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Abstract

That a maliciously secure two-party protocol is commitment-consistent entails that its participants,
upon each execution, may supply public commitments to each other’s inputs, which naturally bind the
parties throughout the protocol. In this paper, we undertake a formal investigation of commitment-
consistency, and introduce new definitions and constructions. We describe the first protocol which is
homomorphically commitment-consistent, in that it interoperates with any homomorphic scheme (which
need only be binding, with message space a prime-order group). Our protocol introduces several new
techniques. We consider those boolean functions evaluated by polynomially many linear tests, generalizing
a notion isolated by Ishai and Kushilevitz (FOCS ’00); by doing so, we introduce new efficient arithmetic
encodings for many boolean functions. We also describe a new protocol for secure iterated multiplication
of secret-shared values, building upon the work of Lindell, Nof and Ranellucci (CCS ’18). We describe an
efficient implementation of our protocol, as well as applications in blockchains and verifiable credentials.

1 Introduction

In the classical cryptographic notion known as commit-and-prove, a prover simultaneously commits to a
witness and proves that this witness certifies the membership of some public statement (in a given NP
language). This notion stretches to the field’s earliest days; it is implicit in the work of Goldreich, Micali
and Wigderson, and is used extensively in Canetti, Lindell, Ostrovsky and Sahai [CLOS02, § 6], for example.
Special instances of this notion—targeting homomorphic commitment schemes—moreover appear in many
among today’s most widely used zero-knowledge proof protocols, including one-out-of-many proofs [GK15]
and Bulletproofs [BBB+18].

The analogous notion in secure computation has received comparatively less attention. In this latter
setting, two (say) parties first obtain or generate commitments to their inputs, and then exchange these
commitments. Finally, they run a secure computation, which moreover assures both parties that their re-
spective inputs are precisely those contained in their jointly possessed commitments. This notion is extremely
powerful. Jarecki and Shmatikov [JS07, § 1], for example, observe that a “secure committed 2PC protocol
is a much more useful tool than a standard 2PC protocol”, as such a protocol “makes it easy to ensure that
multiple instances of these protocols are executed on consistent inputs, for example as prescribed by some
larger protocol.”

We describe various concrete applications of commitment-consistency in Subsection 1.5 below; we briefly
survey these now. Commitment-consistent two-party computation facilitates, for example, a much-stronger
variant of Yao’s Millionaires’ problem, whereby the millionaires’ balances reside not just in their respec-
tive heads—where they may be trivially falsified—but rather in an ongoing, live-deployed private payment
protocol (such as Monero [NMt16] or Anonymous Zether [Dia21]), and in which the output of the proto-
col necessarily reflects these real hidden balances. It also allows users of anonymous credentials (see e.g.
[CDL16]) to securely compute upon the values endorsed within their credentials (while assuring each other
of consistency with these credentials). Informally, commitment-consistency allows parties to force each other
to use the “right” input.
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In this work, we describe the first maliciously secure, commitment-consistent two-party protocol which
works with any homomorphic commitment scheme of prime order. Crucially, our protocol accepts as inputs
explicit, previously generated commitments, and assures consistency with them. (It also supports ciphertext-
consistent computation.) Our protocol assumes only the existence of prime-order homomorphic encryption,
and can be instantiated under the DDH assumption alone. We also introduce new definitional contributions
for commitment-consistent secure computation. Indeed, following the spirit of [CLOS02, Fig. 4], we define
the commitment-consistent computation functionality as that which accepts the parties’ inputs during its
commitment phase, and computes upon them during its evaluation phase (see Definition 2.8 below).

Our core technical contribution is two-fold. On the one hand, we develop a family of novel boolean-to-
arithmetic encodings; on the other, we describe a concretely efficient protocol for two-party, commitment-
consistent secure iterated modular multiplication. These contributions directly complement each other;
indeed, our encoding technique yields arithmetic circuits (of a particular form) upon which our multiplication
protocol operates especially efficiently. We briefly summarize each of these contributions.

Targeting the application of arithmetic techniques to boolean function evaluation, we introduce a new
boolean-to-arithmetic encoding paradigm based on exact hyperplane covers. For many functions, the circuits
we obtain by this means improve upon the complexity attained by existing known boolean-to-arithmetic
encoding techniques; we mention in particular the classical encoding technique (see e.g. Cramer, Damg̊ard
and Nielsen [CDN15, Ex. 3.1]) and the more advanced construction of Ishai and Kushilevitz [IK00].1 We em-
phasize that this advance yields gains regardless of how the resulting arithmetic circuit is evaluated. Indeed,
though we indeed ultimately propose a particular mechanism, other mechanisms could just as well be used;
we mention for example the standard BGW-type family of approaches, described e.g. in Cramer, Damg̊ard
and Nielsen [CDN15, S 3.3] and in Asharov and Lindell [AL17], as well as SPDZ-type techniques [DKL+13]
(these approaches would sacrifice commitment-consistency, however). For example, our hyperplane-based
encoding for the bitwise equality function—see Example 3.29—yields a constant-depth, linearly-sized arith-
metic encoding of that function; the classical technique [CDN15, Ex. 3.1] yields a logarithmic-depth circuit
in the best case, while [IK00] yields a constant-depth, but quadratically-sized, arithmetic circuit.2

Informally, the key insight of our approach is that we exploit size of the field in a novel way. Both
[CDN15, Ex. 3.1] and [IK00] operate essentially independently of the field’s characteristic q; our approach
requires that q grow exponentially in n. On the one hand, this mild restriction entails that the parties’ inputs
be relatively “small” (or that the field be large); on the other, it yields smaller and more efficient circuits. To
illustrate this, we continue with the example of the equality function of Example 3.29. For this function, the
input-size restriction entails that the parties’ bitstrings be of length less than log3 2 ·(log2 q+1); for standard
fields, for which dlog2 qe = 256 say, this entails that the parties’ individual bitstrings each be of length at
most n

2 ≤ 162 bits (actually, an improvement to n
2 ≤ dlog2 qe = 256 bits is possible, but we omit this, for

expository purposes). In exchange for this length restriction, one obtains a constant-depth, linearly-sized
encoding. No arithmetic encoding of this function matching this efficiency has been previously reported.

Indeed, our encoding for the function fn of Example 3.29 is quite unusual. Among other things,
it demonstrates that, by evaluating just one Fq-linear function over n input bits, one can determine
whether the input string’s even-indexed and odd-indexed n

2 -bit substrings are equal. Roughly, on input

x = (x0, . . . , xn−1) ∈ {0, 1}n, our encoding proceeds by interpreting the n
2 differences (x2i − x2i+1)

n/2−1
i=0 —

each taking values in {−1, 0, 1}—as the trits of an integer encoded in length-n2 balanced ternary ; it then
computes a natural powers-of-3 combination of these trits. Crucially, if q is sufficiently large—specifically, if

q > 3n/2

2 —then this combination is guaranteed not to overflow or underflow modulo q, and so equals 0 pre-
cisely when the two bitstrings are equal, as desired. Finally, we must further multiply the resulting value by
a random Fq-element, in order to preserve privacy; indeed, after doing so, we obtain a scalar which is either
0 or random—depending on whether fn(x) is 1 or 0—and so reveals only fn(x) (and nothing further about
x). The resulting circuit thus consists only of linear operations, followed by a single field multiplication.

1A arithmetic encoding over Fq of a boolean function fn : {0, 1}n → {0, 1} is an arithmetic circuit Cn over Fq , for which, for
each boolean input x ∈ {0, 1}n, Cn(x) = fn(x). We actually target a certain relaxation whereby Cn may have random inputs,
and, for each x ∈ {0, 1}n, the output distribution Cn(x) depends only on f(x). We refer to [IK00, § 2.1] for further discussion.

2Indeed, any boolean circuit evaluating fn : (x0, . . . , xn−1) 7→
∧n/2−1

i=0 (x2i ⊕ x2i+1) must have depth at least dlogne (this
elementary fact follows from e.g. Vollmer [Vol99, Ex. 3.1]), and the transformation [CDN15, Ex. 3.1] is depth-preserving.
The transformation of [IK00] induces a constant-depth circuit whose size grows quadratically in fn’s nondeterministic mod-q
branching program complexity; this latter complexity measure grows as Ω(n) on the bitwise equality function fn.
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We further note the following geometric interpretation of our above construction. Indeed, it consists of

no more and no less than the construction of a hyperplane H ⊂ Fnq—specifically, that defined by
∑n/2−1
i=0 3i ·

(x2i − x2i+1) ≡ 0 (mod q)—whose intersection with the discrete unit cube {0, 1}n ⊂ Fnq consists precisely of
those bitstrings x ∈ {0, 1}n for which fn(x) = 1. In fact, this generic condition has been identified before; it
appears precisely as [IK00, Def. 5.4 1.], for example. Our first observation, then, is that the class of boolean
functions which “test a linear condition” over Fq is more interesting than previously known (at least if q is
assumed large); indeed, it contains useful boolean functions.

More generally, however, we introduce the consideration of boolean functions evaluated by a polyno-
mial number of linear tests (as opposed to just one); this directly generalizes Ishai and Kushilevitz [IK00,
Def. 5.4 1.]. Indeed, our encoding technique, geometrically speaking, consists of exactly covering the “on-set”
or “off-set” S ⊂ {0, 1}n of some particular boolean function (that is, the set of input bitstrings upon which
it evaluates to true or false, respectively) with a polynomial number of affine hyperplanes over a large prime
field Fq. The encodings we obtain in this way often improve the complexity of previously known encodings.
Indeed, as a further example, we represent the unsigned integer comparison function fn on two n

2 -bit un-
signed integers as a collection of n2 Fq-affine-linear tests (see Example 3.30). Our representation’s correctness

requires that q ≥ 3
2 · 2

n/2. Our representation in turn yields an arithmetic encoding of fn of O(log n) depth,
which uses only n

2 field multiplications. This significantly surpasses—albeit not asymptotically in this case—
the efficiency of [CDN15, Ex. 3.1] (even assuming that this latter method is applied to a log-depth boolean
comparator circuit). It also asymptotically improves upon [IK00] in size, though not in depth.

Slightly more formally, we isolate two key new complexity classes—which we call H and co-H—consisting
of those boolean functions whose on-sets and off-sets (respectively) admit exact coverings by polynomial-
cardinality collections of affine hyperplanes (over an appropriately sized prime field). These definitions
represent the first use within cryptography of exact hyperplane covers, which, in fact, are classically studied
within algebraic combinatorics (see e.g. [AF93] and [AGG+21]; we refer to 1.1 for further discussion). We
prove that these classes are large and expressive, by relating them to a generic family of cube subsets known
as piecewise constant codes (see Subsections 1.2 and 3.1). Using this result, we devise many examples and
constructions; the further concrete examples we treat include those functions decided by depth-two circuits
(Theorem 3.14), symmetric functions (Theorem 3.24), assessors of the disjointness of sets (Example 3.15), the
indicator functions of piecewise constant codes (Example 3.31), and more. Our constructions, in general, are
new and striking. We finally undertake a thorough complexity-theoretic investigation of H and co-H, and
relate them to known classes (we survey and present these results in Subsections 1.1 and 3.2, respectively).

Our second major contribution consists of a cryptographic protocol for the secure evaluation of functions
in H or co-H. Our key subprotocol is a commitment-consistent, iterated modular multiplication technique for
secret-shared values. This protocol is interesting in its own right; it consists of a subtle, recursive extension
of the two-argument multiplication protocol given in Lindell, Nof and Ranellucci [LNR18, § 6.1]. Indeed, our
adaptation—compared to the näıve approach, in which that protocol is carried out repeatedly in a tree-like
manner—cuts roughly in half the number of times which certain among its key subfunctionalities must be
invoked. We summarize this protocol in Subsection 1.3 and describe it in full in Subsection 4.2.

1.1 Hyperplane coverings in mathematics and cryptography

We now describe in slightly more detail our definition and investigation of the complexity classes H and
co-H. Purely for notational convenience, we let n be even in what follows. An intersection pattern between
a hyperplane and the discrete unit cube is a subset C ⊂ {0, 1}n of the form C = {0, 1}n ∩ H, where
H ⊂ Fnq is an affine hyperplane (we only consider hyperplanes over prime fields in this work). The study of
intersection patterns goes back at least to Littlewood and Offord [LO43]. Indeed, the classical Littlewood–
Offord problem asks, essentially, how large an intersection pattern H ∩ {0, 1}n can be, specifically under
the assumption that H’s coefficients are nonzero. (If 0 coefficients are allowed, then the large intersection
|H ∩ {0, 1}n| = 2n−1 may be trivially attained, by the hyperplane x0 = 1, for example.) Treating a finite-field
analogue of the Littlewood–Offord problem (the original problem was posed over C), Griggs [Gri93, Cor. 1],
in relatively recent work, shows that any affine hyperplane H ⊂ Fnq with nonzero coefficients necessarily

satisfies |H ∩ {0, 1}n| ≤
(
n
n/2

)
= Θ

(
2n√
n

)
(provided that q is not too small). This tighter bound is, in fact,

the best possible, attained for example by
∑n−1
i=0 xi = n

2 .
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A cube subset S ⊂ {0, 1}n is said to be exactly covered by hyperplanes {Hi}m−1
i=0 over Fq if S =

⋃m−1
i=0 Hi∩

{0, 1}n (the latter intersection is taken within Fnq ). The problem of exactly covering cube subsets by means of
collections of hyperplanes has appeared throughout a handful of prior works. The covering of a cube subset
by a single hyperplane appears implicitly in [IK00, Def. 5.4 1.]. While the entire cube may be trivially
covered by two hyperplanes, a seminal result of Alon and Füredi [AF93, Thm. 4] shows that no fewer than
n hyperplanes can exactly cover the cube minus one element (that is, the set S = {0, 1}n − {(0, . . . , 0)},
say). As n hyperplanes clearly suffice, this result is sharp (indeed, one may use the hyperplanes xi = 1, for
i ∈ {0, . . . , n− 1}). Aaronson, Groenland, Grzesik, Johnston, and Kielak [AGG+21] study various questions
around exact hyperplane coverings. For example, they estimate the worst-case number of hyperplanes
required to cover any set S ⊂ {0, 1}n, as S ranges throughout all such sets. They show nonconstructively
that this number is exponential in n. Diamond and Yehudayoff [DY22] describe a certain concrete cube
subset S ⊂ {0, 1}n which can be covered only using exponentially many hyperplanes. This set is precisely
that corresponding to pairs of disjoint subsets of {0, . . . , n2 −1}; interestingly, this latter set appears in many
celebrated works in communication complexity (see e.g. Razborov [Raz92] and Rao and Yehudayoff [RY20]).

Our work is the first to investigate exact coverability by polynomially-sized collections of hyperplanes
(in the dimension n); we are also the first to relate exact coverability by hyperplanes to computation (of
any sort). Indeed, our class H, roughly, consists of those languages L ⊂ {0, 1}∗ for which each intersection
L ∩ {0, 1}n admits a polynomial -cardinality covering by hyperplanes over Fq (where q is some n-bit prime);
we write co-H for H’s language-wise complement. (The relationship between H and co-H is analogous to
that between NP and co-NP; we give further details in Section 3 below.) Beyond its direct cryptographic
import, our isolation of the classes H and co-H seems to be of general theoretical significance. Indeed, the
exact characterization of H and co-H is an extraordinarily difficult problem; in a series of mathematical
results, we achieve a rather complete characterization of these classes, as they relate to more classical classes
in circuit complexity. We show, for example, that Σ2 ⊂ H and Π2 ⊂ co-H (Theorem 3.14), as well as that
H 6⊂ AC0 and co-H 6⊂ AC0 (Corollary 3.27). We also present various negative containment results on these
classes. Exploiting the work of Diamond and Yehudayoff [DY22], we establish the non-inclusions Π2 6⊂ H
and Σ2 6⊂ co-H (see Theorem 3.18 below); we derive as corollaries the further non-inclusions AC0 6⊂ H and
AC0 6⊂ co-H (see Corollary 3.20). We further conclude that H 6= co-H (see Corollary 3.21); this difficult

result is interesting, in light of its rough resemblance to the conjectured relationship NP
?

6= co-NP. Finally,
we prove the upper containments H ⊂ NC1 and co-H ⊂ NC1 (see Theorem 3.32).

1.2 Hyperplane coverings from piecewise constant codes

Our main technical tool for our study of H and co-H consists of a key sequence of mathematical lemmas
(see Subsection 3.1) which relate coverability by hyperplanes to a certain coding-theoretic construction.
Interestingly, our hyperplane constructions sketched above all arise as special cases of this general result.

