
New Indifferentiability Security Proof of MDPH
Hash Function

Chun Guo1, Tetsu Iwata2, and Kazuhiko Minematsu3

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
266237, China

chun.guo@sdu.edu.cn
2 Nagoya University, Nagoya, Japan

tetsu.iwata@nagoya-u.jp
3 NEC Corporation, Kawasaki, Japan

k-minematsu@nec.com

Abstract. MDPH is a double-block-length hash function proposed by
Naito at Latincrypt 2019. This is a combination of Hirose’s compression
function and the domain extender called Merkle-Damgård with permuta-
tion (MDP). When instantiated with an n-bit block cipher, Naito proved
that this achieves the (nearly) optimal indifferentiable security bound of
O(n− log n)-bit security. In this paper, we first point out that the proof
of the claim contains a gap, which is related to the definition of the simu-
lator in simulating the decryption of the block cipher. We then show that
the proof can be fixed. We introduce a new simulator that addresses the
issue, showing that MDPH retains its (nearly) optimal indifferentiable
security bound of O(n− log n)-bit security.

Keywords: Cryptography · Hash function · MDPH · Indifferentia-
bility

1 Introduction

Cryptographic hash functions have wide applications, and constructing an effi-
cient and secure hash function is an important research problem. For their wide
applications, hash functions have to satisfy various security notions, including
collision resistance, preimage resistance, and 2nd-preimage resistance. The secu-
rity notion called indifferentiability [12] from the random oracle, put forward
by Maurer et al., implies these security notions. There are various approaches
to construct hash functions, and we consider one of the approaches based on a
block cipher.

At Latincrypt 2019, Naito [13] proposed a block cipher-based hash func-
tion. It is essentially a combination of a double-block-length (DBL) compression
function proposed by Hirose [7] and Merkle-Damgård with permutation (MDP)
domain extender by Hirose et al. [8]. Both schemes are well-known and their secu-
rity is well understood. However, when combined, a dedicated security analysis
is needed to evaluate the indifferentiability from the random oracle. Naito [13]

showed that this combination, dubbed MDPH, indeed achieves O(n− log n)-bit
indifferentiability if it is realized with an n-bit block cipher, which is close to the
optimal indifferentiable security bound.

As a DBL hash function, MDPH is quite efficient in terms of the number of
primitive calls since it does not need a dedicated message-less finalization step,
and it requires small state memory in its implementation. It has been adopted as
the hashing mode of Romulus [9, 5], one of the finalists of the NIST Lightweight
Cryptography for lightweight authenticated encryption (AE)4. More precisely,
MDPH is specified as Romulus-H in the latest (v1.3) specification of Romulus [5],
using Skinny [2] as the underlying tweakable block cipher. It is also the hashing
component of leakage-resilient AE mode of Romulus, called Romulus-T (which is
based on TEDT [3]). Recently, List [10] proposed an improved variant of TEDT
that uses MDPH/Romulus-H as a component.

This article first shows that the analysis of [13] contains a gap. In the indif-
ferentiability security proof, we consider a distinguisher that tries to distinguish
between the real world and the ideal world. In the real world, the distinguisher
has oracle access to MDPH, and also E and E−1, the encryption and decryption
of the underlying block cipher which is modelled as an ideal cipher. In the ideal
world, the distinguisher has oracle access to a random oracle and a simulator,
where the simulator has to simulate the encryption and decryption of the ideal
cipher.

This gap is in the definition of the simulator simulating the decryption of the
underlying block cipher. In the original analysis [13], the decryption simulator
always performs lazy sampling for determining the block cipher input-output
tuples. However, it turns out that this easily allows the distinguisher to break
the consistency by first making an oracle call to the hash function, which is
either MDPH or a random oracle, and then making a decryption query.

We then present a refined simulator in order to fix the issue. The refined
decryption simulator is more involved, and the main approach is to keep all the
hash computation paths implied by the queries, and the simulator performs lazy
sampling only if it is really needed, to keep consistency with a high probability.
As a result, we show that MDPH retains its nearly optimal O(n − log n)-bit
indifferentiability security as originally claimed.

Organization. We specify notations and present the security definition in Sect. 2.
The specification of MDPH and our provable security bound are presented in
Sect. 3, where we also point out issues in the analysis of [13] and present the
main idea for fixing the proof. In Sect. 4, we specify our refined simulator. Our
full proof is presented in Sect. 5, and we conclude the paper in Sect. 6.

4 https://csrc.nist.gov/projects/lightweight-cryptography

2

2 Preliminaries

2.1 Notations

We adopt some of the notations of [13] for consistency. Let {0, 1}∗ be the set of
all bit strings, and λ be the empty string. For an integer n ≥ 0, let {0, 1}n be the
set of all n-bit strings, and ({0, 1}n)∗ be the set of all bit strings whose lengths
in bits are a multiple of n. For a non-negative integer i, let [i] = {0, 1, . . . , i}, the
set of non-negative integers at most i. For positive integers ℓ, ν and an ℓν-bit
string M , we write its partition into ν-bit strings as M1,M2, . . . ,Mℓ

ν←−M . For
positive integers r, s with s ≤ r and an r-bit string X, [X]s (resp. [X]s) denotes
the most (resp. least) significant s bits of X. For S = [S]n∥[S]n ∈ {0, 1}2n, we
write its swap as S = [S]n∥[S]n, where X∥Y denotes the concatenation of bit
strings X and Y . For a bit string Y , X ← Y means that Y is assigned to X. For
a finite set X , X $←− X means that an element is sampled uniformly at random
from X and is assigned to X. Y ← X means that a finite set X is assigned to
Y, and Y ∪←− X means that Y ← X ∪ Y . For a positive integer a, Func(∗, a)
denotes the set of all functions from {0, 1}∗ to {0, 1}a. For positive integers k
and n, BC(k, n) denotes the set of all block ciphers with k-bit keys and n-bit
blocks. Hence, for each E ∈ BC(k, n), E : {0, 1}k × {0, 1}n → {0, 1}n is a set of
permutations over {0, 1}n indexed by a key in {0, 1}k. The decryption function
of E is denoted by E−1 : {0, 1}k × {0, 1}n → {0, 1}n. For simplicity we focus on
the case k = 2n but extension to the general case k > n is possible. For a positive
integer i, let in be the n-bit representation of i, e.g., 1n = 0n−11, 2n = 0n−210,
and 3n = 0n−211.

2.2 Indifferentiability of Hash Function

Let HE : {0, 1}∗ → {0, 1}2n be a hash function that uses a block cipher E ∈
BC(k, n) as an oracle. The indifferentiability of HE from a random oracle RO $←−
Func(∗, 2n) is the indistinguishability between the real and ideal worlds described
as follows. In the real world, a distinguisher (an adversary) D interacts with HE

and a pair of encryption and decryption functions (E,E−1) of E. Here, E is the
ideal cipher, that is, we let E

$←− BC(k, n). In the ideal world, for a simulator S
that has oracle access to a random oracle RO, a distinguisher D interacts with
RO and S. After the interaction, D outputs a bit to indicate the decision. We
write DO = b if D returns a decision bit b after interacting with oracles O. For
a simulator S, the advantage function of a distinguisher D is defined as

AdvindiffH,RO,S(D) = Pr
[
E

$←− BC(k, n);DHE ,E,E−1

= 1
]

− Pr
[
RO $←− Func(∗, 2n);DRO,SRO

= 1
]
.

In the above definition, the probabilities are taken over D, E, RO, and S. We
say that our target hash function H is indifferentiable from the random oracle

3

Mi

[Si−1]
n

[Si−1]n

‖

[Si]
n

[Si]n

E

1n

E

Fig. 1: Hirose compression function where Si−1
Mi−−→ Si.

‖

E

1n

E

‖

E

1n

E

‖

E

1n

E

‖

E

1n

E

M1

0n

2n

Mℓ−1 Mℓ

[H]n

[H]n

M2

0n

. . .

. . .

︸ ︷︷ ︸

inner iteration

Fig. 2: MDPH hash function with block cipher E.

if for any D, there exists a simulator S such that AdvindiffH,RO,S(D) is negligibly
small. Hereafter, HE and RO are called hash oracles, queries to a hash oracle
are called hash queries, (E,E−1) and S are called primitive oracles, and queries
to (E,E−1)/S are called primitive queries. Queries to E (resp. E−1) are called
encryption (resp. decryption) queries.

3 Specification of MDPH and Its Indifferentiability

As described earlier, the MDPH hash function was proposed by Naito [13]. It
combines Merkle-Damgård with permutation (MDP) domain extender [8] and
Hirose DBL compression function [7].

3.1 Specification

For E ∈ BC(k, n), let ν = k − n. The Hirose compression function HiroseE :
{0, 1}2n × {0, 1}ν → {0, 1}2n is defined as HiroseE(Si−1,Mi) = Si for a ν-bit
message Mi and a 2n-bit state Si−1, where

[Si]
n = E(Mi ∥ [Si−1]n, [Si−1]

n)⊕ [Si−1]
n (Top Part) ,

[Si]n = E(Mi ∥ [Si−1]n, [Si−1]
n ⊕ 1n)⊕ [Si−1]

n ⊕ 1n (Bottom Part) .

In MDPH, HiroseE is used as the compression function of a variant of the
Merkle-Damgård construction. We use 02n as the initial state, and a simple

4

Algorithm MDPHE(M)

1. S0 ← 02n

2. M1,M2, . . . ,Mℓ
ν←− pad(M)

3. for i = 1, . . . , ℓ− 1 do Si ← HiroseE(Si−1,Mi)
4. [Sℓ−1]

n ← [Sℓ−1]
n ⊕ 2n

5. H ← HiroseE(Sℓ−1,Mℓ)
6. return H

Fig. 3: MDPH hash function. The for-loop of line 3 is also called inner iteration
in the proof sections.

permutation (XORing 2n to the top part) is applied before the final call of
HiroseE (See Figs. 2 and 3). The input message M ∈ {0, 1}∗ is first padded with
an injective padding function pad : {0, 1}∗ → ({0, 1}ν)∗ \ {λ} so that the bit
length of the padded message is always a multiple of ν. Originally, it is specified
as pad(M) = M ∥ 10p, where p = ν−1−(|M | mod ν), but any injective padding
function works.

3.2 Indifferentiablity Bound of MDPH

Our analysis fixes the flaws of the original analysis [13]. As a result, we present
the following bound. The proof is given in Sect. 4 and 5.

Theorem 1. Let D be a distinguisher that makes q hash queries of σ message
blocks in total and p primitive queries, and runs in time t, which we call a
(p, q, σ)-indifferentiability distinguisher. Let Q = σ + p, and assume Q ≤ 2n/6
and n ≥ 3. Then, there exists a simulator S such that

AdvindiffMDPH,RO,S(D) ≤ 6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
.

The simulator makes no more than np queries to RO in total and runs in time
t+O(np).

Naito’s bound [13] introduced the parameter µ for the maximum size of collisions,
and it was optimized by setting µ = n. This also applies to our analysis, and we
present the case of µ = n for simplicity.

Implication to Classical Notions. To further derive the exact collision and
preimage security of MDPHE in the ideal cipher model, the influence of the
np simulator query complexity from Theorem 1 has to be carefully analyzed.
In detail, according to the concrete version of the indifferentiability composi-
tion theorem [14, Theorem 3.1], for any (p, q, σ)-collision adversary AE against

5

MDPHE , there exists a collision adversary BRO against RO, such that

Pr
[
AE ⇒ (M1,M2) : MDPHE(M1) = MDPHE(M2)

]
≤ AdvindiffMDPH,RO,S(A) + Pr

[
BRO ⇒ (M1,M2) : RO(M1) = RO(M2)

]
≤ 6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
+

(np+ q)2

22n
,

indicating collision security up to 2n/n queries. Similarly, for any (p, q, σ)-preimage
adversary AE trying to find the preimage of any H on MDPHE , there exists a
preimage adversary BRO making nQ queries to find the preimage of H on RO,
such that

Pr
[
AE ⇒M : MDPHE(M) = H

]
≤ AdvindiffMDPH,RO,S(A) + Pr

[
BRO ⇒M : RO(M) = H

]
≤ 6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
+

np+ q

22n
,

indicating everywhere preimage security up to 2n/n queries. Fortunately, the np
simulator query complexity turns out to be harmless in these settings.

