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Abstract

Consider an n-message coin-tossing protocol between n parties P1, . . . , Pn, in which Pi broadcasts
a single message wi in round i (possibly based on the previously shared messages) and at the end they
agree on bit b. A k-replacing adversary Ak can change up to k of the messages as follows. In every round
i, the adversary who knows all the messages broadcast so far, as well as a message wi that is prepared by
Pi to be just sent, can can to replace the prepared message wi with its own choice. A targeted adversary
prefers the outcome b′ = 1, and its bias is defined as µ′−µ, where µ′ = Pr[b′ = 1] (resp. Pr[b = 1] = µ)
refers to the probability of outputting 1 when the attack happens (resp. does not happen). In this work,
we study k-replacing targeted attacks, their computational efficiency, and optimality, for all k ∈ [n].

• Large messages. When the messages are allowed to be arbitrarily long, we show that polynomial-
time k-replacing targeted attacks can achieve bias Ω(µk/

√
n) for any k (and any protocol), which

is optimal up to a constant factor for any µ = Θ(1). Previously, it was known how to achieve
such bias only for k = Ω(

√
n) (Komargodski-Raz [DISC’18], Mahloujifar-Mahmoody [ALT’19],

and Etesami-Mahloujifar-Mahmoody [SODA’20]). This proves a computational variant of the
isoperimetric inequality for product spaces under k = o(

√
n) Hamming distance. As a corollary,

we also obtain improved poly(n)-time targeted poisoning attacks on deterministic learners, in
which the adversary can increase the probability of any efficiently testable bad event over the
produced model from µ = 1/poly(n) to µ+Ω(µk/

√
n) by changing k out of n training examples.

• Binary messages. When the messages w1, . . . , wn are uniformly random bits, we show that if
µ = Pr[b = 1] = Pr[

∑
wi ≥ t] = β

(t)
n for t ∈ [n] is the probability of falling into a Hamming

ball, then polynomial-time k-replacing targeted attacks can achieve µ′ = Pr[b′ = 1] = β
(t−k)
n ,

which is optimal due to the simple majority protocol. Thus, as corollary we obtain an alternative
proof of the Harper’s celebrated vertex isoperimetric inequality in which the optimal adversary
(that maps random points to a set of measure µ by changing at most k bits) is limited to be online
and run in polynomial time. Previously, Lichtenstein, Linial, and Saks [Combinatorica’89] showed
how to achieve µ′ = Pr[b′ = 1] = β

(t−k)
n−k (using computationally unbounded attacks), which is

optimal for adaptive adversaries who decide on corrupting parties before seeing their messages.
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‡University of Virginia, Charlottesville, VA, USA.
§Princeton University, Princeton, NJ, USA.
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1 Introduction

Collective coin tossing [Blu84] is a fundamental problem in cryptography in which a set of n parties aim
to jointly produce a random bit b that remains (close to) random even if an adversary controls a subset of
these parties. The simple majority protocol maj(b1, . . . , bn), when n is odd and each bit bi is broadcast by
party Pi, is robust in the following strong sense: Any adversary who even gets to see all the messages and
then replaces at most k ∈ [n] of the them can only bias the output bit by at most by O(k/

√
n) [BOL90].

In a nutshell, in this work we ask how optimal is the majority protocol against such attacks? We study this
question from various angels as explained below.

Problem setting. Suppose Π is an n-round coin-tossing protocol between n parties, where party Pi sends
a single message wi in round i that could depend on all the previous messages, and the final bit b is a
deterministic function of all messages.1 Now, suppose an adversary aims to increase the probability of
Pr[b = 1]. We call this a targeted attack, as adversary can choose the target direction of the bias.2 We deal
with k-replacing adversaries who can replace k of the messages as follows. Suppose messagesw1, . . . , wi−1

are already finalized and party Pi is about to send wi in round i. The adversary will have a chance to
replace wi, based on the knowledge of wi.3 Equivalently, we will think of the protocol as a random process
(w1, . . . , wn) with n steps, and a k-replacing adversary will be allowed to immediately replace the content

1This is also called a single-turn protocol.
2In contrast, untargeted adversaries can bias the output towards either of 0 or 1.
3This is also called the strongly adaptive corruption model [GKP15].
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of k of the steps, in which case the rest of the random process will depend on the new values. The goal of
the adversary is to increase the probability of Pr[b = 1] for a Boolean function f(w1, . . . , wn) = b ∈ {0, 1}.
Informally speaking, we would like to know what are the most robust random processes in this setting.

Targeted aspect. Studying targeted attacks is important due to several reasons. Firstly, targeted attacks
allow modeling adversaries who have a particular output preferred in mind. For example, the coin tossing
model’s output might determine whether a contract would be signed or not. Then, a party who prefers
signing the contract wants to increase the chance of outputting b = 1. Moreover, targeted attacks allow
modeling attacks on specific “undesired” properties like B defined over random processes; namely, the
adversary aims to increase the probability of B happening at the end. Below in the introduction and later in
Section A we further discuss applications such as targeted poisoning attacks in adversarial machine learning
and computational isoperimetry results.

Robustness of threshold functions. For a setting where wi is a uniform random bit bi, consider the threshold
function f defined as f(b1, . . . , bn) = 1 whenever

∑
bi ≥ t and let β(t)

n = Pr[
∑
bi ≥ t]. Then we get a

robust protocol in the following sense. Any k-replacing adversary will be limited to achieve Pr[b = 1] ≤
β

(t−k)
n , because all it can do is to replace k ones with zeros. In particular, it can be shown that for the

majority function (for odd n) any k-replacing attack increase Pr[b = 1] by at most O(k/
√
n).

In this work, we study the optimality of the simple threshold/majority protocols and ask the following.

1. If Pr[b = 1] = 1/2 holds originally, for a given fixed k = k(n), can k-replacing adver-
saries increase the probability of Pr[b = 1] by Ω(k/

√
n) in every n-step random process

with arbitrarily long messages?

2. For simpler models such as those with uniformly random bits, can we obtain optimal
attacks that prove the threshold protocols to be the best possible for all Pr[b = 1] = β

(t)
n ?

We answer both questions above affirmatively. Notably, we even obtain polynomial-time attacks. Before
describing our results in details, we briefly discuss what was known before our work.

Previous work for uniform binary messages. Lichtenstein, Linial, and Saks [LLS89] showed that the thresh-
old protocols are optimal when the messages are uniform random bits, but under a weaker attack model
where the adversary is supposed to corrupt parties before seeing their message. In particular, they showed
that if Pr[f(b1, . . . , bn) = 1] without attack is the probability of the threshold function Pr[

∑
bi ≥ t] = β

(t)
n ,

then there is an adaptive attack with budget k that achieves Pr[f(b1, . . . , bn) = 1] ≥ β
(t−k)
n−k . However,

this attack was information theoretic and not polynomial time. It also remained open whether k-replacing
attacks can improve upon the bound of [LLS89] and potentially match the robustness of threshold func-
tions. In other words, prior to our work, it was not known whether threshold functions are optimal against
k-replacing attacks.

Previous work on arbitrary length messages. Kalai, Komargodski, and Raz [KKR18] showed that in the
“many-replacement” regime where k = Ω(

√
n), a different attack in the binary setting of [LLS89] can

be achieved in polynomial time.4 Building upon [KKR18], Etesami, Mahloujifar and Mahmoody [MM19,
EMM20] showed how to extend this result to arbitrary message length and obtain (again targeted) attacks

4Interestingly, the main result of [KKR18] focuses on non-targeted attacks and shows that the output of any single-turn protocol
can be attacked (only information theoretically) by a (standard) adaptive non-targeted adversary replacing k = Ω(

√
n) parties.

The recent breakthrough of Haitner and Karidi-Heller [HKH20] generalized the main result of [KKR18] to any general, perhaps
multi-turn, protocol. Our focus in this work, however, is on single-turn protocols.
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in polynomial time, but again only when k ≥ Ω(
√
n). (See Section 1.2 for more discussions on why those

proofs lead to many replacements.) Finally, Khorasgani, Maji, Mukherjee, and Wang [KMM19, KMW21]
showed how to get non-targeted attacks for large messages when k = 1.

1.1 Our results

Previous works left open our two main questions. In this work, we resolve both of these questions and
show that (1) when Pr[b = 1] = Θ(1), then majority is optimal up to a constant factor against k-replacing
adversaries for all adversary budget k (including the “few corruption regime”), and (2) when messages
are uniformly random bits, for any initial probability of Hamming balls Pr[b = 1] = Pr[

∑
bi ≥ t], the

corresponding threshold function is optimal, even up to exact constants.

Long messages. We start by describing our main results about attacking protocols with long messages.

Theorem 1 (Main result 1 – arbitrary messages). Let Π be any single-turn polynomial-time coin-tossing
protocol between n parties to obtain an output bit b in which, originally (before any attack) it holds that
Pr[b = 1] = µ. For any k ∈ [n], there is a k-replacing polynomial time attack that increases the probability
of outputting b = 1 by a probability that can get arbitrarily close to:(

1−
(

1− µ√
n

)k)
·
(
1− e−2 − µ

)
.

When k = ω(
√
n/µ), one can use a different attack from [EMM20] which shows how to get almost

full bias (i.e., probability of outputting 1 close to one). The novelty of Theorem 1 is for the case of few
corruptions k = O(

√
n/µ). In particular, for every k = O(

√
n/µ) Theorem 1 guarantees bias of Ω(k ·

µ/
√
n). Therefore, Theorem 1 resolves our first main question above; i.e., the majority protocol of [BOL89]

is optimal, up to a constant factor, for targeted attacks on any single-turn protocol when µ = Θ(1).
To prove Theorem 1, we use ideas from the attack of [MM19] (see Section 1.2). See Theorems 15 (resp.

Theorem 18) for a formalization of the information-theoretic (resp. computational) variant.

Reduction to gap finders. We further observe (in Appendix C) a connection between the gap finding attacks
of [CI93, KMM19] for martingales and targeted attacks on coin tossing. In [CI93], it was shown how to
obtain non-targeted attacks from such gap finders. We note, however, that this observation is merely for
sake of completeness, and the results obtained this way are subsumed by our main result of Theorem 1.

Uniform binary messages. Our next result solves the problem completely for protocols with uniform
random bits, as long as the probability of outputting 1 is that of a threshold function.

Theorem 2 (Main result 2 – uniformly random bits). Let Π be any single-turn polynomial-time coin-tossing
protocol between n parties to obtain an output bit b in which the parties share uniformly random bits
b1, . . . , bn. Suppose originally (before any attack) it holds that Pr[b = 1] ≥ Pr[

∑
bi ≥ t] = β

(t)
n for

t ∈ [n]. Then, for any k ∈ [t], there is a k-replacing attack that increases the probability of outputting b = 1

to at least β(t−k)
n . Moreover, if it further holds that Pr[b = 1] ≥ 1/ poly(n) is non-negligible, then there

will be polynomial-time k-replacing attacks that can get arbitrarily close to the same bound of β(t−k)
n .

To prove Theorem 2, we also use ideas from the recent work of [KMW21]. See Theorem 26 (resp.
Theorem 39) for a formal version of the information theoretic (resp. computational) variant of Theorem 2.

Note that Theorem 2 shows something perhaps surprising about the power of online attacks against
coin tossing protocols. It shows that online attacks are as powerful as offline attacks, when we consider
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the most robust functions with Pr[b = 1] = β
(t)
n being that of a Hamming ball. In fact, we present such

attacks that run in polynomial time, and this implies a new tight computational variant for the celebrated
vertex isoperimetry inequality of Harper [Har66] for sets of probability β(t)

n . Indeed, the vertex isoperimetric
inequality in the Boolean hypercube states that for any set S ⊆ {0, 1}n of probability Pr[(b1 . . . , bn) ∈ S] =

β
(t)
n , the probability of the set of points (inside or outside S) with a neighbor in S of distance at most k is at

least β(t−k)
n . Our Theorem 2 matches this bound exactly, and even shows how to find such close neighbors

(in S) in polynomial time and even in an online manner for at least β(t−k)
n fraction of {0, 1}n.

Targeted Poly-time Corruption model Budget k Messages Rounds
[LLS89] X - Adaptive Any Uniform bits Any
[KKR18] X X Adaptive Ω(

√
n) Uniform bits Any

This work X X Replacing Any Uniform bits Any
[MM19, EMM20] X X Replacing Ω(

√
n) Arbitrary Any

This work X X Replacing Any Arbitrary Any
[CI93] - - Replacing 1 Arbitrary Any
[GKP15] - - Replacing Ω(

√
n) Arbitrary 1

[McD89, Tal95] - - Replacing Any Arbitrary 1
[KKR18, HKH20] - - Adaptive Ω(

√
n) Arbitrary Any

[KMM19] - - Replacing 1 Arbitrary Any
[KMW21] - - Adaptive 1 Arbitrary Any

Table 1: Summary of related attacks on single-turn coin tossing protocols.

Applications. We can directly apply the attacks of Theorems 1 and 2 to obtain the applications below.

• Targeted data poisoning on learners. Theorem 1 can model any random process (w1, . . . , wm) that
generates an object h that might or might not belong to an (undesirable) set B with some probability
µ. In that case, we can define the output of the process to be b = 1 if h ∈ B, and then an adversary
can increase the probability of falling into S through a k-replacing attack. Now, suppose wi is a batch
of data provided by the ith party, and let h be a model that is deterministically trained on the data
set w1 ∪ · · · ∪ wn. Suppose there is an specific (efficiently testable) property B defined over h that
an adversary wants to increase its probability (e.g., h makes a specific decision on a particular test
instance). Theorem 15 shows that the adversary can always increase the probability of B from µ to
µ + Ω(k/

√
n) by changing only k of the training batches. (See Theorem 43 for a formalization of

our result.) Previously, Etesami, Mahloujifar, and Mahmoody [MM19, EMM20] proved such results
only for when k ≥ Ω(

√
n) and Diochnos, Mahloujifar, and Mahmoody [MM17, MDM18, MMM19]

proved a weaker bound of µ+ Ω(k/n) .

• Computational isoperimetry in product spaces. Let w≤n ≡ (w1 × · · · × wn) be a product dis-
tribution of dimension n, and let HD be the Hamming distance HD(w≤n, w

′
≤n) = | {i | wi 6= w′i} |.

Then, a basic question in functional analysis is how quickly noticeable events expand under Hamming
distance. It is known, e.g., by results implicit in [AM80, MS86] and explicit in [McD89, Tal95]5 that
if a set S has measure µ, the k-expansion of it (i.e., the set of points with a neighbor in S of distance
at most k) will have have measure at least µ + Ω(k · µ/

√
n) for sufficiently large k = Ω(

√
n/µ).

The works of [MM19, EMM20] introduced an algorithmic variant of the measure concentration phe-
5A weaker version for uniform bits is known as the blowing-up lemma [Mar74].
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nomenon and obtained polynomial time algorithms that given a random point w≤n ∈ w, it can find a
neighbor of distance at most k in S with probability µ+ Ω(k · µ/

√
n).

Their result above only apply to the setting where k ≥ Ω(
√
n/µ), and it remained open to obtain

such computational concentration for any small k = o(
√
n/µ). For such small k, the problem is

perhaps more suitable to be called an isoperimetric problem. By applying our Theorem 1 we directly
get computational isoperimetry results for any k = O(

√
n/µ) in any product space. For the case

of uniform random bits and probabilities corresponding to Hamming balls, our Theorem 2, using
polynomial time algorithms, shows how to obtain results that match the corresponding lower bound
on the vertex isoperimetry [Har66]. See Theorems 44 for a formalization.

1.2 Technical overview

Here, we describe the key ideas behind our main results of Theorems 1 and 2 at a high level.

1.2.1 Theorem 1: attacking protocols with arbitrary message length

We prove Theorem 1 by giving a novel inductive analysis (over adversary’s budget k) for a variant of
the attack of [MM19]. Interestingly, even though the attack of [EMM20] improves [MM19] for many-
replacing regime, we are not able to build our few-replacing attacks on that of [EMM20]! We also do
a modification to the [MM19] (by always looking at a message before changing or not changing it) that
allows us to significantly improve the exact bound. Our modification of the attack of [MM19] makes the
attack’s description simpler and allows for sharper analysis (even in the many-replacing regime of [MM19],
but that is not our focus here). In fact, that change is crucial to obtain our Theorem 2 which gives an optimal
bounds for uniform binary messages.

Our proof of Theorem 2 is inspired by the recent work of Khorasgani et al. [KMW21] who studied
1-replacing information-theoretic non-targeted attacks, but we still use ideas from their work in our setting.
In particular, we use a concave function as the lower bound of the success probability of our attack and use
induction over the number of bits n. The exact attack and the details of our inductive proof, however, are
quite different from the work of Khorasgani et al. [KMW21].

Outline. We first describe our ideas for Theorem 1 and then will do so for Theorem 2. For Theorem 1,
we will first sketch the proofs of [KKR18, MM19, EMM20]6 and explain why they require k = Ω(k)
replacements to give a meaningful bound. Then, we explain our new ideas that allow bypassing the barrier
of k = Ω(k).

In the following, we explain our new ideas behind the proof of Theorems 1 and 2.

Why the previous attacks need k = Ω(
√
n) corruptions. The targeted attacks of [MM19, KKR18, EMM20]

have a similar core that make them rely on many k = Ω(
√
n) number of corruptions to achieve bias towards

1. These attacks first show that certain specific attacks with unlimited budget can significantly bias the
output of the function towards 1. Then, in the second step, they show that the number of corruptions of such
∞-replacing attacks will not be more than O(

√
n). To contrast our approach, the analysis of our attack for

proving Theorem 1 starts from k = 1 and increases k, while those of [MM19, KKR18, EMM20] start from
k =∞ and show that it does not have to be more than k = Θ(

√
n).

