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Abstract

An average-case variant of the k-SUM conjecture asserts that finding k numbers that
sum to 0 in a list of r random numbers, each of the order rk, cannot be done in much less
than r⌈k/2⌉ time. On the other hand, in the dense regime of parameters, where the list
contains more numbers and many solutions exist, the complexity of finding one of them can
be significantly improved by Wagner’s k-tree algorithm. Such algorithms for k-SUM in the
dense regime have many applications, notably in cryptanalysis.

In this paper, assuming the average-case k-SUM conjecture, we prove that known al-
gorithms are essentially optimal for k = 3, 4, 5. For k > 5, we prove the optimality of the
k-tree algorithm for a limited range of parameters. We also prove similar results for k-XOR,
where the sum is replaced with exclusive or.

Our results are obtained by a self-reduction that, given an instance of k-SUM which
has a few solutions, produces from it many instances in the dense regime. We solve each
of these instances using the dense k-SUM oracle, and hope that a solution to a dense
instance also solves the original problem. We deal with potentially malicious oracles (that
repeatedly output correlated useless solutions) by an obfuscation process that adds noise to
the dense instances. Using discrete Fourier analysis, we show that the obfuscation eliminates
correlations among the oracle’s solutions, even though its inputs are highly correlated.
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1 Introduction

1.1 Background

The k-SUM problem. For parameters k = O(1), r, the classical worst-case search variant of
the k-SUM problem asks: Given a list of r numbers, find (with high probability) k of them whose
SUM is zero, assuming such numbers exist.1 Given that a solution exists, a simple sort-and-
match (or meet-in-the-middle) algorithm finds it in time T = Õ(r⌈k/2⌉) (the notation Õ hides
logarithmic factors in r), and the well-known k-SUM conjecture (that generalizes the 3-SUM
conjecture [18]), states that no algorithm can do substantially better in standard computational
models (such as the word RAM model).

In this paper, we consider average-case variants of the k-SUM problem.

Definition 1.1 (Average-case k-SUM problem). In the (k,N, r)-SUM problem, the input con-
sists of r elements z1, . . . , zr, each of them chosen independently and uniformly at random from
{−N, . . . , N}. The goal is to find a k-tuple (an ordered set of distinct indices) K = {i1, . . . , ik},
such that

∑
j∈K zj = 0, where the sum is over Z.

In a sparse regime of parameters only a few solutions exist on average, i.e., rk ≈ N . It
is considered folklore that the uniform distribution is a hard distribution for k-SUM under a
standard model of computation (see [24] and [34] for a formulation for k = 3):

Conjecture 1.2 (Sparse average-case k-SUM conjecture). Any algorithm that solves the (k,N, r)-
SUM problem where r = N1/k with probability Ωk(1) has expected running time of at least
T = Ωk(r

⌈k/2⌉−o(1)).

We note that for constant k and N = ω(rk), a solution exists with probability o(1), hence
the problem cannot be solved with probability Ωk(1), regardless of the running time.

In the dense regime where many solutions exist on average (namely, when rk ≫ N), one
can do much better.

For k = 3, there is a simple algorithm that filters the input by keeping only numbers
that are smaller than some threshold in absolute value. This gives a smaller sparse instance
to which the standard algorithm is applied to solve the problem in time T = Õ(N/r) (for
N1/3 ≤ r ≤ N1/2). For k > 3, improvements are obtained via the celebrated Wagner’s k-tree
algorithm [36] discussed below.

The k-XOR problem. The discussion above equally applies to the average-case k-XOR
problem.

Definition 1.3 (Average-case k-XOR problem). In the (k, 2n, r)-XOR problem, the input con-
sists of r vectors z1, . . . , zr, each chosen independently and uniformly at random from {0, 1}n.
The goal is to find a k-tuple, K = {i1, . . . , ik}, such that

⊕
j∈K zj = 0n.

Similarly to k-SUM, the following conjecture is considered folklore.

Conjecture 1.4 (Sparse average-case k-XOR conjecture). Any algorithm that solves the (k,N =
2n, r)-XOR problem where r = N1/k with probability Ωk(1) has expected running time of at least
T = Ωk(r

⌈k/2⌉−o(1)).

1 Another variant of the k-SUM problem asks, given k lists of r/k numbers, find k numbers – one from each
list – whose SUM is zero. The two problems are equivalent, up to Ok(1) factors.
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In the dense 3-XOR problem, the input consists of r ≫ 2n/3 uniform vectors. Similarly
to 3-SUM, a simple filtering algorithm has complexity T = Õ(N/r) for N1/3 ≤ r ≤ N1/2.
The dense 3-XOR problem has various applications in cryptography and cryptanalysis [10, 15,
23, 25, 32]. While mild (logarithmic in N) improvements to the simple filtering algorithm are
known [23, 25, 32], any substantial (i.e., polynomial in N) improvement would be considered a
breakthrough.

Wagner’s k-tree algorithm. For k > 3, the k-tree algorithm of Wagner [36] allows finding
a solution to k-XOR in time T = Õ(N1/(1+⌊log2 k⌋)), when r is of similar size. The generalized
algorithm of Minder and Sinclair [30] provides a tradeoff between r and T , for all N1/k ≤
r ≤ N1/(1+⌊log2 k⌋). For the most basic case of k = 4, the tradeoff curve is T = Õ(N/r2) for
N1/4 ≤ r ≤ N1/3. As was noted in [36], the algorithm is also applicable to the modular k-SUM
problem in ZN . Similarly, it can be easily modified to work for the average-case variant of
k-SUM stated above. For the sake of completeness, we give a high-level overview of the k-tree
algorithm and its generalization in Appendix A.

In the 20 years since its introduction, the k-tree algorithm (notably for small k values) has
become a central tool in cryptanalysis for solving both dense k-SUM and k-XOR problems
(see [23]). Specifically, it is used in breaking hash functions [29, 36], stream ciphers [27], block
ciphers [16], signature schemes [7] (where the optimal value of k depends on the amount of
available data), etc. Furthermore, it has found multiple applications that are not directly
related to cryptanalysis. Notably, the representation technique [20] crucially relies on variants
of the algorithm for small values of k to find one out of many representations of a solution to a
problem. This technique gave rise to breakthrough algorithms for solving subset-sum [20, 31]
and related problems such as decoding binary linear codes [6].

Finally, the k-tree algorithm is closely related to the Blum-Kalai-Wasserman (BKW) algo-
rithm for solving the LPN (learning parity with noise) problem [8] and its extensions, such as
Lyubashevsky’s algorithm [28] (although these use k = ω(1)).

In this paper we address the question: Are the best-known algorithms for dense
k-SUM and k-XOR optimal?

1.2 Our results

We show that in some of the most basic cases, k = 3, 4, 5, as well as in other settings, the best
known algorithms for k-SUM (resp., k-XOR) in the dense regime are optimal up to logarithmic
factors in the input list size, unless the sparse average-case k-SUM (resp., k-XOR) conjecture
fails.

Informal statement of the main results. Our main theorem for k-SUM is as follows.

Theorem 1.5 (Conditional dense k-SUM hardness, informal). Assume that any algorithm that
solves (k,N,N1/k)-SUM with probability Ωk(1)/(logN)2 has expected running time of at least
T = T (N, k).

Then, there is C = C(k) such that for any 0 ≤ ϵ ≤ 1/2, any algorithm that solves
(k,N ′, (N ′)(1+ϵ)/k)-SUM with probability 1/2 has expected running time of at least C·T ((N ′)1+ϵ, k)·
(N ′)−ϵ.

Remark 1.6. We make several related remarks about the theorem.

• While the success probability in the hardness assumption of Theorem 1.5 is slightly smaller
than the constant success probability in Conjecture 1.2, disproving this stronger assump-
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tion with the same time complexity, would be considered a breakthrough (e.g., for crypt-
analytic applications).

• It is possible to amplify the success probability in the hardness assumption from Ωk(1)/(logN)2

to 1/2 (or any constant), at the cost of increasing the number of input elements r and the
expected running time of the algorithm by a factor of (logN)2 ·Ok(1). The amplification
is obtained by partitioning the elements into disjoint groups of size N1/k, and running
the algorithm for (k,N,N1/k)-SUM on each group independently.

• The input size of N1/k in the conditional hardness assumption can be adjusted to C1 ·N1/k

for any constant C1 > 0. This only requires adjusting the hidden constant behind the
success probability Ωk(1)/(logN)2.

We obtain similar results for k-XOR (with constant success probability in the hardness
assumption, as in Conjecture 1.4). Our main theorem for k-XOR is as follows.

Theorem 1.7 (Conditional dense k-XOR hardness, informal). Assume that any algorithm
that solves (k,N,N1/k)-XOR with probability Ωk(1) has expected running time of at least T =
T (N, k).

Then, there is C = C(k) such that for any 0 ≤ ϵ ≤ 1/2, any algorithm that solves
(k,N ′, (N ′)(1+ϵ)/k)-XOR with probability 1/2 has expected running time of at least C·T ((N ′)1+ϵ, k)·
(N ′)−ϵ.

Discussion. To better understand the tradeoff obtained by the theorem, set N ′ = N and
T (N, k) = Ω(Nα(k)−o(1)) (for some function α(k)). The theorem implies that any algorithm
for (k,N, r)-SUM with r ≈ N (1+ϵ)/k (for 0 ≤ ϵ ≤ 1/2) that succeeds with probability 1/2 has
expected running time of

Ω(N (α(k)−o(1))(1+ϵ)−ϵ) = Ω(N1−o(1) ·N−1+α(k)+ϵ·α(k)−ϵ)

= Ω(N1−o(1) ·N (1+ϵ)(α(k)−1))

= Ω(N1−o(1) · rk·(α(k)−1)).

Assuming Conjecture 1.2, we plug-in α(k) = ⌈k/2⌉/k, and derive the conditional lower bound

T = Ω(N1−o(1)/r⌊k/2⌋).

Specifically, for k = 3, by a slightly stronger variant of the sparse average-case k-SUM conjecture
(with the success probability in the hardness assumption adjusted to Ωk(1)/(logN)2), we deduce
that any algorithm for (3, N, r)-SUM that succeeds with probability 1/2 has expected running
time of Ω(N1−o(1)/r). We conclude that the tradeoff T = Õ(N/r) for N1/3 ≤ r ≤ N1/2 obtained
by the simple (filtering) sort-and-match algorithm is essentially optimal. Similar tightness holds
for the 3-XOR problem.

By a similar calculation for k = 4, the (extended) k-tree algorithm (obtaining the tradeoff
T = Õ(N/r2)) is essentially optimal, under the sparse average-case k-SUM (resp., k-XOR)
conjecture. Theorems 1.5 and 1.7 yield optimality of the best known algorithm also for k = 5
and for part of the range for other values of k. In particular, for even values of k, we conclude
that any algorithm for (k,N, r)-SUM (resp., XOR) that succeeds with probability 1/2 has
expected running time of T = Ω(N1−o(1)/rk/2). This essentially matches the extended k-tree
algorithm for k values divisible by 4 in the range N1/k ≤ r ≤ N4/3k.
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We further note that the loss in the reduction provided by the above theorems is almost
linear, i.e., a Ok(1) factor for k-XOR and logarithmic in N for k-SUM. This means that for
k = 3, 4, 5 any improvement of known algorithms, even by a sufficiently large logarithmic factor
in N , can be leveraged through the theorem to obtain a similar improvement in the algorithms
for the sparse average-case k-SUM (resp., k-XOR) problem.

Figure 1 shows our k-SUM and k-XOR density-complexity tradeoff lower bounds compared
to the best-known upper bounds for k = 3, 4, 8 (ignoring logarithmic factors).

Figure 1: k-SUM and k-XOR density-complexity tradeoff lower and upper bounds for k = 3, 4, 8

1.3 Our methods

We achieve our results by a self-reduction from the average-case k-SUM (k-XOR) problem in
the sparse regime, to the average-case k-SUM (k-XOR) problem in the dense regime. In the
following description, we focus on k-XOR, as technical details are simpler for this problem. We
then summarize the main different ingredients for k-SUM.

The reduction for k-XOR. The basic observation is that we can generate a dense instance
with r input vectors from a sparse instance with r input vectors by truncating the n-bit input
vectors to obtain shorter m-bit input vectors for m < n. This increases the effective input list
size (relative to the vector length) and the number of solutions.

We rewrite our main result in a more convenient form based on this observation by a change
of variables for the dense regime:

Theorem 1.8 (Conditional dense k-XOR hardness, informal, reformulated). Assume that any
algorithm that solves (k,N = 2n, N1/k = 2n/k)-XOR with probability Ωk(1) has expected running
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time of at least T = T (N, k).
Then, there is C = C(k) such that for any n/2 ≤ m ≤ n, any algorithm that solves (k,M =

2m, 2n/k)-XOR with probability 1/2 has expected running time of at least C · T (2m, k) · 2m−n.

Observe that this is a indeed a reformulation of Theorem 1.7, obtained by setting n′ = m
and n = (1 + ϵ)m (hence, (N ′)−ϵ = 2−ϵn′

= 2−ϵm = 2m−n).
The basic idea of the reduction is to take the sparse input of r uniform n-bit vectors, generate

from it many dense k-XOR inputs of r uniform m-bit vectors, and solve each one using a black-
box algorithm B. We then check whether each solution yields a k-XOR solution for the original
n-bit vectors. If we could make the input sets of m-bit vectors completely independent, then
O(2n−m) calls to B would be sufficient (as the probability that a solution for m-bit vectors
corresponds to a solution for n-bit vectors is 2m−n), and the assertion of Theorem 1.8 would be
achieved. In fact, it is easy to show that pairwise independence suffices. However, one cannot
make these input sets pairwise independent and maintain their relation to the original n-bit
vectors at the same time (unless m ≤ n/2, which is not useful in our case). Thus, even though
it is called about 2n−m times, B could potentially repeatedly output solutions to dense k-XOR
instances that reside in a small set which does not contain any solution to the sparse instance.

We overcome this obstacle by an obfuscation process, which applies to the input vectors two
different types of noise consecutively, and allows us to achieve almost pairwise independence of
B’s outputs even though its inputs are significantly correlated. In the reduction, we are given
a sequence z1, . . . , zr ∈ {0, 1}n for which we wish to solve the k-XOR problem. We apply the
following procedure.

1. Draw a uniformly random matrix T ∈ {0, 1}m×n of full rank m, and a uniformly random
permutation P on r elements.

2. Let xi = T (zP (i)) for all i ∈ [r].

3. Feed B with x1, . . . , xr. In case it outputs a k-tuple K with
⊕

i∈K xi = 0m, test whether
K = P (K) satisfies

⊕
j∈K zj = 0n, and if so – output the k-tuple K. Otherwise,

repeat.

We prove that after 2n−m trials, with probability of Ωk(1), the process outputs a solution of
the sparse k-XOR problem. We use discrete Fourier analysis in order to bound the correlation
between B’s outputs.

Remark 1.9. If we hash down a hard sparse instance to get a dense instance, then clearly
any procedure that enumerates all solutions to the dense instance (if there aren’t too many) is
hard as well. However, our reduction does not follow this standard paradigm, as the oracle for
the dense instance can only produce a single solution. Thus, we hash the sparse instance down
in many different ways and repeatedly invoke the oracle in order to force it to produce many
different potential solutions to the sparse instance.

The reduction for k-SUM. The reduction for k-SUM follows the same general strategy
(with modified obfuscation), but its proof is more involved. In particular, in addition to discrete
Fourier-analytic techniques, it uses tools from Littlewood-Offord theory [17].

Concisely, the reason for further complexity in the k-SUM case, is that there are only a
few group-homomorphisms from ZN to ZM (that may be used to obfuscate the input), while
group-homomorphisms from Fn

2 to Fm
2 are abundant. We now elaborate on this point.