We explain our approach as follows. Piecewise constant codes (see e.g. [CHLL97, § 3.3]) constitute a large
and tractable class of codes, with a rich combinatorial structure. Each such code S ⊂ {0, 1}n is expressed
with the aid of a positive integer partition n = n0 + · · ·+nt−1 (in the number-theoretic sense) and a certain
multidimensional, (n0 +1)×· · ·× (nt−1 +1)-sized integer array; the piecewise constant codes S (with respect
to this particular partition) are identified exactly by “filling in”—that is, selecting—certain cells within this
array. Our core mathematical result shows that many piecewise constant codes admit polynomial-cardinality
hyperplane coverings. To show this, we isolate a certain key structure within the multidimensional array
associated to a piecewise constant code, which we call a “quasicube”. In a central lemma (Lemma 3.9
below), we show that the cube subset C ⊂ {0, 1}n represented by any particular quasicube can be also be
expressed as a hyperplane intersection pattern C = H ∩ {0, 1}n, for an appropriate hyperplane H ⊂ Fnq
over any sufficiently large prime field (indeed, it’s enough that q have n bits). It follows immediately (see
Theorem 3.12) that every “compact” piecewise constant code S ⊂ {0, 1}n—specifically, every code whose cell
representation can be covered by polynomially many quasicubes (and, as a special case, every code with only

polynomially many filled cells)—can be represented as a polynomial-cardinality union S =
⋃m−1
i=0 Hi∩{0, 1}n

of intersection patterns. We also give evidence that this characterization is sharp, in the sense that subsets
S ⊂ {0, 1}n which don’t admit compact representations of this form also lack efficient hyperplane coverings
(see Example 3.16, Lemma 3.17 and Theorem 3.18).
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1.3 From hyperplane coverings to committed two-party computation

We now survey in slightly further detail our cryptographic techniques. We introduce several new crypto-
graphic protocols, which, in conjunction, serve to securely compute with commitment-consistency any set
S ⊂ {0, 1}n expressed as a union S =

⋃m−1
i=0 Hi ∩ {0, 1}n of intersection patterns. Our protocol requires

O(logm) rounds, O(n ·m) computation, and O(m) communication; in particular, it is efficient when m grows
polynomially in n. Our protocol involves the use of public-key primitives of prime order q; it can be securely
instantiated under the DDH assumption alone. (Though our techniques appear to generalize readily to the
multiparty setting, we refrain from treating it explicitly in this work.)

We sketch now the rough idea of our main protocol, which we specify explicitly in Protocol 4.18. Roughly
speaking, the parties P0 and P1, given an even integer n, a function fn : {0, 1}n → {0, 1}, and a hyperplane
covering f−1

n (1) = ∪m−1
i=0 Hi ∩ {0, 1}n (say), on inputs x0 and x1 in {0, 1}n/2, begin by additively Fq-secret-

sharing each of their input bits individually. Each party, for each of its input bits, sends one additive share
of that bit to the opposite party in the clear, and moreover gives the other party a random homomorphic
encryption of the remaining share (under an additively shared, jointly owned public key). Each party
moreover proves—using a protocol of Groth and Kohlweiss [GK15, Fig. 1]—that its inputs are indeed bits;
each party simultaneously proves, using a standard protocol, that these latter bits give exactly the binary
representation of an appropriate prior, committed value.

Upon completing this initial exchange, the parties hold complementary additive shares of each of the
input bits (x0, . . . , xn−1) of the joint argument x ∈ {0, 1}n; they also hold random encryptions of the other
party’s vector of shares. At this point, they may evaluate the sequence of hyperplanes H0, . . . ,Hm−1 covering
f−1
n (1), both on their plaintext shares and, simultaneously, on their ciphertexts representing the other party’s

shares. In this way, they obtain respective additive sharings of the outputs under the hyperplanes {Hi}m−1
i=0

of their joint input, as well as encryptions of the opposite party’s shares of these outputs (which serve to
“check the other party’s work”).

The hypothesis that f−1
n (1) =

⋃m−1
i=0 Hi ∩ {0, 1}n, in light of the homomorphic properties of hyperplane

evaluation, now implies that fn(x) = 1 if and only if at least one of the parties’ now-held additive output
sharings would yield zero if it were reconstructed. We observe that—to determine whether any such re-
construction to zero would take place—the parties may simply securely multiply their m additively shared
outputs. If the parties moreover securely multiply the resulting product with a further shared random scalar,
the resulting product is then either 0 or uniformly random, depending on fn(x); the parties thus learn the
result fn(x) (and nothing more). We thus turn to the problem of secure, commitment-consistent iterated
modular multiplication.

Interestingly, two-multiplicand secure two-party multiplication has received extensive recent attention,
in connection with threshold ECDSA signing; indeed, it is precisely the central task of Lindell, Nof and
Ranellucci [LNR18, § 6.1]. In that paper, an “underlying” private multiplication protocol—like that of
Doerner, Lee, Kondi and shelat [DKLs18, Prot. 8]—which is private, but cannot guarantee consistency with
already-held ciphertexts, yields, together with a higher-level protocol [LNR18, Prot. 4.7], an overall protocol
which guarantees privacy and consistency with prior ciphertexts.

Our protocol introduces interesting new techniques, which target the setting in which the parties must
conduct Θ(m) secure multiplications (as opposed to a constant number). Indeed, we propose a tree-like, re-
cursive variant of [LNR18, Prot. 4.7], and describe several new optimizations. In each round, the parties begin
by vectorizing a number of underlying multiplications, handling a single layer of the tree. Moreover, we adapt
and extend [LNR18]’s two-multiplicand consistency protocols to our hierarchical setting. We observe that
the product protocol [LNR18, Prot. A.3] acts asymmetrically on its arguments, and, in particular, requires
that the parties hold openings only of one of its multiplicands. Our protocol accordingly asymmetrically
treats the parties’ even-indexed and odd-indexed tree nodes; in particular, after assuming by induction that
openings exist for each even-indexed multiplicand, we perform the reconstruction steps [LNR18, Prot. 4.7
(2) (c) – (4) (a)] only at those adjacent leaf-pairs whose parent node occupies an even index in its layer.
Our approach significantly bests the efficiency of the näıve strategy (in which reconstruction takes place at
every leaf-pair). We believe that the resulting protocol, Protocol 4.8, is of independent interest.
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1.4 Comparison to prior work in commitment-consistency

The explicit treatment of commitment-consistent secure computation is the literature is rather sparse. Lindell
and Rabin [LR17], for example, note that an initial “input commitment” phase is “the norm in all known
protocols”, though mention in a footnote that “In some cases, it is more subtle and the inputs are more
implicitly committed; e.g., via oblivious transfer. However, this is still input commitment.” Our goal in this
paper is to study explicit input-consistency with commitments; specifically, it’s crucial that the commitments
be generated externally, and supplied as inputs to the protocol. In particular, it does not suffice if the inputs
are “committed” only implicitly, at some point during the course of the execution of the protocol.

Our protocol is decidedly less concretely efficient than, say, garbling-based approaches (we note, for
example, that of Katz, Ranellucci, Rosulek, and Wang [KRRW18]). Those approaches, however, do not
yield commitment-consistency, and so would represent an “unfair” comparison. Indeed, we do not claim to
best the concrete efficiency of two-party malicious protocols which don’t guarantee commitment-consistency.

One may, in theory, obtain commitment-consistency generically, by encoding some particular scheme’s
commitment function within an explicit boolean circuit, and applying a generic technique for two-party
boolean circuit evaluation. While this approach is presumably suitable for commitment schemes based on
symmetric constructions, it’s unfeasible for typical homomorphic commitment schemes (like the Pedersen
scheme), whose commitment functions invoke public-key operations. Indeed, elliptic curve scalar multiplica-
tion is far too complex to encode in a “flattened” boolean circuit (i.e., one represented as a flat list of gates,
with no reusable submodules or sequential logic)3.

In certain garbling schemes—specifically, in ones in which the evaluator conveys its inputs using an
elliptic-curve-based instantiation of oblivious transfer—it may be possible to bind the evaluator’s inputs
to public commitments (at least under certain particular schemes, like Pedersen’s). It is not obvious how
the garbler’s inputs could be bound to commitments. We emphasize that our protocol is “bilaterally”
commitment-consistent, in that both parties’ inputs are symmetrically bound to commitments.

Interestingly, a work of Jarecki and Shmatikov [JS07] explicitly targets commitment-consistent, mali-
ciously secure two-party computation. That protocol, however, works only with a particular, Camenisch–
Shoup-style commitment scheme, itself based on Paillier-like groups of unknown order. Our protocol works
over prime-order groups, and allows arbitrary such commitment schemes (our protocol treats its commitment
scheme in a black-box manner, and requires only that its commitment function be an Fq-homomorphism).

Frederiksen, Pinkas and Yanai [FPY18] present a “compiler” which bootstraps any commitment scheme
of prime order into a secure multiparty protocol for arithmetic circuits. Their protocol does not obviously
interoperate with externally supplied commitments; indeed, it begins with commitments to random values,
which are unrelated to prior reference commitments. It may be possible that their work could be adapted
to this purpose, but this capability is not made explicit. Their protocol targets only arithmetic circuits, and
does not support the evaluation of boolean functions, though it perhaps could be made to do so (possibly with
the aid of the “bit proofs” of Groth and Kohlweiss [GK15, Fig. 1]). If it were to be used in this way, then that
protocol could in fact be used directly on our new boolean-to-arithmetic encodings, instead of on classical
encodings, and in doing so accrue corresponding efficiency gains (though without commitment-consistency).
Finally, their protocol is not implemented, and its concrete efficiency seems uncertain.

We mention finally the “SPDZ-type” family of protocols for secure arithmetic circuit evaluation (see for
example Damg̊ard, Keller, Larraia, Pastro, Scholl, and Smart [DKL+13]). While these protocols, again,
likely beat ours in concrete efficiency, they do not offer commitment-consistency, and so would make for an
unfair comparison. Finally (like [FPY18]), the SPDZ protocols target arithmetic circuits. Though they could
possibly be adapted to the boolean and commitment-consistent setting, this adaptation would necessarily
mandate the use of new zero-knowledge proofs (for commitment-consistency at each input wire, as well as to
prove that the inputs are indeed bits [GK15, Fig. 1]). This transformation would thus introduce public-key
operations at each input wire, and thereby void the efficiency of these protocols (which itself stems from from
their use of information-theoretic MACs). It is possible that the resulting protocol would be comparable in
efficiency to ours, but it is not clear; it would moreover require preprocessing, which our protocol does not.
In any case, that protocol could also be used on our new boolean-to-arithmetic encodings to great effect.

3We conducted an interesting experiment in this direction. We were able to fully specify the Pedersen scheme over the binary
Koblitz curve K-233 using purely combinational logic in Verilog. Our attempt to flatten this circuit using the open-source
synthesis tool Yosys was prohibitively memory-intensive, and exhausted the memory of a cloud machine with 384 GB of RAM.
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In general, our task is to demonstrate the theoretical and practical feasibility of explicit commitment-
consistency; we intend for our work to be only the first in this important branch of research.

1.5 Applications of commitment-consistency

We now survey possible applications of commitment-consistency. We argue that commitment-consistency
is a crucial ingredient in meaningful real-life secure computation. Indeed, in most practical applications of
secure computation, it’s not enough that the protocol to be “secure”; in addition, the parties must use the
“right” input. We describe real-life examples of this phenomenon below.

1.5.1 Secure computation over private account balances

A private payment scheme specifies a privacy-preserving representation of value, as well as a protocol by
which this value may be transferred, which itself moreover guarantees both privacy (regarding amounts
transferred, the identities of transactors, or both) and soundness (e.g., conservation of value). Zerocash
[BSCG+14] and Monero [NMt16] are classic examples in the “UTXO model”; an “account-based” approach
was developed in Zether [BAZB20] and Anonymous Zether [Dia21]. Private payment protocols work natu-
rally with blockchains (which serve to preserve their state and effect transaction verification).

In a key illustration of the utility of its commitment-consistency, our protocol allows two parties to run
secure computations over hidden monetary values enshrined within some larger, ongoing private payment
protocol. This feature is perhaps especially appealing in account-based systems like Anonymous Zether,
where users’ holdings are “consolidated” into single accounts (as opposed to being dispersed across UTXOs).
As an important special case, two parties could, for example, compare their live balances within an ongoing
private payment protocol. This capability yields a much-stronger variant of Yao’s Millionaires’ problem, in
which the two millionaires’ balances are real (and cannot be falsified). Indeed, the boolean integer comparison
function has an efficient hyperplane covering (see Example 3.30 below).

We note that many existing zero-knowledge proof constructions explicitly target committed values; we
recall for example those of Groth–Kohlweiss [GK15], Bünz et al. [BBB+18], and Diamond [Dia21]. These
latter protocols, naturally, appear routinely in blockchains, where their commitment-consistency plays a cen-
tral role. Philosophically, our work extends the “commitment-native” tradition initiated by these protocols
to the setting of two-party computation, and promises analogous applications.

1.5.2 Secure computation over credentials

Direct anonymous attestation is a powerful and complex cryptographic paradigm, in which platforms are
issued credentials by certain authorities, and may unforgeably and anonymously attest to these credentials.
Each credential, more specifically, contains a secret identifier, together with a number of attributes; a platform
can selectively disclose its credential’s attributes in any given presentation. We refer to Camenisch, Drijvers,
and Lehmann for a comprehensive treatment [CDL16].

It remains currently unfeasible for two holders of such credentials to securely compute over the attributes
concealed within their credentials (while mutually assuring each other of consistency with these credentials).
Our protocol’s commitment-consistency makes this capability almost immediate.

In fact, our protocol is moreover compatible with the unlinkability property central to these schemes;
more precisely, each party may couple its execution of our protocol with a standard verifiable presentation
of its credential (successive such presentations can be linked only when the presenter wants them to be).
For example, in the direct anonymous attestation scheme of [CDL16], a “credential” is essentially a vector
of scalars, together with a “BBS+” signature over that vector (this signature can be procured even when
some or all of the vector’s underlying quantities are hidden). A presentation of such a credential reveals
some of its underlying vector’s components, and moreover proves knowledge of its associated signature. It
is straightforward to attach to such a presentation further commitments, which provably contain precisely
those messages which were hidden during the presentation. These latter commitments can be linked to the
inputs of a secure computation, using our protocol.
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1.6 Concrete efficiency

Our protocol is concretely implemented, and is practical. In Subsection 4.4, we describe a full implementation
of our protocol. For the sake of our benchmarks, we specialize fn to the integer comparator function (see
Example 3.30). Our protocol is practical, and runs over a WAN in about as much time as a private
cryptocurrency transaction takes to generate (see e.g. [Dia21] for an overview). Specifically, on the function
f64 : {0, 1}64 → {0, 1} which compares two 32-bit unsigned integers, our protocol runs in about 2.5 seconds
of wall time over a WAN, and requires exchanging about 1,500 kilobytes. The majority of our protocol’s
bandwidth overhead is inherited from the multiplication subprotocol [DKLs18, Prot. 8]. We give further
details in Subsection 4.4.

1.7 A further prior work

We mention a further important progenitor of our work, in the form of Wagh, Gupta, and Chandran [WGC19,
Alg. 3]. That protocol allows two semi-honest parties and a non-colluding, semi-honest third server to
compare a secret-shared integer with a fixed public integer. Though they do not characterize their protocol
in these terms, their method, in fact, entails covering the on-set of the fixed-threshold comparator function
with affine hyperplanes, and evaluating these hyperplanes “over secret-share”, before handing the resulting
outputs to the third party, who reconstructs them directly and reports whether a zero is present. Their
protocol lacks malicious security, and requires a third party; moreover, it treats only one function.

In any case, their approach is interesting, and anticipates a handful of fundamental features of our work.
For example, they notice that their particular hyperplane covering requires only the mild inequality q > n;
indeed, they set n = 64, and use the unusually small prime q = 67. This works because their particular on-set
is actually a subcube (see Subsection 2.3 for definitions); for this simple class of cube subsets, hyperplane
coverings exist even for small q (we discuss this in Subsection 3.2; see e.g. Theorem 3.14). In general, the
functions we treat require much larger q, say in the range {2n−1, . . . , 2n − 1} (see Lemma 3.9).

2 Definitions and Notation

By the “natural numbers”, represented by the symbol N, we shall mean the positive integers. That a number
q has n bits means that it resides in {2n−1, . . . , 2n − 1}. Bertrand’s postulate, a corollary of a weak form of
the prime number theorem, implies that primes q ∈ {2n−1, . . . , 2n − 1} necessarily exist for each n (see e.g.
Montgomery and Vaughan [MV06, § 2.2]).

2.1 Linear and affine algebra

We refer to Cohn [Coh82] for preliminaries on algebra.
We write q for an odd prime, and Fq for the finite field of order q (see e.g. [Coh82, § 6.3]). We

have the standard notions of vector spaces over Fq (see e.g. [Coh82, § 4.1]) and of Fq-homomorphisms, or
maps, between vector spaces (see [Coh82, § 4.2]). A hyperplane is a non-degenerate affine-linear functional
H : Fnq → Fq (see Cohn [Coh82, § 4.8]). Each hyperplane admits an expression H : (x0, . . . , xn−1) 7→
a0 · x0 + · · · + an−1 · xn−1 − v, for appropriate field elements a0, . . . , an−1, v in Fq. We often identify
hyperplanes H with their nullsets

{
x ∈ Fnq

∣∣H(x) = 0
}
⊂ Fnq .

By an intersection pattern over Fq, or an Fq-intersection pattern, we will mean a (possibly empty) set
S ⊂ {0, 1}n of the form S = H ∩ {0, 1}n for some hyperplane H ⊂ Fnq (see e.g. [AGG+21, p. 5]).

The following basic result occasionally allows us to replace affine-linear algebra with linear algebra:

Lemma 2.1. For each x ∈ {0, 1}n, there exists an invertible Fq-affine-linear map ox : Fnq → Fnq which maps
{0, 1}n to itself and sends x to the origin.

Proof. We write the coordinates of x as (x0, . . . , xn−1). The map ox defined on y = (y0, . . . , yn−1) ∈ Fnq by:

ox(y) : (y0, . . . , yn−1) 7→

({
1− yi if xi = 1

yi if xi = 0

)n−1

i=0

clearly satisfies the desired properties.
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We note that, on the unit cube itself, ox restricts to the XOR-by-x map.