6In case [KKR18], here we refer to their proof for the case of bitwise messages. Their attack for the long-message setting is
(inherently) an non-targeted attack, and not a PPT one.
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Notation. Let wi be the i’th message sent by the i’th party, and let vi be the possible modified version
(vi 6= wi if the adversary corrupts the ith party and changes its message). We let w≤i = (w1, . . . , wi) and
v≤i is defined similarly. Let f(v1, . . . , vn) = b be the Boolean function that determines the final output bit
b. Also µ = Pr[b = 1] holds in the original (no-attack) protocol. (See Section 2 for all the definitions.)

The attack below summarizes the approach of [MM19, KKR18, EMM20]. At a high level, it tracks the
expected value f̄(v≤i−1) = Pr[b = 1 | v≤i−1] of the final bit b conditioned on the current messages v≤i−1

(which forms a Doob martingale).

Construction 3 (The attacks of [MM19, KKR18, EMM20]). Let wi be the honestly prepared message of
the i’th party that is about to be sent in round i. If the number of corruptions has not reached k yet, with the
attack parameter λ ∈ [0, 1], do as follows.

1. Even before looking atwi, if there is some vi that increases the expected value of b by λ (i.e., f̄(v≤i) >
f̄(v≤i−1) + λ) then corrupt the i’th party and send vi instead.

2. Otherwise, look at wi. If, it is going to decrease the expected value of b by more than λ (i.e.,
f̄(v≤i, wi) < f̄(v≤i−1)− λ), then again corrupt message wi to vi.

3. Otherwise, do not corrupt the i’th party, and let vi = wi remain unchanged.

Analysis of the attack of Construction 3. The main two ideas are as follows.
1. Ignoring the number of corruptions, the∞-replacing attack achieves expected value 1− err(λ, µ, n),

where err(λ, µ, n) = e−Ω(µ2/(nλ2)) is an “Azuma error”.
2. For every corruption, the expected value of the output jumps up by at least λ.

Relying on the above two keys, it can be proved that the total expected number of corruptions cannot be
larger than 1/λ, so by choosing λ ≈ µ/

√
n, they can achieve both (1) high expected value 1− err(λ, µ, n)

and (2) few corruptions k ≤ 1/λ ≈
√
n/µ.

A candidate one-replacing targeted PPT attack. We now propose our new one-replacing attack that we
will analyze using new ideas. The first version of our attack follows the attack of Construction 3 and
immediately stops as soon as the first corruption happens. We then show how to combine steps 2 and 3 of
the attack to further improve it. We emphasize that even for the basic version of our attack, the previous
analysis by [MM19] does not say anything about the power of a 1-replacing variant, as this attack is cut
prematurely for the analysis of [MM19] to go through.
Idea 1: we gain as soon as the corruption happens. Our first key idea is that, the additive attack of [MM19]
(as opposed to the “multiplicative” attack of [EMM20]) always gains by λ, whenever a corruption happens.
So, to analyze our 1-replacing attacks, all we need is to lower bound the probability p1 of one corruption.
Idea 2: 1-replacing is as good as ∞-replacing if no corruptions happens. As long as no corruption has
happened, our one-replacing attacker is actually identical to an attack with no limit on the number of corrup-
tions. Also, note that the probability of outputting 1 in the∞-replacing attack of [MM19] is 1−err(λ, µ, n).
Therefore, we conclude that if we run the one-replacing attack, with probability 1 − err(λ, µ, n) we either
output 1 (which is good enough) or do at least one corruption (which is also good for us!). Since the
probability of outputting 1 without any attacks is exactly µ, we can now lower bound p1 and conclude that

p1 ≥ 1− err(λ, µ, n)− µ.

Having the above bound on p1, we lower bond output’s expected value µ1 under our 1-replacing attack is

µ1 ≥ µ+ λ · (1− err(λ, µ, n)− µ).
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We can now choose λ = Θ(µ/
√
n) which leads to up bias Ω(µ/

√
n). This attack can be made polynomial

time by approximating output’s Doob martingale.

Induction on k to obtain k-replacing targeted attack. Having the 1-replacing attack above, it is now tempting
to apply them recursively to get k-replacing attacks. Note that this is possible only because we have a
targeted attack, and so we can recursively apply such attack k times, each of which is a one-replacing attack,
and increase the expected value of the output bit gradually. This approach, however, remains polynomial
time only for k = O(1). Here, we take a different approach and directly analyze the k-replacing attack
of [MM19] using induction on k.

The idea is to allow the∞-replacing attack of [MM19] run for k corruptions in total rather than one,
and then trying to analyze it by induction on k. Suppose pk is the probability that the k-replacing attack
reaches its k’th corruption. Also, let µi be the expected value of the output b under the i-replacing targeted
attack. A key idea is that all we have to do is to lower bound the probability of the corruptions happening,
and by linearity of expectation we will indeed gain by at least λ · k in expected value of the outcome. In
fact, we go one step further and relate the gain in the k’th corruption directly to the gain already obtained
through k − 1 corruptions. I.e., by linearity of expectation, we have:

µk ≥ µk−1 + λ · pk.

The intuition is that before reaching the k’th corruption, the two attack are the same, and once the k’th
corruption happens, the k-replacing attack gets a jump of λ up compared to the (k − 1)-replacing attack.
Again, all we need is to lower bound pk. To do so, we again use a generalization of the idea that we described
for the case of one-replacing above. Namely, we note that as long as the k’th corruption does not happen
in the k-replacing attack, it is again indistinguishable from the∞-replacing attack of [MM19]. Also, the
(k − 1)-replacing attack reaches b = 1 with probability µk−1 already. Using a union bound, we get:

pk ≥ 1− err(λ, µ, n)− µk−1,

using which we can get that the expected value of b under the k-replacing attack is

µk ≥ µ+ λ · (1− err(λ, µ, n)− µk−1) .

Solving the recursive inequalities above, we lower bound µk as in Theorems 1 and 15.

1.2.2 Theorem 2: optimal attacks for uniform binary messages

We now describe some of the key ideas behind our proof of Theorem 2, which deals with uniform binary
messages. In this section, we mainly focus on showing the core ideas that lead to the information theoretic
optimal k-replacing attacks of Theorem 2, which deals with online attacks. In Section 4.1we show how to
use similar ideas (by approximating the Doob martingale of the final output bit) used for the polynomial-
time attacks for Theorem 1 to also extend our information theoretic attacks for Theorem 2 to polynomial
time variants.

Notation. First, we define the key notations that are needed for our overview of the ideas behind the proof
of our Theorem 2. Here, all the original messages are independent and uniform random bits, which we
denote with (u1, . . . , un). Also, we let S be the set of input sequences that lead to output 1, namely S =

{x | f(x) = 1}. We know that Pr[(u1, . . . , un) ∈ S] = Pr[
∑
ui ≥ t] = β

(t)
n is that of a Hamming ball. The

goal of the adversary is to maximize the probability of falling into S through k-replacements in an online
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way. We now define the “online expansion” under optimal online k-replacing attacks, both as a function
of sets, or as a function of set probabilities. (See Definition 25 for more details.) Let A be an online k-
replacing adversary over the uniform distribution over {0, 1}n. Let OnExp(A)(S) be the probability that A
can map a random input to S through its online k-replacing attack. Let OnExp(k)(S) be the maximum over
OnExp(A)(S) among all k-replacing attacks, and let the following be the minimum of OnExp(k)(S) among
all sets of measure µ.

OnExp(k)
n (µ) = inf

S,Pr[S]≥µ
OnExp(k)(S).

Our key idea is to show that the following piecewise-linear function is a lower bound on the power of
k-replacing attacks. We prove this by induction on n. In comparison, [KMW21] also used similar piecewise-
linear functions, but their goal was to obtain 1-replacing information-theoretic non-targeted attacks. It is
possible that using similar techniques, one can make the attack of [KMW21] also polynomial time, but the
key differences are due to the fact that [KMW21] aims for a non-targeted attack, and hence it ends up with
a completely different recursive relation and induction on n.

Definition 4 (The piecewise-linear lower bound – informal). For any non-negative integers k, n, the function
`
(k)
n : [0, 1]→ [0, 1] is defined as follows.

• If µ = β
(t)
n for any t ∈ [n], it holds that `(k)

n

(
β

(t)
n

)
= β

(t−k)
n . Namely, when the input probability is

that of an exact Hamming balls, `(k)
n returns their probability after expanding them to include anything

within their k Hamming distance (which is also a Hamming ball).

• Connect all the n+ 2 points above to obtain a piecewise-linear function `(k)
n .

See Definition 32 for a formal definition of the function above.

Recursive relation for OnExp
(k)
n (µ). We then use a recursive relation that can be used to exactly com-

pute OnExp
(k)
n (µ) for all k, n, µ (see Definition 28). The idea of the recursive relation is to model adver-

sary’s decision based on optimal decisions. In fact, if an adversary is given a bit ui = 0, and it holds that
Pr[(0, u2, . . . , un) ∈ S] = µ0,Pr[(1, u2, . . . , un) ∈ S] = µ1. Then, an optimal online adversary shall de-
cide between changing it to 1 or not, and if it knows the optimal solutions for OnExp

(k)
n−1(µ0) (reflecting the

“no change” decision) and OnExp
(k−1)
n−1 (reflecting the “change” decision) it can make the optimal decision.

Using lower bounds lead to lower bounds. We prove by induction on n, that if one uses lower bounds
(e.g., `(k)

n−1 and `(k−1)
n−1 ) instead of OnExp

(k)
n−1(µ0) and OnExp

(k−1)
n−1 (µ1) in the recursive relation that com-

putes OnExp
(k)
n , then one obtains a lower bound on OnExp

(k)
n (µ). This part of the proof follows from the

monotonicity of the recursive relation for OnExp
(k)
n .

Function OnExp
(k)
n (µ) remains a lower bound for `(k)

n . We also show that when we apply the recursive
relation over `(k)

n−1 and `(k−1)
n−1 , the result will be an upper bound on `(k)

n . This, together with the step above

implies that `(k)
n remains a lower bound `(k)

n . This is the most technical step of the proof that goes through a
careful case study and heavily relies on the concavity and monotonicity of `(k)

n .

Making the attack polynomial time. In the actual polynomial time attack, the adversary approximates µ, and
it uses `(k)

n (which is efficiently computable) instead of OnExp
(k)
n (µ) in the recursive relation and decides to

change or not change the bits. See Section 4.1 for more details.
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1.3 Further related work

Many of the related works were already discussed in previous sections. In this section, we discuss other
works related to ours, mostly in the context of coin tossing protocols.

Adaptive corruption. As explained above, our results are proved in the strong adaptive corruption model.
However, many works study the power of standard adaptive corruption in coin tossing protocols. The
main result in [KKR18] indeed proves the existence of such attacks that achieve non-targeted biasing that
controls the output fully when the number of corruptions is k ≥

√
n. Haitner and Karidi-Heller [HKH20]

further generalized this result to multi-turn protocols, resolving a long-standing open problem of Ben-Or
and Linial [BOL90]. Dodis [Dod01] previously proved that certain black-box methods cannot break this
conjecture. The recent work of Khorasgani, Maji, and Wang [KMW21, KMM19] showed that for the case
of 1 replacing, (computationally unbounded) adaptive adversaries can achieve non-targeted bias Ω(1/

√
n)

in single-turn protocols.

Static corruption. A static adversary chooses the corrupted parties independently of the execution of the
protocol, and hence can fix the corrupted set ahead of the execution. The previously mentioned works
of [BOL89,BGZ16,MM17,MDM18,MMM19] all fall into this framework and prove that corrupting k par-
ties can lead to bias Ω(µk/n) statically. These results hold even if the statically corrupted set is chosen at
random. For single-round protocols in which each party sends a single bit, Kahn, Kalai and Linial [KAH88]
showed that any protocol is susceptible to Ω(n/ log n) corruptions. A long line of exciting works (see [RSZ02])
showed how to achieve robustness to (1− δ) · n static corruption for any δ < 1.

Fair coin tossing. Another line of work in coin tossing protocols aims to study the power of fair protocols
in which the parties need to output a bit even if the other party is caught cheating (e.g., by aborting in the
middle of the protocol). The work of Cleve [Cle86] showed that in any such protocol with r rounds between
two parties, there is a PPT attacker that biases the output of the other party by at least Ω(1/r). The work
of Moran, Naor, and Segev [MNS09] showed how to match this bound assuming oblivious transfer, leading
to an “optimally fair” protocol. A sequence of works [DSLMM11, DMM14, HNO+18, HMO18] showed
barriers for doing so from one-way functions, and finally, the beautiful work of Maji and Wang [MW20]
completely resolved this question for black-box constructions. For works on fair coin tossing in the multi-
party settings see [HT17, BHMO18].

2 Preliminaries

General notation. We use calligraphic letters (e.g., X ) for sets. All distributions and random variables in
this work are discrete. We use bold letters (e.g., w) to denote random variables that return a sample from
a corresponding discrete distribution. By w ← w we denote sampling w from the random variable w. By
Supp(w) we denote the support set of w. For an event S ⊆ Supp(w), the probability function of w for
S is denoted as Pr[w ∈ S] = Prw←w[w ∈ S] or simply as Pr[S] when w is clear from the context. By
u ≡ v we denote that the random variables u and v have the same distributions. Unless stated otherwise,
we denote vectors by using a bar over a variable. By (w1,w2, . . . ,wn) we refer to a sequence of n jointly
sampled random variables. For a vector (w1 . . . wn), we use w≤i to denote the prefix (w1, . . . , wi), and we
use the same notation w≤i for jointly distributed random variables. For vector x = u≤i−1 and y = ui, by, by
xy we denote the vector u≤i−1 that appends ui as the last coordinate of x. For a jointly distributed random
variables (u,v), by (u | v = v) or we denote the random variable u conditioned on v = v. When it is clear
from the context, we simply write (u | v) or u[v] instead. By u × v we refer to the product distribution in
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which u and v are sampled independently. HD(u≤n, v≤n) = |{i | ui 6= vi}| denotes the Hamming distance
for vectors of n coordinates.

Random processes. Let w≤n ≡ (w1, . . . ,wn) be a sequence of jointly distributed random variables. We
can interpret the distribution of w≤i as a random process in which the ith block wi is sampled from the
marginal distribution (wi | w≤i−1) ≡ (wi | w≤i−1 = w≤i−1) ≡ wi[w≤i−1]. We also use w≤n[·] to denote
an oracle sampling algorithm that given w≤i returns a sample from w≤n[w≤i].

Attack model. Our adversaries replace a message/block in a random process. Namely, they observe the
blocks one by one and sometimes intervene to replace them with a new value. (The new values will subse-
quently change the way the random process will proceed.) Hence, we refer to them as replacing adversaries.
Such adversaries are equivalent to strongly adaptive corrupting adversaries as defined in [GKP15].

Definition 5 (Online replacing attacks on random processes). Let w≤n ≡ (w1, . . . ,wn) be a random
process. Suppose A(x, σ) → (x′, σ′) is a (potentially randomized) algorithm with the following syntax. It
takes as input some (randomness,) x and σ, where σ is interpreted as a “state”, and it outputs (x′, σ′). We
call such algorithm an online replacing adversary and define the following properties for it.

We define the following notions for w≤n.

• The generated and output random processes under replacing attacks. Suppose A is an replacing
algorithm. We now define two random processes that result from running the replacing adversary
A to influence the original random process w≤n. For i = 1, 2, . . . , n, we first sample ui ← (wi |
w≤i−1 = v≤i−1), and then we obtain (vi, σi) ← A(ui, σi−1). If at any point during this process
Pr[w≤i = v≤i] = 0, we will output ui+1 = · · · = un = vi+1 = · · · = vn = ⊥. We call (u≤n,v≤n)
the jointly generated random processes under the attack. We also refer to u≤n as the original values
and v≤n as the output of the random process under the attack A.

• Online replacing. We call A a valid (online replacing) attack on w≤n, if with probability 1 over the
generation of u≤n, v≤n, it holds that none of the coordinates are ⊥ (i.e., Pr[w≤i = v≤i] 6= 0.) In this
work we always work with valid online replacing attacks, even if they are not called valid.

• Budget of replacing attacks. Replacing adversary A has budget k, if

Pr[HD(u≤n,v≤n) ≤ k] = 1,

where (u≤n,v≤n) are the jointly generated random processes that are also jointly distributed.

• Algorithmic efficiency of attacks. If w≤n is indexed by n as a member of a family of joint distribu-
tions defined for all n ∈ N, then we call an online or offline replacing algorithm efficient, if its running
time is at most poly(N) where N is the total bit-length representation of any w≤n ∈ Supp(w≤n).
We would also consider efficiency where the replacing algorithm uses an oracle. In particular, we say
an attack Aw≤n[·] with oracle access to sampler w≤n[·] is efficient if it runs in time poly(N).

We now recall the so-called Doob martingale of a (Boolean-output) random process.

Definition 6 (Doob martingale, partial averages, and their approximate variant). For random process w≤n ≡
(w1, . . . ,wn), let f : Supp(w≤n) 7→ R, i ∈ [n], and w≤i ∈ Supp(w≤i). Then we use the notation
f̄(w≤i) = Ew≤n←(w≤n|w≤i)[f(w≤n)] to define the expected value of f for a sample from w≤n conditioned
on the prefix w≤i and refer to it as a partial-average of f . In particular, using notation w≤0 = ∅, we
have f̄(∅) = E[f(w≤n)]. The random process (f̄(w≤1), . . . , f̄(w≤n)) is called the Doob martingale of
the function f over the random process w≤n. For the same w≤n and f̄(·), we call f̃(·) an (additive) ε-
approximation of f̄(·), if for all w≤i ∈ Supp(w≤i), it holds that f̃(w≤i) ∈ f̄(w≤i)± ε.
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If one is given oracle access to ` samples from (wi | w≤i), then by averaging them, one can obtain (due
to the Hoeffding inequality) an ε-approximation of f̃(w≤i) for with probability 1− exp(−`/ε2).