Both k-XOR and k-SUM reductions employ an obfuscation procedure to the input of the
sparse problem. For k-XOR we hash r elements of {0, 1}n to r elements of {0, 1}m (m < n),
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while for k-SUM we hash r elements of ZN to r elements of ZM . Since we are required to
pull-back linear information from the output of the process (i.e. a solution to a dense problem),
to its input (i.e., solve the sparse problem), it is important that the obfuscation would be linear.
However, the class of obfuscation functions must be rich enough to mask additional information
that can be exploited by the dense algorithm to output correlated solutions. In the k-XOR case,
we make use of a random, rank-m, linear map from Fn

2 to Fm
2 . There are 2Θ(mn) options to

choose this linear map. In the k-SUM problem, if we would insist on a (surjective) linear map
from ZN to ZM , there would be at most M such functions, which gives insufficient obfuscation
(in particular, any x ∈ ZN that is divisible by M , would be mapped to 0). Hence, we must
settle for a somewhat-linear obfuscation. We choose a function ϕ : ZN → ZM of the form

ϕ(x) = γ⌊α · x ·M/N⌉ mod M,

where α ∈ Z∗
N , γ ∈ Z∗

M are chosen uniformly at random and ⌊·⌉ denotes rounding to the nearest
integer. This new class of non-strictly-linear obfuscation functions still enables us to pull back
a solution from a dense problem to the sparse problem. Moreover, it turns out that this class
is rich enough to allow obfuscation. However, proving this latter point is more involved, since
the non-linearity of the obfuscation makes the use of Fourier-analytic tools more complex.

1.4 Related work

Our result is naturally related to three lines of work.

Algorithms for dense k-SUM and k-XOR. The first line of work is the quest for designing
better algorithms for generalized birthday problems, where the goal is to find a single k-SUM or k-
XOR solution out of many. The systematic analysis of this problem was initiated by Wagner [36]
in his k-tree algorithm,2 and has led to numerous refined algorithms and applications thereof [14,
23, 25, 30, 32].

In this respect, we show that – perhaps surprisingly – the best-known algorithms are essen-
tially optimal for k = 3, 4, 5, unless a standard conjecture in computational complexity fails.
Moreover, under similar conjectures, the best known algorithms for any k > 5 are essentially
optimal for some range of parameters.

Fine-grained complexity. The second related line of work deals with complexity reductions
to the k-SUM problem and its variants, that have become a flourishing field of research in
the last decade, as part of the fine-grained complexity research direction [35]. Reductions to
k-SUM or to k-XOR were shown for problems in computational geometry [4, 18], dynamic
algorithms [1, 33], graph algorithms [22, 37], pattern matching [2] and more. In the last few
years, such reductions were shown also for several cryptographic problems [5, 19, 24], as part
of the emerging fine-grained cryptography research area [13].

Our work provides yet another reduction for a cryptography-related problem, however the
context of reduction in our case is somewhat different. While previous works prove secu-
rity of (mainly theoretical) classes of cryptographic primitives, based on well-founded hardness
assumptions, our work shows a bound on the possible effectiveness of an important class of
cryptanalytic algorithms that are widely used for breaking cryptosystems. Thus, our results
also have more practical significance.

2We note that variants of the k-tree algorithm were presented earlier, starting with Camion and Patarin [12],
as is stipulated in [36, full version].
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Asymptotic hardness for dense k-SUM. Finally, a recent work related to ours is the
paper [11] by Brakerski, Stephens-Davidowitz, and Vaikuntanathan, which proves asymptotic
optimality of the k-tree algorithm for average-case k-SUM (whose complexity is NO(1/ log k)) by
reducing it from worst-case complexity of lattice problems. While [11] is related to our work,
the results of the two papers are complementary due to several important differences which we
summarize below.

First, [11] yields asymptotic bounds as k → ∞, while our work concentrates on small values
of k, which appear in applications of the k-tree algorithm to a different type of cryptanalytic
problems. In this respect, our result resolves an open problem stated in [11, Sec. 1.3], yet our
reduction is not from a worst-case problem (due to various technical differences, it is not clear
how to combine our techniques with the ones of [11] to obtain a reduction from a worst-case
problem). Second, while the bounds of [11] are tight up to a constant multiplicative factor in the
exponent, our reduction is tight up to constant (or logarithmic) factors for certain parameter
ranges such as k = 3, 4, 5. Third, while the reduction of [11] is from a different problem,
involving lattices, our reduction is from a conjecture in the sparse regime to the dense regime of
the same problem (i.e., a self-reduction). We note that the density (or size) of the instance also
plays a role in [11], as a faster algorithm for sparser k-SUM instances yields a faster algorithm
for the corresponding lattice problem. Fourth, in addition to k-SUM, we also obtain conditional
hardness results for the k-XOR problem.

In terms of techniques, both papers aim at obtaining ‘sufficiently different’ variants of the
same input sample z. However, in [11] these are obtained by re-randomization (repeatedly
generating almost independent inputs to the k-SUM algorithm from the same list of vectors)
and their independence is proved via the leftover hash lemma [21]. On the other hand, our
variants are obtained via the obfuscation method described above in which the inputs to the
k-SUM algorithm are highly correlated, unlike the setting of [11]. We prove the low correlation
of the algorithm’s outputs via discrete Fourier analytic methods.

1.5 Additional application and open problems

Additional application. The security proof of the hash construction T5, recently proposed
by Dodis et al. [15], is based on dense 3-XOR and 4-XOR assumptions. Our results directly
imply that the security of the construction can be based on standard sparse 3-XOR and 4-
XOR assumptions instead of non-standard dense ones. In this sense, our work (in combination
with the original security proof of [15]) allows to prove security for a cryptosystem, similarly
to [5, 19, 24], yet this proof is obtained for a practical cryptosystem.

Open problems. The main remaining open problem is to improve our lower bound in the
setting of a large k and a large number of solutions, or alternatively, to improve the k-tree
algorithm in this range.

The structure of the paper. Next, we summarize our notations and conventions. In Sec-
tion 3 we prove our main result for k-XOR, while in Section 4 we prove our main result for
k-SUM.

2 Notations and Conventions

In this section we introduce notations and conventions that will be used throughout the paper.

Notations.

7



• x ∼ S means that x is a random variable uniformly distributed in the set S.
• We interchangeably write {0, 1} and F2, where 0 = 1⊕ 1.
• When z ∈ Fr×n

2 , zij denotes the (i, j)’th entry of z, and zi := (zi1, . . . , zin).
• For x ∈ Fr×m

2 and a permutation P ∈ Sr, we denote by P (x) the value y ∈ Fr×m
2 satisfying

yP (i) = xi for all i.

• For a linear map T : Fn
2 → Fm

2 and for z ∈ Fr×n
2 , we denote by T (z) the value x ∈ Fr×m

2

satisfying xi = T (zi) for all i.
• ZL is the group whose elements are {0, 1, . . . , L − 1}, and whose operation is addition
modulo L.

• a% b (or a mod b) stands for the single element in (a + bZ) ∩ [0, b). We switch to this
shorter notation in subsection 4.3, as it is more convenient to use inside long arithmetic
expressions.

• For a real number u, the rounded value ⌊u⌉ is the unique integer in u+ (−1/2, 1/2].
• For functions f, g : N → R+ and a fixed parameter k, f = O(g) means that ∀n : f(n) ≤
Cg(n) for an absolute constant C, f = Õ(g) means that ∀n : f(n) ≤ C1 · (log n)C2 · g(n)
for absolute constants C1, C2, and f = Ok(g) means that ∀n : f(n) ≤ h(k) · g(n) for some
function h : N → R+.

Conventions.

• Operations within domains. Throughout the paper, we consider variables in various
domains. For example, when analyzing k-XOR, we consider variables in {0, 1}ℓ and
{0, 1}r×ℓ for different values of ℓ, r, while for k-SUM, we consider variables in ZL and
Zr
L for different values of L, r. Whenever an operation is applied on two elements of the

same domain, the result belongs to the same domain. For example, addition between two
elements of ZL is always performed modulo L.

• Names of variables. In the reductions presented in the paper, we begin with vectors
that belong to a ‘large’ space – {0, 1}r×n for k-XOR (Zr

N for k-SUM), and use them to
define vectors that belong to a ‘smaller’ space – {0, 1}r×m for k-XOR (Zr

M for k-SUM).
Throughout the paper, vectors that belong to a ‘large’ space are denoted by z, while
vectors that belong to a ‘small’ space are denoted by x or y. Auxiliary vectors denoted
by u or v may belong to an arbitrary domain, which will be explicitly defined.

• Inner products. All inner products in Section 3 are between functions f, g : {0, 1}r×m →
R (for a particular choice of m), and consequently, their results belong to R. Most
inner products in Section 4 are between vectors in Zr

p (for a particular choice of p), and
consequently, their results belong to Zp.

3 Hardness of Dense k-XOR

In this section we prove Theorem 1.7 (or equivalently, Theorem 1.8). The precise formulation
of the main theorem is as follows.

Theorem 3.1 (Sparse to dense k-XOR reduction). Let m,n be integers such that n/2 ≤ m ≤ n.
Assume there is an algorithm for (k, 2m, 2n/k)-XOR with success probability β and expected
running time T . Then, there is an algorithm for (k, 2n, 2n/k)-XOR with success probability

β4

(16k)k+2 , and expected running time at most 2n−m · (T + Õk(2
n/k)).

We make a few remarks. First, we work in the standard word RAM computational model,
where an operation on each vector (of size O(n)) takes unit time. However, our results do
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not change substantially in other standard computational models (e.g., in a model that counts
the number of bit operations). Second, when applying the contrapositive of this theorem to
prove hardness results for dense k-XOR with k = O(1) and β = 1/2 to obtain the theorems 1.7
and 1.8, the factor Õk(2

n/k) in this theorem is bounded by Ok(T ) (and hence consumed by the
factor C = C(k) of theorems 1.7 and 1.8). Indeed, the input in the (k,M = 2m, 2n/k)-XOR

problem already contains 2n/k vectors. Finally, the loss factor β4

(16k)k+2 in the success probability

can be significantly improved by a more refined analysis.
The proof of the theorem is based on two reductions: the main sparse to dense k-XOR

reduction and the simple (but inefficient) sparse to dense reduction which is required for pa-
rameter ranges where the main reduction is not applicable. We summarize these reductions in
the two lemmas below and prove the simpler lemma first.

Lemma 3.2 (Main k-XOR reduction). Let m,n, r satisfy n/2 ≤ m ≤ n ≤ log2
(
r
k

)
. Assume

there is an algorithm for (k, 2m, r)-XOR, with success probability β and expected running time
T . Then, there is an algorithm for (k, 2n, r)-XOR with success probability

β4

128
·
(
2n/

(
r

k

))2
and expected running time at most 2n−m · (T + Õ(r)).

Lemma 3.3 (Simple reduction). Let d > 0 by an integer. Assume there is an algorithm for
(k, 2n, d · r)-XOR, with success probability β and expected running time T . Then, there is an
algorithm for (k, 2n, r)-XOR with success probability at least β

(2d)k
and expected running time at

most T + Õk(d · r).

Proof of Lemma 3.3. Let B be an algorithm for (k, 2n, d·r)-XOR. We construct an algorithm for
(k, 2n, r)-XOR as follows. Given an instance z1, . . . , zr, pick (d−1)·r vectors in {0, 1}n uniformly
at random and append them the original instance. Then, apply a uniform permutation to the
d · r vectors and run B on this instance. If B succeeds to return a k-XOR, and this k-tuple is
included in z1, . . . , zr, then the algorithm returns it. Otherwise, it fails.

As the input to B is uniformly permuted, the events (1) B succeeds, and (2) the returned
k-tuple is included in z1, . . . , zr, are independent. By assumption, the probability of the first
event is β. Note that we may assume r ≥ 2k, as otherwise, a trivial algorithm for (k, 2n, r)-XOR
that goes over all possible k-tuples of input vectors runs in time Ok(1) ≤ T + Õk(d · r). Given
that r ≥ 2k, the probability of the second event is at least ((r−k)/(d · r−k))k ≥ (2d)−k. Thus,
the algorithm succeeds with probability at least β/(2d)k.

We now prove that Theorem 3.1 follows from the lemmas.

Proof of Theorem 3.1. Our goal is to devise an algorithm for (k, 2n, 2n/k)-XOR given an algo-
rithm B for (k, 2m, 2n/k)-XOR with success probability β and expected running time T .

We first construct an algorithm for (k, 2n, 2n/k ·k)-XOR and then use Lemma 3.3 to sparsify
the input.

Clearly, B is also applicable to (k, 2m, 2n/k · k)-XOR with similar success probability and
complexity (by ignoring all but the first 2n/k input vectors). Denote r = 2n/k · k and note that
as k! > (k/e)k for all k, we have

e−k

(
r

k

)
≤ 2n = (r/k)k ≤

(
r

k

)
.

9



Therefore, based on algorithm B for (k, 2m, 2n/k ·k)-XOR, by Lemma 3.2, there is an algorithm
B1 for (k, 2n, 2n/k · k)-XOR with success probability

β1 =
β4

128
·
( 2n(

r
k

))2 ≥ β4

128e2k

and expected running time at most 2n−m · (T + Õk(2
n/k)).

Using algorithm B1 for (k, 2n, r = 2n/k · k)-XOR, Lemma 3.3 (applied with d = k) implies
that there is an algorithm for (k, 2n, 2n/k)-XOR with success probability at least

β1
(2d)k

≥ β4

(16k)k+2

and expected running time at most 2n−m ·(T +Õk(2
n/k))+Õk(k ·2n/k) = 2n−m ·(T +Õk(2

n/k)),
as claimed.

3.1 Overview of the main reduction lemma

The proof of the main reduction lemma (Lemma 3.2) is constructive – namely, we construct
an algorithm and show that it satisfies the assertion of the lemma. A natural way to solve the
sparse k-XOR problem using an oracle for the dense k-XOR problem, is to truncate some of
the bits. That is, given r vectors, z1, . . . , zr ∈ {0, 1}n, with 2n ≈ rk (so that we expect only Θ(1)
solutions) we may feed the oracle with x1, . . . , xr ∈ {0, 1}m, where xi is obtained from zi by
truncating the last t := n−m bits. In the new problem corresponding to x1, . . . , xr we expect
to have Θ(2t) (i.e., many) solutions, and hence the oracle is applicable. A k-tuple output by the
dense k-XOR oracle has a probability of 2−t to be a solution to the original z-problem (since
we truncated exactly t bits, and z is uniformly distributed). Thus, it seems that if we feed the
oracle Θ(2t) times with truncated inputs, we expect Θ(1) out of the Θ(2t) output k-tuples to
solve the original z-problem, and consequently, solving the x-problem is at most 2t times easier
than solving the z-problem.

The flaw in this argument is that we cannot expect the oracle to output a newly-forged
k-tuple in every application (especially if the oracle is deterministic and is fed with the same
inputs in all applications). Hence, although the expected number of solutions we find is Θ(1),
it might be that we solve the z-problem only with a small probability (e.g., it might be that
with a high probability the oracle outputs many identical solutions).

Therefore, we have to trick the oracle so that the k-tuples it outputs in the different
applications will be pairwise independent of each other – almost as if we feed it with a fresh
uniformly chosen input every time.

For this purpose, we devise a method that receives r vectors in {0, 1}n (denoted z1, . . . , zr)
and randomly obfuscates them, returning r vectors in {0, 1}m (denoted x1, . . . , xr). This ob-
fuscation meets two criteria:

1. A solution to the k-XOR x-problem gives rise to a solution to the k-XOR z-problem with
good probability, (i.e., p ≈ 2−t).

2. The obfuscation is powerful enough to disguise the fact all the x’s are generated from the
same z, so that each application of the oracle (pairwise) independently has a chance
to solve the z-problem.

As we show below, this obfuscation method guarantees that after applying the oracle sufficiently
many times on obfuscated x-problems, with a high probability a solution of the original z-
problem will be obtained.

