
Themis: Fast, Strong Order-Fairness in
Byzantine Consensus

Mahimna Kelkar
Cornell Tech

Soubhik Deb
University of Washington

Sishan Long
Cornell Tech

Ari Juels
Cornell Tech

Sreeram Kannan
University of Washington

Abstract—We introduce Themis, a scheme for introducing fair
ordering of transactions into (permissioned) Byzantine consensus
protocols with at most f faulty nodes among n ≥ 4f +1. Themis
enforces the strongest notion of fair ordering proposed to date.
It also achieves standard liveness, rather than the weaker notion
of previous work with the same fair ordering property.

We show experimentally that Themis can be integrated into
state-of-the-art consensus protocols with minimal modification
or performance overhead. Additionally, we introduce a suite
of experiments of general interest for evaluating the practical
strength of various notions of fair ordering and the resilience
of fair-ordering protocols to adversarial manipulation. We use
this suite of experiments to show that the notion of fair ordering
enforced by Themis is significantly stronger in practical settings
than those of competing systems.

We believe Themis offers strong practical protection against
many types of transaction-ordering attacks—such as front-
running and back-running—that are currently impacting com-
monly used smart contract systems.

I. INTRODUCTION

Decentralized Finance (DeFi), meaning the deployment of
financial instruments on blockchains, has attracted substantial
interest in recent years, with over 50 billion USD locked in
Ethereum DeFi as of August 2022 [3]. Unfortunately, while
DeFi continues to gain popularity, a long line of work [12],
[14], [20], [30], [39] has shown the rise of adversaries extract-
ing profit by manipulating the ordering and inclusion of trans-
actions in DeFi applications. In decentralized exchanges and
lending contracts, for example, where transaction execution
order is critically important, such order manipulation results
in attackers profiting at the expense of ordinary users.

Order manipulation is possible in existing protocols largely
because the formal properties required of state machine repli-
cation (SMR) or consensus—the primitive that underpins
blockchains—place no restriction on how transactions are
ordered. Neither consistency nor liveness, the two pillars of
consensus security, enforces any relationship between the order
in which transactions arrive in the network and their final
ordering. Indeed, in both permissioned consensus protocols,
e.g., PBFT [11] and Hotstuff [37], and permissionless ones,
e.g., Ethereum, the current “leader” fully controls the inclusion
and ordering of transactions within a block that it creates.

To address this gap in traditional consensus research, a
recent line of work [9], [18], [19], [21], [22], [38] has proposed
protocols with so-called fair ordering properties—properties
that prevent adversarial manipulation of transaction ordering.
These works propose several definitions of fairness1 along with

1We use “fairness” to mean fairness of transaction ordering or fair ordering,
although the term has been used in the past for unrelated notions (e.g., fair
PoW mining [29]).

protocols that realize them. Intuitively, this style of fairness
seeks to guarantee a specific ordering in the finalized ledger
based on how transactions arrive into the network. These
notions are different and in many cases stronger than past
ordering properties such as causal ordering [7], [31] which
only prevents reordering of transactions based purely on their
content and fails to account for a range of attacks, e.g., those
based on transaction metadata leakage or prioritizing adver-
sarial transactions over others (e.g., to get the best purchase
price for an asset [27]). The new line of work on fair ordering
attempts to tackle transaction ordering at a more fundamental
level; notably, [18], [19], [38] all found exciting connections
of the fair ordering problem to social choice theory.

The fair ordering landscape. Existing fair-ordering proto-
cols, however, have serious practical limitations. The Aequitas
protocol from [19] has impractically high O(n3) communica-
tion complexity and is also only able to provide a weaker live-
ness property. Protocols from subsequent works require O(n2)
communication but suffer from significant other shortcomings.

The protocol in [9] is only shown to provide liveness when
all nodes are honest (see Section VII). Moreover, as we show
in this work (see Section VI), there are subtle censorship issues
in Pompē [38] and that the fairness property satisfied by both
Pompē [38] and Wendy [21] is significantly weaker than one
from Aequtias. Table I shows a few comparison points.

This work presents a new protocol Themis, which we term
to be the first fair-ordering protocol that can be practically
deployed. Themis achieves the same strong fairness property as
Aequitas, guarantees liveness, and our implementation incurs
minimal cost over Hotstuff [37], a widely used state-of-the-art
consensus protocol without any fair-ordering guarantees.

A. Themis Overview and Contributions

Themis operates in a partially synchronous setting with a
committee of n nodes of which at most f may be arbitrarily
adversarial where n ≥ 4f+1. We implement Themis on top of
Hotstuff [37], a widely used leader-based protocol and show
that it incurs minimal performance overhead.

Themis: Fair-ordering property. Themis achieves the batch-
order-fairness property proposed by Kelkar et al. [19]. Infor-
mally, batch-order-fairness2 (Definition III.1) with parameter
1
2 < γ ≤ 1 dictates that if γ fraction of nodes receive
a transaction tx before tx′ from the client, then tx should
be ordered no later than tx′. While [19] also introduced
a stronger receive-order-fairness property where tx must be

2Here, batch is unrelated to the standard SMR optimization of increasing
throughput (at the cost of latency) by amortizing consensus over many
transactions.



Protocol Transaction
Ordering

Comm.
Complexity Corruption Liveness Censorship

Resistance
Synchronized

Clocks?Optimistic Worst

Aequitas [19]
γ-batch-

order-fairness
(Definition III.1)

O(n3) O(n3) n > 4f
2γ−1

(5)
::::
Weak Yes No

Wendy [21]
Timed-

Relative-Fairness(1)

(Section VI-A)
O(n2) O(n2) n ≥ 3f + 1 Standard Yes Yes(2)

Pompē [38]
Ordering

Linearizability(1)

(Section VI-A)
O(n2) O(n2) n ≥ 3f + 1 Standard

::
No Yes

Quick-Fairness [9]
κ-differential

order-fairness(3) O(n2) O(n2) n ≥ 3f + κ+ 1 :::
Only

:::::
when

::
all

::::
nodes

::
are

:::::
honest No

Themis (This Work) γ-batch-
order-fairness(4)

O(n2) O(n2)
n > 4f

2γ−1
(5) Standard Yes No

SNARK-Themis (This Work) O(n) O(nf)

TABLE I: Comparison of Themis to existing fair ordering protocols. An entry in green indicates that it is the best property
among the protocols that we compare to. An entry in

:::
red indicates a significant shortcoming.

(1) Fair separability (Definition VI.1) captures both notions (see Section VI-A). Our experiments in Section VI show why this notion is
significantly weaker than the one achieved by Themis and is likely not enough to handle adversarial order-manipulation in real-world settings;
(2) In Wendy, if honest local clocks are far apart (e.g., several seconds apart), then their fairness definition will never apply and therefore
no fairness guarantees can be provided; (3) We show that κ-differential-order-fairness is simply a reparameterization of batch-order-fairness
(see Section VII and Appendix D); (4) Since we consider a total ordering in Themis, transactions within a batch are ordered contiguously for
execution (see Section III-C and Section IV); (5) The fairness properties of both Aequitas and Themis are parameterized by γ but even for
the weakest variant, i.e., corresponding to γ = 1, they are still stronger than those of Wendy [21] and Pompē [38]. For γ = 1, Aequitas and
Themis both require n ≥ 4f + 1 but also work with n ≥ 3f + 1 if only crash-faults are present.

ordered strictly before tx′, it was shown to be impossible
without strong synchrony assumptions.

Informally, batches arise as a result of non-transitive Con-
dorcet cycles [2] in message receipt times across nodes (see
Section III for more details); the relaxation is minimal in the
sense that when there are no cycles, the stronger receive-order-
fairness property can be satisfied.

We find however that these cycles can extend for arbitrarily
long; this is ultimately responsible for the liveness problems
with Aequitas. To get around this, we notice that in a typical
deployment for Themis (e.g., for smart contracts), all trans-
actions (even those in a batch) will require a total ordering
for execution. Here, unlike Aequitas which can totally order
transactions in a cycle only after all transactions in it are
seen (which can take arbitrarily long), in Themis, using our
technique of unspooling (see Section III), we can output a
batch part-by-part while still ensuring that all transactions in
the same batch are output in an uninterrupted sequence. As a
consequence, Themis imposes a total ordering on transactions,
but one that respects batch-order-fairness.

Themis further guarantees another useful property: for any
two consequent transactions txj and txj+1 in the final output, it
holds that txj was received before txj+1 by at least n(1−γ)+1
honest nodes. This property also provides resistance against a
particular kind of frontrunning attack—where the adversary
wants to immediately precede a targeted user transaction.

We find that the fairness property supported in Themis
(even for the weakest version, i.e., corresponding to γ = 1)
is stronger in practice than other ordering notions proposed in
Zhang et al. [38] and Kursawe [21]. This is showcased through
our suite of fairness experiments.

Themis design (Section IV). Themis can be bootstrapped
from any leader-based consensus protocol with minimal design
changes: First, before constructing a block, all replicas send
information about the order in which they received client
transactions to the current leader. Second, we specify an

algorithm for an honest leader to construct a fair block proposal
from the replica orderings. Finally, we provide a way for the
replicas to verify the fairness of a leader’s proposal as well as
extract out the final ordering.

To construct a fair proposal, we extract out key techniques
from [19] for ordering transactions (much as [18] does). Un-
fortunately, applying these techniques naı̈vely results in a loss
of liveness, similar to the Aequitas protocol from [19] which
achieves only a weaker liveness notion due to the possible
“chaining” of Condorcet cycles (see Section III). Concretely,
in Themis, loss of liveness would mean empty blocks being
produced by several honest leaders until the “chaining” of the
current Condorcet cycle is completed.

Our solution is a new technique that we call deferred
ordering. With deferred ordering, blocks produced by a leader
contain some transactions that are fully ordered, while other
transactions are only partially ordered. Partially ordered trans-
actions await total ordering by a subsequent honest leader.
Notably, the finalization of these partially ordered transactions
happens within the network delay and does not have to wait
indefinitely for the ordering of future transactions, e.g., the
presence of Condorcet cycles. This feature of Themis allows
us to circumvent the liveness problem of Aequitas. Thanks
to deferred ordering, Themis achieves the standard liveness
property. The technique is also of general interest: it can, e.g.,
be retrofitted to [19] to achieve standard liveness there too.

Theoretical SNARK-based design (Section IV-D and Ap-
pendix B-B). We also describe a more theoretical design—
SNARK-Themis—which makes use SNARKs to achieve opti-
mistic O(n) communication complexity. This is particularly
notable since we find that other fair-ordering protocols can-
not easily be made optimistically O(n) even with the use
of SNARKs. This makes SNARK-Themis the first such fair-
ordering protocol; it’s asymptotic communication complexity
is in fact optimal and equivalent to state-of-the-art protocols
that lack any fair ordering guarantees, e.g., Hotstuff [37].

2



Implementation and benchmarks (Section V). We imple-
ment the O(n2) version of Themis, and show that its inte-
gration with Hotstuff’s codebase [1] results in small perfor-
mance overhead in practice; our implementation with n = 30
nodes was still able to achieve a latency of roughly 53ms
and a peak throughput of 52, 719 transactions per second,
which should suffice for most applications. Notably, Themis
scales in the same way as Hotstuff when n is increased.
Furthermore, any overhead almost entirely vanishes when
nodes are geo-distributed. Themis’ source code is available at:
https://github.com/anonthemis/themis-src-anon.

Suite of fairness experiments (Section VI). There exists no
prior work on practical measurement or empirical comparison
of fair-ordering protocols. A key contribution of our work,
therefore, is a systematically conceived suite of experiments to
quantify the practical impact of both fairness definitions and
protocols and understand their design tradeoffs. We consider
both honest settings as well as broad classes of adversarial
attacks that are common in practice. We study Themis through
this lens and show that it provides significantly better fairness
properties compared to other alternatives. We believe that our
fairness suite will be useful for any future work on fair ordering
protocols. We showcase three experiments:

1) Ideal setting. We quantify the strength of different
fair ordering properties in an ideal honest setting (with no
adversarial nodes) to understand the best-case scenario.

2) Frontrunning and insertion attacks. We evaluate re-
silience against network-layer insertions—attempts to mali-
ciously insert transactions at the network layer (i.e., even
before the consensus begins) through e.g., frontrunning.

We first prove that Themis does not allow any frontrunning
under a natural assumption that the network respects triangle
inequality. This result complements our experiments using a
real network. As a concrete datapoint, for 100 geo-distributed
nodes, for the fairness notions in [21], [38], up to 94% of
the node connections in the network are still susceptible to
adversarial frontrunning. In contrast, for the fairness notion in
Themis, the number goes down to 2.8% in the simplest protocol
parameter choice, and just 0.16% for the optimal parameter.

3) Adversarial reordering. We evaluate robustness to re-
ordering attacks, i.e., attempts to maliciously reorder trans-
actions compared to the honest execution. As a concrete
datapoint, in setting with 101 nodes, it is easier to reorder
in a median-timestamp based protocol (which essentially ab-
stracts out the fairness components of [21], [38]) with just 5
adversarial nodes, than in Themis even given 25 nodes.
As a separate point, we also evaluate resistance to censorship
(Section VI-F). In particular, we show a subtle censorship issue
with Pompē [38], due to its use of an ordering phase prior to
the actual consensus protocol.