3.3 Issues in the Original Proof

We describe the issues in the original proof [13]. We use some notations that
appear in Sect. 4 and 5.

Flaw in the Original Simulator. In the original simulator in [13], assume that
a distinguisher makes a decryption query (Key,Block) = (K,Y). If the query
was previously made and the simulator responded with X, then X is returned.
Otherwise, the simulator randomly samples X from the set of possible plaintexts
for the key K, and X is returned.

There exists the following attack for the simulator defined in [13].

1. Makes a (single block) hash query 0ν and receives the response H;
2. Makes a decryption query (Key,Block) = (0ν∥0n, [H]n ⊕ 2n) and receives

the response X;
3. If X = 2n then return 0; Else return 1.

In the ideal world, (H,X) is (RO(0ν), SRO
E−1(0ν∥0n, [H]n ⊕ 2n)), while in the

real world, (H,X) is (MDPHE(0ν), E−1(0ν∥0n, [H]n ⊕ 2n), where SRO
E−1 denotes

the decryption simulator. In the real world, the above distinguisher returns 0,
but in the ideal world, it returns 1 with high probability. This holds because the
original simulator neglects the necessity to adapt simulated ideal cipher responses
upon decryption queries and always samples X in the above case. We note that
this attack is easily extended to using longer messages (namely, checking the
consistency of the simulated decryption responses and the computed hash chain
values).

6

Further issues in the Original Proof. The original proof [13] does not ad-
dress the case where multiple hash chains are to-be-adapted within the same
block. While this may be established, there is no argument for this. In the ar-
gument for the bad events, it was assumed that simulated ideal cipher entries
are all defined “randomly”. But since the simulator (SRO

E , SRO
E−1) uses responses

from RO to “adapt” a number of its ideal cipher entries, it is not all clear that
every ideal cipher entry has a “random endpoint”. In fact, in some cases (e.g.,
the event Hit2 defined in [13]), the established probability for the bad events
does not hold.

3.4 Fixing the Original Simulator

To facilitate understanding our new proof, we provide some intuitions here. As
in the previous section, we use some notations from Sect. 4 and 5. Informally,
a block is a triple (Si−1,Mi, Si) which is obtained from the distinguisher’s
queries/responses history and satisfies the relation Si = HiroseE(Si−1,Mi). A
path is a block or a concatenation of blocks which starts from the initial value
02n. Informally, a path captures the computations of a complete hash evaluation
before the final block.

In the real world, if the distinguisher derives a path
(
02n

M−→ S
)

and a
block

(
S ⊕ (2n∥0n)

) M∗

−−→ H from its responses, then it necessarily holds H =

MDPHE(M∥M∗). In order to be consistent, in the ideal world the simulator
shall “detect” such situations and define at least of the involved blocks such
that H = RO(M∥M∗). Blocks that are defined to ensure consistency are called
adapted.

It is easy to see that, if two paths
(
02n

M−→ S
)

and
(
02n

M ′

−−→ S
)

with distinct
messages though identical endpoints are created during the ideal world interac-
tion, then the simulator has to define two blocks

(
S⊕(2n∥0n)

) M∗

−−→ RO(M∥M∗)

and
(
S⊕ (2n∥0n)

) M∗

−−→ RO(M ′∥M∗), which are likely contradictory. Therefore,
to prove indifferentiability, we at least have to argue that such colliding paths
are unlikely to appear. To this end, a core lemma is that, with high probability,
paths only consist of blocks that are defined by sampling a pair of ciphertexts for
an encryption query. Actually this seems to be among the ideas of Naito [13],
though the treatment has glitches. To bridge, we formally distinguish adapted
and sampled blocks using the explicit bookkeeping technique of [1], and formally
establish this lemma via induction on the adversarial queries. The reader is re-
ferred to Sect. 5.2 for a detailed description.

Finally, to rigorously reduce the indifferentiability claim to the non-occurrence
of the “bad events”, we employ the randomness mapping argument. Our formal-
ism follows [6], though we bypass the intermediate system with some additional
tricks.

7

Algorithm 1 Simulator SRO = (SRO
E , SRO

E−1)

Initialization
1: SRO maintains a table PathT to keep track of encountered paths, indexed by their

2n-bit endpoints. Initially, PathT[02n] =
(
02n

λ−→ 02n
)

for the empty string λ, while
PathT[S] = ⊥ for any other S ∈ {0, 1}2n\{02n}.

2: SRO maintains another index structure Index on PathT, such that Index[R] returns
the set

{(
02n

M−→ S
)
: [S]n = R

}
.

3: SRO maintains two tables ET and ET−1, with entries initialized to ⊥.
4: SRO maintains a set Lblock(ET) for the already defined blocks. Elements in Lblock(ET)

are of the form
(
S1

M−→ S2, d
)

, S1, S2 ∈ {0, 1}2n, M ∈ {0, 1}ν , d ∈ {→,←,⊥}.

Initially, Lblock(ET) =
{(

02n
λ−→ 02n,→

)}
.

Simulator SRO
E (K,X)

1: if ET[K](X) ̸= ⊥ then return ET[K](X)
2: if PathT[(X∥[K]n)⊕ (2n∥0n)] ̸= ⊥ ∧ PathT[(X ⊕ 1n∥[K]n)⊕ (2n∥0n)] ̸= ⊥ then
3: abort
4: end if
5: S ← X∥[K]n
6: if PathT[S ⊕ (2n∥0n)] ̸= ⊥ then
7:

(
02n

M−→ S ⊕ (2n∥0n)
)
← PathT

[
S ⊕ (2n∥0n)

]
8: H ← RO

(
M∥[K]ν

)
9: Y1 ← [H]n ⊕X; Y2 ← [H]n ⊕X ⊕ 1n

10: CreateBlock
(
(K,X, Y1), (K,X ⊕ 1n, Y2),⊥

)
11: end if
12: S ← X ⊕ 1n∥[K]n
13: if PathT[S ⊕ (2n∥0n)] ̸= ⊥ then
14:

(
02n

M−→ S ⊕ (2n∥0n)
)
← PathT

[
S ⊕ (2n∥0n)

]
15: H ← RO

(
M∥[K]ν

)
16: Y1 ← [H]n ⊕X ⊕ 1n; Y2 ← [H]n ⊕X
17: CreateBlock

(
(K,X ⊕ 1n, Y1), (K,X, Y2),⊥

)
18: end if
19: if The conditions of lines 6 and 13 are not satisfied then
20: Y1

$←− {0, 1}n\Rng[K]; Y2
$←− {0, 1}n\(Rng[K] ∪ {Y1})

21: CreateBlock
(
(K,X ⊕ 1n, Y1), (K,X, Y2),→

)
22: end if
23: return ET[K](X)

4 Simulator

Formally, the simulator SRO = (SRO
E , SRO

E−1) is defined in Algorithm 1, where
SE : {0, 1}k × {0, 1}n → {0, 1}n simulates an encryption oracle E, and SE−1 :
{0, 1}k × {0, 1}n → {0, 1}n simulates a decryption oracle E−1. In order to work
properly, the simulator S keeps multiple data structures: first, it keeps query-
response triples in table ET and ET−1 whose entries are the special symbol ⊥
indicating “undefined”. If a query-response triple (K,X, Y) where SE(K,X) = Y

8

Algorithm 1 Simulator SRO = (SRO
E , SRO

E−1) (Cont’d)
Simulator SRO

E−1(K,Y)

1: if ET−1[K](Y) ̸= ⊥ then return ET−1[K](Y)
2: if

∣∣Index[[K]n
]∣∣ ≥ n then abort

3: for all
(
02n

M−→ S
)
∈ Index

[
[K]n

]
do

4: H ←RO(M∥[K]ν)
5: // If ET−1[K](Y) acts as the top part: check the chaining condition
6: if [H]n ⊕ Y = [S]n ⊕ 2n then
7: X ← [H]n ⊕ Y
8: Y ′ ← X ⊕ 1n ⊕ [H]n
9: CreateBlock

(
(K,X, Y), (K,X ⊕ 1n, Y

′),⊥
)

10: end if
11: // If ET−1[K](Y) acts as the bottom part: check the chaining condition
12: if [H]n ⊕ Y ⊕ 1n = [S]n ⊕ 2n then
13: X ← [H]n ⊕ Y
14: Y ′ ← X ⊕ 1n ⊕ [H]n

15: CreateBlock
(
(K,X ⊕ 1n, Y

′), (K,X, Y),⊥
)

16: end if
17: end for
18: if ET−1[K](Y) = ⊥ then
19: X

$←− {0, 1}n\Dom[K]; Y ′ $←− {0, 1}n\(Rng[K] ∪ {Y })
20: CreateBlock

(
(K,X, Y), (K,X ⊕ 1n, Y

′),←
)

21: end if
22: return ET−1[K](Y)

or SE−1(K,Y) = X is defined, then the tables are defined such that ET[K](X) =
Y and ET−1[K](Y) = X. The simulator S also keeps paths in Tpath that are
constructed from ET and ET−1. We write X ∈ ET[K] if ET[K](X) ̸= ⊥, Y ∈
ET−1[K] if ET−1[K](Y) ̸= ⊥, and vice versa. We also write Dom[K] = {X ∈
{0, 1}n : X ∈ ET[K]} and Rng[K] = {Y ∈ {0, 1}n : Y ∈ ET−1[K]}.

A block is a triple (Si−1,Mi, Si) which is obtained from Lqr and satisfies the
relation Si = HiroseRE (Si−1,Mi). The block is denoted by

(
Si−1

Mi−−→ Si

)
(see

Fig. 1). We refer to
(
02n

λ−→ 02n,→
)

as the initial block. SRO maintains an
additional set Lblock(ET) for the already defined blocks. Elements in Lblock(ET)

are of the form
(
S1

M−→ S2, d
)

, S1, S2 ∈ {0, 1}2n, M ∈ {0, 1}m, d ∈ {→,←,⊥}.

Initially, Lblock(ET) =
{(

02n
λ−→ 02n,→

)}
.

A path is a block or a concatenation of blocks which starts from the initial
value 02n. For a sequence of blocks 02n

M1−−→ S1, S1
M2−−→ S2, . . . , Sℓ−2

Mℓ−1−−−→
Sℓ−1, we denote the concatenation by 02n

M1∥M2∥···∥Mℓ−1−−−−−−−−−−−→ Sℓ−1. Hence, the
path represents the inner iteration of MDPHRE (See Fig. 2). Lpath(ET) is a set of
all paths obtained from Lblock(ET). To ease access, SRO maintains a table PathT
to keep track of encountered paths. In PathT, paths are indexed by their 2n-bit
end value, so that the time complexity for random access is constant.