10



Remark 3.4. The proof crucially relies on the strength of the obfuscation – specifically, on
the fact that the probability of outputting the same k-tuple in an iteration pair is O(2−2t).
This is the motivation behind using the obfuscation we propose, as weaker obfuscations, such
as truncating t randomly chosen bits, have oracles that output the same k-tuple in an
iteration pair with probability much higher than 2−2t, even if we apply an invertible linear
transformation after truncation.

In detail, consider a k-tuple of vectors whose XOR is v ∈ {0, 1}n (v ̸= 0). Then, the
probability that after randomly truncating bits from this k-tuple, they would XOR to 0 is
higher for v of low Hamming weight. Now, suppose that there is a vector in the x-problem
that belongs to several k-tuples whose XOR has low (non-zero) Hamming weight. Then, the
corresponding vector in the z-problem is expected to belong to more k-XORs than the average
vector. This vector can thus be singled out by the oracle, which would repeatedly output one
of the k-XORs it belongs to (with relatively high probability).

Structure of the proof. First we present the obfuscation algorithm and the lemma which
asserts that it indeed satisfies the aforementioned properties. Then we prove the main reduction
lemma, assuming the obfuscation lemma. Finally, we prove the obfuscation lemma, which is
the most complex part of the conditional k-XOR hardness proof.

3.2 The obfuscation algorithm

Let m,n, r satisfy n/2 ≤ m ≤ n ≤ log2
(
r
k

)
, and let L be a parameter to be specified below. Let

B be an algorithm for (k, 2m, r)-XOR. The algorithm A for (k, 2n, r)-XOR, which receives as
input an r-tuple of n-bit vectors (z1, . . . , zn) ∈ {0, 1}r×n, is defined as follows.

Algorithm 3.5.

1. Repeat L times:
2. Draw a uniformly random full-rank matrix T ∈ Fm×n

2 (rank = m) and a uniformly
random permutation P ∈ Sr.

3. Let xi = T (zP (i)) for all i ∈ [r].
4. Feed B with (x1, . . . , xr). In case it outputs a k-tuple K with

⊕
i∈K xi = 0m, test

whether K = P (K) satisfies
⊕

i∈K zi = 0n, and if it does – output the k-tuple K.
Otherwise, continue.

Thus, we try to solve A’s problem, by considering many derived problems (in which we
consider only m-bit vectors, instead of n-bit ones), trying to solve these using B, and in case
its output solves A’s problem, we output the result. Each of these trials succeeds with some
probability, and only one success is required. Repeating this procedure enough times, we are
expected to find a solution with reasonable probability – unless failures are correlated. This is
where the obfuscation lemma comes into play – it shows the trials are sufficiently independent
for A to succeed.

The obfuscation lemma. The heart of the proof is the following lemma:

Lemma 3.6. Let (z1, . . . , zr) ∈ {0, 1}r×n be chosen uniformly at random. Let (x
(1)
1 , . . . , x

(1)
r ) ∈

{0, 1}r×m and (x
(2)
1 , . . . , x

(2)
r ) ∈ {0, 1}r×m be obtained from it by the procedure described above

(in two out of the L iterations). Let K1,K2 be the two corresponding K’s obtained in the process.
Then, assuming t := n−m ≤ m ≤ n ≤ log2

(
r
k

)
, we have

Pr[K1 = K2] ≤ 22−2t, (1)

11



where the probability is taken over z, x(1), x(2), and B’s randomness.

Note that cases where at least one of K1,K2 is not obtained (that is, when in at least one
of the two iterations, Algorithm B fails to find a solution to the (k, 2m, r)-XOR problem) are
not counted as equality between K1 and K2.

We note that each of (x
(1)
1 , . . . , x

(1)
r ) and (x

(2)
1 , . . . , x

(2)
r ) is likely to have about 2t solutions

to k-XOR, but only O(1) of these are common to both and typically correspond to k-XOR
solutions for (z1, . . . , zr). Therefore, the lemma essentially asserts that B cannot do much
better than output a uniform solution to each x-problem.

3.3 Proof of the main reduction lemma

We prove now that the assertion of Lemma 3.2 follows from Lemma 3.6. The proof is a rather
standard probabilistic argument. Afterwards we present the considerably more complex proof
of Lemma 3.6.

Proof of Lemma 3.2, assuming Lemma 3.6. Consider a slightly tweaked obfuscation process
which has exactly L iterations (and may output multiple solutions). Clearly, the success prob-
ability of the tweaked obfuscation process is identical to the original one, and thus we analyze
it instead. For any 1 ≤ l ≤ L, let Kl be the k-tuple obtained in the l’s iteration (Kl exists only
when B succeeds, i.e. with probability β). Denote by Sl the event that Kl admits a solution to
the (k, 2n, r)-XOR problem. We have Pr[Sl] = 2m−nβ for each l = 1, . . . , L, since z is uniformly
random, and m out of the n dimensions of

⊕
i∈Kl

zi are known to nullify, independently of the
other, beforehand-erased, n −m dimensions. (In other words, we know that

⊕
i∈Kl

zi belongs
to the kernel of a randomly chosen full-rank linear transformation T : Fn

2 → Fm
2 , and hence,

Pr[
⊕

i∈Kl
zi = 0n] = 2m−n.)

Define the random variables

Z ′ :=

L∑
l=1

1{Sl} −
∑

1≤l<l′≤L

1{Kl = Kl′}, Z := max(Z ′, 0),

where 1{E} is the indicator of the event E. A simple inclusion-exclusion-like principle shows
that Z ′ lower bounds the number of distinct solutions found for the (k, 2n, r)-XOR problem
in (tweaked) Algorithm 3.5. As the number of solutions is non-negative, Z lower bounds it as
well. The Paley-Zygmund inequality [9, ch.2], applied for the non-negative random variable Z,
implies

Pr[Z > 0] ≥ E[Z]2

E[Z2]
.

Since Pr[Z > 0] lower bounds the probability that (tweaked) Algorithm 3.5 solves the (k, 2n, r)-
XOR problem, our task is reduced to lower bounding E[Z]2, and upper bounding E[Z2]. The
value of E[Z] is easily bounded as

E[Z] ≥ E[Z ′] =

L∑
l=1

Pr[Sl]−
∑

1≤l<l′≤L

Pr[Kl = Kl′ ].

Using E[Sl] = 2m−nβ and Lemma 3.6, we obtain E[Z] ≥ L · 2m−nβ −
(
L
2

)
22(1+m−n). We choose

L = β · 2n−m−2, and obtain
E[Z] ≥ β2/8.
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We henceforth upper bound E[Z2]. Let D be the number of distinct k-tuples T ⊆ [r] with⊕
i∈T zi = 0n (that is, the number of actual solutions for the (k, 2n, r)-XOR problem in the

set {z1, . . . , zr}). Since Z is not larger than the number of solutions found in (tweaked) Algo-
rithm 3.5, we have Z ≤ D, and in particular, E[Z2] ≤ E[D2].

Note that for different k-tuples T, T ′, the events
⊕

i∈T zi = 0n and
⊕

i∈T ′ zi = 0n are
independent, and each of them has probability 2−n. Hence,

E[D2] =

(
r

k

)
2−n +

(
r

k

)((
r

k

)
− 1

)
2−2n ≤

(
r

k

)2

21−2n,

where the ultimate inequality holds since
(
r
k

)
≥ 2n by assumption. Therefore, the algorithm

succeeds with probability at least

Pr[Z > 0] ≥ E[Z]2

E[D2]
≥ β4

128
(
r
k

)2
2−2n

.

The running time of Algorithm 3.5 (including the Õ(r) additional overhead of each iteration)
is

L · (T + Õ(r)) ≤ 2n−m · (T + Õ(r)).

This completes the proof of the lemma.

3.4 Proof of the obfuscation lemma

In this section we prove Lemma 3.6. We start by introducing a distribution that models two
independent outputs of the obfuscation process, and restate the obfuscation lemma.

Definition 3.7. We say that a pair of random variables (x(1), x(2)), each taking values in Fr×m
2 ,

has an (m, r, t)-distribution, if there exist random variables z, T (j) for j ∈ {1, 2} where:

1. z, T (1), T (2), are independent random variables.

2. z ∼ Fr×(m+t)
2 is uniformly distributed.

3. T (j) : Fm+t
2 → Fm

2 is a uniformly random, full-rank (i.e., rank = m), linear transforma-
tion.

4. x
(j)
i = T (j)(zi).

Lemma 3.8. Let B be an algorithm that receives as input a list of r vectors, each of length
m bits, and outputs the indices of k > 0 vectors among them whose XOR is 0m (or a failure
string). If (x, y) has an (m, r, t)-distribution, and P,Q ∼ Sr are two uniformly random and
independent permutations, then

Pr[P−1(B(P (x))) = Q−1(B(Q(y)))] ≤ 2−2t +
2m−t(

r
k

) + 2−t+1−m, (2)

where the probability is taken over B’s randomness, x, y and P,Q (The event on the left hand
side is contained in the event that both executions B(P (x)), B(Q(y)) succeed).

Notice that Lemma 3.6 immediately follows from Lemma 3.8 (compare (1) with (2)).
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3.4.1 Proof outline

The proof of Lemma 3.8 uses techniques from discrete Fourier analysis and consists of several
steps.

1. Transformation to real-valued functions. We show that instead of analyzing the
obfuscation on a tuple-valued function, it is sufficient to analyze its action on the simpler
class of real-valued functions. We utilize the fact that our obfuscation randomly permutes
the input vectors, so that any oracle B : {0, 1}r×m →

([r]
k

)
must, informally, treat all

candidate output k-tuples in the same way. Hence it suffices to analyze the modified,
real-valued, oracle B′ : {0, 1}r×m → [0, 1] which indicates the probability that B outputs
the specific k-tuple K := {1, . . . , k} when applied on its input. Specifically, our task is
reduced to showing that

E[B′(y)B′(y′)] ≤ Ok(2
−2t/rk), (3)

where y, y′ are two independent obfuscations of a common, random, z ∈ {0, 1}r×n.

2. Bounding the correlation using discrete Fourier analysis. In order to prove (3),
we consider the Fourier expansion of B′, namely,

B′ =
∑

B̂′(S)χS , where χS(v) = (−1)
∑

i∈S vi .

We divide the Fourier expansion into two parts – the Cartesian part

(B′)C =
∑

{S=U×V :U⊆[r],V⊆[m]}

B̂′(S)χS ,

and the non-Cartesian part (B′)⊥ = B′−(B′)C (which is orthogonal to (B′)C). Informally,
the contribution of the Cartesian part to the correlation corresponds to the information
on aligned XORs of variables (such as (z1,2 ⊕ z1,3)⊕ (z4,2 ⊕ z4,3)) preserved between the
two obfuscations, while the contribution of the non-Cartesian part carries the rest of the
information. Then we handle each part of the correlation separately:

(a) Obfuscation hides everything but aligned XORs. We show that for any function B′,
the obfuscation reduces the contribution to the left hand side of (3), associated
with the non-Cartesian part, to at most 2−2t. This argument depends only on the
obfuscation, and does not rely on the specific problem we try to solve.

(b) Aligned XORs do not reveal much. We show that in the case of the k-XOR problem,
the contribution of the Cartesian part is also small. Here we use the specific structure
of the problem – specifically, the set {x : B′(x) > 0} being small and admitting a
nice algebraic structure (namely, B′(x) = 0 whenever

⊕k
i=1 xi ̸= 0m).

Combination of the two bounds completes the proof.

3.4.2 Transformation to real-valued functions

Lemma 3.9. Let B : {0, 1}r×m →
([r]
k

)
be an algorithm that outputs either a k-tuple R with⊕

i∈R xi = 0m, or a failure string. Let K := {1, . . . , k} and define B′ : {0, 1}r×m → [0, 1] by

B′(x) = E
P∼Sr

T̄∼GLm(F2)

[
1{B(T̄ (P (x))) = P (K)}

]
, (4)
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where P ∼ Sr is a uniformly random permutation, and T̄ ∼ GLm(F2) is a uniformly random
invertible linear map. The expectation in (4) is taken also over B’s randomness. Then,⊕

i∈K
xi ̸= 0 =⇒ B′(x) = 0, (5)

E
x
[B′(x)] ≤ 1/

(
r

k

)
, (6)

and if (x, y) has an (m, r, t)-distribution and P,Q ∼ Sr are independent, then

Pr[P−1(B(P (x))) = Q−1(B(Q(y)))] =

(
r

k

)
E
x,y

[B′(x)B′(y)]. (7)

Remark 3.10. We note that while the obfuscation algorithm uses a full-rank shrinking trans-
formation T from Fm+t

2 to Fm
2 , this transformation does not appear explicitly in Lemma 3.9.

Instead, it appears implicitly via the assumption that (x, y) has an (m, r, t)-distribution (made
just before (7)), and plays a central role in the proof of (7).

Proof. To show (5) note that if
⊕

i∈K xi ̸= 0 then B cannot output P (K) on the input T̄ (P (x)),
by our assumption on B, and T̄ being invertible. Hence B′(x) = 0 in such a case.

To verify (6), denote x′ = T̄ (P (x)) and observe that when x ∼ {0, 1}r×m, we have x′ ∼
{0, 1}r×m independently of P . Hence, by interchanging order of summation,

E
x
[B′(x)] = E

P,T̄
[E
x
[1{B(T̄ (P (x))) = P (K)}]] = E

P,T̄
[E
x′
[1{B(x′) = P (K)}]]

= E
x′
[E
P
[1{B(x′) = P (K)}]] ≤ 1/

(
r

k

)
,

where the latter inequality holds because for any fixed x′, P (K) attains the value of B(x′) with
probability at most 1/

(
r
k

)
.

In order to prove (7), we reason about Ex,y[B
′(x)B′(y)]. Observe that for any K ′ ⊆ [r] with

|K ′| = k, the function B′
K′ defined by B′

K′(x) = EP,T̄ [1{B(T̄ (P (x))) = P (K ′)}] satisfies

E
x,y

[B′
K′(x)B′

K′(y)] = E
x,y

[B′(x)B′(y)]. (8)

Indeed, let R ∈ Sr be such that R(K) = K ′. As (R(x), R(y)) has the same distribution as
(x, y), we have

Ex,y[B
′
K′(x)B′

K′(y)] = Ex,y[B
′
K′(R(x))B′

K′(R(y))]

= E
x,y

[
E

P ′,T̄ ′
[1{B(T̄ ′(P ′R(x))) = P ′(K ′)}] E

P ′′,T̄ ′′
[1{B(T̄ ′′(P ′′R(y))) = P ′′(K ′)}]

]
= E

x,y

[
E

P ′,T̄ ′
[1{B(T̄ ′(P ′(x))) = P ′R−1(K ′)}] E

P ′′,T̄ ′′
[1{B(T̄ ′′(P ′′(y))) = P ′′R−1(K ′)}]

]
= E

x,y
[B′(x)B′(y)].

Notice that if (x, y) has an (m, r, t)-distribution, and T̄ ′, T̄ ′′ ∼ GLm(F2) are uniformly random
invertible linear maps independent of all other variables, then (T̄ ′(x), T̄ ′′(y)) has an (m, r, t)-
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distribution as well. We verify (7):

Pr
x,y,P,Q

[
P−1(B(P (x))) = Q−1(B(Q(y)))

]
=
∑
K′

E
x,y,P,Q

[
1{P−1(B(P (x))) = K ′}1{Q−1(B(Q(y))) = K ′}

]
=
∑
K′

E
x,y,P,Q,T̄ ′,T̄ ′′

[
1{P−1(B(P (T̄ ′(x)))) = K ′}1{Q−1(B(Q(T̄ ′′(y)))) = K ′}

]
=
∑
K′

E
x,y

[
B′

K′(x)B′
K′(y)

]
=

(
r

k

)
E
x,y

[
B′(x)B′(y)

]
,

where the penultimate equality holds since P (resp. Q) commutes with T̄ ′ (resp. T̄ ′′), and the
ultimate equality uses (8).

3.4.3 Obfuscation hides everything but aligned XORs

We begin with the standard definition of the Fourier-Walsh expansion of functions on the
discrete cube, adapted to our setting.

