round}
3
1
=1 ZPr{flag = failrest|Test, Hadamard round, wt(0) = 1,60, = 1}

i=1

ZPr{ql = 1,0(k;, yi, di) © Hb i:Yj) # v;| Test, Hadamard round, wt(@) = 1,6, = 1}
J#i
1

1
=35 E E E Pr{a(k;, yi, d;) & Hb i,Y;j) = b,v; = b|Test, Hadamard round, wt(0) = 1,0; = 1,¢; = 1, g;}
i=1b=01y,d; q; J#i

w

13!

i=1

[NS)

—

3

Z Z ZPr{ﬂ(ki,yi,di) &) Hé(kj,yj) = v; = b|Test, Hadamard round, wt(0) = 1,6, = 1,¢; = 1, q;}} (22)
=1 b=0y,d; q; J#i

Here, Zb 0 2y.a; Prit(ki, yi, di) & HHéz b( kj,y;) = v; = b|Test,Hadamard round,wt(0) = 1,0, = 1,¢; = 1,q;}

expresses the probablhty that the prover’s answer v; is accepted by the verifier conditioned on measuring the state

p'9) with wt(8) = 1 and 6; = 1 when g with ¢; = 1 is input to the device. This probability can be written by using
the expressions of the states and measurements as

1

v;=b 0 s.t. wt(0)=1,0,=1
>t | Al > ol OTI T g |y dy(y,d] | - (23)
b=0 y,diii(ki,yi,di)OT T, b(k;,y;)=b
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By using the definitions in Eqs. ([14)-(I), for @ such that wt(9) = 1 and 6; = 1, Eq. [23) is rewritten as
ST C =

Substituting this to Eq. ([22]) results in

3
1 ; . .
Pr{wt(0) =1, flag = failrest|Test, Hadamard round} = % - — E E tr (Agvél)qizla(gl’“1’92’”2’93’”3)> .
i=1 g;€{0,1}? ve{0,1}*
(24)

Substituting Eqgs. 1) and 24) to Eq. (I8), Eq. [I8)) results in

Pr{flag = failrest|Test, Hadamard round}
o1 iz tr |30 Al gm0
T2 96 i,qlq;=0

=1 q;5 v

In Eq. (25)), there are 3 x 23 trace terms, and its minimum term is 1 — y7(D) as defined in Eq. (I2)). To take a lower
bound on Eq. ([Z5)), we replace the (3 x 23 — 1) trace terms by 1 and only one term by 1 — 47 (D). By doing so, we
have

+ 3tr

v

(v4) 61,v1;02,v2;03,v
ZAi,qqulg( S 3)]> ' >

1 1
Pr{flag = failtest|Test, Hadamard round} > T [(3x2°—1)x14+1x (1—77(D))]+ (3x3x2%) x1}

7'VT(D)
96

Therefore, we finally obtain
yr(D) < 96 - Pr{flag = failtest|Test, Hadamard round}.
|

Lemma 26 (Hypergraph case) Let D = (S,I1, M, P) be a device. We define

YH (D) =1 T'min (26)
with
: [ (s1) s1;1,s2;1,8 ]
Tmin *= mm{ Z tr (Al,qzlooAé?B;:wo + Al,qzlooAggﬂoOA3,q:100) gLstlsailiss) |
s€{0,1}3 - -
_ (52) o _
Z tr (Ag?;:010A27q=010 =+ A831:01014241:010‘43711:010) 0'(1,51,1, 2;1,83) ,
s€{0,1}3 - -
[ (0) (1) (s3) (1,s1;1,82;1 53)_
> ot <A1,q:oo1A3,q:001 + A1,q:oo1A2,q:001A3,q:001) ghsneh }
se{0,1}% ~ -
and
gltoribonioa) = > oia’ @y, d)(y,d|. (27)

y,d:
a(k1,y1,d1)=s1,0(k2,y2,d2)=s2,0(ks,y3,d3)=s3
Then, the upper bound on vy (D) is given by

vu(D) < 8- Pr{flag = failuype:|0@ = 111, Hadamard round}.
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Note that Pr{flag = failuype:|@ = 111, Hadamard round} can be estimated through repeating the self-testing proto-
col.

(Proof) The probability of obtaining failpyper conditioned on choosing the hypergraph case (0 = 111) and the
Hadamard round is calculated as

Pr{flag = failayper|@ = 111, Hadamard round]
=Pr{q = 100, 4(k1,y1,d1) # v1 ® dy,.1 - v3|0 = 111, Hadamard round}
+Pr{q = 010, 4(k2,y2, d2) # v2 ® 6y, 1 - v3|0 = 111, Hadamard round}
+Pr{q = 001, @(k3,ys,ds) # v3 ® Oy, 1 - U260 = 111, Hadamard round}

1
1 _
=3 E E Pr{a(k1,y1,d1) = b,v1 ® dy, 1 - v3 = |0 = 111, Hadamard round, g = 100}
b=0 y1,d1

1
1 _
—|—§ E E Pr{a(ks,ya2,d2) = b,ve @ d,, 1 - v3 = b|@ = 111, Hadamard round, ¢ = 010}
b=0 y2,d2

1
1 ) )
—|—§ E E Pr{a(ks,ys,ds) = b,vs @y, 1 - v2 = b|@ = 111, Hadamard round, ¢ = 001}

b=0 y3,ds

3 1g

=373 Z ( Z Pr{a(k1,y1,d1) = v1 ® 0y, 1 - v3 = b|@ = 111, Hadamard round, ¢ = 100}
b=0 y1,d1

+ Z Pr{a(ke,ya,d2) = va ® &y, 1 - v3 = b|@ = 111, Hadamard round, ¢ = 010}

y2,dz
+ Z Pr{a(ks,ys,ds) = v3 ® 0y, .1 - v2 = b|@ = 111, Hadamard round, g = 001}). (28)

ys3,ds

Here, 211):0 >y, Prit(ki, yi,di) = v1©0y,,1 -v3 = b|@ = 111, Hadamard round, g = 100} represents the probability
that the prover’s answer v; @d.,,1-v3 is accepted by the verifier conditioned on measuring the state p1) when g = 100
is input to the device. This probability can be rewritten by using the expressions of the states and measurements as

1

>t | (Arg=10045 0100 + A1g=10045 ) 10043,9=100)" D (Iyl, di){(yr, di|p" D ly1, di) (yr, da |)

b=0 y1,d1:
a(k1,y1,d1)=b

= Z tr [(Al,qzlooA;?;zloo + Al,q:100A§;:100Ag’q:100)(51)0(1751;1752?1)33)] , (29)
s€{0,1}3

where ¢(1:51:1:52:1:53) is defined in Eq. 27). Analogously, we have
1
Z Z Pr{a(ke, ya2,d2) = va & 0y, 1 - v3 = b|@ = 111, Hadamard round, ¢ = 010}
b=0 y2,d2

= ) tr {(Ag?;:moAztz:ow + Aﬂ:moAz,q:omAs,q:OlO)(52)0(1’51;1’82;1753)} ’ (30)
s€{0,1}3

and

1
Z Pr{a(ks, ys,d3) = v3 & 0y, 1 - v2 = b|@ = 111, Hadamard round, ¢ = 001}

b 3,d3

0y:
Z tr [(Ag(,);:omA?»,q:om + Aﬁt)zzomAzq:omA3,q=001)(83)0(1’51?1’52?1’53)} ) (31)
{0,133

LIS
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By substituting Eqs. (29)-31) to Eq. (28]), we obtain

Pr{flag = failayper|@ = 111, Hadamard round}

3 1 (s1) e .
8 8 ( Ztr [(Al,qmoAé?c);—loo + A1,q:100A§¢)1:100A3,q:100) 0(1’51’1’52’1’53)}
S

(s2) ;1,80;1,8
+ Z tr [<A5?1)1=010A2,q—010 =+ Ag%z);=010‘427q:010A3,q:010) 0-(1751717 231, 3):|
(s3) ;1,80;1,8
+ Ztr [(A(l?z);_omAS,q—OOl —+ Agi)lzo(nA2,q:001A37q:001> 0(1,51,1, 251, 3):| )
S
Using the definition in Eq. (26), we obtain its lower bound as
§72+Tmin P)/H(D)

Pr{flag = failayper|@ = 111, Hadamard round} > 5 S =5

which results in
vu (D) < 8-Pr{flag = failpyper|@ = 111, Hadamard round}. (32)

At the end of this section, we introduce Lemma and Corollary that are frequently used in the rest of the
soundness proof. These are respectively introduced in Lemma 4.7 and Corollary 4.8 [2]. For self-consistency of this
paper, we describe these statements and proofs.

Lemma 27 Let D = (S,1I, M, P) be a device. For any binary observable O, 8 € B, i € {1,2,3} and € > 0,

Z tr(O(Ui)O-(gl7711;9277)2?9377)3)) ~ 1=V e {0’ 1}3 . tr(o.(91,111§927112;937113)) o, tr(O(Ui)o-(el1"/1;‘9217/23‘937113))7
ve{0,1}3

where the definitions of o(01:v1:92:v293:v3) qre given in Eqs. (I3)-(I0) and (Z7).
(Proof) Since the binary observable satisfies oW < T , there exists A, > 0 such that
tr(O('Uq‘,)o-(gl7”1?927”%037'03)) — tr(o.(91,1i1;927v2;937v3)) _ A'u- (33)

From this and the assumption, we have

3 (0o ity 1| = 37 A, x, 0.
v v

As A, >0, A, =, 0 holds for any v. Combining A,, =, 0 and Eq. (33) results in the desired relation. [ |

Corollary 28 Let D = (S,II, M, P) be a device. For any binary observable O, 8 € B, i € {1,2,3} and € > 0,

> w(0WIgerfaraban)y & 1 = Vo € {0,111 O &, 40101300500 (—1)",
ve{0,1}3

where the definitions of states o(01:v1:02:02:03.93) qre given in Egs. (I3)-{I8) and (Z7).

(Proof) By applying Lemma [27] the assumption leads to

tr(a(917v1;927vz;937v3)) o, tr(O(Uz‘)o.(‘91,U1;92>U2;93,U3)).

Then, using Lemma [I4] implies the desired relation. |
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D. Reduction to perfect device

In this section, we introduce a perfect device that passes the preimage round of our protocol with probability
1 —negl(\). This is just for a technical convenience that simplifies the rest of the soundness proof. The arguments in
this section are exactly the same as those in Sec 4.2.1 of [2], and here we just summarize their arguments.

Definition 29 (Perfect device). We call a device D = (S,II, M, P) perfect if
7p(D) = negl().

The following lemma claims that for any efficient device D, we can efficiently construct another efficient perfect device
D', which uses the same measurements as D, and whose initial state is close to the one of D. Once the state that
is close to the initial state of D in hand, we can replace the actual states S = {1/)(9)}963 of D with the virtual ones
S' = {¢/@}gep of D' 2.

Lemma 30 Let D = (S,T1, M, P) be an efficient device with S = {¢)®}gcp and vp(D) < 1 —1/poly(N\). Then there
exists an efficient perfect device D' = (S’,II, M, P), which uses the same measurements II, M, P and whose states
S' = {4/ @Y gcp satisfy the following for any 6 € B:

19 — '@, ~ D O (34)

(Proof) In the proof, we explicitly construct the perfect device D’ satisfying Eq. (84]). In so doing, we first derive the
probability of failing the preimage check given the basis choice 8 € B in the preimage round:

Pr{Prover fails the preimage check|6, preimage round}

=Pr{Prover fails the 1°* v 2"4 v 3' preimage check|, preimage round}
3
< Z Pr{Prover fails the i*" preimage check|@, preimage round}
i=1
3
= Z (1 — Pr{Prover passes the ith preimage check|@, preimage round}) .
i=1

The inequality just comes from the union bound. By recalling the definitions in Egs. (@) and (&), since
Pr{Prover passes the i'" preimage check|, preimage round} > 1 — yp(D) holds for any i € {1,2,3} and 8 € B,
we obtain

Pr{Prover fails the preimage check|8, preimage round} < 3vp(D). (35)

Now, we can efficiently construct the states ¢/(®) as follows. First, the state 1(®) is prepared as D does and we
perform the measurement to obtain y. Second, we execute the preimage check with measurement IT and obtain
its result (either a pass or a failure of the preimage check). If the preimage check fails, then we repeat the same
procedure. From Eq. (33)), since the probability of failing the preimage test is upper-bounded by 3yp (D), if we repeat
the same procedure polynomial times to A, the probability of obtaining failures for all the trials is negl(\). Hence, if
we post-select the state )(®) that passes the preimage check, the device with this state constitutes a perfect device.

By using Eq. 35), we derive the trace distance between @) and /(@) simplify by applying the gentle measurement
lemma []. Combining this lemma and Eq. (B3] results in ||(®) — /(@] R J7n (D) 0. [

2 Note that the replacement of states is also done in the security proof of quantum key distribution (QKD) [3]. In QKD, we can take any
virtual states for replacement as long as they are the same with the actual states from an eavesdropper’s perspective. In this paper, since
we discuss the soundness proof in the computational assumptions, we cannot take any virtual states S’ = {7,[)’(9)}965 for replacement
but only take those that can be efficiently constructed from the actual states S = {T/fw)}BeB-
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E. Computational indistinguishability of post-measurement states

In this section, we show the computational indistinguishability of the post-measurement states. Specifically, we
derive O(4) in Definition [I0 for the states p(®) that are defined in Eq. (5).

Lemma 31 Let F be an extended trapdoor claw-free family. For arbitrary 6 € {0,1}3, let 0@ be a post-measurement
normalized state obtained in the protocol exvecution along with F. Then, for any 0,0 € {0,1}3 and quantum
polynomial-time algorithm D, there exists a negligible function negl(-) such that

Pr{D(p?) = 0} — Pr{D(p®?) = 0}| < negl()).

The same statement holds for the states ¥\9), defined in Eq. {4), because the following proof is valid also for TGN

(Proof) To prove this lemma, we only have to show that for any 8,6’ € {0,1}3 such that 0; # 6/ for some i € {1,2, 3}
and 0; = 0} for j € {1,2,3}\{i}, and for any quantum polynomial-time algorithm D, there exists a negligible function
negl(-) such that

Pr{D(p®)) = 0} = Pr{D(p®") = 0}| < negl(A). (36)

This is because once we obtain Eq. ([30]), we can lift Eq. ([B0) to any 6, 0’. For instance, if 8 = 000, ' = 111, by using
the following inequalities from Eq. (36) with negligible functions negl, (-), negly(-), and negls(-):

[PE{D(p(*) = 0} — Pr{D(p*™) = 0} < negl, (A,

[Pr{D(p ) = 0] = Pr{D(p*')) = 0} < negly (),

Pr{D(p*"V) = 0} — Pr{D(p"")) = 0} < negl(A),

we have

Pr{D(p®) = 0} — Pr{D(p*'V) = 0}‘ < negl; () + negly (\) + negly (A).

Here, the right hand side of this inequality is also a negligible function of A. Note that our self-testing protocol only
runs for @ € B, but p(® is well-defined for any . Hence, the above argument can be applied for any 6,6’ € {0,1}>.

Therefore, the remaining task is to prove Eq. (36). In so doing, we use the algorithm D to construct an algorithm
A for the injective invariance of F.

o b+ A(k): given a key k of F or G, A sets k; := k and for j € {1,2,3}\{¢} computes

GENg(1*) if 6, =0,
j N
GENz(1%) if6; = 1.

A prepares a post-measurement normalized state p(®) with ki, ko and k3, and output b < D(p(®)).
Then, we have
PY{D(P(B)) =0} = Pr(k,tk)FGENg(lk){A(k) =0},
Pr{D(p®)) = 0} = Prg 1)cen- (1) {A(k) = 0},

which implies Eq. B6) by the injective invariance of F. |

In the following Secs. [VE| V.Gl and [VH] we only discuss the non-tilde observables, namely {A4;4—000};_; and
{A; q=111}3_, that are defined in Definition 23l For simplicity, we use the notations:

Ajo = Ajg=000, Ai1 = Ajg=111-
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F. Anti-commutation relations of non-tilde observables

The goal of this section is to prove the following Proposition [32] which states the anti-commutation relations of the
non-tilde observables.

Proposition 32 For any efficient perfect device D = (S,II, M, P), we obtain the following approximate anti-
commutation relations for non-tilde observables that satisfy for any i € {1,2,3} and 0 € B:

{Ai,O;Ai,l} ~ 0

yr(D),p®

(Proof) We give the proof for i = 1, and the other cases can be shown analogously. By the definition of state-dependent
norm, the computational indistinguishability of p(®) from Lemma BI] and using Lemma 21] (iv), it suffices to show

tr [{A1 0, A1 1}2p100 X 7Dy 0. (37)
Since A; o and Aj ; are binary observables, {A4; o, A1,1}?/4 is calculated as
1
Z{Al,m A} = A1,1A§?3,A1,1A§?3, + Ag())AmA&);ALl-
Using p109) = 3~ g (1:01:0.02:0.03) Jeads to

1 0.0t
Ztl‘ |:{A170, A171}2p(100):| Ztl‘ |: A1 1A Al 1A + A Al 1A Al,l)o(l’vl’O’UQ’O’vfs) .

We can replace the leftmost and the rightmost A; 1 with (—1)"*I by the following arguments. From the definition of
~r(D) and Corollary 28 we have

~ v
Al,l Ry (D)o (1w1:0,v2:0,v3) (-1 1.

Then, from Lemma [T (i), we can replace the two outer A; 1 with (—1)"'I as
1 2 (100) o (b) _(1,01;0,02;0,03) 4(b)
Lt [{ALO,AM} p } ~ o) 2oL (Al,lALOa 10,0230, Aw) .
v,b

From Lemma B8 which will be proven later, we obtain

> o(=1)r (Al,lA%U(l’vl;O’Uz;o’vs)A%) ~
v,b

Vo) °
Combining the just above two equations and the triangle inequality results in Eq. (37). |

The rest of this section is devoted to prove Lemma The following Lemmas [33], 35] B8l and [37], and Corollary [34]
are auxiliary statements to prove Lemma First, we prove a similar statement to Lemma in Lemma that
holds for any efficient prover.