9

Algorithm 1 Simulator SRO = (SRO
E , SRO

E−1) (Cont’d)
Subroutine CreateBlock((K,X, Y1), (K,X ⊕ 1n, Y2), dir)

1: // Update the ideal cipher tables
2: if dir = ⊥ then // Inconsistency only possible for adapted blocks
3: if X ∈ ET[K] or X ⊕ 1n ∈ ET[K] then abort
4: if Y1 ∈ ET−1[K] or Y2 ∈ ET−1[K] or Y1 = Y2 then abort
5: end if
6: ET[K](X)← Y1; ET[K](X⊕1n)← Y2; ET−1[K](Y1)← X; ET−1[K](Y2)← X⊕1n

7:
8: S(1) ← X∥[K]n, S(2) ← (X ⊕ Y1)∥(X ⊕ 1n ⊕ Y2), m← [K]ν

9: S(3) ← (X ⊕ 1n)∥[K]n, S(4) ← (X ⊕ 1n ⊕ Y2)∥(X ⊕ Y1)

10: Add
(
S(1) m−→ S(2), dir

)
and

(
S(3) m−→ S(4), dir

)
to Lblock(ET)

11:
12: // Update the table PathT and check abort conditions
13: if PathT[S(1)] ̸= ⊥ then
14:

(
02n

M′
−−→ S(1)

)
← PathT[S(1)]

15: if PathT[S(2)] ̸= ⊥ then abort

16: PathT[S(2)]←
(
02n

M′∥M−−−−→ S(2)
)

17: end if
18: if PathT[S(3)] ̸= ⊥ then
19:

(
02n

M′′
−−→ S(3)

)
← PathT[S(3)]

20: if PathT[S(4)] ̸= ⊥ then abort

21: PathT[S(4)]←
(
02n

M′′∥M−−−−−→ S(2)
)

22: end if
23:
24: Update the index Index

In the pseudocodes, P ← PathT[L] means a read of path P from PathT[L]
for a label (an endpoint) L ∈ {0, 1}2n , and PathT[L]← P means a write of path
P to PathT[L]. In principle PathT[L] for any L may contain multiple paths, and
if so a path read picks arbitrary one and a path write adds one to the existing
ones. However, the game is defined so that it aborts whenever such read/write
operation is going to happen.

In the real world, for a hash query MDPHE(M ′∥M∗) → H, the response is
defined by using E via the MDPH structure, and thus the following is satisfied:

∃
(
02n

M ′

−−→ S′
)
∈ Lpath(ET),

(
S∗ M∗

−−→ H
)
∈ Lblock(ET) s.t. S∗ = S′ ⊕ (2n∥0n) :

MDPHE(M ′∥M∗) = H.
(1)

On the other hand, in the ideal world, for a hash query, the hash value is defined
by a monolithic function RO. Hence, the goal of simulator is to simulate an ideal
cipher so that the query-responses of RO and of S satisfy the relation given in
Eq. (1).

10

In order to ensure the relation in Eq. (1) in the ideal world, for an encryp-
tion query (K,X), if there exists a path

(
02n

M ′

−−→ S′
)

in Tpath to which the
query connects, i.e., S′ = (X ⊕ 2n)∥[K]n or S′ = (X ⊕ 1n ⊕ 2n)∥[K]n, then
the response is defined by using RO (otherwise the response is defined by lazy
sampling). For Hirose compression function, when a top (resp., bottom) part is
defined, the bottom (resp., top) part can immediately be defined. In addition,
switching top and bottom parts, the result also has Hirose’s structure. Hence,
for each (encryption or decryption) query, two outputs corresponding with the
top and bottom parts are defined, and two blocks are defined. The initialization
procedure is performed before the first query by D.

As explained earlier, S aborts upon certain bad situations. In particular,
this includes the case where S fails to simulate an ideal cipher. In addition, S
also aborts if it encounters certain bad situations, e.g., obtaining distinct paths(
02n

M−→ S
)

and
(
02n

M ′

−−→ S
)

with identical endpoint (see lines 15 and 20 of
CreateBlock).

5 Indistinguishability of the Real and Ideal Worlds

5.1 Preparations
We assume that D makes no repeated query, and ignore the padding, that is,
the length of hash queries made by D is always a multiple of ν.

We define two cryptographic games. In each game, a distinguisher D inter-
acts with three oracles (L,RE , RE−1), where L is a hash oracle, and (RE , RE−1)
are primitive oracles. Game 1 or G1 captures the interaction between the distin-
guisher and the ideal world oracles (L,RE , RE−1) = (RO, SRO

E , SRO
E−1), where

SRO = (SRO
E , SRO

E−1) is the simulator defined in Sect. 4. Game 2 or G2 has
(L,RE , RE−1) = (MDPHE , E,E−1), i.e., it captures the interaction with the
real world oracles.

In the subsequent analyses in Sect. 5.4–5.6, D is permitted to make additional
encryption queries after finishing the “normal” q hash and p primitive queries
but before outputting a decision bit. There are two types of additional queries.

– The first type is that D can make queries to RE according to the procedure of
MDPHRE (M) for all hash queries L(M), i.e., D can obtain all input-output
triples of RE to calculate MDPHRE (M).

– The second type is that D can make queries to RE whose partner according
to Hirose’s structure has been defined by a primitive query. More precisely,
if D obtains a triple (K,X, Y) by a primitive query but does not obtain the
partner (K,X ⊕ 1n, Y

′), then D can make the additional encryption query
(K,X ⊕ 1n) and obtain the response Y ′.

With this added power, D makes at most 2Q primitive queries in total. Note that
the additional queries do not reduce the advantage of D. Moreover, |Lblock(ET)| ≤
2Q, i.e., these queries create at most 2Q blocks in total.

As additional notations:

11

– We imagine that the game G1 maintains a set HQueries that records all
random oracle queries appearing during the execution. Namely, every time
the distinguisher D or the simulator SRO makes a random oracle query
RO(M)→ H, the pair (M,H) is added to the set HQueries. Note that pairs
added to HQueries due to simulator queries may be unknown to D.

– A block
(
S

m−→ T, d
)
∈ Lblock(ET) is called leftward if d =←; rightward if

d =→; and adapted if d = ⊥. Note that the initial block
(
02n

λ−→ 02n,→)
∈ Lblock(ET) is also viewed as rightward even if it isn’t created due to D

querying SRO
E .

– A simulator cycle consists of the execution period starting from when an
adversary makes a query to when the adversary receives an answer. During a
simulator cycle, if the simulator makes more than 1 call to CreateBlock(⋆, ⋆,⊥),
then it is an adapted (simulator) cycle. Otherwise,
• it is a rightward (simulator) cycle if the simulator cycle was due to D

querying SRO
E ;

• it is a leftward (simulator) cycle if it was due to D querying SRO
E−1 .

5.2 Outline of the Proof, and Intuitions

Indifferentiability requires to establish indistinguishability of G1 and G2. In ad-
dition, the simulator has to be efficient. In this respect, the remaining proof
consists of four steps as follows.

1. First, we establish an upper bound on the simulator complexities in Sect.
5.3;

2. Second, in Sect. 5.4, we identify a number of bad events that could potentially
render the simulation failed in G1 executions, i.e., the interaction between D
and the ideal world oracles;

3. Then, assuming absence of the aforementioned bad events, in Sect. 5.5 we
show that the simulated oracle responses are indeed consistent with the
random oracle responses (which is clearly a necessary condition for indiffer-
entiability);

4. Finally, we conclude by bounding the distance between G1 and G2 in Sect.
5.6. The technique is a variant of Holenstein et al.’s randomness mapping
argument [4] developed by Guo and Lin [6].

The simulator complexities are, in fact, somewhat obvious, since the simula-
tor aborts once “out-of-control”. It thus accounts for proving that these types of
abortions are unlikely. More concretely, it means:

– The number of random oracle queries made during processing every decryp-
tion query is limited. Moreover, to achieve nearly optimal security, this num-
ber has to be bounded to a small constant;

– Despite the attempts, there is at most 1 hash chain that is completed during
processing every decryption query.

12

Adaptations due to encryption queries: left hand side. As mentioned in
Sect. 3.4, if distinct paths

(
02n

M−→ S
)

and
(
02n

M ′

−−→ S
)

with the same endpoint
are created during a G1 execution, then the simulator has to define two contra-
dictory blocks

((
S ⊕ (2n∥0n)

) M∗

−−→ RO(M∥M∗)
)

and
((

S ⊕ (2n∥0n)
) M∗

−−→

RO(M ′∥M∗)
)

. Therefore, to prove indifferentiability, we at least have to argue
that such colliding paths are unlikely to appear. If all blocks are built upon
ideal cipher query records that are defined via lazy sampling, then a straight-
forward argument following Hirose [7] could establish collision resistance and
multi-half-collision resistance among the right hand sides of the blocks. How-
ever, an adapted block has its right hand side defined as the response of a ran-
dom oracle query, and it is not clear how to argue that a random oracle query
would not be used to define two (or more) adapted blocks. Moreover, (at first
glance) adapted blocks may appear anywhere in the paths, which significantly
complicates relevant arguments.

To see how this could be settled, let’s summarize a number of (easy-to-see)
observations as follows.

– After the distinguisher making an encryption query, if the simulator does not
detect the aforementioned adapting situation, then it defines a pair of ideal
cipher query records with randomly sampled ciphertexts. Consequently, the
blocks

(
S

m−→ S′
)

and
(
S⊕(1n∥0n)

m−→ S′
)

formed by this pair of simulated
queries have their right hand side random, and
• they are unlikely to collide with existing blocks/paths. By this, the above

contradictory paths
(
02n

M−→ S
)

and
(
02n

M ′

−−→ S
)

won’t appear after
creating these records. This will be formalized as the event BCol in Sect.
5.4.

• they are unlikely to “hit” existing blocks. By this, at most two paths are
“extended” by this action:

∗ The path
(
02n

M−→ S
)

, if existed, has its length increased by 1, while

the resulted path
(
02n

M∥m−−−→ S′
)

cannot further “extend”;

∗ The path
(
02n

M ′

−−→ S⊕ (1n∥0n)
)

, if existed, has its length increased

by 1, while the resulted path
(
02n

M ′∥m−−−−→ S
)

cannot further “ex-
tend”.

This idea will be formalized as the event Hit in Sect. 5.4.
– After the distinguisher making a decryption query, if the simulator does not

detect adapting situation, then it defines a pair of ideal cipher query records
with one plaintext sampled and the other ciphertext sampled. In this case,
the blocks formed by this pair of simulated queries have their left hand side
somewhat random, and they are unlikely to “hit” the endpoints of existing
paths. By this, such “leftward” blocks won’t join in any path. This will be
formalized as the event DHit in Sect. 5.4.

13

By the above, before the first adapted block is created, all paths are fully
constituted by “rightward” blocks, and thus various types of harmful collisions
can be proved unlikely, including the aforementioned two paths

(
02n

M−→ S
)

and
(
02n

M ′

−−→ S
)

and two paths
(
02n

M−→ S
)

and
(
02n

M ′

−−→ S′
)

with S′ =

S⊕ (2n∥0n). The first adapted block
(
S∗ M∗

−−→ H
)

necessarily has a correspond-

ing path
(
02n

M−→ S
)

such that S∗ = S ⊕ (2n∥0n). Since paths of the form

02n
M ′

−−→ S′ with S′ = S ⊕ (2n∥0n) didn’t exist, this adapted block won’t join in
any path either, and the property that all paths are fully constituted by “right-
ward” blocks is preserved.

Following this intuition, we argue (via an induction) that:
– Paths are fully constituted by “rightward” blocks and are free of various

collisions, and
– Without the bad collisions, adaptions always succeed.

The above intuition already restricted the event Hit (as well as other events
originally introduced by Naito [13]) to lazily sampled blocks and resolved the
aforementioned issues in bad events. For clarity, we employ the explicit bookkeep-
ing method of [1], i.e., maintaining meta information (e.g., whether the record
is defined via sampling) with the (simulated) blocks. In this way, bad events
regarding lazily sampled records become unambiguous.