2.1 Useful facts

We use the following variant of the Azuma inequality which is proved in [HMRAR13].

Lemma 7 (Azuma’s inequality for dynamic interval lengths (Theorem 2.5 in [HMRAR13])). Let t≤n ≡
(t1, . . . , tn) be a sequence of n jointly distributed random variables such that for all i ∈ [n], and for all
t≤i−1 ← t≤i−1, we have

∃t∗, Pr
ti←ti|t≤i−1

[t∗ + ηi ≥ ti ≥ t∗ − ηi] = 0

and E[ti | t≤i−1] ≥ 1. Then, we have

Pr

[
n∑
i=1

ti ≤ −s

]
≤ e

−s2

2
∑n
i=1

η2
i

Lemma 8 (Azuma’s inequality for dynamic interval lengths under approximate conditions). Let t≤n ≡
(t1, . . . , tn) be a sequence of n jointly distributed random variables such that for all i ∈ [n], and for all
t≤i−1 ← t≤i−1, we have

∃t∗, Pr
ti←ti|t≤i−1

[|ti| ≥ 1] = 0

∃t∗, Pr
ti←ti|t≤i−1

[t∗ + ηi ≥ ti ≥ t∗ − ηi] ≥ 1− γ

and E[ti | t≤i−1] ≥ −γ. Then, we have

Pr

[
n∑
i=1

ti ≤ −s

]
≤ e

−(s−2nγ)2

2
∑n
i=1

η2
i + n · γ

Proof. If we let γ = 0, Lemma 8 becomes equivalent to Lemma 7. Here we sketch why Lemma 8 can also
be reduced to the case that γ = 0 (i.e., Azuma inequality). We build a sequence t′i from ti as follows: Sample
ti ← ti | t≤i−1, if |ti − t∗| ≤ ηi, output t′i = ti + 2γ otherwise output t∗ + 2γ. We have E[t′i | t′≤i−1] ≥ 0
and Pr[|t′i − t∗ − 2γ| > τi] = 0. Now we can use Lemma 8 for the basic case of γ = 0 for the sequence
t′i and use it to get a looser bound for sequence ti, using the fact that ∃i ∈ [n], |ti − t∗| ≥ ηi happens with
probability at most n · γ.

Lemma 9 (Composition of concave functions). Suppose `1 and `2 are two non-decreasing concave func-
tions. Then `1(`2) is also non-decreasing and concave.

3 Attacking protocols with arbitrary message length

In this section, we design and analyze our k-replacing up-biasing attack on random processes with arbitrary
alphabet size. We first describe our attack in an idealized model in which the partial-average oracle f̄(·) and
“maximum child” of a prefix of the process are available for free. In Section 3.1, we show that our attack
can be made polynomial-time using an approximation of the partial-average oracle that can be obtained in
polynomial time.
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Construction 10 (k-replacing attack using exact oracles). This attack uses the exact partial-average oracle
f̄(·) and another oracle that returns “the best choice” for the next block (see u∗i+1 defined below). The attack
is also parameterized by a vector λ≤k = (λ1, . . . , λk) ∈ [0, 1]k for some integer k ≤ n which is adversary’s
budget. The attack will keep state σi = (u≤i, v≤i) where u≤i are the original values and v≤i are the output
values under attack.7 Having state (u≤i, v≤i) and for given ui+1 the algorithm A will decide on whether to
keep or replace ui+1, using u∗i+1 = argmaxu′i+1

f̄(v≤i, u
′
i+1), f̄∗ = f̄(v≤i, u

∗
i+1), and d = HD(u≤i, v≤i)

as follows.

• (Case 0) If d ≥ k, do not change ui+1 and output vi+1 = ui+1.

• (Case 1) if Case 0 does not happen and f̄(v≤i, ui+1) < f̄∗ − λd+1, then A[λ≤k](ui+1) will return the
output vi+1 = u∗i+1 which is different from ui+1.

• (Case 2) If Cases 0, 1 do not happen, do not change ui+1 and output vi+1 = ui+1.

In all the cases above, A will also update the state as σi+1 = (u≤i+1, v≤i+1) .

Notation. Suppose we run the attack A[λ≤k] on random process w≤n through the process described in Def-
inition 5. (In particular, ui+1 will be sampled from (wi+1 | w≤i = v≤i).) We use (u

(k)
≤n,v

(k)
≤n) to denote the

jointly generated random processes under the attack A[λ≤k]. (This notation allows us to distinguish between
the generated random processes under attacks with different budget.) We sometimes use (u

(∞)
≤n ,v

(∞)
≤n ) to

denote (u
(n)
≤n,v

(n)
≤n) as they are the same distributions. Also, let

µk = E
(u≤n,v≤n)←(u

(k)
≤n,v

(k)
≤n)

[f(v≤n)]

denotes the expected value of f over the sequence that is the output of k-replacing attack of Construction 10.
For k = 0 we have and µ0 = µ = E[f(w≤n)].

Lemma 11 below shows that the increase in µk compared with µk−1 can be related to the “threshold
parameter” λk and the probability that an attack with unlimited (or equivalently just n) budget with threshold
parameters λ1, . . . , λk, λ

′
k+1, . . . , λ

′
n makes at least k replacements.

Lemma 11. We have

µk ≥ µk−1 + λk · Pr
(u≤n,v≤n)←(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k].

Proof. For any j ∈ {0, 1, 2}, let Ckj be the Boolean random variable over (ui+1, σi) that determines which
case of the attack A with budget k happens on prefix (v≤i, ui+1) where v≤i is the finalized output prefix,
u≤i is the original prefix and ui+1 is the original sampled block at round i + 1. For all (v≤i, u≤i, ui+1) we
have

∑2
j=0C

k
j (ui+1, σi) = 1 because the cases complement each other.

In the rest of the proof, whenever u≤i and v≤i are clear from the context, we will use Ckj (ui+1) instead
of Ckj (ui+1, σi). In the following, when the threshold parameters λ1, . . . , λk are clear from the context, we
will use A instead of A[λ≤k].

For all u≤i, v≤i ∈ Supp(u≤i,v≤i) we have the following qualities for different cases of the attack.

7Attack would need v≤i and the “used part of the budget” HD(u≤i, v≤i). Both of these can be obtained from σi = (u≤i, v≤i).
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• Case 0:

E
(ui+1,vi+1)←(uki+1,v

k
i+1)[u≤i,v≤i]

[(
f̄(v≤i, vi+1)− f̄(v≤i, ui+1)

)
· Ck0 (ui+1)

]
= 0. (1)

• Case 1:

Ck1 (ui+1) = (C∞1 (ui+1) ∧HD(u≤i, v≤i) < k). (2)

This is because as long as the number of replacements is fewer than k, Case 1 of the attack with budget
k would go through whenever A with budget of n does so.

• Case 2:

E
(ui+1,vi+1)←(uki+1,v

k
i+1)[u≤i,v≤i]

[(
f̄(v≤i, vi+1)− f̄(v≤i, ui+1)

)
· Ck2 (ui+1))

]
= 0. (3)

This is correct because either Ck2 (v≤i, ui+1) = 0 or ui+1 = vi+1.

We define a notation g(v≤i+1, u≤i+1) = f̄(v≤i+1) − f̄(v≤i, ui+1). In the following We use the shorten
forms of E(u≤i,v≤i) and E(u≤n,v≤n)[u≤i,v≤i] to refer to E(u≤i,v≤i)←(u≤i,v≤i) and E(u,v)←(u≤n,v≤n)[u≤i,v≤i] .
We have

E
(u

(k)
≤n,v

(k)
≤n)

[f(v≤n)]− µ = E
(u

(k)
≤n,v

(k)
≤n)

[
n−1∑
i=0

(f̄(v≤i+1)− f̄(v≤i))

]

= E
(u

(k)
≤n,v

(k)
≤n)

[
n−1∑
i=0

(f̄(v≤i+1)− f̄(v≤i, ui+1))

]
(by the definition of f̄ ) (4)

=

n−1∑
i=0

E
(uk≤i,v

k
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

g(v≤i+1, u≤i+1) ·

 2∑
j=0

Ckj (ui+1)


=

n−1∑
i=0

E
(uk≤i,v

k
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · Ck1 (ui+1)

]
(by (3) and (1)) (5)

=
n−1∑
i=0

E
(uk≤i,v

k
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · (C(∞)

1 (ui+1) ∧ (HD(u≤i, v≤i) < k)
]

(by (2))

=
n−1∑
i=0

E
(u∞≤i,v

∞
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[g(v≤i+1, u≤i+1) · (C∞1 (ui+1) ∧ (HD(u≤i, v≤i) < k))] . (6)

The last equality above holds, because for all u≤i, v≤i where HD(u≤i, v≤i) < k,

Pr[(uk≤i,v
k
≤i) = (u≤i, v≤i)] = Pr[(u

(∞)
≤i ,v

(∞)
≤i ) = (u≤i, v≤i)].

The reason for this is that as long as we have not used the full budget k, the k-replacing attack will behave
as if its budget is infinite.
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Similarly, for the adversary A with budget k − 1 we have

E
(u

(k−1)
≤n ,v

(k−1)
≤n )

[f(v≤n)]− µ =

n−1∑
i=0

E
(u

(∞)
≤i ,v

(∞)
≤i )≤i

E
(u

(k−1)
≤n ,v

(k−1)
≤n )[u≤i,v≤i]

[η(u≤i+1, v≤i+1)] . (7)

where η(u≤i+1, v≤i+1) = g(v≤i+1, u≤i+1) ·
(
C∞1 (ui+1) ∧ (HD(u≤i, v≤i) < k − 1)

)
. Therefore, by com-

bining Equations (6) and (7) we have

E
(u

(k)
≤n,v

(k)
≤n)

[f(v≤n)]− E
(u≤n,v≤n)←(u

(k−1)
≤n ,v

(k−1)
≤n )

[f(v≤n)] =

n−1∑
i=0

E
(u

(∞)
≤i ,v

(∞)
≤i )

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[g(v≤i+1, u≤i+1) · C∞1 (ui+1) · (HD(u≤i, v≤i) = k − 1)]

≥
n−1∑
i=0

E
(u

(∞)
≤i ,v

(∞)
≤i )

λk · E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[C∞1 (ui+1) · (HD(u≤i, v≤i) = k − 1)]


= λk · Pr

(u
(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k].

The last equality above holds because whenever C(∞)
1 holds, we know that A will replace ui+1 with

vi+1 6= ui+1 and this makes the hamming distance of u≤i+1 from v≤i+1 equal to k.

Now we prove the following lemma about the power of attacks with infinite budget. Claim 19 in [MM19]
also prove a similar bound for their attack but our attack achieves a better bound because of the fact that our
attack has only one step in which the replacement might happen which allows us to make a better use of
Azuma’s inequality with dynamic interval (See Lemma 7).

Lemma 12. If µ∞ = E
(u≤n,v≤n)←(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n)] and λ = maxi∈[n] λi, then

µ∞ ≥ 1− e−
2µ2

nλ2 .

Proof. We define a sequence of random variables t≤n = (t1, . . . , tn), where ti+1 = f̄(v≤i+1)− f̄(v≤i) is
a random variable that is dependent on v≤i+1. Then we have

E
(u

(∞)
≤n ,v

(∞)
≤n )[u≤i,v≤i]

[f̄(v≤i+1)− f̄(v≤i)]

≥ E
(u

(∞)
≤n ,v

(∞)
≤n )[u≤i,v≤i]

[f̄(v≤i, ui+1)− f̄(v≤i)] = 0.

Therefore, t≤n defines a sub-martingale. Furthermore, we have

f̄∗ ≥ f̄(v≤i+1) ≥ f̄∗ − λ.

Therefore, ti always falls in an interval of size λ. Hence, applying the right variant of Azuma’s Inequality
(as stated in Lemma 7) over t≤n, we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 0] = Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n)− µ ≤ −µ] = Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[ n∑
i=1

ti ≤ −µ
]
≤ e−

2µ2

nλ2 . (8)
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Now, leveraging the fact that f outputs in {0, 1} and relying on Inequality (8), we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1] = 1− Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n)− µ ≤ −µ] ≥ 1− e−
2µ2

nλ2 .

Lemma 13. If λ = maxi∈[k] λi, then

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k] ≥ 1− e−
2µ2

nλ2 − µk−1.

Proof. First we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
∨ (HD(u≤n, v≤n) ≥ k)]

= Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1 ∨HD(u≤n, v≤n) ≥ k]

≥ Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1]

= µ∞ ≥ 1− e−
2µ2

nλ2 (by Lemma 12). (9)

On the other hand, by a union bound we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
∨ (HD(u≤n, v≤n) ≥ k)] ≤

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1 ∧HD(u≤n, v≤n) < k] + Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k]. (10)

The generated process under k − 1 replacing attack is same as n-replacing attack as long as the number of
replacements is less than k. Therefore, it holds that

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
] ≤ Pr

(u
(k−1)
≤n ,v

(k−1)
≤n )

[f(v≤n) = 1] = µk−1. (11)

Now, combining Inequalities (9), (10) and (11) we get

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k] ≥ 1− e−
2µ2

nλ2 − µk−1.

Corollary 14. If λ = maxi∈[k] λi, then we have

µk ≥ µk−1 + λk ·
(

1− e
−2µ2

n·λ2 − µk−1

)
.
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Proof. Combining Lemmas 13 and 11 we have

µk ≥ µk−1 + λk · Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k] (by Lemma 11)

≥ µk−1 + λk ·
(

1− e
−2µ2

n·λ2 − µk−1

)
(by Lemma 13).

Theorem 15. If λ = maxi∈[k] λi, then we have

µk ≥ µ+
(

1−
k∏
i=1

(1− λi)
)
·
(

1− e
−2µ2

n·λ2 − µ
)
.

In particular, by setting all λi = µ√
n

we get

µk ≥ µ+

(
1−

(
1− µ√

n

)k)
·
(

1− e−2 − µ
)
.

Note that the choice of λi = µ/
√
n above is not optimal when we want to maximize µi. The optimal

choice does not have a compact closed form and leads to different λi’s for different remaining budgets.

Proof. We prove this by induction on k. The case of k = 1 directly follows from Corollary 14. For k > 1,
by Corollary 14 we have

µk ≥ µk−1 + λk ·
(

1− e
−2µ2

n·λ2 − µk−1

)
,

which implies that

µk ≥ (1− λk) · µk−1 + λk ·
(

1− e
−2µ2

n·λ2
)
.

Now we can use the induction’s hypothesis and replace µk−1 with µ +
(

1 −
∏k−1
i=1 (1 − λi)

)
·
(

1 −

e−2µ2/(n·λ2) − µ
)

which implies that

µk ≥ µ+
(

1−
k∏
i=1

(1− λi)
)
·
(

1− e
−2µ2

n·λ2 − µ
)
,

and that proves the claim.

3.1 Making the attack run in polynomial time

In this section, we explain why the attack of the Section 3 can be implemented in polynomial time. In
particular, we show how we can modify Construction 10 so that it runs in polynomial time, if one can
efficiently sample form the random process conditioned on any prefix. (This is true, e.g., when the random
process models a single-turn coin tossing protocol, as the original protocol shall run in polynomial time.)

At a high level, the proofs of this section closely follow the steps of the proofs in Section 3, and in each
step we show that the proof is robust to using “approximate” values for what we previously assumed to be
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known exactly. Therefore, for a reader who is not primarily concerned with the polynomial-time aspect of
the attack, we suggest reading Section 3, which is simpler.

Note that the attack of Construction 10 is not polynomial time mainly because calculating f̄(·) and
f∗(·) oracles is not a polynomial-time task. In order to make the attack polynomial time, we first show that
if the algorithm has access to the approximated version of these oracles, it still can achieve almost the same
bias towards 1. Then, we show that calculating the approximation of these approximate oracles is actually
possible in polynomial-time.

First, we first state our new construction that uses the approximate oracles.

Construction 16 (k-replacing using approximate partial-average and maximum-child oracles). This attack
uses the approximate oracle f̃(·) (see Definition 6) so that for all v≤i we have

|f̃(v≤i)− f̄(v≤i)| ≤ τ. (12)

The attack also uses an additional oracle for returning an approximate best choice for next block, such that

u∗i+1 ∈
{
u
′
i+1 | Pr

[
f̃(v≤i , ui+1) > f̃(v≤i, u

′
i+1)

]
≤ τ

}
(13)

and also let f̃∗(v≤i) = f̃(ũ∗i+1) and d = HD(u≤i, v≤i). The attack is parameterized by a vector λ≤k =
(λ1, . . . , λk) ∈ [0, 1]k for some integer k ≤ n which is adversary’s budget. The attack will keep a state
σi = (u≤i, v≤i) where u≤i are the original values and v≤i are the output values under attack. Having state
(u≤i, v≤i) and for given ui+1 the approximate attacker App will decide on whether to keep or replace ui+1,
using u∗i+1, f̃∗, and d = HD(u≤i, v≤i) as follows.

• (Case 0) If d ≥ k do nothing and output vi+1 = ui+1.

• (Case 1) if Case 0 does not happen and f̃(v≤i, ui+1) < f̃∗(v≤i)− λz , then output vi+1 = u∗i+1.

• (Case 2) If Case 0 and Case 1 not happen, do nothing and set vi+1 = ui+1.

