
Privacy-preserving Identity Management System

Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

1 Hanyang University, Seoul, Korea
2 Kookmin University, Seoul, Korea

ahoo791@hanyang.ac.kr cjk2889@kookmin.ac.kr jihyek@kookmin.ac.kr

hoh@hanyang.ac.kr

Abstract. Recently, a self-sovereign identity model has been researched
actively as an alternative to the existing identity models such as a cen-
tralized identity model, federated identity model, and user-centric model.
The self-sovereign identity model allows a user to have complete control
of his identity. Meanwhile, the core component of the self-sovereign iden-
tity model is data minimization. The data minimization signifies that the
extent of the exposure of user private identity should be minimized. As
a solution to data minimization, zero-knowledge proofs can be grafted to
the self-sovereign identity model. Specifically, zero-knowledge Succinct
Non-interactive ARgument of Knowledges(zk-SNARKs) enables proving
the truth of the statement on an arbitrary relation. In this paper, we
propose a privacy-preserving self-sovereign identity model based on zk-
SNARKs to allow any type of data minimization beyond the selective
disclosure and range proof. The security of proposed model is formally
proven under the security of the zero-knowledge proof and the unforge-
ability of the signature in the random oracle model. Furthermore, we
optimize the proving time by checking the correctness of the commit-
ment outside of the proof relation for practical use. The resulting scheme
improves proving time for hash computation (to verify a commitment in-
put) from 0.5 s to about 0.1 ms on a 32-bit input.

Keywords: Identity model · Self-sovereign identity model · Verifiable
credential data model · DIDs · zero-knowledge proof · zk-SNARKs ·
Commit-and-Prove

1 Introduction

For decades, how an individual’s identity can be trusted in a digital world has
been treated as an important issue. In the early days, a centralized identity
model where centralized authority is given a control of digital identity has been
used for years. In this model, a user identity is managed and authenticated in
a single centralized authority that is combined with the service provider. How-
ever, the user identity for accessing the service is completely subordinated to
the centralized authority, thus it is difficult for the user identity to be used in-
teroperably and the user identity can be vulnerable if the centralized authority
is compromised. A federated identity model where the identity provider is sep-
arated from the service provider and multiple service providers establish a kind

2 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

of trust relationship in one federated group was proposed as an alternative to
the centralized model. If a user accesses one service provider by providing au-
thenticated user identity from the trusted identity provider, the user identity
can be shared with other services in the federated group. Despite the improved
interoperability, trust between the services in a federated group is required, and
the service provider should fully trust the identity provider. So, the extent of
services that can be accessed from a single identity provider is limited to the
federated group. The user-centric model is proposed to enhance further the in-
teroperability of identity. In a user-centric model, a user can choose the identity
providers freely and utilize them to access any services; the trust relationship
between services is not required. However, all existing identity models have defi-
ciencies in terms of control because the permission to manage and authenticate a
user identity is completely subordinated to the identity provider [2]. Since user’s
identity is stored in the identity provider’s server, the identity can be invalid if
the server is compromised or the identity service ends.

Meanwhile, a self-sovereign identity model that enhances a control of user
identity without missing the interoperability has received attention as an alter-
native to the existing identity models after the rise of the blockchain such as
bitcoin [32] and ethereum [45]. Since the blockchain allows the identity manage-
ment to be fully decentralized and guarantees identity persistence of with the
non-malleability of the identity, a user can control his/her own identity without
the identity provider. Recently, studies that establish the self-sovereign identity
model using the blockchain have been proposed [3, 31, 44]. Specifically, the World
Wide Web Consortium(W3C) stipulates a verifiable credential data model [12]
that uses decentralized identifiers(DIDs) structure [38] as a building block. In
the verifiable credential data model, an issuing organization like a government
issues a verifiable credential that certifies claim data about user identity. Multi-
ple verifiable credentials are reorganized as a verifiable presentation by the user
in accordance with the request of the verifier. The verifier accesses user’s DIDs,
which includes data for the credential verification stored in the blockchain and
efficiently verifies the verifiable presentation.