Lemma 33 For any efficient device D = (S,1I, M, P), the following holds for any @ € B and i € {1,2,3},

Ztr( A1 A% (O)A%)% —5 0 (38)

(Proof) We show Eq. (88) for i = 1, and the others are analogous. As A; ¢ is an efficient binary observable, from
Lemmas [[2] and BIl, we have

1 1

(b (b b ’ b
S AL O AL 0 Y AL @0 AT
b=0 b=0
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for any different @ and 0’. From this and by using the fact that A; i is an efficient binary observable, Lemma 7] (i)

leads to

1 1
St [Aa Al @ A% mo 3t [402400 @040
b=0 b=0

Therefore, it suffices to show the lemma for a particular choice of 8, and below we fix 8 = 000.
First, from the definition of y7(D), we obtain

tr

ZA%)J(O’”NO’”?O’”S)] (o) L,

v

and using Corollary 28 and Lemma [T6] leads to

(v1)
A170 N,YT(D)’G.(O,vl;O,WQ;O,US) I,

3

(1)
Al,o N,YT(D)’O.(O,vl;0,172;0,1;3) 0

Since the operator norm of Ag’f(l)) is constant, Lemma [I§ and Eq. (89) lead to

(v1) (0,v1;0,v2;0,v3) (v1) (0,v1;0,v2;0,v3) (v1)
A1,o o A1,0 A1,0 )

Nyr(D) O

(0,v1;0,v2;0,v3) (v1) (0,v1;0,v2;0,v3)
o Al,O .

~Nyr(D) O
From the triangle inequality of the trace norm, Eqs. (1)) and (£2]) imply

A(Ul)a(o,vl;o,vg;o,vg)A(Ul)

~ (0,v1;0,v2;0,v3)
1,0 1,0 Fyr(D) 9 :

Similarly, using Lemma [I8 and Eq. [{0) leads to

AR g Ovr0a0) ATD 1) 0.

Combining Eqs. [@3]) and @) gives

1
} / (b) _(0,v1;0,v2;0,03) 4(0) (0,91;0,02;0,v3)
Al,OU Al,O NVT(D) ag .
b=0

As the operator norm of A4; 1 is constant, Lemma [I7] (ii) leads to

1
A (Z Ai’?%o“’“l;O’vwvmgfg)

b=0

tr

0,v1;0,v2;0,v3)
~ tr{A 0-(71,727,3]_
(D) 1.1

By using this and p(0%0) = Dow o(0v1002:0.03) the LHS of Eq. B8) for i = 1 and @ = 000 is calculated as

1
Ztr

A1,1A§lf2) Z 0—(071)1;0)”2;071}3)14:([?2]
v

~ tr |A J(O’UI?O;U2;07U3):|
D Z |: 11
yr (D) -

b=0
= tI‘(ALlp(OOO))
Ny (D) 0
In the last equality, we used Corollary [34] which is proven below. |

Corollary 34 Let D = (S,1I, M, P) be an efficient perfect device. Then, for any 6 € B and i € {1,2,3},

tI‘(Aiﬁlp(e)) %’YT (D) 0.

(46)
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(Proof) We show Eq. (@G for ¢ = 1, and the others are analogous. Using Lemma[2] (i), whose conditions are satisfied
due to Lemma BI] and the fact that A; ; is an efficient binary observable, it suffices to show tr(Al,lp(loo)) Ry (D) 0-

As Ay 1 is a binary observable, A1 1 = (—1)™ (2A§7fi) — I) holds for any v; € {0,1}. Hence,

tr(Ay.1p100)) Ztr[ yor 2A(1vi ~ Do (17v1;0,v2;07v3)}.

Using this, the definition of y7(D) in Eq. (I2) and Lemma 27 results in

tr(A1,1,0(100)) Ny (D) Z(—l)”ltr |:0_(1,’L)1;0,'U2;0,’U3):| ] (47)

v

Next, in Lemma [35] we will show

Z tI‘(O'(l’O;O’UZ;O"Ug‘)) ~ Z tr(o_(l,l;O,vg;O,'ug,)).

v2,v3€{0,1}2 v2,v3€{0,1}2
By employing this, Eq. [@7) leads to
tr(A1,1p1%) &, (py 0.
|

Lemma 35 Let D = (S,1I, M, P) be en efficient perfect device. Then

Z tr(o_(l,O;O,vg;O,vg.)) ~0 Z tr(a(l,l;o,vg;o,vg.))’ (48)

va,v3€{0,1}2 v2,v3€4{0,1}2

E tr(o-(oﬂfl;l,o;oﬂfs)) ~ E tr(o-(oﬂfl;l,l;oﬂfs))’
v1,v3€{0,1}? v1,v3€{0,1}?

tr(a(oﬂh;O,Uz;LO)) ~0 Z tr(a(oﬂ’l;OﬂJz;Ll)).

v1,v2€{0,1}2 v1,v2€{0,1}2

(Proof) Here we focus on proving Eq. (@), and the others can be shown analogously. We consider the following efiicient
algorithm A for the adaptive hardcore bit property of F. Given a key k1 € Kz, A samples (ka,t1,) < GENg(1*)
and (ks,tg,) < GENg(1*). A prepares the state 1(1°0) as D does followed by measuring the image registers to obtain
(y1,Y2,y3) € V* and then performs the measurement II to obtain the outcomes ((b1, ba, b3), (1, 22, 73)) € {0,1}> x A3.
A performs the measurement M to obtain outcomes (di, ds, d3) € {0,1}>* and outputs the tuple

(bh.’l}l,d]_, B(k27y2) . I;(k37y3))7

where b; € {0,1},21 € X,dy € {0,1}" and by the construction of F, there exists 2} € X such that (z1,2}) € R, .
Note that A is efficient because D is efficient and l;(kg, Y2) 'l;(k:;, y3) can be efficiently computed by using the trapdoors
tr, and tg,. As D is a perfect device, A passes the preimage round with probability 1 —negl()A), and the states before
and after the measurement II are computationally indistinguishable due to the collapsing property of F (Lemma A.7
in [5]). This implies that A’s distribution over (yi1,y2,ys,d1,ds2,ds) is computationally indistinguishable from the
distribution obtained by D. By the definition of tr(o(1bvr0v2i0v3)) in Bq. (), we have the following on

average over k; «+ GENz(1*) and A’s distribution over ko, k3, y1, Y2, y3, di:

’U’U3

Z tr(U(l’v1:0;0’U2;O’v3)) = PI"{IA)(ICQ, y2) . i)(k‘g, y3> = ’ll(k‘l, Y1, dl)} = PI‘{A(k‘l) c Hkl },

V2,U3

> tr(otr=t00ws)) = Pr{b(ks, ys) - b(ks, ys) = ik, y1,d1) ® 1} = Pr{A(ky) € Hy, }.

v2,V3

Hence, we can see that Eq. (@8] holds from the above two equations and the adaptive hardcore bit property of F for
identity J. |
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Lemma 36 Let us define the projectors that project onto the correct preimage answers:

e .— H(bl 2oy (K1,91)302,2b, (K2,y2)5b3,2b4 (K3,3))
y Y

where H(b) =0 if Tp,(k1,y1) =L or @, (k2,y2) =L or Tp,(ks,ys3) =L. We also define the marginals by

ﬁgbl)/ — ﬁg{boo) + ﬁ?(me) + ﬁgﬂo) + ﬁglbu),
fléb; — ﬁ?(JObO) + ﬁ(yom) + ﬁ;lbo) + ﬁ(ylbl),

ﬁgb?)J — ﬁglOOb) + ﬁz(/mb) + ﬁ;lob) + ﬁglub)_

For any efficient perfect device D = (S,I1, M, P), the following holds for any 0 € B and i € {1,2, 3},
1 (B) _ 4 ?
d) 17 b d ~
Z Z HMZ(/ )Hi,y - Ai,O,y,dM?s )Hw(e) Ry (D) 0- (49)
b=0 y,d v
Note that since each term in the sum is positive, the statement holds for any sums over any subsets of b,y, d.

(Proof) We show the lemma for ¢ = 1, and the other cases can be shown analogously. By the definition of state-
dependent norm, the LHS of Eq. (#9) is equal to

Ztr{(ﬁﬁ’;My)—Mzsd)Agljz]yy,d) (Mzsd)ﬁgl? A® Méd))wé")}

1,0,y,d
by,d
=S o (MO ) + 5 r (A8, MO0 O AT )
by,d by,d
= (b = (b
=3 e Al MO, 0 + T, ) M) (50)
by,d
By defining
Z H(b) ® |y
Eq. (B0) is equal to
>t (M@OAP @Y @) 4 Ztr (A% M DYpOM@AL) ) =" tr ALy MO @D O 4 pOAP) ],
b,d b,d

)

(51)

Below, we calculate each term in turn. Regarding the first term, by noting that {M (d)}d forms a projective mea-
surement and f[gb) is a projector, the first term equals ), tr (ﬁgb)w(e))’ By the definition of Hg L, Eq. (33) and
vp(D) = negl(\) for a perfect device, we have

3t (f[gb)z/;(")) ~o 1. (52)
b

Next, it is easy to find that the second term of Eq. (EI) is exactly equal to 1 because {M(®}4 and {A%,d}be{o,l}
form projective measurements. Finally, we calculate the third term of Eq. (&l):

Ztr [ MO O 4 ¢(9)ﬁ§b))M(d>} . (53)

For this, we use the relation

f[gO) + 1:151) ~o o 1, (54)
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which can be proven for a perfect device using Eq. (B2)) as
tr (1 + 110) = [ + {7 = 19 @) = 1= 3 e (7@ 0 0
b

By applying Lemma [I7 (i) with Eq. (54) and by noting || >_, M(d)Ag%ydM(d)Hoo <1, Eq. (B3) is calculated as

>[40 MDD YO + @) @]

b,d

A ) tr [Af())’dM(d)ﬁﬁb)w(e) [ + V)M d)} + Z tr { MO + 11 )y ® H(b)M(d)]
b,d
=23t [Al) M@ O T 2@ } +Y [A%O) MO @O pOFD ﬁﬁ”w(‘”ﬁgo))M(d)}

bd b,d

=23t [A{ MO AP YO )M D] + e [T @ 4 T 5@ |

bd
=23t [AL MO AP O]
bd
Note that we use ), Agbo q =1 for any d and ), M'® = I in the third equality, and H( ) and H( ) are orthogonal

projectors in the final equahty For 6 = 000, by explmtmg Egs. (13) and (52), we have

ZM(d)ﬁgb)w(OOO)ﬁ(lb)M(d) ® |d)(d| ~ Z o (0::0,02;0,v3)

d v2,V3

Using Lemma [I7] (ii) by noting HAglj())Hoo < 1 and the definition of v (D) in Eq. ([I2), this results in

Ztr {Ag%)dM(d)ﬁgb)w(OOO)ﬁgb) ) ® \d){ d‘} ~ Ztr [A(Ul (0,01;0,v2;0,v3) e(D) L. (55)
b.d

To lift up the statement of Eq. (B]) to any 8 € B, we show

Ztr { MOTPYOTO D @ |a) d|] ~o Y tr [ MOTO O M@ @ |d) <d|] (56)
b.d
with Hgb) = thbz,m}b&% T1(0:@13b2,m23b3,23) a3
St [A(b) MO O A1 @D & |d) (d } Ao ) tr [A(b M) 0001 pr(d) |d><d|}. (57)
b,d b,d

Once Egs. (56 and (B1) hold, we obtain for any 6 € B:

3t [A§’j2,7dM<d>ﬁ§b>¢<9>ﬁ§b>M<d> ® |d><d|} o Yt [AD) MOV pOnP M@ g |d><d|] (from Eq. (56))
b,d -

~o 3 tr [AL (M OTIP OO M@ & )] (from Bq. GT)

~o 3t [AL, (MOTO OO M@ o ) (d)| - (from Ea. (53)

~yp(py 1 (from Eq. (B3).

Eq. (B6) follows from applying Lemma [I7 (i) by noting ||, M(d)Ag%’dM(d)Hoo <1 and f[gb) R0,5(0) Hgb) that holds
for a perfect prover. Eq. (57) follows from applying Lemma 211 (i) by setting A :=3_, ; Hgb)M(d)Agl?zLdM(d)Hgb) and
by noting (®) ~o 1) Combining the above statements results in Eq. @9). |
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Lemma 37 For any efficient perfect device D = (S,II, M, P), the following holds for any by € {0,1} and by :=
babs, b := bybs with wt(by, bf) > 1

blb b
(Z H(blbrzbs) 2 |y) y|> (100) (Z ) ® ly) <y|> ~p 0, (58)

Yy Yy

for any by € {0,1} and b := bybz, bl := b by with wt(bz, by) > 1:
2

(v bzb
(Z I 2%) @ |y) yl) 3(010) <Z '@ ly) <y|>

Yy Yy

and for any bz € {0,1} and bs := b1by, by := b} b with wt(bs, b) > 1

~ ~ b/ b/b
(Z H;b1b2b3) ® |y><y|> w(OOl) <Z Hél 2b3) ® |y><y|> ~ 0.

Yy Yy

(Proof) We provide the proof for Eq. (58). The other cases can be shown analogously. We suppose that by and b}
differ in bit b; of j € {2,3}. We first prove

ST @ |y (y] g paon Y TP @ [y)(yl (59)

Y Y7,Y €V

with My, == {y; € V|b(kj, y;) = b;}. From the definition of the state-dependent norm, we need to show

2

| [ YOG o ly)yl - Y TP @ ly)(yl | ¢ |~ 0.

Yy Y5,Y; €W
This can be proven by calculating the LHS as
tr Z ﬁg(lblebg)lp?(on) :
Y59, €Y\ Vb

and from Eq. (§) and the definition of )}, this term is negligibly close to zero for a perfect device.
From Lemma [I8 and Eq. (59), we have two approximate relations:

= (b1 b- ~(b1bl =~ (b1 b- ~ (b1b}
(anlbn@yxyo (100) (ZH&J 1>®|y><y|) mo | TP @ fy)(y| | 000 (ZH&J “®y><y),
Yy Yy

Y7, €V y
(60)
and
~ _ ~ (b.bl ~ -
> P ey)(yl | " (ZHL”)@)IWM) | Y TP e ly)(yl | w0
Y595 €V Yy Y595 €V
(b1b%)
oo eyl (61)

Y5,Yj E)/¥J

Using the triangle inequality of the trace norm, the LHS of Eq. (60) and the RHS of Eq. (61l) are approximately equal,
and the RHS of Eq. (GI) equals 0 because Y, and yg are disjoint. Therefore, the LHS of Eq. ([©0) is approximately
equal to 0, which ends the proof. |
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Lemma 38 For any efficient perfect device D = (S,11, M, P), the following holds for any v, € {0,1},

1
Z Z tr |:A1’1A§-lj())0-(1,v1;0,'u2;0.U3)A:(Ll’)2):| ~ o O (62)

b=0 v2,v3
for any vy € {0,1},
1
303 e [Aaaalpo O A 0
b=0 v1,v3

and for any vs € {0,1},

1
S 3 i [Asaafho st Al x o

b=0 V1,V2
(Proof) We provide the proof of Eq. (62), and the others can be shown analogously. Let the LHS of Eq. (62) be
x¥1) € C. Since Lemma 33 claims
(0) 1) ~
XX ey O

if we derive

X %m xW, (63)
. . . (U ) ~ o . . . . .
we obtain the required relation y\*/ = Nemi) 0. Hence, the remaining task is to prove Eq. (63). First, substituting
the definition of o(1¥1:0:v2:0-v3) given in BEq. (), we have

1

v1) __ d d (b
X =3 ) tr [A11,9.040% , MRS MD AL o] (64)
b=0 y,d:au(k1,y1,d1)=v1Db(k2,y2)-b(k3,ys)

One can replace the terms of the form P := A1 0., dM( ) in x¥1) by terms of the form R := M(d)H(b)

1
X(m N Z Z tr {ALl,y,dRT/J@(,lOO)Rq —. g(m)’ (65)
b=0

y,d:i(k1,y1,d1)=v1 ®b(k2,y2)-b(ks,ys3)

which is proven as follows.