Adaptations due to encryption queries: right hand side. Regarding the
right hand side of the to-be-adapted block, one may simply believe the involved
2n-bit random oracle response H is uniform and thus collision events at this side
are unlikely. Though, this is far from being precise: while the involved 2n-bit
random oracle response is uniform right after it’s being sampled, the random
oracle query may be made before this adapted simulator cycle.5 More concretely,
the distinguisher may first trigger the simulator to create a path

(
02n

M−→ S
)

(via issuing queries), and then query RO(M∥m)→ H. After these preparations,
the distinguisher then makes an appropriate encryption (or decryption) query
to trigger the simulator completing the hash chain corresponding to (M∥m,H).
Similarly by symmetry, the distinguisher could prepare in a converse order, i.e.,
triggering creating the

(
02n

M−→ S
)

after querying RO(M∥x) → H. Since the
query structure has been in the history before this simulator cycle, a bad event
(the event HBCol in Sect. 5.4) has to be defined to exactly capture this situation,
and a detailed case study is needed for this event. Moreover, the case that the
pair of simulated ideal cipher query records share the same ciphertext (the abort
condition Y1 = Y2 in line 4 of CreateBlock) has to be in bad events as well, and
this is captured by the event HCol in Sect. 5.4.
5 In the weaker sequential indifferentiability setting [11], the distinguisher (roughly)

cannot query the random oracle before querying the simulator, and the 2n-bit re-
sponse is indeed sampled in the current adapted cycle.

14

Adaptations due to decryption queries. Such adaptations enjoy another
source of complexity. In detail, by inspecting the pseudocode of SRO

E−1 , it can be
seen that a crucial goal is to argue that the codes between lines 7–9 and 13–15
are executed only once upon every decryption query—as otherwise, the second
time this part is executed, the corresponding call to CreateBlock(⋆, ⋆,⊥) will
find Y ∈ ET−1[K] and abort. To elaborate on the concrete conditions, assume
that the decryption query triggering this simulator cycle is SRO

E−1(K,Y), and let’s
consider when the simulator would detect two distinct paths

(
02n

M−→ S
)

and(
02n

M ′

−−→ S′
)

in this simulator cycle. Then it can be seen:

1. It has to be [S]n = [S′]n which further equals [K]n, as otherwise the two
paths cannot be indexed in line 3 in SRO

E−1 ;
2. For the two random oracle queries RO(M∥[K]ν)→ H andRO(M ′∥[K]ν)→

H ′, the path
(
02n

M−→ S
)

has to satisfy either [H]n ⊕ Y = [S]n ⊕ 2n or

[H]n⊕Y ⊕1n = [S]n⊕2n, while the path
(
02n

M ′

−−→ S′
)

has to satisfy either
[H ′]n ⊕ Y = [S′]n ⊕ 2n or [H ′]n ⊕ Y ⊕ 1n = [S′]n ⊕ 2n.

By rearranging, it can be seen the above is possible only if there exist two
paths and two random oracle queries that satisfy some complicated cycle-like
condition at some point during the G1 execution. For example, if

(
02n

M−→ S
)

has [H]n ⊕ Y = [S]n ⊕ 2n and
(
02n

M ′

−−→ S′
)

has [H ′]n ⊕ Y = [S′]n ⊕ 2n, then
[H]n⊕ [S]n = [H ′]n⊕ [S′]n. We formalize this as the event PathLock in Sect. 5.4.

5.3 Complexities of the Simulator

Consider D making q hash queries of σ message blocks and p primitive queries
and running in time t. As long as the simulator doesn’t abort, it can be seen:

– Upon each adversarial encryption query, the simulator detects at most 1 path
(as otherwise it should have aborted due to line 2 in SRO

E (K,X)), makes at
most 1 query to RO, and invokes CreateBlock once.

– Upon each adversarial decryption query, the simulator detects at most n
paths (as otherwise it should have aborted due to line 2 in SRO

E (K,X)),
makes at most n queries to RO, and invokes CreateBlock at most n times.

The running time of CreateBlock is roughly O(1). Therefore, the simulator makes
no more than np queries to RO in total and runs in time t+O(np).

5.4 Bad Events in G1 Executions

Size of the tables. Recall that the distinguisher making additional queries
is considered in this section. In this respect, we first claim that |HQueries| ≤
2Q+ np+ q ≤ 3Q+ np during interaction with such distinguishers. For this, we
make the following observations.

15

– The simulator makes at most 1 query to RO per adversarial encryption
query. Since the number of adversarial encryption queries is at most 2Q,
such actions enlarge |HQueries| by at most 2Q;

– The simulator makes at most n queries to RO per adversarial decryption
query. Since the number of adversarial decryption queries cannot exceed p,
such actions enlarge |HQueries| by at most np;

– Finally, D may directly make p queries to RO and increase |HQueries| by p.

We then claim |ET| ≤ 2Q and |Lblock(ET)| ≤ 2Q + 1. For this, note that D
makes at most Q non-redundant to SRO

E and SRO
E−1 in total. By inspecting the

pseudocode, it can be seen:

– After processing every query to SRO
E , |ET| increases by at most 2, and

|Lblock(ET)| increases by at most 2. Note that these hold even if the sim-
ulator aborts in SRO

E .
– After processing every query to SRO

E−1 , |ET| increases by at most 2, and
|Lblock(ET)| increases by at most 2.

Thus |ET| ≤ 2Q. Whereas |Lblock(ET)| ≤ 2Q+1 since there is already one block(
02n

λ−→ 02n,→
)

at the beginning. Subsequent arguments typically distinguish
between this initial block and the added ones.

Events on simulated ideal cipher queries. A table entry ET[K1](X1) is
lazily sampled, if it is defined by line 20 in SRO

E or line 19 in SRO
E−1 . We first put

forward a collision event and a multi-collision event on such lazily sampled ideal
cipher queries.

Hit0⇔ ∃ a lazily sampled table entry ET[K](X) s.t. ET[K](X)⊕X = 0n,

MCol⇔ ∃ distinct lazily sampled table entries ET[K1](X1), . . . ,ET[Kn](Xn)

s.t. ET[K1](X1)⊕X1 = · · · = ET[Kn](Xn)⊕Xn.

Events on blocks. The following events are defined with respect to Lblock(ET).

Hit⇔ ∃
(
S(1) M ′

−−→ S(2), d1

)
,
(
S(3) M∗

−−→ S(4), d2

)
∈ Lblock(ET) s.t.

d1 =→ ∧
(
S(2) = S(3) ∨ S(2) = S(3) ⊕ (2n∥0n)

)
∧(

(S(3) M∗

−−→ S(4)) is defined before (S(1) M ′

−−→ S(2)) is defined

∨ (S(1) M ′

−−→ S(2)) and (S(3) M∗

−−→ S(4)) are defined

in the same CreateBlock call
)

DHit⇔ ∃
(
S(1) M ′

−−→ S(2), d
)
,
(
S(3) M∗

−−→ S(4),←
)
∈ Lblock(ET) s.t. d ̸= ⊥(

S(2) = S(3) ∨ S(2) = S(3) ⊕ (2n∥0n)
)

16

∧
(
(S(1) M ′

−−→ S(2)) is defined before (S(3) M∗

−−→ S(4)) is defined
)

BCol⇔ ∃ distinct
(
S(1) M ′

−−→ S(2),→
)
,
(
S(3) M∗

−−→ S(4),→
)
∈ Lblock(ET) s.t.(

S(2) = S(4) ∨ S(2) = S(4) ⊕ (2n∥0n) ∨ S(2) = S(4) ⊕ (3n∥0n)
)
.

For convenience, define BadBlock := Hit0 ∨MCol ∨ Hit ∨ DHit ∨ BCol.

Events on paths. We next identify a subset L→
path(ET) of Lpath(ET), which

consists of all the paths that are fully constituted by rightward blocks. We define
two additional events on L→

path(ET).

PathCol⇔ ∃ distinct
(
02n

M−→ S
)
,
(
02n

M ′

−−→ S′
)
∈ L→

path(ET) s.t.(
S = S′ ∨ S = S′ ⊕ (2n∥0n) ∨ S = S′ ⊕ (3n∥0n)

)
,

PathMCol⇔ ∃n distinct paths
(
02n

M1−−→ S1

)
, . . . ,

(
02n

Mn−−→ Sn

)
∈ L→

path(ET) s.t.

[S1]n = [S2]n = · · · = [Sn]n,

HBCol⇔ ∃(M∥m,H) ∈ HQueries,
(
02n

M−→ S
)
∈ L→

path(ET),m ∈ {0, 1}ν s.t.(
[H]n ⊕ [S]n ⊕ 2n ∈ ET−1

[
m∥[S]n

]
∨

[H]n ⊕ [S]n ⊕ 3n ∈ ET−1
[
m∥[S]n

])
,

HCol⇔ ∃(M,H) ∈ HQueries s.t. [H]n = [H]n ⊕ 1n,

PathLock⇔ ∃ distinct
(
02n

M−→ S
)
,
(
02n

M ′

−−→ S′
)
∈ L→

path(ET),

m ∈ {0, 1}ν ,
(
M∥m,H

)
,
(
M ′∥m,H ′) ∈ HQueries s.t.(

[S]n = [S′]n

)∧(
[H]n ⊕ 1n ⊕ [S]n = [H ′]n ⊕ [S′]n

∨
[H]n ⊕ [S]n = [H ′]n ⊕ [S′]n

∨
[H]n ⊕ [S]n = [H ′]n ⊕ [S′]n

)
.

Hereafter, these probabilities are upper-bounded.

Analyzing events on ET. Consider Hit0 first. For any lazily sampled entry
ET[K](X) = Y , when it is defined, either X or Y is uniformly drawn from at
least 2n− 2Q values. Thus, the probability to have X ⊕Y = 0n does not exceed
1/(2n − 2Q). Summing over the entries in ET, we have

Pr
[
Hit0

]
≤ 2Q

2n − 2Q
. (2)

For MCol, fix n distinct entries ET[K1](X1), . . . ,ET[Kn](Xn). Since they are
lazily sampled, for each i it holds either Xi or ET[Ki](Xi) is randomly drawn

17

from at least 2n − 2Q values. Thus, the probability to have ET[K1](X1)⊕X1 =
· · · = ET[Kn](Xn)⊕Xn is at most 1/(2n− 2Q)n−1. Hence, with the assumption
Q ≤ (2n − 2Q)/4 and n ≥ 3, we have

Pr[MCol] ≤
(
2Q

n

)
·
(

1

2n − 2Q

)n−1

≤ 1

n!
·
(

4Q

2n − 2Q

)n

≤ Q

2n − 2Q
. (3)

Analyzing events on blocks. For Hit, fix two blocks
(
S(1) M ′

−−→ S(2), d1

)
and(

S(3) M∗

−−→ S(4), d2

)
where these blocks are defined in the same CreateBlock call

or the former block is defined after the latter. S(2) is defined as follows.

[S(2)]n = ET
[
M ′∥[S(1)]n

]
([S(1)]n)⊕ [S(1)]n,

[S(2)]n = ET
[
M ′∥[S(1)]n

]
([S(1)]n ⊕ 1n)⊕ [S(1)]n ⊕ 1n.

Since d1 =→, both ET
[
M ′∥[S(1)]n

]
([S(1)]n) and ET

[
M ′∥[S(1)]n

]
([S(1)]n ⊕ 1n)

are randomly drawn from at least 2n − 2Q values. Hence, the probability that
S(2) = S(3) ∨ S(2) = S(3) ⊕ (2n∥0n) is at most 2/(2n − 2Q)2. Conditioned on
¬Hit0, it necessarily be

(
S(3) M∗

−−→ S(4), d2

)
̸=

(
02n

λ−→ 02n,→
)

. Therefore, the
number of choices for the two blocks is at most 2Q, and thus

Pr
[
Hit | ¬Hit0

]
≤ (2Q)2 · 2

(2n − 2Q)2
≤ 8Q2

(2n − 2Q)2
. (4)

For DHit, fix two blocks
(
S(1) M ′

−−→ S(2), d1

)
and

(
S(3) M∗

−−→ S(4),←
)

as
desired by the condition. By construction, the leftward block was created due
to D querying SRO

E−1(M∗∥[S(3)]n, Y)→ X and then [S(3)]n is set to either X or
X ⊕ 1n. In either case, the derived [S(3)]n is uniformly distributed in at least
2n − 2Q possibilities. With these, we distinguish two cases as follows.