In all the cases above, App will also update the state σi+1 accordingly by setting σi+1 = (u≤i+1, v≤i+1) .

Now we show that if conditions 12 and 13 hold, then the attack of Construction 16 can achieve the
desired bias.

Lemma 17. Let µk be the average of the output bit after applying the attack of Construction 16. Then, for
λ = maxi∈[k] λi we have

µk ≥ µ+
(

1−
k∏
i=1

(1− λi)
)
·
(

1− e
−2(µ−5nτ)2

n·λ2 − µ
)
− 6n · k · τ.

In particular, by setting all λi = µ√
n

and τ ≤ min( µ
10000n ,

ε
12·n2 ) we get

µk ≥ µ+
(

1−
(
1− µ/

√
n
)k) · (1− e−1.99 − µ)− ε/2.

Before proving the theorem above, we mention the following corollary about the power of polynomial
time attacks.
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Theorem 18. For any ε there is a k-replacing Appw≤n[.] attack with oracle access to the sampler from
random process that runs in time poly(N/(ε · µ)) and achieves bias at least(

1−
(

1− µ√
n

)k)
· (1− e−1.99 − µ)− ε,

where N is the total bit representation of the process.

Proof. We shall only show how to implement the approximate oracles f̃(·) and f̃∗(·) in polynomial time.
Doing so is possible by continuing the random process (i.e., the coin flipping protocol) many times and
taking their average, which is possible to be done efficiently because the attack has oracle access to the
process (in the context of coin tossing, this is possible if the protocol is single turn and turns in polynomial
time). Using Chernoff-Hoefding bound, we can bound the probability of having error |f̃ − f̄ | larger than
τ to be at most ε/4n, by making poly(n/(ε · τ)) random continuations. We can also ensure the condition
for f̃∗ to happen with probability at least 1− ε/4n, by making poly(log(n/ε)/τ) samples. Of course, there
is a chance of our approximation failing but that does not hurt the proof as we bound the probability of the
failure for both type of queries by ε/4n and in total we make at most 2n such queries during the course of
the protocol. Therefore, by union bound, the final probability of any of these queries failing is at most ε/2.
In the worst-case, for the failure scenarios the average becomes 0 and we lose an additive ε/2 in the final
bias. Since our attack at each round makes poly(n/(ε · τ)) random continuations, the running time of the
attack given oracle access to the sampler is equal to O(poly(n/ε · τ)) = O(poly(n/ε · µ)).

Now we prove Lemma 17.

Proof of Lemma 17. The proof is similar to the proof of Theorem 15. We first need to show that the approx-
imate attack would achieve high bias, in the case of infinite number of replacements. We start by showing a
variation of Lemma 12 with the approximated oracle.

Lemma 19. Let λ = maxi∈[n] λi. Then, we have

µ∞ ≥ 1− e−
2(µ−5nτ)2

nλ2 − 2τn

Proof. We define a sequence of random variables t≤n = (t1, . . . , tn), where ti+1 = f̃(v≤i+1)− f̃(v≤i) is
a random variable that is dependent on v≤i.

Then we have

E
(u∞,v∞)[u≤i,v≤i]

[f̃(v≤i+1)− f̃(v≤i)] ≥ E
(u∞,v∞)[u≤i,v≤i]

[f̄(v≤i, ui+1)− f̄(v≤i)− 2τ ] = −2τ. (14)

Therefore, t≤n defines an approximate sub-martingale.
Furthermore, by the guarantee of f̃∗ and the way the attack works we have

Pr
(u∞,v∞)[u≤i,v≤i]

[f̃∗(v≤i) ≥ f̃(v≤i+1) ≥ f̃∗(v≤i)− λ] ≥ 1− τ (15)

Therefore, ti always falls in an interval of size λ and by Applying the approximate Azuma’s inequality (as
stated in Lemma 8) over ti, we have

Pr

[
n∑
i=1

ti ≤ −µ+ τ

]
≤ e−

2(µ−5nτ)2

nλ2 + 2nτ.
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Then we have

Pr[f(v≤n) = 1] ≥ Pr[f̃(v≤n) > τ ] = Pr
[∑

ti ≥ τ − µ
]
≥ 1− e−

2(µ−5nτ)2

nλ2 − 2nτ.

We then have the approximated version of Lemma 11.

Lemma 20. We have

µk ≥ µk−1 + λk · Pr
(u≤n,v≤n)←(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k]− 4nτ.

Proof. The proof is very similar to the proof of Lemma 11. The only difference is that in Equation (4) we
switch from f̄ to f̃ and we only loose 2τn because of the approximation error. Namely,

∣∣∣ E
(uk≤n,v

k
≤n)[u≤i,v≤i]

[
n∑
i=1

(
f̃(v≤i+1)− f̃(v≤i)

)]
− E

(uk≤n,v
k
≤n)[u≤i,v≤i]

[
n∑
i=1

(
f̄(v≤i+1)− f̄(v≤i)

)] ∣∣∣ ≤ 2τn.

(16)
All other equations will remain the same because Equations 1, 2 and 3 still hold when we use f̃ instead

of f̄ .
This will change Equation (5) and will add an additive term of 2τn and we have

E
(uk≤n,v

k
≤n)

[f(v≤n)]− µ ≥

n−1∑
i=0

E
(u∞≤i,v

∞
≤i)

[
E

(uk≤n,v
k
≤n))[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) ·

(
C∞1 (ui+1) ∧ (HD(u≤i, v≤i) < k)

)] ]
− 2nτ.

Similarly, for k − 1 we have

E
(uk−1
≤n ,vk−1

≤n )
[f(v≤n)]− µ ≤

n−1∑
i=0

E
(u∞≤i,v

∞
≤i)

[
E

(uk−1
≤n ,vk−1

≤n )[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) ·

(
C∞1 (ui+1) ∧ (HD(u≤i, v≤i) < k − 1)

)]
+ 2nτ.

By subtracting the two inequalities above the proof of Lemma is complete.

Lemma 21. If λ = maxi∈[k] λi, then

Pr
(u∞≤n,v

∞
≤n)

[HD(u≤n, v≤n) ≥ k] ≥ 1− e−
2(µ−5nτ)2

nλ2 − 2nτ − µk−1.
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Proof. The proof steps of this lemma are exactly as those of Lemma 13. First we have

Pr
(u∞≤n,v

∞
≤n)

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
∨ (HD(u≤n, v≤n) ≥ k)]

= Pr
(u∞≤n,v

∞
≤n)

[f(v≤n) = 1 ∨HD(u≤n, v≤n) ≥ k]

≥ Pr
(u∞≤n,v

∞
≤n)

[f(v≤n) = 1]

= µ∞

(by Lemma 19) ≥ 1− e−
2(µ−5nτ)2

nλ2 + 2nτ. (17)

On the other hand, by union bound we have

Pr
(u∞≤n,v

∞
≤n)

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
∨ (HD(u≤n, v≤n) ≥ k)]

≤ Pr
(u∞≤n,v

∞
≤n)

[f(v≤n) = 1 ∧HD(u≤n, v≤n) < k] + Pr
(u∞≤n,v

∞
≤n)

[HD(u≤n, v≤n) ≥ k]. (18)

It also holds that

Pr
(u∞≤n,v

∞
≤n)

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
] ≤ Pr

(uk−1
≤n ,vk−1

≤n )
[f(v≤n) = 1] = µk−1. (19)

Now, combining Inequalities 17, 18 and 19 we get

Pr
(u∞≤n,v

∞
≤n)

[HD(u≤n, v≤n) ≥ k] ≥ 1− e−
2(µ+5nτ)2

nλ2 − 2nτ − µk−1,

which finishes the proof.

Corollary 22. If λ = maxi∈[k] λi, then we have

µk ≥ µk−1 + λk ·
(

1− e
−2(µ−5nτ)2

n·λ2 − 2nτ − µk−1

)
− 4n · τ.

Proof. This corollary follows by combining Lemmas 20 and 21.

Putting things together. Now that we have all the required Lemmas we can prove Theorem using the exact
same inductive argument of Theorem 15. The case of k = 1 directly follows from Corollary 22. For k > 1,
by Corollary 22 we have

µk ≥ µk−1 + λk ·
(

1− e
−2(µ−5nτ)2

n·λ2 − 2nτ − µk−1

)
− 4n · τ,

which implies that

µk ≥ (1− λk) · µk−1 + λk ·
(

1− e
−2(µ−5nτ)2

n·λ2

)
− 6n · τ.

Now we can use induction hypothesis and replace µk−1 with

µ+

(
1−

k−1∏
i=1

(1− λi)

)
·
(

1− e
−2(µ−5nτ)2

n·λ2 − µ
)
− 6n · (k − 1) · τ
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which implies that

µk ≥ µ+

(
1−

k∏
i=1

(1− λi)

)
·
(

1− e
−2(µ−5nτ)2

n·λ2 − µ
)
− 6nkτ,

and that proves the claim.

4 Optimal attacks for uniform binary messages

In this section, we focus on the setting in which n parties each send a uniform random bit and then a final bit
is chosen based on the published messages. We will show how to obtain optimal online k-replacing attacks
that match the power of offline attacks.

Notation. u≤n ≡ (u1 × · · · × un) denotes the uniform random variable over {0, 1}n, where each ui is a
uniform and independent random bit. In this section, for simplicity we use notation Un for this distribution.
We will study k-replacing attacks on Un.8 HW(x) = HD(x, 0n) denotes Hamming weight of x ∈ {0, 1}n.
We let [n] = {1, . . . , n}, 〈n] = {0, . . . , n} and 〈n〉 = {0, . . . , n+ 1}. For t ∈ 〈n〉, we define the threshold
function τt : {0, 1}n → {0, 1} as τt(x) = 1 iff HW(x) ≥ t. (τ0 is the constant function 1 function and
τn+1 is the constant 0 function.) We let β(t)

n = 2−n ·
∑n

i=t

(
n
i

)
be the probability of the Hamming ball

defined by τt, and when n is clear from the context we write it as β(t). We also let s(t)
n = 2n · β(t)

n be
the size of the same Hamming ball. For set S ⊂ R, r ∈ R, we use the notation rS = {rx | x ∈ S}, e.g.,
r〈n] = {0, r, 2r, . . . , nr}. We let

(
n
k

)
= 0 if k < 0 or k > n. For a set S ⊆ {0, 1}n and r ∈ {0, 1}d for

d ∈ [n], we let
S[r] =

{
x′ | x ∈ S ∧ ∃x′ ∈ {0, 1}n−d such that x = (r, x′)

}
be the set of suffixes of strings in S of length n− d with r as their prefix.

We first define the isoperimetry function that capture the power of “offline” attacks.

Definition 23 (The offline expansion and isoperimetry functions). For k ∈ [n],S ⊆ {0, 1}n, the offline
k-expansion (probability) of S is the probability of all points within Hamming distance k of S

OffExp(k)(S) =
| {y ∈ {0, 1}n | ∃x ∈ S,HD(x, y) ≤ k} |

2n
.

For a given probability µ, the k-expansion of µ is equal to:

OffExp(k)(µ) = inf
S,Pr[S]≥µ

OffExp(k)(S).

Finally, for a set S and probability µ, we define the (offline) k-isoperimetry function

OffIso(k)(S) = OffExp(k)(S)− Pr[S], OffIso(k)
n (µ) = OffExp(k)

n (µ)− µ.

Note that whenever the input is a set S ⊆ {0, 1}n, it already determines n on its own, and hence we do
not need to state it explicitly, but when the input is µ ∈ R, we explicitly state n as the index of the function.

8In Sections 2 and 3, we called the original random process w≤n and Un was one of the generated random processes (modeling
the original samples). However, since we are starting from a product distribution, it would hold that Un ≡ w≤n, and thus we
simply call the original distribution u.
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Theorem 24 (Implied by the vertex isoperimetric inequality in Boolean hypercube [Har66]). For any t ∈
〈n], it holds that OffExp(k)(β(t)) = β(t−k).

Online attacks vs. offline attacks. Suppose an adversary wants to increase the probability of falling into a
set S in an “offline” attack, in which the adversary gets a point x← Un and then can replace k of the bits of
x. It is easy to see that the adversary can increase the probability of falling into S exactly by OffIso(k)(S).
Accordingly, we can define the online variant of such attacks as defined in Section 5. In such online attacks,
the adversary gets to see the independent and uniformly sampled random bits (u1, . . . ,un) one by one, and
after seeing ui ← ui, it can decide to keep or change it.

Definition 25 (The online expansion OnExp and isoperimetry OnIso functions). Let A be an online adver-
sary of budget k over the uniform distribution Un over {0, 1}n. Let v≤n be the generated output random
process (distributed over {0, 1}n) under attack A (as defined in Definition 5). We define OnExp(A)(S) =
Pr[v≤n ∈ S]. Let Ak be the set of all k-replacing attacks on Un. We define OnExp(k)(S) as the maximum
probability of points in {0, 1}n that any online adversary can map to S by up to k changes to a stream of n
uniformly random bits. Namely,

OnExp(k)(S) = max
A∈Ak

OnExp(A)(S).

Also, for any µ ∈ [0, 1], we define

OnExp(k)
n (µ) = inf

S,Pr[S]≥µ
OnExp(k)(S)

as the minimum OnExp(k)(S) among all sets of probability at least µ. Finally, for any set S and probability
µ, we define the online k-isoperimetry functions as follows

OnIso(k)(S) = OnExp(k)(S)− Pr[S], OnIso(k)
n (µ) = OnExp(k)

n (µ)− µ

as the growth in probability of falling into sets (of probability µ) under optimal online k-replacing attacks.

Since offline adversaries know as much as online adversaries when making decision to change or not,
it always holds that OffIso(S) ≥ OnIso(S), and hence OffIso

(k)
n (µ) ≥ OnIson(µ) for all n, S ⊆ {0, 1}n,

and µ ∈ [0, 1]. The surprising phenomenon stated in the next theorem is that when µ is the probability of
a Hamming ball, online and offline attacks have the same exact power as a function of the measure µ, and
consequently the online and offline k-isoperimetry functions would be equal.

Theorem 26 (Power of online vs. offline attacks for the uniform distribution over {0, 1}n). For all n ∈
N, t ∈ [n], k ≤ t, if β(t) = Pr[HW(Un) ≥ t] be the probability of a Hamming ball. Then it holds that

OnExp(k)
n (β(t)) = OffExp(k)

n (β(t)) = β(t−k).

In words, if µ = β(t), then the power of online k-replacing adversaries to increase the probability of falling
into a set S , in the minimum over all sets of probability at least β(t), is equal to that of offline attacks.

Reaching a target probability. Suppose Pr[S] = µ, and suppose we want to increase the probability of
falling into S to µ′ > µ. How much budget an adversary needs? Theorem 26 shows that as long as µ
is the probability of a Hamming ball (i.e., µ = β(t)), then in the worst case (among all possible sets S
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of probability µ) the power of online and offline attacks are exactly the same. Therefore, this brings up
the natural question of what happens in general, when µ is not exactly the probability of a Hamming ball.
As stated in Corollary 27 below, Theorem 26 already shows that the power of offline and online attacks is
different by at most one. In fact, as we will see later, these quantities are not equal in general. In particular,
Figure 1 compares OnIson(µ) and OffIso

(k)
n (µ) for all µ when n = 10 (and k = 1).

Corollary 27 (Budget of online vs. offline attacks to reach a target probability). For 0 < µ < µ′ ≤ 1, let

OfBudn(µ→ µ′) = min
k∈[n]

[OffExp(k)
n (µ) ≥ µ′]

be the minimum budget k that an offline adversary needs to increase the probability of falling into any set S
of probability at least µ to µ′. Let

OnBudn(µ→ µ′) = min
k∈[n]

[OnExp(k)
n (µ) ≥ µ′]

be the similar quantity for online attacks. Then, it always holds that

OfBudn(µ→ µ′) ≤ OnBudn(µ→ µ′) ≤ OfBudn(µ→ µ′) + 1

and OfBudn(β(t) → µ′) = OnBudn(β(t) → µ′) for all t ∈ [n+ 1].

0 1
0
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Figure 1: Comparing the online isoperimetric function OnIso (blue) versus the offline isoperimetric function
OffIso (red) for n = 10.

We first prove Corollary 27 using Theorem 26 and then will prove Theorem 26.
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Proof of Corollary 27. Let k = OfBudn(µ → µ′), we have OffExp
(k)
n (µ) ≥ µ′ and OffExp

(k−1)
n (µ) < µ′.

Let t ∈ 〈n〉 be the minimum such t that β(t) ≥ µ, and so we have β(t+1) ≤ µ ≤ β(t). By the monotonicity
of OnExp

(k)
n function, we have

OnExp(k+1)
n (β(t+1)) ≤ OnExp(k+1)

n (µ). (20)

By Theorem 26 it holds that OnExp
(k+1)
n (β(t+1)) = OffExp

(k+1)
n (β(t+1)). Now, because β(t+1) ≤ µ ≤

β(t), by the monotonicity of OffExp
(k)
n (µ) we have

OffExp(k)
n (µ) ≤ OffExp(k)

n (β(t)) = OffExp(k+1)
n (β(t+1)) = OnExp(k+1)

n (β(t+1)). (21)

Combining (20) and (21), we have

OffExp(k)
n (µ) ≤ OnExp(k+1)

n (β(t+1)) ≤ OnExp(k+1)
n (µ).

Therefore we have,

OfBudn(µ→ µ′) + 1 = min
k∈[n]

[OffExp(k)
n (µ) ≥ µ′] + 1

≥ min
k∈[n]

[OnExp(k+1)
n (µ) ≥ µ′] + 1

= min
k+1∈[n]

[OnExp(k+1)
n (µ) ≥ µ′]

= OnBudn(µ→ µ′).