EESS > (Jor [P AL aga(P = RG] | + Jtr [(PT = B A1y aRv™] )
b=0 y d:ii(k1,y1,d1)=v1®b(k2,y2)-b(k3,y3)

1
SZZ (’<A1117y,dpvp - R>1/J§,100)
1
SZZ (HAl,L%dPHw;loO)HP — RHw;loo) + ||A1’1’y’dRH¢LwO)||P — R”lb(ywo))

+ ’(P — R, Al,l,y,dR>¢£1100>

b=0 y,d
b=0 y,d

Z Z ||P RHw(mO) Z Z HALl,y,dPH2 (100) + Z Z ||A1 Ly, dRHw(lom

b=0 y,d b=0 y,d b=0 y.,d

The first inequality follows from the triangle inequality, the second one comes from Definition [{] and expanding the

range of the sum, and the third and the fourth ones are due to the Cauchy-Schwarz inequality. Finally, by applying
1 . . 1

Lemma 38, 7, (>, 4 ‘|A1,1,y,dp||12/)?(4100) = 1 from a direct calculation and »>,_>°, 4 ||A1,1,y,dRHiéloo> ~o 1 from

Eq. (2), we obtain Eq. (G3)).
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By substituting the definition ﬁ?’; = ﬁ;boo) —H:I;bm) +ﬁ§f’1°) —&—1:[?(}’11) to the definition of £(*1) in Eq. (BH), we obtain

£ = > e (M A1,1,4.aM§D @ ) (y])
y.diii(k1,y1,d1)=v1®b(k2,y2)-b(ks,ys)

SIS @ iyl p w0 SIS @y (yl g | |- (66)
i kY Bk oy
The off-diagonal terms of £(*1) are written as

> tr [(M 411,40 © ) (91) L] (67)
yodii (k1,1 ,d1 ) =01 @b(ka,ys)-b(ks,ys)

L= 3 {Zﬁé”"” ® |y><y|} 3(100) {Zﬁs’”l’ ® |y><y} ,
b,by,brwt(by,by)>1 \ v y

where L is an Hermitian and hence it is decomposed with real eigenvalues a; as L = ), a;|i)(i|. By applying Lemma [37]
for all by, by and b% with wt(bg, b5) > 1, we have

IL]1 = negl(\). (68)
Substituting the decomposition of L and A 1 4.4 = 2A§(’)i7y7d — I to Eq. (67), Eq. ([67) is equal to
3 ai (2 (i AL), M @ 1y) (wli) — (iIMED @ |y) (yli)) (69)
y.dia(k1,y1,d1)=v1®b(k2,y2)-b(ks,ys) i

By using Agoiy g <Tand ) M (d) — I, it is straightforward to show that the first and the second terms are
respectively upper-bounded by 23" |a;| = 2||L||; and ), |a;| = ||L||1, which are both negl()\) from Eq. (€8]). Hence,
only the diagonal terms of £(*1) remains as non-zero:

(o) g 3 b [Ar 2y MG TP SO0 ]
b.y,d:a(k1,y1,d1)=v1®b(k2,y2)-b(ks,y3)

It now suffices to show £(© ~¢ £(1)| whose proof is similar to the one in Lemmal[35l For this, we first prove the relation

for the one where l:I?(Jb) is replaced with H?(,b)7 that is

g0 &0, (70)
V1) . d b 100 b d
g = 3 tr [Al,l,y,dM?S TP 10O T1®) 1§ )}

b,y,d:ti(k1,y1,d1)=v1 ®b(k2,y2)-b(ks,ys)
with
(b) .__ (b1,x13b2;22;b3,23)
1T, ._E 1T, .
xr

After proving Eq. ({0), we show
g mo €, (71)

and combining Eqs. (Z0) and (ZI) results in &) ~q £,
We first prove

€ = €] = negl()). (72)
Its LHS is computed as follows. Using the fact that A 1 4,4 is a binary observable leads to

Al1ya= (1" (QAS)i,)yyd = 1),
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and substituting this to the LHS gives

‘61(0 /(1 |
Y w [M;@H(yb)qu}m)n;b)M;d)} +2 3 tr [Ag?;y GMDTI)(100) H<b>M<d)]
by.d by, dii(ky1,d1)=b(k2,y2)-b(ks,ys)
+2 3 tr [Aﬁy dM(d)H(b)w(mO)H(b)M(d)] .
by d:a(ky,yn,d1)=19b(ka,y2) b(ks,ys)

The first term equals to —1 because ), MZ(,d) = I and ), 11" = I hold for any y and 3_ tr[ 100)] 1. The second
and the third terms are twice the probabilities of obtaining vl =u=0and vy =u=1, 1respectlvely7 where u denotes
the outcome of the measurement Aj 1, 4. Combining these, we have [¢/(?) — ¢'(1)| = |2Pr[v1 = u] — 1|. For the sake

of contradiction, we assume
€@ — D] = [2Prfvy = u] = 1] > p(A) (73)

with p(A) denoting a non-negligible function, and under this assumption, we can construct an efficient adversary A
that breaks the adaptive hardcore bit property. The construction of A is as follows. A takes the first key k € Kr
and samples the other keys and trapdoors as (ka,ty,) +— GENg(1*) and (ks,t,) + GENg(1*). Then, A prepares the
state 1109 as the device D does, followed by measuring the image registers to obtain y. After that A performs the
measurement, {I1(b1-71:b2.22:05,23) 1, ohtaining (b, ). Next, A performs measurement M and obtains the outcomes
d. Finally, A performs measurement A; ; and gets the outcome u. Then, A outputs the tuple

(b1, 21, dv,u ® blka, yo) - b(ks, y3)). (74)

Note that since A knows the trapdoors tj, and ty,, A can efficiently compute b(ka,y2) - b(ks,ys). Just after the
measurement M, the state of A is either n(?) or V), where

,’7('01) = Z M’;d)ﬂgb)w;loo)l—[;b)Méd) . (75)
b.y,d:a(k1,y1,d1)=v1®b(kz2,y2)-b(ks,y3)

In proving that A breaks the adaptive hardcore bit property, it suffices to show that the deviation of the probabil-
ities where the outcome u @ b(ka, y2) - b(ks,y3) in Eq. (@) being @(k1,y1,d1) and 4(k1,y1,d1) @ 1 is non-negligible.
Mathematically, we need to show

‘Pr [u ® b(ka, y2) - b(ks, y3) = ﬁ(kl,yl,dl)} —Pr [u@ b(ka, yo) - b(ks, ) = k1, y1,dy) @ 1} ’ > u(\).  (76)

This is easily obtained as

[LHS of Eq. ([[@)] = |2Pr[u & B(kig,yg) . l;(kig,y?,) = G(k1,y1,d1)] — 1]| = |2Pr[vy = u] — 1]
= [¢'O —&D] > u(),

where the first line follows from 4(k1,y1,d1) = v1 @ I;<I€2,y2) . E(kg,yg) by Eq. ([[3), and the second one comes from
Eq. [[@3). This contradicts the adaptive hardcore bit property, and hence we obtain the negation of Eq. (73], that is,

1€/ — &M = negl(\). (77)

Once we have this equation, the remaining task is to prove Eq. ({T1l), which is proven below.
The proof of Eq. () reduces to showing the following for any a € {0,1} and b € {0, 1}3,

3 tr { ALY MO GO ) M(d)]
y,d:ﬁ(kl,yl,dl):vlﬂal;(kz,y2)~13(k3,y3)
~o 3 tr A MEOTE GO M | (78)

y,d:i(k,y1,d1)=v1 ®b(kz2,y2)-b(ks,y3)
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By defining an Hermitian operator

D= 2 M (1@ |y) ()AL oM,
y,deti(k 1 ,d1)=v1 ®b(k2,y2)-b(ks,ys)

and
e . Znéb17§fbl (k1,Y1)5b2,2b5 (K2,Y2);b3,2b5 (K3,Y3)) ® ‘y><y‘7 (79)
Y
) = YT batens) @ Jy)(y), (80)
m7y
the and the o . are respectively equal to
he LHS and the RHS of Eq. (8) pectively equal
tr[IT® DIT®(100] and tr[I1®) DIT®)q100)], (81)

By exploiting Lemma [I7] (i), we show that these terms are negligibly close to each other. Concretely, we apply
Lemma [I7] (i) by setting

(C, A, B) := (I®D,TI® 11®)),
Since ||Clloo < [[I®[|oc||Dlloc < 1, if
I® 0 I (82)
holds, we obtain
tr[IT®) DIT®) ) (0)] ¢ tr[II® DIT®)(9)], (83)
Also, we apply Lemma [I7] (i) by setting
(C', A, B) := (DTI® 11® 11(®)),
Since ||C'[|oo < [|D|]oo|[TI®]|o < 1, if Eq. (82) holds, we also have
tr[II®) DII® (O] x4 tr[IT® DIT®) (0], (84)
From Eqgs. (B3) and (&), we find that the two terms in Eq. (8I]) are negligibly close:
£ [fT®) DIT® (100 g tr[T1®) PIT®) 3 (100)].
Finally, we prove Eq. (82]), namely we show for any perfect prover,
I® ~ R0.(®) ®
From the definition of the state dependent norm, it suffices to show
tr[(I1®) — T1(®))24)(0)] = negl(A).
Using Egs. ([9) and (&), we have

0® e — Z (Z H(ybhwl;bz,ﬂﬂz;baam) _ H;bl,i’bl(kl’yl)§b275ib2(k27y2)§b37‘%b3(k3’y3))> 2 [y)(y|

x

=2 2 Igetesstens) g fy) y) (83)

Y z1#@, (k1,91),T2# T, (k2,y2),03F b, (k3,y3)

Here, Hg(’,bl’m“bz’xz;bg’”) are projectors that are orthogonal if the outcomes are different, and hence squaring Eq. (85)
is unchanged. Therefore,

tr[(H(b) _ ﬁ(b))2¢(0)] = tr Z Z H;bl,xl;bz,xz;bs,xs)w?(f) @ |ly)yl|,
Y z1#£Ep, (k1,Y1),227 86, (k2,y2),237 864 (k3,y3)

and this is negligible for a perfect prover.
Combining the arguments so far concludes |§ 0 _¢ (1)| = negl(\), which completes the proof. |
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G. Commutation relations of non-tilde observables

The goal of this section is to prove the following Lemma [} which states the commutation relations of the non-tilde
observables. Before we introduce that, we show a trivial commutation relation for the observables with the inputs to
the device g being the same.

Lemma 39 For any device D = (S,II, M, P), we have the commutation relations for any i,j € {1,2,3} and q €
{0,133,
[Aig: Ajql = 0. (86)

(Proof) With the definition of A; 4 in Eq. (@) and by noting that {Pév)}ve{o’l}s constitutes orthogonal projectors, we
obtain Eq. (86)). [

This Lemma can be intuitively derived because the inputs to the devices of the two binary observables A4, 4
and A; 4 are the same as g, and the only difference is the classical post-processing of the measurement outcomes.
Since classical post-processings obviously commute, Eq. (8] is trivially satisfied. Next, in Lemma Il we introduce
another commutation relation with inputs to the device g being different, which only holds approximately. For this,
we prepare Lemma [40] which is the auxiliary lemma to prove Lemma [4]

Lemma 40 For any efficient device D = (S,II, M, P), we have the following approzimate relation that holds for any
0 € B with0; =1 and 0; =0 fori € {1,2,3}\ {j}:

tr Z Agfé)a(el,v1;02,v2;03,vs) ~p tr Z Agfé)U(O,vl;O,vz;O,vs) _ (87)
ve{0,1}3 ve{0,1}3

(Proof) The RHS [LHS)] represents the probability that the prover’s answer v; is accepted by the verifier conditioned
on measuring the state p(°9 [ p(®) (with 6, = 1 and 6; = 0 for any i # j)] when the input to the device is g = 000.
We prove Eq. [B7) by contradiction, namely if there exists a non-negligible difference between both sides of Eq. (1),
we can construct an adversary A that distinguishes p(°°?) and p(®) with non-negligible advantage, which contradicts
Lemma 3Tl The construction of A is as follows.

First, the adversary A receives the j* key k; from the verifier and samples the other keys and trapdoors from the
distribution (k;,tx,) < GENg(1*) for i € {1,2,3}\ {j}. Note that A does not know whether k; € Kg or k; € Kx
that indicates 6; = 0 or §; = 1, respectively. Then A prepares the state 1@ and measures the state to obtain
y. After that A performs measurement M and obtains d. Next, by using binary observable {Al(-)v&)}vi, A performs

measurement to know whether his outcome v; is accepted by the verifier, that is v; = l;(kl, y;) holds, or not. If the
outcome v; is accepted, A outputs b = 0. The reason why A can judge whether v; is accepted or not is that A knows
the " trapdoor. With the negation of Eq. (8T), we have

[Pr{b = 0[p®} — Pr{b = 0/p®V}| > p(\).

This breaks the computational indistinguishability of p(®) stated in Lemma [BIl Note that the proof of Lemma BTl
reveals that this lemma also holds even when an efficient adversary A uses the I*! trapdoor, where [ indicates the
common 6 in 8 and 6’ with wt(0,0’) € {1, 2}. |

Lemma 41 For any efficient device D = (S,II, M, P), we have the approzimate commutation relation that holds for
any 0 € B and any i,j of i £ j:

[Ai0, Aj1] =, (D), 0. (88)

(Proof) From Lemma 211 (iii) and the indistinguishability of p(®) stated in Lemma [BT] it suffices to show Eq. (88) for
a specific . We here fix 8 to be 6; = 1 and ¢; = 0 for any i # j. By the definition of y¢(D), we have

tr (Z Agfé)o(o’v“o’v”o’””> ~ar(0) 1, (89)

tr (Z A§f’i’o<91’”“92’”2;9”3)) ~yr(o) 1 (90)
v
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FIG. 1: The quantum circuit implementing the swap isometry Vs. Here, H is the Hadamard operator.

To make ¢’s in the above two trace terms to be the same, we apply Lemma [0 to Eq. ([89), which results in

By using Corollary 28 Egs. [@0) and (@) respectively lead to

Aj71 Ry (D),o(01:v13:02,v2:03,v3) (—1) 7[,
~ Vi

ALO ~rr(D),0(01,v1:02,v2:03,v3) (_1) I

Finally, Lemma [[3 (i) implies
~ vj
Ai,OAj,l Ry (D),o(01:v1:02,v2:03,v3) (—1) ]Ai,O

~ vi+v;
NWT(D)J(‘H1v1;92=v2;93,v3) (_]—) T
~ V4
R (D) 01 ons0a sty Agia - (=1)"
Ry (D)o 01 v1:02,02:03.03) Aj 1430,

which ends the proof. |

H. Approximate relations of non-tilde observables and Pauli observables

In this section, we first introduce the swap isometry V. This isometry is a completely positive and trace preserving
(CPTP) map that adds a three-qubit Hilbert space C® to the prover’s Hilbert space H and swaps the three-qubit
space in H to CB. The goal of this section is to prove Lemmas B3, @4l B7, and (2, which state that the non-tilde
observables A; o and A, 1 for ¢ € {1,2,3} are approximately equal to the Pauli observables under this swap isometry.

Definition 42 Given a device D = (S,I1, M, P) with Hilbert space H, we define the swap isometry Vs : H — C3 @ H
using non-tilde observables introduced in Eq. {@) as
1
Vs=g D 1a:0,0@[(As0)°( + (-1)°As0)(A22)"( + (-1)"Ao0)(A12)" (I + (-1)"Aro)] . (92)
a,b,ce{0,1}
Here, the superscripts a,b and c indicate the exponent not the projector.

By noting that non-tilde observables A4; ¢ and A; 1 are binary ones and Ei:o(l + (=1)*A; 0)? = 41, we have
Vivs =1. (93)

By a direct calculation, it can be verified that the circuit in Fig. [[l implements the swap isometry Vs. As shown in
Lemma 2.4 in [2], if A is an efficient binary observable, then its controlled unitary operation is an efficient unitary
operation. Therefore, from the circuit in Fig. [I} Vs is found to be efficient for any efficient device D = (S,1II, M, P)
because the unitary operator acting on state [0)®3 @ |¢) is efficient.
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Lemma 43 Conjugating Pauli observables by swap isometry Vs gives the following.

() Vi(oz @ IS? @ Vs = A1 o (94)
1
b4 1 a a a a
(ii) Vd(la @ 07 @ Iy @ )V = 1 D I+ (—1)"A1,0) AT 1 A2 047 1 (I + (—1)" Ay o) (95)
a=0
1 a a
(i) VI(I5* @ 07 ® Vs = 16 D T+ (=1)* A1 0) AT 1 (T + (—1)" Az,0)Ab 1 Az 045 1 (1 + (1) As0)
a,b
AT (I + (-1)"A10) (96)
. t ®2 1 : a a
(iv) Valox @ 5" @ Vs = 1 > (T4 (—=1)"A10) Ay (I + (—1)"As,0) (97)
a=0

1 —
V) Vi @ox @ L®I)Vs = 16 D (T4 (—1)"A1,0) AT 1 (1 + (—1)*Az,0)Ag 1 (1 + (—1)" Az,0) AT 1 (I + (—1)"A1,0)

a,b
(98)
. 1 a a c c
(Vi) VI(I2? @ ox @ )V = G > T+ (=1)"A10)AS (I + (—1)P Ag0)AS 4 (I + (—1)°As.0) A1 (1 + (—1)°Asz0)
a,b,c
AY (I + (—1)" Az 0) AT (I + (—1)*A10) (99)

Proof of (i)-(iii) A direct calculation by substituting the definition of Vg in Eq. ([@2) to the LHS of Eqs. (04)- (6]
and using the commutation relation [A; o, A; 0] = 0 leads to the desired relations.
Proof of (iv) By substituting the definition of Vg, the LHS is equal to

1 _ _
32 Z(I+ (—1)%A1,0)AT 1 (I + (—1)"Az0) A5 1 (1 + (—1)°A3,0) A5 1 (I + (—1)" Az0) AT 1 (1 + (—1)* A1),
a,b,c

and by using the commutation relation [4; o, A;j o] = 0 results in the desired relation.
Proof of (v) Substituting the definition of Vg to the LHS, we obtain

1 — —
35 2. U+ (=1)"A10) 414 (1 + (=1)"A2,0) A3 1 (1 + (=1)°Az,0) A3 1 (I + (=1)"A2,0) AT 1 (I + (=1)" A1,0),

a,b,c

and by using the commutation relation [A; o, A; o] = 0 leads to the desired relation.
Proof of (vi) By substituting the definition of Vg to the LHS and using A§ ; AS; = A3 for any c € {0, 1} results
in the desired relation. |

Next, we show that under the swap isometry Vg, the binary observable A; 1 is approximately equal to the Pauli-X
observable.

Lemma 44 For any efficient perfect device D = (S,1I, M, P), we have for any 6 € B,
Vilox © L ® I ® Vs N Dy AL (100)
In this lemma, we consider a perfect device to exploit the anti-commutation relation in Proposition in which a

perfect device is assumed.
(Proof) From Lemma [T it suffices to show

tr [VST'(UX ® 1 ® I ®I)VSA1710(9)} aVorroks

Subsutituting Eq. ([@1)), the LHS is rewirtten as

a

itr {Z[I + (—1)6141’0]141’1[[ + (—1)aA1’0]A1’1p(0)} . (101)
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Using Proposition {A10,A11} = 5. 0 and Lemma [I7 (i), Eq. (I0T) is calculated as

yr (D

1 . .
zm itr (Z[I + (_1) A170]Ai1[[+ (—1) Al,o]ﬂ(9)>

a

= itr (Z[I + (_1)aA1,0]2P(6)>

a

= tr(p'?)
—1

9

which ends the proof. |

Combining Eqs. (@4)) and ([I00), A q—0 and A; g—1 are shown to be related to the Pauli-Z and X observables,
respectively. Using these results, we partially characterize the prover’s states. Specifically, we show that the prover’s
states can be written as product states where the first qubit is the eigenstate of either the Pauli-Z or X observable
depending on 6; € {0, 1}.

Lemma 45 Let D = (S,I1, M, P) be an efficient perfect device. For any v € {0,1}3, there exists positive matrices
a(0v130,0230,08) [ (0,0130,02i1,08) | (0,0131,0250,08) gy g o (1v1;00230:08) gych that the following holds.