The verifiable credential data model enables a user to utilize his registered
identity permanently and it helps the user control of his/her identity. The veri-
fiable credential data model has advantages in terms of persistence and control,
but has limitations in that the user’s privacy is not protected to the maximum
extent. Since the verifiable presentation is composed of the verifiable credentials
that are not an encrypted form or a committed form, the verifier can access the
claim information in the verifiable credentials. For instance, when the verifier
only needs to know whether the user is a minor or not, the verifier can recognize
user’s exact age from the verifiable credentials. Thus, several research groups [44,
42] including the standard group [12] tried to explore zero-knowledge proof to the
verifiable credential data model. Zero-knowledge proof enables a user to prove
a claim/statement without revealing the knowledge of the claim. They attempt
to supplement the privacy in the existing verifiable credential data model using
the notion. Specifically, their works support a selective disclosure of claim [12,

Privacy-preserving Identity Management System 3

44, 42] and range proof of claim [42] using the CL signature scheme [9] and the
range proof scheme [36].

However, if complex computations rather than selective disclosure or the
range check are required for the verifiable presentation generation, the above
proof schemes [9, 36] cannot be utilized as building blocks in the verifiable pre-
sentation generation. For instance, if the user should prove his/her financial asset
level, the components of the assets such as goods and debt should be evaluated
by a complex appraisal function. Since the selective disclosure and range check
function cannot express the appraisal function in some cases, it is not enough
to construct the verifiable credential data model based on CL signatures and
range proof schemes. As an alternative of CL signature based scheme, the zero-

Fig. 1: Basic structure of our proposal

knowledge Succinct Non-interactive ARgument of Knowledges(zk-SNARKs) [19,
7, 25, 29, 15, 35, 20] can be used as building blocks for the data minimization. zk-
SNARKs is capable of proving the correctness of arbitrary statements and helps
the user to prove the validity of the verifiable presentation that is composed of
the complex computations with zero-knowledge. In fact, Yang and Li utilized the
zk-SNARKs for the data minimization recently [47]. In their construction, the
verifiable credential is issued as a committed form with its zk-SNARKs proof,
and the user also generates the verifiable presentation that expresses the cor-
rectness of the credential and its one-time use. Additionally,in their work, the
zk-SNARKs is utilized to prove the possession of a specific attribute that is
issued in advance. Furthermore, since they utilize zk-SNARKs as only a way
of improving verification efficiency, their work confines the presentation format
as the form of showing only the possession of attribute despite the expression
power of the zk-SNARKs. As stated above, the function that requires complex
computation such as credit appraisal and the qualification for tax exemption

4 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

cannot be expressed through only proving the possession of attributes. More-
over, their works require the issuer to generate zk-SNARKs proof for all user
claims, which is undesirable for the availability. Thus, we propose a new zero-
knowledge verifiable credential data model to focus on supporting complicated
verifiable presentation.

In our scheme, the trusted issuer issues the verifiable credential as a commit-
ted form with its signature, and the user presents the verifiable presentation that
only discloses the minimum information derived by computing the user claim
data to the verifier. The verifiable credential is included in the verifiable presen-
tation directly in other works [44, 42]. In contrast, our approach assumes that
the verifiable presentation is derived from the user claim data and the verifier
verifies connectivity of the given verifiable presentation and the verifiable cre-
dential that is recorded in advance. Fig. 1 describes a flow of our zero-knowledge
verifiable credential data model.

As shown in Fig. 1, our zero-knowledge verifiable credential data model as-
sumes triple entities such as an issuer, a holder and a verifier. A holder who has
private user claim data, such as subject’s age, commits the user claim data. The
holder then sends the private value and its commitment to the issuer. When the
issuer receives the values, the issuer authenticates the private value and checks
the correctness of the commitment. If the values are valid, then the issuer signs
on the commitment and issues the commitment and its signature as a verifiable
credential. The verifiable credential is recorded in the verifiable data registry,
and the holder keeps the address of the verifiable credential in his DID docu-
ments. When the holder is required to present his qualification by the verifier,
the holder generates a minimized public user claim data from his private user
claim data directly; and guarantees the correctness of the public user claim data
by presenting it with the zk-SNARKs proof. The verifier verifies if the public
user claim data is derived from the private user claim data that is registered as
a committed form by verifying the zk-SNARKs proof. When the verifier veri-
fies the proof, the verifiable credential that is used as a input of a statement is
downloaded from the verifiable data registry.