The inequality holds because let k′ = mink∈[n][OffExp
(k)
n (µ) ≥ µ′], we have OnExp

(k′+1)
n (µ) ≥ µ′, and

therefore mink∈[n][OnExp
(k+1)
n (µ) ≥ µ′] ≤ k′. Since we also have OffExp

(k)
n (µ) ≥ OnExp

(k)
n (µ) for any

µ, OfBudn(µ→ µ′) ≤ OnBudn(µ→ µ′) ≤ OfBudn(µ→ µ′) + 1.

Finally, because OffExp
(k)
n (β(t)) ≥ OnExp

(k)
n (β(t)) holds for any k and t, we have OfBudn(β(t) →

µ′) = OnBudn(β(t) → µ′) for all t ∈ [n+ 1].

In the rest of this section, we prove Theorem 26.

Proof of Theorem 26. To Theorem 26, we start by deriving a recursive relation for OnExp
(k)
n (·). Before

doing so, we define some mathematical notation.

Definition 28 (Definitions related to the recursive relation of online expansion). For s ∈ 〈2n], let

Divn−1(s) =
{

(s0, s1) | s0, s1 ∈ 〈2n−1], 0 ≤ s0 ≤ s1 ≤ 2n−1, s = s0 + s1

}
be the set of ways in which a “set size” s ∈ 〈2n−1] can be divided into two sizes. For (s0, s1) ∈ Divn−1(s)

and a fixed pair of integers n, k let Rec
(k)
n (·, ·) be defined as

Rec(k)
n (s0, s1) =

Rec
(k)
n−1

(
s1

2n−1

)
+ max

{
Rec

(k)
n−1

(
s0

2n−1

)
,Rec

(k−1)
n−1

(
s1

2n−1

)}
2

(22)

based on functions Rec
(k)
n−1,Rec

(k−1)
n−1 to be specified later. Finally, for µ ∈ 2−n〈2n] let

Rec(k)
n (µ) = inf

(s0,s1)∈Divn(2n·µ)
Rec(k)

n (s0, s1). (23)
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Transformation Rec
(k)
n [p, q]. For functions p, q defined on input space 2−n〈2n]. Suppose we use p instead

of Rec
(k)
n−1 and q instead of Rec

(k−1)
n−1 in Equation (22). Then by Rec

(k)
n [p, q](·, ·) (resp. Rec

(k)
n [p, q](·)) we

denote the function that one obtains in Equation (22) (resp. Equation (23)).

Interpretation. Rec
(k)
n (s0, s1) represents the optimal choice that a tampering adversary can make to in-

crease the probability of falling into a set of size s, when S[0] = S0,S[1] = S1 are adversarially chosen
based on their sizes s0, s1 where s0 ≤ s1, and when the optimal online expansions for s0, s1 can be applied
by (appropriate use of) functions Rec

(k)
n−1,Rec

(k−1)
n−1 .

Notation. Let f, g be defined over the same input domain D. We say f ≤ g, if ∀µ ∈ D, f(µ) ≤ g(µ).
We now show that the transformation of Definition 28 has some desired properties.

Claim 29 (Transformation of Definition 28 is monotone). Let u
(k)
n−1 ≤ v

(k)
n−1 and u

(k−1)
n−1 ≤ v

(k−1)
n−1 , and let

u(k)
n = Rec(k)

n [u
(k)
n−1, u

(k−1)
n−1 ], v(k)

n = Rec(k)
n [v

(k)
n−1, v

(k−1)
n−1 ]

as defined in Definition 28. Then, it holds that u
(k)
n ≤ v

(k)
n .

Proof. We first show that for any s0, s1 ∈ Divn(2n · µ), we have u
(k)
n (s0, s1) ≤ v

(k)
n (s0, s1). Because

u
(k)
n−1 ≤ v

(k)
n−1 and u

(k−1)
n−1 ≤ v

(k−1)
n−1 , we have u

(k)
n−1

(
s1/2

n−1
)
≤ v

(k)
n−1

(
s1/2

n−1
)

and

max{u(k)
n−1

(
s0/2

n−1
)
, u

(k)
n−1

(
s1/2

n−1
)
} ≤ max{v(k)

n−1

(
s0/2

n−1
)
, v

(k)
n−1

(
s1/2

n−1
)
}.

Therefore, u
(k)
n (s0, s1) ≤ v

(k)
n (s0, s1) holds for any s0, s1.

From Eq. (23), let (s′0, s
′
1) = arg inf(s0,s1)∈Divn(2n·µ)v

(k)
n (s0, s1) be the partition where v

(k)
n (µ) achieves

its minimum. Then we have u
(k)
n (µ) ≤ u

(k)
n (s′0, s

′
1) ≤ v

(k)
n (s′0, s

′
1) = v

(k)
n (µ).

Claim 30 (Recursive relation for online expansion). One can recursively compute OnExp
(k)
n (µ) for all

µ ∈ 2−n〈2n] as follows.

• If k = 0 and n ≥ 0, then OnExp
(0)
n (µ) = µ.

• If k ≥ 1 and k ≥ n, then: OnExp
(k)
n (0) = 0 and OnExp

(k)
n (µ) = 1 for µ > 0.

• If k ≥ 1 and and k < n, then OnExp
(k)
n = Rec

(k)
n [OnExp

(k)
n−1,OnExp

(k−1)
n−1 ] as in Definition 28.

Proof sketch. The extremal cases of the recursive relation stated in the first two bullets hold trivially. Below
we argue why the inductive step as stated in the third bullet holds as well.

Suppose by fixing the first bit to b we get a subset of size sb, and s0 ≤ s1, and suppose in both cases the
residual subsets S[0],S[1] are chosen in the “worst” case (against the adversary) based on their sizes s0, s1,
minimizing the success probability of an online adversary. Since OnExp(·) is a monotone function, then
when the first bit is selected to be 1, the adversary has no motivation to replace it with 0. When the first bit
is selected to be 0, the adversary has choose between maximum of the expansions that arise from changing
or not changing the bit to 1. Once we consider all ways that s can be split into s = s0 + s1, this leads to the
definition of the recursion of Eq. (23) and the transformation of Definition 28.
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Claim 31. Suppose p ≤ OnExp
(k)
n−1, q ≤ OnExp

(k−1)
n−1 for functions p, q. Then, it holds that Rec

(k)
n [p, q] ≤

OnExp
(k)
n (see Definition 28).

Proof. The proof directly follows from Claims 30 and 29.

We now define a piecewise-linear function `(k)
n to later prove to be a lower bound for OnExp

(k)
n .

Definition 32 (The piecewise-linear (lower bound) function). For any non-negative integers k, n, the func-
tion `(k)

n : [0, 1]→ [0, 1] is defined as follows.

• If µ = β
(t)
n for any t ∈ 〈n〉, it holds that `(k)

n

(
β

(t)
n

)
= OffExp

(k)
n

(
β

(t)
n

)
. Namely, `(k)

n

(
β

(n+1)
n

)
=

OffExp
(k)
n (0) = 0, and for any t ∈ 〈n], `(k)

n

(
β

(t)
n

)
= β

(t−k)
n = Pr [HW(Un) ≥ t− k].

• If µ = αβ
(t)
n + (1− α)β

(t−1)
n for 0 < α < 1 and any t ∈ 〈n〉, then `(k)

n (µ) = α · `(k)
n

(
β

(t)
n

)
+ (1−

α) · `(k)
n

(
β

(t−1)
n

)
.

Proposition 33 (Composition of the lower bound function). For any k1, k2, n ≥ 0 and µ ∈ [2−n, 1], it hold
that `(k1+k2)

n (µ) = `
(k1)
n

(
`
(k2)
n (µ)

)
.

Proof. Consider every case,

• If µ = β
(t)
n . By Definition 32 we have `(k1)

n

(
`
(k2)
n (µ)

)
= `

(k1)
n

(
OffExp

(k2)
n

(
β

(t)
n

))
. As µ ∈ [2−n, 1],

we have t ≤ n. Therefore, OffExp
(k2)
n

(
β

(t)
n

)
= β

(t−k2)
n . Therefore, we have

`(k1)
n

(
`(k2)
n

(
β(t)
n

))
= `(k1)

n

(
β(t−k2)
n

)
= β(t−(k2+k1))

n = `(k1+k2)
n

(
β(t)
n

)
.

• If µ = αβ
(t)
n + (1 − α)β

(t−1)
n for 0 < α < 1, In this case, by Definition 32 we have `(k2)

n (µ) =

α · `(k2)
n

(
β

(t)
n

)
+ (1 − α) · `(k2)

n

(
β

(t−1)
n

)
. As µ ∈ [2−n, 1], we have t ≤ n. Therefore, we have

`
(k2)
n (µ) = α · β(t−k2)

n + (1− α) · β(t−1−k2)
n . We then have

`(k1)
n

(
`(k2)
n (µ)

)
= `(k1)

n

(
α · β(t−k2)

n + (1− α) · β(t−1−k2)
n

)
= α · β(t−k2−k1)

n + (1− α) · β(t−1−k2−k1)
n

= `(k1+k2)
n (µ).

Lemma 34. `(k)
n is concave for all n, k ≥ 0.

Proof. `(0)
n is linear, and hence concave, so suppose k ≥ 1. Let fix n, and define ˆ̀(µ) = `

(1)
n (µ) − µ for

µ ∈ [0, 1]. To prove that `(k)
n (µ) is concave over [2−n, 1], it is sufficient to show that ˆ̀(µ) is concave over

[2−n, 1], because:

1. If ˆ̀(µ) is concave, then ˆ̀(µ) + µ = `
(1)
n (µ) is concave as well.

27



2. If `(1)
n (µ) is concave, since it is non-decreasing, by repeated applications of Lemma 9 and Proposi-

tion 33, it follows that `(k)
n is also concave for all k ≥ 1 as well, when we limit the inputs to µ ≥ 2−n.

Therefore, in the following, we only aim to prove that (1) ˆ̀(µ) is concave over [2−n, 1], and (2) the left and
right derivatives of ˆ̀(µ) over µ = 2−n do not violate its concavity.

In the following, we will fix n and k = 1. Because n, k are both fixed, in the rest of the proof of
Lemma 34 we do not represent them explicitly as indexes anymore.

It holds that ˆ̀(β(t)) = OffIso(β(t)) for all t ∈ 〈n〉. Also, for µ ∈ (β(t), β(t−1)) (recall that β(t) < β(t−1))
where µ = αβ(t) + (1− α)β(t−1), we have

ˆ̀(µ) = α`(β(t)) + (1− α)`(β(t−1))− αβ(t) − (1− α)β(t−1)

= αOffIso(β(t)) + (1− α)OffIso(β(t−1)).

Since the curve ˆ̀is linear over every interval µ ∈ [β(t), β(t−1)] for all t ∈ [n+ 1], to prove its concavity,
we only have to compare its left and right derivatives at every β(t), t ∈ [n], where it holds that ˆ̀(β(t)) =
OffIso(β(t)). Hence, for all t ∈ [n], we need to prove the following.

OffIso(β(t))− OffIso(β(t+1))

β(t) − β(t+1)
≥ OffIso(β(t−1))− OffIso(β(t))

β(t−1) − β(t)
(24)

Note that by letting t = n in Inequality (24), we have ˆ̀ is still concave for point 2−n. We first verify
Inequality (24) for extreme cases of t = 1, n. If t = 1, then Inequality (24) holds because

1− n
n

=
OffIso(β(t))− OffIso(β(t+1))

β(t) − β(t+1)
≥ OffIso(β(t−1))− OffIso(β(t))

β(t−1) − β(t)
=

0− 1

1
.

If t = n, a generalization of Inequality 24 for any k holds because∑k
i=0

(
n
i

)
− 0

1− 0
=
`(k)(β(t))− `(k)(β(t+1))

β(t) − β(t+1)
≥ `(k)(β(t−1))− `(k)(β(t))

β(t−1) − β(t)
=

(
n
k+1

)
n

,

which in turn is correct because
∑k

i=0

(
n
i

)
>
(
n
k

)
≥
(
n
k+1

)
/n.

For the intermediate cases, for all t ∈ {n− 1, . . . , 2}, we have to prove:(
n
t−k
)
−
(
n
t

)(
n
t

) =
OffIso(β(t))− OffIso(β(t+1))

β(t) − β(t+1)

≥ OffIso(β(t−1))− OffIso(β(t))

β(t−1) − β(t)
=

(
n
t−2

)
−
(
n
t−1

)(
n
t−1

)
which is equivalent to proving the following true statement

t

n− t+ 1
=

t!(n− t)!
(t− 1)!(n− t+ 1)!

=

(
n
t−1

)(
n
t

) ≥ ( n
t−2

)(
n
t−1

)
=

(t− 1)!(n− t+ 1)!

(t− 2)!(n− t+ 2)!
=

t− 1

n− t+ 2
.
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The main step of the proof of Theorem 26 is to show the following claim.

Claim 35. It holds that `(k)
n ≤ Rec

(k)
n

[
`
(k)
n−1, `

(k−1)
n−1

]
.

Proof. In the following, for simplicity we let Rec = Rec
(k)
n

[
`
(k)
n−1, `

(k−1)
n−1

]
.

Case of exact Hamming ball probabilities. We first prove

∀t ∈ 〈n〉, `(k)
n (β(t)) ≤ Rec(β(t)) (25)

and then will extend the proof of this inequality to an arbitrary µ ∈ 2−n〈2n]. We only need to prove
Inequality 25 for t ∈ [n], because β(n+1)

n = 0, β(0) = 1, and so

`(k)
n (0) = Rec(0) = 0, `(k)

n (1) = Rec(1) = 1.

Recall that `(k)
n

(
β

(t)
n

)
= OffExp

(k)
n

(
β

(t)
n

)
= β

(t−k)
n . Hence, for s = s

(t)
n = β(t) · 2n where t ∈ [n], our

goal is to prove the following
β(t−k)
n ≤ inf

(s0,s1)∈Divn(s)
Rec(s0, s1). (26)

Case studies. Note that β(t)
n 2n = s

(t)
n = s

(t)
n−1 + s

(t−1)
n−1 because of the Pascal equality. Also by the definition

of Divn, we have s0 ≤ s1 and s0 + s1 = s
(t)
n for any choice of (s0, s1) ∈ Divn(s) in the right hand side

of Equation 26. Then, one of the following three cases must hold: (1) s0 = s
(t)
n−1, (2) s0 < s

(t)
n−1, or (3)

s0 > s
(t)
n−1. Hence, we divide our analysis to the same three cases, and then prove that β(t−k)

n ≤ Rec(s0, s1)

holds in all of them. We will also use the Pascal equality in the form of β(t−k)
n = (β

(t−k−1)
n−1 + β

(t−k)
n−1 )/2.

1. s(t)
n−1 = s0 < s1 = s

(t−1)
n−1 . In this case, we have

`
(k)
n−1

( s0

2n−1

)
= `

(k−1)
n−1

( s1

2n−1

)
= β

(t−k)
n−1

which, informally speaking means that, it does not matter if the adversary intervenes to change 0 to 1
when the first bit is fixed to 0. Formally, we have

Rec(s0, s1) = Rec(s
(t)
n−1, s

(t−1)
n−1 )

=
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

=
β

(t−k−1)
n−1 + β

(t−k)
n−1

2
= β(t−k)

n .

2. s(t)
n−1 < s0 ≤ s1 < s

(t−1)
n−1 . Informally speaking, in this case the adversary does not change the bit and
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we use the piece-wise linearity of the ` function on [β
(t)
n−1, β

(t−1)
n−1 ]. More formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k)
n−1

(
s0

2n−1

)
2

=

`
(k)
n−1

(
s
(t−1)
n−1

2n−1

)
+ `

(k)
n−1

(
s
(t)
n−1

2n−1

)
2

(by piece-wise linearity of `(k)
n−1)

= Rec
(
s

(t)
n−1, s

(t−1)
n−1

)
= β(t−k)

n .

3. s0 < s
(t)
n−1 < s

(t−1)
n−1 < s1. Informally speaking, in this case the adversary does change the bit 0 into

1, and we also use the fact that `(k)
n−1 is monotone. More formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k−1)
n−1

(
s1

2n−1

)
2

≥
`
(k)
n−1

(
s
(t−1)
n−1

2n−1

)
+ `

(k−1)
n−1

(
s
(t−1)
n−1

2n−1

)
2

(by monotonicity of `(k)
n−1)

= Rec
(
s

(t)
n−1, s

(t−1)
n−1

)
= β(t−k)

n .

Case of other probabilities. Here we no longer assume that µ = β(t) for some t ∈ [n], and assume
µ = αβ

(t)
n + (1− α)β

(t−1)
n for some t ∈ [n+ 1] and 0 < α < 1. Recall that β(t)2n = s

(t)
n = s

(t)
n−1 + s

(t−1)
n−1

and β(t−1)2n = s
(t−1)
n = s

(t−1)
n−1 + s

(t−2)
n−1 . We define

s′0 = α · s(t)
n−1 + (1− α) · s(t−1)

n−1 , s′1 = α · s(t−1)
n−1 + (1− α) · s(t−2)

n−1 .

By the definition of µ, it holds that µ · 2n = s = s′0 + s′1 because

s′0 + s′1 = α ·
(
s

(t)
n−1 + s

(t−1)
n−1

)
+ (1− α) ·

(
s

(t−1)
n−1 + s

(t−2)
n−1

)
= α · s(t)

n + (1− α) · s(t−1)
n = s.

In general, s′0, s
′
1 are not integers, but intuitively, s′0+s′1 gives the critical way of splitting s into two numbers

at which the replacing and no-replacing strategies give the same bound and we can do the case studies. (In
particular s′0, s

′
1 take the role of s(t)

n−1, s
(t−1)
n−1 when we previously assumed that µ = β(t).)