(0,v1;0,v2;0,v3) 102

( (

(ii) Vo (0v1:0; ’U2;1,U3)VS (D) /44 (D) |01 (V1] ® @ (103
(i) Vsa (0,v1;1,v2;0 ’L)3)VT A0 (D) /Ay (D) o1} (01| @ (0:0151,02;0,v3) (104
( (

IV) V U (1,v1;0,v2;0,v3 VT ’YT(D)1/4+’YT(D) ‘( ) ><(7)v1| ®a(1,'u1;0,1)2;0,v3) 105

i) Vso' (0,v1;0,v2;0 vs)VT A (D)4 472 (D) v ) (01| ® @

(0,v1;0,v2;1,v3)

)
)
)
)

There are four approximate relations since there are four states corresponding to & = 000,001,010 and 100 in the test
case of the protocol.
(Proof) We first prove (iv). From Lemma 4] we have
A R (D) 100 Vi(ox ® I5? ® I)Vs, (106)
and Lemma [I3] (ii) leads to
2
A N (D)o 110,02:0.03) Viox @ I$* @ I)Vs.

Then, Lemma 20] implies

ALY % e e VAU N 152 @ 1)V,

and using Lemma [I7] (i) yields

St [ @ 152 @ DVso om0 | s o tlAfot ) on
From the definition of y7 (D) in Eq. (IZ), the RHS is approximately equal as ~.,(p) 1, and hence the LHS results in
Ztl‘ [ U1>< )U1|®I®2®1)V 0'(1 v150,0250, v;)} 'YT(D)I/4+'YT(D) 1.

From Lemma [T6] and Corollary 28 this leads to

|(_)v1><(_)v1| Y I(2®2 ®1 Q’YT(D)1/4+’7T(D),Vsa(1»“1:0>“2;07U3)VST I
Finally, using Lemma [1§ implies

Vso MO0V sy ((2) M) © 152 & DVso 00 V() (2| @ 152 0 D).
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By defining
Qb 0m0ms) o ()| @ I§ © DVso w0 0mI V())& 152 0 ),

we obtain the desired relation of (iv).
The other relations (i)-(iii) can be proven in the same way just by replacing Eq. (I06) in the above proof with

Eq. (@4).
In the following discussions, we use the simplified notation
A=py B
if there exists a constant ¢ > 0 such that
AR (D) B-

Lemma 46 Let D = (S,II, M, P) be an efficient perfect device. There exists a normalized state o such that the
following holds for any vy € {0,1}:

Z VSJ(O,ul;O}vz;O,vg)Vg éR % ® a, (108)
V2,U3
Z VSO_(O,vl;O,vg;l,v;;)Vg éR |U1>2<U1| ®a, (109)
v2,U3
Z Vso_(Oml;l,Ug;O,’Ua)Vé éR % ® a, (110)
V2,U3
c _\v1 —_\u1
Z VSO.(LUUO,U%OWS)V;[ ~p % ® a. (111)
V2,U3

(Proof) We first prove Eq. (L), and by using Eq. (IT1]), we prove the rest of the relations. First, we rewrite Eqgs. (I02)
and (03] respectively as
Hvso_(o,vl;o,vg;(),v?))vg — |’U1><'U1| ® 04(0,1)1;0,1;2;07@3) ’2

<e (112)
1

Hvso_(l,vl,o,vg,o,vg)vs _ |(_)’U1><(_)’Ul| ® a(l,vl,O,vg,O,vg) ‘

. <e (113)

with € := O(yp(D)Y* 4+ yp(D)). Then, if {2 0s 08 aLv0v2i0.ws)1 - are proven to be computationally indistinguish-
able up to O(yr (D)) for some constant ¢, combining Eq. (I03) results in Eq. (III). We show this computational
indistinguishability by contradiction, namely there exists a POVM A := {Ag, A1} with Ag + A; = I such that

Ao E a(l’ﬂl—O;O,v2;0703)‘| —tr |Ag E a(l,vl—l;O’UQ;O,vs)‘|

V2,V3 V2,V3

tr > u(X) + 24 (114)

holds with a non-negligible function u(A). Under the existence of this POVM A, we can predict the outcome of the
following POVM {T', I — T'} with

L= VA1) @ Au)Vs. (115)
u=0

The prediction can be done by performing Vg to the prover’s state and measure the first register in the Pauli-X basis
and obtain its outcome a, followed by performing POVM A to the remaining registers and obtain the outcome u.
From the expression of Eq. ([13]), the outcome corresponding to I" is obtained when a = u. Under the existence of this
POVM {T', I —T'}, we can construct an adversary A that distinguishes pL%%9) and p(1%9) with non-negligible advantage.
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The adversary A is randomly given either state p(°°9) or p(1%9) and A guesses the bit 0 if the outcome corresponding
to T is obtained by performing measurement {I', 7 — I'}. In this situation, the distinguishing advantage is given by

Adv := [Pr{guess = 0]p(1°?} — Pr{guess = 0|p(000)}‘
:|tr[p(p(100) _ p(OOO))”

1
= >t [ @ Aa) (Vap MOV = Vep OV | ‘
u=0

=1 X 1N © A Vso 0 mvE - vge Oty .
u,ve{0,1}3

To obtain its lower bound, we exploit the relation >
tr[A(p — Nl <7 (116)

for positive operators ¢ and ¢’ satisfying ||¢ — ¢’||1 < 7 and a linear operator A satisfying ||A||cc < 1. From
Egs. (I12), (II3), (II6) and the triangle inequality, we can replace the states inside the trace as

Advz| YTt ()" Aw) (1) N @l m0m0m) — o) (0| @ @00 ) ||~ 166
u,ve{0,1}3
_ (1,v1;0,v2;0,v3) 1 (0,v1;0,v2;0,v3)
- tr[Avla’l”Q’“”]—f 3 tr[Auaww%ﬂ—lGﬁ. (117)
ve{0,1}3 u,ve{0,1}3

By using >, Ay, = I, Eq. (IT7) is equal to

.0.19:0.0- .00 0 19 1 0.0
Z tr [Ao(a(l,o,o,vz,o,vd) _ a(1,1,0,12,0,v3))} + Z tr(a(l,l,o,vz,o,vg)) -5 Z tr(a(O,vl,O,vg,O,vg)) _ 16\/g
V2,V3 V2,03 ve{0,1}3
.0 15 1 .0 19
>u(\) + 8y/c — Z tr(a(laluovv270av3)) _ = Z tr(a(OWLO,U%OWa)) , (118)

v2,V3 ve{0,1}3

where we use the triangle inequality and Eq. (IT4)) in the inequality. We compute the third and fourth terms in turn.

Z tr(a(171;071)2;07U3)) _ Z tr(\—><—| ® 04(1’1;0’”2;0’1}3))

V2,U3 v2,V3
> Z tr (Vsa(l,l;Oyvz;Oyva)Vg) —4\/e
V2,V3
=S u (0(171;0,v2;07v3)> —4/e
V2,U3
~o 1/2 — 4v/e, (119)

where in the inequality we use Eqs. (IT3) and (II6]), in the second equality we use VgVS = I, and in the last
approximate equality we use Lemma 35 and 3 tr(o(1v1i0v2i0.8)) = ¢p(p(100)) = 1,
We next compute the fourth term of Eq. (II8]).

Ztr(a(o,vl;o,vg;o,v3)> _ Ztr(|v1><v1| ® a(O,vl;O,vz;O,vg)) < Ztr (ng(o,m;o,vg;o,vs)v;r) + 8\/E =14+ 8\@, (120)

3 Note that Eq. (II8) can be proven by applying Holder’s inequality as |tr[A(p — @")]| < ||Alloo - ||l — ¢'|]1-
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where in the inequality we use Eqs. (I12) and (II6). Substituting Eqs. (IT9) and ([I20)) to Eq. (II8) gives
[Pr{guess = 0019} — Pr{guess = 0/} | > (),

which contradicts Lemma [31]
Next, we prove Eqs. (I08))-([II0) by using Eq. (IT)). First, from Eq. (IT]), we have

o I
Z VS0(1,U1,077)270»U3)V§ éR ?2 R a.
v

Since p(® are computationally indistinguishable from Lemma B1l and the isometry Vg is efficient, we also obtain

. . C
E ng(ovvho»vz’ovvs)vg ~p — Qa,
v

O e S/
Z VSJ(UWLO,Uz’Lva)Vg éR 52 ®a,
v

Z VSJ(07U1§1>U2;07U3)V; éR 5 ®
v
From Eqs. (I02), (I03) and ([I04]), we respectively obtain
0 e o
D o) (v @ Y allvi0rates) ARl ® ox
V1 v2,V3
> o @ Y el Ly o 2,
v1 v2,V3
Do) (o] @ Y a0t 2p I %'
v1 v2,V3

Since these approximate relations hold for any efficient prover, these relations hold when the first register is measured
in the Pauli-Z basis. By considering such a prover, we have

3 a@vi0voes) £, %7
V2,V3
Y qOuitile) L, %’
V2,V3
E 0w13l020,03) 5 &
V2,V3

By taking sums of Eqs. (I02)-({I04)) over v and w3 and by applying these three approximate relations, we obtain
Egs. (I08)-([II0), which completes the proof. [ ]

So far, we have shown that the state of the first register is approximately equal to the eigenstate of the Pauli
observable. Next, by using this result of Lemma [46] we prove that the second observables are close to the Pauli

observables under the swap isometry V.

Lemma 47 For any efficient perfect device D = (S,1I, M, P), we have for any 6 € B,

Vg([Q ®JZ®_[2®I)VS R R,p® A2’07 (121)
Vg(fg Rox I, ® I)VS R R,p®) Agyl. (122)

We prove each relation in turn.
Proof of Eq. (I1Z1]) From Lemmas B1] and 8] we have

e I
Vsp OV =g 52 ®a=w. (123)
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This implies that
p® =g ViwVs (124)

holds. This is because if there exists a distinguisher D that distinguishes p(®) and VSTwVS, we can construct a
distinguisher D’ that distinguishes Vs,o(a)Vér and w. Given either state Vsp(“’)V;r or w to D', D' performs the inverse
of the unitary extension of Vg and measures the three qubits in the computational basis to obtain the outcomes
z € {0,1}3. Then, if z = 000, which corresponds to obtaining the initial state [0)®3 in Fig. [l D’ succeeds in
performing Vg . Hence, if z = 000, D’ performs VST to the state and call D to distinguish p(®) and ngVs, which
results in non-negligible distinguishing advantage. If the input state to Fig. @is p(®), z = 000 always holds, and hence
if z #£ 000, D’ can correctly guess that the given state is w.

Since oz and Ag g are efficient binary observables, using Lemma 2] (v), the proof of Eq. (IZ1) is reduced to proving

Vilb®oz @ Lo Vs SR Viwvs Az -
From Lemma [T5] it suffices to show

tr {AQQVS*U2 R0z ® I)vsvng] ~p 1.

We compute the LHS as follows. By substituting Eq. (@) and inserting V;VS = I to the LHS, it is equal to

1
1
1 > ot [VSAZO(I + (—1)%A1,0) A$ 1 A g A VEVS (T + (—1)% A1 0)Viw] . (125)

a=0

As will be proven in Eq. (IZ7) in Lemma Hg] using
I+ (1)@ L@ LI ~p, Vs(I + (—1)"Ay0)Vd

and Lemma [T (i) gives an approximate relation of Eq. (IZ0]) as

1
1
Z Ztl‘ |:VSA270(I + (71)GA1,0)A(1)’71A2,0A?71V$(I + (71)aO'Z X IQ X IQ X I)w}

a=0

1
1
:Z Ztl‘ |:(I + (71)aO'Z X IQ X IQ X I)VsAgp(I + (7].)aAl’g)AilAg’gA(ilVSTw} .
a=0

Here, in the equation we used the commutation relation [0z @ I ® I ® I,w] = 0. As will be proven in Eq. (IZ8)) in
Lemma H8] using Vs[As2.0, Al,l]VST ~Rw 0 leads to

1
1 -
~Ry St |+ (-1 ® @I, @ I)VsAgo(l + (—1)"Ay,0)Af VAV AL 1 Ao o Viw

1
1 r
:Z E tr (I + (—1)a0'Z X IQ X IQ ® I)VSAQ,O(I + (—1)QA170)A270VST(U:|

(T4 (—1)%y @ I ® I, @ [)Vs(I + (-1)&A170)ng}
1 1
~ry az:(:)tr [T+ (D)7 Lo ® I)Zw]

=tr(w)
=1.

In the third equation, we used the commutation relation [A; g, A2,0] = 0 and A%O = I. In the second approximate
equation, we again used Eq. (I27)). This ends the proof.



35

Proof of Eq. (I22)) From Lemma [I7] it suffices to show
tr |:A271VST(IQ ®ox @ L@ I)VsViwVs| ~p L.
By substituting Eq. ([@8) and inserting Vg Vs = I, the LHS is equal to

1

1
= >t Ve Ao (I + (<) A1,0) AL 1 (I + (—1)" Ao0) a1 (I + (—1) Az,0) A4S VIVE(L + (~1)" Ay0)Viw]

a,b=0

By using Eq. (I27)), we have

1
1 —
T D [ Yo7 @157 @ I)Vs Az 1 (I + (=1)"A1,0)Af 1 (I + (=1)" Az,0) Aoa (T + (—1)bA2,0)V§VSA‘f,1VsTW} :
a,b=0

Using Eq. (I26) that will be proven in Lemma H8] results in
1 ¢ 5
oo Y tr[(0% @ 2@ DI+ (~1)07 @ I§2 @ DV Az 1(1 + (—1)"A1,0) A% 1 (1 + (—1)"A3,0)

AQ)]_(I—{- (—1)bA2,0)V51Lw .

Applying Eq. (I29) that will be proven in Lemma A8 and the commutation relation [A; 1, Az 1] = 0 leads to

Using Eq. (I26) implies
1
1
~rg Z [ (0% @ I2 @ D)2 + (~1)%07 @ I @ I)VeAsy (I + (-1)&A1,0)A2,1vgw} .
By applying Eq. (I30) that will be proven in Lemma A8 and A3 ; = I, we obtain

1
1 a a
~rp Yt [(1 +(=1)%z ® 122 ® V(I + (—1) ALO)VSTw] .

Again using Eq. (I21) gives

»Jk\'—‘

Z ‘oz @IS @ I)w] = tr(w) = 1,

which ends the proof. |

Lemma 48 (Auziliary lemma in proving Lemma[{7) In this lemma, we define w := I1/2 ® a.

ox 0L @I ®I~p, VsA1Vd, (126)
T+(-1)0, 0 Lo Lo T ~p, Vsl +(—1)"A10)V, (127)
‘/5[142,07141,1]VST ~Rrw 0, (128)
VS{A2,1,A2,0}V§ ~RRw 0, (129)
‘/5[142,17141,0]‘/5T ~Rw 0. (130)
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Proof of Eq. (126]) From Vg (ox ® I§®2 ® I)Vs =g ,0) A1 given in Lemma [44] and by using Lemma [T9] we have
ox @IL2 1 N R Vsp OV VSA1,1VST-

Then, using Eq. (IZ3) and Lemma [2T] (vi) enables us to replace VS/)(G)VST with w.
Proof of Eq. (I27]) Once we have the following, the triangle inequality of the state dependent norm derives Eq. (I27).

I ~p., VsVd, (131)
070 L@ LT ~p, Vel oVd. (132)

Eq. (I31) can be proven by combining I ~, Vep@ Vi VsV 4, Bq. (T3) and Lemma 211 (vi). Eq. (I32) can be proven
by using Eq. ([@4)) instead of using Lemma [4] in the proof of Eq. (I20).
Proof of Eq. (I28]) From the definition of the state dependent norm, the LHS of Eq. (I2])) equals

tr ([A2,07 A1,1]T[A2,07A1,1]ngvs> .
By using Eq. (I24) and Lemmas [21] (iii), this leads to
Rptr ([Az,o,Al,l]T[Az,o, A1,1]P(G)) :

Finally, using Lemma ] implies that this is approximately equal to zero (=g 0), which ends the proof.
Proof of Eq. (I29) By using Proposition B2linstead of using Lemma[I]in the proof of Eq. (I28), we obtain Eq. (I29).
Proof of Eq. (I30) This can be proven by following exactly the same arguments done in the proof of Eq. (I28]).

Now, we have the approximate relations of the non-tilde observables As ¢ and As ;. Using this result, we will
characterize the state of the first and the second registers, which is an extension of Lemma Specifically, we show
that the prover’s states are approximately equal to the product states where the first and the second qubits are the
eigenstates of the Pauli observables depending on #; and 65.

Lemma 49 (Eztension of Lemma[3) For any efficient and perfect device D = (S,1I, M, P), we have for any v €
{0,1}2, there exists positive matrices @(001:0,v2;0,03) -+ 5(0,01;0,0251,08) - 5(0.0131,0250,08) - g 3 (1,0130,02:0,03) ek that the
following holds.

(i) Vo Orr020m) T mp oy ) (0] ® ) (vg| @ G@L002i0w2i0w) (133)
(i) Vo (0:01:0 vg,l,vs)VT & [01) (01| ® [va) (va] ® 5/(0,0130,0251,v3) (134)
(iii) Vso O@orte= 00 VE mp for) (0] @ (=) ") ((=)"2] @ GOvriteeiee) (135)
(IV) VsU (1,91;0,v2;0,v3 VT R |( ) ><(_)v1‘ ® |’U2><1)2| ® &(1,1;1;0,1;2;0,1)3)

(Proof) By following the arguments in the proof of Lemma 5 we prove (iv). The other cases can be proven
analogously. First, using Lemmas [T and [[3 (ii), we have

A2,0 RR 5(1.1:0.v2:0,03) Vg(b oz @I ®I)Vs.
Employing Lemma 20 leads to
Ag:é) R R, (1,v1:0,02;0,03) VST(IQ ® |va)(v2| @ I ® I)Vs.

Using Lemma [I7 (i), this results in

Ztr[ AGS) g1v1:0,02:0, ”ﬂ ~R Ztr [VS I @ |v2) (va| ® I ® I)Vgorthri0vzils vﬂ : (136)
v

4 Note that this can be proven as tr [(VSVg — I)T(VSVS:r - I)Vsp(e)VST] =tr [(VSVSJr - I)T(Vsp(mV; — Vspw)VST)] =0.
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From Lemma (0],
Ztr[Aéq’)(zl)O.(l,v1;0,1)2;0,113)] ~ Ztr[AgJ(Q))O_(O,vl;0,1}2;0,1/3)]
v v

holds, and by the definition of v7(D) in Eq. (I2)), the RHS is approximately equal to 1. This means that the RHS of
Eq. ([I30) is also approximately equal to 1, namely

St [Vg(lg ® [v2) (v2] ® I © I)ng“’”l;oﬁvz;o’vz)] ~r 1.