Definition 3.11 (Fourier expansion). Given S ⊆ [r]× [m], define χS : {0, 1}r×m → {−1, 1} by

χS(x) = (−1)
∑

(i,j)∈S xi,j . The set {χS}S⊆[r]×[m] is an orthonormal basis for the set of functions{
f
∣∣ f : {0, 1}r×m → R

}
, with respect to the standard inner product ⟨f, g⟩ = Ex∼{0,1}r×m [f(x)g(x)].

Hence each f : {0, 1}r×m → R can be decomposed to

f =
∑

S⊆[r]×[m]

f̂(S)χS ,

where f̂(S) = ⟨f, χS⟩, and in particular, f̂(∅) = E[f ].

Definition 3.12 (Cartesian decomposition). Given S ⊆ [r]×[m], we call S a Cartesian product
if there exist U ⊆ [r] and V ⊆ [m] such that S = U × V .

The Fourier expansion allows decomposing any function f : {0, 1}r×m → R into Cartesian
and non-Cartesian parts:

f = fC + f⊥ =

 ∑
S Cartesian product

f̂(S)χS

+

 ∑
S non Cartesian product

f̂(S)χS

 ,

where ⟨fC , f⊥⟩ = 0.

Definition 3.13 (Cartesian functions). A function f : {0, 1}r×m → R is called a Cartesian
function if f = fC .

Lemma 3.14. Let f : {0, 1}r×m → R. Suppose (x, y) has an (m, r, t)-distribution. Then

Cov(f(x), f(y)) ≤ 2−t
∥∥fC

∥∥2
2
+ 2−2t

∥∥∥f⊥
∥∥∥2
2
.
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Recall that the goal of the obfuscation process is to reduce the correlation between different
obfuscations of the same input z (which correspond to different iterations of Algorithm 3.5
described above) to Ok(1) · 2−2t. In this respect, the lemma asserts that the obfuscation hides
the non-Cartesian part, which corresponds to everything except for aligned XORs (that is,
expressions of the form

⊕
i∈I
⊕

j∈J xi,j).

Proof. Write f =
∑

S f̂(S)χS . We have

Cov(f(x), f(y)) = E
(x,y)

[
(
∑
S

f̂(S)χS(x))(
∑
S′

f̂(S′)χS′(y))
]
− E[f ]2

= E
[∑
S,S′

f̂(S)f̂(S′)χS(x)χS′(y)
]
− E[f ]2

≤
∑
S

f̂(S)2
(∑

S′

∣∣E [χS(x)χS′(y)
]∣∣)− f̂(∅)2,

(9)

where the last step uses the inequality f̂(S)f̂(S′) ≤ (f̂(S)2 + f̂(S′)2)/2, applied for all S, S′.
In order to analyze E

[
χS(x)χS′(y)

]
, let us recall how (x, y) is distributed according to

Definition 3.7. We draw a uniformly random z ∼ Fr×(m+t)
2 and two uniformly random rank-m

linear maps T1, T2 : Fm+t
2 → Fm

2 and define (x, y) = (T1(z), T2(z)).
Observe that there exist linear maps T ∗

1 , T
∗
2 : (Fm

2 )∗ → (Fm+t
2 )∗ such that for each S =

(S1, . . . , Sr) ⊆ [r]× [m], we have

χS(x) = χS(T1(z)) = χT ∗
1 S

(z) and χS(y) = χS(T2(z)) = χT ∗
2 S

(z),

where the Si’s are regarded as elements of (Fm
2 )∗ ∼= Fm

2 .
Formally, consider the dual linear maps T ∗

1 , T
∗
2 : (Fm

2 )∗ → (Fm+t
2 )∗, defined by

T ∗
l (f)(a) := f(Tl(a)), l = 1, 2

where f : Fm
2 → F2 is a linear functional, and a ∈ Fm+t

2 is a vector. (Matrix-wise, the represent-
ing matrix of T ∗

l according to the (dual) standard basis, is the transpose of the representing
matrix of Tl in the standard basis.) Note that each S ⊆ [r] × [m] naturally corresponds to
an r-tuple of linear functionals (S1, . . . , Sr), where Si(b) =

⊕m
j=1(bj · 1{(i, j) ∈ S}) for any

b ∈ Fm
2 . Thus, we may slightly abuse notation and write S = (S1, . . . , Sr), and subsequently,

define T ∗
l (S) = (T ∗

l (S1), . . . , T
∗
l (Sr)) and regard its outputs as elements of [r]× [m+ t].

Since for each S = (S1, . . . , Sr), we have χS(x) = χS(T1(x)) = χT ∗
1 S

(z) and χS′(y) =
χT ∗

2 S
′(z) as was written above, and since E[χA(z)χB(z)] = 1{A = B}, we can write (9) as

Cov(f(x), f(y)) ≤
∑
S

f̂(S)2
(∑

S′

∣∣ E
T1,T2

E
z

[
χT ∗

1 S
(z)χT ∗

2 S
′(z)
]∣∣)− f̂(∅)2

≤
∑
S

f̂(S)2
(∑

S′

Pr
[
T ∗
1 (S) = T ∗

2 (S
′)
])

− f̂(∅)2.

Noting that T ∗
2 is injective (as T2 is of full rank, and duality preserves rank), we conclude

Cov(f(x), f(y)) ≤
∑
S ̸=∅

f̂(S)2 Pr
[
T ∗
1 (S) ∈ Im(T ∗

2 )
]
=
∑
S ̸=∅

f̂(S)2 Pr
[ r∧
i=1

[
T ∗
1 (Si) ∈ Im(T ∗

2 )
]]
.
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To see that Pr[T ∗
1 (S) ∈ Im(T ∗

2 )] ≤ 2−t for all S ̸= ∅, choose a nonempty row Si in S, and
observe that the probability Pr[T ∗

1 (Si) ∈ Im(T ∗
2 )] is the same as the probability that a specific

non-zero vector in Fm+t
2 is inside a random subspace of Fm+t

2 of dimension m. This probability
is 2m−1

2m+t−1
≤ 2−t.

We furthermore claim that Pr[T ∗
1 (S) ∈ Im(T ∗

2 )] ≤ 2−2t whenever S is not a Cartesian
product. Indeed, if we choose two different nonempty ‘rows’ Si, Sj of S (which is possible as
S is not a Cartesian product), the probability Pr[T ∗

1 (S) ∈ Im(T ∗
2 )] is upper bounded by the

probability that both T ∗
1 (Si) ∈ Im(T ∗

2 ) and T ∗
1 (Sj) ∈ Im(T ∗

2 ). Since T
∗
1 (Si), T

∗
1 (Sj) are distinct,

the aforementioned probability is 2m−1
2m+t−1

· 2m−2
2m+t−2

≤ 2−2t. Overall,

Cov(f(x), f(y)) ≤ 2−t
∑

S Cartesian

f̂(S)2 + 2−2t
∑

S not Cartesian

f̂(S)2

= 2−t
∥∥fC

∥∥2
2
+ 2−2t

∥∥∥f⊥
∥∥∥2
2
,

where the ultimate equality uses Parseval’s identity. This completes the proof.

3.4.4 Aligned XORs do not reveal much

Lemma 3.15. Let B′ : {0, 1}r×m → [0, 1] have Ex[B
′(x)] = µ. Suppose B′(x) = 0 whenever⊕k

i=1 xi ̸= 0m (k > 0). Then ∥∥(B′)C
∥∥2
2
≤ 2mµ2 + 21−mµ.

Proof. Write f(x) = 1{
⊕k

i=1 xi = 0} and B′(x) = f(x) · g(x), where g(x) does not depend on

x1. This is possible since we may restrict our attention to those x with
⊕k

i=1 xi = 0 (B′ and f
are zero elsewhere), and for such values of x, the value of x1 can be inferred from x2, . . . , xk.

Consider the expansion B′ =
∑

S⊆[r]×[m] αSχS . One can easily verify that the Fourier
expansion of f is

f =
∑
U

βUχU , where βU =

{
2−m, U = [k]× U ′, U ′ ⊆ [m]

0, otherwise.

Denote the Fourier expansion of g by g =
∑

V⊆([r]\{1})×[m] γV χV .

Since B′ = f ·g, for any S we have αS =
∑

U△V=S βUγV . We claim that for any S, this sum
consists of a single term, that is, αS = βU0γV0 for some unique pair (U0, V0) with S = U0△V0.
To see this, assume U△V = S and βU , γV ̸= 0. Since g does not depend on x1, V does not
contain elements of the form (1, i). Hence, given S we may decode U as U = [k] × U ′, where
U ′ = {i : (1, i) ∈ S} (recall U is Cartesian, as otherwise βU = 0). Since we unambiguously
determine U , we uniquely determine V = S△U .

Let us now compute
∥∥(B′)C

∥∥2
2
=
∑

S Cartesian α
2
S . Write each αS as βUγV . We split the

total contribution of the terms α2
S = (βUγV )

2 to
∑

α2
S into two cases, depending on V .

Case 1: V = ∅. Observe that
γV = E[g] = 2mµ.

To see this, fix a value x02, x
0
3, . . . , x

0
r and let x01 be such that

⊕k
i=1 x

0
i = 0m. Since g does not

depend on x1, then for any x1, we have

g(x1, x
0
2, . . . , x

0
r) = g(x01, x

0
2, . . . , x

0
r) = B′(x01, x

0
2, . . . , x

0
r).

18



On the other hand, B′(x1, x
0
2, . . . , x

0
r) = 0 for any x1 ̸= x01 (asB

′(x) = 0 for every x s.t.
⊕k

i=1 xi ̸=
0m). Hence, each value x with B′(x) ̸= 0 corresponds to exactly 2m values x′ s.t. g(x′) = B(x),
obtained from x by changing only the first coordinate. Consequently, E[g] = 2mµ.

Thus, the total contribution of terms with V = ∅ is at most∑
U

β2
U · γ2V = 2mµ2,

using the fact that
∑

U β2
U = E[f2] = E[f ] = 2−m by Parseval’s identity.

Case 2: V ̸= ∅. We claim that in this case, for any V , there are at most two U ’s for which
V△U is Cartesian. Indeed, let i ∈ [r] be such that Vi := V ∩ ({i} × [m]) ̸= ∅. Note that
V ∩ ({1} × [m]) = ∅. Hence, if U = ([k] × U ′) ̸= ∅, then (V△U) ∩ ({1} × [m]) = U ′. On the
other hand,

(V△U) ∩ ({i} × [m]) =

{
Vi△U ′, i ≤ k,

Vi, i > k.

As V△U is Cartesian, we have (V△U) ∩ ({i} × [m]) = (V△U) ∩ ({1} × [m]) = U ′. As Vi ̸= ∅,
this is possible only if i > k and Vi = U ′, that is, U = [k]× Vi. In addition, U = ∅ is possible if
V is Cartesian.

Thus, the total contribution of terms α2
S = (βUγV )

2 with V ̸= ∅, is at most (recall |βU | ≤
2−m)

2 · (2−m)2
∑
V

γ2V = 21−2m E[g2] ≤ 21−2m E[g] = 21−mµ.

We conclude ∥∥(B′)C
∥∥2
2
=

∑
S Cartesian

α2
S ≤ 2mµ2 + 21−mµ.

This completes the proof.

3.4.5 Wrapping up the proof of the obfuscation lemma

Proof of Lemma 3.8. Combining lemmas 3.14 and 3.15, and using E[B′] ≤ 1/
(
r
k

)
, we get

Cov(B′(x), B′(y)) ≤ 2−2t/

(
r

k

)
+ 2−t · 2m/

(
r

k

)2

+ 2−t · 21−m/

(
r

k

)
.

Using Lemma 3.9, we deduce

Pr[P−1(B(P (x))) = Q−1(B(Q(y)))] =

(
r

k

)
E
x,y

[B′(x)B′(y)] ≤ 2−2t +
2m−t(

r
k

) + 2−t+1−m.

This completes the proof.

4 Hardness of Dense k-SUM

In this section we prove Theorem 1.5. The precise formulation of the theorem is as follows.

Theorem 4.1 (Sparse to dense k-SUM reduction). Let M,N be integers such that
√
N ≤ M ≤

N . Assume there is an algorithm for (k,M,N1/k)-SUM with success probability β and expected
running time T . Then, there is an algorithm for (k,N,N1/k)-SUM with success probability at

least β4

(logM)2·kO(k) and expected running time at most N/M · (T + Õk(N
1/k)).
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The proof is based on the modular k-SUM problem, which we call k-MSUM.

Definition 4.2 (Average-case k-MSUM problem). In the (k,N, r)-MSUM problem, the input
consists of r elements z1, . . . , zr, each chosen independently and uniformly at random from ZN .
The goal is to find a k-tuple K = {i1, . . . , ik}, such that

∑
j∈K zj mod N = 0.

Informally, the proof consists of three stages.

1. Reduction to k-MSUM. In Section 4.1, we show that for obtaining the reduction from
the (k,N,N1/k)-SUM problem to the (k,M,N1/k)-SUM problem (i.e. proving Theo-
rem 4.1), it is sufficient to devise a reduction from (k, pq, r = (pq)1/k)-MSUM to (k, p, r)-
MSUM for a pair of primes p, q that satisfy pq ≈ N and p ≈ M .

2. Obfuscation process. In Section 4.2, we introduce an obfuscation process that trans-
forms r-tuples of vectors in Zpq to r-tuples of vectors in Zp, similarly to the reduction for
the k-XOR problem presented in Section 3. Specifically, we show that it is sufficient to
prove an obfuscation lemma which asserts that the outputs of the (k, p, r)-MSUM oracle
are sufficiently independent when it is applied to the ‘obfuscated’ inputs.

3. Proof of the obfuscation lemma. In Section 4.3 we prove the obfuscation lemma by
employing techniques from discrete Fourier analysis and combinatorics. It is the most
involved part of the proof of the main theorem.

4.1 Reduction to modular k-SUM and proof of Theorem 4.1

The main ingredient in the proof of Theorem 4.1 is the following lemma, which provides reduc-
tion from k-MSUM modulo pq to k-MSUM modulo p, for prime numbers p, q with p > q.

Lemma 4.3 (Main k-MSUM reduction). Let p, q, r be positive integers such that p > q are
prime numbers and pq ≤

(
r
k

)
. Assume there is an algorithm for (k, p, r)-MSUM with success

probability β and expected running time T .
Then, there is an algorithm for (k, pq, r)-MSUM with success probability

Ω

(( β2 · pq
k log(q) ·

(
r
k

))2)

and expected running time at most q · (T + Õ(r)).

In this subsection we prove that Lemma 4.3 implies Theorem 4.1. The (more complex)
proof of Lemma 4.3 spans the following subsections.

The derivation of Theorem 4.1 from Lemma 4.3 relies on two additional reductions.

Lemma 4.4 (Simple reduction). Let r, r′ be positive integers such that r ≥ r′. Assume there is
an algorithm for (k,N, r)-SUM (resp., MSUM), with success probability β and expected running
time T . Then, there is an algorithm for (k,N, r′)-SUM (resp., MSUM) with success probability
at least β

(2r/r′)k
and expected running time at most T + Õk(r).

The proof of this lemma is essentially the same as the proof of the analogous Lemma 3.3
for k-XOR, and we omit it.
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Lemma 4.5 (k-SUM to k-MSUM reduction). Let M,N be positive integers such that M ≤
2N + 1. Assume there is an algorithm for (k,M, r)-MSUM with success probability β and
expected running time T . Then, there is an algorithm for (k,N, r)-SUM with success probability

Ω
(

β
k(8N ·k/M)k

)
and expected running time at most T + Õk(r).

Proof. Denote r′ = ⌈r ·M/4N⌉. Given an algorithm for (k,M, r)-MSUM with success proba-
bility β and running time T , by Lemma 4.4, there is an algorithm B for (k,M, r′)-MSUM with
success probability at least β

(8N/M)k
and expected running time at most T + Õk(r). We use B

to devise an algorithm A for (k,N, r)-SUM.
We first assume that M is odd. On input that consists of r integers z1, . . . , zr uniform in

{−N, . . . , N}, A performs the following steps.