2.2 Boolean function complexity

We refer to Wegener [Weg87] and Vollmer [Vol99] for facts about the complexity of boolean functions.
A family of sets takes the form {Sn ⊂ {0, 1}n}n∈N. There is an obvious natural correspondence between
families of sets and families of boolean functions {fn : {0, 1}n → {0, 1}}n∈N (effected by associating each
boolean function to its on-set and each on-set to its indicator function). We occasionally speak of these
two objects interchangeably. The more classical notion of a language likewise arises equivalently; to each
L ⊂ {0, 1}∗, we associate the family of sets {Sn := L ∩ {0, 1}n}n∈N. In our below treatment, we refer only
to families of sets and functions, and not to languages; the notions are nonetheless equivalent.

For each natural number k, Σk and Πk denote the set families decided by polynomially-sized, unbounded
fan-in, layered circuits with an OR or an AND gate at the output (respectively) and k alternating layers
of gates subsequently, and with negations only applied to the inputs (see [Weg87, § 11 Def. 1.1]). By
De Morgan’s laws, the classes Σk and Πk are element-wise complements, for each k. The class AC0 is
defined as

⋃∞
i=0 Σk ∪Πk (see [Vol99, Def. 4.5]). The class NC1 denotes the class of set families decided by

polynomially-sized, bounded fan-in, O(log n)-depth circuits (see [Vol99, Def. 4.1]). The fact that unbounded
fan-in gates can be converted into log-depth trees of bounded fan-in gates implies that AC0 ⊂ NC1 (see
[Vol99, Prop. 1.17]).

2.3 Coding theory

We refer to Cohen, Honkala, Litsyn, and Lobstein [CHLL97] for preliminaries on covering codes. A code

is a subset S ⊂ {0, 1}n. A subcube is a set of the form C =
{

(x0, . . . , xn−1) ∈ {0, 1}n
∣∣∣ ∧k−1

i=0 xci = yi

}
,

where {c0, . . . , ck−1} ⊂ {0, . . . , n − 1} is a subsequence and y0, . . . , yk−1 are binary constants. The Ham-
ming distance between elements x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) of {0, 1}n is d(x,y) :=
|{i ∈ {0, . . . , n− 1} | xi 6= yi}|. The weight of an element x ∈ {0, 1}n is w(x) := d(x,0). The radius-r
Hamming ball around a point x ∈ {0, 1}n is the set Br(x) = {y ∈ {0, 1}n | d(x,y) ≤ r}. A code S ⊂ {0, 1}n
is an r-covering code if

⋃
x∈C Br(x) = {0, 1}n. A code S’s covering radius R is the smallest r for which it’s

an r-covering code. An (n,K)R code is a K-element code S ⊂ {0, 1}n with covering radius R.
Piecewise constant codes were introduced in Cohen, Lobstein and Sloane [CLS86], and are further dis-

cussed in [CHLL97, § 3.3]; we recall their definition here. By a partition of a natural number n, we shall mean
a partition of the set {0, . . . , n− 1} into nonempty subsets. We define the refinement relation on partitions
in the obvious way. We slightly abuse notation by referring to partitions only by the sorted sizes of their
constituent subsets; that is, we describe any given partition of n using the notation n = n0 + · · · + nt−1,
identifying all partitions which differ by a permutation of {0, . . . , n − 1} (this latter notation matches the
classical number-theoretic notion of partition). Given a natural number n and a partition n = n0 +. . .+nt−1,
we correspondingly split each element x ∈ {0, 1}n into segments x0 ‖ · · · ‖ xt−1 of appropriate lengths.

Definition 2.2. S ⊂ {0, 1}n is piecewise constant with respect to the partition n =
∑t−1
i=0 ni if, provided S

contains any word x0 ‖ · · · ‖ xt−1 with w(x0) = w0, . . . , w(xt−1) = wt−1, then S contains all such words.

Each piecewise constant code S ⊂ {0, 1}n—with respect to the partition n = n0 + . . .+nt−1—say, can be
represented with the aid of a certain (n0 +1)×· · ·×(nt−1 +1) multidimensional array, some of whose cells are

“filled in” (see e.g. [CLS86, Fig.s 3.1 and 3.2]). Indeed, each multi-index (w0, . . . , wt−1) ∈
∏t−1
i=0{0, . . . , ni} in

the array represents exactly those words x0 ‖ · · · ‖xt−1 ∈ {0, 1}n satisfying w(x0) = w0, . . . , w(xt−1) = wt−1.

Definition 2.3. S’s cell representation is the subset Ŝ ⊂
∏t−1
i=0{0, . . . , ni} consisting of those multi-indices

(w0, . . . , wt−1) for which S contains any, and hence every, word x0‖· · ·‖xt−1 ∈ {0, 1}n with
∧t−1
i=0 w(xi) = wi.

Each cell (w0, . . . , wt−1) ∈
∏t−1
i=0{0, . . . , ni} represents exactly

∏t−1
i=0

(
ni
wi

)
words in {0, 1}n. The cardinality

of S is thus
∑

(wi)
t−1
i=0∈Ŝ

∏t−1
i=0

(
ni
wi

)
. The covering radius of a piecewise constant code S ⊂ {0, 1}n is exactly

the “covering radius” of Ŝ ⊂
∏t−1
i=0{0, . . . , ni}, where the latter space is given the “Manhattan distance” (we

refer to [CHLL97, § 3.3] for details). It is often computationally feasible to determine this latter radius.
It is sometimes convenient to go in the “opposite direction”. We record the following definition here:
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Definition 2.4. Fix a partition n = n0 + · · · + nt−1 and an arbitrary subset Ĉ ⊂
∏t−1
i=0{0, . . . , ni}. The

pullback C ⊂ {0, 1}n of Ĉ is defined by C :=
{

x0 ‖ · · · ‖ xt−1 ∈ {0, 1}
∣∣∣ (w(x0), . . . , w(xt−1)) ∈ Ĉ

}
.

Informally, the pullback C ⊂ {0, 1}n is defined to be the union, over those cells (w0, . . . , wt−1) ∈ Ĉ, of
the codewords x ∈ {0, 1}n represented by (w0, . . . , wt−1).

2.4 Basic security definitions

We give basic security definitions, following Katz and Lindell [KL21]. In experiment-based games involving
an adversary A, we occasionally use the notation A (EA(λ)) to denote the output of A within the game
EA(λ) (as distinguished from whether A wins the experiment).

Two distribution ensembles {X0(a, λ)}a∈{0,1}∗;λ∈N and {X1(a, λ)}a∈{0,1}∗;λ∈N are computationally indis-

tinguishable (see [KL21, § 8.8] and [Lin17, § 6.2]) if, for each nonuniform PPT distinguisher D, there is a
negligible function µ for which, for each a ∈ {0, 1}∗ and λ ∈ N,

|Pr[D(X0(a, λ)) = 1]− Pr[D(X1(a, λ)) = 1]| ≤ µ(λ).

The distributions {X0(a, λ)}a∈{0,1}∗;λ∈N and {X1(a, λ)}a∈{0,1}∗;λ∈N are statistically indistinguishable if there

is a negligible function µ for which, for each a ∈ {0, 1}∗ and λ ∈ N,∑
v∈{0,1}∗

|Pr [X0(a, λ) = v]− Pr [X1(a, λ) = v]| ≤ µ(λ).

Statistical indistinguishability implies computational indistinguishability.
We recall the definition of a group-generation algorithm G, which, on input 1λ, outputs a cyclic group

G, its prime order q (with bit-length λ), and a generator g ∈ G (see [KL21, § 9.3.2]). We recall the notions
whereby the discrete logarithm problem is hard relative to G (see [KL21, Def. 9.63]) and the decisional
Diffie–Hellman problem is hard relative to G (see [KL21, Def. 9.64]).

An encryption scheme is a triple of algorithms Π = (Gen,Enc,Dec); given a keypair (pk, sk) ← Gen(1λ)
and a message m, we have an encryption procedure A← Encpk(m; r) and a decryption m := Decsk(A) (see
[KL21, Def. 12.1] for more details). We define the security of encryption schemes, following [KL21, Def. 12.5]:

Definition 2.5. The multiple encryptions experiment PubKLR−cpa
Π,A (λ) is defined as:

1. A keypair (pk, sk)← Gen(1λ) is generated and a uniform bit b ∈ {0, 1} is chosen.

2. The adversary A is given pk and oracle access to LRpk,b(·, ·).

3. A outputs a bit b′ ∈ {0, 1}.

4. The output of the experiment is defined to be 1 if and only if b = b′.

We say that Π = (Gen,Enc,Dec) has indistinguishable multiple encryptions if, for each nonuniform PPT

adversary A, there exists a negligible function µ for which Pr[PubKLR−cpa
Π,A (λ) = 1] ≤ 1

2 + µ(λ).

An encryption scheme is Fq-homomorphic, where q is prime, if its key-space is an order-q group, and, for
each key pk, the encryption function (m; r) 7→ Encpk(m; r) is an Fq-vector space homomorphism.

Example 2.6. Given a group (G, q, g)← G(1λ), we have the resulting El Gamal encryption scheme Π (see
[KL21, Cons. 12.16]), which is Fq-homomorphic. If the decisional Diffie–Hellman problem is hard relative to
G, then Π has indistinguishable multiple encryptions (see [KL21, Thm. 12.6 and Thm. 12.18]).

A commitment scheme is a pair of probabilistic algorithms (Gen,Com); given public parameters params←
Gen(1λ) and a message m, we have the commitment A := Comparams(m; r), as well as a decommitment
procedure effected by sending m and r (see [KL21, § 6.6.5] for more details). We recall the notions whereby a
commitment scheme is hiding and binding (see [KL21, Def. 6.13]). A commitment scheme is Fq-homomorphic
if, for each params, its commitment function (m; r) 7→ Comparams(m; r) is an Fq-vector space homomorphism.
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2.5 Secure two-party computation

We record security definitions for secure two-party computation. Our setting is essentially that of Lindell
[Lin17, § 6.6.2]; we recall the details here mainly for self-containedness. We have the notions of functionalities
F and protocols Π. In our two-party setting, a round consists of a single message sent from one party to
the other. We adopt a space-saving device whereby we stipulate in advance that throughout the paper, if,
during any protocol, any hybrid subfunctionality returns a failure value to any honest party at any time,
that party immediately aborts. We also omit mention of such things as session identifiers when possible.

We recall the general definition of maliciously secure two-party computation (see [Lin17, § 6.6.1]):

Definition 2.7. We fix a functionality F , a protocol Π, a real-world adversary A, a simulator S, and a
corrupt party C ∈ {0, 1}. We consider the distributions:

• RealΠ,A,C (x0,x1, λ): Generate a run of Π with security parameter λ, in which the honest party P1−C
uses the input x1−C and A controls PC ’s messages. Return the outputs of A and P1−C .

• IdealF,S,C (x0,x1, λ): Run S(1λ, C,xC) until it outputs x′C , or else outputs (abort) to F , who halts.
Give x′C and x1−C to F , and obtain outputs v0 and v1. Give vC to S; if S outputs (abort), then F
outputs (abort) to P1−C ; otherwise, F gives v1−C to P1−C . Return the outputs of S and P1−C .

We say that Π securely computes F in the presence of one static malicious corruption with abort, or that
Π securely computes F , if, for each corrupt party C ∈ {0, 1} and real-world nonuniform PPT adversary A
corrupting C, there is an expected polynomial-time simulator S corrupting C in the ideal world such that

{RealΠ,A,C (x0,x1, λ)}x0,x1,λ

c≡ {IdealF,S,C (x0,x1, λ)}x0,x1,λ
,

where the elements x0 and x1 of {0, 1}∗ are required to have equal lengths.

Our most important functionality captures the commitment-consistent computation of some fixed boolean
function fn : {0, 1}n → {0, 1}. We adopt the convention whereby P0 “owns” the even-indexed inputs and
P1 “owns” the odd-indexed inputs.

FUNCTIONALITY 2.8 (Ff—main functionality).
The functionality works with players P0 and P1, and a function fn : {0, 1}n → {0, 1}, where n is even.

• Upon receiving (commit; xν), from Pν , where xν ∈ {0, 1}n/2, Ff sends (received) to P1−ν .

• Upon receiving (evaluate) from both parties, Ff interleaves x0 and x1 to obtain the input
x ∈ {0, 1}n, evaluates v := fn(x), and outputs (evaluate, v) to both P0 and P1.

2.6 Zero-knowledge proofs

We present definitions for zero-knowledge proofs, following the monograph of Hazay and Lindell [HL10, § 6].
We fix a binary relation R ⊂ {0, 1}∗ × {0, 1}∗, whose elements (x,w) satisfy |w| = poly(|x|) for some

polynomial poly. If (x,w) ∈ R, we call x a statement and w its witness. The zero-knowledge proof of
knowledge ideal functionality, or ZKPOK functionality, works as follows:

FUNCTIONALITY 2.9 (FRzk—ZKPOK ideal functionality for the relation R).
A relation R is fixed.

• Upon receiving a message of the form (prove, x;w), FRzk stores (prove, x,R(x,w)) in memory.

• Upon receiving a message of the form (verify, x), FRzk checks whether (prove, x,R(x,w)) is in
memory. If it is, FRzk returns (verify, R(x,w)); otherwise, FRzk returns (verify, 0).

This functionality appears in e.g. [HL10, § 6.5.3], though we use a slightly nonstandard syntax.
The ZKPOK ideal functionality can be instantiated with the aid of so-called Σ-protocols. We begin with

the following abstract three-move protocol template (see [HL10, Prot. 6.2.1]):
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PROTOCOL 2.10 (General three-move protocol template for the relation R).
P and V both have a statement x. P has a witness w such that (x,w) ∈ R.

1: P sends an initial message a to the verifier V .
2: V sends a random λ-bit string e to q.
3: P sends a reply z.
4: V chooses to accept or reject based only on the data (x, a, e, z).

We have the formal notion of Σ-protocols [HL10, Def. 6.2.2], which we reproduce here:

Definition 2.11. A protocol Π of the form Protocol 2.10 is said to be a Σ-protocol for the relation R if the
following conditions hold:

• Completeness. If P and V follow the protocol on inputs (x,w) and x, respectively, where (x,w) ∈ R,
then V always accepts.

• Special soundness. There exists a polynomial-time extractor X which, given any x and accepting
transcripts (a, e, z) and (a, e′, z′) on x for which e 6= e′, outputs a witness w for which (x,w) ∈ R.

• Honest verifier zero knowledge. There exists a polynomial-time simulator M which, on inputs λ
and x, outputs a random transcript (a, e, z) distributed exactly as in an interaction between P and V.

We recall the random oracle model and the Fiat–Shamir transform (see e.g. [KL21, Cons. 13.9]). In
order to make a protocol Π of the form of Protocol 2.10 non-interactive, P and V proceed in the following
way. P submits the initial message a to the random oracle, and obtains a challenge e; the proof consists of
(a, e, z). When verifying the proof, V recomputes e from a using a second oracle query.
Σ-protocols made non-interactive in this way securely instantiate the ZKPOK ideal functionality:

Theorem 2.12. Fix a relation R and a Σ-protocol Π for R. The non-interactive protocol obtained upon
applying the Fiat–Shamir transform to Π securely instantiates the ideal ZKPOK functionality FRzk.

Proof. The theorem essentially follows from a combination of the ideas of Pointcheval and Stern [PS00,
Thm. 1] and Hazay and Lindell [HL10, Thm. 6.5.6].

Using a generalized version of the Schnorr protocol, we obtain Σ-protocols for a number of important
relations. We fix an Fq-vector space homomorphism φ : G0 → G1, and the corresponding preimage relation:

Rφ = {(h; g) | φ(g) = h}.

We have the protocol:

PROTOCOL 2.13 (Generalized Σ-protocol Πφ for Rφ).
P and V both have φ : G0 → G1 and an element h ∈ G1. P has an element g ∈ G0 such that φ(g) = h.

1: P randomly samples r ← G0, and sends V the image a := φ(r).
2: V samples e← Fq and sends e to P.
3: P sets z := r + c ·G and sends z to V.

4: V accepts iff f(z)
?
= a+ c ·H.

Theorem 2.14. The protocol Πφ is a Σ-protocol for the relation Rφ.

Proof. This is essentially proven in [HL10, §§ 6.1–6.2]; though that proof targets the Schnorr protocol, the
proof is identical in the more general setting.

The classic Schnorr protocol (see e.g. [KL21, Fig. 13.2]) specializes Protocol 2.13 to the map φ : Fq → G
sending φ : x 7→ x · g. We record further applications of Theorem 2.14 here; we will use these below.

12



Example 2.15. A well-known technique proves that a homomorphic ciphertext A encrypts 0 under the
public key pk; this protocol specializes to a “proof of Diffie–Hellman tuple” under the El Gamal scheme.
This latter protocol appears in e.g. [HL10, Prot. 6.2.4] and [LNR18, § 3.3 (2)]. We record the relation here:

RDH = {(pk,A; r) |A = Encpk(0; r)}.

This protocol arises upon specializing Protocol 2.13 to the map φ : r 7→ Encpk(0; r); using Theorems 2.12
and 2.14, we obtain a secure instantiation of the corresponding ideal functionality, which we call FDH

zk .

Example 2.16. A similar protocol can be used to prove knowledge of the message and randomness of an
El Gamal ciphertext; this relation appears in [LNR18, § 3.3 (4)]. We reproduce it here:

REG = {(pk,A;m, r) |A = Encpk(m; r)}.

To securely instantiate FEG
zk , we define φ : (m, r) 7→ Encpk(m; r), and apply Theorems 2.12 and 2.14.