– Case 1:
(
S(1) M ′

−−→ S(2), d1

)
=

(
02n

λ−→ 02n,→
)

. In this case, the probability
to have S(3) = S(2) = 02n does not exceed Pr

[
[S(3)]n = 0n

]
≤ 1/(2n − 2Q).

Similarly, the probability to have S(2) = S(3) ⊕ (2n∥0n) does not exceed
Pr

[
[S(3)]n = 2n

]
≤ 1/(2n − 2Q). Summing over the at most 2Q leftward

blocks, it can be seen the probability to have this Case 1 is at most 4Q/(2n−
2Q).

– Case 2:
(
S(1) M ′

−−→ S(2), d1

)
̸=

(
02n

λ−→ 02n,→
)

. Then, since d1 ̸= ⊥, its
two corresponding cipher queries are lazily sampled. By this and ¬MCol,
the number of blocks

(
S(1) M ′

−−→ S(2), d1

)
that have been defined such that

[S(2)]n = [S(3)]n is at most n−1. Therefore, the probability that DHit occurs
due to the block

(
S(3) M∗

−−→ S(4),←
)

is at most 2(n−1)/(2n−2Q). Summing
over the at most 2Q blocks, it can be seen the probability to have this Case
1 is at most 4(n− 1)Q/(2n − 2Q).

18

Taking a union bound over the two cases yields

Pr
[
DHit|¬MCol

]
≤ 4Q

2n − 2Q
+

4(n− 1)Q

2n − 2Q
=

4nQ

2n − 2Q
. (5)

For BCol, fix two distinct blocks
(
S(1) M ′

−−→ S(2),→
)

and
(
S(3) M∗

−−→ S(4),→)
. The following cases are considered.

– The first case is that
(
[S(1)]n = [S(3)]n⊕ 1n

)
∧
(
[S(1)]n = [S(3)]n

)
∧
(
M ′ =

M∗
)

, i.e., the blocks are defined by the same pair of queries. In this case,
the condition S(2) = S(4) implies [S(2)]n = [S(2)]n, i.e.,

ET
[
M ′∥[S(1)]n

]
([S(1)]n)⊕[S(1)]n = ET

[
M ′∥[S(1)]n

]
([S(1)]n⊕1n)⊕[S(1)]n⊕1n .

Since ET
[
M ′∥[S(1)]n

]
([S(1)]n) and ET

[
M ′∥[S(1)]n

]
([S(1)]n ⊕ 1n) are ran-

domly drawn from at least 2n−2Q values, the probability to have S(2) = S(4)

is at most 1/(2n−2Q). On the other hand, it can be seen S(2) = S(4)⊕(2n∥0n)
and S(2) = S(4) ⊕ (1n∥0n) are never fulfilled.

– The second case is that the blocks are defined by distinct pairs of queries. In
this case, the condition S(2) = S(4) implies

ET
[
M ′∥[S(1)]n

]
([S(1)]n)⊕ [S(1)]n = ET

[
M∗∥[S(3)]n

]
([S(3)]n)⊕ [S(3)]n

ET
[
M ′∥[S(1)]n

]
([S(1)]n ⊕ 1n)⊕ [S(1)]n ⊕ 1n

= ET
[
M∗∥[S(3)]n

]
([S(3)]n ⊕ 1n)⊕ [S(3)]n ⊕ 1n ,

where for i = 1, 3, ET
[
M ′∥[S(i)]n

]
([S(i)]n) and ET

[
M ′∥[S(i)]n

]
([S(i)]n ⊕ 1n)

are randomly drawn from at least 2n − 2Q values since the blocks are right-
ward. Moreover, these values are independently drawn, since the blocks are
defined by distinct queries. Hence, the probability that S(2) = S(4) is at
most 1/(2n − 2Q)2. Similarly, the probability that S(2) = S(4) ⊕ (2n∥0n) or
S(2) = S(4) ⊕ (1n∥0n) is at most 2/(2n − 2Q)2.

The number of chances for the first case is at most Q (to wit, 2Q blocks from
Q pairs). For the second case, conditioned on ¬Hit0, the involved blocks cannot
be

(
02n

λ−→ 02n, d1

)
, and the number of choices is thus at most

(
2Q
2

)
. Hence, we

have

Pr
[
BCol | ¬Hit0

]
≤ Q

2n − 2Q
+

(
2Q

2

)
· 3

(2n − 2Q)2
≤ Q

2n − 2Q
+

6Q2

(2n − 2Q)2
.

(6)

Analyzing PathCol. We show that PathCol is not possible conditioned on
¬BadBlock. Towards a contradiction, assume

(
02n

M−→ S
)
,
(
02n

M ′

−−→ S′
)
∈

19

L→
path(ET) with M ̸= M ′ and S = S′. If M = λ then S = 02n and it is

not possible to have S′ = S = 02n by ¬BadBlock, and vice versa. As such,
assume that M = h∥m∥t1∥t2∥ . . . ∥tℓ and M ′ = h′∥m′∥t1∥t2∥ . . . ∥tℓ, where
h, h′ ∈ ({0, 1}ν)∗ ∪ {λ}, m,m′ ∈ {0, 1}ν , t1, t2, . . . , tℓ ∈ {0, 1}ν ∪ {λ}. Consider
the last ℓ blocks(

S◦
1

t1−→ S◦
2 ,→

)
,
(
S◦
2

t2−→ S◦
3 ,→

)
, . . . ,

(
S◦
ℓ

tℓ−→ S◦
ℓ+1,→

)
;(

S◦◦
1

t1−→ S◦◦
2 ,→

)
,
(
S◦◦
2

t2−→ S◦◦
3 ,→

)
, . . . ,

(
S◦◦
ℓ

tℓ−→ S◦◦
ℓ+1 = S◦

ℓ+1,→
)
.

We distinguish two cases as follows.

– Case 1: there exists 1 ≤ i ≤ ℓ such that S◦
i ̸= S◦◦

i , whereas S◦
j = S◦◦

j for all
j > i. Then the existence of the two rightward blocks

(
S◦
i

ti−→ S◦
i+1,→

)
and(

S◦◦
i

ti−→ S◦◦
i+1,→

)
indicates BCol and contradicts ¬BadBlock;

– Case 2: S◦
i = S◦◦

i for all 1 ≤ i ≤ ℓ, i.e., the last ℓ blocks of the two paths
are the same. Then the existence of the two rightward blocks

(
⋆

m−→ S◦
1 ,→

)
and

(
⋆

m′

−−→ S◦◦
1 ,→

)
indicates BCol and contradicts ¬BadBlock.

On the other hand, the existence of two paths ∃
(
02n

M−→ S
)
,
(
02n

M ′

−−→ S′
)
∈

L→
path(ET) with M ̸= M ′ and S = S′ ⊕ (2n∥0n) (S = S′ ⊕ (3n∥0n), resp.)

immediately indicates the existence of two rightward blocks
(
⋆

⋆−→ S,→
)

and(
⋆

⋆−→ S′,→
)

with S = S′ ⊕ (2n∥0n) (S = S′ ⊕ (3n∥0n), resp.) and contradicts
¬BadBlock. By the above, we have Pr[PathCol|¬BadBlock] = 0.

Analyzing PathMCol. We also show that the event PathMCol is not possible
conditioned on ¬BadBlock and ¬PathCol. Consider any such n distinct paths(
02n

M1−−→ S1

)
,
(
02n

M2−−→ S2

)
, . . . ,

(
02n

Mn−−→ Sn

)
∈ L→

path(ET).
First, note that M1, . . . ,Mn ̸= λ. Assume otherwise, and wlog assume M1 =

λ, then S1 = 02n, and M2, . . . ,Mn ̸= λ. Let
(
T2

m2−−→ S2,→
)

be the last block of

the path
(
02n

M2−−→ S2

)
. Then, the equality [S2]n = 0n implies ET[m2∥[T2]n](X2)⊕

X2 = 0n for X2 = [T2]
n ⊕ 3n. Since

(
02n

M2−−→ S2

)
∈ L→

path(ET), the entry
ET[m2∥[T2]n](X2) is lazily sampled, and the above contradicts ¬BadBlock (more
concretely, ¬Hit0).

With the above, let
(
T1

m1−−→ S1,→
)
, . . . ,

(
Tn

mn−−→ Sn,→
)

be the last blocks

of the paths
(
02n

M1−−→ S1

)
,
(
T2

m2−−→ S2,→
)
, . . . ,

(
02n

Mn−−→ Sn

)
respectively.

Conditioned on ¬PathCol, we have S1 ̸= S2 ̸= · · · ̸= Sn. Then, the equality
[S1]n = [S2]n = · · · = [Sn]n implies

ET
[
m1∥[T1]n

]
(X1)⊕X1 = ET

[
m2∥[T2]n

]
(X2)⊕X2 = · · · = ET

[
mn∥[Tn]n

]
(Xn)⊕Xn

20

for Xi = [Ti]
n ⊕ 3n, i = 1, . . . , n. This contradicts ¬BadBlock (more concretely,

¬MCol). The above concludes Pr[PathMCol|¬BadBlock ∧ ¬PathCol] = 0.

Analyzing HBCol and HCol. The event HBCol is divided into two sub-events
as follows.

– ROHit: upon a random oracle query RO(M∥m)→ H is made (by either D

or the simulator), there exists a path
(
02n

M−→ S
)
∈ L→

path(ET) such that
[H]n ⊕ [S]n ⊕ 2n ∈ ET−1[m∥[S]n] or [H]n ⊕ [S]n ⊕ 3n ∈ ET−1[m∥[S]n];

– BlockHit: upon the simulator creating a rightward block
(
S′ m−→ S,→

)
,

there exists a path
(
02n

M−→ S′
)
∈ L→

path(ET) and a random oracle query
(M∥m∥m′,H) ∈ HQueries such that [H]n ⊕ [S]n ⊕ 2n ∈ ET−1[m∥[S]n] or
[H]n ⊕ [S]n ⊕ 3n ∈ ET−1[m∥[S]n].

Below we analyze the probabilities in turn.

Probability of ROHit. Consider any random oracle query RO(M∥m) → H. De-
fine a function

sval
(
M

)
:= s, where s = [S]n for

(
02n

M−→ S
)
∈ L→

path(ET).

Then the probability to have [H]n ⊕ [S]n ⊕ 2n ∈ ET−1[m∥[S]n] is∣∣ET−1
[
m∥sval

(
M

)]∣∣
2n

,

since [H]n is uniform in {0, 1}n. Similarly, the probability to have [H]n⊕ [S]n⊕
3n ∈ ET−1[m∥[S]n] is

∣∣ET−1
[
m∥sval

(
M

)]∣∣/2n. Conditioned on ¬PathMCol, the
number of paths

(
02n

M−→ S
)
∈ L→

path(ET) such that [S]n = s for any fixed
s ∈ {0, 1}n is at most n. By these, we have

Pr[ROHit | ¬BadBlock ∧ ¬PathMCol]

≤
∑

(M∥m,H)∈HQueries

2
∣∣ET−1

[
m∥sval

(
M

)]∣∣
2n

≤
∑(

02n
M−→S

)
∈L→

path(ET)

2
∣∣ET−1

[
m∥[S]n

]∣∣
2n

≤ n ·
∑

s∈{0,1}n

2
∣∣ET−1

[
m∥s

]∣∣
2n

≤ 4nQ

2n
(since |ET−1| ≤ 2Q). (7)

21

Probability of BlockHit. For this argument, define

HQueries[M] :=
{
(M∥m,H) ∈ HQueries for some m ∈ {0, 1}ν , H ∈ {0, 1}2n

}
. (8)

Consider any rightward block
(
S′ m−→ S,→

)
, where the underlying pair of ideal

cipher queries are ET[m∥[S′]n]([S
′]n) = Y = [S′]n⊕[S]n and ET[m∥[S′]n]([S

′]n⊕
1n) = Y ′ = [S′]n ⊕ 1n ⊕ [S]n. Conditioned on ¬PathCol, there exists at most
1 path of the form

(
02n

M−→ S′
)

. The number of random oracle queries of the
form (M∥m∥m′,H), m′ ∈ {0, 1}ν , is

∣∣HQueries[M∥m]
∣∣ (see Eq. (8)). Since Y =

[S′]n⊕ [S]n and Y ′ = [S′]n⊕ 1n⊕ [S]n are lazily sampled, the resulted [S]n and
[S]n are uniform in at least 2n−2Q possibilities. By this, for any (M∥m∥m′,H) ∈
HQueries[M∥m], the probability to have an entry ET[K](X) = Y such that
m∥[S]n = K and [H]n ⊕ [S]n = Y is at most 2Q/(2n − 2Q)2. Similarly, the
probability to have [H]n ⊕ [S]n ⊕ 1n ∈ ET−1[m∥[S]n] is at most 2Q/(2n − 2Q)2.