1. Discard all zi such that zi /∈ {−(M − 1)/2, . . . , (M − 1)/2}. Denote the number of
remaining elements by r1. If r1 < r′, then return failure. Otherwise, take the first r′

remaining elements and denote them by u1, . . . , ur′ .

2. Define the mapping ui 7→ yi (onto ZM ) by yi = ui mod M . Note that y1, . . . , yr′ is a
(k,M, r′)-MSUM instance.

3. Pick k elements v′1, . . . , v
′
k in ZM uniformly at random, conditioned on

∑
j∈[k] v

′
j mod M =

0. Then, for each i ∈ [r′], pick j ∈ [k] uniformly at random and define vi = v′j and
xi = yi + vi mod M .

4. Run B on the input x1, . . . , xr′ and assume it returns a k-tupleK ′ such that
∑

i∈K′ xi mod
M = 0. Trace K ′ back to the corresponding k-tuple K for z1, . . . , zr and if

∑
i∈K zi = 0,

return K. Otherwise, return failure.

Note that we do not run B directly on y1, . . . , yr′ since it may be malicious and return k-tuples
that sum to 0 modulo M , but never give a k-SUM over the integers for z1, . . . , zr.

Analysis. Clearly, the algorithm returns a correct output if it succeeds and its complexity is
as claimed. To analyze the success probability, we consider the following events:

1. r1 ≥ r′.

2. B returns a k-tuple K ′ such that
∑

i∈K′ xi mod M = 0.

3. {vi}i∈K′ = {v′j}j∈[k] (as possible multi-sets). Note that this implies
∑

i∈K′ vi mod M =∑
j∈[k] v

′
j mod M = 0 and therefore,∑

i∈K′

ui mod M =
∑
i∈K′

yi mod M =
∑
i∈K′

(xi − vi) mod M = 0.

4.
∑

i∈K′ ui = 0.

Observe that if the fourth event occurs, then
∑

i∈K zi =
∑

i∈K′ ui = 0 and A succeeds. In the
following, we lower bound the probability of these events.

First, E[r1] = r · M/(2N + 1) and a simple tail bound gives Pr[r1 ≥ r′] ≥ 1/4 for r
sufficiently large (i.e., larger than some constant value). Conditioned on the first event, the
second event occurs with probability at least β

(8N/M)k
. The third event occurs with probability

at least 1/(k!) > k−k. Note that since v1, . . . , vr′ are picked independently of y1, . . . , yr′ , then
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the third event is independent of the second. Thus, the first three events occur with probability

Ω
(

β
(8N ·k/M)k

)
.

Finally, recall that v′1, . . . , v
′
k are picked uniformly at random from ZM , conditioned on∑

j∈[k] v
′
j mod M = 0. Thus, conditioning on

∑
i∈K′ xi mod M = 0, and on the event that

{vi}i∈K′ = {v′j}j∈[k] (but not on the individual values of each v′j), the k-tuple {ui}i∈K′ is

uniformly distributed in {−(M − 1)/2, . . . , (M − 1)/2}k, conditioned on
∑

i∈K′ ui mod M = 0.
Given this distribution of {ui}i∈K′ , it remains to lower bound the probability that

∑
i∈K′ ui = 0

by 1/k.
Write U =

∑
i∈K′ ui, as a sum of k uniform integers in {−(M − 1)/2, . . . , (M − 1)/2}. Note

that for any t,

Pr[U = t] ≤Pr[U = t+ 1] if t+ 1 ≤ E[U ],

Pr[U = t] ≥Pr[U = t+ 1] if t ≥ E[U ].
(10)

To see this, observe that the function t 7→ Pr[U = t] is log-concave, as a convolution of (discrete)
log-concave functions (see for example [3, Proposition 10(vii)]), and is symmetric around t =
E[U ].

Since in our case E[U ] = 0, then for any t, we have Pr[U = 0] ≥ Pr[U = t]. Hence,

Pr [U = 0 |U mod M = 0] =
Pr[U = 0]

Pr[U mod M = 0]
≥ Pr[U = t]

Pr[U mod M = 0]

≥Pr [U = t |U mod M = 0] .

As U ∈ {−k(M−1)/2, . . . , k(M−1)/2}, given that U mod M = 0, U can only attain k possible
values, implying that Pr [U = 0 |U mod M = 0] ≥ 1/k.

Finally, if M is even, we change the algorithm to remove zi /∈ {−M/2, . . . ,M/2− 1}. The
analysis is similar, but we have E[U ] = −k/2. Nevertheless, the final result is unchanged since
Pr[U = 0] ≥ Pr[U = t] for every t such that t mod M = 0 (assuming M is larger than k; we
indeed may assume M ≥ k as otherwise (k,N, r)-SUM can be solved with the poor probability
1/Nk by searching for k zeros in the input).

We now derive Theorem 4.1 from Lemmas 4.3, 4.4 and 4.5.

Proof of Theorem 4.1. Let M,N be such that
√
N ≤ M ≤ N . Our goal is to devise an algo-

rithm for (k,N,N1/k)-SUM, given an algorithm B for (k,M,N1/k)-SUM with success proba-
bility β and expected running time T .

Clearly, B can be applied to solve (k,M,N1/k · 2k)-SUM with the same success probability
and complexity.

Let p be a prime number that satisfies M ≤ p < 2M .3 By Lemma 4.4, based on B, there is
an algorithm B1 for (k, (p − 1)/2, N1/k · 2k)-SUM with success probability at least β1 = β

kO(k)

and expected running time at most T + Õk(N
1/k). B1 immediately gives an algorithm for

(k, p,N1/k ·2k)-MSUM with the same parameters (as a K-tuple that sums to 0 over the integers
sums to zero mod p).

Let q be a prime number such that N/2p ≤ q < N/p. Note that we have

pq < N <

(
N1/k · 2k

k

)
< N · kk and q < N/p ≤ N/M ≤ M ≤ p.

3Such a prime can clearly be found efficiently since by a quantitative version of the prime number theorem,
the number of primes between M and 2M is Ω(M/ logM). Therefore, one may pick such a prime by random
sampling and using a standard primarily test algorithm.
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Hence, we can apply Lemma 4.3 based on B1 to deduce that there is an algorithm B2 for
(k, pq,N1/k · 2k)-MSUM with success probability at least

β2 = Ω

 β4
1(pq)

2

k2 log(q)2
(
N1/k·2k

k

)2
 ≥ β4

(logM)2 · kO(k)

and expected running time at most q · (T + Õk(N
1/k)) ≤ N/M · (T + Õk(N

1/k)).
Noting that N/2 ≤ pq ≤ N , we invoke Lemma 4.5 based on B2, and conclude that there

is an algorithm B3 for (k,N,N1/k · 2k)-SUM with success probability at least β3 = β2

kO(k) =
β4

(logM)2·kO(k) and expected running time at most N/M · (T + Õk(N
1/k)).

Finally, we apply Lemma 4.4 based on B3 and deduce that there is an algorithm for

(k,N,N1/k)-SUM with success probability at least β3

kO(k) = β4

(logM)2·kO(k) and expected running

time at most N/M · (T + Õk(N
1/k)).

4.2 The obfuscation process

Our goal in the rest of this section is to prove Lemma 4.3. The proof strategy is similar to the
proof of Lemma 3.2 in the k-XOR case presented in Section 3. Namely, we devise an algorithm
that receives r vectors in Zpq, denoted by z1, . . . , zr, and randomly obfuscates them, returning r
vectors in Zp, denoted by y1, . . . , yr. The main properties of the obfuscation are that a solution
to the k-MSUM y-problem gives rise to a solution of the k-MSUM z-problem with a good
probability (i.e., ≈ 1/q), and that the applications of the oracle are sufficiently independent to
yield a solution of the z-problem with the desired probability.

In this subsection we present the obfuscation algorithm, state the main obfuscation lemma
which asserts that our algorithm achieves its goals, and derive Lemma 4.3 from the obfuscation
lemma. The proof of the obfuscation lemma is presented in the next subsection.

4.2.1 The obfuscation algorithm and the obfuscation lemma

Let p, q, r be positive integers such that p, q are prime numbers, p ≥ q, and pq ≤
(
r
k

)
. Let B

be an algorithm for (k, p, r)-MSUM. Let L be a parameter to be specified below. We define
the algorithm A for (k, pq, r)-MSUM, which receives as an input an r-tuple (z1, . . . , zr) ∈ Zr

pq

of elements in Zpq, as follows.

Algorithm 4.6.

1. Repeat L times:
2. Draw uniformly random invertible α ∼ Z∗

p·q and γ ∼ Z∗
p and a uniformly random

permutation P ∈ Sr.
3. Let yi = γ · ⌊(α · zP (i)% pq)/q⌉% p for all i ∈ [r].
4. Feed B with (y1, . . . , yr). In case it outputs a k-tuple K with

∑
i∈K yi%p = 0, test

whether K = P (K) satisfies
∑

i∈K zi%pq = 0, and if it does – output the k-tuple K.
Otherwise, continue.

The obfuscation lemma in the arithmetic case is as follows.

Lemma 4.7. Let p, q, r be positive integers such that p ≥ q are prime numbers and pq ≤
(
r
k

)
.
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Let (z1, . . . , zr) ∈ Zr
pq be chosen uniformly at random. Let the r-tuples (y

(1)
1 , . . . , y

(1)
r ) ∈ Zr

p

and (y
(2)
1 , . . . , y

(2)
r ) ∈ Zr

p be obtained from it by the procedure described above (in two out of the
L iterations). Let K1,K2 be the two corresponding K’s obtained in the process. Then,

Pr[K1 = K2] ≤ O(log(q)/q2), (11)

where the probability is taken over z, y(1), y(2), and B’s randomness.

Note that cases where at least one of K1,K2 is not obtained (that is, when in at least one
of the two iterations, Algorithm B fails to find a solution to the (k, p, r)-MSUM problem) are
not counted as equality between K1 and K2.

4.2.2 Proof of the main reduction lemma

We now deduce Lemma 4.3 from the obfuscation lemma (Lemma 4.7).

Proof of Lemma 4.3. As in the corresponding proof of Lemma 3.2 for k-XOR, we analyze a
tweaked version of the algorithm (with the same success probability) in which all L iterations
are performed. For any 1 ≤ l ≤ L, let Kl be the K obtained in the l’s iteration (Kl exists only
when B succeeds, i.e., with probability β). Denote by Sl the event that Kl admits a solution to
the (k, pq, r)-MSUM problem. We claim that for all l = 1, . . . , L,

Pr[Sl] ≥ β · Ω(1/(
√
kq)).

Indeed, Sl occurs if the B oracle succeeds, and in addition,
∑

i∈K zi% pq = 0 holds, given that∑
i∈K yi% p = 0.
The probability of the first event is β, as y1, . . . , yr are uniformly and independently dis-

tributed in Zp. (Indeed, conditioning on the variables α, P (but not on zP (i)), the variables
ỹi = ⌊(α · zP (i)% pq)/q⌉% p are uniformly and independently distributed in Zp, and so are
yi = γ · ỹi.)

To see that the probability of the second event is Ω(1/(
√
kq)), notice that αzP (i)% pq =

(qγ−1yi +σi)% pq, with σi ∈ {(1− q)/2, . . . , (q− 1)/2}. Conditioning on α, γ, P, yi (and not on
zP (i)), σi is uniformly distributed in this set. Observe that given

∑
i∈K yi% p = 0, the event∑

i∈K αzP (i)% pq = 0 is equivalent to
∑

i∈K σi% pq = 0. The probability of this latter event

is Ω(1/(
√
kq)), for example by (10) and Chebyshev’s inequality with the standard deviation of∑

i∈K σi equal to Θ(
√
kq).

Define the random variables

Z ′ :=

L∑
l=1

1{Sl} −
∑

1≤l<l′≤L

1{Kl = Kl′}, Z := max(Z ′, 0).

Similarly to the proof of Lemma 3.2 in Section 3.3, it is easy to verify that (tweaked) Algo-
rithm 4.6 succeeds to solve the (k, pq, r)-MSUM problem with probability at least

Pr[Z > 0] ≥ E[Z]2

E[Z2]
.

To bound E[Z] from below, note that

E[Z] ≥ E[Z ′] =
L∑
l=1

Pr[Sl]−
∑

1≤l<l′≤L

Pr[Kl = Kl′ ].

24



Using Pr[Sl] ≥ β · Ω(1/(
√
kq)) and Lemma 4.7, we get

E[Z] ≥ L · Ω(β/(
√
kq))−

(
L

2

)
O(log(q)/q2).

We choose L = c · βq/(
√
k log(q)) for a sufficiently small constant c, and obtain

E[Z] ≥ Ω
( β2

k log(q)

)
.

To bound E[Z2] from above, note that similarly to the proof of Lemma 3.2, we have

E[Z2] ≤ 2

(pq)2

(
r

k

)2

.

Therefore, (tweaked) Algorithm 4.6 succeeds with probability at least

Pr[Z > 0] ≥ Ω(β4) ·
( pq(

r
k

)
k log(q)

)2
.

The running time of the algorithm is

L · (T + Õ(r)) ≤ q · (T + Õ(r)).

This completes the proof of the lemma.

4.3 Proof of the obfuscation lemma

In this section we prove Lemma 4.7. We start by introducing a distribution that models two
independent outputs of the obfuscation process, and restate the obfuscation lemma.

Definition 4.8. Let p, q be prime numbers. We say that a pair of random variables (x(1), x(2)),
each taking values in Zr

p, has a (p, q, r)-arithmetic-distribution, if there exist random variables

z, α(j), γ(j), j = 1, 2, with:

1. z, α(1), α(2), γ(1), γ(2), are independent random variables.
2. z ∼ Zr

p·q is uniformly distributed.

3. α(j) ∼ Z∗
p·q is a uniformly random invertible element of Zp·q.

4. γ(j) ∼ Z∗
p is a uniformly random nonzero residue modulo p.

5. For all i = 1 . . . r, j = 1, 2, we have

x
(j)
i = γ(j) · ⌊α(j) · zi/q⌉% p.

Lemma 4.9. Let B be an algorithm which receives as input a list of r integers in Zp, and
outputs the indices of k > 0 numbers among them whose SUM is 0 (modulo p). If (x, y) has
a (p, q, r)-arithmetic-distribution with p ≥ q, and P,Q ∼ Sr are two uniformly random and
independent permutations, then

Pr[P−1(B(P (x))) = Q−1(B(Q(y)))] ≤ O
( log(q)

q2
+

p

q
(
r
k

)), (12)

where the probability is taken over B’s randomness, x, y and P,Q. (The event on the left hand
side is contained in the event that both executions B(P (x)), B(Q(y)) succeed).

Notice that Lemma 4.7 immediately follows from Lemma 4.9 (compare (11) with (12)).
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4.3.1 Proof outline

The proof of Lemma 4.9 uses techniques from discrete Fourier analysis and combinatorial
techniques. Technically, the proof is more complicated than for k-XOR since the k-SUM analog
of Lemma 3.14 does not hold. Instead, it is replaced by the sequence of lemmas 4.16–4.21. The
proof consists of three steps presented in the order of appearance in the paper.

1. Transformation to real-valued functions. Similarly to the k-XOR obfuscation, we
show that instead of analyzing the obfuscation on a tuple-valued function, it is sufficient
to analyze its action on the simpler class of real-valued functions. We utilize the fact that
our obfuscation randomly permutes the input vectors, so that any oracle B : Zr

p →
([r]
k

)
must, informally, treat all candidate output k-tuples in the same way. Hence it suffices
to analyze the modified, real-valued, oracle B′ : Zr

p → [0, 1] which essentially indicates
the probability that B outputs the specific k-tuple K := {1, . . . , k} when applied on its
input. Specifically, our task is reduced to showing that

E[B′(x)B′(y)] ≤ O
( log(q)

q2
+

p

q
(
r
k

))/rk, (13)

where x, y are two independent obfuscations of a common, random, z ∈ Zr
pq.