Example 2.17. A further related protocol shows that two ciphertexts are related by a re-randomization
operation, and that, in particular, one encrypts 0 if and only if the other does (and moreover is random
subject to this condition). This protocol appears in [LNR18, § 3.3 (2)]. We have the relation:

RRE = {(pk,A0, A1; s, r) |A1 = s ·A0 + Encpk(0; r)}.

One may securely instantiate FRE
zk by setting φ : (s, r) 7→ s ·A0 + Encpk(0; r).

Example 2.18. Protocol 2.13 can be used to prove that two ciphertexts encrypt the same message. We
have the relation:

REqMsg = {(pk0, pk1, A0, A1;m, r0, r1) |A0 = Encpk0(m; r0) ∧A1 = Encpk1(m; r1)}.

We obtain a Σ-protocol for REqMsg upon specializing Protocol 2.13 to the map φ : (m, r0, r1) 7→
(Encpk0(m; r0),Encpk1(m; r1)). This technique appears in [FMMO19, § 6.1]. Applying Theorem 2.12, we

obtain a secure instantiation of the corresponding ideal functionality FEqMsg
zk .

Example 2.19. Using an almost identical technique, we obtain a proof that a commitment and a ciphertext
“contain” the same message. We have the relation:

RComMsg = {(params, pk,A0, A1;m, r0, r1) |A0 = Comparams(m; r0) ∧A1 = Encpk(m; r1)}.

We obtain a Σ-protocol for RComMsg from Protocol 2.13 and φ : (m, r0, r1) 7→ (Comparams(m; r0),Encpk(m; r1)).

Example 2.20. The relation RProd of [LNR18, § 3.3 (5)] allows a prover to demonstrate that a particular El
Gamal ciphertext equals the (re-randomized) scalar multiple of one ciphertext by the message of a further
ciphertext. We recall the relation here:

RProd = {(pk,A,A0, A1;m, r0, r1) |A = m ·A0 + Encpk(0; r0) ∧A1 = Encpk(m; r1)}.

The relation RProd—and a corresponding Σ-protocol for it—also arises as a specialization of Rφ above; indeed,
it’s enough to specialize Πφ to the map φ : (m, r0, r1) 7→ (m ·A0 + Encpk(0; r0),Encpk(m; r1)). Theorem 2.12
yields a secure instantiation of the resulting ideal functionality FProd

zk .

The following Σ-protocol does not arise as a specialization of Protocol 2.13.

Example 2.21. A “bit-commitment” proof shows that a public ciphertext A contains a bit. More precisely:

RBitProof = {(pk,A;m, r) |A = Encpk(m; r) ∧m ∈ {0, 1}}.

We write ΠBitProof for the protocol [GK15, Fig. 1] of Groth and Kohlweiss. We recall the following result:

Theorem 2.22 (Groth–Kohlweiss [GK15, Thm. 2]). ΠBitProof is a Σ-protocol for the relation RBitProof .

Applying Theorem 2.12, we obtain a secure instantiation of the ideal functionality FBitProof
zk .

We finally recall the “committed NIZK” ideal functionality FRcom-zk (see e.g. [LNR18, Func. 3.4]):

13



FUNCTIONALITY 2.23 (FRcom-zk—committed ZKPOK functionality R).
A relation R is fixed. There are two players, P0 and P1.

• Upon receiving a message of the form (commit-prove, x;w), from player Pν say, FRzk stores
(commit-prove, x,R(x,w)) in memory and sends (proof-receipt) to P1−ν .

• Upon receiving a message of the form (decommit-prove, x), from player Pν say, FRcom-zk

checks whether (commit-prove, x,R(x,w)) is in memory. If it is, FRcom-zk sends
(decommit-prove, x,R(x,w)) to P1−ν ; otherwise, FRcom-zk sends (decommit-prove, x, 0) to P1−ν .

As [LNR18, § 3.3] argues, FRcom-zk can be securely instantiated given a ZKPOK for R and a commitment
scheme. We thus likewise obtain analogous instantiations of FRcom-zk for each relation R discussed above.

3 Piecewise Constant Codes and Hyperplane Coverings

In this section, we study which boolean functions fn : {0, 1}n → {0, 1}—or more precisely, which sets
Sn ⊂ {0, 1}n—can be covered using polynomially many hyperplanes over an n-bit prime q.

The following definition is implicit in [AF93] and [AGG+21].

Definition 3.1. We say that a family {Hi}m−1
i=0 of affine hyperplanes in Fnq covers a subset Sn ⊂ {0, 1}n if

Sn =
⋃m−1
i=0 Hi ∩ {0, 1}n.

That is, the hyperplanes’ respective restrictions to the cube cover exactly Sn, and no further cube
elements. Equivalently, the family {Hi}m−1

i=0 expresses Sn as a union of intersection patterns.

Definition 3.2. The class H consists of those families {Sn ⊂ {0, 1}n}n∈N for which, for each n ∈ N, the
subset Sn ⊂ {0, 1}n can be covered by polynomially many hyperplanes over some fixed n-bit prime q.

That is, {Sn}n∈N is in H if and only if, for some polynomial function m = poly(n) and each n ∈ N, there

is some n-bit prime q such that Sn =
⋃m−1
i=0 Hi ∩ {0, 1}n, where each Hi ⊂ Fnq is an affine hyperplane. In

this case, we also say that the family {fn : {0, 1}n → {0, 1}}n∈N defined by fn(x) := x ∈ Sn is in H.

Definition 3.3. The class co-H consists of those families {Sn ⊂ {0, 1}n}n∈N for which, for each n ∈ N, the

complement Sn ⊂ {0, 1}n can be covered by polynomially many hyperplanes over some fixed n-bit prime q.

The family {Sn}n∈N is in co-H if and only if
{
Sn
}
n∈N is in H. In this case, we also say that the family

{fn : {0, 1}n → {0, 1}}n∈N defined by fn(x) := x ∈ Sn is in co-H.

3.1 Main theorem on piecewise constant codes and intersection patterns

Our main mathematical result shows that those sets Sn ⊂ {0, 1}n expressible as “compact” piecewise constant
codes are also coverable by polynomial-cardinality collections of hyperplanes.

We begin with a handful of definitions and lemmas. The following lemma is purely combinatorial:

Lemma 3.4. We fix a natural number n. Across all partitions n = n0 + · · · + nt−1 of n, the product
expression

∏t−1
i=0(ni + 1) is maximized by the partition n = 1 + · · ·+ 1 (where it attains the value 2n).

Proof. We fix an arbitrary partition n =
∑t−1
i=0 ni, and suppose that some summand ni > 1. Though the

term ni alone contributes (ni + 1) to the product, splitting it into the further terms 1 and (ni − 1) would
preserve the sum, and yet contribute to the product a factor of 2 ·ni, which is strictly larger than ni+ 1.

We also state the following related lemma, whose proof is similar:

Lemma 3.5. For each partition n =
∑t−1
i=0 ni for which some summand ni ≥ 3, we have

∏t−1
i=0(ni+1) ≤ 2n−1.

Though apparently new, Lemmas 3.4 and 3.5 evoke various classical problems (see e.g. Došlić [Doš05]).
There is a particular sort of pattern in a piecewise constant code’s multidimensional array which will be

of special importance to us.
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Definition 3.6. Fix n ∈ N and a partition n = n0 + · · · + nt−1. We call a subset Ĉ ⊂
∏t−1
i=0{0, . . . , ni} a

quasicube if Ĉ takes the form

Ĉ =
{

(w0, . . . , wt−1) ∈
∏t−1
i=0{0, . . . , ni}

∣∣∣ ∧k−1
i=0 wci = vi

}
,

where {c0, . . . , ck−1} ⊂ {0, . . . , t− 1} is a subsequence, and vi ∈ {0, . . . , nci} for each i ∈ {0, . . . , k − 1}.

In other words, a quasicube consists of those multi-indices some of whose components wci are bound to
fixed constants vi ∈ {0, . . . , nci}, and the rest of which are free.

Example 3.7. Each single cell {(w0, . . . , wt−1)} ⊂
∏t−1
i=0{0, . . . , ni} is obviously a quasicube (with all values

bound, so that {c0, . . . , ct−1} = {0, . . . , t− 1} and vi = wci for each i ∈ {0, . . . , t− 1}).

Example 3.8. Each code S ⊂ {0, 1}n becomes piecewise constant with respect to the “trivial partition”
n = 1 + · · · + 1. This particular partition’s corresponding cell array degenerates to the cube {0, 1}n itself,

and Ŝ = S for each S ⊂ {0, 1}n. Moreover, the quasicubes correspond exactly to the subcubes C ⊂ {0, 1}n.

The following lemma is the technical core of this section.

Lemma 3.9. Fix a natural number n ∈ N and any n-bit prime q. For each partition n = n0 + · · · + nt−1

and each quasicube Ĉ ⊂
∏t−1
i=0{0, . . . , ni}, the pullback C ⊂ {0, 1}n of Ĉ is an Fq-intersection pattern.

Proof. We prove the lemma by constructing an appropriate hyperplane. We fix n = n0 + · · · + nt−1, Ĉ,
and q as in the hypothesis of the lemma, and write {c0, . . . , ck−1} ⊂ {0, . . . , t − 1} and (v0, . . . , vk−1) ∈∏k−1
i=0 {0, . . . , nci} for the bound values guaranteed to exist by definition of Ĉ. We now define:

H : (x0, . . . , xn−1) = x0 ‖ · · · ‖ xt−1 7→
k−1∑
i=0

∏
j<i

(ncj + 1)

 ·
nci−1∑

l=0

xci,l − vi

 ,

where xci,l denotes the lth bit of the segment xci (for l ∈ {0, . . . , nci − 1}). H is clearly a hyperplane.
We now argue that H correctly satisfies H ∩ {0, 1}n = C. We prove this fact by induction on k, the

number of bound values in the quasicube. For each k∗ ∈ {0, . . . , k}, we write Ĉk∗ for the quasicube defined

by Ĉ’s first k∗ bound values (v0, . . . , vk∗−1) and Ck∗ for its pullback, and moreover consider the partial sum

Hk∗ : (x0, . . . , xn−1) 7→
∑k∗−1
i=0

∏
j<i(ncj +1)·

(∑nci−1

l=0 xci,l − vi
)

; we argue that Hk∗∩{0, 1}n = Ck∗ for each

k∗ ∈ {0, . . . , k}. In the base case k∗ = 0, there is nothing to prove. We thus fix k∗ ∈ {1, . . . , k}, and assume by
induction that Hk∗−1(x) = 0 if and only if x ∈ Ck∗−1; we moreover assume that Hk∗−1(x) (viewed as an ele-

ment of Z) resides within the symmetric integer range
{
−
∏
j<k∗−1(ncj + 1) + 1, . . . ,

∏
j<k∗−1(ncj + 1)− 1

}
for each x ∈ {0, 1}n (i.e., regardless of whether x ∈ Ck∗−1). We now consider the k∗ − 1st (i.e., high-

est) summand of Hk∗ . The inner expression
∑nck∗−1

−1

l=0 xck∗−1,l − vk∗−1 clearly equals 0 if and only if
w(xk∗−1) = vk∗−1; in any case, it moreover resides within the integer range {−nck∗−1

, . . . , nck∗−1
} (actu-

ally, it resides within {−vk∗−1, . . . , nck∗−1
− vk∗−1}, but the weaker bound is enough for now). By adding

Hk∗−1(x) to
∏
j<k∗−1(ncj + 1) times this latter expression, we see that the result Hk∗(x) has absolute value

at most: ∏
j<k∗−1

(ncj + 1)− 1 +

 ∏
j<k∗−1

(ncj + 1)

 · nck∗−1
=
∏
j<k∗

(ncj + 1)− 1.

This is exactly the range we need in order to preserve the inductive hypothesis. It remains to argue that
Hk∗(x) = 0 if and only if x ∈ Ck∗ . But x ∈ Ck∗ if and only if x ∈ Ck∗−1 and w(xck∗−1

) = vk∗−1.
If both of these are true, then both Hk∗−1(x) (by induction) and the top summand (discussed above)
equal 0, as needed. On the other hand, if either of these conditions is false, then either Hk∗−1(x) is a

nonzero element of
{
−
∏
j<k∗−1(ncj + 1) + 1, . . . ,

∏
j<k∗−1(ncj + 1)− 1

}
(by induction) or the top summand

is
∏
j<k∗−1(ncj + 1) times a nonzero element of {−nck∗−1

, . . . , nck∗−1
} (by above), or both. The sum of two

such elements cannot be zero (the sets are additively symmetric and disjoint, and no cancellation can occur).
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Completing the induction, we see that H(x), viewed as an integer, is an element of the range{
−
∏
j<k(ncj + 1) + 1, . . . ,

∏
j<k(ncj + 1)− 1

}
, which moreover equals 0 (as an integer) if and only if x ∈ C.

It remains to argue that this quantity cannot overflow modulo q (and so unduly yield the sum of 0 in Fq).
By Lemma 3.4,

∏
j<k(ncj + 1) is at most 2n. We thus see that if q ≥ 2n, then no overflow can occur.

We can weaken this requirement to q ≥ 2n−1, with a bit of extra work. Exploiting Lemmas 3.4 and 3.5,
we note that the stronger upper-bound

∏
j<k(ncj + 1) ≤ 2n−1 in fact holds unless k = t—so that all of Ĉ’s

components are bound, and
∑k−1
i=0 ni =

∑t−1
i=0 ni = n—and moreover the partition n = n0+· · ·+nt−1 consists

only of 1s and 2s (in fact, it can contain at most two 2s, but we ignore this further fact). We handle this latter
case separately using a different construction. After permuting coordinates, we may assume that the 2s occur
consecutively at the beginning; we write t∗ ∈ {0, . . . ,

⌊
n
2

⌋
} for the number for which n0 = · · · = nt∗−1 = 2

and nt∗ = · · · = nt−1 = 1. After applying Lemma 2.1, we may further assume that vt∗ = · · · = vt−1 = 0.
It follows similarly as above that the hyperplane

H : (x0, . . . , xn−1) 7→
t∗−1∑
i=0

3i · (x2i + x2i+1 − vi) + 3t
∗
·

(
t−1∑
i=t∗

x2·t∗+i

)

suffices to define C; moreover, it returns integers in the range {−3t
∗

+ 1, . . . , 3t
∗ −1 + 3t

∗ · (n−2 · t∗)}, which
is well within {−2n−1 + 1, . . . , 2n−1 − 1} regardless of t∗ ∈ {0, . . . ,

⌊
n
2

⌋
}. This completes the proof.

Remark 3.10. The proof of Lemma 3.9 can be understood from the following perspective. The individual

hyperplanes
∑nci−1−1

l=0 xci,l − vi (for i ∈ {0, . . . , k− 1}) constructed during the proof of Lemma 3.9 intersect
in a n − k-dimensional affine flat, which intersects the cube exactly at C; the challenge is to “extend”
this flat into a hyperplane without accruing new cube points. Having computed the individual hyperplanes∑nci−1−1

l=0 xci,l − vi (for i ∈ {0, . . . , k − 1}), H interprets these k individual outputs as the “digits” of a
number in a nonstandard, mixed-radix, signed-digit positional numeral system—whose respective “places”
range throughout {−nci , . . . , nci}—and returns the resulting number. The key property of this (unusual)
system is that while numbers don’t in general have unique representations, 0 does.

We now present the main result of this subsection, a consequence of Lemma 3.9.

Definition 3.11. A set family {Sn ⊂ {0, 1}n}n∈N is compact if, for each n ∈ N, Sn is expressible as a

piecewise constant code whose cell representation Ŝn admits a covering by polynomially many quasicubes.

Theorem 3.12. If a set family {Sn ⊂ {0, 1}n}n∈N is compact, then {Sn}n∈N is in H.

Proof. If Sn is piecewise constant—with respect to n = n0 + · · · + nt−1, say—and Ŝn =
⋃m−1
i=0 Ĉi for

quasicubes Ĉi ⊂
∏t−1
i=0{0, . . . , ni} (where m is polynomial in n), then likewise Sn =

⋃m−1
i=0 Ci, where, for each

i ∈ {0, . . . ,m− 1}, Ci is the pullback of Ĉi. The result follows immediately from Lemma 3.9.

Theorem 3.12 is extremely powerful, and subsumes all hyperplane-covering constructions we’re aware of.
We immediately record the following corollary:

Corollary 3.13. If a set family {Sn ⊂ {0, 1}n}n∈N is such that each Sn is expressible as a piecewise constant

code whose cell representation Ŝn consists of only polynomially many filled cells, then {Sn}n∈N is in H.

Proof. As every cell is a quasicube (see Example 3.7), the hypothesis implies that {Sn}n∈N is compact; the
result thus follows directly from Theorem 3.12.

We discuss specific consequences in the next subsection.

3.2 The complexity classes H and co-H

In this subsection, we undertake a thorough study of the complexity classes H and co-H. We establish
a number of relations—both positive and negative—between these classes and standard classes in circuit
complexity. We moreover study numerous specific examples. We use Theorem 3.12 as a primary tool in this
process. Surprisingly, many natural boolean functions fn : {0, 1}n → {0, 1} have on-sets or off-sets which
satisfy the hypothesis of Theorem 3.12. We begin with the following fundamental result:
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Theorem 3.14. Σ2 ⊂ H and Π2 ⊂ co-H.

Proof. As the two statements are equivalent, we only prove the first. Fixing an arbitrary family
{Sn ⊂ {0, 1}n}n∈N in Σ2, we have, by definition, that each Sn ⊂ {0, 1}n is coverable by polynomially
many subcubes; on the other hand, each Sn is of course piecewise constant with respect to the partition
n =

∑n−1
i=0 1 (see Example 3.8), in whose cell array these subcubes become quasicubes. The result thus

follows directly from Theorem 3.12.