II. PRELIMINARIES

Model. Our setup is a permissioned system with a set N
of n known protocol nodes or replicas, of which at most
f are controlled by an adversary (denoted by A) and can
deviate arbitrarily from the protocol description. Transactions
to be sequenced are sent by system clients to all replicas.
For our fair ordering protocols, we will consider the times
at which a transaction was received by the replicas to decide
on its overall ordering in the final ledger. For communication
between replicas, we assume the presence of a PKI, and the

security of digital signatures. The network itself is partially
synchronous [13]; specifically, there exists a network delay ∆
that bounds the message delivery time between replicas, but
is not known to the replicas. A controls all message delivery,
and can delay and reorder messages up to the bound ∆.
Graph terminology and algorithms. We make use of com-
mon graph algorithms to reason about the ordering depen-
dencies between transactions. Let G = (V, E) denote a graph
with vertex set V and edge set E . Unless specified, all graphs
will be directed and unweighted. We often use vertices and
transactions interchangeably when referring to graphs where
vertices represent transactions.
G is a tournament graph if there is exactly one edge be-

tween each pair of vertices. For V ∈ V , SCCG(V ) denotes the
strongly connected component that contains V . The subscript
can be dropped when the context is clear. Recall that an SCC is
a maximal subgraph such that there is a path in each direction
between each pair of vertices in the component. G∗ denotes the
condensation of G (i.e., the transformed graph where vertices
in the same SCC are collapsed into a single vertex). Note that
G∗ is guaranteed to be acyclic.

Within a graph, a Hamiltonian path is a path (i.e., a
sequence of vertices) that visits each vertex exactly once. A
Hamiltonian cycle is a Hamiltonian path that forms a cycle,
i.e., there is also an edge from the last vertex to the first vertex
in the path. For an acyclic graph G, a topological sorting is a
linear ordering of vertices such that for any vertices U and V ,
U is ordered before V if (U, V ) ∈ G.E .

Given a graph G, its condensation can be easily computed
in time O(|V|+ |E|) using depth-first search techniques [34].
Moreover, if G is acyclic, then it can also be topologically
sorted with the same asymptotic complexity. While the prob-
lem of detecting Hamiltonian paths in generic graphs is NP-
complete, for acyclic graphs in particular, it is solvable in time
O(|V|+ |E|) (through topological sorting). This is also true for
tournament graphs [26].

III. BUILDING BLOCKS

Our starting point is the fairness definitions of Kelkar
et al. [19], and their Aequitas fair-ordering protocol. Our
experiments show that their fairness property is stronger than
the ones from other works, and therefore the focus of this
work is to achieve the same strong property while fixing two
problems with Aequitas: (1) the lack of standard liveness; and
(2) the high communication complexity.

A. Aequitas Background

Batch-order-fairness. While Kelkar et al. [19] defined several
fairness variants, the primary notion considered and subse-
quently realized by their leaderless Aequitas protocol, was
batch-order-fairness, parameterized by 1

2 < γ ≤ 1.

Definition III.1 (γ-batch-order-fairness). Suppose that tx and
tx′ are received by all nodes. If γn nodes received tx before
tx′ locally, then all honest nodes output tx no later than tx′.

A stronger notion, receive-order-fairness (exactly as Defi-
nition III.1, but now, tx must be output before tx′), was also
considered. An impossibility result, however, rules out realiza-
tion except in specific synchronous settings. The impossibility
arises from the Condorcet paradox [2] in voting theory.

Abstractly, this allows for non-transitive global preferences
even if each party’s local preferences are transitive. As a simple

3

https://github.com/anonthemis/themis-src-anon


example, suppose that three nodes receive transactions in the
order [a, b, c], [b, c, a] and [c, a, b]. Here, each of “a before b”,
“b before c”, and “c before a” holds for a majority of nodes,
resulting in a non-transitive global preference.

Consequently, the global “fair” transaction ordering (ac-
cording to receive-order-fairness) could contain cycles (even
in a non-adversarial setting), which we call Condorcet cycles
(we will often simply use the term cycle). Batch-order-fairness
sidesteps this problem by enabling transactions to be output in
batches (transactions within a batch can still be totally or-
dered at e.g., the application layer), and subsequently ignoring
unfairness resulting from any cyclic orderings in the same
batch. Importantly, the batch relaxation is only used for
transactions in the same cycle.

Aequitas overview. The Aequitas protocol from [19] consists
of three stages that each transaction goes through before being
delivered to the ledger. First, in the gossip stage, all nodes
broadcast transactions in the order they were locally received
from clients. FiFo broadcast [17] is used to ensure that the
broadcast order of an honest sender is maintained. Next, in
the agreement stage, a variant of Byzantine Agreement [23]
is used to agree on whose local orderings to use to order
a particular transaction. Lastly, the finalization stage is used
to non-interactively determine the final transaction ordering.
Given the local orderings of other nodes, the finalization
algorithm builds a dependency graph of transactions as they
arrive. Here, edges represent ordering dependencies between
transactions (e.g., an edge from tx to tx′ signifies that a large
number of nodes have received tx earlier). Disregarding the
complexity introduced by the graph being built at different
rates by different nodes, the core algorithm removes transac-
tions from the graph and outputs them when, informally, they
no longer have any dependencies.

Aequitas realizes batch-order-fairness and circumvents the
receive-order-fairness impossibility by delivering transactions
in the same Condorcet cycle at the same time (i.e., in the same
“batch”). Further, Aequitas guarantees that batch-relaxation is
minimal in the sense that if no Condorcet cycles are present,
each batch includes only a single transaction (i.e., the stronger
receive-order-fairness notion will be met).

B. Aequitas Technical Challenges

Weak-liveness. A crucial problem with the Aequitas protocol,
however, is that it was proven to only guarantee a weak notion
of liveness (given as Definition A.1 for completeness). We
find that once again, the presence of Condorcet cycles proves
problematic here. In particular, we find that Condorcet cycles
can “chain” together and form larger ones that can extend for
arbitrarily long (in the worst case); informally, two cycles can
be chained by having them share a transaction. This means
that transactions input much later can become part of the same
cycle (although this can happen because of the specific input
transaction orderings and not necessarily the adversary). In
other words, specific input orderings could prevent transactions
from being output for arbitrarily long.

Although Kelkar et al. [19] do not formally define these
cycles, they are implicit in their weak-liveness definition. We
show that, intuitively, an equivalent formulation of weak-
liveness is that liveness for a transaction is guaranteed only
after its entire cycle is complete, which may take arbitrarily
long in the worst case (i.e., it cannot be a function of ∆).

In contrast, (standard) liveness in a partially synchronous
network guarantees that transactions are output within a finite
time dependent on the fixed (but unknown) parameter ∆.

Technical challenges and insights. Fixing the two aforemen-
tioned problems (weak-liveness and communication complex-
ity) with Aequitas results in some technical challenges that
required novel insights. Surprisingly, we find that the two
problems are intertwined in a way that solving one actually
requires solving the other.

As a first step, we prove that since Condorcet cycles
can extend for arbitrarily long, if the protocol waits for all
transactions in a cycle to be seen before they are output, it
cannot achieve standard liveness; in fact, here, Aequitas’ notion
of weak-liveness is the best possible property.

To get around this, we notice that in a standard SMR
deployment (e.g., for smart contracts), all transactions (even
those in the same batch) will need to be totally ordered
for execution. Note that this is compatible with batch-order-
fairness and here, Aequitas will enforce any total ordering
within a batch after it has been fully seen. Surprisingly, it
turns out that designing the protocol from the ground up with
the final total ordering in mind allows us to get around the
liveness problems. In so doing, we introduce batch unspooling,
which intuitively allows for a batch to be output part-by-
part (i.e., some transactions in a batch output before the rest)
while still ensuring that all transactions in the batch are output
contiguously (i.e., all transactions in a batch are output in an
uninterrupted sequence). Towards this goal, our work needed
to establish a novel understanding of Condorcet cycles.

Second, to reduce the communication cost, we use a
common technique of routing communication through a leader.
This turns out to be quite tricky however; a naı̈ve design actu-
ally leads to higher cost. This happens because the presence of
arbitrary-length Condorcet cycles can result in empty proposals
even from honest leaders. To solve this, we introduce our
technique of deferred ordering which enables the unspooling
of a batch across leaders. In particular, deferred ordering
allows for a leader proposal, in some cases, to contain partially
ordered transactions which will be be totally ordered by a
subsequent leader. Notably, we can still guarantee that the total
ordering will be finalized only based on the network delay and
therefore no weak-liveness problems arise.

C. Novel Understanding of Condorcet Cycles

While understanding cyclic ordering dependencies between
transactions, we need to account for the fact that some replicas
may be adversarial (and claim to have received transactions in
a different order), as well as the fact that up to f honest nodes
may not be considered (since we need to work in a partially
synchronous setting).

Condorcet cycles. We formally define (weak)-Condorcet cy-
cles below as they lead to a key piece of our protocol design;
these also turn out to be hidden within the weak-liveness
definition of Kelkar et al. [19].

Definition III.2 (Condorcet Cycle). A list [tx1, . . . , txl] is a
(weak)-Condorcet cycle of length l if the following holds: For
all i ∈ {1, . . . , l}, where tx1 = txl+1, at least n(1 − γ) + 1
honest nodes have received txi+1 before txi.

Remark 1. While not important for our paper, we can also de-
fine a stronger version based on the transaction ordering nodes

4



“claim” to have received within the protocol. In particular, in
the above definition, for each i, if at least γn−f nodes “claim”
to have received txi+1 before txi (honest nodes claim the order
in which they receive transactions while adversarial nodes can
claim arbitrary orderings), then [tx1, . . . , txl] will become a
strong-Condorcet cycle. The threshold γn−f is used here since
it is guaranteed to hold when γn nodes receive txi+1 before
txi. Unless specified, we will use cycles from Definition III.2.

Impossibility of liveness for entire batches. We start by
showing a constructive example of an input transaction order-
ing that results in Condorcet cycles of arbitrary length (and
time) for any parameters n, f ≥ 1 and γ. This is done by
continuously chaining together smaller Condorcet cycles to
form larger ones. As an informal but illustrative example, a
cycle [tx1, tx2, . . . , txl] can be formed through smaller cycles
[tx1, tx2, tx3], [tx3, tx4, tx5], . . . , [txl−2, txl−1, txl] where subse-
quent cycles are formed such that they share a common trans-
action. The overall construction is somewhat non-intuitive, but
we give a general algorithm in Appendix A to explicitly build
these arbitrary length cycles. In fact, the algorithm also shows
something stronger, namely the construction of arbitrary-length
strong-Condorcet cycles.

As a consequence, if a protocol waits for the entire cycle
to be seen before transactions within it are output (as Aequitas
does), then standard liveness is impossible to achieve.

Batch unspooling. We get around this impossibility using
a new technique. In typical use cases for consensus pro-
tocols (e.g., a smart-contract setting), it is necessary to to-
tally order all transactions for execution. For this, Aequitas
supports enforcing any total ordering for transactions within
a batch. Still, this is done only at the end after the en-
tire cycle has been seen. The final ordering can now be
thought of being linearly partitionable into cycles; in particular,
[tx(1)

1 , . . . , tx(1)
l1
, tx(2)

1 , . . . , tx(2)
l2
, . . . ] where tx(i)

1 , . . . , tx(i)
li

are
part of the same cycle.

Perhaps surprisingly, we find that embedding the total
ordering requirement within the protocol design itself allows
us to provide (standard) liveness while still keeping the same
fairness guarantees. We call this technique batch unspooling.
Unspooling allows us to output transactions within a cycle
without waiting for the full cycle to be seen. Nevertheless, we
can guarantee that transactions within the same cycle will be
output contiguously, i.e., no transaction from a later cycle will
be ordered before all transactions from the current cycle are
ordered. This allows us to achieve the same fairness property
as Aequitas (in the scenario where final execution requires a
total ordering) while providing standard liveness.

We note that figuring out when the current cycle ends
brings back the same weak-liveness problem, but our technique
of batch unspooling makes it so that this is no longer required.

IV. Themis DESCRIPTION

We now describe our protocol Themis in detail. Themis can
be bootstrapped from any existing leader-based protocol and
will endow it with fair ordering with minimal design changes.

Overall design. Recall that standard leader-based protocols
allow the leader to unilaterally choose its block proposal—only
the validity of transactions and not their ordering is checked
by the replicas. Themis will achieve fairness by providing
a mechanism for replicas to also check the ordering in the

proposal. To enable the leader to construct a fair ordering, all
replicas will first submit their local transaction orderings to
the leader. By local ordering, we mean transactions received
at the given replica ordered by their receive times.

Looking ahead, to enable the unspooling of a batch across
multiple leaders, we will introduce our technique of deffered
ordering. In line with this, we need to describe two algorithms
for an honest leader to execute: FairPropose for constructing
(partial) proposals, and FairUpdate for any updates to previ-
ous proposals. In our core Themis design, the leader will also
send all the local orderings to all replicas to enable checking
the fairness of its proposal. As a more theoretical alternative,
within SNARK-Themis, we leverage SNARKs to reduce the
asymptotic communication complexity of this step.