Summing over all the rightward blocks, we have

Pr[BlockHit | ¬BadBlock ∧ ¬PathMCol]

≤
∑(

S′ m−→S,→
)
∈Lblock(ET):∃

(
02n

M−→S′

)
∈L→

path(ET)

4Q
∣∣HQueries[M∥m]

∣∣
(2n − 2Q)2

. (9)

Note that for distinct blocks
(
S1

m1−−→ S2,→
)
,
(
S3

m2−−→ S4,→
)

, the induced
corresponding prefixes M1∥m1 and M2∥m2 are distinct: either m1 ̸= m2 which
immediately indicates the distinctness, or S1 ̸= S3 indicating distinct correspond-
ing paths

(
02n

M1−−→ S1

)
and

(
02n

M2−−→ S3

)
with M1 ̸= M2. Therefore, using∑

M∈{0,1}∗,m∈{0,1}ν

∣∣HQueries[M∥m]
∣∣ = |HQueries| ≤ 3Q+ np (see Sect. 5.3), we

obtain

Eq. (9) ≤
∑

M∈{0,1}∗,m∈{0,1}ν

∣∣HQueries[M∥m]
∣∣ · 4Q

(2n − 2Q)2
≤ 12Q2 + 4npQ

(2n − 2Q)2
.

Summing over the above, we reach

Pr[HBCol|¬BadBlock ∧ ¬PathMCol] ≤ 4nQ

2n − 2Q
+

12Q2 + 4npQ

(2n − 2Q)2
. (10)

On the other hand, it is easy to see that

Pr
[
HCol

]
≤ 3Q+ np

2n
. (11)

Analyzing PathLock. Consider any pair of distinct paths
(
02n

M−→ S
)
,
(
02n

M ′

−−→

S′
)
∈ L→

path(ET) and any m ∈ {0, 1}ν such that the two corresponding random
oracle queries

(
M∥m,H

)
and

(
M ′∥m,H ′) indeed appeared during the interac-

tion. To address the probabilities of the conditions, we distinguish several cases
as follows.

22

Case 1: M = λ or M ′ = λ. Note that they cannot both be λ since the two paths
are distinct. Wlog consider the case of M ′ = λ and S′ = 02n. Let

(
T

m−→ S, d
)

be the last block of
(
02n

M−→ S
)

. Since
(
02n

M−→ S
)
∈ L→

path(ET), it holds d =→,
and there exists K = m∥[T]n, X = [T]n such that ET[K](X) ⊕ X = [S]n and
ET[K](X ⊕ 1n) ⊕X ⊕ 1n = [S]n, and that ET[K](X) and ET[K](X ⊕ 1n) are
both lazily sampled. Then:

– The condition [S]n = [S′]n translates into ET[K](X ⊕ 1n) ⊕ X ⊕ 1n = 0n,
the probability of which is at most 1/(2n − 2Q);

– The condition [H]n⊕1n⊕ [S]n = [H ′]n⊕ [S′]n translates into [H]n⊕ [H ′]n⊕
[S]n = 1n and further [H]n ⊕ [H ′]n ⊕ ET[K](X) ⊕X = 1n, the probability
of which is at most 1/(2n − 2Q) regardless of the order of sampling [H]n,
[H ′]n, and ET[K](X) during the execution;

– Similarly, the probability to have [H]n ⊕ [S]n = [H ′]n ⊕ [S′]n is at most
1/(2n − 2Q); the probability to have [H]n ⊕ [S]n = [H ′]n ⊕ [S′]n is at most
1/(2n − 2Q).

In all, in this case, the probability to have the whole event ([S]n = [S′]n)∧([H]n⊕
1n⊕[S]n = [H ′]n⊕[S′]n∨[H]n⊕[S]n = [H ′]n⊕[S′]n∨[H]n⊕[S]n = [H ′]n⊕[S′]n)
is at most 3/(2n − 2Q)2.

Case 2: M,M ′ ̸= λ. Similarly to Case 1, there exists K,X,K ′, X ′ such that

ET[K](X)⊕X = [S]n, ET[K](X ⊕ 1n)⊕X ⊕ 1n = [S]n,

ET[K ′](X ′)⊕X ′ = [S′]n, ET[K ′](X ′ ⊕ 1n)⊕X ′ ⊕ 1n = [S′]n,

and that ET[K](X), ET[K](X ⊕ 1n), ET[K ′](X ′), and ET[K ′](X ′ ⊕ 1n) are
all lazily sampled. Conditioned on ¬PathCol, we have S ̸= S′, and thus either
(K,X) ̸= (K ′, X ′) or (K,X ⊕ 1n) ̸= (K ′, X ′ ⊕ 1n) (or both). Then:

– The condition [S]n = [S′]n translates into ET[K](X⊕1n)⊕X = ET[K ′](X ′⊕
1n)⊕X ′, the probability of which is always at most 1/(2n − 2Q) regardless
of the order of sampling ET[K](X ⊕ 1n) and ET[K ′](X ′ ⊕ 1n) during the
execution;

– The condition [H]n ⊕ 1n ⊕ [S]n = [H ′]n ⊕ [S′]n translates into [H]n ⊕
ET[K](X)⊕X ⊕ [H ′]n ⊕ ET[K ′](X ′)⊕X ′ = 1n, the probability of which is
always at most 1/(2n − 2Q) regardless of the order of sampling [H]n, [H ′]n,
ET[K](X), and ET[K ′](X ′) during the execution. Similarly, the probability
to have the condition [H]n⊕[S]n = [H ′]n⊕[S′]n is always at most 1/(2n−2Q);
the probability to have the condition [H]n ⊕ [S]n = [H ′]n ⊕ [S′]n is always
at most 1/(2n − 2Q).

In all, in this case, the probability to have the whole event is at most 3/(2n−2Q)2.

Summarizing. We conclude by counting the number of choices as above. For any(
02n

M−→ S
)
,
(
02n

M ′

−−→ S′
)
∈ L→

path(ET), the number of random oracle queries

23

of the form
(
M∥m,H

)
appeared during the execution is

∣∣HQueries[M]
∣∣, and the

number of queries
(
M ′∥m,H ′) is at most

∣∣HQueries[M ′]
∣∣. For every such four

queries, the probability to have the whole event is at most 3/(2n−2Q)2 as argued.
Therefore,

Pr[PathLock|¬BadBlock ∧ ¬PathCol]

≤
∑(

02n
M−→S

)
∈L→

path
(ET)

∑(
02n

M′−−→S′
)
∈L→

path
(ET)

3
∣∣HQueries[M]

∣∣ · ∣∣HQueries[M ′]
∣∣

(2n − 2Q)2

=
∑(

02n
M−→S

)
∈L→

path
(ET)

∣∣HQueries[M]
∣∣ ∑(

02n
M′−−→S′

)
∈L→

path
(ET)

∣∣HQueries[M ′]
∣∣ · 3

(2n − 2Q)2

≤ 3(3Q+ np)2

(2n − 2Q)2
. (12)

A G1 execution is good, if none of the bad events occurred during this exe-
cution. Summing over the above concludes the probability to observe good G1

executions.

Lemma 1. The probability to have a bad G1 execution is at most

6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
.

Proof. Gathering Eqs. (2), (3), (4), (5), (6), (10), (11), and (12) yields

2Q

2n − 2Q
+

Q

2n − 2Q
+

8Q2

(2n − 2Q)2
+

4nQ

2n − 2Q
+

Q

2n − 2Q
+

6Q2

(2n − 2Q)2

+
4nQ

2n︸ ︷︷ ︸
≤ 4nQ

2n−2Q

+
12Q2 + 4npQ

(2n − 2Q)2
+

3Q+ np

2n︸ ︷︷ ︸
≤ 3Q+np

2n−2Q

+
3(3Q+ np)2

(2n − 2Q)2

≤ 26Q2 + 4npQ

(2n − 2Q)2︸ ︷︷ ︸
≤ 3(3Q+np)2

(2n−2Q)2

+
8nQ+ 7Q+ np

2n − 2Q︸ ︷︷ ︸
≤ 8nQ+3nQ+np

2n−2Q

+
3(3Q+ np)2

(2n − 2Q)2

≤ 6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
,

as claimed. ⊓⊔

5.5 Consistency of good G1 executions

As mentioned, we next establish consistency of the simulation. Formally, in
Game 1, for any hash query M , the response RO(M) is equal to MDPHSRO

E ,
and the simulator never aborts due to adaptations. To this end, we show the
following (crucial) lemma regarding paths.

24

Lemma 2. In a good G1 execution, it holds Lpath(ET) = L→
path(ET), i.e., all

paths are fully constituted by rightward blocks.

Proof. The claim Lpath(ET) = L→
path(ET) clearly holds before the first simula-

tor cycle, since there was only 1 path
(
02n

λ−→ 02n
)

due to the initial block(
02n

λ−→ 02n,→
)

. Now consider the j-th simulator cycle, and assume that
Lpath(ET) = L→

path(ET) holds before this cycle. Depending on the type of the
cycle, we distinguish three cases.

Case 1: the j-th cycle is rightward. Assume that the block created in this
cycle is

(
S(1) M−→ S(2),→

)
. Clearly, this block may “extend” existing paths.

Though, if Lpath(ET) ̸= L→
path(ET) after creating this block, then there necessarily

exists another block
(
S(3) M ′

−−→ S(4), d2

)
∈ Lblock(ET) with d2 =← or ⊥ before

this cycle, and the newly created block fulfills S(2) = S(3). This contradicts ¬Hit,
meaning that Lpath(ET) = L→

path(ET) does hold after this cycle.

Case 2: the j-th cycle is leftward. In this case, if Lpath(ET) ̸= L→
path(ET)

after this cycle, then for the leftward block
(
S(3) M∗

−−→ S(4),←
)

created in this

cycle, there necessarily exists another block
(
S(1) M−→ S(2),→

)
∈ Lblock(ET)

such that

–
(
S(1) M−→ S(2),→

)
was the last block of a path that already existed before

this simulator cycle (it might be
(
02n

λ−→ 02n,→
)

), and
– S(2) = S(3).

This contradicts ¬DHit, showing that Lpath(ET) = L→
path(ET) does hold after this

cycle.

Case 3: the j-th cycle is adapted. In this case, we consider the detailed
steps of the cycle depending on the direction of the adversarial query. Ignoring
the possibilities of abortions, we note that:

– If the cycle was triggered by D querying SRO
E , then the simulator creates at

most 1 pair of adapted blocks;
– If the cycle was triggered by D querying SRO

E−1 , then the simulator creates at
most 1 pair of adapted blocks for each detected path.