More concretely, each subcube C ⊂ Sn—of the form C =
{

(x0, . . . , xn−1) ∈ {0, 1}n
∣∣∣ ∧k−1

i=0 xci = 0
}

, say,

for some subsequence {c0, . . . , ck−1} ⊂ {0, . . . , n − 1} (we assume that C contains the origin, by Lemma

2.1)—can be exactly covered by the single hyperplane H : (x0, . . . , xn−1) 7→
∑k−1
i=0 xci ; this construction is

correct provided that q > n.

Example 3.15. For even n, the function fn : (x0, . . . , xn−1) 7→
∨n/2−1
i=0 (x2i ∧ x2i+1) returns true if and only

the bitwise AND of its argument’s even-indexed and odd-indexed substrings contains a 1. Alternatively, fn
checks whether the respective subsets of {0, . . . , n2 − 1} represented by these two substrings are non-disjoint.
As the family

{
f−1
n (1)

}
n∈N is decided by a Σ2-circuit, we conclude from Theorem 3.14 that the {fn}n∈N is

in H. In fact, each fn is piecewise constant even with respect to the coarser partition n =
∑n/2−1
i=0 2; its cell

representation under this partition is a union of n
2 quasicubes (each with one component bound to 2 and

the rest free). These n
2 quasicubes collectively cover 3

n/2 − 2
n/2—an exponentially large number in n—cells;

we conclude that the relative generality of Theorem 3.12 (over and above Corollary 3.13) conveys utility.
Concretely, the hyperplanes Hi : (x0, . . . , xn−1) 7→ x2i+x2i+1−2 (for i ∈

{
0, . . . , n2 − 1

}
) suffice to compute

f−1
n (1); these are correct so long as q ≥ 3.

We now turn to the inclusions Π2

?
⊂ H and Σ2

?
⊂ co-H. We study these inclusions through the following

example, which exhibits many important properties.

Example 3.16. We continue our study of the function fn of Example 3.15, and now consider its off-set.

The function fn : (x0, . . . , xn−1) 7→
∨n/2−1
i=0 (x2i ∧ x2i+1) returns false if and only if the bitwise AND of

its argument’s even-indexed and odd-indexed substrings consists entirely of 0s. Alternatively, fn returns
false if and only if the subsets of {0, . . . , n2 − 1} represented respectively by its argument’s even-indexed
and odd-indexed substrings are disjoint. The family {f−1

n (0)}n∈N is in Π2. As before, each off-set f−1
n (0)

is piecewise constant with respect to n =
∑n/2−1
i=0 2; its cell representation under this partition is exactly

f̂−1
n (0) =

∏n/2−1
i=0 {0, 1} ⊂

∏n/2−1
i=0 {0, 1, 2}.

The family {f−1
n (0)}n∈N of Example 3.16 above gives, among other things, a set family which is not

compact in the sense of Definition 3.11.

Lemma 3.17. The set family {f−1
n (0)}n∈N of Example 3.16 is not compact.

Proof. We show that for any partition n =
∑t−1
i=0 ni of n with respect to which f−1

n (0) becomes piecewise
constant, f−1

n (0)’s resulting cell array representation requires exponentially many quasicubes to cover. To do

this, we first argue that f−1
n (0) is piecewise constant only with respect to n =

∑n/2−1
i=0 2 (and its refinements).

Indeed, we fix an arbitrary partition—say, F—of {0, . . . , n−1} which is not a refinement of {0, . . . , n−1} =⊔n/2−1
i=0 {2i, 2i + 1}, and assume for contradiction that f−1

n (0) is piecewise constant with respect to F . Our
hypothesis on F entails exactly that there exist elements j0 and j1 of {0, . . . , n−1} which belong to the same
subset F ∈ F (say), but for which {j0, j1} 6= {2i, 2i + 1} holds for each i ∈ {0, . . . , n2 − 1}. Without loss of
generality, we assume that both j0 and j1 are even. We treat separately the cases {j0, j0 + 1, j1, j1 + 1} 6⊂ F
and {j0, j0 + 1, j1, j1 + 1} ⊂ F . In the former case, we have jk + 1 6∈ F for some k ∈ {0, 1}. Because the
three components (xjk , xjk+1, xj1−k) attain the values (0, 1, 1) at some appropriate element (x0, . . . , xn−1) ∈
f−1
n (0), we conclude that f−1

n (0)’s cell representation with respect to F contains a cell for which the weights
at both {j0, j1}’s and {jk + 1}’s respective subsets of F are simultaneously positive. It follows that f−1

n (0)
contains all of this cell’s vectors, including at least one for which the components (xjk , xjk+1, xj1−k) attain the
values (1, 1, 0). This contradicts the definition of f−1

n (0). We now suppose that {j0, j0+1, j1, j1+1} ⊂ F . We
let k ∈ {0, 1} be arbitrary, and note that the components (xjk , xjk+1, xj1−k) again attain the values (0, 1, 1)
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at some appropriate element of (x0, . . . , xn−1) ∈ f−1
n (0). We conclude that f−1

n (0)’s cell representation
with respect to F contains a cell whose weight at F is at least two. This implies that the components
(xjk , xjk+1, xj1−k) also attain the values (1, 1, 0) at some element (x0, . . . , xn−1) ∈ f−1

n (0), which again

contradicts the definition of f−1
n (0). It thus remains only to treat

⊔n/2−1
i=0 {2i, 2i + 1} and its refinements.

We suppose that F is a (possibly non-strict) refinement of
⊔n/2−1
i=0 {2i, 2i+ 1}; we write f̂−1

n (0) for f−1
n (0)’s

cell representation with respect to this partition. Because
∣∣f−1
n (0)

∣∣ = 3
n/2, it suffices to argue that, for each

quasicube Ĉ satisfying Ĉ ⊂ f̂−1
n (0), the pullback C of Ĉ satisfies |C| ≤ 2

n/2. By hypothesis on F , each
adjacent tuple {2i, 2i + 1} equals the disjoint union of either one or two among F ’s subsets; moreover, by

definition of f−1
n (0), at least one of these subsets’ components must be bound for any quasicube Ĉ ⊂ f̂−1

n (0).
Expanding the various cases, we see manually that each tuple {2i, 2i+ 1} contributes a factor of at most 2
to the product expression defining C’s size (for i ∈ {0, . . . , n2 − 1}). This completes the proof.

I would like to thank Jason Long for suggesting the consideration of the function of Example 3.16.
In light of Lemma 3.17, is also interesting to ask whether the function family {fn}n∈N of Examples 3.15

and 3.16 belongs to co-H. Recent work of Diamond and Yehudayoff [DY22] settles exactly this question:

Theorem 3.18. The function family {fn}n∈N of Examples 3.15 is not in co-H.

Proof. By the main theorem of [DY22], any collection {Hi}m−1
i=0 covering f−1

n (0) must satisfy m = 2Ω(n).

The following corollaries of Theorem 3.18 are immediate:

Corollary 3.19. Π2 6⊂ H and Σ2 6⊂ co-H.

Corollary 3.20. AC0 6⊂ H and AC0 6⊂ co-H.

Corollary 3.21. H 6= co-H.

Proof. Example 3.15’s family {fn}n∈N satisfies
{
f−1
n (1)

}
n∈N ∈ H−co-H and

{
f−1
n (0)

}
n∈N ∈ co-H−H.

Even Theorem 3.18 does not furnish a function family {fn}n∈N whose on-sets and off-sets simultaneously
fail to be efficiently coverable by hyperplanes. At the cost of adding a further layer to the circuit family
deciding these functions, we easily produce such a family:

Theorem 3.22. Σ3 6⊂ H ∪ co-H and Π3 6⊂ H ∪ co-H.

Proof. The two statements are obviously equivalent, so we only prove the first. We again write {fn}n∈N
for the function family of Examples 3.15 and 3.16; we define a new family {gn}n∈N in the following way.
Fixing now n divisible by 4, we define gn : {0, 1}n → {0, 1} by setting, for each input x ∈ {0, 1}n—with
even-indexed and odd-indexed substrings x0 and x1, say—gn : x 7→ fn/2(x0)∨fn/2(x1). Clearly,

{
g−1
n (1)

}
n∈N

is decided by a Σ3 circuit.
We now fix an arbitrary element y0 ∈ f−1

n/2 (0). Given any hyperplane H ⊂ Fnq , the intersection of H with

the n
2 -dimensional affine subspace Y0 :=

{
(x0,x1) ∈ {0, 1}n/2 × {0, 1}n/2

∣∣ x0 = y0

}
of Fnq naturally induces

an affine subspace of Fn/2q of codimension at most one; we slightly abuse notation by writing H ∩ Y0 ⊂ Fn/2q
for this latter subspace. If moreover the condition H ∩ {0, 1}n ⊂ g−1

n (1) holds, then, by definition of gn,
H ∩ Y0 ∩ {0, 1}n/2 ⊂ f−1

n/2 (0) (and, in particular, H ∩ Y0 has the expected codimension of one, and so is a

nondegenerate hyperplane).

We fix any collection of hyperplanes {Hi}m−1
i=0 covering g−1

n (1). By the above discussion—and for y0 ∈
{0, 1}n/2 as above—the family of intersections {Hi ∩ Y0}m−1

i=0 satisfies Hi ∩ Y0 ∩ {0, 1}n/2 ⊂ f−1
n/2 (0) for each

i ∈ {0, . . . ,m − 1}, and in fact gives a covering of f−1
n/2 (0), containing at most m distinct hyperplanes.

Applying Theorem 3.18, we conclude that m ≥ 2Ω(n/2). This concludes the argument that {gn}n∈N 6∈ H.
We now treat the family of off-sets {g−1

n (0)}n∈N, using a similar argument. We fix an arbitrary element
y1 ∈ f−1

n/2 (1). Setting Y1 :=
{

(x0,x1) ∈ {0, 1}n/2 × {0, 1}n/2
∣∣ x1 = y1

}
, we see that each H ⊂ Fnq such that

H ∩ {0, 1}n ⊂ g−1
n (0) satisfies H ∩ Y1 ∩ {0, 1}n/2 ⊂ f−1

n/2 (0), by definition of gn. It follows as before that for

{Hi}m−1
i=0 covering g−1

n (0), the family of intersections {Hi ∩ Y1}m−1
i=0 gives a covering of f−1

n/2 (0) of cardinality

at most m, and hence that m ≥ 2Ω(n/2). We conclude that {gn}n∈N 6∈ co-H. This completes the proof.
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I would like to thank Amir Yehudayoff for suggesting the proof of Theorem 3.22.

Corollary 3.23. AC0 6⊂ H ∪ co-H.

Another important class of examples is given by symmetric functions (see e.g. [Weg87, § 3.4]).

Theorem 3.24. Any symmetric function fn : {0, 1}n → {0, 1}’s on-set and off-set can be covered by n
hyperplanes.

Proof. By definition, any such fn’s on-set and off-set are both piecewise constant with respect to the partition
n = n. Because the entire cell array of this partition has just n + 1 cells, Corollary 3.13 implies that n + 1
hyperplanes can cover these sets. In fact, it’s easy to see that n hyperplanes suffice unless fn is constant;
ad-hoc constructions (using 2 or 0 hyperplanes, as the case may be) serve to settle this latter case.

Concretely, to cover the on-set of a symmetric function fn : {0, 1}n → {0, 1}, it suffices to use the

hyperplane Hi : (x0, . . . , xn−1) 7→
∑n−1
i=0 xi − i to cover the pullback of each filled cell i ∈ {0, . . . , n} (i.e.,

corresponding to each i for which {x ∈ {0, 1}n | w(x) = i} ⊂ f−1
n (1)). This is correct so long as q > n.

Remark 3.25. The upper bound of Theorem 3.24 is the best possible, as is demonstrated by the classic
lower bound of Alon and Füredi [AF93, Thm. 4] (concerning fn : (x0, . . . , xn−1) 7→

∨n−1
i=0 xi).

Example 3.26. The majority function fn : (x0, . . . , xn−1) 7→
∑n−1
i=0 xi ≥

⌈
n
2

⌉
is obviously symmetric; we

conclude from Theorem 3.24 that f−1
n (0) and f−1

n (1) are each coverable by at most n hyperplanes (in fact,⌈
n
2

⌉
and

⌊
n
2

⌋
suffice, respectively).

Corollary 3.27. H 6⊂ AC0 and co-H 6⊂ AC0.

Proof. We refer to Example 3.26 and the fact that majority is not in AC0 (see [Weg87, Cor. 3.32]).

Example 3.28. For even n, the Hamming-weight comparator function fn : (x0, . . . , xn−1) 7→
∑n/2−1
i=0 x2i −

x2i+1 ≥ 0 differs from majority by pre-composition with the affine bijection (x0, . . . , xn−1) 7→ (x0, 1 −
x1, . . . , xn−2, 1− xn−1). Example 3.26 thus shows that f−1

n (1) can be covered using n
2 hyperplanes.

The following examples are extremely useful in practice.

Example 3.29. For even n, the function fn : (x0, . . . , xn−1) 7→
∧n/2−1
i=0 (x2i ⊕ x2i+1) checks whether

its argument’s even-indexed and odd-indexed substrings are equal. By applying the affine-linear bijec-
tion (x0, . . . , xn−1) 7→ (x0, 1 − x1, . . . , xn−2, 1 − xn−1), we see that it’s enough to consider the function

fn : (x0, . . . , xn−1) 7→
∧n/2−1
i=0 (x2i ⊕ x2i+1). This latter function fn’s on-set f−1

n (1) ⊂ {0, 1}n is piecewise

constant with respect to the partition n =
∑n/2−1
i=0 2, represented moreover by the single cell (1, . . . , 1) ∈∏n/2−1

i=0 {0, 1, 2}. Applying Lemma 3.9, we see that H : (x0, . . . , xn−1) 7→
∑n/2−1
i=0 3i ·(x2i + x2i+1 − 1) satisfies

f−1
n (1) = H∩{0, 1}n. Interestingly, this hyperplane returns exactly the integer whose balanced ternary repre-

sentation is (x2i+x2i+1−1)
n/2−1
i=0 ; it is correct so long as q exceeds the n

2 -trit ternary “bias”
∑n/2−1
i=0 3i = 3n/2−1

2 .

Example 3.30. Again for even n, we consider the integer comparison function fn : (x0, . . . , xn−1) 7→∑n/2−1
i=0 2i · (x2i − x2i+1) > 0 (true if and only if the little-endian unsigned integers x0 and x1 represented

respectively by x’s even-indexed and odd-indexed substrings satisfy x0 > x1). By applying the affine
bijection (x0, . . . , xn−1) 7→ (x0, 1−x1, . . . , xn−2, 1−xn−1), we see that it’s equivalent to consider the function

fn : (x0, . . . , xn−1) 7→
∑n/2−1
i=0 2i · (x2i + x2i+1) ≥ 2

n/2 (true if and only if the sum x0 + x1 ≥ 2
n/2 overflows).

We argue first that this latter function fn is such that f−1
n (1) is piecewise constant with respect to

the partition n =
∑n/2−1
i=0 2, and moreover that Theorem 3.12 applies to

{
f−1
n (1)

}
n∈N (in fact, the same

conclusion holds for
{
f−1
n (0)

}
n∈N, as can be shown by a similar treatment). Indeed, each fn is evaluated by

a certain variant of a standard comparison circuit, shown in Figure 1.
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C0

xn−1xn−2 xn−3xn−4

C1

xn−5xn−6

C2

· · ·

x1x0

Cn/2−1

Figure 1: A well-known boolean circuit evaluating whether two unsigned integers’ sum generates a carry.

We observe that each among the n
2 output wires of this circuit evaluates to true exactly on the pullback

of a quasicube (with respect to n =
∑n/2−1
i=0 2). Indeed, for each i ∈ {0, . . . , n2 − 1}, the wire labeled Ci of

the above circuit is exactly the pullback of the quasicube Ĉi ⊂
∏n/2−1
i=0 {0, 1, 2} defined by the trailing indices{

n
2 − 1− i, n2 − 1} ⊂ {0, . . . , n2 − 1

}
, respectively bound to the values (v0, . . . , vi) = (2, 1, . . . , 1). Applying

Theorem 3.12, we conclude that f−1
n (1) is coverable by n

2 hyperplanes.
Applying a version of the “special case” of the proof of Lemma 3.9, we obtain the concrete expressions:

Hi : (x0, . . . , xn−1) 7→
∑
j<i

2j ·
(
xn−2·(j+1) + xn−2·(j+1)+1 − 1

)
+ 2i · (xn−2·(i+1) + xn−2·(i+1)+1 − 2)

for i ∈
{

0, . . . , n2 − 1
}

; these are correct so long as q ≥ 3
2 · 2

n/2. Analogous hyperplanes for the original
comparator fn follow from an appropriate affine transformation. We note that these hyperplanes can be
evaluated on any input x ∈ {0, 1}n in O(n) total time, using an obvious expression-sharing scheme.

Example 3.31. In [CLS86, Fig. 6], Cohen, Lobstein and Sloane—using a piecewise constant construction—
introduce a new family of (2R + 4, 12)R-codes (i.e., cardinality-12 codes S ⊂ {0, 1}2R+4 whose covering
radius is R). In particular, their construction establishes the upper-bound K(2R+4, R) ≤ 12 for each R ≥ 1
(i.e., there exist R-covering codes S ⊂ {0, 1}2R+4 of cardinality 12). As of the publication of [CHLL97], 12
remains the best-known upper bound of K(2R+4, R) for each value R ∈ {1, . . . , 10} treated in the extensive
[CHLL97, Table 6.1] (this upper-bound is known to be tight only in the cases R ∈ {1, 2}).