Useful observations. By the piecewise linearity of `(k)
n−1, `

(k−1)
n−1 we have

`
(k)
n−1

(
s′0

2n−1

)
= α`

(k)
n−1

(
s

(t)
n−1

2n−1

)
+ (1− α)`

(k)
n−1

(
s

(t−1)
n−1

2n−1

)
,
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`
(k)
n−1

(
s′1

2n−1

)
= α`

(k)
n−1

(
s

(t−1)
n−1

2n−1

)
+ (1− α)`

(k)
n−1

(
s

(t−2)
n−1

2n−1

)
,

`
(k−1)
n−1

(
s′1

2n−1

)
= α`

(k−1)
n−1

(
s

(t−1)
n−1

2n−1

)
+ (1− α)`

(k−1)
n−1

(
s

(t−2)
n−1

2n−1

)
,

`
(k)
n−1

(
s

(t)
n−1

2n−1

)
= β

(t−k)
n−1 = `

(k−1)
n−1

(
s

(t−1)
n−1

2n−1

)
,

and `
(k)
n−1

(
s

(t−1)
n−1

2n−1

)
= β

(t−k−1)
n−1 = `

(k−1)
n−1

(
s

(t−2)
n−1

2n−1

)
.

Therefore, we get the following.

`
(k)
n−1

(
s′0

2n−1

)
= `

(k−1)
n−1

(
s′1

2n−1

)
= αβ

(t−k)
n−1 + (1− α)β

(t−k−1)
n−1 , (27)

`
(k)
n−1

(
s′1

2n−1

)
= αβ

(t−k−1)
n−1 + (1− α)β

(t−k−2)
n−1 . (28)

Case studies. We now again partition into three different categories and separately prove that `(k)
n (µ) ≤

Rec(s0, s1) holds for each category.

1. s′0 = s0 < s1 = s′1. In this case, using Equations (27) and (28) we get

Rec(s′0, s
′
1)

=
`
(k)
n−1

(
s′1

2n−1

)
2

+
max

{
`
(k)
n−1

(
s′0

2n−1

)
, `

(k−1)
n−1

(
s′1

2n−1

)}
2

=
α · β(t−k−1)

n−1 + (1− α) · β(t−k−2)
n−1

2
+
α · β(t−k)

n−1 + (1− α) · β(t−k−1)
n−1

2

= α · β(t−k)
n + (1− α) · β(t−k−1)

n

= α · `(k)
n (β(t)) + (1− α) · `(k)

n (β(t−1)) = `(k)
n (µ).

2. s′0 < s0 ≤ s1 < s′1. Informally speaking, in this case the adversary does not tamper and leave the bit
0 unchanged. We will use the fact that `(k)

n−1 is concave, which was proved in Lemma 34. Note that in

the corresponding Case 2 when the probability µ was that of an exact ball (µ = β
(t)
n ) we could have

also used the fact that `(k)
n−1 is concave, but in that case we only used the concavity over a linear part

of `(k)
n−1. However, in our current case, we could no longer only rely on the piecewise linearity of `(k)

n−1
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and we would use its concavity. More formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k)
n−1

(
s0

2n−1

)
2

≥
`
(k)
n−1

(
s′1

2n−1

)
+ `

(k)
n−1

(
s′0

2n−1

)
2

(by concavity of `(k)
n−1)

= Rec(s′0, s
′
1) = `(k)

n (µ).

3. s0 < s′0 < s′1 < s1. Informally speaking, in this case the adversary does change the bit 0 into 1, and
we rely on the monotonicity of `(k)

n−1. More formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k−1)
n−1

(
s1

2n−1

)
2

≥
`
(k)
n−1

(
s′1

2n−1

)
+ `

(k−1)
n−1

(
s′1

2n−1

)
2

(by monotonicity of `(k)
n−1)

= Rec(s′0, s
′
1) = `(k)

n (µ).

Claim 36. `(k)
n ≤ OnExp

(k)
n .

Proof. The proof is by induction on n. The claim hold for n = 0. Using Claim 31 and 35 and induction we
get:

OnExp(k)
n ≥ Rec(k)

n

[
`
(k)
n−1, `

(k−1)
n−1

]
≥ `(k)

n .

Now we can finish the proof of Theorem 26. If µ = β
(t)
n for some t ∈ 〈n〉, it then always holds

that `(k)
n (µ) ≥ OnExp

(k)
n (µ) simply because `(k)

n (µ) describes how much one particular protocol (i.e., τt)
can bound adversary’s power, while OnExp

(k)
n (µ) is equal to the minimum of the same quantity among all

protocols. Therefore, by Claim 36, OnExp
(k)
n

(
β

(t)
n

)
= `

(k)
n

(
β

(t)
n

)
= β

(t−k)
n .

Relaxing the last message to non-binary. Here we discuss an extension to Theorem 26 that follows essen-
tially from the same proof. Theorem 26 shows that online attacks are as powerful as offline attacks when we
focus on protocols with uniform binary messages. Now, suppose we allow the last message of the protocol
to be an arbitrary long message, while every other message is supposed to be a uniform bit. We refer to such
protocols as binary-except-last-message (BELM) protocols. Note that BELM protocols constitute a larger
set of protocols, and hence they potentially could include more robust protocols that further limits the power
of (offline or online) attacks. We observe that, essentially the same proof as that of Theorem 26 shows that
we can strengthen Theorem 26 as follows.
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Theorem 37 (Informally stated: extending Theorem 26 to BELM protocols). Suppose a random process
w≤n = (w1, . . . ,wn) has the property that all the first n − 1 blocks are independent and uniform random
bits, and suppose f is a Boolean function defined over this random process. Suppose Pr[f(w≤n) = 1] =

β
(t)
n for some t ∈ [n]. Then, there is an online k-replacing adversary over u≤n that generates joint random

process (u≤n,v≤n) with v≤n being the output process, such that Pr[f(w≤n) = 1] ≥ β(t−k)
n . Note that this

is optimal in a strong sense: there is a fully binary protocol (i.e., the threshold function τt) for which even
offline k-replacing adversaries are limited to achieve offline expansion at most β(t−k)

n .

Proof Sketch. The proof of the above improved variant of Theorem 26 relies on two observations. One of
them is the basis of the induction, when n = 1, and the other one is the improved induction step which
follows from the improve variant of Claim 35 as explained below.

Relaxing transformation of Definition 28. Claim 35 was the heart of the proof of Theorem 26. In this
claim, we deal with the recursion of Eq. (23) which is defined by splitting integer s into smaller integers,
computing some recursive expansions and taking the minimum. It is easy to see that Claim 35 holds even if
we relax the way we split s into smaller quantities and pick such pairs as real values

D̃ivn−1(s) =
{

(s0, s1) | s0, s1 ∈ R, 0 ≤ s0 ≤ s1 ≤ 2n−1, s = s0 + s1

}
.

In particular, let R̃ec
[k]

n be the similar transformation using this relaxed variant D̃ivn−1(s) instead. First,

note that by this relaxation instead, we might end up getting smaller expansions; namely, R̃ec
(k)

n ≤ Rec
(k)
n .

Yet, the same proof shows that Claim 35 holds even if we use R̃ec
(k)

n instead of Rec
(k)
n . Moreover, in

(both variants of) Case 1, it is now always possible to achieve the equality using some pair in D̃ivn−1(s).
Therefore, this time we obtain a slightly stronger statement than that of Claim 35 for BELM protocols as
follows.

Claim 38 (Variant of Claim 35 for BELM protocols). `(k)
n = R̃ec

(k)

n [`
(k)
n−1, `

(k−1)
n−1 ].

The proof of the claim above is identical to that of Claim 35.

4.1 Making the attack run in polynomial time

In this subsection, we describe how using more ideas, one can extend the attacks of Section 4 to run in
polynomial time.

Theorem 39 (Polynomial-time variant of Theorem 26). For all n ∈ N, k ≤ t, let `(k)
n (·) (see Definition 32)

be the lower bound of the online expansion achieved by the attack of Theorem 26. Then, there is an online
k-replacing adversary A who, for every ε, µ ∈ (0, 1), runs in time poly(log(1/δ)n/ε) and achieves the
following: with probability 1− δ over the randomness r of A, if we fix r we get the following

OnExp(A)
n (µ) ≥ `(k)

n (µ− ε).

Before proving Theorem 39 we derive some corollaries.
Theorem 39 above shows that a polynomial time adversary can get essentially the same lower bound on

the online k-expansion probability, but the lower bound is applied to µ − ε rather than µ. Hence, one can
hope to get arbitrarily close to `(k)

n (µ), if the derivative of `(k)
n (µ) is bounded around µ. In particular, one

might hope to prove this when µ is not too small. (This is inherent, as µ could be exponentially small, in
which case a polynomial-time adversary might have no way to find any point x ← Un that falls into the
target set S (or equivalently f(x) = 1 when f is the characteristic function of S).
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Lemma 40 (Bound on derivative of the lower bound function). Let k ≤ n, t ∈ [n + 1], and µ ∈
(β

(k)
n (t), β

(k)
n (t − 1)). Then, for any µ′ ≥ µ − ε, it holds that `(k)

n (µ′) ≥ `
(k)
n (µ) − ε/µ. (In particu-

lar, the left derivative of `(k)
n at µ is at most 1/µ.)

Proof. In fact, a stronger condition holds: `(k)
n (µ′) ≥ `

(k)
n (µ) · (1 − ε/µ). We will only use that (1) `(k)

n (·)
is concave (by Lemma 34), (2) `(k)

n (0) = 0, and that (3) `(k)
n (µ) ≤ 1.

Suppose we connect the origin (0, 0) to (µ, `
(k)
n (0)) and denotes this line segment as curve e. It holds

that e ≤ c, where c is the curve `(k)
n (α) for α ∈ [0, µ], because c is concave. Furthermore, the left derivative

of the curve c at µ would be upper bounded by the derivative of line e at µ. Because `(k)
n (0) = 0 and that

`
(k)
n (µ) ≤ 1, the derivative of curve e is `(k)

n (µ)/µ. Moreover, since the curve e is below c, it holds that

`(k)
n (µ′) ≥ e(µ′) ≥ e(µ− ε) = `(k)

n (µ) · (1− ε/µ).

Theorem 39 and Lemma 40 imply the following corollary.

Corollary 41. In the same setting of Theorem 39, there is an adversary A who also gets µ as input, runs in
time poly(log(1/δ)n/(µε)) and achieves the following for all µ ∈ [0, 1]. With probability 1 − δ over the
randomness r of A, if we fix r, it holds that:

OnExp(A)
n (µ) ≥ `(k)

n (µ)− ε.

Proof. By Lemma 40, if µ′ ≥ µ− ε′, for ε′ = ε ·µ, it implies that `(k)
n (µ′) ≥ `(k)

n (µ)− ε′/µ = `
(k)
n (µ)− ε.

So, to obtain the attack of Corollary 41 with parameter ε, all we need to do is to run the adversary of
Theorem 39 with parameter ε′ equal to ε ·µ. This leads to running time poly(log(1/δ)n/(εµ)) as well.

In the rest of this subsection, we prove Theorem 39. At a high level, the polynomial time attack follows
the following ideas. Note that we already have established in Theorem 26 that `(k)

n is a lower bound on
the expansion of optimal information theoretic k-replacing attacks. So, we use this in our polynomial time
attacks. We will use `(k)

n as the guaranteed bound in our decision to change or not to change a bit during the
attack. Then, we will use Claim 35 and Claim 29 as black-box and show that the attack still achieves what
we want. One big catch is that we do not have access to the true partial averages of a prefix during the attack.
We will only use approximate valued, and show that they still lead to reasonable bounds, by induction.

Construction 42 (Polynomial k-replacing attack Ak on uniform bit messages). This attack uses the additive
ε′-approximate oracle f̃(·), so that for all u≤i ∈ {0, 1}i, it holds that f̃(u≤i) ∈ f̄(u≤i)± ε′.

Given a state σi = (u≤i, v≤i) where u≤i are the original values, v≤i are the output values under attack ,
and ui+1 is sampled uniformly at random from {0, 1}, the algorithm A at time i+ 1 decides whether to keep
or to replace ui+1. Let d = HD(u≤i, v≤i) be the number of replacements already made to the sequence.

• (Case 0) If d ≥ k, do not change ui+1 and output vi+1 = ui+1.

• (Case 1) if Case 0 does not happen and

`(k−d)
(
f̃(v≤i, ui+1)− ε′ · (2(n− i)− 1)

)
< `(k−1−d)

(
f̃(v≤i, ūi+1)− ε′ · (2(n− i)− 1)

)
,

make a replacement and output vi+1 = ūi+1.
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• (Case 2) If Cases 0 and 1 do not happen, do not change ui+1 and output vi+1 = ui+1.

Here, ūi+1 = 1− ui+1 is the complement of ui+1.

We then use the adversary A in Construction 42 to prove Theorem 39.

Proof of Theorem 39. We prove OnExp
(Ak)
n (µ) ≥ `(k)

n (µ−ε′ ·2n) (i.e., the online expansion of adversary A
in Construction 42 holds) by performing induction on n and k, where µ = f(v≤i) is the current expansion
with no adversary. Then by letting ε′ = ε/2n, we obtain Theorem 39.

For the base case, no attack can possibly happen when k = 0, which indicates `(0)
n (µ) = `

(A0)
n (µ) = µ.

Similarly for n = 0, `(k)
0 (µ) = `

(Ak)
0 (µ) = µ. Therefore, OnExp

(Ak)
n (µ) ≥ `(k)

n (µ− ε′ · 2n) holds for n = 0
and k = 0.

Now, consider the adversary A has total budget k′ on a sequence of n′ uniform bits, and has state σi =
(u≤i, v≤i) and a new bit ui+1. Let k = k′−HD(u≤i, v≤i) be the remaining budget of A, and n = n′−i be the
number of random variables left to sample. Now, let µ0 = f̄(v≤i, 0) be the expected value when vi+1 = 0,
and µ1 = f̄(v≤i, 1) be the expected value when vi+1 = 1. Note that A only has access to f̃(·) instead of f̄(·).
We then let µ̃0 = f̃(v≤i, 0) and µ̃1 = f̃(v≤i, 1). By the induction hypothesis, we have OnExp

(Ak)
n (µ0) ≥

`
(k)
n (µ0 − ε′ · 2(n− 1)) ≥ `

(k)
n (µ̃0 − ε′ · (2n− 1)) and OnExp

(Ak)
n (µ1) ≥ `

(k)
n (µ1 − ε′ · 2(n− 1)) ≥

`
(k)
n (µ̃1 − ε′ · (2n− 1)). Similarly, we have OnExp

(Ak−1)
n (µ0) ≥ `(k−1)

n (µ̃0 − ε′ · (2n− 1)) and
OnExp

(Ak−1)
n (µ1) ≥ `(k−1)

n (µ̃1 − ε′ · (2n− 1)).
Finally, by applying Claim 35 and Claim 29, we have

OnExp(Ak)
n (µ) = Rec(k)

n [OnExp
(Ak)
n−1 ,OnExp

(Ak−1)
n−1 ](µ)

(by Definition 28) ≥ Rec(k)
n [OnExp

(Ak)
n−1 ,OnExp

(Ak−1)
n−1 ](µ0, µ1)

(by Claim 29) ≥ Rec(k)
n [`

(k)
n−1, `

(k−1)
n−1 ]

(
µ̃0 − ε′ · (2n− 1), µ̃1 − ε′ · (2n− 1)

)
(by Claim 35) ≥ `(k)

n

(
µ̃0 + µ̃1

2
− ε′ · (2n− 1)

)
≥ `(k)

n

(
µ0 − ε′ + µ1 − ε′

2
− ε′ · (2n− 1)

)
= `(k)

n

(
µ− ε′ · 2n

)
.
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A Applications

In this section, we provide more details for applications of our main results of Theorem 1 and 15.

A.1 Targeted poisoning attacks on learners

Let L be a learning algorithm that gets a data set S and produces a model θ. A data poisoning at-
tack [BNS+06] is one that aims to damage θ (this can be modeled in many different ways) through minimal
changes to S. Now, let P1, . . . , Pn be n parties that, perhaps interactively, share their (training) data sets
S1, . . . ,Sn one by one in n rounds, and at the end a central algorithm L deterministically produces a model
θ based on S = {S1, . . . ,Sn}. Let b = 1 if some bad Boolean property holds over θ (e.g., failing to correctly
classify a particular point x, leading to a targeted poisoning attack [BNS+06, STS16], or have certain level
of overall risk). Then, if Pr[b = 1] = µ holds before any attacks (in this case µ can be a small value to begin
with, something like 0.01 or 1/n), then our targeted attack can increase Pr[b = 1] (i.e., that the bad property
B holds over θ) by at least Ω(k · µ/

√
n) while changing the messages of k = O(

√
n) of the parties.

One key feature of the above attack is that, similarly to the works of [MM17, MDM18, SHN+18,
MDM19, MM19], it only uses so-called “clean labels” in its poison data, simply because the adversary
never steps outside the support set of the messages supported by the random process of the coin tossing
protocol. Also, since our attack is polynomial-time, it can even rule out the possibility of achieving com-
putational robustness by relying on computational intractability assumptions. As a special case (when we
combine the parties into a single party), the same argument above can be applied to the single party learning
systems as well, in which our attacker can change k/

√
n of the examples of a single learning deterministic

algorithm and increase the probability of any bad even B from µ to µ + Ω(k · µ/
√
n). More formally, we

obtain the following theorem as a corollary.