Finally, we also describe an algorithm FairFinalize, that
allows the replicas to extract a fair transaction ordering from
fully specified proposals (we will elaborate on this later).
Local replica orderings. Before the leader constructs a
proposal, each replica sends its local transaction ordering to the
leader. Note that since the network is partially synchronous, the
leader will need to work with only n− f orderings. To enable
the leader to construct a proposal, an honest replica i sends
the following: (1) Listi containing the transactions received by
i that are not part of any previous proposal, in the order that
they were received (by i); (2) σi(Listi) which is i’s signature on
Listi. Further, to allow the leader to update previous proposals,
i sends the following: (1) Updatei containing transactions
from previous proposals that are not fully specified in the
order that they were received (by i); (2) σi(Updatei) which is
i’s signature on Updatei. Notably, our protocol only requires
orderings from the replicas, and not individual timestamps for
transactions. In other words, Themis does not need to rely on
synchronized clocks.

A. Constructing the Leader Proposal

The leader starts by checking the validity of the lo-
cal replica orderings by checking their signatures. Then, to
construct its proposal, the leader executes FairPropose(L),
where L is a set of n−f replica orderings. Abstractly, the goal
of this algorithm is to propose as many transactions as possible
while making sure that the exclusion of any transaction does
not violate fairness.
Replica ordering notation. For a set L of n − f orderings,
we use tx ∈k L (resp. tx /∈k L) to denote that tx is present in
at least (resp. less than) k orderings in L. We use tx ≺(L,k) tx′
to denote that tx appears before tx′ in at least k orderings in
L. We use WeightL(tx, tx′) to denote the maximum value k
such that tx ≺(L,k) tx′.
Deferred ordering intuition. Abstractly, the final total trans-
action ordering can be thought of as being partitioned into
cycles. While enabling batch unspooling across multiple lead-
ers, we still need to guarantee that no transaction from a later
cycle is output before all transactions from the current cycle
are output. Towards this, based on the local replica orderings,
the leader can split transactions into three types: solid, blank,
and shaded. We use non-blank to label a transaction that is
either solid or shaded. Very roughly, this delineation enables
the following:

1) Solid transactions are the ones that are present in many
replica orderings and can be sequenced within the current
proposal. This property can be guaranteed for tx if tx ∈n−2f L.

5



2) Blank transactions are present in too few replica or-
derings and can be excluded from the current proposal. In
particular, we can guarantee that if tx is blank, then it cannot
be part of a previous cycle than any transaction in the current
proposal; in other words, excluding it will not result in any
unfairness. This happens when tx /∈n(1−γ)+f+1 L.

3) Shaded transactions take a more indeterminate form.
These are transactions tx such that tx ∈n(1−γ)+f+1 L but
tx /∈n−2f L. In many cases, we can rule out the possibility
of tx occurring in a previous cycle than all transactions in the
current proposal, in which case tx can safely be excluded. In
some cases however, current information does not allow for
this possibility to be ruled out. When this happens, we must
include the shaded transaction within the current proposal.

Doing so can result in a somewhat different challenge. If
two or more such shaded transactions are included, then the
ordering amongst them may not be clear yet. Our deferred
ordering technique applies exactly here. It allows proposing
a partial ordering for shaded transactions which will be com-
pleted at a later point when they are present in n− 2f replica
orderings. Notably, this happens only based on the actual
network delay for these transactions to be received, and is
therefore independent of other transactions.

Leader proposal algorithm. We now detail the algorithm
FairPropose. Since some transactions may be partially or-
dered, we will have FairPropose output a dependency graph
G that contains ordering dependencies within transactions in
the current proposal. Later, through FairFinalize, replicas
will extract out the final fair ordering from this graph.

The dependency graph G is constructed as follows: First,
a vertex is added for each non-blank transaction. An edge
(tx, tx′) is added to the graph whenever tx ≺(L,thresh) tx′ where
thresh = n(1−γ) + f + 1. Intuitively, this threshold is chosen
so that an edge (tx, tx′) signifies that tx′ cannot be in an earlier
cycle than tx. Only one of (tx, tx′) or (tx′, tx) is added however,
i.e., if both conditions are satisfied, the one with the larger
value will be added. Specifically, let k = WeightL(tx, tx′) and
k′ = WeightL(tx′, tx). If both k, k′ ≥ thresh, then add the edge
(tx, tx′) if k > k′ and the edge (tx′, tx) if k′ > k; If k = k′,
then one of the two edges can be added deterministically. Note
that no edges are added when both k, k′ < thresh. When this
happens, an edge will be added by a later proposal.

Next, we need to figure out which shaded transactions
need to be included in the proposal and which ones can be
excluded (recall that all solid transactions will be proposed).
In particular, the proposal will contain exactly those shaded
transactions that have a path (in G) to a solid transaction.

For this, we compute the condensation of G and topologi-
cally sort it. Let V be the last vertex in this sorting that contains
a solid transaction. Then, FairPropose outputs the graph
obtained by removing all tx from G where SCC(tx) occurs
after V in the topological sorting; everything after this needs
to be excluded. The details are given in Fig. 1.

Proposal properties. The output of FairPropose(L) is
guaranteed to contain all solid transactions in L and no blank
transactions. Further, it contains exactly those shaded trans-
actions that contain an outgoing path into a solid transaction
within the dependency graph G. Further, there is exactly one
edge between any two vertices, except when both vertices are
shaded (in which case there might be none). We prove this
graph structure in Lemma B.1. Future leaders cannot modify

Algorithm FairPropose(L)

// Propose a fair ordering for new transactions.
On input a set L containing the local orderings of n− f nodes:
1) Build Dependency Graph
• Create an empty graph G = (V, E).
• For each non-blank tx, add a vertex tx to V .
• For each tx, tx′ ∈ V , let k = WeightL(tx, tx

′) and k′ =
WeightL(tx

′, tx). If k ≥ n(1 − γ) + f + 1 and k ≥ k′ and
(tx′, tx) /∈ E , then add the edge (tx, tx′) to E .

• Compute the condensation G∗ and its topological sorting S.
2) Output Fair Ordering
• Let V be the last vertex of S that contains a solid transaction.
• Remove those tx from G, that are in vertices after V in S.
• Output G.

Fig. 1: Leader Proposal Algorithm

Algorithm FairUpdate(Lupdates)

// Update the ordering for previous proposals
On receiving a set Lupdates containing the local transaction orderings
of n− f nodes for previously proposed shaded transactions:
1) Output Dependencies
• Let Eupdates ← ∅.
• For all tx and tx′ that are part of the same leader proposal

and between whom no edge has been proposed yet, let
k = WeightLupdates

(tx, tx′) and k′ = WeightLupdates
(tx′, tx). If

tx ∈n−2f Lupdates, k ≥ k′ and k ≥ n(1 − γ) + f + 1 then
add the edge (tx, tx′) to Eupdates.

• Output Eupdates.

Fig. 2: Update Algorithm

existing edges but will be able to add missing edges between
shaded transactions. As mentioned before, our deferred order-
ing technique of proposing a “partial graph” is crucial as it
allows us to avoid the weak-liveness problem.

To show that this graph proposal is consistent with batch-
order-fairness, we now need to show that any transaction
exclusion does not violate fairness. In particular, we prove (in
Lemma B.3) that any transaction that is excluded cannot be in
a previous cycle than any transaction that was included. As a
consequence, this implies that cycles are output contiguously,
i.e., all transactions from the current cycle will be output before
any transaction from a subsequent cycles.

Update algorithm. The algorithm FairUpdate allows a
leader to add missing edges to a previous leader’s proposal
graph. For this, each replica i also sends the ordering Updatei
that orders shaded transactions from previous proposals as seen
by i. The update algorithm is quite simple: upon receiving
Lupdates containing n− f such replica orderings, for all trans-
actions tx and tx′ that were part of the same previous leader’s
proposal and do not currently have an edge between them, the
edge (tx, tx′) is added if tx ≺(L,n(1−γ)+f+1) tx′. Once again,
only one of (tx, tx′) or (tx′, tx) is added however exactly as
in the FairPropose algorithm. The new edges are specified
in an update list Eupdates. Intuitively, this allows all nodes to
use these update edges to fill in the missing details within
earlier proposals in order to compute the final fair ordering.
We provide details in Fig. 2.

The complete leader proposal can now be defined as B =
(G, Eupdates, π = (L,Lupdates)). Replicas will use π to verify

6



fairness; in SNARK-Themis, this can be done with a SNARK.

Consensus integration. The consensus design changes re-
quired are minimal. To enable the leader to construct its
proposal, all replicas will first submit their local transaction
orderings. The leader will now construct its proposal B and
use the underlying consensus protocol to confirm it. Within
this, replicas will also verify the fairness of the proposal (using
π) before providing their signature. Since π contains all the
replica orderings, the communication cost of the protocol will
be O(n2); this can theoretically be reduced to O(n) (when
the leader is honest) by making π a SNARK instead. As
a standard optimization, only the proposal hash needs to be
signed. Note that other parts of the underlying protocol, e.g.,
leader election and view-change will remain exactly the same.
Fig. 7 (Appendix B) provides a complete description.

Replica verification. Replicas can easily verify the fairness
of the block B = (G, Eupdates, π). In particular, given all the
orderings within π = (L,Lupdates), replicas can simply run
FairPropose and FairUpdate themselves to ensure that the
proposed G and Eupdates are both correct.

B. Finalizing the Fair Ordering

Fully specified proposals. Recall that leaders can propose
partial graphs for which missing edges will be added by
future leaders. A proposal is fully specified if its graph is a
tournament, i.e., there exists exactly one edge between each
pair of vertices. An important point to highlight here is that the
confirmation of transactions will depend only on the network
delay and does not suffer from the weak-liveness problem
present in Aequitas. This is because missing edges in G will
be added (making it fully specified) as soon as the transactions
are received by the network and an honest leader is elected.

Transactions in fully specified proposals can be totally
ordered and output by Themis. The algorithm FairFinalize
describes how honest replicas can extract this final ordering.

Finalization algorithm. Given a sequence of proposals
B1, . . . , Bl agreed upon by the underlying consensus protocol
whose transactions have not been fairly ordered yet, the first
step is to add any missing edges; in particular, if tx and tx′ are
transactions in Bi.G such that (tx, tx′) ∈ Bj .Eupdates for some
j > i, then add the edge (tx, tx′) to Bi.G.

After the updates, let k be the largest index such that all
Bi.G (i ≤ k) are now fully specified. Intuitively, these are the
blocks whose transactions will be ordered by FairFinalize.

To order transactions in B.G, we first compute the con-
densation graph B.G∗ by collapsing its SCCs and then find
the topological sorting [V1, V2, . . . , Vc]. Note that each of V1
to Vc represent an SCC within B.G. To output the final total
ordering, we need to now order transactions within each Vi.
As an optimization, transactions whose SCC as well as all
SCCs that precede it contains only solid transactions can also
be finalized immediately even before B.G is fully specified.

Observe that it is sufficient to order transactions in each Vi
arbitrarily (since intuitively they represent cyclic dependencies)
using an agreed-upon function; a similar technique is used in
Aequitas. As a better alternative however, we show how to
take advantage of useful hidden properties within the graph to
provide stronger fairness guarantees, which we describe next.

Stronger fairness guarantees within SCCs. In particular,
instead of arbitrarily ordering transactions in each SCC, we

Algorithm FairFinalize()

Given a sequence of proposals [B1, B2, . . . , Bl]:
1) Update Graphs

i. For all Bi and transactions tx, tx′ in Bi that do not have an
edge between them, if (tx, tx′) is in some Bj .Eupdates, then
add that edge to Bi.G.

ii. Let k be the last index such that the graph Bk.G is a
tournament.

iii. Compute the condensation graphs of B1.G, . . . , Bk.G and
their topological sortings S1, . . . , Sk.

2) Retrieve Fair Ordering
i. For each Si = [vi1, . . . , vili ] where i ∈ {1, . . . , k}, let Hij

be a Hamiltonian cycle of vij (pick one deterministically
if there are multiple, e.g., by removing the edge with the
smallest weight). Note that this exists since each vij is a
strongly connected tournament.

ii. Let txili be a solid transaction in each vili (pick one deter-
ministically if there are multiple), and let H ′ili be the cyclic
rotation of Hili so that the last transaction is txili .

iii. The final transaction ordering for the block Bi is now given
by Hi1, . . . , Hi(li−1), H

′
ili

.

Fig. 3: FairFinalize Algorithm

will make use of Hamiltonian cycles (a graph cycle that visits
every vertex exactly once) to order transactions in such a way
that it connects to the ordering in other SCCs.

An old result by Camion [10] shows that all strongly
connected tournaments contain a Hamiltonian cycle. Note that
although the problem of finding Hamiltonian cycles is NP-
complete for general graphs, for tournaments specifically, they
can be found in time linear in the number of edges [26].

More concretely, for each SCC C in B.G, we first find a
Hamiltonian cycle HC containing all the transactions within
C. If multiple cycles exist, one of them can be chosen
deterministically to be used for the total ordering. Now, the
ordering for transactions within V1 to Vc−1 (of the topological
sorting) is simply the sequence of the Hamiltonian cycles
HV1

to HVc−1
. For the final SCC Vc, we will cyclically

rotate the corresponding Hamiltonian cycle. Recall that our
FairPropose algorithm guarantees that this contains at least
one solid transaction, say tx. Now, to obtain the transaction
ordering for Vc, we rotate HVc so that tx is now the final
transaction among those output.

Intuitively, the upshot is that we can now cleanly connect
the boundaries of subsequent Condorcet cycles. Specifically, if
[tx1, . . . , txl] is the final output ordering, then for any j, txj is
received before txj+1 by at least n(1 − γ) + 1 honest nodes,
regardless of whether txj and txj+1 are in the same Condorcet
cycle. Notably, this is not achieved if transactions in a cycle
are ordered e.g., alphabetically (as done in Aequitas [19]).