Combining Corollary 28 and Lemma [I6] results in

I @ vg)(va| @ Iy @ T Ry v o1.0s0.m0.03 vt -

From Lemma @5} the state in the subscript of ~ is close to |(—)"*)((=)"!| ® a(}¥1:9:v2:0.v3) "and Lemma[I7 (ii) enables
us to replace the state with [(—)"1)((—)"t| @ a(1:v1:0:v2:0.v3) a5

I, @ va){ve| @ b @ T AR, |(—)v1 ) ()1 [@av1:0.:0,0s) 1.
Finally, from Lemma [45
Vsa(lml;o,vz;omg)vg ~r ()Y (=)" | @ a(bor0ezies)
and Lemma [I§], we have
Vsa(l,vl;o,vg;o,v;;)vg mor I[|(=)" ) (=) | ® alwri0waida)] T
~r (I ® [v2) (v2] © Iy @ D[|(=)"){(—)"] © o000 @ Jug) (va| @ T2 @ 1)
= (")) | @ eaua] @ alh w0

With @(vni0v2i0.v8) = ((y| @ I)a1v1:9v2i0:98) (|4y) @ T), we obtain the desired relation. ]

Using Lemma [49], we next show the lemma that is an extension of Lemma

Lemma 50 (Eztension of Lemma[{6]) Let D = (S,II, M, P) be an efficient perfect device. There exists a normalized
state & such that the following holds for any vi,ve € {0,1}.

(i) ZVsU(O,m;O,vz;O,vs)VS’r éR |v1) (v1] i’ [v2) (V2| ® & (137)
v3
.. 01:0.09:1 0 c |U1)(v1| & |v2)(V -
(ii) ZVSJ(O, 1;0,2;1, 3)VST Zn [v1) (V1 . |[v2) (V2] ® & (138)
v3
01:1.09:0.0 e ool @ [(=)"2){(—)"?] _ -
(ii) ZVU(O, 131,230, 3)V;r Ln [u1) (V1] |(4) (=) ®a (139)
v3
—\1 —\U1
(IV) z:V'So_(l,vl;0,'112;071)3)‘/'51L éR ‘( ) ><( ) |® ‘/U2></U2| R & (140)
4
v3

(Proof) The proof is similar to the one of Lemma [6, but we give the full proof for completeness. We first prove (iv),
and by using (iv), we prove the rest of the relations. To prove (iv), we need to show that {>_ awai0vs)y
a(l,vlgo,vg;o,vg)}vl are
d(l,vl;O,vg;O,vg)}vl

are computationally indistinguishable. For this, we have shown in Lemma that {>_,, ..

computationally indistinguishable, and by considering Lemmas F5] and B9, this implies that {>_, .
are also computationally indistinguishable. Therefore, the remaining task is to prove that {}, atlv0v2:0:0)}, “are
computationally indistinguishable for any fixed v;.

In the following discussions, we fix v;. From Lemma 9 there exists a d > 0 such that for any vs, v3,

2
Vo @t =0 oy @ [(2) (2] 0 a0t |

<, (141)
1

2
HVSo-(lv'UUOvUZ’;OaUS)V;: _ ‘(_)v1><(_)v1| ® |U2><U2| ® &/ (Lv130,v2;0,03) ‘

<S¢ (142)
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hold with € := O(y7(D)?). From Lemmas [45 and B9, we have that for any efficient measurement M := { Mg, M; },

tr | Mo Z d(l,v1:0;0,v§;0,vé) —tr | M, Z d(Lv]:I;O,vé;O,vg) < 2\/g (143)

’ ’ ’ /
Va,V3 Va,V3

For the sake of contradiction, we assume that there exists a POVM A := {Ag, A1} with Ag + Ay = I such that

Ao § d(lavl;07v2:1;oav3)

v3

tr AOZ@“M%OWFO;Owﬂl —tr > 2u(N\) + 42v/€ (144)

v3

holds with a non-negligible function (). Under the existence of this POVM, we can construct an adversary A that
distinguishes states p('99) and p(©19) with non-negligible advantage using an efficient measurement {T',I —T'} with

D= VE(I(=)") (=) @ [0)(0] ® Ao)Vs.
The distinguishing advantage is calculated as follows:
Adv := |Pr{guess = O\p(loo)} — Pr{guess = 0|p(010)}

=[ex{T(p190) — O]
= [or [(=)") ()] @ 10)00] © A0)(Vap OV = Visp®OV]) |

- Z tr [(|(_)v1><(—)v1\ ® 10)(0] @ Ag) (Vo 1v1i0wai0wa) it VSG(07v£;1,vé;07vé)Vg)] .
v'€{0,1}3

By applying Eq. (I16) with Eqgs. (I41)) and (I42]), we have

Advz| 3 ()" H)" @ [0)0] © Ao)

v’ €{0,1}3

("5 @ 105 (0] @ G400 — Jof) (1] @ (=)"5)((=)7%] @ GO 5000 )] | — 16 e

~ V1 . U/ 1 - U/' ’U/' ’Ul
=[St [poatmoonsi] L5 [agaoriiinn] 16y

/
V3

1 000 -/ 010 0 1 N 1 I oy o
— 5 Z:tr [Ao(d(lyvlwovoyoxvg) _ &(17U1:071707v3)):| + 5 Z tr[AOd(17U170yU2707U3)] _ 1 Ztr [AO&(O,’UI,L’UQ,O,’UB) _ ].6\/E
'1)3 v

i
’L)2,’U3

]_ . 7, ’ ]_ /., !, !
Z,LL(A) + 5\/E N 5 Z tr[AOd(l,vl,O,vg,O,%)] _ 5 Ztr [Aod(o,vl,l,v2,0,v3):|
v, Uk v’

]_ . ’. ’ ]_ ’, /. ’
>N +5vE - 5 || trlagatim0os00] - LS g [ patei0i0s)]
v’

’ ’
L|v5,v5

§ tr |:A0 (d(O,vi;Lv;;O,vé) _ O~[(1,v/1;07'u;;0,vé)>:|‘
v/

_|_} § tr [Aod(o,vi;l,véﬁ,vé)} _ § tr [Aod(lmg;o,v;;o,ug)}
2
v’ v’

>p(A) +4Ve - i
=n(N) +4ve

1 ’ o ~ R ’ vl ! - o' 100
= 1 10t [ (et @ 15 ()] @ GO0 — (=) @ o) ] @ GO0 ) ‘ ,




39

where we use the triangle inequality and Eq. (I44]) in the second inequality, the third one follows from the triangle
inequality, and the fourth one comes from Eq. (I43). Again, by applying Eq. (II8) with Eqs. (I4Il) and (I42)), we
obtain

Since {Vg AoVs, I — Vg AogVs} is an efficient measurement, the computational indistinguishability in Lemma BT states
that the second term is negl(A). Therefore, the distinguishing advantage is non-negligible that contradicts Lemma [3T]
which completes the proof of Eq. (I40).

Next, we prove Eqs. (I37)-(I39) using Eq. (IZ0). First, from Eq. (I40), we have

Adv >p(N) — i tr

’. /. ’ ’. . ’
AO (Z VSJ(O»U1’17U2:07U3)V§L _ Z VSJ(17U170;U2707U3)Vg>
v’ v’

) L [(vvs) (5010 g0

®2

O e I
Z Vso—(l’vlyoxv2707v3)v‘;— éR QT ® a.
v

Since p(®) are computationally indistinguishable from Lemma BTl and the isometry Vg is efficient, we also obtain
C ®2

> vyt 4 E o,
v

ZVSU(O’”“O’””L”S)VST ~r - ®a,
v

ZVSU(O’”“L”Q;O’US)VST éR 2 9a.
v

From Egs. (I33)-([I35)), we respectively obtain

 (0.01:0.09:0.0a) € Q
V1)(V1 V2){V2 [ D) .
S oa)oa] @ 3 o) (vaf @ D2 GOm0 L 152 G
v1 v2 v3
. 0.9 a
Z lv1)(v1] ® Z [v2) (2] ® Za(mvl,o,vz,l,vg) Zp 2?2 Z
V1 v2 v3
~ V11,0250, ¢ &
D lonfor @ Yo I(=) ()2 @ Do Al Ly 12 @ T
v1 v v3

Since these approximate relations hold for any efficient prover, these relations hold when the first and the second
registers are measured in the Pauli bases. By considering such a prover, we have

§ /(050130,v2;0,v3) éR
v3

~ . . C
E a(O,vl,O,vz,l,v_g) ~p
v3

§ = (0,v131,v2;0,03) <
&(0-v151,02;0,03) ~p

U3

N TN o}

R

By taking sums of Egs. (I33)-(38) over vz and by applying these three approximate relations, we obtain Eqs. (I31)-
(I39), which completes the proof. |
With Lemma [50] in hand, we obtain a simple corollary describing an approximate relation of state p(®).

Corollary 51 Let D = (S,1II, M, P) be an efficient perfect device. There exists a normalized state & such that VO € B,

LI
c 2 ® 2®C~k.

Vsp @V ~p = (145)
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(Proof) Taking the sum of the equations in Lemma [50l over v; and vo yields the the statement for 8 of the test case.
We can lift up the statement for any 6 € B thanks to Lemma [31] |

So far, we have shown that the prover’s states are approximately equal to the product states where the first and
the second registers are in the qubit states. Using this result of Corollary Bl we prove that the non-tilde observables
Az o and As; are approximately equal to the Pauli observables under the swap isometry Vg.

Lemma 52 For any efficient perfect device D = (S,1I, M, P), we have for any 6 € B,
VST(IQ ®Ig®0’z®I)VS RR,p® 14.3’07 (146)
Vi oL oox ® Vs = 0 As1. (147)

We prove each relation in turn.
Proof of Eq. (I46]) First, from Corollary [51]

c IL®I
Vsp@Vi =g 2? 29a=: k. (148)
By doing the same arguments to obtain Eq. (I24]), we have
p® =g VikVs. (149)

Since oz and As ¢ are efficient binary observables, by using Lemma 1] (v), the proof of Eq. (I46)) is reduced to proving
Vil e Loz Vs R vievs A30-
From Lemma [T5] it suffices to show
tr [Agpvg(lg ® L ® oy @ Vs(VikVs)| ~p 1.
By substituting Eq. (@6) to the LHS, the LHS is equal to

1
16 2=t [A3,0(I+ (—1)*A10) AT 1 (I + (=1)°A20) A5 1 A3 045 1 (I + (=1)"A20)Af (I + (—1)aA1,0)(VsT"EVS)} :
a,b

Inserting Vg Vs = I leads to
1
= >t {VSA&O(I + (1) A1 0) AT L (I + (—1)" Az 0) AL 1 A5 0 AL 1 (I + (—1)" As 0) A 1 VIV (I + (-1)@A1,0)ng} .
a,b
(150)

Using Eq. (I27) by replacing the state I5/2 ® o with I$? /4 ® & gives that Eq. (I50) is approximately equal to
%6 > tr [VS(I + (1)o7 ®IF* @ I)VsAso(l + (—1)*A1,0)Af 1 (I + (—1)"Az0)
ab

A5 1 As.0 A5 (1 + (—1)" As,0) Vi (Vs AT 1 Vi)

Using Eq. ([IZ6) by replacing the state I5/2 ® o with I$?/4 @ & leads to
~r %6 > ot [(crg( I @ I)(I+ (—1)02 @ IF* @ I)Vs Az o(I + (—1)" A1,0)Af 1 (T + (—1)" Az.0) A3 ; Az oAb VI
ab
V(I + (—1)bA2,0)vSTF,;]. (151)

Next, since

Vs[I + (~1)P Ag o]V mp e T+ (-1 @ oz @ L& I, (152)



which will be proven in Lemma B3] (i) below, Eq. (5] is approximately equal to

1
T > tr [(1 +(-1)'Leoz@ LI ek @IS*R I+ (-1)"07 @ IS @ I)Vs Az o(I + (—1)*A10) Al 4
a,b

([+ (—1)bAQ,o)AlilVgVSAg’oAg,lng .
Also, since we have
VS[AS,O,AZ,l]Vg ~R.,k 0,

which will be proven in Lemma [53] (ii) below, Eq. (I53)) is approximately equal to
1
T {(1 F () hooz@Lel)(ek @22 D)+ (-1) 0z @ I¥2 @ )
a,b
VsAgo(I + (—1)"Ay0) A7y (I + (~1)" As,0) Ab VIV Ab 4 A3 0Vik|.
Using VSJ[VS = I, A%,l =1 and [A270, A370] =0 leads to
1
=5 Ztr{([ +(-1)heo,Lol)(cs I + (—1)%0z @ I$? @ 1)
a,b
VsAgo(I + (—1)"A1,0) A7y As.oVA V(T + (<1) Az,0) V]|
We again use Eq. (I5J) and obtain
1
g Yt [(1 F () hLeos®Lel)2 (0% @820 I)I+(-1) %, @ IS @ I)
a,b

)

VSA370 (I + (—].)QAL())VSJ[ [VSA‘{”lAg_’()Vg]H}

1
= [(ag( QP2 @ I)(I + (~1)%5 ® I§2 @ I)Vs Az o(T + (—1)*A10) VI [Vs AT 1 A3 o Vx|

Also, as
VS[AS,O,ALl]VST ~prx 0,

which will be proven in Lemma B3] (ii) below, we have that Eq. (I54) is approximately equal to

1
It [(ag< IR (I + (1)o7 @ IP* @ I)Vs As o (I + (—1)* A1 0) Vi VsAg,oA‘f,lvs%} :

Using VdVs = I, [A1.0, A3 0] = 0 and A3 o =1 leads to
1 a ®2 a ®2 a T a T
=3 {(JX RIP2 QI+ (—1)%07 ® IP2 @ I)Vs(I + (—1)Ay0)Vd [VSALlVS]n] .

Again, by using Eq. (I26) by replacing the state I5/2 ® o with I5%/4 ® &, we have

1
~Rry Ztr [(ag( @I2 @ N*(I+ (—1)%0z @ IY* @ I)Vs(I + (—1)“A1,0)VST/<]
1
— > [(1 +(~1)0z @ IP2 @ V(I + (-1)“A1,0)ng} .
a

Finally, using Eq. (IZ7) by replacing the state I,/2 ® a with I$?/4 ® & gives

1 a
MR Ea:tr (14 (~1)07 @ I£2 @ 1)?K] = tr(k) = 1,

41

(153)

(154)
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which ends the proof. ]
Proof of Eq. (I47) From Eq. ([Z9), the proof of Eq. (I47) is reduced to showing
V§(1(2®2 ®ox ® I)VS %R’VSTHVS A?”l'
From Lemma [T5] it suffices to prove
T(7®2 i) ~
tr {Ag,lvs (I$*@ox ® I)VS(VSHVS)} ~p 1.
Substituting Eq. [@9) to the LHS, the LHS leads to

1 —
~ 64 Z tr [Ai%l[[ + (=1)"A10]AT 1[I + (—1)bA2,0]Al2’71[I + (=1)°A3,0]A431

a,b,c

1+ (—1)° Az 0] A5 1 [T + (—1)" A 0] AT 1 [T + (=1)" A1 0]V £V | .
Inserting VSJr Vs = I results in

1 _
=gt [V5A371[I+ (—1)% A1) AT 1[I + (=1)"Az,0] A5 1 [T + (=1)°A5,0] Az 2 [T + (—1)°As,0] 45 4

a,b,c

(1 -+ (=1)" 43,0145 , VAV (L + (—1)% A1 0) V] (155)
Using Eq. (I27) by replacing the state I5/2 ® o with I$?/4 @ & gives that Eq. (I5H) is approximately equal to

1 _
ol tr[(f + (=107 ® IF? @ Vs Az [T + (1) A1, 0] AT 1 [T + (—1)°A2,0] A5 1 [T + (=1)A3,0] Az 1 [T + (—1)°As,0]

a,b,c

A5 AT + (=) Az 0] VA Vs AT 1 Vil (156)
Also, using Eq. (IZB) by replacing the state I,/2 ® a with I52/4® & derives the approximate relation of Eq. (I58) as

1 _
o1 PR [(03( @I @ (I + (1)o7 @ I5? @ I)Vs Az 1[I + (=1)"A1,0] AT 1 [T + (=1)"As,0] A5 1 [T + (—1)°A3,0] 431

a,b,c

[+ (=1)°As30] A5 L VAVS[I + (—1)" Az 0] V|
Next, from Eq. (I52]), we have

1
MR o Z tr [(I +(-1)Leoz@ L) (s ®IS*R I+ (-1)"0z @ I* @ I)Vs Az 1[I + (—1)*A1,0] AT 4

a,b,c
[+ (—1)"Ag 0] A5 4 [T + (—1)°As0] A3 1[I + (_1)CA370]V,S]‘L[VSAZ2),1VST]K}' (157)
Since
L@ox @L I, VsAs VI, (158)

which will be proven in Lemma B3 (iii) below, Eq. ({IE7) is approximately equal to

1
6l tr{([z @k LN+ (-1)Leos; LN 0k @ISR+ (~1)%z R IF* 1)

a,b,c
Vs Agall + (=1)"Av o] Af 1 [T+ (~1)" As,0]4b [T + (~1)° A o]V] [VsAsa (T + (~1)°A5.0) V] 5].
Using
VS{AS,LAB,O}V,; ~prx 0,
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which will be proven in Lemma [53] (iv) below, we have

1
PR o Ztr[([z Rk LI+ (-1)Looy LN 0k @I+ (~1)%; @ IL* 1)

a,b,c

VaAs 1[I+ (—1)" Ay o] AS 1 [T + (—1)° A 0] Ab 4 [T + (—1)° A3 0] VA V[T + (—1)°As,0]A3,1 VK|
Substituting VSTVS =T and ) [I + (—1)°A3,0]* = 41 results in

1
= EZ‘LY[(IQ Rk @LONI+(-1)’Leo; Lo I)(c% IL2RI)(I + (—1)%0z @ IE? @ I)
a,b

VeAsa [l + (—1)% Ay 0] A 1 [T + (—1)"As,0][A} 1 A5 1]V K.