2. Representing the correlation in terms of the Fourier expansion. In order to
prove (13), we consider the Fourier expansion of B′, namely,

B′ =
∑
S∈Zr

p

B̂′(S)χS , where χS(v) = exp

(
2πi

p
⟨S, v⟩

)
, B̂′(S) ∈ C.

It turns out that the correlation between two obfuscations (which appear in different
iterations of Algorithm A described above) is a weighted sum of the squared Fourier
coefficients B̂′(S)2:

Cov(B′(x), B′(y)) =
∑
S ̸=0

(p− 1)Mp,q,r(S)B̂
′(S)2, (14)

where Mp,q,r(S) roughly serve as the ‘weight’ for B̂′(S)2, and are defined as Mp,q,r(S) =

E[χS(x)χS(y)].

3. Bounding the correlation using discrete Fourier analysis. We bound the correla-
tion, the right hand side of (14), in two steps:

(a) Partitioning into 2-dimensional subspaces. We use the structure of solutions to the
k-SUM problem to show that it is sufficient to bound

∑
S∈U Mp,q,r(S) over two-

dimensional subspaces U = {aS1 + bS2 : a, b ∈ Zp} ⊆ Zr
p of a certain kind.

(b) Bounding
∑

S Mp,q,r(S) over 2-dimensional subspaces. We bound
∑

S∈U Mp,q,r(S)
over two-dimensional subspaces U , using a combinatorial approach. Specifically,
we represent this sum as the bias introduced in an event, caused by the depen-
dence between x, y. We show that this bias is related to a Littlewood-Offord-type
problem [26]. Specifically, in Lemma 4.18 we relate Mp,q,r(S) to the probability
Pr[⟨S, u⟩ = 0] for a random vector u ∈ Zr

p. This probability concerns the event
where the sum of random variables ⟨S, u⟩ =

∑
i Siui equals 0. Bounding this type of

probability is common in Littlewood-Offord theory. To this end, we use a classical
antichain argument (see [17]) along with simple number theoretic estimates.
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4.3.2 Transformation to real-valued functions

Lemma 4.10. Let B : Zr
p →

([r]
k

)
be an algorithm that outputs either a k-tuple R with

∑
i∈R xi%p =

0, or a failure message. Let K := {1, . . . , k} and define B′ : Zr
p → [0, 1] by

B′(x) = Pr
P,γ

[B(P (γ · x)) = P ({1, 2, . . . , k})], (15)

where P ∼ Sr is a uniformly random permutation, and γ ∼ Z∗
p is a uniformly random invertible

element of Zp. Then, ∑
i∈K

xi ̸= 0 =⇒ B′(x) = 0, (16)

µ := E
x
[B′(x)] ≤ 1/

(
r

k

)
, (17)

and if (x, y) has a (p, q, r)-arithmetic distribution and P,Q ∼ Sr are independent, then

Pr[P−1(B(P (x))) = Q−1(B(Q(y)))] =

(
r

k

)
E
x,y

[B′(x)B′(y)]. (18)

We note that the probability in (15) is also taken over B’s randomness. The proof of the
lemma is similar to the proof of Lemma 3.9.

Proof. To show (16) note that if
∑

i∈K xi ̸= 0 then B cannot output P (K) on the input P (γ ·x),
by our assumption on B, and γ being invertible. Hence B′(x) = 0 in such a case.

To verify (17), denote x′ = P (γ · x) and observe that when x ∼ Zr
p, we have x′ ∼ Zr

p

independently of P . Hence, by interchanging order of summation,

E
x
[B′(x)] = E

P,γ
[E
x
[1{B(P (γ · x)) = P (K)}]] = E

P,γ
[E
x′
[1{B(x′) = P (K)}]]

= E
x′
[E
P
[1{B(x′) = P (K)}]] ≤ 1/

(
r

k

)
,

where the latter inequality holds because for any fixed x′, P (K) attains the value of B(x′) with
probability at most 1/

(
r
k

)
.

In order to prove (18), we reason about Ex,y[B
′(x)B′(y)]. Observe that for any K ′ ⊆ [r]

with |K ′| = k, the function B′
K′ defined by B′

K′(x) = EP,γ [1{B(P (γ · x)) = P (K ′)}] satisfies

E
x,y

[B′
K′(x)B′

K′(y)] = E
x,y

[B′(x)B′(y)]. (19)

Indeed, let R ∈ Sr be such that R(K) = K ′. As (R(x), R(y)) has the same distribution as
(x, y), we have

Ex,y[B
′
K′(x)B′

K′(y)] = Ex,y[B
′
K′(R(x))B′

K′(R(y))]

= E
x,y

[
E

P ′,γ′
[1{B(P ′R(γ′ · x)) = P ′(K ′)}] E

P ′′,γ′′
[1{B(P ′′R(γ′′ · y)) = P ′′(K ′)}]

]
= E

x,y

[
E

P ′,γ′
[1{B(P ′(γ′ · x)) = P ′R−1(K ′)}] E

P ′′,γ′′
[1{B(P ′′(γ · y)) = P ′′R−1(K ′)}]

]
= E

x,y
[B′(x)B′(y)].
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Notice that if (x, y) has a (p, q, r)-arithmetic distribution, and γ′, γ′′ ∼ Z∗
p are uniformly random

invertible elements of Zp independent of all other variables, then (γ′ · x, γ′′ · y) has a (p, q, r)-
arithmetic distribution as well. We verify (18):

Pr
x,y,P,Q

[
P−1(B(P (x))) = Q−1(B(Q(y)))

]
=
∑
K′

E
x,y,P,Q

[
1{P−1(B(P (x))) = K ′}1{Q−1(B(Q(y))) = K ′}

]
=
∑
K′

E
x,y,P,Q,γ′,γ′′

[
1{P−1(B(P (γ′ · x))) = K ′}1{Q−1(B(Q(γ′′ · y))) = K ′}

]
=
∑
K′

E
x,y

[
B′

K′(x)B′
K′(y)

]
=

(
r

k

)
E
x,y

[
B′(x)B′(y)

]
,

where the ultimate equality uses (19).

Due to the structure of the k-SUM problem, the function B′ has several properties that
will be crucially used in the sequel. Before stating these properties, let us introduce Fourier
expansion over Zp.

Definition 4.11 (Fourier expansion). Given S ∈ Zr
p, define χS : Zr

p → C by χS(x) = ep(⟨S, x⟩),
where

ep(a) := exp
(2πia

p

)
.

The set {χS}S∈Zr
p
is an orthonormal basis for the set of functions

{
f
∣∣ f : Zr

p → C
}
, with

respect to the standard inner product ⟨f, g⟩ = Ex∼Zr
p
[f(x)g(x)]. Hence, each f : Zr

p → C can
uniquely be decomposed as

f =
∑
S∈Zr

p

f̂(S)χS , with f̂(S) ∈ C.

Claim 4.12. Let B′ be defined as in Lemma 4.10. Then:

1. For any x ∈ Zr
p and any γ ∈ Z∗

p, we have B′(x) = B′(γ · x).

2. B′ can be written in the form B′(x) = Ik(x) · g(x), where Ik(x) = 1{
∑k

i=1 xi = 0}.

3. Let S′ ∈ Zr
p be defined by S′

j = 1{j ∈ [k]}. For any S ∈ Zr
p we have B̂′(S) = B̂′(S + S′).

Proof. The first assertion holds trivially, by the definition of B′. The second holds since B(x) =
0 whenever Ik(x) = 0, with Ik(x) = 1{

∑k
i=1 xi = 0}. Finally, the third holds as the Fourier

expansion of Ik is given by Ik = 1
p

∑
ν∈Zp

χν·S′ with S′
j = 1{j ∈ [k]}.

Following Claim 4.12, we shall study and exploit properties of functions f : Zr
p → [0, 1] that

satisfy f(γx) = f(x) and f̂(S + S′) = f̂(S) for S′ as defined in Claim 4.12 and all x, γ, S.
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4.3.3 Representing the correlation in terms of the Fourier expansion

In this subsection we present a sequence of lemmas that shall be used in our proof. These
lemmas allow us to represent the correlation between different obfuscations in terms of the
Fourier expansion, and will be helpful in bounding the correlation using discrete Fourier analysis
in the following subsections. Note that all inner products from now on are between elements of
Zr
p, and consequently, their results lie in Zp.

An alternative representation of the obfuscation. In our proof, we shall frequently use
the following alternative view of the obfuscation.

Claim 4.13. A pair (x, y) taking a (p, q, r)-arithmetic-distribution may be sampled by drawing
x ∼ Zr

p uniformly at random, choosing v ∼ {(1 − q)/2, (3 − q)/2, . . . , (q − 1)/2}r uniformly,
along with α ∼ Z∗

p·q and γ, γ′ ∼ Z∗
p, and setting

∀i ∈ [r] : yi = (γxi + γ′⌊αvi/q⌉)% p.

Proof. Assume (x, y) has a (p, q, r)-arithmetic distribution, that is, xi = γ1 · ⌊α1 · zi/q⌉%p and
yi = γ2 · ⌊α2 · zi/q⌉%p, where z, α1, α2, γ1, γ2 are as in Definition 4.8. Write α1zi%(pq) =
q(γ−1

1 xi%p) + vi with vi ∈ {(1 − q)/2, . . . , (q − 1)/2}. Note that, under the fixing of any
(invertible) γ1, α1, each pair of (xi, vi) ∈ Zp × {(1 − q)/2, . . . , (q − 1)/2} arises from exactly
one zi ∈ Zpq. Since zi is uniformly distributed and independent of γi, αi, we see that xi, vi are
uniformly distributed (as stated in the claim) and independent of each other and of γi, αi.

Finally,
yi = γ2 · ⌊α2 · α−1

1 (q(γ−1
1 xi%p) + vi)/q⌉%p,

meaning that
yi = ((γ2α2α

−1
1 γ−1

1 %p)xi + γ2⌊α2α
−1
1 vi/q⌉)%p.

Denoting γ := (γ2α2α
−1
1 γ−1

1 %p), γ′ := γ2 and α := α2α
−1
1 , we have yi = (γxi + γ′⌊αvi/q⌉)% p.

Note that γ, γ′, α have the asserted distribution and are independent of x, v.

A quantity representing the contribution of B̂′(S) to the correlation. We now for-
mally introduce the notion Mp,q,r(S) that will play a central role in the proof. The relevance
of the notion to the correlation we study is shown in Lemma 4.16 below.

Definition 4.14. Let S ∈ Zr
p, and let (x, y) be a pair that has a (p, q, r)-arithmetic distribution.

Define the magnitude of S as (the real number)

Mp,q,r(S) := E[χS(x)χS(y)].

Lemma 4.15 (Orthogonality). Let S, S′ ∈ Zr
p, and assume (x, y) has a (p, q, r)-arithmetic

distribution. If S′ = γ′S with γ′ ∈ Z∗
p, then we have

E[χS(x)χS′(y)] = Mp,q,r(S). (20)

Otherwise (if S′ ̸= γ′S for all γ′ ∈ Z∗
p),

E[χS(x)χS′(y)] = 0. (21)
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Proof. To verify (20), assume S′ = γ′S with γ′ ∈ Z∗
p. Note that by Definition 4.8, if (x, y)

has a (p, q, r)-arithmetic-distribution, then (x, γ′−1y) admits a (p, q, r)-arithmetic-distribution
as well. Hence,

E[χS(x)χS′(y)] = E[χS(x)χS′(γ′−1y)] = E[χS(x)χS(y)] = Mp,q,r(S).

To verify (21), recall that Claim 4.13 shows that x ∼ Zr
p and yi = γxi+γ′ui, where γ, γ

′ ∼ Z∗
p,

and u is independent of x (its distribution is irrelevant for the current proof). Condition on
the values of γ, γ′, u, so that

E[χS(x)χS′(y)] = E
γ,γ′,u

[E
x

[
ep(⟨S, x⟩ − ⟨S′, y⟩)

∣∣ γ, γ′, u]].
Notice that given γ, γ′, and u, the expression ⟨S, x⟩−⟨S′, y⟩ is linear in x, and is non-constant
(for all γ, γ′, u), since S, S′ are non-proportional. Hence, E[ep(⟨S, x⟩−⟨S′, y⟩)] = 0, since x ∼ Zr

p,
and the expected value of ep(x

′) when x′ ∼ Zp is uniformly distributed is 0.

Notation. Given two vectors S, S′ ∈ Zr
p and two scalars α, β ∈ Zp, we denote by αS+βS′ ∈ Zr

p

the vector S′′ having for all i ∈ [r],

S′′
i = (αSi + βS′

i)% p.

Representing the correlation in terms of Mp,q,r and the Fourier expansion. The
following lemma shows how Mp,q,r can be used to estimate the correlation Cov(B′(x), B′(y))
we aim at bounding, thus establishing (14).

Lemma 4.16. Let f : Zr
p → C have f(γx) = f(x) for all x ∈ Zr

p, and γ ∈ Z∗
p. Suppose (x, y)

has a (p, q, r)-arithmetic-distribution. Then

Cov(f(x), f(y)) =
∑
S∈Zr

p

S ̸=0r

(p− 1)Mp,q,r(S)f̂(S)
2.

Proof. Using the expansion f(x) =
∑

S∈Zr
p
f̂(S)χS(x), we find

Cov(f(x), f(y)) = E
x,y

[(f(x)− f̂(0))(f(y)− f̂(0))] =
∑

S,S′∈Zr
p\{0r}

f̂(S)f̂(S′) E
x,y

[χS(x)χS′(y)].

By comparing coefficients, the assumption that f(γx) = f(x) (for all x) implies f̂(S) = f̂(γS).
Combining with Lemma 4.15 we get

Cov(f(x), f(y)) =
∑
S ̸=0r

∑
γ∈Z∗

p

f̂(S)f̂(γS)Mp,q,r(S) = (p− 1)
∑
S ̸=0r

f̂(S)2Mp,q,r(S).

Bounding Mp,q,r(S). The following two lemmas allow us to bound Mp,q,r(S).

Lemma 4.17. Suppose (x, y) has a (p, q, r)-arithmetic-distribution. For any r ∈ N, any primes
p, q > 0, and any non-zero S ∈ Zr

p, we have

Mp,q,r(S) =
p2 Pr[⟨S, x⟩ = ⟨S, y⟩ = 0]− 1

(p− 1)2
. (22)
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Proof. Assume (x, y) has a (p, q, r)-arithmetic-distribution, and let S ∈ Zr
p be any vector. We

show
Mp,q,r(S) = 1 · Pr[⟨S, x⟩ = ⟨S, y⟩ = 0]

− 1

p− 1
Pr[⟨S, x⟩ = 0 XOR ⟨S, y⟩ = 0]

+
1

(p− 1)2
Pr[⟨S, x⟩ ≠ 0 ∧ ⟨S, y⟩ ≠ 0],

(23)

where (⟨S, x⟩ = 0 XOR ⟨S, y⟩ = 0) denotes the event that exactly one of ⟨S, x⟩ = 0 , ⟨S, y⟩ = 0
holds. To verify (23), note that if (x, y) has a (p, q, r)-arithmetic distribution, then so does
(γ1x, γ2y), for any γ1, γ2 ∈ Z∗

p. Hence,

E
x,y

[χS(x)χS(y)] = E
x,y

[ep(⟨S, x⟩ − ⟨S, y⟩)]

= E
x,y

[ep(γ1 · ⟨S, x⟩ − γ2 · ⟨S, y⟩)].

Letting γ1, γ2 be uniformly distributed in Z∗
p (independently of (x, y)), one can verify that for

any fixed x, y we have

E
γ1,γ2

[ep(γ1 · ⟨S, x⟩ − γ2 · ⟨S, y⟩)] = E
γ1
[ep(γ1 · ⟨S, x⟩)] E

γ2
[ep(γ2 · ⟨S, y⟩)]

=
(
1{⟨S, x⟩ = 0} − 1{⟨S, x⟩ ≠ 0}

p− 1

)
·
(
1{⟨S, y⟩ = 0} − 1{⟨S, y⟩ ≠ 0}

p− 1

)
.