We achieve a versatility of the verifiable presentation with privacy by utiliz-
ing zk-SNARKs. However, it can cause inefficiency with respect to the proving
time if an appropriate computation circuit size is not considered. Since the prov-
ing time of zk-SNARKs increases proportionally to the circuit size, reducing the
circuit size as little as possible is desirable. In the scheme with committed cre-
dentials, the computation circuit should include a process of the commitment
correctness check. A single commitment check process increases the circuit size
by as much as about 25,000 constraints if, for example, SHA-256 hash algorithm
is used as the commitment scheme [39]. Thus, we remove the commitment check
process from the computation circuit using Commit-and-Prove zk-SNARKs(CP-
SNARKs) [14, 11]. CP-SNARKs allows the verifier to verify the commitment
correctness apart from the circuit; the circuit checks only the equality of the
commitment in the circuit; while verifying the commitment outside the circuit.

Privacy-preserving Identity Management System 5

Table 1: Comparison of self sovereign identity models
Ours Sovrin [44] IPv8 [42] YL20 [47] Uport [31]

Control O O O O O

Data minimization O O O O X

Expression power Unlimited
Selective Selective & Range Selective

-
disclosure disclosure disclosure

Persistence O O O O O

ZKP type zk-SNARKs [11] CL02 [9]
CL02 [9],

zk-SNARKs [35, 19, 20] -
PB10[36]

ZKP optimization O - - X -

Control : The capability of controlling the identity by the user himself
Data minimization : The minimization of the user identity disclosed to the verifier
Expression power : The flexibility of the form of the processed identity given the verifier
Persistence : The persistence of the issued identity in the repository
ZKP type : The used zero-knowledge proof scheme in the construction
ZKP optimization : The optimization of zero-knowledge proofs in terms of the proving time.

1.1 Our contribution

Model We define a privacy-preserving verifiable credential data model follow-
ing the verifiable credential data model standard [12]. Our credential data model
improves data minimization in the standard model. The credential model is
equipped with the formal security notion and the model can be applied to other
standard-based identity models. As shown in Table 1, other privacy-preserving
models support only limited relations such as selective disclosure or range disclo-
sure. In contrast, our model has an unlimited expression power in terms of the
verifiable presentation. Notwithstanding the high flexibility of the expression,
our model supports a control and the persistence of the user identity in common
with the other models.

Construction We provide a specific construction of the privacy-preserving
model via zk-SNARKs. Our construction allows any type of zk-SNARKs such as
pairing based pre-processing zk-SNARKs [19, 20, 25] and the universal reference
string based zk-SNARKs [7, 29, 15]. Since we supports the general construction
of the verifiable credential data model, diverse zk-SNARK libraries such as lib-
snark [5], snarkjs [4] can be applied to the construction implementation.

Security Though many identity models have been proposed [44, 31, 42, 47], to
the best of our knowedlge, the formal security proof is not provided in most cases.
We provide the formal security proof of the proposed model. Our security notion
relies on the simulation-based approach [16]. The simulation-based approach
assumes the ideal credential data model where a trusted party substitutes the
cryptographic protocol in the proposed model. We show that the advantages of
the proposed model are converged into the advantages of the ideal credential
data model by simulating an adversary of the ideal credential data model from

6 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

our credential data model. Additionally, the security of our construction implies
the resistance of the replay attack.