The commutation relation [As 1, A3 1] = 0 leads to

1
= 173E:tlr[(fz Rk LRNI+(-1)"L®os LI (0% IR NI+ (—1)'0y @ IZ2® 1)
a,b

VeAsa [l + (—1)% Ay 0] A 1 [T + (—1)° Az 0] A3 1 VI [Ve AL VK|
Using Eq. ([I58)), this is approximately equal to

1
6 Ztr[(lg Qo LRI+ (-1)Leos LI (0% IR NI+ (—1)%z @ I$? @ 1)
a,b

Vs Asall 4+ (=1)" Avol A VAIVS (1 + (—1)" A2.0) Asa Vi
1
16 Ztr[([+ (-1 Lh®o, L) (0% @IS?RI)I + (-1)% ;@ IF* 1)
a,b
VsAs 1[I + (*1)GA1,0]A(11,1V5T[VS(I + (—1)bA270)A371VéT]/<;], (159)
Using

Vs[As 1, 142,0]‘/3T ~R.x 0,
which will be proven in Lemma [53] (v) below, we have that Eq. (I59)) is approximately equal to

1
o Ztr[([ F ()L ooz @ L@l (0% @I DI+ (~1) %y ®I$2 @ )
a,b

Vs Ag [l + (—1)A1,0]Af 3 Ag i VIV (I + (=1)" Aa,0) VK]
Eq. (I52) gives its approximate relation as
% E;tr [(I +(-1)L®oz@Lel)P (el RIS 1)1+ (—1)%0z @ I @ I)VsAsz 1[I + (—1)“A170}A‘1171A3,1VST/<;]
:i St [(0% © 152 @ DT + (~1)%07 © 1§ © DVs Aga [T + (~1)* Ay 0] A3 1 A5 Vis]
The commutation relation [A; 1, A3 1] = 0 implies
= i >otr (% @ 152 @ DI+ (~1)"07 1§ @ Vs Ag 1 [T + (~1) Av,0] A1 Vi Vs AL Vi
Using Eq. ([IZ6) by replacing state I5/2 ® a with I$?/4 ® & leads to

1
RRp ) tr [(U} RIZRI(I+ (-1)'0z @57 @ I)VsAsa[I + (-1)&A1,0]A3,1V§n}

1
=7 Dt [(+ (~1)%02 © I§? © Vs Aga VIIVs (I + (—1) Av0) Asa V]| (160)
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Next, we have
Vs[As 1, A10]Vd ~p s 0,

which will be proven in Lemma B3] (v) below, Eq. (I60) is approximately equal to
1
>t [(1 +(—1)0y @ IE2 @ D)V A4 [I + (—1)aA1,0]V5J[KJ:|
1
=2 Dt [+ (~)%0z © I§% @ V(I + (~1)" Aro)Vi]r] - (161)

Finally, using Eq. (IZ7) by replacing the state I5/2 ® a with I$?/4® & gives the approximate relation of Eq. (I61]) as
1 a
i S ot [(I+ (1)o7 @ I5? @ I)*k] = tr(k) = 1,

which ends the proof. |

Lemma 53 (Auziliary lemma in proving LemmalZ3) In this lemma, we define r := I$? /4 @ a.

(1)
Vsl + (—1)" A2 0)Vd mp [+ (-1)' @0z @ [, ® I
(i) For i€ {1,2},
Vs[z‘ls,mAz‘,ﬂvsT ~p.x 0.
(iii)
L®ox @1 @1 ~p. VsAz 1V
(i)
VS{A3,1,149,,0}‘/5T Rpw 0
(v) Fori e {1,2},
Vs[As 1, Az‘,o]Vér ~px 0.
(vi) Trivial extension of Eq. (I27):
I+ (1) 0 Lo L&T~p, Vs(I+(—1)%A10)Vd.
(vii) Trivial extension of Eq. (120):
ox L@ L eI ~g, VsA1Vd.

Note that (i) and (ii) are used to prove Eq. (I46]), while (iii)-(vii) are used to prove Eq. (I47T).
Proof of (i) From the triangle inequality of the state dependent norm, it suffices to prove the following.

VsV ~p I, (162)
VsAsoVd mpu b ®oz 0 Lo 1. (163)

Eq. (I62) can be proven by VSVg R0 Vep@ Vi I and by replacing Vsp(e)Vg with x, which is guaranteed by Corollary BTl
) s
and Lemma [2T] (vi). Regarding the proof of Eq. (I63]), by combining Lemmas 7] and [, we obtain

VSA2,0VSJr R Vsp©@ VI Loz I.
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By replacing Vs,o(“’)VA;r with k using Corollary Bl and Lemma 2T] (vi) gives the desired relation.
Proof of (ii) From the definition of the state dependent norm, we have

tr [(VS[A:S,O;Ai,l]vg)T(VS[AB,OvAi,l]vg)/‘i} = tr ([As,o, Az’,ﬂT[A?,,o,Am]VgHVS) .

Using Eq. (T49) and Lemma 2] (iii), the state in the trace can be replaced with p(®) as
~r tr([As0, 4i1] [As0, Ai.1]p'?)

~R Oa

where the second approximate equality comes from the approximate commutation relation in Lemma 4]l
Proof of (iii) We start from using Lemmas A7 and

Leox®L eI~y oy VsAg 1 Vi (164)

Thanks to Corollary Bl and Lemma 1] (ii), the state Vsp(g)Vg in Eq. (I64)) can be replaced with .
Proof of (iv) From the definition of the state dependent norm, we have

tr [(VS{AS,I; A3,0}V$)T(VS{A3,1,A3,0}VST)/‘L} =tr [{A:s,l, Az 0} {431, A3,0}VST/<6VS} .
By using Eq. ([49) and Lemma 2I|(iv), we can replace V;r kVs in the trace with p(®) as

~p tr [{A3,1, Az 0} {431, A3,0}p(9)]

~R 07

where the second approximate equation is from Proposition

Proof of (v) The proof can be done by following the same arguments in proving Lemma B3] (ii).

Proof of (vi) Following the same arguments done in the proof of Eq. (I27) by replacing I5/2 ® a with & gives (vi).
Proof of (vii) Following the same arguments done in the proof of Eq. (I26) by replacing I5/2 ® o with & gives (vii).

I. Approximate relations of tilde observables and Pauli observables

In Sec. [VHl we have proven that the non-tilde observables A; o and A; 1 for ¢ € {1,2,3} are approximately equal
to the Pauli observables under the swap isometry Vg. In this section, we prove that the tilde observables, introduced
in Eq. (@), are also approximately equal to the Pauli observables. For this, we first prove that the tilde observables
are approximately equal to the non-tilde ones.

Lemma 54 For any efficient perfect device D = (S,II, M, P), we have for any 6 € B,

Vg2q3 € {01,10,11}, A1 0455 Ry (D)o@ A1,0,
Vaags € {00,01,10}, At 1405 X (py @ Al
Vqigs € {01,10,11}, Az 4,005 (D), p@ A2,0,
Vqi1g3 € {00,01,10}, Az g1g5 Ry (D), p0 A2.1,
Vqiq2 € {01,10,11}, A3 4,4,0 Ry (D), o0 A3.0,
Vqiq2 € {00,01,10}, A3 q1951 Ryp (D), o0 Az 1.

(Proof) We prove A; o1 Ry (D), p(® A1,0. The others can be proven analogously. Once we prove
A1,001 Ry (D), pt000) Al0, (165)

Lemma 1] (ii) implies A; go1 Non(D),p® A1 for any 6 € B. The conditions of Lemma 1] (ii) are guaranteed by
the computational indistinguishability of p(®) in Lemma [BI] and by the fact that A1 001 and A; o are efficient binary
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observables. Therefore, it suffices to show Eq. ([IG3). Moreover, thanks to Lemma [I3] (ii), the proof is reduced to
showing

A1,001 Ry (DY,00010.020.08) Al 0.
From the definition of 47 (D) in Eq. (IZ)) and Corollary 28 we have
A1,001 Ry (D), 010000 (—1) T, A0 R (D) g0 v0000s) (1)1
for any v € {0,1}3. Hence, the triangle inequality of the state dependent norm results in

A1,001 Ry (D), (0:1;0,v20,03) A1,07

which ends the proof. |

By using this lemma, the tilde observables are shown to be approximately equal to the Pauli observables.
Corollary 55 (Approzimate relation of tilde-observables and Pauli observables) For any efficient perfect device D =
(S,II, M, P), we have the following for any 6 € B,

Vgags € {01,10,11}, Ay 04,05 R oo Va(oz @ I ® I @ I)Vs, (166)
VYgags € {00,01,10}, Ay 14,05 R oo Valox ® L ® I @ ) Vs, (167)
Ygigs € {01,10,11}, As 4005 R po Va(l2 ® 07 ® I ® ) Vs, (168)
Yaq1gs € {00,01,10}, Az 4145 R0 Va(lz @ ox © I, ® I)Vs, (169)
Yaigo € {01,10,11}, Az 0,0 R 0 Va2 ® L ® 07 @ I)Vs, (170)
Vaige € {00,01,10}, Az 001 R p0 Vi(lo @ L ® ox ® I)Vs. (171)
(Proof) Egs. ([I66])-(I7I)) can be proven by combining Lemma[54] the triangle inequality of the state dependent norm,

and respectively with Eqs. (@), (I00), (I21), (122)), (I46) and (I47). |

J. Approximate relations of joint observables and products of Pauli observables

We have shown so far that any single non-tilde observable and any single tilde one are approximately equal to
the Pauli observable in Secs. [VHI and [Vl respectively. Our next goal is to prove that the joint observables such
as Aj 0A2,0A43,0 are approximately equal to the products of Pauli observables under the swap isometry Vg. These
relations will be shown in Lemmas [59] and [61] which are the crux of proving our main result, Theorem To
derive these relations, we first prepare the extended statements of Lemmas 9 and [50] and Corollary [51]in Lemmas [56]
and [0 and Corollary B8] respectively.

Lemma 56 (Extension of Lemma[{9) For any efficient and perfect device D = (S,1I, M, P), we have for any v €
{0,1}2, there exists positive matrices a(0v130,0250,08) © §(0,0150,0251,03) - §(0,0131,0250,038) gy G(Lv130:02:0:03) gichy that the
following holds.

(1) Vso @000 ] e oy (0| @ [02) (v2] @ [vs) (vg] @ GO 002100) (172)
() Vo8tV s o) ] ) (0] © () (- )v3‘®~<0v1,0v2,1,1,3> (173)
(i) Voo @m0 VT s oy (o] @ (=) ){(-)7 ] @ [og) vy @ G001 0)

(iv) Vo100 Ve e (=) {(=)"] @ [ua) o] @ [us) (vs] @ GC1r0w0m) (174)

(Proof) By following the same arguments done in the proof of Lemma 9] we prove (iv). The others can be shown
analogously. First, from Lemma [52] we have

As 0 ~p 000 VIIS? @07 @ I)Vs,
and from Lemma [I3 (ii), this implies

A3,0 %R’U(l,vl;o,vz;o,vg,) VST(12®2 ® Oz ® I)VS
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Using Lemma 20] leads to
Agfg) R R,o(1,v1:0,0230,03) Vg(]g)z X |’l}3><’U3| ® I)VS
From Lemma [ (i), we have

3t [Agfg%ﬂm;Oyvz;ovv@] ~p >t [v;(12i®2 ® |vs) (03| ® I)vsa<1wn0xv2%0w3>] . (175)
v v

We find that the LHS is approximately equal to 1 from Lemma H0 and the definition of y7(D) in Eq. (IZ), namely
Ztr |:A:():~,7(3))0-(1,U1;07v2;07v3)} ~o Ztr |:A:():~’7(3))0_(0,U1;0,v2;07v3)} ~p 1.
v v

Hence, the RHS of Eq. (I75) is also approximately equal to 1:

>t [VAUS? © o) (va] @ DV mi0020m) | 1,

By applying Corollary 28 and Lemma [I6 this implies

1(282 & |’U3><'U3| &I zRVS(,(LUI;o,vg;o,vg)vsl‘ I

From Lemma B, Vo (1v1:00200) VT s close to |(—=)¥1) (=) @ |vg) (va| @ @101:0:02:0:03) - and Lemma [I7 (i) enables
us to replace these states. In doing so, we obtain

I3 @ |v3) (vs] ® T %, 2y ()71 @ ua) oz @t a0y T
By combining this with
Lemma0: Vo000 VE mp |(=)7) (=) @ [vz) (va] @ altiOve0es)
and Lemma [I8 we finally obtain
Vs 00Vl ap T|(=)" ) (=)™ ] @ foa){va] @ a1 m0m0)] 1

~r (157 @ |vs){vs] @ D[|(=)" ()" @ Jz) {vz| @ @H01 0200 (152 © Jug) (vs] @ 1)
= ()" )(=)"] @ |v2)(va] © |v)(vs] @ Gl 0ei0wa),

where we define G(1:v1:0v2:0:08) .= (3| @ T)G(Lv1i0v2:008) () @ T). [ |

Using Lemma [56], we next show the lemma that is an extension of Lemma

Lemma 57 (Eztension of Lemma[dl) Let D = (S,11, M, P) be an efficient perfect device. There exists a normalized
state & such that the following holds for any v € {0,1}3.

(i) Vo Oriow0e)yt £ lv1)(v1| ® |v2>8<v2| ® |vs)(vs] & -
) Vostmamt g &, [l @ Pl 2 ("N ; .
(i) Vo Ovriteaitualyd < p [v1) (| @ |(—)"2>8<(—)“2| ® |vs){vsl o = (178)
(iv) Vgohvnitwatwa)yl < p [(=)"){(=)"] ®2|3v2><v2\ ® fos)vs| = -

(Proof) The proof is similar to the one of Lemmal[50, but we give the full proof for completeness. We first prove (iii), and
by using (iii), we prove the rest of the relations. To prove (iii), we need to show that {a(%-viit:v2i0vs)} . are com-
putationally indistinguishable. For this, we already have shown in Lemma B0 that {} @Ov13Lv2:0v3) 1 are compu-

tationally indistinguishable for any v1, and by considering Lemmas 49 and [56, this implies that {_ 0wl v2i0s) 1
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are also computationally indistinguishable for any v;. Therefore, the remaining task is to prove that {5[(0’”1?1’”2;0’“3) bos
are computationally indistinguishable for any fixed v; and vs.
In the following discussions, we fix v; and v9. From Lemma [5G there exists a d > 0 such that for any vy, vs, v3,

- 2
[V @mit sVl — jug) (] @ [(=)")(=)7] @ [os) o] @ GO 10| | "< e, (180)
- 2
[V @m0ty — jon) (un] @ [oa) {ua] @ (<)) (=) | @ GO0t < ¢ (181)
hold with € := O(y7(D)%). From Lemmas [9 and (6, we have that
tr | My Z &(O,UI;l,vgzo;O,vé) —tr | M, Z &(O,vl;l,vgzl;o,vé) < 2\/g (182)

/ ’
U3 Vg

holds for any v; and any efficient measurement M := {My, M }.
For the sake of contradiction, we assume that there exists a POVM A := {Ag, A1} with Ag + A; = I such that

‘tr {AO&WWIJW%O’UF(’)} —tr {AO&(O’W!”%MB:D” > 2u(X) + 42v/e (183)

holds with a non-negligible function p(A). Under the existence of this POVM, we can construct an adversary A that
breaks the injective invariance property in Definition ] using an efficient measurement {I", I — I'} with

I = Vi (o) (0] @ ()" ){(=)*] @ [0)(0] & Ao) Vs

Below, we describe the procedure of A that breaks the injective invariance property.

A is given keys (k2, k3), and the task is to distinguish whether the input is (62, 63) = (0,1) or (02,65) = (1,0). For
this, A samples the other key and a trapdoor (ki,tg,) + GENg(1*), prepares the state ¢(®) by performing the same
operations as the device D, measures the Y-register to obtain y, followed by measuring the R-register to obtain d. At
this moment, A prepares the state p(®). Finally, A performs the measurement {T",I — T'}. This procedure is efficient
because the device D and the POVM {I',I — I'} are efficient. In this procedure, we calculate the distinguishing
advantage Adv in obtaining the outcome corresponding to I for the states p(°1?) and p(®Y. Once we show that this
advantage is non-negligible under Eq. ([I83)), this contradicts the injective invariance property. Hence, by taking a
contraposition, we obtain the negation of Eq. (I83]), which is the required statement in the proof. By this discussion,
we only need to prove that the advantage Adv is non-negligible from Eq. (I83]), which is shown below.