The construction [CLS86, Fig. 6] uses the partition 2R + 4 = (2R − 2) + 3 + 3, and employs exactly 4
cells (w0, w1, w2) ∈ {0, . . . , 2R − 2} × {0, 1, 2, 3} × {0, 1, 2, 3} (namely (0, 1, 0), (0, 2, 3), (2R − 2, 3, 1) and
(2R− 2, 0, 2)). Lemma 3.9 implies that S can be covered by exactly 4 hyperplanes; these are correct so long
as the prime field order q ≥ (2R−1) ·42. We conclude that the set family given by this construction belongs
to H and that its family of complements belongs to co-H.

We finally present the following straightforward upper containment result.

Theorem 3.32. H ⊂ NC1 and co-H ⊂ NC1.

Proof. Because NC1 is closed under complementation, it suffices to prove that H ⊂ NC1. We prove the
theorem by an explicit construction. We fix a collection of hyperplanes {Hi}m−1

i=0 over an n-bit prime q, and
construct a corresponding fan-in 2 log-depth circuit.
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We first express each individual hyperplane Hi as a log-depth boolean circuit. The linear combination
ai,0 ·x0 + · · ·+ai,n−1 ·xn−1 evaluated by Hi, restricted to boolean inputs, is actually a subset sum (i.e., each
ai,j is either present or absent). We thus set each xj as the select bit of a multiplexer with inputs the n-bit
string of 0s and ai,j (we recall that q is an n-bit prime). By [Vol99, Thm. 1.20], the “iterated addition” of the
n n-bit outputs of the multiplexers can be carried out using a log-depth bounded fan-in circuit. The output
of this circuit—namely, ai,0 ·x0 + · · ·+ai,n−1 ·xn−1—is an integer of bit-length n+O(log n); we must reduce
this number modulo q. This is essentially [Vol99, Ex. 1.19 (a)], and can be done in log-depth using Barrett’s
modular reduction; in particular, we apply Menezes, van Oorschot, and Vanstone [MvOV97, Alg. 14.42]
(using the radix b = 4). The resulting circuit uses only a constant number of shifts and multiplications
(which themselves can be carried out in log-depth; see [Vol99, Thm. 1.23]). Its output can obviously be
checked for equality with vi, the hyperplane’s affine constant, in constant depth.

It remains to check whether any of the equalities Hi(x) ≡ 0 (mod q) is true, for i ∈ {0, . . . ,m− 1}. This
can be done using a tree of OR gates of depth O(logm), which is O(log n) if m is polynomial in n.

The construction of Theorem 3.32 is depicted in Figure 2 below.

Hi(x)
?≡ 0 (mod q)

+
(iterated addition gate)

x0

mux
0 1

0n ai,0

x1

mux
0 1

0n ai,1

xn−1

mux
0 1

0n ai,n−1

· · ·

· · ·

?≡ vi (mod q)

Figure 2: A log-depth, bounded fan-in boolean circuit evaluating an affine hyperplane.

We conclude this subsection with a few further remarks. It is tempting to formulate a converse to Theorem
3.12 of the previous subsection, especially in light of the evidence furnished jointly by Example 3.16, Lemma
3.17 and Theorem 3.18. As it turns out, the most näıve possible converse of Lemma 3.9 actually fails, in the
sense that there exist intersection patterns which are not quasicubes with respect to any partition:

Example 3.33. For q any odd prime, in F3
q, H : (x0, x1, x2) 7→ x0 + x1 − 2 · x2 intersects {0, 1}3 exactly at

C = {(0, 0, 0), (1, 1, 1)}. This latter set is not the pullback of a quasicube with respect to any partition of 3.

Nonetheless, it remains possible that an appropriately formulated asymptotic converse could hold. The
difficulty of the result of Diamond and Yehudayoff [DY22] hints at the challenge which attaining any such
general result would present; we leave this task as a direction for future work.

4 Commitment-Consistent 2PC

In this section, we describe a protocol for commitment-consistent secure two-party computation, efficient
for function families in the classes H and co-H. We also give a key subprotocol for commitment-consistent
secure iterated modular multiplication.
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4.1 Review of private multiplication

Our protocols make use of the ZKPOK ideal functionalities FDH
zk , FEqMsg

zk , FProd
zk , and FBitProof

zk already
discussed in Subsection 2.6 above.

Following Lindell, Nof and Ranellucci, [LNR18, § 2.3], we moreover recall the notion of a secure multi-
plication protocol which is “private, but not necessarily correct”.

FUNCTIONALITY 4.1 (FPrivMult—the underlying private multiplication functionality).
Players P0 and P1 and a prime q are fixed.

• Upon receiving
(
multiply, (〈αi〉ν , 〈βi〉ν)

m′−1
i=0

)
from both parties Pν , FPrivMult proceeds as follows:

1: for i ∈ {0, . . . ,m′ − 1} do
2: set γi := (〈αi〉0 + 〈αi〉1) · (〈βi〉0 + 〈βi〉1) (mod q).
3: randomly additively share γi = 〈γi〉0 + 〈γi〉1 (mod q).

FPrivMult sends the message
(
multiply, (〈γi〉ν)

m′−1
i=0

)
to Pν , for each ν ∈ {0, 1}.

Definition 4.2 (Lindell–Nof–Ranellucci [LNR18, § 2.3]). A protocol ΠPrivMult for Functionality 4.1 is pri-
vate if, for each C ∈ {0, 1}, each real-world nonuniform PPT adversary A corrupting PC , and each pair(
〈αi〉1−C , 〈βi〉1−C

)m′−1

i=0
and

(
〈α′i〉1−C , 〈β′i〉1−C

)m′−1

i=0
of inputs on the part of P1−C , the distributions describ-

ing A’s output in ΠPrivMult in case P1−C uses either of these inputs are computationally indistinguishable.

We now recall that FPrivMult can be instantiated privately, using a protocol of Doerner, Kondi, Lee, and
shelat [DKLs18, § VI. D.]. An issue arises from the fact that, in that particular protocol, P0 and P1 directly
submit the (vectors of) scalars they’d like to multiply componentwise, whereas, in Functionality 4.1, P0

and P1 only possess joint additive sharings of the desired multiplicands (that is, the functionality must first
reconstruct, and only then multiply). We accommodate this issue in the following way. Given any pair
αi = 〈αi〉0 + 〈αi〉1 and βi = 〈βi〉0 + 〈βi〉1 (say) of jointly held multiplicands, P0 and P1 can obtain additive
sharings of αi ·βi using 2 (simultaneous and vectorized) invocations of [DKLs18, § VI. D.], as we now argue.
Indeed, by the distributive law, αi · βi = (〈αi〉0 + 〈αi〉1) · (〈βi〉0 + 〈βi〉1) equals

〈αi〉0 · 〈βi〉0 + 〈αi〉0 · 〈βi〉1 + 〈αi〉1 · 〈βi〉0 + 〈αi〉1 · 〈βi〉1 .

P0 and P1 can locally compute the first and last terms 〈αi〉0 ·〈βi〉0 and 〈αi〉1 ·〈βi〉1, respectively. To obtain
additive sharings of the middle two terms, P0 and P1 can submit (〈αi〉0 , 〈βi〉0) and (〈βi〉1 , 〈αi〉1), respectively,
to [DKLs18, § VI. D.] (note the reversal of order). Upon obtaining the respective outputs (〈ηi〉0 , 〈ξi〉0) and
(〈ηi〉1 , 〈ξi〉1), say, P0 and P1 can return 〈αi〉0 ·〈βi〉0+〈ηi〉0+〈ξi〉0 and 〈αi〉1 ·〈βi〉1+〈ηi〉1+〈ξi〉1 (respectively).
By the above discussion, these outputs yield random shares of αi ·βi, as desired. I would like to thank Yehuda
Lindell for helping to clarify this point. Using this argument, we thus obtain:

Theorem 4.3 (Doerner et al.). The protocol [DKLs18, § VI. D.]—used in the above way, with arity 2 ·m′—
yields an implementation of Functionality 4.1 which is private in the sense of Definition 4.2.

We finally make use of the following functionality from Lindell, Nof and Ranellucci [LNR18, Func. 4.2].

FUNCTIONALITY 4.4 (FCheckZero—joint assessment of plaintext equality with zero).
Two players P0 and P1 are fixed, as well as an Fq-homomorphic encryption scheme (Gen,Enc,Dec).

• Upon receiving (init) from both parties, FCheckZero runs (pk, sk)← Gen(1λ) and outputs (key, pk).

• Upon receiving (check, A) from both parties, FCheckZero returns
(
check,Decsk(A)

?
= 0
)

to both.

The result [LNR18, Prop. 7.2] yields a secure instantiation of FCheckZero:

Lemma 4.5 (Lindell–Nof–Ranellucci). The protocol [LNR18, Prot. 7.1] securely computes FCheckZero in the(
FRE

zk ,FDH
com-zk

)
-hybrid model.
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Remark 4.6. Because our protocol has only two parties, we may slightly simplify the structure of the
initialization subprotocol [LNR18, Prot. 4.3] of [LNR18, Prot. 7.1]. Indeed, instead of requiring that all
parties invoke FRDL

com-zk, we may dictate that P0 go first, and that P0 alone commit to its proof; P1 must then
prove, but not commit. Precisely this approach is taken by [DKLs18, Prot. 2] (the only difference there
is that that sharing is multiplicative, as opposed to additive). An identical simplification can moreover be
carried out in our implementation of steps 1. and 2. of [LNR18, Prot. 7.1].

4.2 Secure iterated multiplication

We introduce the following key ideal functionality, for iterated secure modular multiplication which moreover
is consistent with pre-held ciphertexts. We actually present a variant which also multiplicatively randomizes
the resulting product (this randomization can be optionally removed, as we note in Remark 4.14 below).
Indeed, our randomized variant essentially returns either 0 or a uniformly random element y ← Fq, depending
on whether any among the parties’ reconstructions yi := 〈yi〉0 + 〈yi〉1 (mod q) equals 0 or not.

FUNCTIONALITY 4.7 (FIterMult—commitment-consistent iterated multiplication functionality).
FIterMult involves parties P0 and P1 and an Fq-homomorphic encryption scheme (Gen,Enc,Dec).

• Upon receiving (init) from both parties, FIterMult forwards these messages to FCheckZero, and
returns the response (key, pk) to both parties.

• Upon receiving
(
commit, (Yi,ν)

m−1
i=0

)
from a party Pν , FIterMult forwards the message to P1−ν .

• Upon receiving
(
multiply; (〈yi〉ν , si,ν)

m−1
i=0

)
from both parties Pν , FIterMult executes:

1: randomly sample y ← Fq. . to omit re-randomization, replace this assignment with y := 1.
2: for i ∈ {0, . . . ,m− 1} do
3: for ν ∈ {0, 1} do

4: require Yi,ν
?
= Encpk(〈yi〉ν ; si,ν); else send (multiply-abort) to both parties and abort.

5: reconstruct yi := 〈yi〉0 + 〈yi〉1 (mod q).
6: overwrite y := y · yi (mod q).

7: output (multiply, y) to both parties.

We now show how to securely compute FIterMult in O(logm) rounds, by recursively applying ideas from
[LNR18, Prot. 4.7]. We make use of a private multiplication subprotocol ΠPrivMult, which “privately” computes
Functionality 4.1 in the sense of Definition 4.2; in practice, we use that of Doerner et al. [DKLs18, § VI. D.]
(see Theorem 4.3).

Our protocol, roughly, is a recursive variant of [LNR18, Prot. 4.7], which repetitively performs appropriate
parts of that protocol in a tree-like manner. In particular, its lines 8–10 below correspond to [LNR18,
Prot. 4.7 (1) – (2) (a)], and are performed once for each adjacent pair of shared elements in each layer of
the tree (the sum of [LNR18, Prot. 4.7 (2) (b)] is done “lazily”, and is implicit in line 8 of the next tree
layer). The lines 12–16 correspond to [LNR18, Prot. 4.7 (2) (c) – (4) (a)], and are carried out once for each
adjacent pair of tree elements whose parent node occupies an even index in its layer. The idea of this is that
the protocol anticipates the block 8–10 of the next recursive call, which requires full openings (〈y2i〉ν , s2i,ν)
of each even-indexed ciphertext Y2i (in the last iteration, where m′ = 1, the protocol must also anticipate
the final opening process of lines 24–26). Lines 24–26 correspond to [LNR18, Prot. 4.7 (4) (b) – (5)], and are
performed exactly once per tree, at the root. We assume that m is a power of 2 in the following protocol.

PROTOCOL 4.8 (ΠIterMult—commitment-consistent iterated multiplication protocol).
Our protocol involves players P0 and P1, an Fq-homomorphic encryption scheme (Gen,Enc,Dec), and a
private multiplication subprotocol ΠPrivMult.

Setup. Each player Pν submits (init) to FCheckZero, and stores the response (key, pk) from FCheckZero.
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Commitment. Each player Pν sends (Yi,ν)
m−1
i=0 to P1−ν and receives (Yi,1−ν)

m−1
i=0 from P1−ν .

Multiplication. On input (〈yi〉ν , si,ν)
m−1
i=0

, each player Pν proceeds as follows:

1: for i ∈ {0, . . . ,m− 1} do
2: submit (prove, Yi,ν ; 〈yi〉ν , si,ν) to FEG

zk .
3: submit (verify, Yi,1−ν) to FEG

zk .

4: procedure RecursiveMultiply
(

(〈yi〉ν , si,ν , Yi,ν , Yi,1−ν)
m−1
i=0

)
5: write m′ := m/2 and allocate the empty length-m′ vector

(
〈y′i〉ν , s′i,ν , Y ′i,ν , Y ′i,1−ν

)m′−1

i=0
.

6: conduct ΠPrivMult on the input (〈y2i〉ν , 〈y2i+1〉ν)
m′−1
i=0

; assign to
(
〈y′i〉ν

)m′−1

i=0
the resulting output.

7: for i ∈ {0, . . . ,m′ − 1} do
8: sample r′i ← Fq and set Y ′i,ν := 〈y2i〉ν · (Y2i+1,0 + Y2i+1,1) + Encpk(0; r′i).

9: send Y ′i,ν to P1−ν and submit
(
prove, Y ′i,ν , Y2i+1,0 + Y2i+1,1, Y2i,ν ; 〈y2i〉ν , r′i, s2i,ν

)
to FProd

zk .

10: receive Y ′i,1−ν from P1−ν and submit
(
verify, Y ′i,1−ν , Y2i+1,0 + Y2i+1,1, Y2i,1−ν

)
to FProd

zk .
11: if i is even then
12: temporarily stash the value Y ′i := Y ′i,0 + Y ′i,1.

13: sample s′i,ν ← Fq and overwrite Y ′i,ν := Encpk
(
〈y′i〉ν ; s′i,ν

)
.

14: send the new Y ′i,ν to P1−ν and submit
(
prove, Y ′i,ν ; 〈y′i〉ν , s′i,ν

)
to FEG

zk .

15: overwrite Y ′i,1−ν with the new value from P1−ν and submit (verify, Y ′i,1−ν) to FEG
zk .

16: submit (check, Y ′i − Y ′i,0 − Y ′i,1) to FCheckZero.

17: if m′ > 1 then return RecursiveMultiply
((
〈y′i〉ν , s′i,ν , Y ′i,ν , Y ′i,1−ν

)m′−1

i=0

)
.

18: else return
(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

)
.

19: assign
(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

)
← RecursiveMultiply

(
(〈yi〉ν , si,ν , Yi,ν , Yi,1−ν)

m−1
i=0

)
.

20: pick aν and rν randomly from Fq and encrypt Aν := Encpk(aν ; rν).
21: send Aν to P1−C and submit (prove, Aν ; aν , rν) to FEG

zk .
22: receive A1−ν from P1−C and submit (verify, A1−ν) to FEG

zk .
23: assign

(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

)
← RecursiveMultiply

(
(aν , rν , Aν , A1−ν) ‖

(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

))
.

24: send 〈y′0〉ν to P1−ν and submit
(
prove, pk, Y ′0,ν − Encpk(〈y′0〉ν ; 0); s′0,ν

)
to FDH

zk .

25: receive 〈y′0〉1−ν from P1−ν and submit
(
verify, pk, Y ′0,1−ν − Encpk(〈y′0〉1−ν ; 0)

)
to FDH

zk .
26: output 〈y′0〉0 + 〈y′0〉1 (mod q).

Theorem 4.9. If ΠPrivMult satisfies Definition 4.2 and (Gen,Enc,Dec) has indistinguishable multiple encryp-
tions, then Protocol 4.8 securely computes Functionality 4.7 in the

(
FDH

zk ,FEG
zk ,FCheckZero

)
-hybrid model.

Proof. We define an appropriate simulator. As a space-saving device, we stipulate throughout that, upon
the failure of any of its checks, S immediately sends (abort) to Ff , outputs whatever A outputs, and halts.

On the input (1λ, C), S operates as follows:

1. When A sends (init) to FCheckZero, S forwards (init) to FIterMult. When S receives (key, pk) from
FIterMult, S internally sends A (key, pk), as if from FCheckZero.

2. Upon receiving
(
commit, (Yi,1−C)

m−1
i=0

)
from FIterMult, S forwards the ciphertexts to A, as if from P1−C .

When A sends (Yi,C)
m−1
i=0 to P1−C , S forwards

(
commit, (Yi,C)

m−1
i=0

)
to FIterMult.