Regardless of the details, let
(
02n

M−→ S
)
∈ Lpath(ET) be the first path detected

during this cycle, and let (M∥m,H) be the corresponding random oracle query.
The pair of adapted blocks to-be-created for this path would be

(
S⊕(2n∥0n)

m−→

25

H,⊥
)

and
(
S ⊕ (3n∥0n)

m−→ H,⊥
)

. Since Lpath(ET) = L→
path(ET) before this

simulator cycle, it holds
(
02n

M−→ S
)
∈ L→

path(ET). By this and by ¬BadBlock,

there does not exist any path of the form
(
02n

⋆−→ S ⊕ (2n∥0n)
)

or
(
02n

⋆−→ S ⊕

(3n∥0n)
)

before this simulator cycle (this in particular includes
(
02n

λ−→ 02n
)

).
By this, if successfully created, the two adapted blocks won’t be “appended” to
any existing paths, and thus Lpath(ET) = L→

path(ET) holds after creating this pair
of adapted blocks. Applying this argument iteratively, it can be seen Lpath(ET) =
L→
path(ET) holds after the simulator creates all adapted blocks and completes this

simulator cycle. Note that the conclusion holds even if this cycle aborts when
trying to create the adapted blocks. ⊓⊔

With the help of Lemma 2, we are able to show that various types of abortions
cannot occur. We first consider those due to maintaining the table PathT.

Lemma 3. In a good G1 execution, the simulator never aborts due to lines 15
and 20 in CreateBlock (i.e., maintaining the table PathT).

Proof. By construction, the simulator aborts due to lines 15 or 20 only if distinct
paths

(
02n

M−→ S
)

and
(
02n

M ′

−−→ S
)

with identical endpoint S are encountered.
Since the execution is good, it holds Lpath(ET) = L→

path(ET) by Lemma 2. Then,
such two colliding paths cannot exist by ¬PathCol, and thus the claim. ⊓⊔

We then address the abortions due to adaptations.

Lemma 4. In a good G1 execution, the simulator never aborts in adapted sim-
ulator cycles.

Proof. Consider the j-th adapted simulator cycle, and consider the detailed steps
of the cycle depending on the direction of the adversarial query.

Case 1: the simulator cycle was triggered by D querying SRO
E . Then

the simulator would first check the abort condition at line 2. By Lemma 2, it
holds Lpath(ET) = L→

path(ET) right before this cycle. Thus, this condition cannot
be fulfilled by ¬PathCol. Since we assumed that the current simulator cycle is
an adapted cycle, either the branch in lines 7–10 or the branch in lines 14–17 is
executed. Regardless of which branch is executed, let

(
02n

M−→ S
)
∈ Lpath(ET)

be the path detected during this cycle, and let (M∥m,H) be the correspond-
ing random oracle query. The simulator would then try to create two blocks(
S ⊕ (2n∥0n)

m−→ H,⊥
)

and
(
S ⊕ (3n∥0n)

m−→ H,⊥
)

, via making a call to
CreateBlock

(
(K,X, Y1), (K,X ⊕ 1n, Y2),⊥

)
with K = m∥[S]n, X = [S]n ⊕ 2n,

Y1 = [H]n ⊕X and Y2 = [H]n ⊕X ⊕ 1n.
We next step into the call to CreateBlock

(
(K,X, Y1), (K,X ⊕1n, Y2),⊥

)
. By

the pseudocode, this call would check if the to-be-defined adapted entry causes
inconsistency at line 3. On the input side, it necessarily holds X /∈ ET[K] and
X ⊕ 1n /∈ ET[K]:

26

– they held before this cycle (otherwise this cycle won’t happen at all), and
– the only possibility for earlier actions in this cycle to define ET[K](X) and

ET[K](X ⊕ 1n) is that, the branch in lines 7–10 is executed and then the
branch in lines 14–17 is executed. But this, as we argued before, is not
possible.

By the above, line 3 won’t cause abort.
On the output side, we argue that it also holds Y1 /∈ ET−1[K], Y2 /∈ ET−1[K],

and Y1 ̸= Y2. Recall that (M∥m,H) ∈ HQueries is the corresponding random
oracle query. We begin by arguing Y1 /∈ ET−1[K] and Y2 /∈ ET−1[K] before
this simulator cycle. First, note that right after

(
02n

M−→ S
)
∈ Lpath(ET) and

(M∥m,H) ∈ HQueries both hold, it holds Y1 /∈ ET−1[K] and Y2 /∈ ET−1[K] by
¬HBCol. During the period between this point and the beginning of the current
simulator cycle, the only possibilities to render Y1 ∈ ET−1[K] or Y2 ∈ ET−1[K]
are:

– D queries SRO
E ([S]n∥m,X) or SRO

E ([S]n∥m,X ⊕ 1n), forcing the simulator
to detect the path

(
02n

M−→ S
)
∈ Lpath(ET) and define ET−1[K](Y1) and

ET−1[K](Y2). But in this case, after S completes this purported detection,
it already holds ET−1[K](Y1) = X and ET−1[K](Y2) = X ⊕ 1n which is
consistent with the computations. And later when D makes its j-th query
(to SRO

E), it holds X,X ⊕ 1n ∈ ET[K] and the purported detection and
adaption wouldn’t have happened, which contradicts.

– D queries SRO
E−1([S]n∥m,Y1) or SRO

E−1([S]n∥m,Y2), forcing the simulator to de-
tect the path

(
02n

M−→ S
)
∈ Lpath(ET). Since this previous adapted simulator

cycle was completed without abortion, it already holds ET−1[K](Y1) = X
and ET−1[K](Y2) = X ⊕ 1n after that cycle and the purported detection in
this j-th cycle wouldn’t have happened.

Finally, as Y1 = [H]n ⊕X and Y2 = [H]n ⊕X ⊕ 1n, the condition Y1 = Y2

translates into [H]n = [H]n⊕1n, which isn’t possible conditioned on ¬HCol. By
Lemma 3, the remaining abortions in CreateBlock

(
(K,X, Y1), (K,X⊕1n, Y2),⊥

)
won’t happen either. We thus conclude this adapted cycle won’t cause abort.

Case 2: the simulator cycle was triggered by D querying SRO
E−1 . Assume

that the adversarial decryption query is SRO
E−1(K,Y). Since the execution is good,

it holds Lpath(ET) = L→
path(ET) by Lemma 2. Then, line 2 would not cause

abortion, as otherwise it indicates the occurrence of PathMCol and contradicts.
It remains to argue that the codes between lines 7–9 and 13–15 is only exe-

cuted once—as otherwise, the second time this part is executed, the correspond-
ing call to CreateBlock(⋆, ⋆,⊥) will find Y ∈ ET−1[K] and abort. By construction,
it can be seen that if the detection conditions at line 6 and 12 are fulfilled twice
or more (for several paths and random oracle queries), then the event PathLock
occurred before this j-th simulator cycle, contradicting our assumption. By this,

27

the codes between lines 7–9 and 13–15 is only executed once, i.e., the simulator
detects only 1 path in this j-th adapted cycle. The remaining argument for the
non-abortion of the subsequent call to CreateBlock(⋆, ⋆,⊥) is similar to the above
argument in Case 1. By these, in this case, this j-th adapted cycle won’t abort
either. ⊓⊔

5.6 From Consistency to Indistinguishability

As mentioned, this section presents the reduction from indistinguishability to
non-abortion. To this end, we focus on a fixed and deterministic distinguisher D
rather than an arbitrary one, since the advantage of a probabilistic distinguisher
cannot exceed the corresponding deterministic version with the best random
coins. With respect to D, we introduce some terminology first.

Recall that a G1 execution is good if none of the bad events was observed.
Whether a certain G1 execution is good depends on the randomness ϵ used by
the simulator and the random oracle RO, and we write DG1(ϵ,RO) for the G1

execution that uses the (explicit) randomness (ϵ,RO). For a good G1 execution,
consider the tables (ET,ET−1) of the simulator standing at the end of DG1 . These
tables essentially reflect the “footprints” of the execution. By Lemma 4, good
G1 executions never aborts. By the pseudocode, in non-aborting G1 executions,
information kept in the two tables are actually the same, and thus we only
consider the table ET in the subsequent argument. Denote by Te the set of all
possible tables ET that can be generated by the simulator during good executions.
For randomness (ϵ,RO), if the table ET standing at the end of DG1(ϵ,RO) has
exactly the same entries as ET◦ ∈ Te, then we write DG1(ϵ,RO) → ET◦.

Now, consider a table ET ∈ Te. For an ideal cipher E, if for any K ∈ {0, 1}k
and any X ∈ {0, 1}n such that ET[K](X) ̸= ⊥ it holds E(K,X) = ET[K](X),
then we say that E extends ET and denote E ⊢ ET.

Then, we have the following lemma.

Lemma 5. At the end of a good G1 execution, for every random oracle query
(M∥m,H) ∈ HQueries, M ∈ ({0, 1}ν)∗, m ∈ {0, 1}ν , there exist

(
02n

M−→ S
)
∈

Lpath(ET) and
(
S∗ m−→ H,⊥

)
∈ Lblock(ET) such that S = S∗ ⊕ (2n∥0n).

Proof. By construction, when SRO makes a random oracle query RO(M∥m)→
H, it is to complete the corresponding hash chain, and the aforementioned path
and block must be in Lpath(ET) and Lblock(ET) respectively. On the other hand,
if the query RO(M∥m) → H is made by D, M = m′

1∥ . . . ∥m′
ℓ, then by our

assumption, D will eventually issue queries to SRO
E to evaluate as defined by

MDPH. When D issues the last pair of encryption queries to SRO
E , SRO

E will detect
the path and make a call to CreateBlock(⋆, ⋆,⊥). After this, the aforementioned
path and block must be in Lpath(ET) and Lblock(ET). ⊓⊔

Then, we have: the G1 and G2 executions that are “linked” by the tables of
the simulator behave the same in the view of D, and are indistinguishable.

28

Lemma 6. Consider a pair of randomness (ϵ,RO) such that DG1(ϵ,RO) → ET ∈
Te. Then for any block cipher E ⊢ ET, the transcripts of queries and answers of
D in DG1(ϵ,RO) and DG2(E) are the same, and DG1(ϵ,RO) = DG2(E).

Proof. The idea is that the random values used during the three executions are
consistent. See Appendix A.1 for the (somewhat standard) proof. ⊓⊔

For any ET ∈ Te, the probabilities of the following two events are close:

1. a G1 execution with a random tuple (ϵ,RO) generates ET;
2. E ⊢ ET for an ideal cipher E.

Lemma 7. With respect to a fixed distinguisher D that makes q hash queries of
σ message blocks in total and p primitive queries, for any ET ∈ Te, it holds

PrE [E ⊢ ET]

Prϵ,RO[DG1(ϵ,RO) → ET]
≥ 1.

Proof. See Appendix A.3. ⊓⊔

Then the following lemma completes the indistinguishability of G1 and G2.

Lemma 8. For any distinguisher D making q hash queries of σ message blocks
in total and p primitive queries, when Q = σ + p ≤ 2n/2, it holds∣∣∣Pr[DG1 = 1

]
− Pr

[
DG2 = 1

]∣∣∣ ≤ 6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
.

Proof. The full proof is deferred to Appendix A.4. ⊓⊔

6 Conclusions

This article has shown a gap in the indifferentiability analysis of a hash function
proposed by Naito [13], and presented a patch for the proof. As a result, MDPH
maintains the original security bound, namely O(n− log n)-bit indifferentiability
security from the random oracle. The gap was about the behaviour of the decryp-
tion simulator, and we corrected it by clarifying what to be kept for consistency
in responding to a decryption query.

Acknowledgments. The authors thank Yusuke Naito and Jooyoung Lee for
helpful comments and discussions. We also thank Thomas Peyrin and Mustafa
Khairallah for discussions. Chun Guo was partly supported by the Program of
Taishan Young Scholars of the Shandong Province, the Program of Qilu Young
Scholars (Grant No. 61580089963177) of Shandong University, the National Nat-
ural Science Foundation of China (Grant No. 62002202), and the Shandong Na-
ture Science Foundation of China (Grant No. ZR2020MF053).