A nice practical consequence of this property is strong
resilience against a particular kind of front-running attack—
specifically the one where the adversary wants to place its
transaction immediately before an honest user’s transaction.

C. Formal Themis Results

We will now formally define the properties satisfied by
Themis in a partially-synchronous network when n > 4f

2γ−1
where n is the number of nodes, f is the maximum number
of adversarial nodes, and 1

2 < γ ≤ 1 is the order-fairness

7



parameter. The proofs are deferred to Appendix B-A. We start
with the fairness properties.

Theorem IV.1 (Themis fairness). At any time, let [tx1, . . . , txl]
be the total transaction ordering output by Themis. Then, the
following properties are satisfied:

1) (Batch-order-fairness) Intuitively, the ordering can
be linearly partitioned in batches that satisfy batch-order-
fairness. In particular, there are indices 1 = i1 < · · · <
ik = l + 1 such that [C1, . . . , Ck−1], where each Cj =
{txij , . . . , txij+1−1}, satisfies γ-batch-order-fairness. Impor-
tantly, (similar to Aequitas), these batches are minimal in
the sense that they are of size one when there are no cyclic
ordering dependencies.

2) (Consequent-transaction fairness) For each i ∈
{1, . . . , l − 1}, it holds that txi was received before txi+1 by
at least n(1− γ) + 1 honest nodes.

Corollary IV.1.1. Themis satisfies receive-order-fairness when
there are no Condorcet cycles.

We also show that Themis satisfies the standard SMR
consistency and liveness properties.

Theorem IV.2. Themis satisfies consistency and liveness.

Audit friendliness. Themis’ fairness properties are also quite
friendly for auditing. In particular, an optimistic fast path can
be used where the leader constructs the proposal as normal but
does not send any correctness proof to the replicas; instead, the
proposal can be validated at a later time, even by an external
auditor. This is of course possible only when the auditor can
force a revert of the system to an earlier state and/or impose
a penalty upon detection of a malicious leader proposal.

Crash-fault tolerant protocol for n ≥ 3f + 1. Themis
can also be modified in a straightforward way to create an
3f + 1 version (when γ = 1) in settings with only crash
faults (instead of explicit adversarial behavior). Interestingly,
the same protocol will work for Byzantine faults but at the
cost of allowing the leader node to censor transactions.

D. SNARK-Themis

In Appendix B-B, we show a more theoretical design,
SNARK-Themis, which makes use of generic arguments of
knowledge (specifically, SNARKs [4], [16] for NP languages)
in a black-box way to verify computation.

Through this, SNARK-Themis is able to achieve optimistic
O(n) communication complexity. Notably, we find that ex-
isting fair-ordering protocol designs cannot easily satisfy the
same property even using SNARKS. This makes SNARK-
Themis the first such fair-ordering protocol; the communica-
tion here is asymptotically optimal and equivalent to state-of-
the-art consensus protocols without fair-ordering guarantees.

V. IMPLEMENTATION AND BENCHMARKS

We ran an extensive set of experiments for Themis that we
detail in this section. In addition to the standard performance
benchmarks (Section V-A) for throughput and latency, we also
design a suite of fairness experiments in Section VI which are
useful in quantifying the extent of fair transaction ordering.
We begin with an overview of our implementation below.

Implementation details. Our implementation for Themis is
bootstrapped from the Hotstuff protocol [37]: a state-of-the-
art leader-based protocol for the partially synchronous setting.
For this, we started from the authors’ open-source libhotstuff
codebase [1] (which implements the O(n2) version of the
Hotstuff protocol). Our primary code changes were having
the leader generate fair transaction sequences and having
the replicas validate them. We use this implementation to
benchmark the performance of Themis.

A. Performance and Benchmarks

Experimental setup. For our performance experiments, we
consider two settings: (1) Same Region: All nodes are in the
same AWS region (us-east-2); (2) Geo-distributed: Nodes are
distributed across across 5 regions (us-west-1, us-east-1, ap-
northeast-1, ap-northeast-2, eu-central-1) with an equal number
of nodes in each region. To demonstrate scalability, we vary
the total number of nodes n in the system from 5 to 100.
Each node is run on an AWS EC2 C5.4xlarge instance with
16vCPUs and 32GiB memory. In addition, we utilize separate
“client” nodes to generate and transmit transactions.

Latency and throughput. We report on the latency and
throughput of Themis and compare them to standard Hotstuff
run as a baseline. The results are shown in Fig. 4. We
experimented with two blocksize (denoting the number of
transactions in a proposal) parameters β = 50 and β = 400.

Overall, Themis provides very comparable performance to
Hotstuff. Notably, we found that both latency and throughput
of Themis scale in the same way as Hotstuff as the number
of nodes increase. Using a larger blocksize increases the
performance gap between the two protocols; this is because
Themis needs to build a graph with O(β2) edges. In the single
datacenter setting, this gap was found for blocksize β = 400.
This difference is not fundamental however, and we highlight
that the computation can be parallelized and therefore, by
using more cores per node, the performance of Themis can be
made comparable to Hotstuff even for a large β. An optimized
implementation of the graph algorithms used by Themis could
also further boost the performance.

More importantly, we found that this difference vanishes in
the geo-distributed setting due to already larger communication
latency. In fact, we found that performance of both systems
was identical even for very large blocksizes (β = 1200).

In essence, we expect the performance of Themis to be suf-
ficient for most applications that require its fairness properties.

Performance comparison to other fair-ordering protocols.
We do not directly compare the performance of Themis to
other fair-ordering protocols: this is primarily due to lack
of any comparable protocol implementation. For instance,
Aequitas as well as the protocol from [9] do not come with
an implementation, while an open-source implementation of
Wendy only provides simulations and is not yet integrated
with the consensus layer. Pompē provides an implementation
using Hotstuff as the underlying protocol; their benchmarks
also show comparable performance to Hotstuff (similar to
Themis), and even better performance in some geo-distributed
deployments, due to a fast ordering phase that precedes the
actual consensus layer. However, since this ordering phase
itself creates censorship issues within Pompē, a performance
comparison to Themis would not be on an equal footing.

8



20 40 60 80 100
Number of nodes

101

102

103

M
ea

n
la

te
nc

y
(m

s)

20 40 60 80 100
Number of nodes

102

103

104

105

106

T
hr

ou
gh

pu
t

(t
x/

s)

Same Datacenter

Hotstuff (β = 50)

Themis (β = 50)

Hotstuff (β = 400)

Themis (β = 400)

Geo Distributed

Hotstuff (β = 50)

Themis (β = 50)

Hotstuff (β = 400)

Themis (β = 400)

Fig. 4: Performance comparison of Themis and Hotstuff in both the same-datacenter and geo-distributed settings.

VI. SUITE OF FAIR ORDERING EXPERIMENTS

To better analyze and compare different fair-ordering defi-
nitions and protocols on an equal footing, we propose a general
suite of fairness experiments. Through these, we compare the
fairness definitions from [21], [38] as well as receive-order-
fairness, and batch-order-fairness. We also compare Themis to
existing fair-ordering protocols.

Comparison axes. Our analysis comprises primarily of three
axes—each targeted at specific setting or attack vector. We
start by considering an ideal setting where all nodes are
honest to understand the best-case scenario (Section VI-C).
Our next two experiments simulate adversarial environments.
In Section VI-D, we analyze susceptibility to insertion (e.g.,
front-running) attacks. In Section VI-E, we evaluate robustness
to reordering—to what extent adversarial nodes can influence
the final ordering by reordering honest user transactions.

As a related analysis point, in Section VI-F, we also
evaluate censorship-resistance from a formal standpoint; here,
we show a subtle censorship issue with Pompē [38].

A. Fair-Ordering Definitions

Fair ordering definitions from [21], [38]. Zhang et al. [38]
and Kursawe [21] consider similar definitions of fairness which
we consolidate into a single property fair separability.

Definition VI.1 (Fair Separability). If all honest nodes receive
tx before any honest node receives tx′, then all honest nodes
output tx before tx′.

This property is called timed-relative-fairness in [21]. It
is also stated as a desideratum in [15] although no protocols
achieving this property are given. The ordering-linearizability
notion considered in [38] is similar except that it is only
applied when tx and tx′ are both output by the protocol.
In particular, ordering-linearizability considers it acceptable if
only tx′ is ouput and tx is not, even when the antecedent of
the above definition is true, i.e., all honest nodes received tx
before any honest node received tx′. By doing so, the Pompē
protocol is able to ensure that the delivery of tx′ is not held
back by tx even when tx is stuck in a slow network. However,
by making this tradeoff, another problem is introduced: a
network adversary or even a Byzantine leader node is now
able to censor a specific transaction from being delivered; this
is potentially far more problematic, especially for our primary
motivation of DeFi. We discuss this further in Section VI-F.

Comparing batch-order-fairness on an equal footing. While
batch-order-fairness allows transactions to be output together,
this is done only for those in the same cycle, and even within
a batch, a total ordering will be enforced later for execution.
Therefore, to quantify the strength of batch-order-fairness in
the most conservative way, in all our comparisons, we consider
the final total execution ordering guaranteed by batch-order-
fairness, i.e., exactly the fairness property of Themis.

For instance, if an adversary can adversarially get tx
executed before tx′ (e.g., through frontrunning or order-
manipulation), we count it as a victory for the adversary and a
failure of batch-order-fairness and our protocol. In fact, even
if the adversary is able to place two transactions into the
same cycle when they should not have been, we will still
consider it a success for the adversary. We emphasize that
even with this conservative approach, our results highlight
the strength of batch-order-fairness and Themis in preventing
order-manipulation attacks.

B. Simulation Environment

We created an environment to simulate the creation and net-
work broadcast of transactions to better understand the effect
of different parameters. This is useful for both our ideal set-
ting (Section VI-C) and adversarial reordering (Section VI-E)
experiments. Transactions are generated by a sending process
with the time delays between consecutive transactions sampled
from the distribution GenerationDist. For each transaction, we
simulate when it would reach different consensus nodes by
sampling the network latency from a distribution NetworkDist.
Let Send(tx) denote the time that tx was generated and
Recv(i, tx) denote the time that tx is received by replica i.

We instantiate each distribution as an exponential distri-
bution, which is standard in networking literature. The rate
of generation or arrival of messages is modeled as a Poisson
process, which is equivalent to the intervals between mes-
sages (i.e., GenerationDist) being an exponential distribution.
Separately, the network delay is also usually modeled as an
exponential distribution. We set GenerationDist to the expo-
nential distribution Exp(1/µ) with mean µ = 1, and chose
NetworkDist to be independently distributed with mean rµ = r
for a network ratio parameter r.3

The network ratio r represents how quickly new transac-
tions are created compared to their network propagation time.

3The choice of µ = 1 is w.l.g. since exponential distributions satisfy the
scaling property — If X ∼ Exp(1/µ), then kX ∼ Exp(1/kµ).

9



It serves as a proxy for how far apart consensus nodes are from
one another; a small r (� 1) captures a setting where all nodes
are in the same local network, while a larger r (say 10 or 100)
is typically more reflective of a geo-distributed setting.

We highlight that even when the network delay is very
large, transaction latencies with smaller r can be approximated
by, abstractly, setting a coarser granularity for fairness. We
include a discussion in Appendix C. In our experiments, we
assume the finest possible granularity since this is the most
challenging setting, but we note that in some cases, a coarser
granularity may be acceptable.

Transaction comparisons. It is most fruitful to analyze the
ordering for transactions sent around the same time. The
scenario where tx′ is sent after tx has already been ordered, for
instance, is not particularly interesting. Therefore we take the
approach of studying sets of temporally clustered transactions,
rather than workloads of extended duration. We use sets of
1000 such transactions in our experiments.

C. Ideal Setting Comparison

We first seek to understand the utility of different fair-
ordering properties in an ideal, non-adversarial setting. Here,
the only influence is from how far nodes are and any random-
ness in network propagation. In this ideal setting, we ask how
close we can get to the magical first-in-first-out property of
ordering transactions based on when they were sent.

Ideal ordering summary. We vary r from 10−2 to 103, and
measure the number of transaction pairs that are correctly ac-
counted for by different fairness definitions, i.e., their ordering
is consistent with the sending process: tx is ordered before
tx′ when Send(tx) < Send(tx′). Fig. 5 shows our results. To
quantify the usefulness of batch-order-fairness conservatively,
we consider it a failure of the definition if transactions end
up in the same cycle. Overall, we still find that both receive-
order-fairness and batch-order-fairness ensure closer to ideal
ordering than fair separability for all values of r.

Of course, as r grows (i.e., the network delay gets larger),
the order of transactions received at the nodes will be vastly
different than the send ordering, i.e., the number of transaction
pairs ordered correctly will drop to zero. Still, the interest in
this experiment is understanding how quickly this drop takes
place for different definitions. Further, observe that having a
larger n makes each definition fare better.

We also find that receive-order-fairness and batch-order-
fairness perform identically except for when γ ≈ 0.5. The
deviation between the two definitions occurs due to (strong)-
Condorcet cycles (since we are in an ideal setting); intuitively,
this shows that these cycles are infrequent. To underscore
this, we further investigate these cycles; we find that cycles
are rare, and are of small length even when they do arise
(see Fig. 8 in Appendix C). This effectively demonstrates that
even though the stronger receive-order-fairness is impossible
without network synchrony, in many practical settings, the
performance of batch-order-fairness is almost identical.