(24)

Equation (23) then follows by averaging (24) over (x, y).

Denote the three probabilities in (23) by A,B,C, that is:

A := Pr[⟨S, x⟩ = ⟨S, y⟩ = 0],

B := Pr[⟨S, x⟩ = 0 XOR ⟨S, y⟩ = 0],

C := Pr[⟨S, x⟩ ≠ 0 ∧ ⟨S, y⟩ ≠ 0].

Note that A+B + C = 1, and that for any S ̸= 0, we have 2A+B = 2 · Pr[⟨S, x⟩ = 0] = 2/p,
since each of x, y is uniformly distributed in Zr

p. Substituting into (23) and simplifying, we
obtain

Mp,q,r(S) =
p2 Pr[⟨S, x⟩ = ⟨S, y⟩ = 0]− 1

(p− 1)2
,

as asserted.

Lemma 4.18. Let r ∈ N, let p ≥ q > 0 be prime numbers, and let S ∈ Zr
p be a nonzero vector.

If (x, y) has a (p, q, r)-arithmetic-distribution, then

Pr
x,y

[⟨S, x⟩ = ⟨S, y⟩ = 0] ≤ O(1/(pq) + 1/p2) ≤ O(1/(pq)). (25)

Proof. Recall the distribution of x, y given by Claim 4.13, namely yi = (γxi + γ′ui)% p with
ui = ⌊αvi/q⌉% p, where x, v, γ, γ′, α are independent random variables. By the independence
of x, u, we get

Pr
x,y

[⟨S, x⟩ = ⟨S, y⟩ = 0] = Pr
x
[⟨S, x⟩ = 0]Pr

u
[⟨S, u⟩ = 0]. (26)

Since x is uniformly random and S is nonzero, Prx[⟨S, x⟩ = 0] = 1/p. It thus remains to show

Pr
u
[⟨S, u⟩ = 0] ≤ O(1/q + 1/p). (27)
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To prove (27), we note that it is a Littlewood-Offord-type statement: the entries ui are inde-
pendent random variables, and ⟨S, u⟩ is their weighted sum, and we are concerned with the
probability it attains a specific value.

We tackle the problem by using a standard antichain argument. Roughly, choose an i with
Si ̸= 0, and condition on the values of uj for all j ̸= i. Then, there is at most one value of
ui that would make ⟨S, u⟩ = Siui +

∑
j:j ̸=i Sjuj % p = 0. Recall ui = ⌊αvi/q⌉% p, where vi is

uniformly distributed in {(1 − q)/2, . . . , (q − 1)/2}. Hence, assuming that the map vi 7→ ui is
injective, we have that ⟨S, u⟩ = 0 with probability ≤ 1/q, as required. This last assumption is
not strictly correct, however it can be corrected as follows.

Depending on α and on {uj : j ̸= i}, we let Z = {τ ∈ {(1−q)/2, . . . , (q−1)/2} : (Si⌊ατ/q⌉+∑
j:j ̸=i Sjuj)% p = 0}, and note that according to the above discussion, Pr[⟨S, u⟩ = 0] =

E[|Z|]/q. Hence, (27) is reduced to showing that E[|Z|] ≤ O(1 + q/p). Write Z = {τ1, . . . , τk}
with τ1 < . . . < τk, and Z ′ = {τ2 − τ1, τ3 − τ1, . . . , τk − τ1}. Note that |Z| = |Z ′|+ 1, and that
every σ ∈ Z ′ satisfies ασ ∈ pqZ+ (−q, q) (i.e., the residue (ασ)% (pq) is either smaller than q,
or larger than pq − q). Hence,

E[|Z|] ≤ 1 + E[|Z ′|] ≤ 1 + E
α
[

q−1∑
σ=1

1{ασ ∈ pqZ+ (−q, q)}] = O(1 + q/p),

where the last bound follows since for any fixed σ, ασ%(pq) is uniformly distributed in Z∗
pq

(recall σ < q ≤ p), and the probability it is in pqZ+ (−q, q) is O(1/p).

Lemmas 4.17 and 4.18 yield the following corollary, that upper bounds Mp,q,r(S).

Corollary 4.19. Let r ∈ N, let p ≥ q > 0 be prime numbers, and let S ∈ Zr
p be a nonzero

vector. Then
|Mp,q,r(S)| ≤ O(1/(pq)).

Proof. By (22) we have

Mp,q,r(S) =
p2 Pr[⟨S, x⟩ = ⟨S, y⟩ = 0]− 1

(p− 1)2
.

By (25) we have
Pr[⟨S, x⟩ = ⟨S, y⟩ = 0] ≤ O(1/(pq)).

These two estimates yield the desirable |Mp,q,r(S)| = O(1/(pq) + 1/p2) = O(1/(pq)).

4.3.4 Partitioning into 2-dimensional subspaces

While Corollary 4.19, in conjunction with Lemma 4.16, allows us bounding Cov(B′(x), B′(y))
from above (which is the main task we are tackling), the obtained upper bound is not sufficiently
tight for our purposes. To achieve a stronger bound, we use the special structure of B′ observed
in Claim 4.12 – namely, that it satisfies B′(x) = B′(γx) for all γ ∈ Z∗

p, and that its Fourier

expansion satisfies B̂′(S) = B̂′(S + S′) for all S and the specific S′ defined in Claim 4.12
– to show that it is sufficient to bound the sums

∑
S∈U Mp,q,r(S) over certain 2-dimensional

subspaces U .
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Lemma 4.20. Let r ∈ N, and let p ≥ q be prime numbers. Let f : Zr
p → [0, 1] satisfy f(x) =

f(γx) for all x ∈ Zr
p and γ ∈ Z∗

p. Furthermore, assume there exists a particular nonzero vector

S′ ∈ Zr
p such that f̂(S + S′) = f̂(S) for all S ∈ Zr

p.
Let C be a constant such that for all S satisfying ∀ν ∈ Zp : S ̸= νS′,∑

η∈Z∗
p

ν∈Zp

Mp,q,r(ηS + νS′) ≤ C.

If µ = E[f ], and (x, y) has a (p, q, r)-arithmetic-distribution, then

Cov(f(x), f(y)) ≤ O
(p
q
µ2 +

C

p
µ
)
.

Proof. By Lemma 4.16, we have

Cov(f(x), f(y)) = (p− 1)
∑
S ̸=0r

Mp,q,r(S)f̂(S)
2

There are two kinds of contributions to the right hand side, corresponding to elements S with
S = νS′, and to other elements.
Case 1: The contribution of each S with S = νS′ for ν ∈ Z∗

p, is Mp,q,r(S
′) · f̂(S′)2. (Recall that

by Lemma 4.15, for such an S, we have Mp,q,r(S
′) = Mp,q,r(S), and since f(x) = f(γx), we

have f̂(S) = f̂(S′).) We note that |f̂(S)| = |Ex[f(x)χS(x)]| ≤ E |f(x)| = µ. Using the bound
on Mp,q,r(S) from Corollary 4.19, and the fact that there are only p − 1 such S’s, we get that
the total contribution in this case is

(p− 1)
∑

S=νS′

Mp,q,r(S)f̂(S)
2 ≤ (p− 1)2Mp,q,r(S

′)µ2 ≤ p2O(1/(pq))µ2 ≤ O
(p
q
µ2
)
.

Case 2: The contribution of elements S with S ̸= νS′ for all ν ∈ Z∗
p (we denote this family of

elements by S), can be analyzed using the assumption that f̂(S + νS′) = f̂(S) for all ν ∈ Zp.
It follows that

(p− 1)
∑
S∈S

Mp,q,r(S)f̂(S)
2 =

p− 1

p(p− 1)

∑
S∈S

f̂(S)2 ·
∑
η∈Z∗

p

ν∈Zp

Mp,q,r(ηS + νS′) ≤ Cµ

p
.

Here, the first equality holds since each summand on the left hand side appears p(p− 1) times
on the right hand side. The final inequality is obtained by the assumption regarding C and the
estimate

∑
S f̂(S)2 = E[f2] ≤ µ.

Overall: Combining the above two contributions we get

Cov(f(x), f(y)) ≤ O
(p
q

)
µ2 +

C

p
µ,

as asserted.

4.3.5 Bounding
∑

S Mp,q,r(S) over 2-dimensional subspaces

In this subsection we present the most complex step of the proof – bounding
∑

S∈U Mp,q,r(S)
over 2-dimensional subspaces U , which will allow us to complete the proof in conjunction with
Lemma 4.20. The proof is quite technical. Its core element is the representation of a sub-
problem as a Littlewood-Offord type problem and the use of an antichain technique for handling
it.
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Lemma 4.21. Let S, S′ ∈ Zr
p be nonzero vectors with S ̸= νS′ for all ν ∈ Z∗

p. Suppose q ≤ p,
then ∣∣∣ ∑

µ∈Z∗
p

ν∈Zp

Mp,q,r(µS + νS′)
∣∣∣ ≤ O(p/q2 + log(q)/q + 1/p) ≤ O(p log(q)/q2). (28)

Proof.

Step 1. We express the left hand side of (28), using Lemma 4.17 (with T = µS + νS′), as

D :=
∑
µ∈Z∗

p

ν∈Zp

Mp,q,r(µS+νS′) =
p2

(p− 1)2

∑
µ∈Z∗

p

ν∈Zp

Pr[⟨µS+νS′, x⟩ = ⟨µS+νS′, y⟩ = 0]− p

p− 1
, (29)

where the probability is taken over pairs (x, y) distributed according to a (p, q, r)-arithmetic-
distribution. Adding and subtracting all pairs of the form (µ, ν) = (0, ν) to the sum in (29), we
get

(p− 1)2

p2
D =

∑
µ,ν∈Zp

(µ,ν )̸=(0,0)

Pr[⟨µS+νS′, x⟩ = ⟨µS+νS′, y⟩ = 0]−(p−1)Pr
x,y

[⟨S′, x⟩ = ⟨S′, y⟩ = 0]−p− 1

p
.

Note that given x, y, the number of solutions (µ, ν) of the equation system (⟨µS + νS′, x⟩ =
0) ∧ (⟨µS + νS′, y⟩ = 0), is equal to the number of solutions of the system (µ⟨S, x⟩+ ν⟨S, y⟩ =
0)∧ (µ⟨S′, x⟩+ ν⟨S′, y⟩ = 0). Indeed, they are equal to the sizes of the left kernel and the right
kernel of the matrix (

⟨S, x⟩ ⟨S, y⟩
⟨S′, x⟩ ⟨S′, y⟩

)
,

which are known to be equal. The latter linear system may succinctly be written as µV (x) +
νV (y) = 0 where

V (x) :=

(
⟨S, x⟩
⟨S′, x⟩

)
∈ Z2

p, V (y) :=

(
⟨S, y⟩
⟨S′, y⟩

)
∈ Z2

p.

Using this equality, we obtain

(p− 1)2

p2
D =

∑
µ,ν∈Zp

(µ,ν )̸=(0,0)

Pr
x,y

[µV (x) + νV (y) = 0]− (p− 1)Pr
x,y

[⟨S′, x⟩ = ⟨S′, y⟩ = 0]− p− 1

p
.

Note that (28) is equivalent to D ≤ O(p/q2 + log(q)/q + 1/p), which follows from the bounds:

Pr
x,y

[
⟨S′, x⟩ = ⟨S′, y⟩ = 0

]
≤ O(1/(pq) + 1/p2), (30)

∣∣∣∣∣ ∑
µ,ν∈Zp

(µ,ν) ̸=(0,0)

Pr
x,y

[µV (x) + νV (y) = 0]− p− 1

p

∣∣∣∣∣ ≤ O(p/q2 + log(q)/q + 1/p). (31)

As (30) follows from Lemma 4.18, we are left with the task of verifying (31).
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Step 2. We verify (31). Note that p2−1
p2

− p−1
p < 1/p, thus (31) follows from∣∣∣∣∣ ∑

(µ,ν )̸=(0,0)

Pr
x,y

[µV (x) + νV (y) = 0]− p2 − 1

p2

∣∣∣∣∣ ≤ O(p/q2 + log(q)/q + 1/p). (32)

In case of either µ = 0 or ν = 0, we have Prx,y[µV (x) + νV (y) = 0] = 1/p2, since both x, y are
uniformly distributed in Zr

p and S, S′ are linearly independent vectors. We must hence verify∣∣∣∣∣ ∑
µ∈Z∗

p

Pr
x,y

[µV (x) = V (y)]− p− 1

p2

∣∣∣∣∣ ≤ O(1/q2 + log(q)/(pq) + 1/p2). (33)

We now reason about the left hand side of (33). Specifically, we consider the three sums

Q1 :=
∑
µ∈Z∗

p

Pr
x,y

[
µV (x) = V (y) ∧

(
{⟨S, x⟩, ⟨S, y⟩} = {0}

)]
,

Q2 :=
∑
µ∈Z∗

p

Pr
x,y

[
µV (x) = V (y) ∧

(
0 ∈ {⟨S, x⟩, ⟨S, y⟩} ≠ {0}

)]
,

Q3 :=
∑
µ∈Z∗

p

Pr
x,y

[
µV (x) = V (y) ∧

(
0 /∈ {⟨S, x⟩, ⟨S, y⟩}

)]
,

and show the following estimates, which together imply (33):

|Q1| ≤ O(1/(pq) + 1/p2), (34)

Q2 = 0, (35)∣∣∣Q3 −
p− 1

p2

∣∣∣ ≤ O(1/q2 + log(q)/(pq) + 1/p2). (36)

In order to obtain (35), notice that if one of ⟨S, x⟩, ⟨S, y⟩ is zero, and the other is not, then
there cannot be a µ ∈ Z∗

p which is the quotient of them.

Step 3. We prove (34). First, we observe

Q1 ≤ Pr
x,y

[
{⟨S, x⟩, ⟨S, y⟩} = {0}

]
+ (p− 2)Pr

x,y

[
V (x) = V (y) = 0

]
.

This is because upon fixing x, y, whenever ⟨S′, x⟩ ≠ 0 or ⟨S′, y⟩ ≠ 0, there is at most one value
of µ ∈ Z∗

p for which µV (x) = V (y). Lemma 4.18 implies

Pr
x,y

[
{⟨S, x⟩, ⟨S, y⟩} = {0}

]
≤ O(1/(pq) + 1/p2).

Hence, it remains to show

Pr
x,y

[
V (x) = V (y) = 0

]
≤ O(1/(p2q) + 1/p3). (37)

Since x ∼ Zr
p is uniformly distributed, and S, S′ are two independent vectors, then we have

Pr[V (x) = 0] = 1/p2. Moreover, similarly to the reasoning in Lemma 4.18 ((26) in particular),

Pr [V (y) = 0 |V (x) = 0] = Pr[⟨S, u⟩ = ⟨S′, u⟩ = 0],

where u = ⌊αvi/q⌉ with α ∼ Z∗
pq and vi ∼ {(1− q)/2, . . . , (q − 1)/2} are uniformly distributed.

But, according to (27), we have

Pr[⟨S, u⟩ = ⟨S′, u⟩ = 0] ≤ Pr[⟨S, u⟩ = 0] ≤ O(1/p+ 1/q),

which, together with Pr[V (x) = 0] = 1/p2 implies (37).
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Step 4. We prove (36). Recall, again, that x, y are sampled by taking x ∼ Zr
p uniformly at

random, and setting yi = (γxi + γ′ui)% p with γ′, γ ∼ Z∗
p and ui = ⌊α · vi⌉, with α ∼ Z∗

pq

and vi ∼ {(1− q)/2, . . . , (q − 1)/2}. We further decompose Q3 into two parts, Q3 = Q4 +Q5,
according to whether γ⟨S, x⟩ = ⟨S, y⟩ or not:

Q4 =
∑
µ∈Z∗

p

Pr
x,y

[
µV (x) = V (y) ∧ µ ̸= γ ∧ 0 /∈ {⟨S, x⟩, ⟨S, y⟩}

]
,

Q5 = Pr
x,y

[
γV (x) = V (y) ∧ 0 /∈ {⟨S, x⟩, ⟨S, y⟩}

]
,

and define the auxiliary probabilities

β = Pr
[
γ⟨S, x⟩ = ⟨S, y⟩ ∧

(
0 /∈ {⟨S, x⟩, ⟨S, y⟩}

)]
,

η = Pr[0 /∈ {⟨S, x⟩, ⟨S, y⟩}].