Theorem 43 (Clean-label targeted poisoning with few tamperings on any learner). Let X be an input space,
Y a label space, L a deterministic learning algorithm, H the hypothesis space (i.e., L produces a function
in H), D a distribution over trained examples X × Y , m ∈ N a sample complexity bound. Suppose the
training data S is partitioned into n subsets S = ∪Si which are generated in n rounds, aggregated and then
fed to the learner L. Suppose k < n the budget of the poisoning adversary. Suppose, for some predicate B,
the probability of L outputting a function that satisfies B is at least µ:

Pr
S←Dn,h=L(S)

[h ∈ B] ≥ µ

Then there is an online adversary A who get to see the training examples in S one by one, and then changes at
most k of the examples, and increase the probability of h having property B by at least Ω(k/

√
n). Moreover,

if B is PPT testable, given oracle access to samples from D, the attack can be implemented in polynomial.

The proof of the theorem above is immediate, once we interpret the i’th training subset as the message
wi, output 1 if h ∈ B, and apply our k-replacing attack of Theorem 15. In particular, the sampling oracle
for D will allow A to do random continuations of the random process, and the polynomial-time testability
of B allows A to have an oracle access to the Boolean function determining the “output bit”.

Related work on poisoning attacks. The connection between targeted poisoning attacks and their connection
to adaptive coin tossing was studied previously in [MM19, MDM19]. However, all the previous attacks
require at least O(

√
n) number of corrupting to get meaningful bounds. Prior to that, the work of [MDM18,

MMM19] also studied the effect of static coin tossing attacks on machine learning protocols. Importantly,
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similar to our result, the attack of [MM19, EMM20, MMM19, MDM18] also run in polynomial time given
access to a data sampler and the training algorithm. Another line of work that tackles with computational
aspects of robust machine learning, started with the exciting works of [DKK+16, LRV16] that shows how
to deal with outliers for certain statistical tasks, and importantly do so in polynomial time. The distinction
of our work with this line of work on robust statistics is that we care about computational aspects of the
“attacker” while they care about making the learning algorithms polynomial time.

A.2 Computational isoperimetry in product spaces

Consider a random variable w≤n consisting of n independently sampled random variables (w1×· · ·×wn) ≡
w≤n, and let (w≤n,HD) be the n-dimensional metric probability space in which HD be the Hamming
distance between any two w≤n = (w1, . . . , wn) and w′≤n = (w′1, . . . , w

′
n), defined as HD(w≤n, w

′
≤n) =

| {i | wi 6= w′i} |. Then, a basic question about such spaces is how quickly events will expand. Namely,
let E ⊆ Supp(w≤n) be an event of measure µ, and let Ek = {w≤n | ∃ v≤n ∈ E ,HD(w≤n, v≤n) ≤ k} be
its k expansion. How big is the probability of Ek based on n, µ? Concentration of measure in product
spaces [Tal95] state that the probability of Ek quickly converges to ≈ 1 for k ≈

√
n (ignoring logarithmic

terms) as long as µ ≥ 1/ poly(n). Such results are tightly related to isoperimetric inequalities in such
spaces [Tal95] in which only a lower bound on the “boundary” of the set E is proved. In the discrete setting,
the boundary simply becomes the same as E1 \ E , and lower bounding its measure becomes a special case
of measure concentration for small k = o(

√
n), which here we refer to as shallow expansions. Mahloujifar

and Mahmoody [MM19] introduced a computational variant of the measure concentration phenomenon
(and its related notion of isoperimetric inequalities) in which one is interested in mapping a sampled point
w≤n ← w≤n to a k-close point in E efficiently.

The previous works of [MM19,EMM20] already showed that once k > Ω(
√
n), then almost all the mea-

sure of w≤n is computationally concentrated around any event E of measure at least 1/ poly(n), matching
the information theoretic results of [Tal95] up to a constant factor. However, the results of [MM19,EMM20]
do not say anything about the “shallow depth” surfaces around E , e.g., when k = 1.

A direct corollary of our Theorem 1 implies such computational concentration for small k, including
computational (lower bounds on the) isoperimetry of E as special case. This can be observed by designing
a protocol in which the ith party samples wi ← w, broadcasts it in round i, and b = 1 if w≤n ∈ E . Then,
a k-replacing adversary that increases the probability of E by efficiently changing the messages of k parties
simply gives a method of mapping µ + Ω(µk/

√
n) measure of w≤n into E by changing them in at most k

coordinates, proving a computational isoperimetric inequality for such metric probability spaces (i.e., case
of k = 1) and more generally computational concentration for shallow (k = o(

√
n)) expansions. One might

wonder that when k = O(1) one can obtain computational (polynomial time) concentration trivially by
trying all possible ways to change k blocks and see if we will fall into the target set E . We emphasize that
this only works in the offline setting (in which the adversary gets to see the full sequence before changing
k bits of it) and only when the support set of wi is of polynomial size. Therefore, making such algorithms
online or polynomial time are both nontrivial when the support set of wi is large.

More formally, we obtain the following theorem as a corollary to Theorem 15.

Theorem 44 (Computational isoperimetry in product spaces). Let w≤n ≡ w1 × · · · ×wn be any product
probability space of dimension n, and let HD(·, ·) be the Hamming distance of dimension n defined over
Supp(w≤n). We call an algorithm A k-replacing, if given any u≤n ← w≤n maps it to some v≤n such that
HD(u≤n, v≤n) ≤ k (the mapped instance could be u≤n itself). Then, there is a PPT k-replacing algorithm
A such that, given oracle access to membership queries to any set S ⊆ Supp(w≤n) of measure at least
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µ ≤ 1−Ω(1) (according to w≤n) it holds that, A runs in time poly(N/µ), where N is the bit length of any
w≤n ∈ Supp(w≤n), and it holds that:

Pr
u≤n←w≤n

[
Aw≤n[·],S(u≤n) ∈ S

]
≥ µ+ Ω(µ · k/

√
n).

Also, we note that if we remove the PPT condition, the existence of such A is equivalent to lower
bounds on the measure of k-expansions of sets of probability µ in product spaces under Hamming distance.
For k = 1, this notion exactly captures the isoperimetric inequality.

For the special case that w≤n is the uniform distribution over {0, 1}n, Theorem 39 gives a tight compu-
tational isoperimetric inequality for the Boolean hypercube.

B Improved online attacks through recursive composition

In this section, we study how much one can improve the biasing bounds proved in Section 3 using information-
theoretic (i.e., computationally unbounded) attacks while the attack is still online. Note that if the attacks
are off-line and computationally unbounded, then the problem becomes equivalent to proving concentra-
tion bounds (or isoperimetric inequalities) for product spaces under Hamming distance. In other words, by
putting the computational aspects aside, we focus on finding lower bounds on the online isoperimetry in
product spaces (or more generally, of random processes) under Hamming distance.

In summary, the our approach is as follows. We observe that any 1-replacing targeted attack can be
used in a recursive way to improve the bias using more corruptions. Then we will apply this idea to our 1-
corruption attack of Construction 10 by optimizing the choice of λ based on n, µ, which leads to a recursive
attack with a better bias than that of Theorem 15, because we can indeed choose λi’s differently for different
i. On the down side, because this attack is recursive, its running time will not be polynomial if k = ω(1).

Theorem 45 (Recursively composing attacks). Suppose A is an 1-replacing targeted attack such that for
every protocol with expected output at least ≥ µ before the attack, its expected output after the attack will
be at least µ′ = g(µ) ≥ µ. Then, there is a k-replacing attack IndAk that increases the bias of any protocol
from at least µ to at least g(k)(µ) where g(k)(·) means applying g k times. This result is general, as it applies
to both online and offline attacks.

Proof. The key assumption in Theorem 45 is that it uses a targeted attack, and it uniformly applies to
both offline and online attacks. However, we state the proof for the case of single-turn online attacks. We
prove the theorem by induction on k. The basis of the induction by k is trivially true. Now suppose we
have a k-tampering adversary IndAk−1 who is attacking the random process w≤n and generates the joint
processes (u≤n,v≤n) as a result. A crucial property of such attacks, which we will use, is that Supp(v≤n) ⊆
Supp(w≤n). Now, define the random process w′≤n = (w′1, . . . ,w

′
n) as w′i = (ui, vi). Namely, w≤n

contains pairs that are sampled according to the joint process (u≤n,v≤n). We write (u≤n, v≤n)← w′≤n to
denote the sampling of ((u1, v1), . . . , (un, vn)) from w≤n.

By the induction hypothesis we have Pr(u≤n,v≤n)←w′≤n
[HD(u≤n, v≤n) ≤ k − 1] = 1. In other words,

for all (u≤n, v≤n) ∈ Supp(w′≤n) it holds that HD(u≤n, v≤n) ≤ k − 1. We also define f(w′1, . . . , w
′
n) =

f(v1, . . . , vn), which simply means the function is effectively applied to the (finalized values) v1, . . . , vn.
Now, we apply the 1-replacing attack A to the random process w′≤n according to function f . Note that

this is different from applying the attack to (v1, . . . , vn), as this process has even different alphabet size. Let
(u′≤n,v

′
≤n) be the resulting joint processes, where u′≤n captures the initial samples from w′≤n, and v′≤n

captures the finalized values. (Note that each u′i, as well as each v′i, is a pair.)
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Now, we see how the combination of IndAk−1 and A, which we call IndAk, can be interpreted as an
attack on the original random process w≤n. Let u′i = (ai, bi) and v′i = (ci, di). Then in each step (ai, bi)
is sampled first conditioned on v′1, . . . , v

′
i−1. This means ai is first sampled from (wi | w≤i−1 = d≤i−1) ,

then the IndAk−1 generates bi, and then A takes u′i and generates v′i = (ci, di). Therefore, we can interpret
ai as the original sample for the ith block (before the attack), and di as the resulting finalized value after the
attacker IndAk intervenes.

We need to prove two things about the attack Ak+1: its achieved bias and the budget.

Bias of IndAk: By induction we have E[f(w′≤n)] ≥ g(k−1)(µ). Furthermore, by the property of A, we have
the expected output under the attack IndAk to satisfy

E[f(d≤n)] = E[f(v′≤n)] ≥ g(g(k−1)(µ)) = g(k)(µ).

Budget of Ak+1: We first note that because our replacing attacks (in this IndAk−1) always stay in the sup-
port set of the original random process, therefore Supp(v′≤n) ⊆ Supp(w′≤n). Therefore, for all sampled
(c≤n, d≤n)← v′≤n, it holds that HD(c≤n, d≤n) ≤ k− 1. Furthermore, by applying the same property to A,
we conclude that HD(u′≤n, v

′
≤n) ≤ 1. By these two, we conclude that HD(a≤n, d≤n) ≤ k.

Remark 46 (Running time of recursive attacks). If the original targeted 1-replacing attack A runs in poly-
nomial time, then the recursive k-replacing attack IndAk (of depth/budget k) also can be implemented in
polynomial time as long as k = O(1). The reason is that any recursive algorithm of constant depth, with
a polynomial time base case, runs in polynomial time. However, for k = ω(1), the running time of such
attacks become super-polynomial time, and can only be used as an information-theoretic attack.

The following lemma follows as a direct special case of Theorem 15.

Lemma 47 (Targeted 1-tampering attacks). Let k = 1 in Construction 10. Then we have

µ1 − µ ≥ (1− µ− e
−2µ2

nλ21 ) · λ1.

We can now use the 1-replacing attack of Lemma 47 by optimizing λ1 based on µ, n. We first show how
to find a closed-form formula for an optimized attack that improves the bound of Theorem 15.

Theorem 48 (Optimized recursive attack). Let µi be the average of process when in the ith stage of the

inductive attack. Also let c = mini∈[k] 1− e
−2µ2i−1

nλ2
i . We then have

µk ≥ µ+ (1−
k∏
i=1

(1− λi))(c− µ).

In particular, (by setting λi = µi−1/
√
n) we obtain

µk ≥ µ+

(
1−

(
1− 1− e−2

√
n

+
(1− e−2 − µ)

(
1− (1− µ/

√
n)k
)

kµ

)k)
· (1− e−2 − µ).

Remark 49. Note that one can show that the first bound of Theorem 48 is always better than the bound of

Theorem 15. The reason is that µi is increasing and for all i we have 1− e
− µ2i
λ2
i
·n ≥ 1− e

− µ2

λ2
i
·n .
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Proof of Theorem 48. Let µk to be the bias of the recursive application of the attack according to Theo-
rem 45 with k recursions, when using λi in the ith stage of the recursion. We inductively prove that

c− µk ≤ (c− µ)
k∏
i=1

(1− λi).

Define g(µ, λ) to be the minimum expectation of the 1-replacing attack with parameter λ when applied
to a random process with average µ. By Lemma 47 we have

g(µ, λ) ≥ µ+ (c− µ)λ

Therefore, by Theorem 45 we know that the minimum bias of the recursive algorithm with k replacements
is at least uk = gk(µ, λ≤k). Now we inductively show that (c−µk) ≤ (c−µ)

∏k
i=1(1−λk). By definition

of g, for any i we have c− µi ≤ c− g(µi−1, λi) ≤ (c− µi−1)(1− λi). Therefore, by setting i = 1, we get
the base of induction. For i > 1 we using induction hypothesis we get c − g(µi) ≤ (c − µi−1)(1 − λi) ≤
(c− µ)

∏i
j=1(1− λi) which proves the hypothesis. Therefore, we have

µk ≥ µ+ (1−
k∏
i=1

(1− λi))(c− µ)

which finishes the first part of theorem. Now we will analyze this bound to get the closed form (part two of
theorem). We first set each λi = µi−1/

√
n which implies

µk ≥ µ+ (1−
k∏
i=1

(1− λi))(1− e−2 − µ).

A relax approximation of this bound could be to replace all λis with λ1 here, but doing this approximation
at this stage would be sub-optimal. define ti = 1− e−2 − ui. We first use the AM-GM inequality to get

tk/t0 ≤
k∏
i=1

(1− λi) ≤ (1− (

k∑
i=1

λi)/k)k. (29)

We need to bound
∑k

i=1 λi from bellow. We have

k∑
i=1

λi =

k−1∑
i=0

(1− e−2 − ti)/
√
n = k(1− e−2)/

√
n−

k−1∑
i=0

ti/
√
n. (30)

Only now, we use the trick of replacing λi with λ1. Note that ti is always smaller than the geometric series
Yi = Yi−1 · (1− λ1) with Y0 = t0, as λis are increasing. Therefore we can upper bound

∑k
i=1 ti with sum

of series
∑k

i=1 Yi which is

k∑
i=1

Yi = Y0(1− (1− λ1)k)/λ1 = t0(1− (1− λ1)k)/λ1 ≤ t0/λ1.
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By replacing this in (30), we get

k∑
i=1

λi =

k∑
i=1

(1− e−2 − ti)/
√
n ≥ k((1− e−2)/

√
n− (1− (1− λ1)k) · t0/µ, (31)

which together with (29) they imply

tk/t0 ≤
(

1− 1− e−2

√
n

+
t0
(
1− (1− λ1)k

)
k(1− e−2 − t0)

)k
.

Therefore, we have

µk ≥ µ+

(
1−

(
1− 1− e−2

√
n

+
(1− e−2 − µ)

(
1− (1− λ1)k

)
kµ

)k)
· (1− e−2 − µ).

Optimization without a closed-form formula. This bound of Theorem 48 still suffers from the fact that by
increasing k, the final expected value still reaches 1− e2 rather than 1. However, if λ is indeed optimized in
each iteration of the recursive attack, then the expected output approaches 1. For that, λi, µi are inductively
defined as follows. We let µ0 = µ, and then for i ≥ 1,

λi = argmax
λ

(1− µi−1 − e
−2µ2i−1

nλ2 ) · λ, and µi = µi−1 + (1− µi−1 − e
−2µ2i−1

nλ2
i ) · λi.

C Targeted biasing attacks from martingale gap finders

In Section B, we showed that finding 1-replacing attacks are essentially all we need for obtaining information
theoretic k-replacing attacks. The work of Cleve and Impagliazzo [CI93] showed how to obtain 1-replacing
non-targeted attacks using a general argument about Doob martingales. In particular, they showed that
for any n-step martingale in which the final value is in {0, 1}, with Ω(1) probability there is a step in the
martingale with jump at least Ω(1/

√
n). We refer to the latter as finding gaps in Doob martingales.

In this section, we show a reduction from targeted attacks on coin flipping protocols to the task of finding
gaps in their corresponding Doob martingale. This shows that the result of Cleve and Impagliazzo can also
be used to obtain targeted 1-replacing attacks with bias Ω(1/

√
n). Note that, their result is only proved for

almost unbiased final bits in which both {0, 1} happen with probability Ω(1). Therefore, we cannot use their
result to recover the results of Section B, however if one wants to get an attack of budget 1, as we show in
this section their gap-finding argument would be useful and relevant.

We first define the notion of a “stopping” adversary who simply stops a random process.

Definition 50 (Online stopping). Let w≤n ≡ (w1, . . . ,wn) be a sequence of jointly distributed random
variables, and let w[w≤i−1] be the online sampler for w≤n for all i ∈ [n] and allw≤i−1 ∈ Supp(w≤i−1). We
call a (potentially randomized) algorithm Stop an online stopping algorithm for w≤n, if for any randomness
r for Stop the following holds:

• Stopr(w≤i) ∈ {0, 1} for any x≤i, where outputting 1 is interpreted as “stop”.
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• If Stopr(w≤i) = 1, then Stopr(w≤j) = 1 for any w≤j where j ≥ i. Namely, if Stop announces that
stop has happened at moment i, then it will say so afterwards.