D. Network Level Insertion Attacks and Frontrunning

We now analyze how robust a fairness definition is to
network-level frontrunning, which is arguably the core or-
dering issue in today’s networks. We define network-level
frontrunning as a node Y being able to perform the following
attack: On receiving a transaction tx from another node X , it

attempts to create a new transaction tx′ and get it sent to other
nodes in an attempt to get tx′ ordered before tx. Note that this
can frontrunning take place before transactions are received by
all nodes, i.e., even before the consensus protocol begins.

While causal ordering or privacy techniques can help
hide transaction data before ordering, thus thwarting targeted
frontrunning (i.e., based on transaction content), they do not
help against problems such as metadata leakage, or non-
targeted frontrunning (i.e., based only on the transaction exis-
tence rather than its content). Therefore, quantifying network
frontrunning remains important. Notably, our experiment mea-
sures frontrunning protection even in cases when transaction
privacy is not sufficient. Nevertheless, we note that all fair
ordering protocols can incorporate privacy as a complementary
protection — e.g., as a backstop against fair-ordering failures
in extreme settings such as full adversarial network control.
We also emphasize that our experiment can be easily adapted
to other network-level attacks like backrunning, sandwiching,
and priority attacks (e.g., first in line for an ICO [27]).

Formal frontrunning analysis in a natural network setting.
As a concrete result, we show how Themis as well as the
order-fairness definitions more broadly prevent frontrunning in
a natural network setting where triangle inequality is respected.
Abstractly, we prove that in such a network model, an adver-
sary cannot force a frontrunning transaction txadv into the same
Condorcet cycle as an honest transaction tx, and consequently
will not be able to get txadv executed earlier. This serves to
complement our experimental analysis of frontrunning in real
network settings. The full details are given in Appendix C-B.
Remark 2 (Full adversarial control). We remark that if the
adversary has full network control of when transactions
(both honest and adversarial) are input to honest nodes, then
network-level frontrunning is trivial in any protocol. Therefore
our experimental analysis needs to be limited to real-world
networks rather than ones with full adversarial control.

More specifically, the usual consistency and liveness prop-
erties remain intact even if the adversary has such a full
network control. Interestingly, even the fair-ordering property
holds based on the input orderings, but since the adversary
can essentially manipulate the input orderings of honest nodes
themselves given full network control, the property of the
protocol no longer reflects any intuitive notion of fairness.

Indeed, this limitation led to Kelkar et al. [19] formalizing
two networks: the (standard) internal network (for communi-
cation amongst consensus nodes) and the external network (for
all transaction submission). The adversary has full control over
the internal network but does not control the external network.
[19] notes that such a power would be similar in spirit to
controlling e.g., the user’s access to the internet. This ensures
that the input orderings of honest nodes cannot be manipulated
by the adversary. We highlight that similar assumptions of the
adversary not having full control over transaction submission
are present in all previous works [18], [21], [38].

Experiment details. We used a real network rather than a
simulation for this experiment to understand the possibility
of frontrunning in practice. Through measurement of commu-
nication latency between nodes, our goal now, is to find the
number of frontrunnable pairs — i.e., (A,B) such that B is
able to frontrun transactions originating from A. While we
experimentally find the number of such pairs, we emphasize
that the success of actual frontrunning attacks in practice also

10



10−2 10−1 100 101 102 103

r =
Mean Network Delay

Mean Generation Time

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

of
co

rr
ec

tl
y

or
de

re
d

tr
an

sa
ct

io
n

pa
ir

s

n = 20

Fair Separability

Receive-Order-Fairness γ = 1

Batch-Order-Fairness γ = 1

Receive-Order-Fairness γ = 0.8

Batch-Order-Fairness γ = 0.8

Receive-Order-Fairness γ = 0.6

Batch-Order-Fairness γ = 0.6

Receive-Order-Fairness γ = 0.51

Batch-Order-Fairness γ = 0.51

(a) n = 20

10−2 10−1 100 101 102 103

r =
Mean Network Delay

Mean Generation Time

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

co
rr

ec
tl

y
or

de
re

d
tr

an
sa

ct
io

n
pa

ir
s

n = 100

Fair Separability

Receive-Order-Fairness γ = 1

Batch-Order-Fairness γ = 1

Receive-Order-Fairness γ = 0.8

Batch-Order-Fairness γ = 0.8

Receive-Order-Fairness γ = 0.6

Batch-Order-Fairness γ = 0.6

Receive-Order-Fairness γ = 0.51

Batch-Order-Fairness γ = 0.51

(b) n = 100

Fig. 5: Comparison of the fraction of transaction pairs correctly ordered by different fairness notions as a function of r.

depends on many other factors — for instance, the expected
profit of a particular frontrunning strategy, the variance in
network latency, the presence of competing entities etc.
Frotrunnable pairs. We now describe frontrunnable pairs
for the fairness notions considered. For fair separability, fron-
trunning is possible if there exists nodes A,B,C,D (where
A, B, and C are distinct, D is different from A and B but
potentially the same as C) such that ping(A,B)+ping(B,C) <
ping(A,D). When this happens, notice that (A,B) is fron-
trunnable since B can receive a transaction tx from A (working
as a client) and forward its own adversarial transaction tx′
to C before tx was received by all honest nodes. Here, fair
separability will not apply since the antecedent is violated —
there is an honest node (C) that received tx′ before some other
honest node (D) received tx.

For (receive/batch)-order-fairness, (A,B) is frontrunnable
if there are at least n(1 − γ) + f + 1 nodes C such that
ping(A,B) + ping(B,C) < ping(A,C). Note that this is
because, now, the transaction tx from A is no longer received
before the transaction tx′ by at least γn−f nodes. Frontrunning
success is guaranteed if there are more than γn − f such
nodes C. Observe that each satisfying (A,B,C) corresponds
to breaking triangle inequality. Therefore, the possibility of
frontrunning here for (A,B) is synonymous to triangle in-
equality being violated in the network for a non-trivial (at
least f + 1) number of nodes. We find that is quite unlikely to
hold for real-world networks. For order-fairness, we report on
both the γ = 1 case (for which triangle inequality needs to be
violated f + 1 times for the pair to be frontrunnable), and the
optimal case (for which it needs to be violated > n/2 times).
Experimental results. We started with a simple toy setup by
deploying one node each in five different AWS regions. We
defer the details to Appendix C and directly proceed here with
our analysis using a large scale network with 250 servers.

For this, we used the publicly available WonderProxy
dataset [36] which contains ping times (in both directions)
between each server pair averaged over 30 pings per hour over
the two day period of July 19-20 2020. Now, for both n = 20
and n = 100, we randomly sample an n-sized committee from
the 250 servers and compute the number of frontrunnable pairs.
We average the results over 100 randomly chosen committees.
Table II reports on our findings for the number of frontrunnable

Setting Total
Pairs

Number of frontrunnable pairs

Fair
Separability

Receive/Batch
Order-Fairness

(γ = 1)

Receive/Batch
Order-Fairness

(Optimal)
5 AWS nodes 20 10 0 0

Random n = 20 380 313 14 1
Random n = 100 9900 9326 262 16

TABLE II: Number of frontrunnable pairs for fair separability
and order-fairness for several settings. The first line denotes
to our example setting with 5 geo-distributed AWS nodes. For
the other rows, we randomly sample n-sized committees from
the Wonderproxy dataset [36]. We chose n = 20, f = 4 and
n = 100, f = 24 for the second and third row respectively.

pairs for different fairness definitions.
For fair separability, on average 82% (for n = 20) and

94% (for n = 100) pairs were found frontrunable. On the other
hand, for order-fairness, the corresponding numbers were 4.5%
and 2.8% for γ = 1 and 0.26% and 0.16% in the optimal case.
Notably, frontrunning gets easier on larger networks for fair
separability while it gets harder for order-fairness.

E. Robustness to Adversarial Reordering

In this section, we evaluate to what extent adversarial nodes
can influence the final transaction ordering through reordering,
i.e., by claiming within the protocol to have received user trans-
actions in a different order than they were actually received.

Experiment intuition. All fair-ordering properties guarantee
some robustness to adversarial reordering. For instance when
all honest nodes receive tx before any honest node receives tx′,
fair separability guarantees that tx will be output before tx′ no
matter what the adversary does. Yet this says nothing about
how often the fairness property will apply for transaction pairs
or what happens when the property does not apply (e.g. is the
protocol fairness all or nothing or does it smoothly degrade).
Understanding this will paint a more complete picture of the
overall robustness of a protocol to adversarial reordering.

Dependence on transaction closeness. Zhang et al. [38] show
that it is impossible to make the final ordering completely
independent of the adversary (since intuitively, adversarial
nodes are indistinguishable from honest nodes). Still, ideally,
a good ordering protocol restricts adversarial influence only to
transactions that are already “very close” in the honest ordering

11



1 3 5 7 9 11 13 15 17 19 21

Dist(tx, tx′)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
F

ra
ct

io
n

of
tr

an
sa

ct
io

n
pa

ir
s

(t
x
,t

x
′ )

re
ve

rs
ed

n = 21, f = 5

Median, actual f = 2

Median, actual f = 5

Aequitas/Themis, actual f = 2

Aequitas/Themis, actual f = 5

100 1.1× 101 1.01× 102

Dist(tx, tx′)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
ra

ct
io

n
of

tr
an

sa
ct

io
n

pa
ir

s
(t

x
,t

x
′ )

re
ve

rs
ed

n = 101, f = 25

Median, actual f = 5

Median, actual f = 15

Median, actual f = 25

Aequitas/Themis, actual f = 5

Aequitas/Themis, actual f = 15

Aequitas/Themis, actual f = 25

Fig. 6: Adversarial influence on transaction ordering

— close in the sense that even their honest ordering could have
been inverted by small network delays. Effectively, this would
signify that the impact of the adversary is similar to that of
small network fluctuations.

As a proxy for “closeness,” we use the distance metric
Dist(tx, tx′) = |#(tx<tx′) − #(tx′<tx)| where #(x<y) denotes
the number of nodes that received x before y. Dist varies from
(n mod 2) to n in increments of 2. A small Dist implies a
“fragile” pair, where the number of nodes that received tx
earlier is roughly the same as the number that received tx′
earlier, while a large Dist means that one of the transactions
was received earlier by a large number of nodes.

Adversarial strategy. Since the space of possible adversarial
strategies is practically unbounded, we consider just one spe-
cific yet powerful attack in which the adversary will attempt
to flip the ordering of transactions. This adversarial strategy is
quite simple: an adversarial node simply flips the ordering of
all transactions it received as input. For instance, if it received
transactions in the order [tx1, . . . , txl], it claims to have re-
ceived them in the order [txl, . . . , tx1]. Despite the simplicity,
this should be a reasonable strategy for attempting to reverse
the final ordering for many transaction pairs. It generalizes
attempting to flip the ordering of a single transaction pair. Still,
we acknowledge that better adversarial strategies likely exist
and fair ordering protocols should also be tested against them.
We leave this for future work.

Measurement. Given our adversarial strategy of transaction
flipping, we now find how frequently it enables an adversary
to reverse the ordering (w.r.t. the honest total ordering) of a
transaction pair with a given distance. As a more accurate
comparison, for Themis, even if the adversary is able to put
transactions into the same cycle when they should not have
been, we consider as a failure for our protocol.

We consider two settings: n = 21, f = 5 and n =
101, f = 25, and vary the actual number of corruptions. In
each instance, we find the fraction of transaction orderings the
adversary successfully inverted. Fig. 6 shows the results.

We compare Themis (with γ = 1) to a simple median
protocol which outputs transactions sorted in ascending order
by their median timestamp. Note that this abstracts exactly the
relevant fairness component of Pompē [38] and Wendy [21].

Reordering insights. We first notice that for large Dist(tx, tx′)
(≥ 13 for n = 21, and ≥ 71 for n = 101), there was no
successful reordering against either protocol, even with the
maximum number of corruptions (for Themis, this was true

for all distances ≥ 11 for n = 21 and ≥ 29 for n = 101).
Note that the X-axis in the n = 101 figure is in log-scale
to better highlight reordering for transactions pairs with small
distance (since reordering was absent for large Dist).

Also note that in all cases, the fraction of reversed trans-
action pairs drops sharply as Dist gets larger, which shows
both fair ordering protocols working as expected. For small
Dist, the transactions are so close that even non-adversarial
random network delays can reverse their ordering, and thus it
is unreasonable to expect resilience to adversarial strategies.

Still, overall, we found that for a given actual number of
corruptions, it is much easier to reverse the transaction ordering
for a median timestamp protocol than for Themis. In fact, in
our experiment, it was easier to reverse the ordering against
the median timestamp protocol even through a small number
of corruptions than it was against Themis using the maximum
number of corruptions. Further, we also note that for this
specific adversarial strategy, the additional gain against Themis
through extra corruptions is small.

F. Censorship Resistance and Attacks

Censorship resistance is defined as the property that if
an honest client sends a transaction to the consensus nodes,
then it will eventually be output by the protocol. While many
existing protocols provide censorship resistance (e.g., [28]),
we emphasize that on its own this does not guarantee that the
ordering of transactions is “fair.”

In our setting, we find that there can be inherent tradeoffs
between liveness and censorship resistance for some existing
fair-ordering designs—in particular, if an earlier phase is used
to first order transactions before consensus.