We make four claims:

• Simplifying Q4: Q4 = (η − β)/p,

• Upper bounding β: β ≤ O(1/p+ 1/q),

• Lower bounding η: η ≥ 1− 2/p,

• Upper bounding Q5: Q5 ≤ O(1/q2 + log(q)/(pq)).

Since Q3 = Q4 +Q5, these claims clearly imply (36).

Lower bounding η. Recall that both x and y are uniformly distributed in Zr
p, and so ⟨S, x⟩

and ⟨S, y⟩ are uniformly distributed in Zp. Thus, by a union bound, we have η ≥ 1 − 2/p, as
asserted.

Upper bounding β. Recall that yi = (γxi + γ′ui)% p, and hence the event that γ⟨S, x⟩ =
⟨S, y⟩ is exactly the event that ⟨S, u⟩ = 0. The probability of this latter event may be upper
bounded by O(1/p+ 1/q) using (27). Hence,

β ≤ Pr[⟨S, u⟩ = 0] ≤ O(1/p+ 1/q),

as asserted.

Simplifying Q4. As an appetizer, note that if we would replace in Q4 the requirement of
µV (x) = V (y) by µ⟨S, x⟩ = ⟨S, y⟩, and call the result Q′

4, then we would get Q′
4 + β = η. All

that is left in order to prove (1) is to show that pQ4 = Q′
4.

Observe that we may assume that

∃ℓ ∈ [r] : Sℓ = 0 ∧ S′
ℓ ̸= 0. (38)

To reduce to this case, we choose any ℓ with S′
ℓ ̸= 0, and replace S by S − Sℓ

S′
ℓ
S′, which is also

nonzero. (Note that the sum on the left hand side of (28) does not change by this replacement.)
We condition on the values of γ, u, γ′ and {xj : j ̸= ℓ} (i.e. on the σ-algebra generated

by these variables). The only information that is missing in the probability space is xℓ – it
is uniformly distributed under the current conditioning. While the contribution to Q′

4 is fixed
under the current conditioning (as we assumed Sℓ = 0), we claim there exists exactly one value
of xℓ that would contribute to the probability expressed by Q4. To see this, let µ be the unique
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element of Z∗
p that has µ⟨S, x⟩ = ⟨S, y⟩. In order to have µV (x) = V (y) we must also have

µ⟨S′, x⟩ = ⟨S′, y⟩. Under our conditioning, this latter equation is a linear equation in xℓ with
the linear coefficient (µ − γ)S′

ℓ (recall how yℓ depends on xℓ), and some constant coefficient
which is deterministic under our conditioning. This equation has a unique solution in xℓ. Since
xℓ has a uniform distribution, we have Q4 = Q′

4/p = (η − β)/p, as asserted.

Step 5. Lastly, we upper bound Q5. Recall

V (y) =

(
⟨S, y⟩
⟨S′, y⟩

)
= γ

(
⟨S, x⟩
⟨S′, x⟩

)
+ γ′

(
⟨S, u⟩
⟨S′, u⟩

)
.

Hence, the event γV (x) = V (y) is simply {⟨S, u⟩ = 0 ∧ ⟨S′, u⟩ = 0}, implying

Q5 ≤ Pr
u
[⟨S, u⟩ = 0 ∧ ⟨S′, u⟩ = 0].

We use an argument similar to the argument we had in Lemma 4.18 (specifically, (27)) to upper
bound this last quantity. Let l ∈ [r] be any coordinate with Sl ̸= 0, and let ℓ be a coordinate
with S′

ℓ ̸= 0 while Sℓ = 0, whose existence we assumed (see (38)). Recall uj = ⌊αvj/q⌉.
Condition on any specific values for α, {uj : j /∈ {l, ℓ}}. Similarly to Step 4, we can upper
bound the probability that ⟨S, u⟩ = 0 by the probability that ul turns out to be just the right
value that would make ⟨S, u⟩ = 0 true. This probability is upper bounded by 1

q times the

maximal number of elements v′′ ∈ {(1 − q)/2, . . . , (q − 1)/2} that map to the same u′′ under
u′′ = ⌊αv′′/q⌉% p. Using the same reasoning as in Lemma 4.18, we see that this probability is
upper bounded by (|Zα|+ 1)/q, where

Zα = {σ ∈ {(1− q)/2, . . . , (q − 1)/2} : (ασ) ∈ pqZ+ (−q, q)}.

Under the described conditioning, ⟨S, u⟩ is determined by ul, and by further conditioning on
the value of ul, ⟨S′, u⟩ is determined by uℓ. Thus, the event that both these quantities are equal
zero has probability

Pr[⟨S, u⟩ = 0 ∧ ⟨S′, u⟩ = 0] ≤ (|Zα|+ 1)2/q2. (39)

Our task of upper bounding Q5 is hence reduced to understanding the second moment of |Zα|.
For any fixed α,

|Zα|2 =
(q−1)/2∑

σ1=(1−q)/2

(q−1)/2∑
σ2=(1−q)/2

1
{
{σ1 · α, σ2 · α} ⊆ pqZ+ (−q, q)

}
≤ 4

q−1∑
σ1=0

q−1∑
σ2=0

1
{
{σ1 · α, σ2 · α} ⊆ pqZ+ (−q, q)

}
.

Denote τ ′j := (σj · α% pq), then we have τ ′1 · σ2%(pq) = τ ′2 · σ1%(pq). Using the assumption
q ≤ p, we may leverage this equation into an equation over the integers (i.e. not involving a
modulus), in the following way.

Let τj := min{τ ′j , pq−τ ′j}, so the above equation reads either τ1 ·σ2%(pq) = τ2 ·σ1%(pq) or

τ1 ·σ2%(pq) = −τ2 ·σ1%(pq). Observe that τj ≤ q, and hence, τ1σ2, τ2σ1 ≤ q2 ≤ pq. Therefore,
over the integers we must have

τ1 · σ2 = τ2 · σ1 or τ1 · σ2 + τ2 · σ1 = pq. (40)
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In order to bound from above the expectation of |Zα|2 over the |Z∗
pq| = ϕ(pq) possible values of

α, we note that α can be recovered uniquely from σ1, τ
′
1, as α = τ ′1 · σ

−1
1 % pq. Thus, any given

quadruple (σ1, σ2, τ1, τ2) corresponds to at most two different values of α, and so, when we sum
over all values of α, each solution of each of the equations in (40) is counted at most twice.

Therefore, we have

E
α
[|Zα|2] ≤

4 · 2
ϕ(pq)

(
#{(a, b, c, d) : ab = cd}+#{(a, b, c, d) : ab+ cd = pq}

)
, (41)

where a, b, c, d take values in {0, 1, . . . , q − 1}.
We bound the number of such quadruples (a, b, c, d) by the following simple number-theoretic

lemma, whose proof is given below.

Lemma 4.22. Let q,N > 0 be positive integers. Define

P = {(a, b, c, d) | ab+ cd = N} ⊆ {0, 1, . . . , q − 1}4,
Q = {(a, b, c, d) | ab = cd} ⊆ {0, 1, . . . , q − 1}4.

Then, |P | ≤ O(q2 log(q)) and |Q| ≤ O(q2 log(q)).

By Lemma 4.22, the number of these quadruples (a, b, c, d) is O(q2 log(q)). Combining (39)
and (41) with Lemma 4.22, we arrive at

Q5 ≤ O
( 1

q2
·
(
1 +

q2 log(q)

pq

))
≤ O

( 1

q2
+

log(q)

pq

)
,

concluding the proof of Lemma 4.21.

Summary of the proof of Lemma 4.21. We parsed the left hand side of (28), and inter-
preted it as the bias introduced in an event, (V (x) is proportional to V (y)) caused by dependence
between x, y ∼ Zr

p. The core of the argument upper bounds this bias by posing the problem as
a Littlewood-Offord-type problem, and using an antichain argument along with simple number
theoretic estimates.

Proof of Lemma 4.22. First, notice that we may consider, in both cases, a, b, c, d > 0, as there
are only O(q2) quadruples with 0 ∈ {a, b, c, d} and either ab = cd or ab + cd = N . Indeed,
regarding ab = cd, we must have 0 on both sides, which implies that there are only O(q2)
possible pairs. Regarding ab+ cd = N , if a = 0, then b, c have q2 options, and they determine
d, totaling in ≤ O(q2) pairs. We call the analogs of P,Q, with the quadruples containing 0
removed, P ′, Q′, respectively.

Second, we count |P ′|. Fixing a, c, we see that b, d must satisfy the linear equation ab+cd =
N . The different solutions (b, d) for this equation differ by integral multiples of the vector
(c/ gcd(a, c),−a/ gcd(a, c)). Since both b, d are integers in [1, q), the number of such solutions
is at most q gcd(a, c)/max(a, c). Denoting g = gcd(a, c) we arrive at

|P ′| ≤
q∑

g=1

∑
g|a

∑
g|c

qg

max(a, c)
≤

q∑
g=1

∑
g|c

2c

g
· qg
c

≤
q∑

g=1

∑
g|c

2q ≤
q∑

g=1

2q2/g = O(q2 log(q)),

as required.
Lastly, bounding |Q′| is done likewise, this time considering the equation ab− cd = 0.
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We note that the log(q) factor in the bound O
(

1
q2

+ log(q)
pq

)
of Lemma 4.22 is the reason

for the logarithmic loss in Theorem 4.1. Unfortunately, one can show that the assertion of
Lemma 4.22 is tight up to a constant factor, at least regarding the size of Q.

4.3.6 Wrapping up the proof of the obfuscation lemma

Proof of Lemma 4.7. Recall that we assume an algorithm B : Zr
p →

([r]
k

)
which always reports a

k-tuple of its input numbers whose sum is 0 modulo p (and is allowed to report failure). Using

B, we define the obfuscation algorithm A : Zr
pq →

([r]
k

)
(Algorithm 4.6) which reports a k-tuple

of its input numbers whose sum is 0 modulo pq. We further define B′ : Zr
p → [0, 1] by

B′(x) = Pr
P,γ

[B(P (γ · x)) = P ({1, 2, . . . , k})],

where P ∼ Sr and γ ∼ Z∗
p, and the probability is taken also over B’s internal randomness. By

Lemma 4.10, we have
k∑

i=1

xi ̸= 0 =⇒ B′(x) = 0,

and

µ := E[B′(x)] ≤ 1/

(
r

k

)
, (42)

and if (x, y) has a (p, q, r)-arithmetic-distribution then

Pr[P−1(B(P (x))) = Q−1(B(Q(y)))] =

(
r

k

)
E
x,y

[B′(x)B′(y)]. (43)

Furthermore, by Claim 4.12, B′(x) = B′(γx) for all γ ∈ Z∗
p and B̂′(S + S′) = B̂′(S) for all S,

with S′ as defined in Claim 4.12.
Hence, we may apply Lemma 4.20 with

C = O(p log(q)/q2),

as provided by Lemma 4.21 (notice that we assume p ≥ q), to conclude that

Cov(B′(x), B′(y)) ≤ O
(p
q
µ2 +

C

p
µ
)
= O

(p
q
µ2 +

log(q)

q2
µ
)
.

Notice that as both x, y are uniformly distributed in Zr
p, we have

E[B′(x)B′(y)] = µ2 +Cov(B′(x), B′(y)).

Combining these estimates with (42) and (43), we obtain

Pr[P−1(B(P (x))) = Q−1(B(Q(x)))] ≤ O
( p

q
(
r
k

) + log(q)

q2

)
,

completing the proof.
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A Wagner’s k-tree Algorithm

In this appendix we sketch the details of Wagner’s k-tree algorithm for solving the k-XOR
problem and its generalization published in [30]. The variant for solving k-SUM is similar. For
more details, we refer the reader to the original publications [30, 36].

A.1 The 4-XOR algorithm

We begin by describing the algorithm applied to a 4-list variant of 4-XOR. In this problem,
the input consists of 4 lists {x(j)}4j=1, where each x(j) ∈ {0, 1}2n/3×n is chosen uniformly at
random. The goal is to find 4 vectors, one from each list, whose XOR is 0n, namely, output a

4-tuple {ij}4j=1, where ij ∈ [2n/3] such that
⊕4

j=1 x
(j)
ij

= 0n. It is easy to see the 4-list variant

is equivalent to the single-list variant (Definition 1.3) up to O(1) factors in success probability
and complexity.

The k-tree algorithm for k = 4 is described below.

1. Sort the lists {x(j)}4j=1.

2. By a linear scan, find all pairs (x
(1)
i1

, x
(2)
i2

) such that the n/3 most significant bits of

x
(1)
i1

⊕ x
(2)
i2

are zero. Store all values x
(1)
i1

⊕ x
(2)
i2

in a new sorted list y(1), along with the

corresponding pair (x
(1)
i1

, x
(2)
i2

).

3. Apply the previous step to x(3) and x(4) and build the sorted list y(2).

42



4. Find a pair (y
(1)
j1

, y
(2)
j2

) such that y
(1)
j1

⊕ y
(2)
j2

= 0n. Trace (y
(1)
j1

, y
(2)
j2

) back to a solution to
4-XOR problem and output it.

To analyze the algorithm, note that the expected size of y(1) and y(2) is 2n/3 (as a pair

(x
(1)
i1

, x
(2)
i2

) is added to y(1) with probability 2−n/3). Therefore, the algorithm runs in expected

time Õ(2n/3). Moreover, on average, there is a single 4-XOR solution to be found in the last

step, since any 4-tuple {x(j)ij
}4j=1 satisfies the 4n/3 bit constraints imposed by the algorithm

with probability 2−4n/3 (and there are 24n/3 such 4-tuples). Based on tail bounds, one can show
that the algorithm succeeds with constant probability. We refer the reader to [30] for a rigorous
analysis.

A.2 Generalizations

We briefly summarize two important generalizations of the 4-XOR algorithm.

A.2.1 The full k-tree algorithm [36]

The first generalization applies to larger k that is a power of 2. The input consists of k lists,
each containing 2n/(log k+1) vectors of n bits. The algorithm merges the k lists in pairs in a
tree-like structure with log k + 1 levels. The merging maintains the property that the vectors
in all k/2ℓ lists in level ℓ ∈ {0, 1, . . . , log k − 1} have zero ℓ · n/(log k + 1) most significant bits.
The final 2-list merge at level log k−1 zeroes the remaining 2n/(log k+1) bits, giving a k-XOR
solution at the last level with high probability.

When k is not a power of 2, the k-XOR problem can be easily reduced to a k′-XOR problem
where k′ is the largest power of 2 that is smaller than k.

A.2.2 The extended k-tree algorithm [30]

This generalization applies when the input lists contain less than 2n/(log k+1) vectors (i.e., the
input is less dense) and the k-tree algorithm is not directly applicable. The extended algorithm
gives a tradeoff between the size of the inputs lists and the time complexity.

Specifically, for 4-XOR, when the input lists are of size r for 2n/4 ≤ r ≤ 2n/3, we change the

second step to find all pairs (x
(1)
i1

, x
(2)
i2

) such that the 4 log r−n most significant bits of x
(1)
i1

⊕x
(2)
i2

are equal to 04 log r−1 (we also change the third step similarly). Therefore, the expected size of
y(1) and y(2) becomes 2n/r2, and the expected complexity of the algorithm is Õ(2n/r2). Finally,
on average, there is a single 4-XOR solution to be found in the last step, since there are 4 log r
bit constraints imposed by the algorithm on r4 4-tuples (once again, a tail bound is required
to rigorously compute the success probability).
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