• If Stopr(w≤n) = 1 for w≤n = (w1, . . . , wn), then we let StopTimer(w≤n) = i if i ∈ [n] is the
smallest number such that Stop(w≤i) = 1. If Stop(w≤n) = 0, we let StopTimer(w≤n) = n + 1.
By τ ← StopTime(w≤n), we denote the random process of sampling w≤n ← w≤n, choosing r at
random, and letting τ = StopTimer(w≤n).

Definition 51 (Gap finders for martingales). Let w≤n ≡ (w1, . . . ,wn) be a martingale, and extend it by
definingw0 = E[w1], wn+1 = wn. We call an online stopping algorithm Stop for w≤n a (ρ, α) gap finder if
with probability at least ρ over w≤n ← w≤n and the randomness r for Stop it holds that |wτ −wτ−1| ≥ α,
where τ = StopTimer(w≤n). Namely, with probability at least ρ, the stop time chosen by Stop shows a
jump of at least α. We simply call Stop a α gap finder if Ew≤n←w≤n,r[|wτ − wτ−1|] ≥ α.

We now recall two results proved about gap finders.

Theorem 52 (Gap finders for martingales). Let w≤n be an n-step Martingale such that w0 = E[w1] = µ.
Then, the following holds:

• [CI93] There exists an (Ω(µ),Ω(µ/
√
n)) gap finder for w≤n.

• [KMM19] There exists an α gap finder for w≤n, where α = 2µ(1− µ)/
√

2n− 1.

The first part is proved in [CI93] for µ = 1/2, but the same proof carries over for an arbitrary µ with
the bound stated in Theorem 52. The two results of Theorem 52 are incomparable, but if one ignores the
constants, then the first part implies the second part when µ = Ω(1).

From gap finders to non-targeted attacks. In [CI93, KMM19] it was shown how to obtain non-targeted
attacks from gap finders. In particular, (ρ, α) (resp. α) gap finders can be used to obtain non-targeted with
bias Ω(ρα) [CI93] (resp. Ω(α) [KMM19]). The idea is quite simple: a (ρ, α) gap finder either achieves
positive gaps of α with probability at least ρ/2 or they achieve negative gaps of α with probability at
least ρ/2. In the former case, the adversary can wait for a moment when +α jump is about to happen (with
nonzero probability) in which case it corrupts the sender of the message and sends the message that achieves
this jump. If the latter case happens, the adversary can wait for an jump of magnitude −α and then it will
corrupt the party and resets its message. The same trick can be applied to α gap finders as well. This left
open whether gap finders can be used to obtain targeted biasing attacks.

From gap finders to targeted attacks. In this section, we show how to obtain targeted attacks using (ρ, α)
gap finders. We do not know how to find (expected) α gap finders for this purpose. This means we cannot
use the result of [KMM19] (see Theorem 52). In particular, we show how to obtain targeted bias Ω(ρα)
using any (ρ, α) gap finder Unfortunately, the bound of the (ρ, α) gap finder of [CI93] degrades with µ,
which means we cannot use their result to obtain an asymptotically similar result to that of our Lemma 47.
This motivates the following question, which as far as we know is open.

Open question about asymptotically optimal (ρ, α) gap finders. Let w≤n be an n-step Martingale such
that E[w1] = µ ≤ 0.5. Then, can one always obtain an (ρ, α) gap finder for w≤n such that ρα = Ω(µ/

√
n)?

A positive answer to the following question above would have allowed us to use the derived targeted
attack instead of our Lemma 47 and obtain (information-theoretic) k-replacing attacks through recursive
compositing, as stated in Section B.

We now describe our construction of 1-replacing targeted adversaries based on (ρ, α) gap finders.
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Theorem 53 (Targeted 1-replacing attacks from (ρ, α) gap finders). Suppose Stop is an online stopping
algorithm for the random process w≤n. Suppose f is a Boolean function defined over Supp(w≤n) and
that Stop is a (ρ, α) gap finder for Doob martingale

(
f̄(w≤i)

)
i∈[n]

. Then, given oracle access to Stop

and f̄(·), there is an efficient 1-replacing algorithm AStop(·),f̄(·) that transforms w≤n into v≤n such that
E[f(v≤n)] ≥ E[f(w≤n)] + Ω(αρ).

To prove Theorem 53, we construct two 1-replacing algorithms. We show that for every random process,
one of the 1-replacing algorithms will bias the output by Ω(αρ).

Construction 54 (Targeted 1-replacing attacks using negative gap finders). Given a prefix v≤i−1 that is
the output of previous steps of the algorithm and a candidate sample wi and a Boolean variable Abort that
indicates whether the algorithm has aborted or not, let Stop(v≤i−1, wi) denote the output of Stop algorithm.
Initialize Abort = 0 for i = 1. StopA−1 at time i decides whether to change or not change wi as follows.

• (Case 0) If Abort = 1, leaves with vi = wi.

• (Case 1) If Case 0 does not happen, suppose Stop(v≤i−1, wi) and f̄(v≤i−1) ≥ f̄(v≤i−1, wi), then
StopA−1 will replace and return a randomly sample vi ← (wi | w≤i−1 = v≤i−1) and set Abort = 1.

• (Case 2) If both Case 0 and Case 1 do not happen, leave with vi = wi.

Construction 55 (Targeted 1-replacing attacks using positive gap finders). This is identical to Construc-
tion 54, with the only difference being in Case 1:

• (Case 1) if Case 0 does not happen, the algorithm randomly samples a vi ← (wi | w≤i−1 = v≤i−1).
If Stop(v≤i−1, vi) and f̄(v≤i−1) < f̄(v≤i−1, vi), then StopA+

1 will replacewi with vi. Set Abort = 1.

We prove either Construction 54 or the Construction 55 can increase the output bit by at least Ω(αρ).

Claim 56. Suppose Stop is an (ρ, α) gap finder for random process w≤n, where µ = E[f(w≤n)]. Given
oracle access to Stop and f̄(·), either Construction 54 or Construction 55 will transform w≤n to v≤n such
that E[f(v≤n)] ≥ αρ

4 + µ with only 1 replacement.

Proof. We start by showing every replacement increases the expectation of f̄(v≤i)

• For any Case-1 replacement in Construction 54, we have E[f̄(v≤i)] = f̄(v≤i−1) ≥ f̄(v≤i−1, wi).
Also, E[f̄(v≤i)] increases by f̄(v≤i−1)− f̄(v≤i−1, wi) ≥ α.

• For any replacement made by Case 1 in Construction 55, we have f̄(v≤i) > f̄(v≤i−1). For the prefix
v≤i−1, E[f̄(v≤i)] increase by f̄(v≤i)− f̄(v≤i−1) ≥ α.

Let S(u≤i−1, ui) be a Boolean function that is True when the gap finder Stop returns the gap on the prefix
u≤i−1 and sample ui. By definition, we have the following Eu≤n←w≤n [

∑n
i=1 S(u≤i−1, ui)] ≥ ρ. A gap

can either be positive or negative. Let

ρ1 = E
u≤n←w≤n

[
n∑
i=1

S(u≤i−1, ui) ∧
(
f̄(u≤i−1) ≥ f̄(u≤i−1, ui)

)]
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be the probability of the negative gap and

ρ2 = E
u≤n←w≤n

[
n∑
i=1

S(u≤i−1, ui) ∧
(
f̄(u≤i−1) < f̄(u≤i−1, ui)

)]
be the probability of the positive gap. Then by definition we have ρ1 + ρ2 ≥ ρ. Therefore, either ρ1 ≥ ρ

2 or
ρ2 ≥ ρ

2 . We discuss these two cases separately.

Assuming ρ1 ≥ ρ
2 : In this case we prove StopA−1 achieves the gain of at least αρ

2 . Let Boolean variable
C(v≤i, u) denote the attack StopA−1 is performed on prefix v≤i with sample u (Case 1 in Construction 54).
We have

C(v≤i, u) =⇒ S(v≤i, u) ∧
(
f̄(v≤i) ≥ f̄(v≤i, u)

)
. (32)

by the definition of Construction 54. Also, if S(v≤i, u) is True, by the definition of Stop we have ∀j <
i, S(v≤j , vj+1) = False, which indicates Construction 54 won’t abort at the prefix v≤j . Therefore,

S(v≤i, u) ∧
(
f̄(v≤i) ≥ f̄(v≤i, u)

)
=⇒ C(v≤i, u). (33)

Combining 32 and 33 we have

C(v≤i, u) = S(v≤i, u) ∧
(
f̄(v≤i) ≥ f̄(v≤i, u)

)
. (34)

For non-replacing case C̄(v≤i, u), we have

∀v≤i, E
(u,v)←(w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) · C̄(v≤i, u)

]
= 0. (35)

For replacement case C(v≤i, u), we have

∀v≤i, E
(u,v)←(w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) · C(v≤i, u)

]
≥ E

(u,v)←(w,v)[v≤i]
[αC(v≤i, u)] . (36)

Using StopA−1 as the attacker, we also have

E
(u≤n,v≤n)←(u≤n,v≤n)

[f(v≤n)]− µ

= E
(u≤n,v≤n)←(u≤n,v≤n)

[
n−1∑
i=1

(f̄(v≤i+1)− f̄(v≤i))

]

=

n−1∑
i=0

E
v≤i←v≤i

[
E

(u,v)←(w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) ·

(
C(v≤i, u) + C̄(v≤i, u)

)]]

=
n−1∑
i=0

E
v≤i←v≤i

[
E

(u,v)←(w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) · C(v≤i, u)

]
+

E
(u,v)←(w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) · C̄(v≤i, u)

]]
(By (35, 36)) ≥

n−1∑
i=0

E
v≤i←v≤i

[
E

(u,v)←(w,v)[v≤i]
[α · C(v≤i, u)]

]

(By (34)) = α E
u≤n←w≤n

[
n∑
i=1

S(u≤i−1, ui) ∧
(
f̄(v≤i−1) ≥ f̄(v≤i−1, vi)

)]
= αρ1 ≥

αρ

2
.
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Therefore, StopA−1 have E[f(v≤n)] ≥ αρ
2 + µ.

Assuming ρ2 ≥ ρ
2 : In this case we prove StopA+

1 increase the expectation E[f(v≤n)] by at least αρ4 . Let
Boolean variable C(v≤i, u, u

′) denote whether the attack StopA+
1 is performed on prefix v≤i, candidate

sample u, and an additional sample u′ generated by the adversary (Case 1 in Construction 55).
Similar to the previous case, we have the following equations.

∀v≤i, E
(u,u′,v)←(w,w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) · C̄(v≤i, u, u

′)
]

= 0. (37)

and

∀v≤i, E
(u,u′,v)←(w,w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) · C(v≤i, u, u

′)
]

≥ E
(u,u′,v)←(w,w,v)[v≤i]

[
αC(v≤i, u, u

′)
]
.

(38)

Also, from the definition of StopA+
1 we have

C(v≤i, u, u
′) =⇒ (vi+1 = u′) ∧ S(v≤i, u

′) ∧ f̄(v≤i, u
′)− f̄(v≤i) ≥ α. (39)

We then construct a Hybrid stopping algorithm based on Stop. We prove that Hybrid also find large
positive gaps by Claim 58, and then we connect Hybrid with the StopA+

1 by Claim 59.

Construction 57 (Stopping algorithm Hybrid). Given a prefix v≤i that is the output of previous steps of the
algorithm and a candidate sample wi, the Hybrid algorithm will generate two samples, u and u′ from w≤n.

• (Case 0) If Stop(v≤i, u
′) ∧

(
f̄(v≤i, u

′)− f̄(v≤i) ≥ α
)
, then it returns u′.

• (Case 1) Otherwise, if Stop(v≤i, u) ∧
(
f̄(v≤i, u)− f̄(v≤i) ≥ α

)
, then the algorithm returns u.

• (Case 2) Otherwise, return u or u′ at random and continue the random process.

Hybrid is a stopping algorithm as it only stops whenever Stop also stops.

Claim 58. Hybrid is a gap finder that finds positive gap with probability at least ρ2.

Let a Boolean variable H(v≤i, u) denotes whether the Hybrid algorithm stops when the prefix is v≤i
and the sample is u. Using this definition we can prove Claim 58.

Proof. Intuitively the probability that Hybrid stops for v≤i is larger than that of Stop:

H(v≤i, u, u
′) = S(v≤i, u) ∨ S(v≤i, u

′). (40)

To formally prove the claim, we use induction. The claim trivially holds when n = 1. Now suppose the
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claim holds for n = k − 1. For n = k, we have

E
u≤n,u

′
≤n←Hybrid

[
k−1∑
i=0

H(ui, u, u
′)

]

= E
u≤n,u

′
≤n←Hybrid

[
H(u0, u, u

′) + H̄(u0, u, u
′) · E

u≤n←Hybrid(u1)

[
k−1∑
i=1

H(u1, u, u
′)

]]

(by induction) ≥ E
u≤n,u

′
≤n←Hybrid

[
H(u0, u, u

′) + H̄(u0, u, u
′) · E

u≤n←w≤n(u1)

[
k−1∑
i=1

S(u1, u)

]]

(by (40)) = E
u≤n,u

′
≤n←Hybrid

[
S(u0, u) + S̄(u0, u)S(u0, u

′) + S̄(u0, u)S̄(u0, u
′) · E

u≤n←w≤n(u1)

[
k−1∑
i=1

S(u1, u)

]]

≥ E
u≤n,u

′
≤n←Hybrid

[
S(u0, u) + S̄(u0, u)S(u0, u

′) · E
u≤n←w≤n(u1)

[
k−1∑
i=1

S(u1, u)

]
+

S̄(u0, u)S̄(u0, u
′) · E

u≤n←w≤n(u1)

[
k−1∑
i=1

S(u1, u)

]]

= E
u≤n,u

′
≤n←Hybrid

[
S(u0, u) + S̄(u0, u) · E

u≤n←w≤n(u1)

[
k−1∑
i=1

S(u1, u)

]]

= E
u≤n←w≤n

[
k−1∑
i=0

S(ui, u)

]
.

Claim 59. Construction 55 increase the expectation E[f(v≤n)] by at least ρ22 .

Proof. We first show that the sequence v≤n generated by StopA+
1 follows the random process Hybrid.

Consider the sampling process in (Case 1) of StopA+
1 . Two samples u and u′ are generated following

w≤n, although one of them, u′ is generated by the adversary. If u′ triggers Stop with a positive gap, the
algorithm return u′, otherwise, it return u. Then, for Hybrid, the algorithm also draw two samples u and u′

and the two samples are equal to each other. Then the algorithm examine which sample triggers Stop with a
large positive gap. Clearly by symmetry, the examination order doesn’t matter. So we can assume the model
check u′ first. Also, if neither of u and u′ can trigger Stop, we return either u and u′. By the symmetry, the
distribution of the return sample when neither samples trigger Stop is similar with just return one of them.
Therefore, the distribution Hybrid is identical to the distribution of StopA+

1 . We then prove

∀v≤i,Pr[C(v≤i, u, u
′)] ≥ 1

2
Pr[H(v≤i, u, u

′)]. (41)

By the definition of Hybrid, we have

C(v≤i, u, u
′) ∨ C(v≤i, u

′, u) =⇒ H(v≤i, u, u
′). (42)

Therefore,
Pr[C(v≤i, u, u

′)] + Pr[C(v≤i, u
′, u)] ≥ Pr[H(v≤i, u, u

′)], (43)

which implies (41).
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With Claim 58 and Claim 59, we can finish the proof of Claim 56 as follows:

E
(u≤n,v≤n)←(u≤n,v≤n)

[f(v≤n)]− µ

= E
(u≤n,v≤n)←(u≤n,v≤n)

[

n−1∑
i=1

(f̄(v≤i+1)− f̄(v≤i))]

=

n−1∑
i=0

E
v≤i←v≤i

[
E

(u,u′,v)←(w,w,v)[v≤i]

[
(f̄(v≤i, v)− f̄(v≤i)) ·

(
C(v≤i, u, u

′) + C̄(v≤i, u, u
′)
)]]

(By (37, 38)) ≥
n−1∑
i=0

E
v≤i←v≤i

[
E

(u,u′,v)←(w,w,v)[v≤i]

[
α · C(v≤i, u, u

′)
]]

(By (41)) ≥ α

2
·
n−1∑
i=0

E
v≤i←v≤i

[
E

(u,u′,v)←(w,w,v)[v≤i]

[
H(v≤i, u, u

′)
]]

≥ αρ2

2
≥ αρ

4
.

Combining the two cases above, we conclude that either StopA−1 or StopA+
1 will achieve

E[v≤n] ≥ αρ

4
+ µ.

The following extension of Theorem 53 allows the reduction from targeted attacks (i.e., online 1-
isoperimetry) to gap-finding attacks to be polynomial time, assuming the random process is online-samplable.
The reason is that using online samplers and function f as oracles, one can approximate the martingale f̄(·)
up to arbitrarily small ε = 1/ poly additive error.

Theorem 60 (Robust targeted attacks from noisy gap finders). If in Theorem 53, A is given an ε-approximation
oracle f̃(·) instead of the exact oracle f̄(·), it can still run in time poly(N/τ) where N is an upper bound
on the bit-length of all u≤n ∈ Supp(w≤n), and it still holds that E[f(v≤n)] ≥ E[f(w≤n)] + Ω ((α− τ)ρ).

The proof of Theorem 60 follows directly from Construction 54 and Construction 55. By using the
exact same construction with the approximated oracle f̃(·) to replace f̄(·), we have the gap found by StopA1

algorithms with the approximated oracle is equivalent to gap found by f̄(·) when τ < α, only the size of gap
will be at least α− τ instead. In fact, even if we are not given oracle access to Stop, and need to implement
it ourselves, we can still use the ε approximate oracle f̄(·) to find out the existence of α − O(ε) gaps, and
by choosing ε = α/10, we still find a gap of size Ω(α).
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