Censorship attack on [38]. Pompē [38] uses a pre-protocol
(specifically an ordering phase prior to consensus) to compute
the median timestamp for transactions, with the fair ordering
being taken according to the ascending order of the median
timestamp. For n ≥ 3f + 1, as long as (tx, tx′) satisfies the
antecedent of fair separability (Definition VI.1), the median
of tx will be smaller than that of tx′. In other words, as long
as both transactions complete the ordering phase, tx will be
ordered earlier by the protocol; this condition is explicitly
stated in the ordering linearizability definition used in Pompē.
Unfortunately, this results in censorship resistance being guar-
anteed only for transactions that pass the pre-protocol phase.

For Pompē, in a partially synchronous network, an ad-
versary can delay sending the median timestamp for tx long
enough till tx′ is delivered. If this happens, since the rest of

12



the output is fair, tx can never be output by the protocol.
Concretely, Pompē assumes that there is a known ∆2 which is
the upper bound on the time for an honest node to complete
the ordering phase; they use this bound as the maximum time
a transaction in the consensus phase waits for any potential
transaction from earlier to finish the ordering phase. When
this bound is not satisfied, while safety is not broken, earlier
transactions are now essentially censored since the consensus
phase has moved on to a later timestamp even though they
were timestamped during the ordering phase. In order words,
to achieve censorship resistance, Pompē needs to assume a
known synchronous bound throughout the protocol on the
time for an honest node to complete the ordering phase,
which cannot be assumed in the partially synchronous setting.
The synchrony requirement is also especially of concern in
the common setting where clients (rather than nodes) submit
transactions since the bound would now have to involve the
client’s connection.

While this was partially acknowledged in [38] as a possible
way a Byzantine node could selectively chose which of its
transactions to submit to the consensus phase, the stronger
censorship attack vector was not identified, and in the context
of DeFi, both selective disclosure and censorship are far more
severe. This also surfaces an inherent tradeoff between liveness
and censorship resistance within such protocols. Since the
client (or the protocol node in charge of the transaction)
is in charge of accumulating timestamps from the nodes in
the ordering phase before proceeding to the consensus phase,
as [38] notes, it is not possible to distinguish between whether
the transaction was sent to the consensus phase in time or not.
In fact, because of this, a view change also cannot be triggered
in order to get back censorship resistance. Consequently, either
there will be a liveness failure (by potentially waiting forever),
or censorship resistance will not be achieved.

From our analysis, the core reason for this is the separation
between the pre-protocol that computes the median timestamp
and the consensus phase, along with the requirement that a
single node is in charge of moving a specific transaction from
the former to the latter phase. In such a protocol design, due
to the presence of Byzantine nodes, it is impossible to ensure
that any transaction that has been timestamped at the protocol
nodes also makes its way into the consensus phase.

On the other hand, Wendy along with Themis and Ae-
quitas [19] are not susceptible to such censorship; if a transac-
tion is received by all honest replicas, it will not be censored,
and moreover will be sequenced in a fair order.

VII. RELATED WORK

While our experimental suite contains several useful com-
parisons, we use this section to highlight a few more nuances.

Causal ordering and privacy. Prior work in classical dis-
tributed systems [7], [31] had considered a limited notion
of preventing reordering based on transaction content, but as
mentioned earlier (and also identified by [18], [19], [21]), this
is not robust against metadata leakage, collusion with protocol
nodes, and order-manipulation attacks that do not rely on the
content of honest transactions.

Informally, causal ordering uses threshold encryption to
hide transaction data before its position is finalized in the
total ordering. In a similar spirit, other recent protocols have
proposed to use alternative cryptographic confidentiality mech-

anisms to accomplish the same goal. This includes proto-
cols that utilize, for instance, commit-and-reveal schemes [5],
time-lock encryption, verifiable delay functions (VDFs) [33],
or even multi-party-computation (MPC) among the protocol
nodes [24]. These protocols have the same drawbacks as causal
ordering when compared to the line of work on fair ordering
protocols. In addition, these protocols are somewhat ad hoc,
to our knowledge lacking formal analysis on their properties.

Many of these protocols also randomly order transactions
within an epoch. As noted in, e.g., [18], such techniques are
susceptible to flooding attacks (e.g., [27]) where now with high
probability, some adversarial transaction will be be unfairly
ordered ahead of the honest transaction.

We note however that confidentiality-based techniques can
nicely complement fair ordering protocols; confidentiality can
protect transactions against ordering attacks at the network
layer, while fair ordering does so at the consensus layer.

Comparison to Aequitas [19]. Kelkar et al. [19] initiated
the recent line of work on fair ordering, and they detail
several protocols that achieve batch-order-fairness in different
settings. For our comparisons, we use their leaderless Aequitas
protocol that works in partially synchronous and asynchronous
networks. While a leader-based variant is also provided, it uses
the same structure as the leaderless protocol, requires more
communication, and does not provide any additional benefits.
Although Themis and Aequitas satisfy the same notion of
batch-order-fairness, Themis has a three-fold advantage over
Aequitas: first, our Themis protocol requires only O(n2)
communication while Aequitas requires O(n3). Second, we
evade the liveness problem of Aequitas, allowing Themis to
satisfy standard liveness. And finally, while Aequitas provides
a general but expensive compiler to make any standard con-
sensus protocol fair, Themis can minimally modify any leader-
based protocol to give it the same notion of fairness.

We note that the structure of the dependency graph con-
structed by Themis is close but somewhat different than the one
from Aequitas. We include a brief discussion in Appendix D.
Further, although both Aequitas and Themis satisfy batch-
order-fairness, Themis’s use of Hamiltonian cycles allows for
connecting different Condorcet cycles appears to provide a
stronger notion of “fairness within a batch.” This implies that
there are other subtleties within the graph structure that are
not captured by the fairness definition. We leave the problem
of uncovering these to future work.

Comparison to Cachin et al. [8], [9]. Concurrent to this
work, Cachin et al. [8] defined κ-differential-order-fairness (for
κ ≥ 0), which states that if b(tx1, tx2) > b(tx2, tx1) + κ+ 2f ,
where b(x, y) denotes the number of honest nodes that re-
ceive x before y, then tx1 will be delivered no later tx2. In
Theorem D.1, we prove that this definition is simply a repa-
rameterization of batch-order-fairness. The original protocol
described in [8] contained a major bug which was later fixed in
a subsequent revision [9]. Unfortunately, this revised protocol
offers significantly weaker security; the proof for liveness only
works when all nodes are honest, which likely makes it less
useful in any practical setting.

VIII. CONCLUSION

We introduced Themis, a consensus protocol that satisfies
a strong fair transaction-ordering property, and has efficiency
comparable even to state-of-the-art consensus protocols that

13



lack fair-ordering properties. We also introduced a new sys-
tematically designed suite of experiments related to fairness
to evaluate and compare Themis to the recent exciting line of
work on fair-ordering protocols. These experiments show that
the fairness property satisfied by Themis is stronger in practice
than alternative notions.

REFERENCES

[1] libhotstuff: A general-purpose BFT state machine replication library
with modularity and simplicity, 2018. https://github.com/hot-stuff/
libhotstuff.

[2] Condorcet paradox, Accessed Aug. 2021. https://wikipedia.org/wiki/
Condorcet paradox.

[3] DeFi Pulse, Accessed Aug. 2021. defipulse.com.
[4] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From

extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS, page 326–349, 2012.

[5] Lorenz Breidenbach, Phil Daian, Ari Juels, and Florian Tramèr. To sink
frontrunners, send in the submarines, 2017. https://hackingdistributed.
com/2017/08/28/submarine-sends/.

[6] Benedikt Bünz and Ben Fisch. Transparent snarks from dark compilers.
In EUROCRYPT, pages 677–706, 2020.

[7] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup.
Secure and efficient asynchronous broadcast protocols. In CRYPTO,
pages 524–541, 2001.

[8] Christian Cachin, Jovana Micic, and Nathalie Steinhauer. Quick order
fairness. In FC, 2022.

[9] Christian Cachin, Jovana Micic, Nathalie Steinhauer, and Luca Zanolini.
Quick order fairness, 2021. arXiv:2112.06615.

[10] Paul Camion. Chemins et circuits hamiltoniens des graphes complets.
Comptes Rendus de l’Académie des Sciences de Paris, 249:2151–2152,
1959.

[11] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In OSDI, pages 173–186, 1999.

[12] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0:
Frontrunning in decentralized exchanges, miner extractable value, and
consensus instability. In IEEE S&P, pages 585–602, 2020.

[13] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[14] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok:
Trans- parent dishonesty: Front-running attacks on blockchain. In FC,
pages 170–189, 2019.

[15] Juan Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the
blockchain era. In CT-RSA, pages 284–318, 2020.

[16] Jens Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT, pages 305–326, 2016.

[17] Chi Ho, Danny Dolev, and Robbert van Renesse. Making distributed
systems robust. In OPODIS, pages 232–246, 2007.

[18] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair
consensus in the permissionless setting. https://eprint.iacr.org/2021/139.

[19] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-
fairness for Byzantine consensus. In CRYPTO, pages 451–480, 2020.

[20] Ariah Klages-Mundt and Andreea Minca. (in)stability for the
blockchain: Deleveraging spirals and stablecoin attacks, 2020.
arXiv:1906.02152.

[21] Klaus Kursawe. Wendy, the good little fairness widget: Achieving order
fairness for blockchains. In ACM AFT, pages 25–36, 2020.

[22] Klaus Kursawe. Wendy grows up, 2021. https://vega.xyz/papers/
Wendy Grows Up.pdf.

[23] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. TOPLAS, 4(3):382–401, 1982.

[24] Yunqi Li, Sylvain Bellemare, Mikerah Quintyne-Collins,
and Andrew Miller. Honeybadgerswap: Making mpc
as a sidechain, 2021. https://medium.com/initc3org/
honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5.

[25] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge snarks from linear-size universal and updatable
structured reference strings. In CCS, page 2111–2128, 2019.

[26] Y. Manoussakis. A linear-time algorithm for finding hamiltonian cycles
in tournaments. Discrete Appl. Math., 36(2):199–201, 1992.

[27] Alex Manuskin. The fastest draw on the blockchain:
Ethereum backrunning, 2020. https://medium.com/@amanusk/
the-fastest-draw-on-the-blockchain-bzrx-example-6bd19fabdbe1.

[28] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of BFT protocols. In ACM CCS, pages 31–42, 2016.

[29] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC,
pages 315–324, 2017.

[30] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain
extractable value: How dark is the forest? In IEEE S&P, pages 198–214,
2022.

[31] Michael K. Reiter and Kenneth P. Birman. How to securely replicate
services. ACM Trans. Program. Lang. Syst., 16(3):986–1009, 1994.

[32] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. In CRYPTO, pages 704–737, 2020.

[33] StarkWare. Presenting: Veedo a stark-based vdf service. https://medium.
com/starkware/presenting-veedo-e4bbff77c7ae.

[34] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Comput., 1(2):146–160, 1972.

[35] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zksnarks without trusted setup. In IEEE S&P,
pages 926–943, 2018.

[36] Wonderproxy. A day in the life of the internet, 2020. https:
//wonderproxy.com/blog/a-day-in-the-life-of-the-internet/.

[37] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and
Ittai Abraham. Hotstuff: BFT consensus with linearity and responsive-
ness. In PODC, pages 347–356, 2019.

[38] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo
Alvisi. Byzantine ordered consensus without Byzantine oligarchy. In
OSDI, pages 633–649, 2020.

[39] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur
Gervais. High-frequency trading on decentralized on-chain exchanges.
In IEEE S&P, 2021.

APPENDIX A
FURTHER DETAILS ON CONDORCET CYCLES

We provide an explicit algorithm (Algorithm 1) for gener-
ating an arbitrarily large strong-Condorcet cycle for any valid
n, f, γ (which also immediately implies the result for (weak)-
cycles). For simplicity, we provide details for the synchronous
setting where the “claimed” input orderings of all nodes are
taken into account, but this can also be extended to only
using n − f orderings. Abstractly, the algorithm inductively
constructs transaction input orderings for each node in a way
that all transactions will be part of the same strong-cycle.

Suppose that the system nodes are denoted by the set
{0, . . . , n− 1}. To create a strong-cycle of length l ≥ n (this
is a non-optimal bound on the minimum length of a cycle with
n nodes), the algorithm proceeds by iteratively adding a new
transaction to all input lists while maintaining the invariant
that all current transactions form a strong-cycle. For the initial
transaction tx0, the input ordering txlistj of each node j is
taken simply as [tx0]. To add a later transaction txi, a set Si
of size γn − f is first chosen. S1 is chosen to be the set
{0, . . . , γn − f − 1}. The set Si is obtained by cyclically
rotating Si−1 modulo n. For a node j ∈ Si, txi is inserted
right before before txi−1 in txlistj ; for other nodes j /∈ Si, txi
is appended to the end of txlistj . By doing so, we make sure
that txi occurs before txi−1 in at least γn− f lists.