First, by the definitions of I" and p(®), we have

Adv ::\tr[F(p(Olo) _ p(001)>]|

tr [<|v1><v1| ® |(=)"=){(=)"*] © [0) (0] © Ao) (Z Vso Oty -3 vsa<°’”i%0’”é*1’”é>vs*>

' . (184)
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By applying Eq. (II6) with Eqs. (I80) and (&), we have
Advz] 3 (ool @ 1)) ©10)(01 ® Ao) (15 5] @ (=) 4)(-)% | @ fuhuh] © AOwistei0ed)

v'€{0,1}3

— [0} (0] @ Jug) ] @ |(=)"3)((=)"3] @ GOwE0wsi1ed ) | ! —16ve

~(0,v1;1,v9; 1 Z(0,v1:0,05;1, 08
e [ogomitsno] -1 e [aqomonsnns)| 16z

1oyl
712,1)3

— %tr {AO(&(O’UHLU%O,O) _ &(O,Ul;lwz;o,l))} 4 %Ztr[AO&(O,vl;l,vmowé)] _ i Z tr [AO&(O,m;OvUé;LUQ)} _ 16ﬁ

/7 ! i
V3 Va,V3

]_ ~ . . ’ ]_ ~ . !, !
>p(A) 4 5v/e — 3 Ztr[Aoo?(O’”l’1’U2’[)’v3)] 3 Z tr [Aod(o’vl’o’%’l’ﬂs)}
vl vh,vh

1 I | = (0.oriL 0.0,
>p(\) +5ve— 5 3 tr[Aga Ot es 0] 5 > tr {AO&(O’”LL%»Q%)}

’ / ’
L| vy V5,Vs

+ % Z tr |:AO&(O,U1;1,'UE;O,1)§):| _ % Z tr {AO&(O,vl;O,q)é;l,vg)} 1

/7 ’ ’ ’
Va,V3 Va,V3

1 ~ . . ’ ~ . . ’
>u(\) + 4v/e — 3 3t [Ao (d(o,vl,l,vz,o,vg) _ d(o,vl,o,vz,l,vg)ﬂ

i
’U2,’L)3

=p(\) +4v/e
- D tr [Ag § o) w1 | @ (1(=)"2)((—)"2| @ [vj) vh| @ &OUE00) — Ja) (uy| @ [(—)"8)((—)"8] @ GO0t a) L) |
4

i
UZ’US

where we use the triangle inequality and Eq. (I83)) in the second inequality, the third one follows from the triangle
inequality, and the fourth one comes from Eq. (I82). Again, by applying Eq. (II6) with Eqs. (I80) and ({IXI), we
obtain

]_ . /., ’ . 7, ’
Adv >p(X) — ik Ao Z VgoOvnitvaids) il Z Vgo(Owidailes)

’ ’ ’ ’
Va,U3 Vy,V3

Finally, by Eqs. ([H), (I8) and p® := 3" o(01:v1i02,0203,v8) “this is equal to

1
1 (010) _ (001) ‘
0~ oo o0 o)
with
W= Y lmmlViAdVs D gl
y1:b(k1,y1)=v1 y1:b(k1,y1)=v1

The measurement {W,I — W} is efficient since A has the information of the trapdoor ¢, and computing B(kl,yl)
is efficient. Hence, the computational indistinguishability in Lemma Bl reveals that the second term is negl(\).
Therefore, we conclude

Adv > p(N) — negl(A),
which contradicts Lemma BI] and completes the proof of Eq. (I78]).

Next, we prove Eqs. (I70), (I77) and (I9) using Eq. (I78). First, from Eq. [I78]), we have

®3

. . I 5
> Vo Ombestmyi Ly 294,
v



a0

Since p®) are computationally indistinguishable from Lemma BT and the isometry Vg is efficient, we also obtain

13°
8
1$°

Z VSJ(O’U“O’W;I’US)VST éR 5 &
v

I®3

. . & =
Z Vsa(l’vl’o’”"”o’vg)Vg RR 728 ® a.
v

. . (&3 =
E VS(T(O,ULUW%O,US)VQ ~R ® a,
v

szz

From Eqs. (I72), (T3) and ([I74)), we respectively obtain

Z(0,v1;0,v2:0,v3) S é
V1/){V1 V2)(V2 V3 )\U3 o ~R 19 g
D ol @ 37 fea) (o] @ Do) (es] @ GO0 g [0 e 2
v1 V2 v3
% (0,v1;0,v2;1,v, 0:‘
Do lon il @Y oadfua © Y (-)#) ()] @ &On0m) 2 1P o
V1 v2 U3
= (1,v1;0,v2;0,v3) < &
DI @Y oa)(va| @Y Jus) (vs] @ &1ri0v200s) 2 [9% @ .
U1 V2 v3

Since these approximate relations hold for any efficient prover, these relations hold when the first, the second and the
third registers are measured in the Pauli bases. By considering such a prover, we have

/(05v1:0,v2;0,v3) ~

L
=

co| Qu co| Qu co| Qu

/(0:01:0,v2;1,v3)

Qe
=

= . . c
a(17v170,v2,0703) ~p

By applying these three approximate relations to Eqs. (I72)), (IT3) and ([I74]), we respectively obtain Eqgs. (0], (I77)
and ([I79), which completes the proof. |

With Lemma [57 in hand, we obtain a simple corollary describing an approximate relation of state p(®).

Corollary 58 (Extension of Corollary[2d) Let D = (S,11, M, P) be an efficient perfect device. There exists a nor-
malized state & such that for any 0 € B,
¢ ISP -
Vsp OV =g % ® Q. (185)

(Proof) Taking the sum of the equations in Lemma [57] over v yields the statement for 8 of the test case. We can lift
up the statement for any @ € B thanks to Lemma [31] |

Below, we present three crucial Lemmas (9 [60] and [61] for proving our main results, Theorem The following
Lemma (9] shows that any two joint observables are approximately equal to the products of the Pauli observables.

Lemma 59 (Characterization of the first and second observables) For any efficient perfect device D = (S, 11, M, P),
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we have the following for any 0 € B.

Vs(A1,042,0)Vd Rpvspovi (02©07 @ L&), (186)
Vs(A1,043,0)Vd Rpvsp@vi (020 L @oz @), (187)
Vs(Az,043 0) R R Vep@ Vi i (L®oz@0z 1), (188)
Vs(Aq,1 4z, 1) R Vsp@ V] (ox®@ox@L®I),

V(A1 431)Vd ~RVsp@ Vi (cx®@L®ox ®I),

V(A2 Az 1)V AR Vsp©@ Vi (L®ox ®ox @),

Vs (A1,00142,000)Vs R vy povi (02 @0z @ 1@ 1),

o

A1,00143,000)Vs X g v por vt (0z@L®ox @),

o

Az,00143,001 R Vsp@ V] (LRoz@ox ®I),

o

A1,01042,010)Vs X g v p@rvi (02 @ox @ L@ 1),

o

A1,01043,010)Vs Ry porvi (02 @ @ o7 @),

o

A2.01043,010 LRoxRoz 1),

(
(
(
(
(
(
(
(
(
(
(
(
(A1,10042,100
(
(
(
(
(
(
(
(
(
(
(

MR Vsp® V]
Vs R Vsp@ Vi ox ®oz @I ®I),
Vs(A1,10043,100)Vs R g v oyt (0x @ @07 @ I),
Vs L®oz®oz®1I),
Vs(A1011 42,011 oz®@0x @ L®I),

R Vsp©@ Vi )
)

RVSp(B)VT 0z ®IQ ®UX ®I )

o

A1,01143,011

o

AQ 011A3 011

A1,101 42,101 ox ®oz @I, ®I),

MR Vsp® V]

Frvsp@vi (0x @ L®ox ®I),

R,Vsp(s)v IQ®UZ®UX®I)7

RVsp(e)V ox ®UX®IQ®I)7
Vs

Vs

Rvsp(e)vT gx ®IZ®UZ®I 3

W3
Vs
Vg
Vs
Vs
Vg
Vs
Vg
A2,10043,100)VE 2 oy
Vg
Vs
Vs
Vg
Vs
Vs
WVg
Vs
W3

i (
o (
i (
i (
i (
(
Rpyspovi (L @ox @ox @),
i (
(
i
i (
(
(

)
Az2,11043,110)Vs R g v po v L®ox ®oz®I).

Note that Lemma [59 will be used to prove Theorem [62] (ii).

(Proof) We prove Eq. (I80]), and the others can be shown analogously. As [A41 9, A2,0] = 0 from Lemma B9, and A, ¢
and Aj o are efficient binary observables, Lemma [IT] implies that A; 9Asz o is an efficient binary observable. Since Vg,
Ay 0As,0 and oz are all efficient, Corollary BIl and Lemma [2T] (vi) reduced the proof of Eq. (IS8]) to showing

VS(ALOAQ,O)VST RRr0z®0zQI®1.
Recall that k := I, ® I5/4 ® & From Lemma [T5] it suffices to show
r(oz®0,0 0@ I)(VSAl,OAz,OVg)n} ~r 1. (189)
Here, we recall that

Eq. (@4) and Lemma|:|_7,_ﬂ:>VSAl70VSJr R R vspo Vi 02 © I eI, (190)
Lemmas [19 and 471 :>V5A2,0VST R R Vsp@ Vi LRz RILRI, (191)



and using Eq. (I4]) and Lemma 2T] (vi), Eqs. (I90) and {I9I)) imply

VsAioVd ~p oz @152 @1,
VsAooVi mpe h®oz @ Lo 1.

Hence, using Eqs. ([92)) and (93], the LHS of Eq. (I89) is computed as

—tr [(gz 20,0 ® 1) (VsALoVd)(Vsda Vi )n]
07 ® 078 L& 1) (VehoVi) (L ® oz @ Lo Dl

e
—tr { 70L& L ® 1)(VSA1,OVST)K}

trl(oz L LRI 0oz Q1 ® I, @ I)K]
=tr( )

=1

)

92

(192)
(193)

where Eq. (I93) is used in the first approximate equation, the commutation relation [Io ® 0z ® I> ® I, k] = 0 is used
in the third line, and Eq. (I92)) is used in the second approximate equation. |

We next prove that any three joint observables are approximately equal to the products of the Pauli observables.

Lemma 60 For any efficient perfect device D = (S,1I, M, P), we have the following for any 0 € B.

Vs(Aq 0A2 0As Q)V R7Vsp(g)vg (UZ Roz R®RozQ I),
V(A1 1401 451)VE ~, Vsp(e)VST (cx ®@ox ®@ox @),

o

Ar,00142,00143,000)Vs ¥ p v o vt (0z®@0z®0x @),

o

A1,01042,01043,010

(

(

( )
( SR Vsp@ V] (0z®@0x ®oz 1),
(Al 10042,10043,100 )
(

(

(

o

R,Vsp(g)v (UX ® Oz & 0z ® I )

o

oz R0x ®ox ® 1),
Vs

Vi
Wi
Vi
A1 0114201143 011) N R Vep®@ v
Wi
Vs )\

i )
RVsp("’)VT (UX®0'Z®UX ®I)a
(Jx®dx®dz®f).

A111042,11043,110 N R Vsp©@ v

Note that Lemma [60] will be used to prove Theorem [62] (ii).
(Proof) We prove Eq. (I94)), and the others can be shown analogously. Since [A3 0, A10A42,0] = 0 from Lemma [39]
and As o and Aj 0As o are efficient binary observables as explained in the proof of Lemma [59, Lemma [[T]implies that

Aq,042,0A43,0 is also an efficient binary observable. As Vg, Ay gA2,043,0 and oz are all efficient, from Lemma 2T] (vi)
and Corollary B8 the proof of Eq. (I94)) is reduced to showing

VS(A170A270A3,0)VST 23 L0z Q0z Q07 1.
gl ® Oé
=:¢

From Lemma [I15] and Vg Vs = 1, it suffices to show

Here, we recall that

tr [(o—g?’ ® I)(Vs A1 oVi) (Vs Ag oV )(VSAB,OVS%} ~r 1.

Eq. @) and Lemma [0 =VsA; oVI ~ RVep@v! 92 ® 2291,
Lemmas [19 and 47 :>VSA270VS1; R R Vep® Vi LRozRILRI,
Lemmas [T9 and :>V5A3,0VST R R Vsp@ Vi 158’2 RozR1,

(194)

(195)

(196)
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and Corollary (8 and Lemma 2T] (vi) lead to

VSAl,OVg ~Ro oz RIS, (197)
VSAz,OVg Rproela®@oz @I ®1, (198)
VsAs oVl mpy I @0z @ 1. (199)

By using Eqgs. (I97))-([[@9) and Lemma [T (i), we show that the LHS of Eq. (I93]) is approximately equal to 1.
tr :(Ug?’ ® I)(VSALOVSI)(VSAZOVQ)(VsAs,oVsT)qﬁ}
~optr [(088 @ 1) (VsAroVd) (Vs Ao VI IE2 @ 07 ® 1)¢}

—tr (152 © 07 @ 1) (05" @ 1) (Vs Ar,0 V) (Vs Az,0 V)9

~ptr [(15@2 Roz @) (022 @ N(VsAoVHUIS? oz 0 I ® I)q&}

U200z 0 Lo I 0o,@1)(023 @ I)(VSALOVST)qs]
(

~ptr (@ oz @ L @ 1) (157 © oz @ I)(03° @ 1) (07 ® I @ I)¢]
=tr(¢)
=1

)

which ends the proof. |

By exploiting the result of Corollary B8] we show that the prover’s measurements corresponding to obtaining the
outcomes vg @ dy, 1 - V2, V2 B 0y, 1 - V3 and vy @ dy, 1 - V3 at step (e) of the protocol in Sec. [[T]l are approximately equal
to the generalized stabilizer measurements of the entangled magic state CCZ|+)®3.

Lemma 61 For any efficient perfect device D = (S,II, M, P), the following holds for any 0 € B.

VS<A§?())01A3,001 + 14(11))01142,001143,001)‘/;r R Vep OV (Ug)) ®Ilhox + U(Zl) RozR0x)® Iy, (200)
Vs (A% 1042010 + AT)10A2.01043,010) Vd ~ R Vsp@ V] P @ox®h+o}) @ox®oy)® I, (201)
VS(Al,looAg?ioo + Al,looAéﬁoo143,100)‘/5T ~R,Vsp® V] (ox ® O(ZO) @IL+ox® U(ZI) ®oz)® Iy. (202)

Note that Lemma [61] will be used to prove Theorem [62] (i).

(Proof) We prove Eq. ([200), and the others can be proven in the same way. Note that (A§?301A3,001 +
A(1T301A27001 As.001) is an efficient binary observable  acting on the Hilbert space H that determines the bit 6,, 1-ve®vs.
Using Corollary

Oyt b=
Vsp VSNR?@@(I:?(ZS,

and Lemma [2T] (vi), whose conditions are satisfied because (Aﬁ%mAg,om + AnglAg,OOIA&OOl) and (O'(ZO) RI®ox +

)

a(Zl ® 0z ® 0x) are efficient binary observables, reduces the proof of Eq. (200) to showing

VS(Ag%mAs,om + A(ﬁ())ol142,001143,001)Vér RR.é (U(ZO) @I®ox + J(Zl) R0y R ox).

By using Lemma [T8] it suffices to prove

0 1 0 1
tr (U(Z) ®ILox + U(Z) ®oz® UX)VS(Ag,)mAs,om + A§7301A2,001A3,001)V§¢} ~p tr(¢) = 1. (203)
5 Since (A% 401+ Ao A2 o1 Ayoor) = (204 B0+ PID 1 FQ) — (RS 1 PO 1 PO 4 P from i

calculation using Eq. (@), we find that this operator is an Hermitian linear operator and has eigenvalues +1.
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The LHS is equal to

tr | (o VebLoox+ U( ‘oz ® UX)[(VSAl 001VST) + (VSAS())MVST)(VSA2,001V5I)](VSA37001V;[)¢ : (204)

=:C

From Eq. (I71) and Lemma [T9] we have
Vs As 001V Rpvspovi 2@ L®ox @1,
and the state Vs,o(‘(’)VSJr can be replaced with ¢ thanks to Lemmas [2]] (vi) and Corollary B8] as

VSA3,001VST Rpolo@L®ox 1.

Since the operator norm of C' defined in Eq. (204]) is constant, from Lemma[I7] (i) we have the approximate equation

of Eq. (204) as
tr {( D@L eox+09) ©oy@ax)(VeAD V) + (Vs AL V) (Vs Az 00 VI (R I, ® ax)qﬁ}
=tr |(0f) @ I§* + o)) © 07 @ L) (Vs Ay, V)]
+r |(0F) @ I9% + 0 © 07 @ 1) (Vs ALY V) (Ve Az V)9 (205)
where we used the commutation relation [I; ® Is ® ox, ¢] = 0 in the equation. In the following, we compute the first
and the second terms of Eqs. (208]) separately.
First, we calculate the second term of Eq. (208]). From Eq. (I68) and Lemma [[9, we have
Vs Az, 001V Rpvsporv 2®0z@ L@ 1.
Using Lemma 2T|(vi) and Corollary E8 enables us to replace Vs,o(e)VsJr with ¢ as
VSA2,001V51L Rpolao®oz 1.
From this and Lemma [T (i), the second term of Eq. (205 is approximately equal to
tr[(0f) @ 152 + 0f) @ 05 0 B) (Vs Al V(L @ 02 © I @ 1o
—tr [(ag)) ©oz® I+ oy @ IE%)(VsA )0 V6| (206)
where we used the commutation relation [l ® 0z ® I> ® I, ¢] = 0. Using A1 001 = )_,,, ., (Pégqum) PO%TQW)) from
Eq. @ and I =3, . (Péov2v3) Po%fzvr’)) leads to

I+ (=1)2A4; 001

b
A(1,())01 = 2 (207)
Substituting this to Eq. (206), Eq. ([206) equals
1 1
Str [(a<Z> ®oz I +0d) © Iy ngs} Str [(agn ® oz ® I+ 0 @I (VsAron V)| . (208)
Its first term can be computed by using
VsV Roveporvi 1= VsV mpg 1, (209)

which is guaranteed by Lemma 1] (vi) and Corollary B8 and Lemma [T (i) as

tr [(a;m Roz®L+0) ® 12®2)vsvg¢} ~r tr [(10)(0] ® 07 @ I + 1) (1] @ I9?)¢] . (210)
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Next, we compute the second term of Eq. (208). From Eq. (I60) and Lemma [[9 we have
Vs A0V R vep@v] 02 ® I$? 1.
By employing Lemma [21] (vi) and Corollary B8 this leads to
VSAl,ooleT RRo 0z @IS @ 1. (211)
From Lemma [T (i), the second term of Eq. (208) is approximately equal to
tr [(Ug)) Roz @I +05) @I (07 ® I§®2)¢} =tr [(|0)(0] ® 07 ® Lo — [1) (1] @ I$?) ] . (212)

Combining Eqs. (ZI0) and ZI2), we find that Eq. 208) is approximately equal to tr[(|1)(1| ® I$?)¢]. Hence, the LHS
of Eq. (203)), which is the main target of computation in the proof, is approximately equal to as

LHS of Eq. (203) ~g (first term of Eq.([208) + tr[(|1){1] ® T2 ® > @ I3)d]. (213)

Hence, the remaining task is to compute the first term of Eq. (209)).
Using Eq. (207), we have that the first term of Eq. (205) is equal to

1 1
St [(a?) 212 +oV 2oz ® 12)(VSV§)¢] + 5t [(ag” DI +o @0z ® 12)(VSA17001V§)¢] .

From the right part of Eq. (209) and Lemma [I7 (i), we obtain

1 1
5T [(of) RIP®+oP 9oz ® IQ)(VSVST)gb} R i [(af) RIP®+oP 9oz ® Ig)(b} .