3. S plays the role of P1−C in the “multiplication” portion of Protocol 4.8; that is, S runs Algorithm 1.

We invoke a sequence of hybrid distribution families.

D0: Corresponds to IdealF,S,C .

D1: Same as D0, except that S is given P1−C ’s actual inputs
(
〈yi〉1−C , si,1−C

)m−1

i=0
, and supplies these,

instead of (0)
m−1
i=0 , in its main top-level invocation of Algorithm 1 in line 21.
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Algorithm 1 Simulator for Protocol 4.8.

1: for i ∈ {0, . . . ,m− 1} do
2: when A submits (verify, Yi,1−C) to FEG

zk , check that the statement Yi,1−C is as received from FIterMult.
3: when A submits (prove, Yi,C ; 〈yi〉C , si,C) to FEG

zk , check Yi,C and the relation REG; store (〈yi〉C , si,C).

4: procedure RecursiveSimulate
((
〈yi〉C , 〈yi〉1−C , Yi,C , Yi,1−C

)m−1

i=0

)
5: write m′ := m/2 and allocate the empty length-m′ vector

(
〈y′i〉C , 〈y′i〉1−C , Y ′i,C , Y ′i,1−C

)m′−1

i=0
.

6: engage in ΠPrivMult with A on input
(
〈y2i〉1−C , 〈y2i+1〉1−C

)m′−1

i=0
; assign to

(
〈y′i〉1−C

)m′−1

i=0
the output.

7: for i ∈ {0, . . . ,m′ − 1} do
8: generate Y ′i,1−C ← Encpk(0) as a random encryption of 0; send Y ′i,1−C to A.

9: when A submits
(
verify, Y ′i,1−C , Y2i+1, Y2i,1−C

)
to FProd

zk :

• require that Y2i+1
?
= Y2i+1,0 + Y2i+1,1 and Y2i,1−C match the function’s passed-in arguments.

• require that the statement element Y ′i,1−C matches that just simulated and sent to A.

10: when A sends Y ′i,C to P1−C and submits
(
prove, Y ′i,C , Y2i+1, Y2i,C ; 〈y2i〉C , r′i, s2i,C

)
to FProd

zk :

• require that Y2i+1
?
= Y2i+1,0 + Y2i+1,1 and Y2i,C match the function’s passed-in arguments.

• require that the statement element Y ′i,C matches that which A just sent separately to P1−C .

• check manually that RProd holds on
(
Y ′i,C , Y2i+1, Y2i,C ; 〈y2i〉C , r′i, s2i,C

)
.

11: if i is even then
12: temporarily stash the value Y ′i := Y ′i,0 + Y ′i,1.
13: randomly encrypt and overwrite Y ′i,1−C ← Encpk (0); send the new Y ′i,1−C to A.

14: when A submits
(
verify, Y ′i,1−C

)
to FEG

zk , ensure that Y ′i,1−C matches that just sent to A.

15: when A sends Y ′i,C to P1−C and submits
(
prove, Y ′i,C ; 〈y′i〉C , s′i,C

)
to FEG

zk , check Y ′i,C and REG.
16: when A submits (check, Y ′i − Y ′i,0 − Y ′i,1) to FCheckZero:

• require thatA’s submitted statement indeed matches Y ′i −Y ′i,0−Y ′i,1 (as determined locally).

• require that A’s above-extracted 〈y′i〉C
?
= (〈y2i〉0 + 〈y2i〉1) · (〈y2i+1〉0 + 〈y2i+1〉1)− 〈y′i〉1−C .

17: else
18: store the intermediate value 〈y′i〉C := (〈y2i〉0 + 〈y2i〉1) · (〈y2i+1〉0 + 〈y2i+1〉1)− 〈y′i〉1−C .

19: if m′ > 1 then return RecursiveSimulate
((
〈y′i〉C , 〈y′i〉1−C , Y ′i,C , Y ′i,1−C

)m′−1

i=0

)
.

20: else return
(
〈y′0〉C , 〈y′0〉1−C , Y ′0,C , Y ′0,1−C

)
.

21: assign
(
〈y′0〉C , 〈y′0〉1−C , s′0,C , Y ′0,C , Y ′0,1−C

)
← RecursiveSimulate

(
(〈yi〉C , 0, Yi,C , Yi,1−C)

m−1
i=0

)
.

22: sample a1−C ← Fq randomly, but set A1−C ← Encpk(0) as a random encryption of 0; send A1−C to A.
23: when A submits (verify, A1−C) to FEG

zk , if the statement A1−C is correct, respond (verify, 1).
24: when A sends AC to P1−C and submits (prove, AC ; aC , rC) to FEG

zk , ensure AC matches and REG holds.

25: concatenate
(
〈yi〉C , 〈yi〉1−C , Yi,C , Yi,1−C

)1
i=0

:= (aC , a1−C , AC , A1−C) ‖
(
〈y′0〉C , 〈y′0〉1−C , Y ′0,C , Y ′0,1−C

)
.

26: overwrite
(
〈y′0〉C , 〈y′0〉1−C , Y ′0,C , Y ′0,1−C

)
← RecursiveSimulate

((
〈yi〉C , 〈yi〉1−C , Yi,C , Yi,1−C

)1
i=0

)
.

27: send A’s extracted inputs
(
multiply, (〈yi〉C , si,C)

m−1
i=0

)
to FIterMult; receive (multiply, y) from FIterMult.

28: using the output (multiply, y) received from FIterMult, overwrite 〈y′0〉1−C := y − 〈y′0〉C .
29: send 〈y′0〉1−C to A; if A aborts, send (abort) to FIterMult.

30: when A submits
(
verify, pk, Y ′0,1−C − Encpk

(
〈y′0〉1−C ; 0

))
to FDH

zk :

• require that A’s statement indeed matches Y ′0,1−C − Encpk
(
〈y′0〉1−C ; 0

)
(as determined locally).

31: when A sends 〈y′0〉C to P1−C and submits
(
prove, pk, Y ′0,C − Encpk (〈y′0〉C ; 0) ; s0,C

)
to FDH

zk :

• require that A’s statement indeed matches Y ′0,C − Encpk (〈y′0〉C ; 0) (as determined locally).

• check manually that FDH
zk holds on

(
pk, Y ′0,C − Encpk (〈y′0〉C ; 0) ; s0,C

)
(this implies 〈y′0〉C matches).

32: send (continue) to FIterMult and terminate.
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D2: Same as D1, except that S skips line 28, and moreover P1−C is not given the output (multiply, y)
directly from FIterMult, but rather is given 〈y′0〉0 + 〈y′0〉1, as computed from S’s local state at line 32.

D3: Same as D2, except that S instead uses the assignments Y ′i,1−C ← 〈y2i〉1−C ·(Y2i+1,0 + Y2i+1,1)+Encpk(0)

in line 8, Y ′i,1−C ← Encpk
(
〈y′i〉1−C

)
in line 13, and A1−C ← Encpk(a1−C) in line 22.

D4: Corresponds to RealΠ,A,C .

Lemma 4.10. If the underlying multiplication subprotocol ΠPrivMult is private in the sense of Definition 4.2,
then the distributions {D0(x0,x1, λ)}x0,x1,λ

and {D1(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. A’s views in D0 and D1 differ only in the inputs S supplies to ΠPrivMult. This difference affects not
just S’s outermost execution of RecursiveSimulate (initiated at line 21), but also the subsequent recursive
subcalls, as well as the final execution (initiated at line 26); in these latter calls, S uses inputs which depend
on the outputs of prior calls. In any case, the lemma follows from our hypothesis on ΠPrivMult.

Lemma 4.11. The distributions {D1(x0,x1, λ)}x0,x1,λ
and {D2(x0,x1, λ)}x0,x1,λ

are identical.

Proof. A’s views in the two distributions are identical until its receipt of 〈y′0〉1−C in line 29; moreover, in
both distributions, this latter share differs by 〈y′0〉C from P1−C ’s output. It thus suffices to show that P1−C ’s
respective outputs y and 〈y′0〉0 + 〈y′1〉1 in the two distributions are distributed identically, conditioned on S’s

reaching line 29. Because a1−C is random, so is a0+a1; we conclude that y and (a0+a1)·
∏m−1
i=0 (〈yi〉0 + 〈yi〉1)

follow the same distribution. It thus in turn suffices to show that this latter quantity equals 〈y′0〉0 + 〈y′1〉1 (as
determined on line 32). This latter condition itself captures the correctness of the multiplication protocol,
and follows by induction from lines 16 and 18 (the base case comes from line 3 and the definition of D1).

Lemma 4.12. If Π′ = (Gen,Enc,Dec) has indistinguishable multiple encryptions, then the distribution
ensembles {D2(x0,x1, λ)}x0,x1,λ

and {D3(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. We suppose for contradiction that there exists a distinguisher D, a polynomial p(Λ), and an infinite
collection of triples (x0,x1, λ) for each among which |Pr [D2(x0,x1, λ) = 1]− Pr [D3(x0,x1, λ) = 1]| ≥ 1

p(λ)

(strictly speaking, we must as before insist that infinitely many distinct values λ appear throughout these
triples). Without loss of generality—that is, after possibly flipping D’s output bit and refining the set of
triples (x0,x1, λ)—we may assume that Pr [D3(x0,x1, λ) = 1]− Pr [D2(x0,x1, λ) = 1] ≥ 1

p(λ) for each triple.

We define an adversary A′ attacking the multiple encryptions experiment PubKLR-cpa
Π′,A′ as follows. For each

λ for which a triple exists, A′, using the advice (x0,x1), plays PubKLR-cpa
Π′,A′ (λ) in the following way, given pk

and access to the oracle LRpk,b(·, ·). A′ simulates an interaction between FIterMult, P1−C , and the following
modified version of S. Instead of executing 1. above, A′ internally simulates FCheckZero giving A (key, pk),
where pk is the experimenter’s public key. Instead of executing 2. above, A′, using P1−C ’s inputs, computes
Yi,1−C := Encpk

(
〈yi〉1−C , si,1−C

)
for each i ∈ {0, . . . ,m− 1}, and simulates P1−C sending A (Yi,1−C)

m−1
i=0 .

Moreover, A′ applies the following modifications to Algorithm 1. In line 8, A′ generates Y ′i,1−C ←
LRpk,b

(
0, 〈y2i〉1−C · (〈y2i+1〉0 + 〈y2i+1〉1)

)
using an oracle call. Similarly, in line 13, A′ obtains and overwrites

Y ′i,1−C ← LRpk,b
(
0, 〈y′i〉1−C

)
from the oracle (using the output

(
〈y′i〉1−C

)m′−1

i=0
it obtained from ΠPrivMult in

line 6). Finally, in line 22, A′ generates A1−C ← LRpk,b (0, a1−C) using a further oracle call. A′ proceeds
otherwise as specified in D2 and D3, and runs D on the resulting output. A′ outputs whatever D outputs.

If the experimenter’s bit b = 0, then A’s view in its simulation by A′ clearly matches its view in D2; if
b = 1, then A’s view matches its view in D3. We conclude that:

Pr
[
PubKLR-cpa

Π′,A′ (λ) = 1
]

=
1

2
·
(

Pr
[
A′
(
PubKLR-cpa

Π′,A (λ)
)

= 0 | b = 0
]

+ Pr
[
A′
(
PubKLR-cpa

Π′,A′ (λ)
)

= 1 | b = 1
])

=
1

2
· (Pr[D(D2(x0,x1, λ)) = 0] + Pr [D(D3(x0,x1, λ)) = 1])

=
1

2
· (1− Pr[D(D2(x0,x1, λ)) = 1] + Pr [D(D3(x0,x1, λ)) = 1])

=
1

2
+

1

2
· (Pr [D(D3(x0,x1, λ)) = 1]− Pr[D(D2(x0,x1, λ)) = 1]) .
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≥ 1

2
+

1

2 · p(λ)
,

where the last step is exactly our hypothesis on D. This inequality, which holds for infinitely many λ,
contradicts our assumption that (Gen,Enc,Dec) has indistinguishable multiple encryptions.

Lemma 4.13. The distributions {D3(x0,x1, λ)}x0,x1,λ
and {D4(x0,x1, λ)}x0,x1,λ

are identical.

Proof. These distributions differ only in the various abort conditions respectively applied by S (in D3) and by
P1−C and the various functionalities (in D4). The equivalence of these conditions is essentially obvious, except
except perhaps at S’s check in line 16. In that line, S proceeds if and only if A’s extracted plaintext 〈y′i〉C
and S’s multiplication output 〈y′i〉1−C add to the “correct” product, itself computed using certain quantities
memoized from prior executions. We claim that S’s abort condition here is equivalent to FCheckZero’s. Because
〈y′i〉C opens the overwritten Y ′i,C by definition of REG (see line 15) and 〈y′i〉1−C opens the overwritten Y ′i,1−C
by construction (see the definition of D3), this claim in turn is equivalent to that whereby the message of Y ′i
is the product expression (〈y2i〉0 + 〈y2i〉1) · (〈y2i+1〉0 + 〈y2i+1〉1). By the construction of the summands Y ′i,0
and Y ′i,1 of Y ′i and the definition of RProd, this fact itself holds so long as 〈y2i+1〉0 + 〈y2i+1〉1 is the message
of Y2i+1,0 + Y2i+1,1. This latter fact again holds by an inductive argument. Indeed, we refer to the line 18
of the prior recursive call, together with an identical product argument, and the inductive hypothesis. The
base case again holds by virtue of the supplied inputs (see line 3 and the definition of D2).

We complete the proof upon combining Lemmas 4.10, 4.11, 4.12, and 4.13.

Remark 4.14. To omit the re-randomization step of line 1 of FIterMult, we may simply skip Protocol 4.8’s
lines 20–23. Similarly, the simulator S would correspondingly skip lines 22–26 of Algorithm 1.

Remark 4.15. Interestingly, Protocol 4.8 uses the odd-indexed components of the initial randomness vector
(si,ν)

m−1
i=0 only as witnesses for FEG

zk in the first line, and nowhere else. The body of RecursiveMultiply itself
never uses the odd-indexed randomnesses submitted to it, and in fact declines to populate them altogether
in the recursive inputs it prepares. This phenomenon owes to the fact that the product functionality FProd

zk

treats its arguments asymmetrically, and in particular requires the message and randomness only of one of
its “multiplicands”. Protocol 4.8 could, of course, execute the reconstruction block 12–16 at every—and not
just every even—index i, but the effort so exerted would be wasted.

Remark 4.16. Actually, only the odd-indexed initial inputs 〈yi〉0 and 〈yi〉1 need to be treated in Protocol
4.8’s lines 2–3 (see also lines 2–3 of Algorithm 1). Indeed, the even-indexed values appear anyway, in lines
9–10 (see also lines 9–10 of Algorithm 1), where they’re submitted as witnesses to RProd; this relation in
particular implies REG. In fact, by the same reasoning, we could eliminate entirely the FEG

zk proofs from lines
21 and 22 of Protocol 4.8; we have retained these above essentially to simplify the exposition.

Remark 4.17. We contrast Lemma 4.13 with the security argument [LNR18, Thm. B.1, Mult., 9. (b)].
There, to simulate FCheckZero, S essentially checks (in our notation) whether A’s extracted witness 〈y′i〉C and
S’s output 〈y′i〉1−C from ΠPrivMult add to the correct output (as discerned directly from the functionality).
Our S lacks this recourse, as the element to which these quantities “should” add is, in our case, generally
(i.e., except in the last execution) some intermediate value unavailable from the functionality. The content
of Lemma 4.13, then, is essentially that S can nonetheless correctly emulate FCheckZero’s abort behavior on
the basis solely of both parties’ initial inputs and its own outputs in ΠPrivMult. Indeed, having extracted

A’s initial inputs (〈yi〉C)
m−1
i=0 in line 3 and given P1−C ’s inputs

(
〈yi〉1−C

)m−1

i=0
, S can exactly determine the

message of each intermediate sum Y ′i . This latter calculation requires a recursive memoization, aided by the
induction-preserving step in line 18. In fact, each initial pair (〈yi〉0 , 〈yi〉1) can influence as many as Θ(logm)
memoized expressions before it is used to check some opening 〈y′i〉C (e.g., consider the case i = m− 1).

4.3 Main protocol

We now give our main protocol for Functionality 2.8. We assume that a particular instance of that
functionality—that is, a boolean function fn : {0, 1}n → {0, 1}—has been fixed. For notational simplic-
ity, we treat only the case in which {fn}n∈N belongs to H; an identical protocol in which the final output
bit is flipped suffices to treat the case of co-H.
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In order to simplify the analysis of Protocol 4.18, we implement its “commitment” consistency using
homomorphic encryption. We could just as well have used a homomorphic commitment scheme (compare
Examples 2.18 and 2.19). Informally, we repurpose our encryption scheme as a perfectly binding commitment
scheme. Our encryption-centric approach makes Protocol 4.18’s compatibility with Zether [BAZB20] and
Anonymous Zether [Dia21] somewhat more immediate, though the approaches are philosophically analogous.

PROTOCOL 4.18 (Joint evaluation of a collection of linear tests).
We fix players P0 and P1, an Fq-homomorphic encryption scheme (Gen,Enc,Dec), and a covering

f−1(1) =
⋃m−1
i=0 Hi ∩ {0, 1}n using Fq-hyperplanes.

Setup. Each Pν submits (init) to FIterMult, and stores the response (key, pk).

Commitment. Each party Pν runs (pkν , skν)← Gen(1λ) and encrypts Aν ← Encpkν

(∑n/2−1
i=0 2i · xν,i

)
.