Additionally, it is easy to see why tx0 will occur before txl
in at least γn − f lists through induction. First note that tx0

14

https://github.com/hot-stuff/libhotstuff
https://github.com/hot-stuff/libhotstuff
https://wikipedia.org/wiki/Condorcet_paradox
https://wikipedia.org/wiki/Condorcet_paradox
defipulse.com
https://hackingdistributed.com/2017/08/28/submarine-sends/
https://hackingdistributed.com/2017/08/28/submarine-sends/
http://arxiv.org/abs/2112.06615
https://eprint.iacr.org/2021/139
http://arxiv.org/abs/1906.02152
https://vega.xyz/papers/Wendy_Grows_Up.pdf
https://vega.xyz/papers/Wendy_Grows_Up.pdf
https://medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5
https://medium.com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5
https://medium.com/@amanusk/the-fastest-draw-on-the-blockchain-bzrx-example-6bd19fabdbe1
https://medium.com/@amanusk/the-fastest-draw-on-the-blockchain-bzrx-example-6bd19fabdbe1
https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/


Algorithm 1: Explicit input ordering with unbounded
Condorcet chaining for n, f, γ
1 Let N = {0, . . . , n− 1} be the set of all nodes.;
2 Let txlist0, . . . , txlistn−1 ← [tx0];
3 start← 0;
4 for i ∈ 1, 2, . . . do
5 end← (start+ (γn− f)− 1) mod n
6 if start < end then S = {start, . . . , end};
7 else S = {start, . . . , n− 1} ∪ {0, . . . , end};
8 for j ∈ S do Insert txi right before txi−1 in txlistj ;
9 for j ∈ N \ S do Append txi at the end of txlistj ;

10 start← (start+ 1) mod n
11 end

is before tx1 in n − (γn − f) = n(1 − γ) + f lists. Further,
if txd occurs after tx0 in some list, then for any d′ ≥ d, txd′
will also occur after tx0 in that list (since each transaction is
added just before the last one or at the end of the list). Now,
due to the cyclic rotation of the Si, each txj will be after tx0
in one more list (subject to a maximum of n lists) than txj−1
was. Consequently, for any γ, f , when l ≥ n, tx0 will occur
before txl in at least γn− f lists. When γ = 1, l = n will be
the first iteration that this happens.

Finally, putting this together, we can conclude that
[tx0, tx1, . . . , txl] forms a strong-Condorcet cycle.

Weak-liveness in terms of cycles. Looking at the weak-
liveness definition from Kelkar et al. [19], it is easy to see
that any tx′ part of the same cycle as tx will need to be added
to T. This means that if the cycle extends for arbitrarily long,
new transactions will keep being added to T, delaying the
delivery of transactions in that cycle. The Aequitas protocol,
therefore, can only guarantee liveness after the current cycle
completes, which may take arbitrarily long. While the weak-
liveness definition mentions one honest node, we note that
Aequitas achieves a stronger property (for a general γ) where
n(1− γ) + 1 is used as the threshold instead.

Definition A.1 (Weak-liveness [19]). Consider tx received by
all protocol nodes and define the set T built recursively as
follows: (1) Add tx to T; (2) For any m ∈ T, add to T all m′
such that at least one honest node has received m′ before m.
At any point, if all honest nodes have received all transactions
in T, then tx will eventually be delivered by all honest nodes.

APPENDIX B
Themis DETAILS

Fig. 7 contains a complete description of Themis from the
perspective of both the leader and the replica nodes.

A. Proofs for Themis

In this section, we formally prove the theorem statements
from the main text. We begin with some helpful lemmas.

Lemma B.1 (Dependency Graph Properties). The following
hold for the output of the algorithm FairPropose(L): (1) It
contains all solid transactions; (2) For all solid tx and non-
blank tx′ contained in the output, exactly one of the edges
(tx, tx′) and (tx′, tx) is present in the output graph.

Proof: Let G be the dependency graph constructed by the
algorithm FairPropose(L). It is easy to see why (1) holds

Complete Themis Description

Round leader protocol:
1) Wait for n − f correctly signed lists (Listi,Updatei) from

replicas. Let L = {Listi} and Lupdates = {Updatei}
2) Run FairPropose(L) and FairUpdate(Lupdates) to get G and
Eupdates respectively.

3) Run the underlying Consensus protocol to agree on a valid B =
(G, Eupdates, π = (L,Lupdates)) and append it to the list of agreed
upon blocks.

Replica protocol (for Ni):
1) Let Listi denote the ordered list of transactions received by

Ni that are not yet part of any leader proposal. Let Updatei
denote the ordered list of transactions received by Ni that are
correspond to vertices with missing edges in some previous
leader proposal.

2) Send Listi,Updatei to the current round leader and verify that the
leader’s response is a valid proposal (by checking the SNARK
proofs).

3) Participate in the underlying Consensus protocol to agree on a
block B = (G, Eupdates) and append it to the list of agreed upon
blocks.

Constructing the final ordering (for Ni):
At any point, Ni can do the following to append new transactions
to its final ordering:
1) Let Bj be the first block whose transactions have not yet been

output in the final ordering by Ni, and let Bk be the final block.
2) Run FairFinalize with Bj , . . . , Bk to obtain an ordering

[txp, . . . , txq] of transactions.
3) Append txp, . . . , txq to the final transaction ordering.

Fig. 7: Complete Description of Themis

since the final graph output only removes those SCCs from G
that do not contain a single solid transaction.

To prove (2), first notice that since tx is solid and tx′ is non-
blank, at least n−2f > 2n(1−γ)+2f orderings in L contain at
least one of tx or tx′, i.e., order the two transactions. Therefore,
at least one of tx ≺L,n(1−γ)+f+1 tx′ or tx ≺L,n(1−γ)+f+1 tx′
holds. Since only one edge is added even when both holds, we
conclude that exactly one of the edges (tx, tx′) and (tx′, tx) is
contained in the final graph output.

Lemma B.2. If FairPropose(L) outputs a solid transaction
tx and does not output tx′ (and tx′ has not been previously
proposed), then there are at least n(1 − γ) + 1 honest nodes
that have received tx before tx′.

Proof: If tx′ is blank, since tx′ is present in at most n(1−
γ)+f orderings, we have tx ≺k tx′ where k = n−2f−n(1−
γ)−f = γn−3f > n(1−γ)+f since n > 4f

2γ−1 . Equivalently,
since at most f of those are adversarial, it holds that more than
n(1− γ) + 1 honest nodes have received tx before tx′.

Lemma B.3 (Contiguous Cycles). If FairPropose(L) out-
puts tx and does not output tx′ (and tx′ has not been previously
proposed), then either tx is an earlier cycle than tx′ or tx and
tx′ are in the same cycle. Further, if tx′ is received before tx
by γn nodes, then tx and tx′ are in the same cycle.

Proof: We first show that if tx is output and tx′ is not,
then it cannot be the case that tx′ is in an earlier cycle. To
see why, assume for contradiction that tx′ is an earlier cycle.
This means that there is no sequence of transactions [tx =

15



tx0, tx1, . . . , txl = tx′] such that for each j it holds that txj
was received before txj+1 by n(1− γ) + 1 honest nodes. But
this contradicts the fact that tx was output and tx′ was not, and
therefore we conclude that tx′ cannot be in an earlier cycle.

Now, for the case when tx′ is received before tx by γn
nodes, note that tx cannot be solid within the leader proposal
since this would imply that there are at least n(1−γ)+1 honest
nodes that have received tx before tx′ (from Lemma B.2),
which contradicts the given condition. Therefore tx must be
shaded and consequently, it was included in the proposal since
there is a sequence of transactions [tx = tx0, tx1, . . . , txl] such
that the graph contains each of the edges (txi, txi+1) and txl
is a solid transaction. This also means that txl was received
before tx′ by at least n(1− γ) + 1 honest nodes.

Now, since tx′ is received before tx by γn nodes, this
directly implies that [tx0, tx1, . . . , txl, tx′] is a cycle.
We are now ready to prove the main theorems for Themis.

Proof of Theorem IV.1: To show batch-order-fairness,
consider tx and tx′ such that tx was received before tx′ by
at least γn nodes. Now, we follow a few cases:

(Case 1) At some time, the current correct leader proposal
includes tx and tx′ is not included in this or any earlier
proposal. Now, by Lemma B.3, we know that tx′ must be in
the same or later cycle as tx.

(Case 2) At some time, the current correct leader proposal
includes tx′ and tx is not included in this or any earlier
proposal. Since we are also given that tx was received before
tx′ by γn nodes, by Lemma B.3, we know that tx′ must be in
the same cycle as tx.

(Case 3) At some time the current correct leader proposal
includes both tx and tx′. Since tx was received before tx′ by
γn nodes, we know that there is an edge from tx to tx′ within
the dependency graph. Therefore, once again, either tx′ will
be output in the same cycle as tx or a later one.
The above cases show that the final transaction ordering final
transaction ordering can be split into contiguous cycles. In
other words, either tx will be output before tx′ or some
contiguous transaction sequence containing both tx and tx′
will be a cycle. Consequently, there are indices 1 = i1 <
· · · < ik = l + 1 such that [C1, . . . , Ck−1], with batches
Cj = {txij , . . . , txij+1−1}, satisfies γ-batch-order-fairness.

Now, to show consequent-transaction fairness, in the output
ordering, consider transactions txj and txj+1 where txj+1 is
output immediately after txj . The following cases arise:

(Case 1) Both transactions were part of the same initial
leader proposal. Now, if they were part of the same SCC, then
since the output order is a Hamiltonian cycle, (txj , txj+1) is
an edge in the graph; in other words, txj was received before
txj+1 by n(1− γ) + 1 honest nodes. On the other hand, if txj
was in an earlier SCC, then (txj , txj+1) is already an edge.
Since txj was output earlier, it cannot be in a later SCC.

(Case 2) txj+1 was proposed in the block after txj was
proposed. This means that, in some valid leader proposal, txj
was present but txj+1 was not, and further txj was the last
transaction in the previous proposal, which implies that txj
was a solid transaction. Therefore, we can directly conclude
the result by Lemma B.2.

(Case 3) Note that it not possible for txj to be proposed in
a block after txj+1 since the final ordering contains txj first.

It is easy to see that, similar to Aequitas, the batches are
minimal in the sense that they are of size one when there
are no cycles. Consequently, in such a case, Themis satisfies
the stronger receive-order-fairness notion. We now show that
Themis satisfies consistency and (standard) liveness.

Proof of Theorem IV.2: Consistency is a direct conse-
quence of the consistency of the underlying consensus algo-
rithm. For liveness, consider a transaction tx that has been
received by all nodes, i.e., it will be present in at least n− 2f
local replica orderings sent to the leader. In other words, tx
is solid, and will be included in the leader’s proposal. Note
that the final ordering of tx only depends on earlier (shaded)
transactions that have been proposed by the current or an
earlier proposal (since this can cause edges to be missing
in the graph proposal). Note that the final ordering of tx no
longer depends on any transactions that are not yet proposed.
This means that as soon as the edges between the previously
shaded transactions are added (this will happen when the
shaded transactions are received by enough nodes which is
only dependent on the network delay). Consequently, Themis
achieves standard liveness.

B. SNARK-Themis Details

We now provide details for our SNARK-Themis protocol.
Intuitively, for this, instead of forwarding the replica local
orderings to all replicas, the leader will now create a SNARK
to prove correctness of its proposal.

SNARK preliminaries. For a language L in NP with witness
relation RL, a SNARK for RL is a tuple of efficient algo-
rithms (Gen,Prove,Verify) where Gen generates the trusted
parameters pp (e.g., the CRS) given 1λ where λ is the
security parameter , Prove is the prover algorithm, and Verify
is the verifier algorithm. Given pp and any (x,w) ∈ RL,
Prove(pp, x, w) produces a proof π attesting that x ∈ L. The
proof can be checked using Verify(pp, x, π). We require the
standard completeness, soundness, and knowledge properties
for SNARKs. For (asymptotic) efficiency of our protocol, the
SNARKs need to have constant-sized proofs excluding a poly-
log factor in the security parameter (e.g., [16], [25]). We do
not require any zero-knowledge property.

SNARK proof for the leader proposal. Consider the lan-
guage L in NP such that (x,w) is in the witness relation
RL if the following holds: x is a string representation of
directed graph G, w is parsed into Listi1 ‖ · · · ‖ Listin−f

‖
σi1(Listi1) ‖ · · · ‖ σin−f

(Listin−f
) where each (Listj , σj)

represents a transaction ordering from a distinct node along
with a signature from the node, and FairPropose(L) outputs
G where L = {Listi1 , . . . , Listin−f

}. The string representation
can be decided upon deterministically, for example, by choos-
ing vertices in alphabetical order. We use general-purpose
SNARKS for the language L to prove correctness. A similar
correctness proof can be constructed for the update list Eupdates.

Finally, the overall proposal block B by the leader will be
the tuple (G, Eupdates, π = (π1, π2)) where G is the graph for
newly proposed transactions, Eupdates is the set of update edges,
π1 is the SNARK for G, and π2 is the SNARK for Eupdates. The
upshot is that now, the size of B no longer depends on the
number of nodes, enabling the underlying consensus algorithm
to achieve communication complexity O(n).

SNARKs for Wendy [21] and Aequitas [19]. Wendy and
Aequitas both require an O(n2) communication phase where

16



all nodes gossip transactions to all others. This is critically
necessary for censorship resistance, and we found no easy way
to improve the communication complexity using SNARKs.

Improved complexity for Pompē [38]. The Pompē protocol
has a communication complexity of O(n2). The general de-
sign of Pompē can be modified to achieve optimistic linear
complexity through the use of SNARKs for verifying the
computation of the median timestamp. Specifically, after the
ordering phase, in Pompē, the median timestamp for a given
transaction is computed and transmitted during the consensus
phase. This is done by the client but Pompē assumes that the all
clients are protocol nodes. In this case, the median computation
can be proved (by the client) using constant-size SNARKs
which enables linear communication in the optimistic case.