Also, from Eq. 211 and Lemma [ (i), we have
1 1
Qtr |:(O'(ZO) &® 158)2 + U(ZI) oz & IQ)(VSA1)001V§)¢:| %Ritr |:(0'g)) ® 158)2 + O'(Zl) Roz X IQ)(O’Z ® 1582)¢i| .
Hence, the first term of Eq.(208) is approximately equal to
1 1
5T [(U(ZO) ®I®+oP @0z ® Ig)d)} + 5tr {(ag)) ®IP2+0P @0, 0 )(0z® I§2)¢]
=tr [(|0)(0] ® I$* @ Ip)¢)] .
Finally, substituting this into Eq. (2I3]) results in

LHS of Eq. @03) ~g tr(¢) =1,

which ends the proof. |

K. Certifying entangled magic states

Theorem 62 We define the Z-rotated entangled magic states as
657"} = (0% @ o ® 05)CCZ| 1)
with CCZ representing the controlled-controlled-Z gate. For b € {0,1}, we use the notation
[bo) == [b),  [b1) :=[(—)°)

Let D = (S,11, M, P) be an efficient device, the device’s Hilbert space be H, o(1:51:1:52:1:53) be defined in Eq. (27), and
H' be some Hilbert space. Then, there exists an isometry V : H — C¥ @ H', and a constant d > 0 such that there are
normalized states ((5152:53) € D(H') for s1,59,s3 € {0,1} satisfying the following. In the description, vp(D),yr(D)
and vy (D) are defined in Lemmas 24, and [28, respectively, which are the device’s probabilities of failing the
verifier’s checks in the preimage round, the Hadamard round with the test case, and the Hadamard round with the
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hyperpgrah one, respectively 6.

(i) The unnormalized state of the prover in an Hadamard round is close to the entangled magic state up to the isometry
|

Vobstils2ilsa) i o §{51752»53)| ® 4(51782,83)’

1 81,82,8
1 (DYe (DY (D) 510 (@

where the different ¢(51:52%3) qre computationally indistinguishable.
(ii) Under the isometry V, the measurements {Pq(f;fgs}%b,c acting on the prover’s state o(151:1:5231:53) s close to the
Pauli-Z and X measurements acting on the entangled magic state |¢S1’S2’33)>:

abe s1;1,82;51,s: abe 1 S81,82,8 51,82,8
VP(Z(1L?21<330-(17 il J)Pq(lgzgsvT %“/P(D)d+WT(D)d+’YH(D)d §(|a‘h’b92’c%><athvqu’clk,l)‘(ﬁgll : 3)><¢£Il ’ 3)‘

(la’lh s bgss an><aq1 s bgs» Cgs ) ® C(81782753)-

In the both proofs of (i) and (ii), by Lemma[B0 up to an additional error O(y/yp (D)), we can assume that the device
D is perfect 7. In these proofs, we take the isometry V as the swap isometry Vg defined in Eq. ([@2).

1. Proof of (i)

First, using Eq. (200) and Lemma [I9 leads to

1
A1 43,001 + A1 Az,001 43,001 Fp o V2 (Z i) (i| ® o ® 0x> Vs. (214)
1=0

By applying Lemma [T3] (ii) to this, we have

1
0 1 Ny ;
A§,301A3,001 + Ag7301A2,001A3,001 N R,o(Ls1il,53i1,53) VST (Z i) (i| ® 0 @ UX) Vs.
i=0

By noting that the LHS and (ZLO i) (i| ® 0, ® ox) are both binary observables, Lemma 20 implies
1 (a)
(A 01 45,001 + A01 42,001 45,00) @ Rp p1o1it2i1.05) VA <Z [i)(i| © o ® UX) Vs.
i=0

Using this and Lemma [I7 (i) leads to

1 (a)
tr <Z |4)(i| ® O-iZ ® O'X) <,0(51’52’S3) ~p tr (Ag?301A37001 + AS())(HAZOOIA&OOI)(a)a(l’sl;1’82;1’83)} , (215)
=0

where

()0(51752753) — Vso-(1751§1782;1753)v‘;f.
By the definition of vg (D) given in Eq. (20]), we have

> tr [(A§?301A37001 + Ag())01A27001A3,001)(83)U(1731;1782;1783)} Ny (D) 1,

6 Note that yp(D),yr(D) and g (D) are upper-bounded by the probabilities of obtaining the flag in the preimage round, the Hadamard
round with the test case and the Hadamard round with the hypergraph one, which are shown in Eqgs. (@), (I7) and ([32]), respectively.
7 Note that Lemma [30] implies the statement for o(151:1,52:1,53) since application of a CPTP map cannot increase the trace distance.
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and by using Lemma 27] and Vg Vg =1, this leads to
tr[(A(l?(%01A3,001 + A§%301A2,001A3,001)(53)0(1’51‘1’52;1753)] z’)’H(D) tr(¢(31’52753)). (216)

Combining Eqgs. (2IH), (2I0) and the triangle inequality results in
1 (s3)
tr <Z i) (i| ® 0% ® Ux> @(3152:53) | o tr(p(s1:52:93)) (217)
i=0

Using Lemma [I4] (by noting that Vso(l’sl?1’32‘1’53”/;r >0 and Z}:o i) (i| ® 0, ® o x is a binary observable), Eq. I1)
and Lemma [T6] lead to

1 (a)
O§a) = (Z i) (i] ® O'iZ ® Ux> R R p(152:53) Oa,s3]-
=0

By replacing Eq. [214)) with Eqgs. 201I)) and (202), and by following the same arguments done so far, we respectively
obtain

1 (b)
b N i
Oé ) = ( E |Z><Z| Rox X UZ) %R}So(sl,szysg) (51)752]
=0

and

1 (c)
Oéc) = (UX ® Z i) (| ® JZZ> R R, p(51:52:53) Oc,s, 1.
=0

Once we have

Oga) AR, p(s1:52.53) 611,53]7 (218)
Oéb) %RﬁD(SlezvSs) 517,82‘[’ (219)
O;(SC) %R,SD(SLSTSS) 50,31[’ (220)

we can prove

90(31752753) ~p O§51)Oés2)0533) (Z 90(51752,53)> O§53)0é52)0§51)
s

eVeoboibsabe) il ~p 0L 0f2) 05) (151 v H ol of=) 0§ (221)

The proof of Eq. (22I) can be done by showing the following eight approximate relations and using the triangle
inequality of the trace distance.

P(515293) o 0L O O(53) s1:52.53) O(59) o) o), (222)
0~ OS2 O pls192,39) o) O52) O(o1), (223)
0~ OFDOFD ) pls192.39) Os) O52) Oo1), (224)
0 ~p OFD 0L OF) pls1.82,59) 0 (59) o) Ofo1), (225)
0 ~p OO 012 pls1.52.50) 0ls2) o o2) o o) (226)
0~p Oéﬁ)oész)OF)@(Sl,52,53)0553)()&52)0?), (227)
0~p Oém)Qé@)O§§)¢(31,52,53)0553)0552)01(351)7 (228)
0~p Oéﬁ)()g@)Ogﬁ)w(sl,32,53)05%)0?2)()?1). (229)
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The proofs of Egs. (222))-(229)) are as follows. Using Lemma [[3] (i) (by noting (Oéb))TOéb) = Oéb) < 1), Egs. 2I8)) and
E19) give
Oga) ~R,p(s1:52:53) 5(1,33[ = Oéb)oga) ~R,p(s1:52:53) 5(1,33051))'
According to the value of s3, this yields the following two approximate relations:
Oéb)0§83) AR, p(s1:52:53) Oéb) R R,p(51:52:53) (51,,82[, (230)
O O g s eaesy 0. (231)

By employing Eq. 220), Eqs. 230) and (231) respectively lead to

0500 xp iy aegy [ = { 8?;8%;8%; :i:ﬁj é (232)
OS50 g oy neyy 0= OF1OFD 00 gy ey a0 (233)

and
00D O mpy sy 0. (234)

There are eight approximate relations in Eqgs. (232)), [233) and ([234), and combining each approximate relation with
Lemma [I8 derives Eqs. [222)-

Now, we have Eq. (22I]), and O 51)0(52)0(53 in Eq. 221)) is equal to as
i) oy = 05 0y o (235)

whose proof is as follows. We define U := CCZ(H ® H ® H) with H denoting the Hadamard operator, and
|¢ (0.,0.0) )( P& 0’0)| is rewritten as

0,0,0 0,0,0
63" ) (| = U10,0,0)(0,0,0(U"
:U(I§@3+az®[§@2l§3+l2®az®1212®3+[§3’2®az>UT

2 2 2
I Ulog 9 U IS + Ul 9 05 9 LU I+ U(IE2 @ 0,)U'
= 5 2 9 ’

Since a direct calculation leads to
Uloz ® Lo L)UT =05, Ul @0y 0 L)UT =0y, Ul ® L os)Ut =0y,
we have
|¢(0 0, o)>< (0,0, 0)| _ O(O)O(O)O(O)
Next, we define unitary operator W := (07} ® 037 ® 03?), and a direct calculation leads to
‘¢(51,52,53)><¢(51,52,53 ‘ _ W|¢(O,O,O)>< (0,0,0)|WT
w (oo oyt
= woLwhwoL'whwo” wt)
=0y ofH o).
Hence, we obtain Eq. (235]). Finally, substituting Eq. (235]) into Eq. (22I)) and using Corollary B8 results in
VSJ(1751;1,32;1753)V;' ~n |¢§{31752753)>< (s1, 52’53)|V P 111)VT‘¢(81 152, Ss)><¢(31752 53)‘ (236)

1 81,82,8 $1,82,8 =
~r glon ) e @ . (237)
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By defining ¢(*1*2:3) to be the renormalized state of £(51:52:53) .= <¢S1’S2’33)|Vsp(111)V§|¢gl’52’s3)>, the RHS of
Eq. [30) equals to |¢S17sz,s3)>< §{81782783)| ® tr[f(sl’52’53)]C(51’S2’33). Then, using Eq. @37) results in

. . 1 S51,82,8 $1,82,8 P
VSU(LSI’LSZ’LSB)ngRg|¢§{1’ 2, 3)><¢I({1’ 2, 3)| ®C(81782’33), (238)

which shows the desired relation. Also, Eqs. [237) and (238]) express the computationally indistinguishability of
different ¢(*1:52:%3)  As a consequence of Eq. (238), we obtain the normalized version:

1,51;1,52;1, T
VSU( S1;1,82 53)V (51,82783)

A A= e e e R I S T (239)

This is obtained by calculating as

“Vsal(l,sl;l,sz;l,33)vg _ |¢§{51752,83)><¢§{51,82’S3)| ® C(sl,s%sa)

‘ 1

< HSVSa(l,SﬁLSz;l,SB)Vg _ ‘¢§1732733)><¢§;1732783)‘ ® <(51752’53) ‘ + H(l _ 8tr[0(1’81;1’82;1’s3)]) VSJ/(1;81;1782;1,83)V§L"1

<O(R) + )1 — tr[g(1srilis2iliss))]
<O(R),

where the first inequality comes from the triangle inequality, the second one follows by Eq. (238)) and the homogeneity
of the trace norm, and the third one is from Eq. ([235).

2. Proof of (i)

We show (ii) for the case of ¢ = 000. The other cases can be shown analogously. First, we have

abe a b c
VsPiie” Vi = VsA{'g Ay Ay Vi

I’H -+ (71)(1141,0 IH + (71)bA270 IH + (*1)0143,0 VT
2 2 2 57

=Vs

where the first equation comes from using Eq. (@). Below, we prove

b I, + (—1)aO'Z I, + (—1)bO'Z I, + (—].)CO'Z
VSPéSOC) VS‘I'- %R,Vsp(e)vg 2 ® 2 ® 2 ® IH

= |a)(a| @ [b)(b] @ |c){c| @ In. (240)

Once we have the following eight approximate relations, the triangle inequality of the state dependent norm implies

Eq. 240).
I) stg %R,Vsp(e)Vg I§®3 & I?-l
1I) VSALOVg,ir RRrvsp@vi 02 @ 192 ® In

II1) Vs Az oV ~ avspovt 207 @ L@ Iy

(

(

(

1v) VsAS,OVST R Vsp©@ V] I @0, @ Iy

(V) V5A1,0A270V§ N R Vsp@ Vi 07 ®Roz I, Iy

(VI) VSAl,oz‘l?,,oVST Rrvspovi 02 0L ® 0z @ Iy

(VII) VSAz,oAs,ovg N R Vsp@ V] LRoyz oz Iy
(VIII) VsA1,0142,0143,0‘/3]L R R Vsp@ v 07 Roz @0y Iy

We can prove (I) from a direct calculation using the definition of the state dependent norm. As for (II)-(VIII),
these have already been proven in Eq. ([04), Lemma 7 Lemma (2] Eq. (IR6) in Lemma (9 Eq. (I87) in Lemma (9]
Eq. (I88) in Lemma B9 and Eq. (I94) in Lemma [60 respectively.
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Now we have Eq. (240), and Eq. (240) and Lemma [I3] (ii) imply
Vs Pioo? Vi % v ptnionmearyt lah{al @ 1B)(B] @ [e) (e @ Ty
Hence, Lemma [I§] leads to

Vspo(ggc)a-(l,&;182;1783)P0(gé’c) Vg _ (Vspéggc)vg)(Vso.(l,m;lsz;l,ss)Vg)(VSPéggC) Vg)

~r (a){a] @ [b)(b] @ |c)(c] ® L) (Vo b1V ) (Ja) (a] @ [b)(b] @ |c)(c| @ IFQ)@)

Since acting projector does not increase trace distance &, using Theorem[62] (i) enables us to replace VSU(LS““?;LSB)VE}L
with

1 a,b,c a,b,c 51,82,8
§|¢§{ )><¢§-I )|®C( 1,52, 3)7

which is the desired relation. Note that by following the same discussions done to obtain Eq. ([239), we have the
normalized version of Eq. (241 with the normalized state ¢’(1:s1:15231.53).

abc 513 i1, abe ~ a,b,c a,b,c 51,52,
Ve Piog? o toitaaitsn) ploVE e (|a)(al @ [B)(6] © [e) (e [o5" ) (ki " | (la)(al @ [b)(b] @ |e)(e]) @ ¢Lor2:59),

VI. PROTOCOL FOR PROOF OF MAGIC

In this section, we show the details of our protocol for the proof of magic presented in the main text. Our protocol
for the proof of magic exploits Eq. (239)), which states that there exists a positive constant ¢’ and a negligible function
negl, () satisfying

SC/ (pgre + pzfest + pﬁyper) + negll()‘)
2
< [V (VPhre + VProws + \[Pligper) + Voegh )] = T2, (242)

For simplicity of notations, we define ¢ := /¢’ and negl,(\) := y/negl, (\) (note that the square root of a negligible
function is also a negligible one). Since the exact value of 7' cannot be obtained by repeating the protocols in a finite
number of times, we need to estimate it from the number of set flags. Specifically, our goal is to derive the estimated
value Test of T satisfying

Vso!Umibssls ] — [giehens))(glanraes)| g clovsass)||

Pr{|T — Tose| <€l >1-0

for an € > 0 and § > 0. Below, we show that when these € and § are constant, the number of repeating our protocol
for the proof of magic is also constant.

8 Specifically, for any linear operators A, B € L(#H) and any projector P € L(H),
||[PAP — PBP|| <||A— B|h
is satisfied. This can be proven by writing the trace norm as |[A|[1 = maxx ¢z ():|| x| <1 [tT[X A]| and calculating as

||IPAP — PBP||; = [tt[PXP(A — B)]|

max
XeL(H):| X0 <1

< max [tr[Y (A — B)]|
YEL(H):|Y ||oo<1

=lA =Bl
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From the numbers of set flags obtained at step 1 of our protocol, we have the estimated value p, of p, for each

a € {Pre, Test, Hyper} by employing Hoeffding’s inequality as
Pr(lp, —py| <€l >1-0 (243)

for an ¢ > 0 and ¢’ > 0. This relation can be obtained by repeating

1 1
N5/75/ =0 (612 In 5/)

times of the protocol on average. Using these estimated probabilities pp,., Pres; a0d Piyper: We define the estimated
value of the trace norm T,y as

Tost 1= cC (\/pgm + \/p’TTCSt + \/pﬁypcr> + negl,y (A). (244)

Then, by substituting the definitions in Eqs. (242)) and [244) to |T" — Ttst|, we have

T~ Tes| = Y. Wrm—VeD|se ) N

a€{Pre,Test,Hyper} a€{Pre,Test,Hyper}

Using the result in Eq. (243]), with probability at least (1 —¢")% > 1 — 34’, we obtain

CZaE{Pre,Test,Hyper} V (pa + el)r - \/ZTQ (1f pZz > pa)
cZaG{Pre,Test,Hyper} \/p; Y, (pa - EI)T (lf p:; < pa)~

In the case of p/, > p,, by a simple calculation, it is easy to find that /(p, + €)" is upper-bounded by

VIV 0<5<D
(Pa+€)" < Q¢ VPL+ (V28 —1)¢ (5 €N)
VPL+ (V2 = 1) (1< 5,5 ¢N),
where in the third case, we express /2 as x +n with z (0 < 2 < 1) being the decimal number and n being the integer.
Hence, v/(pa + €')" < /P + O(€"*) holds with ¢ being a non-zero constant value.
In the other case of p), < p,, when p, < €, \/pl — \/pil < /Ph < V™. When p, > €, by a simple calculation, it is
easy to find that \/(p, — €)" is lower-bounded by

|T - Test| S

VL — Ve 0<Z<1)
a7 >4 V- (VT —1)¢ (LeN)
VoL — V2T (1<55¢N),

where in the third case, we express /2 as x +n with z (0 < 2 < 1) being the decimal number and n being the integer.
Hence, \/(pa + €)" < /P + O(¢'*) holds with ¢ being a non-zero constant value.
By combining the arguments so far, as ¢ is a constant value, we finally obtain

Pr[|T — Tos| < O(€")] > 1 -3¢

By setting § = 3" and € = O(¢'), if § and € are constant, then the number of times N 5 repeating the Protocol 1
at step 1 results in the constant number.

In the main text, we have set e = 1/6 and 6 = 10710 for simplicity of the arguments, but for any € > 0 and J > 0,
the number of times repeating the Protocol 1 at step 1 of our protocol for the proof of magic becomes constant.
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