29

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 18–22, 2013). https://doi.org/10.1007/978-
3-642-40041-4_29

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 123–153. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2016). https://doi.org/10.1007/978-3-662-53008-5_5

3. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: TEDT: a
leakage-resistant AEAD mode. IACR TCHES 2020(1), 256–320 (2019).
https://doi.org/10.13154/tches.v2020.i1.256-320, https://tches.iacr.org/
index.php/TCHES/article/view/8400

4. Coron, J.S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to
build an ideal cipher: The indifferentiability of the Feistel construction. Journal of
Cryptology 29(1), 61–114 (Jan 2016). https://doi.org/10.1007/s00145-014-9189-6

5. Guo, C., Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1.3. Sub-
mission to NIST Lightweight Cryptography Project (2021), https://csrc.nist.
gov/Projects/lightweight-cryptography/

6. Guo, C., Lin, D.: Separating invertible key derivations from non-invertible ones:
sequential indifferentiability of 3-round even-mansour. Des. Codes Cryptogr. 81(1),
109–129 (2016). https://doi.org/10.1007/s10623-015-0132-0, https://doi.org/10.
1007/s10623-015-0132-0

7. Hirose, S.: Some plausible constructions of double-block-length hash func-
tions. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–
225. Springer, Heidelberg, Germany, Graz, Austria (Mar 15–17, 2006).
https://doi.org/10.1007/11799313_14

8. Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damgård scheme
with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg, Germany, Kuching, Malaysia (Dec 2–6, 2007).
https://doi.org/10.1007/978-3-540-76900-2_7

9. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: The romu-
lus and remus families of lightweight AEAD algorithms. IACR Trans. Symmetric
Cryptol. 2020(1), 43–120 (2020). https://doi.org/10.13154/tosc.v2020.i1.43-120,
https://doi.org/10.13154/tosc.v2020.i1.43-120

10. List, E.: TEDT2 - highly secure leakage-resilient tbc-based authenticated encryp-
tion. In: LATINCRYPT. Lecture Notes in Computer Science, vol. 12912, pp. 275–
295. Springer (2021)

11. Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and correlation
intractability of the 6-round Feistel construction. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg, Germany, Taormina, Sicily,
Italy (Mar 19–21, 2012). https://doi.org/10.1007/978-3-642-28914-9_16

12. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg, Germany, Cam-
bridge, MA, USA (Feb 19–21, 2004). https://doi.org/10.1007/978-3-540-24638-1_2

30

13. Naito, Y.: Optimally indifferentiable double-block-length hashing without post-
processing and with support for longer key than single block. In: Schwabe, P.,
Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 65–85. Springer,
Heidelberg, Germany (2019). https://doi.org/10.1007/978-3-030-30530-7_4

14. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg, Germany, Tallinn, Estonia
(May 15–19, 2011). https://doi.org/10.1007/978-3-642-20465-4_27

A Deferred Proofs for Randomness Mapping

A.1 Proof of Lemma 6

By an induction, assume that the transcripts obtained by D are the same up to
some point in the two executions, and consider the next query of D. Since D is
deterministic, the next query in the two executions are the same. We argue that
the answers obtained in the two executions are the same as well. Depending on
the type of this query, we distinguish two cases:

1. the query is to SE/E or SE−1/E−1: the answer obtained in DG1(ϵ,RO) are
consistent with the values in ET. Then, since E ⊢ ET, the answer obtained
in DG2(E), which is provided by E, is the same as that in DG1(ϵ,RO);

2. the query is to the hash: then the answer obtained in DG1(ϵ,RO) is provided
by RO. By Lemma 5, this answer is consistent with the hash value MDPHET.
Then, since E ⊢ ET, the answer MDPHE obtained in DG2(E) is also the same
as MDPHET in DG1(ϵ,RO).

Therefore, the transcripts of D in the two executions are the same. Since D is
deterministic, the two outputs of D are also the same.

A.2 Two Additional Helper Lemmas

We will rely on a useful inequality. It uses a new notation Θ1, which is based on
a corollary of Lemma 6. For this, consider a table ET ∈ Te, and assume that the
following holds for a pair of randomness (ϵ,RO):

– DG1(ϵ,RO) → ET;
– D outputs 1 in DG1(ϵ,RO), say, DG1(ϵ,RO) = 1.

Then by Lemma 6, for any (ϵ′,RO′), once DG1(ϵ
′,RO′) → ET, DG1(ϵ

′,RO′) = 1—
to this end, consider a block cipher E ⊢ ET, then 1 = DG1(ϵ,RO) = DG2(E) =
DG1(ϵ

′,RO′). With this in mind, we denote by Θ1 the subset of Te such that for
any (ϵ,RO) such that DG1(ϵ,RO) → ET ∈ Θ1, it holds DG1(ϵ,RO) = 1.

Lemma 9. PrE [D
G2(E) = 1] ≥

∑
ET∈Θ1

PrE [E ⊢ ET].

31

Proof. We show that for any E, there exists at most one ET ∈ Te such that
E ⊢ ET. Assume otherwise, i.e. ∃ET′ ∈ Te such that ET ̸= ET′∧E ⊢ ET∧E ⊢ ET′.
Assume that for two good pairs (ϵ,RO) and (ϵ′,RO′), it holds DG1(ϵ,RO) → ET
and DG1(ϵ

′,RO′) → ET′. Then, consider any query of the combination (D, S)
in the two executions DG1(ϵ,RO) and DG1(ϵ

′,RO′): (i) the answers to the query
to SRO(ϵ)/SRO′

(ϵ′) are the same, since they both equal the values eventually
kept in ET/ET′, which further equal the values defined by E; (ii) the answers to
the query to RO/RO′ are also the same, since they equal MDPHET/MDPHET′

respectively (by Lemma 5), and MDPHET = MDPHE = MDPHET′
. Then, fol-

lowing the same line as the proof of Lemma 6, we have that the transcripts of
the combination (D, S) in the two executions DG1(ϵ,RO) and DG1(ϵ

′,RO′) are the
same, so that the two tables ET and ET′ should be the same, a contradiction.
After this, we have

PrE [D
G2(E) = 1] ≥ PrE [D

G2(E) = 1 ∧ ∃ET ∈ Te s.t. E ⊢ ET]

=
∑

ET∈Θ1

PrE [E ⊢ ET] (by Lemma 6),

as claimed. ⊓⊔

We will rely on another helper lemma.

Lemma 10. Consider a good execution DG1 in which the distinguisher evaluates
all hash queries (as we assumed). Then, at the end of the execution, the number of
calls to CreateBlock(⋆, ⋆,⊥) by the simulator equals the size of the set HQueries
(i.e., the total number of distinct random oracle queries occurred during the
execution).

Proof. For every call to CreateBlock(⋆, ⋆,⊥), there is a corresponding random
oracle query record in HQueries, which was just made inside the call. Further-
more, for no other call to CreateBlock(⋆, ⋆,⊥) the same random oracle query
was made, as otherwise the later call to CreateBlock(⋆, ⋆,⊥) would have caused
abort, contradicting Lemma 4.

On the other hand, for each record in HQueries there was a corresponding
call to CreateBlock(⋆, ⋆,⊥), as shown in Lemma 5. ⊓⊔

A.3 Proof of Lemma 7

Fix ET ∈ Te. Then clearly

PrE [E ⊢ ET] =
∏

K∈{0,1}k

1

(2n)|ET[K]|
. (13)

For Prϵ,RO[D
G1(ϵ,RO) → ET], we consider the table ET[K] for an arbi-

trary key K ∈ {0, 1}k, and list the entries ET[K](X1) = Y1,ET[K](X2) =
Y2, . . . ,ET[K](X|ET[K]|) = Y|ET[K]| in the order that they are defined during the

32

execution DG1(ϵ,RO). Assume that βK out of the |ET[K]| entries were defined
in calls to CreateBlock(⋆, ⋆,⊥) (i.e., “adapted”), and their corresponding indices
are iK,1, . . . , iK,βK

. Then it can be seen the probability that SRO samples the
remaining |ET[K]| − βK responses is exactly

(2n − iK,1 + 1) · · · (2n − iK,βK
+ 1)

(2n)|ET[K]|

(
its order is O

(1

(2n)|ET[K]|−βK

))
.

Further assume that at the end of DG1(ϵ,RO), the random oracle query set
HQueries has γ records. Then, the probability that RO gives rise to the re-
sponses as in HQueries is exactly 1/22γn. We note that the randomness un-
derlying the execution DG1(ϵ,RO) is fully determined by the aforementioned∑

K∈{0,1}k

(
|ET[K]| − βK

)
lazily sampled entries in ET and the γ records in

HQueries. By these,

PrE [E ⊢ ET]

Prϵ,RO[DG1(ϵ,RO) → ET]
=

∏
K∈{0,1}k

1
(2n)|ET[K]|

1
22γn ·

∏
K∈{0,1}k

(2n−iK,1+1)···(2n−iK,βK
+1)

(2n)|ET[K]|

=
22γn∏

K∈{0,1}k(2n − iK,1 + 1) · · · (2n − iK,βK
+ 1)

.

The number of terms in the denominator is
∑

K∈{0,1}k βK , i.e., the total number
of adapted entries in ET.

Let θ be the total number of calls to CreateBlock(⋆, ⋆,⊥) during the execution
DG1(ϵ,RO). Then,

∑
K∈{0,1}k βK = 2θ since each such (successful) call defines two

adapted entries in ET. On the other hand, it holds γ = |HQueries| = θ by Lemma
10. By the above, 22γn >

∏
K∈{0,1}k(2n− iK,1 +1) · · · (2n− iK,βK

+1), and thus

PrE [E ⊢ ET]

Prϵ,RO[DG1(ϵ,RO) → ET]
≥ 1.

A.4 Proof of Lemma 8
Recall from Sect. 5.4 that the G1 execution DG1(ϵ,RO) is good, if and only if the
bad events never occur during the execution (and thus SRO(ϵ) never aborts by
Lemmas 3 and 4). Furthermore, let Θ1 be the subset of Te such that for any
(ϵ,RO) such that DG1(ϵ,RO) → ET ∈ Θ1 it holds DG1(ϵ,RO) = 1 (as defined in
Appendix A.2). Then, wlog assume that Prϵ,RO[D

G1(ϵ,RO) = 1] ≥ PrE [D
G2(E) =

1], it holds∣∣∣Prϵ,RO[D
G1(ϵ,RO) = 1]− PrE [D

G2(E) = 1]
∣∣∣

= Prϵ,RO[D
G1(ϵ,RO) is bad ∧DG1(ϵ,RO) = 1]︸ ︷︷ ︸

≤Pr[DG1(ϵ,RO) is bad]≤ 6(3Q+np)2

(2n−2Q)2
+ 11nQ+np

2n−2Q (Lemma 1)

+ Prϵ,RO[D
G1(ϵ,RO) is good ∧DG1(ϵ,RO) = 1]− PrE [D

G2(E) = 1].︸ ︷︷ ︸
≥
∑

ET∈Θ1
PrE [E⊢ET] (Lemma 9)

33

For the remaining probability, we have

Prϵ,RO[D
G1(ϵ,RO) is good ∧DG1(ϵ,RO) = 1] =

∑
ET∈Θ1

Prϵ,RO[D
G1(ϵ,RO) → ET].

Thus∣∣∣Prϵ,RO[D
G1(ϵ,RO) = 1]− PrE [D

G2(E) = 1]
∣∣∣

≤6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
+

∑
ET∈Θ1

(
Prϵ,RO[D

G1(ϵ,RO) → ET]− PrE [E ⊢ ET]︸ ︷︷ ︸
≤0 (Lemma 7)

)

≤6(3Q+ np)2

(2n − 2Q)2
+

11nQ+ np

2n − 2Q
,

as claimed.

34