However, in standard deployments, clients and protocol
nodes can be separate entities and not all clients need to
be present during the system initialization. In such a case,
SNARKs with trusted setup might not provide an appropriate
trust model for clients. Current constant-size SNARKs, how-
ever, all require trusted setup. Further, even if a trusted setup
can be used, the public parameters (e.g., the CRS) need to
be communicated to clients. Since the CRS size is dependent
on n for known constant-size SNARKs, this means that in
the standard setting where clients and nodes can be distinct,
Pompē will not have optimistic communication linear in n.

While SNARKs without trusted setup can be used instead,
current state-of-the-art constructions [6], [32], [35] all have at
least logarithmic proof sizes. This means that, even with the
use of SNARKs, at best, O(n log n) optimistic communication
complexity can be achieved.

APPENDIX C
EXPERIMENT DETAILS

We provide experiment details deferred from the main text.

Network ratio and fairness granularity. We highlight that
even when the network delay is very large, transaction latencies
with smaller r can be approximated by, abstractly, setting a
coarser granularity for fairness. A granularity of g (defined
below) is equivalent to only quantifying fair ordering across
these width g intervals, and ignoring unfairness of transactions
within the same interval. Note the time intervals can be w.r.t.
the local time at a given node, and synchronized clocks are
not required. In other words, the granularity can be changed
without affecting any protocol assumptions.

Definition C.1 (Fairness granularity). For granularity g, we
consider that timestamps are bucketed into slots of interval g
time each (e.g., [0, g), [g, 2g) and so on). Events within a time
bucket are assumed to happen at the same time.

A. Ideal Setting Details

Comparing receive and batch order-fairness. For n = 100,
note the plots for the two definitions are identical except for
when γ = 0.51. Even for γ = 0.51, they are identical for a
small r. When n = 20, the two definitions also deviate for
γ = 0.6. This is because Condorcet cycles are much more
common when r is large and when γn gets close to n/2—for
large n, this effect is not seen until γ gets close to 0.5.

Abstractly, this deviation can be seen as the result of the
frequency with which Condorcet cycles arise in practice. Note

that the presence of cycles also means that receive-order-
fairness cannot be achieved in these settings. Therefore, a
natural question to ask now is how commonly do cycles arise,
and when they do, how large do they get? We found that in
practical settings, Condorcet cycles are small, and therefore,
effectively the two definitions are quite similar.

Cycle size for order-fairness. We find the number of transac-
tions that are present in (strong)-Condorcet cycles of each size
in the ideal setting. Fig. 8 contains results for n ∈ {20, 100}
and for reasonable network ratios r ∈ {1, 10}. For example, for
a given length-k cycle, we count k transactions in the bucket
for k. Note that k = 1 means that there is no cycle.

We found that for r = 1, there were no cycles found for
γ ∈ {1, 0.8, 0.6}. For γ = 0.51, for n = 20, there was one
3-length cycle and one 4-length cycle, while there was just one
3-length cycle for n = 100.

When r = 10, we did not find cycles for γ ∈ {1, 0.8}.
There were a few length-3 cycles for γ = 0.6 for n = 20 but
none for n = 100. For γ = 0.51, cycles are more common
but still a reasonable network ratio of r = 10, the max cycle
length was 11 for n = 20 and 5 for n = 100. We also notice
that it is less common to find cycles (for the same γ) as n
increases due to a smaller variance.

B. Frontrunning Experiment Details

Toy AWS setting. We start with a simple geo-distributed
network with one node each in five different AWS regions: us-
west-1 (California), us-east-2 (Ohio), ap-northeast-1 (Tokyo),
ap-northeast-2 (Seoul), and eu-central-1 (Frankfurt) and mea-
sured ping timings between each pair of servers (in both direc-
tions) as a proxy for the communication latency between them.
Table III contains ping times averaged over 1000 samples.

Out of 20 total node pairs (A,B), we found that 10 are
frontrunnable (i.e., A can frontrun transactions originating
from B) in the case of fair separability. As a concrete example
based on Table III, an adversary in Tokyo could frontrun a user
transaction from Seoul by sending its adversarial transaction to
California before the transaction from Seoul reached Frankfurt.
On the other hand, there were no instances of triangle inequal-
ity being broken in our toy setting, and as a consequence, there
were no frontrunnable pairs in the case of order-fairness.

Frontrunning analysis. We now provide an analysis of how
Themis can handle frontrunning under a common network
model where triangle inequality is respected. In a network
where triangle inequality holds, an adversary cannot see an
honest transaction and then create and send an adversarial
transaction (i.e., an attempt to frontrun) in a way that any
honest node receives the adversarial transaction first. In other
words, if tx is an honest transaction and m is an adversarial
transaction sent afterwards, then all honest nodes should re-
ceive tx before m. In this network setting, we can show that
Themis prevents frontrunning—i.e., the adversarial transaction
will be ordered strictly after the honest transaction it is trying
to frontrun. We show this through the following lemma.

Lemma C.2. An adversary cannot force an adversarial trans-
action m to be in the same cycle as any honest transaction
under the above mentioned network model.

Proof: To see why, consider a transaction dependency
graph G∗ that contains an edge from tx to tx′ is a majority
of nodes claim to have received tx earlier. First note that

17



1 2 3 4

Length of Condorcet cycle

0

200

400

600

800

1000
N

um
b

er
of

tr
an

sa
ct

io
ns

(Ideal) Batch-Order-Fairness, n = 20, r = 1

γ = 1

γ = 0.8

γ = 0.6

γ = 0.51

1 3 5 7 9 11

Length of Condorcet cycle

0

200

400

600

800

1000

N
um

b
er

of
tr

an
sa

ct
io

ns

(Ideal) Batch-Order-Fairness, n = 20, r = 10

γ = 1

γ = 0.8

γ = 0.6

γ = 0.51

1 2 3 4

Length of Condorcet cycle

0

200

400

600

800

1000

N
um

b
er

of
tr

an
sa

ct
io

ns

(Ideal) Batch-Order-Fairness, n = 100, r = 1

γ = 1

γ = 0.8

γ = 0.6

γ = 0.51

1 3 5 7 9 11

Length of Condorcet cycle

0

200

400

600

800

1000

N
um

b
er

of
tr

an
sa

ct
io

ns

(Ideal) Batch-Order-Fairness, n = 100, r = 10

γ = 1

γ = 0.8

γ = 0.6

γ = 0.51

Fig. 8: Comparison of the number of transactions in a cycle of specific lengths. A value of 1 means that there is no cycle.

Origin
End us-west-1

(California)
us-east-2
(Ohio)

ap-northeast-1
(Tokyo)

ap-northeast-2
(Seoul)

eu-central-1
(Frankfurt)

us-west-1 - 51.407 105.733 133.771 147.308
us-east-2 51.166 - 131.609 159.931 98.827

ap-northeast-1 106.684 131.359 - 31.723 228.356
ap-northeast-2 134.018 159.561 32.397 - 222.829
eu-central-1 145.962 97.972 228.862 234.641 -

TABLE III: Average ping times (in ms) between different AWS servers

this graph is complete (i.e., there is one edge between any
transaction pair), and that any cycle in the actual dependency
graph will also be a cycle in this graph.

Now, since G∗ is complete, if a cycle within G∗ contains
m, then m is also contained within a cycle of length 3, i.e.,
there exists some x, y such that x→ y → m→ x is a cycle.
Note that this is directly true for Themis since its dependency
graph is already complete.

Now, if x, y are both honest user transactions, then by our
network assumption, all honest users have received y before
m and m before x. This implies that no honest node will have
received x before y and so the cycle cannot exist. On the other
hand, w.l.g, if only x is honest, then again by our network
assumption, all honest users must have received m before x
and x before y. Therefore, no honest node has received y
before m and therefore again the cycle cannot exist.

This also shows that for Themis, and all the order-fairness
variants more broadly, assuming triangle inequality holds, an
adversary will not be able to get its transaction ordered before
the honest user’s transaction.

APPENDIX D
ADDITIONAL INSIGHTS ON RELATED WORKS

Comparing the graph structure of Aequitas and Themis.
For some inputs, both Aequitas and Themis build the depen-
dency graph in the same way. In other cases, Themis seems
to approximate the graph structure for Aequitas with a smaller
γ (since Themis will always attempt to add an edge between
any transaction pair to construct, while some edges may be
missing from the Aequitas graph). However, to extract a total
ordering, Aequitas still needs to compare transactions without
an edge, for which it uses the number of descendants in the
graph. In Themis, the comparison between such transactions is
done explicitly by adding the edge corresponding to the larger
weight. This reveals that although both protocols satisfy batch-
order-fairness, there are likely other subtleties within the graph
structure that are not captured by the definition. We leave the
problem of uncovering these to future work.

Equivalence of differential-order-fairness [9] and batch-
order-fairness. The following theorem shows an equivalance
between the two definitions:

Theorem D.1. Consider specific n, f . A protocol satisfies κ-
differential-order-fairness (κ ≥ 0) if and only if it also satisfies
γ-batch-order-fairness where γ ≥ 1

2 + 3f+1+κ
2n .

Proof: Define b(tx, tx′) to be the number of honest nodes
that receive tx before tx′. Notice that γ-batch-order-fairness
implies γ′-batch-order-fairness for any γ ≤ γ′ ≤ 1.
(=⇒). Suppose that a protocol Π satisfies γ∗-batch-order-
fairness for γ∗ ∈ ( 1

2 , 1] such that Π does not satisfy the
property for any γ < γ∗. Now, consider any transactions
tx1, tx2 such that b(tx1, tx2) − b(tx2, tx1) > κ + 2f . Since
we have b(tx1, tx2) + b(tx2, tx1) ≥ n − f , adding the two,
we get 2 · b(tx1, tx2) ≥ n + f + κ + 1, or equivalently,
b(tx1, tx2) ≥ n+f+κ+1

2 .
Now, since Π satisfies γ∗-batch-order-fairness where γ∗ is

minimal, if n+f+κ+1
2 = γ∗n−f , then Π will order tx1 no later

than tx2, i.e., it will also satisfy κ-differential-order-fairness.
This implies γ∗ = 1

2 + 3f+1+κ
2n .

(⇐=). Suppose that a protocol Π satisfies κ-differential-
order-fairness. Define γ∗ = 1

2 + 3f+1+κ
2n . Now, consider two

transactions tx1 and tx2 such that γ∗n nodes have received tx1
before tx2. This means that γ∗n−f = n+f+1+κ

2 honest nodes
have received tx1 before tx2, i.e., b(tx1, tx2) ≥ n+f+1+κ

2 .
Therefore, b(tx2, tx1) ≤ (n − f) − n+f+1+κ

2 = n−3f−κ−1
2 .

Consequently, b(tx1, tx2) − b(tx2, tx1) ≥ 2f + κ + 1, i.e.,
b(tx1, tx2) > b(tx2, tx1) + 2f + κ which means that Π will
deliver tx1 no later than tx2. Therefore, Π satisfies γ∗-batch-
order-fairness, and in turn also for any γ ≥ γ∗.
Remark 3 (κ parameterization). First notice that the κ = 0 and
n = 3f+1 case corresponds to the γ = 1 case for batch-order-
fairness. Note that the protocol from [9] works for n = 3f +1
only when all nodes are honest, and in this setting, Aequitas
and Themis both also satisfy γ = 1 batch-order-fairness.

For a given κ, if tx1 and tx2 are such that b(tx1, tx2) and
b(tx2, tx1) differ by more than κ + 2f , then their fairness is
“considered” by the protocol. To provide the same fairness as
batch-order-fairness for a γ = 1

2 +ε where ε is small, the min-
imum acceptable difference between b(tx1, tx2) and b(tx2, tx1)
needs to also be made small, for which the only option is to
make f much smaller than n. This corresponds exactly to the
bound for batch-order-fairness where the corruption threshold

18



reduces as γ tends to 1
2 .

As an example, when n = 3f + 1, the only κ that makes
sense is κ = 0, which corresponds only to γ = 1 (i.e., the
weakest version) in the batch-fairness context. This means that
to get a stronger fairness property, the only option is to reduce
the corruption ratio f/n and this will in turn also correspond
to a stronger γ (i.e., closer to 1/2).

19


	Introduction
	Themis Overview and Contributions

	Preliminaries
	Building Blocks
	Aequitas Background
	Aequitas Technical Challenges
	Novel Understanding of Condorcet Cycles

	Themis Description
	Constructing the Leader Proposal
	Finalizing the Fair Ordering
	Formal Themis Results
	SNARK-Themis

	Implementation and Benchmarks
	Performance and Benchmarks

	Suite of Fair Ordering Experiments
	Fair-Ordering Definitions
	Simulation Environment
	Ideal Setting Comparison
	Network Level Insertion Attacks and Frontrunning
	Robustness to Adversarial Reordering
	Censorship Resistance and Attacks

	Related Work
	Conclusion
	References
	Appendix A: Further details on Condorcet cycles
	Appendix B: Themis Details
	Proofs for Themis
	SNARK-Themis Details

	Appendix C: Experiment Details
	Ideal Setting Details
	Frontrunning Experiment Details

	Appendix D: Additional Insights on Related Works