Pν sends (pkν , Aν) to P1−ν and receives (pk1−ν , A1−ν) from P1−ν .

Evaluation. On input xν =
(
xν,0, . . . , xν,n/2−1

)
∈ {0, 1}n/2, Pν executes the following steps:

1: for i ∈
{

0, . . . , n2 − 1
}

do
2: randomly additively secret-share xν,i = 〈xν,i〉0 + 〈xν,i〉1 in Fq.
3: sample rν,i,ν ← Fq and encrypt Aν,i := Encpk(xν,i; rν,i,ν).
4: send Aν,i and 〈xν,i〉1−ν to P1−ν , and submit (prove, pk,Aν,i;xν,i, rν,i,ν) to FBitProof

zk .

5: locally write rν,i,1−ν := 0, Aν,i,1−ν := Encpk
(
〈xν,i〉1−ν ; 0

)
, and Aν,i,ν := Aν,i −Aν,i,1−ν .

6: receive A1−ν,i and 〈x1−ν,i〉ν from P1−ν , and submit (verify, pk,A1−ν,i) to FBitProof
zk .

7: locally write r1−ν,i,ν := 0, A1−ν,i,ν := Encpk
(
〈x1−ν,i〉ν ; 0

)
, and A1−ν,i,1−ν := A1−ν,i −A1−ν,i,ν .

8: submit
(
prove, pkν , pk,Aν ,

∑n/2−1
i=0 2i ·Aν,i;xν , rν ,

∑n/2−1
i=0 2i · rν,i,ν

)
to FEqMsg

zk .

9: submit
(
verify, pk1−ν , pk,A1−ν ,

∑n/2−1
i=0 2i ·A1−ν,i

)
to FEqMsg

zk .

10: evaluate the hyperplanes (Hi)
m−1
i=0 on your plaintexts and the opposite party’s ciphertexts; i.e., set:

(〈yi〉ν , si,ν)
m−1
i=0

:=
(
Hi

((
〈x0,i〉ν , r0,i,ν

)
,
(
〈x1,i〉ν , r1,i,ν

)n/2−1

i=0

))m−1

i=0
, (1)

(Yi,1−ν)
m−1
i=0 :=

(
Hi ((A0,i,1−ν) , (A1,i,1−ν))

n/2−1
i=0

)m−1

i=0
. (2)

11: submit
(
commit, (Encpk (〈yi〉ν ; si,ν))

m−1
i=0

)
to FIterMult.

12: upon receiving
(
commit, (Yi,1−ν)

m−1
i=0

)
from FIterMult, ensure that the ciphertexts match those of (2).

13: submit
(
multiply, (〈yi〉ν , si,ν)

m−1
i=0

)
to FIterMult, and receive the output y.

14: output y
?
= 0.

Theorem 4.19. If (Gen,Enc,Dec) has indistinguishable multiple encryptions, then Protocol 4.18 securely

computes Functionality 2.8 in the
(
FBitProof

zk ,FEqMsg
zk ,FIterMult

)
-hybrid model.

Proof. We first define an appropriate simulator. We stipulate as before that, before aborting upon a failed
check, S sends (abort) to Ff and outputs what A outputs.
S operates as follows, given (1λ, C,xC):

1. When A sends (init) to FIterMult, S runs (pk, sk)← Gen(1λ), and sends A (key, pk) as if from FIterMult.

2. S generates (pk1−C , sk1−C)← Gen(1λ) and simulates A1−C ← Encpk1−C (0) as a random encryption of
0. S internally simulates P1−C giving A (pk1−C , A1−C). S receives (pkC , AC) from A.

3. S randomly simulates the ciphertexts A1−C,i ← Encpk(0), and samples the “shares” 〈x1−C,i〉C ← Fq
randomly; S sends these internally to A. To each message (verify, pk,A1−C,i), S responds (verify, 1).
Upon A’s sending AC,i and 〈xC,i〉1−C to P1−C and (prove, pk,AC,i;xC,i, rC,i,C) to FBitProof

zk , S ensures

that the ciphertexts AC,i match, and that RBitProof (pk,AC,i;xC,i, rC,i,C) (for each i ∈
{

0, . . . , n2 − 1
}

).
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4. Upon A’s message
(
verify, pk1−C , pk,A1−C ,

∑n/2−1
i=0 2i ·A1−C,i

)
to FEqMsg

zk , S ensures that the state-

ment matches the appropriate previously received or simulated quantities, and responds (verify, 1).

Upon A’s message
(
prove, pkC , pk,AC ,

∑n/2−1
i=0 2i ·AC,i;xC , rC ,

∑n/2−1
i=0 2i · rC,i,C

)
to FEqMsg

zk , S en-

sures that its statement matches all prior quantities, and checks that the relation REqMsg holds.

5. Using the values AC,i and 〈xC,i〉1−C A sent and the values A1−C,i and 〈x1−C,i〉C S simulated, S, re-

derives each ciphertext AC,i,C := AC,i−Encpk
(
〈xC,i〉1−C ; 0

)
and A1−C,i,C := Encpk

(
〈x1−C,i〉C ; 0

)
(as

P1−C would) and A1−C,i,1−C := A1−C,i − Encpk
(
〈x1−C,i〉C ; 0

)
and AC,i,1−C := Encpk

(
〈xC,i〉1−C ; 0

)
(as PC would). Using these and (2), S manually recomputes the ciphertexts (Yi,C)

m−1
i=0 and (Yi,1−C)

m−1
i=0 .

6. S sends A
(
commit, (Yi,1−C)

m−1
i=0

)
, as if from FIterMult. When A submits

(
commit, (Yi,C)

m−1
i=0

)
to

FIterMult, S ensures that the ciphertexts in A’s message match those which S just computed above.

7. When A submits
(
multiply, (〈yi〉C , si,C)

m−1
i=0

)
to FIterMult, S ensures that Yi,C

?
= Encpk(〈yi〉C ; si,C)

for each i ∈ {0, . . . ,m− 1}. If if this check fails, S sends (multiply-abort) to A and halts.

8. S submits (commit,x′C) and (evaluate) to Ff , where x′C :=
(
xC,0, . . . , xC,n/2−1

)
; S receives

(evaluate, v), where v ∈ {0, 1}. S sets y ← Fq or y := 0 accordingly as v = 0 or v = 1, and
simulates FIterMult giving A (multiply, y). If A sends (abort) to FIterMult, then S sends (abort) to Ff .
Otherwise, S sends (continue) to Ff , who releases v to P1−C . S outputs whatever A outputs.

We prove the theorem by means of a sequence of hybrid distribution families.

D0: Corresponds to IdealF,S,C .

D1: Same as D0, except S is given P1−C ’s input x1−C , and the ideal P1−C ’s output is determined not using
(evaluate, v) from the functionality, but rather by S, who, in step 8. above, interleaves x′C and x1−C

to obtain v := f(x), assigns y ← Fq or y := 0 accordingly as v = 0 or v = 1, and gives P1−C y
?
= 0.

D2: Same as D1, except S, using P1−C ’s actual input x1−C =
(
x1−C,0, . . . , x1−C,n/2−1

)
, sets A1−C,i ←

Encpk(x1−C,i) for each i ∈
{

0, . . . , n2 − 1
}

in step 3.

D3: Same as D2, except S moreover sets A1−C ← Encpk1−C

(∑n/2−1
i=0 2i · x1−C,i

)
in step 2. above.

D4: Corresponds to RealΠ,A,C .

Lemma 4.20. The distribution ensembles {D0(x0,x1, λ)}x0,x1,λ
and {D1(x0,x1, λ)}x0,x1,λ

are statistically
indistinguishable.

Proof. These distributions differ only in how P1−C ’s output is determined; it’s v in D0 and y
?
= 0 in D1.

These quantities in turn differ only if v = 0 but S draws the unlucky sample y = 0 randomly from Fq. More
formally, for each v ∈ {0, 1}, the difference |Pr [P1−C (D0(x0,x1, λ)) = v]− [P1−C (D1(x0,x1, λ)) = v]| is at
most 1

q ∈ O
(

1
2λ

)
, which is negligible.

Lemma 4.21. If Π′ = (Gen,Enc,Dec) has indistinguishable multiple encryptions, then the distribution
ensembles {D1(x0,x1, λ)}x0,x1,λ

and {D2(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. We fix as before a distinguisher D, a polynomial p(Λ), and an infinite collection of triples (x0,x1, λ)
for which |Pr [D1(x0,x1, λ) = 1]− Pr [D2(x0,x1, λ) = 1]| ≥ 1

p(λ) ; we again assume without loss of generality

that Pr [D2(x0,x1, λ) = 1]− Pr [D1(x0,x1, λ) = 1] ≥ 1
p(λ) holds for each triple.

We again define an adversary A′ attacking the multiple encryptions experiment PubKLR-cpa
Π′,A′ . For each λ for

which a triple exists, A′, on the advice (x0,x1) and given pk and access to the oracle LRpk,b(·, ·), A′ initiates
the following variant of S. In step 1. above, A′ simulates the message (key, pk) to A as if from FIterMult, using
the experimenter’s public key. In step 2., S sets (pk1−C , sk1−C) ← Gen(1λ) and A1−C ← Encpk1−C (0) as
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usual. In step 3., A′ constructs A1−C,i ← LRpk,b (0, x1−C,i) using an oracle call, for each i ∈
{

0, . . . , n2 − 1
}

.
A′ proceeds otherwise as in D1 and D2, and runs D on the resulting output. A′ outputs whatever D outputs.

If the experimenter’s bit b = 0 or b = 1, then the joint distribution of A’s and P1−C ’s outputs—that is,
the distribution of D’s input—exactly matches D1 or D2, respectively. We conclude as before that:

Pr
[
PubKLR-cpa

Π′,A′ (λ) = 1
]

=
1

2
·
(

Pr
[
A′
(
PubKLR-cpa

Π′,A (λ)
)

= 0 | b = 0
]

+ Pr
[
A′
(
PubKLR-cpa

Π′,A′ (λ)
)

= 1 | b = 1
])

=
1

2
· (Pr[D(D1(x0,x1, λ)) = 0] + Pr [D(D2(x0,x1, λ)) = 1])

=
1

2
· (1− Pr[D(D1(x0,x1, λ)) = 1] + Pr [D(D2(x0,x1, λ)) = 1])

=
1

2
+

1

2
· (Pr [D(D2(x0,x1, λ)) = 1]− Pr[D(D1(x0,x1, λ)) = 1]) .

≥ 1

2
+

1

2 · p(λ)
,

where the last step is our hypothesis on D. This again contradicts our assumption that (Gen,Enc,Dec) has
indistinguishable multiple encryptions.

Lemma 4.22. If Π′ = (Gen,Enc,Dec) has indistinguishable multiple encryptions, then the distribution
ensembles {D2(x0,x1, λ)}x0,x1,λ

and {D3(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. We define an adversary A′ attacking PubKLR-cpa
Π′,A′ as above; this lemma is essentially the same as

Lemma 4.21, but applied to P1−C ’s initial ciphertext A1−C in step 2. In this reduction, A′ generates
(pk, sk)← Gen(1λ) in step 1. in the usual way, and internally sends A (key, pk) as if from FIterMult. A′ uses

the experimenter’s public key as pk1−C in step 2., generates A1−C ← LRpk1−C ,b
(

0,
∑n/2−1
i=0 2i · x1−C,i

)
using

an oracle call, and internally gives A (pk1−C , A1−C) as if from P1−C . Elsewhere, A′ proceeds as in D2 and
D3. A′ runs the distinguisher D on the resulting output, and returns whatever D does. If the experimenter’s
bit b equals 0 or 1, then D’s input is distributed exactly as D2 and D3, respectively; the lemma follows
exactly as Lemma 4.21.

Lemma 4.23. The distributions {D3(x0,x1, λ)}x0,x1,λ
and {D4(x0,x1, λ)}x0,x1,λ

are identical.

Proof. These distributions “differ” only in that P1−C ’s output is determined using v := f(x) in D3 and by
FIterMult in D4 (i.e., in the real world). This lemma captures the correctness of the protocol, and follows

from the condition f−1(1) =
⋃m−1
i=0 Hi ∩ {0, 1}n. Indeed, S’s input x and FIterMult’s inputs (〈yi〉0 , 〈yi〉1)

m−1
i=0

are related by the hyperplane expressions (1) in any successful run of the protocol. By the hypothesis

f−1(1) =
⋃m−1
i=0 Hi ∩ {0, 1}n, v = 1 if and only if 〈yi∗〉0 + 〈yi∗〉1 = 0 for some i∗ ∈ {0, . . . ,m− 1}. It follows

that S’s simulated output distribution and FIterMult’s real-world output distribution are identical.

Combining Lemmas 4.20, 4.21, 4.22, and 4.23, we conclude the proof of the theorem.

Remark 4.24. The steps 11 and 12 of Protocol 4.18 essentially facilitate formal compliance with the
interface of FIterMult, and can be omitted in a real-life implementation of the protocol. More concretely, the
“commitment” phase of Protocol 4.8—as well as that protocol’s lines 2–3—can be omitted when Protocol 4.8
serves as a subprotocol within Protocol 4.18. As proving this fact would require breaking our abstractions, we
simply note it here informally. Indeed, each party Pν computes the opposite party’s ciphertexts (Yi,1−ν)

m−1
i=0

in (2). If, instead of exchanging and mutually validating these ciphertexts, the parties simply proceeded with
Protocol 4.8, then any discrepancy would necessarily emerge—and induce an abort—in lines 9 and 10 of that
protocol. Theoretically speaking, lines 2 and 3 are unnecessary when Protocol 4.8 resides within Protocol
4.18, as the simulator of that latter protocol can independently compute the messages of A’s ciphertexts.

Remark 4.25. As each player Pν in Protocol 4.18 invokes FBitProof
zk

n
2 times, we could have replaced that lat-

ter ideal functionality with a “vectorized” variant; such a functionality can moreover be securely instantiated
with O(log n)-sized proofs, using aggregated Bulletproofs [BBB+18, § 4.3]. Because our protocol requires
that the Θ(n) statements A0,i and A1,i be exchanged regardless, we have elected not to use Bulletproofs,
which are slightly more computationally costly in practice than the standalone bit-proofs of [GK15, Fig. 1].
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4.4 Efficiency

In this subsection, we describe the efficiency of Protocols 4.8 and 4.18, both theoretical and concrete. We
describe a full implementation of both protocols, including all required zero-knowledge proofs (summarized
in Subsection 2.6) and the multiplication subprotocol of Doerner et al. [DKLs18, § VI. D.] (see Theorem
4.3). The entire implementation comprises about 2,500 lines of Go code. About 1,000 among these lines
constitute the multiplication subprotocol; 500 or so more serve zero-knowledge proofs. Protocols 4.8 and
4.18 occupy the remaining 1,000 lines; among these, the former protocol represents the significant majority.
Our implementation is single-threaded (though certain parts could plausibly be parallelized to good effect).

Throughout our implementation, we take as (G, q, g) the secp256k1 elliptic curve group, defined in
[Bro10, § 2.4.1]. The group order q is a 256-bit prime. We use the implementation of that curve in Go’s
btcec package. We set (Gen,Enc,Dec) to be the El Gamal scheme over (G, q, g) (see Example 2.6 above).

We benchmarked our protocol by running both players as separate processes on a single 2019 MacBook
Pro (with a 2.6 GHz 6-Core Intel Core i7 processor), where moreover all traffic was tunneled through a
WAN. “Wall time” reflects the time the protocol took over this WAN, whose download and upload speeds
were respectively clocked at around 600 Mbps and 200 Mbps (this time can be slightly larger for the player
who computes last; we consistently reported the larger time). The “elliptic curve multiplications” column
counts the number of curve scalar multiplications each party must compute throughout its executing the
protocol. “Bytes sent” refers to the number of bytes which each party must send the other throughout the
course of its running the protocol. The parties in fact must send each other different amounts, because of
their asymmetric roles in [DKLs18, § VI. D.]. The difference between these amounts ranges from a factor of
10% in the case m = 8 to about 30% when m = 64; we report the larger quantity in each benchmark. As we
work in the two-party setting, we don’t report “rounds”, but rather the total number of messages sent (by
either party to the other). This simplifies the exposition, and also reflects certain simplifications we apply
in “commit-then-prove” scenarios (e.g., see Remark 4.6). We don’t report the costs of our protocol’s setup
and key-generation phases, as these are identical to those of [DKLs18] and [LNR18].

m EC Multiplications Bytes Sent Total Messages Wall Time

8 397 378 KB 28 1,048 ms

16 651 749 KB 34 1,626 ms

32 1,259 1,491 KB 40 2,267 ms

64 2,475 2,972 KB 46 3,706 ms

asymp. Θ(m) Θ(m) Θ(logm) Θ(m)

Table 1: Costs of Protocol 4.8, for different m.

Our benchmarks for Protocol 4.18 specialize that latter protocol to the comparator function of Example
3.30. We note that that function—which compares two n

2 -bit integers—can be covered using m = n
2 hyper-

planes; we recall finally that these can be evaluated in O(n) total time. We note that the majority of the
complexity of Protocol 4.18, in most measures, comes from its multiplication portion (namely, Protocol 4.8).

n EC Multiplications Bytes Sent Total Messages Wall Time

16 550 380 KB 30 1,261 ms

32 1,038 754 KB 36 1,641 ms

64 2,014 1,501 KB 42 2,442 ms

128 3,966 2,991 KB 48 3,945 ms

asymp. Θ(n) Θ(n) Θ(log n) Θ(n)

Table 2: Costs of Protocol 4.18 (specialized to the function of Example 3.30), for different n.
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