Optimization We optimize the construction to reduce proving time. Particu-
larly, the commitment correctness is checked outside the proof circuit and only
equality of I/O is checked in the proof circuit by formatting the commitment
as I/O of the proof. If the commitment check process can be removed from the
proof circuit, it can improve the efficiency in terms of the proving time notably.
Specifically, the proving time takes 3.8 ms in the case of a single if-statement on
a 32-bit single input.

1.2 Organization

We describe related works in Section 2. In Section 3, we explain background of
our design. We describe definition of the verifiable credential data model and our
zero-knowledge verifiable credential data model in Section 4. We demonstrate
specific construction of our signature scheme in Section 5. Section 6 presents the
security proofs of all constructions and Section 7 analyzes the experiment results
of our scheme. We draw a conclusion in Section 8.

2 Related work

2.1 Existing self-sovereign identity models

The self-sovereign identity model is first introduced by Allen [2]. In [2], the
notion of self-sovereign identity model and its properties were defined. The self-
sovereign identity model has been researched actively by various research groups
including the W3C group. W3C defines a standard of the self-sovereign identity
model called verifiable credential data model [12] and DIDs notion [38]. After
the standards were founded, there has been an active research involving the self-
sovereign identity model [21, 30, 13, 48]. Naik and Jenkins [31] design uPort that
is a self-sovereign identity model based on the ethereum and InterPlanetary File
Systems(IPFS). Kassem et al. [3] propose a design similar to uPort. The design
uses both permissionless blockchain and permissioned blockchain as building
blocks, whereas, uPort utilizes only permissionless blockchain. Sovrin [44] is an
open source project that is operated on the hyperledger indy. Sovrin works in ac-
cordance with the verifiable credential data model, and DIDs are managed in the
permissioned blockchain. The verifiable credential data model is operated by the
smart contract on the permissioned blockchain. Stokkink and Pouwelse [43] pro-
pose a model based on the personalized blockchain like TrustChain [34] and the
Tangle [37]. Additionally, several researches[1, 33, 41] apply the verifiable creden-
tial data model and DIDs structures to other applications such as eID [1], the
biometric authentication [33, 22] and finance applications [41]. Recently, zero-
knowledge proof [10](ZKP) was grafted onto the standard model for data mini-
mization [44, 42, 22, 47]. Though ZKP allows data minimization, the expression

Privacy-preserving Identity Management System 7

of the minimized data is limited unless zk-SNARKs [35, 19, 20, 25, 15, 11, 29, 7]
is utilized as building blocks of the construction. Only Yang and Li utilize zk-
SNARKs as a building block of the construction, however, they limited the
expression to the ownership of the identity despite of the flexible expression of
zk-SNARKs. Furthermore, their approach is inefficient in terms of the proving
time since they encode the commitment circuit into the proof circuit.

2.2 zk-SNARKs

This section discusses various zk-SNARKs schemes. Since Gennaro et al. [17]
have proposed first zk-SNARKs notion where arbitrary expressions are sup-
ported using Quadratic Span Program(QSP) or Quadratic Arithmetic Program(QAP)
notion [23], several practical zk-SNARKs schemes have been proposed [35, 19, 20,
25]. Parno et al. [35] provided the first practical implementation of zk-SNARKs
that can support arbitrary expression. Groth [19] reduces the proof size from 8
to 3 group elements and the number of pairing operations from 11 to 3 in ver-
ification. Groth and Maller [20] established a simulation extractability notion,
which prevents the adversary from forging a proof even if the adversary can
access the simulated proof. In the protocol, the proof size remains as those of
Gro16 [19]. However, the simulation extractable zk-SNARKs is based on SAP
circuit, which causes proving time inefficiency because the size of the Square
Arithmetic Program(SAP) circuit is twice as much as that of the QAP circuit.
Several works have attempted to construct the SE-SNARKs scheme based on the
QAP circuit [6, 28] and Kim et.al [25] accomplished the QAP based SE-SNARKs
while remaining the proof size as three.

However, several researches [46, 40, 7, 29, 15, 8] construct zk-SNARKs scheme
without using QAP or QSP expression because pairing based zk-SNARKs re-
quires a trusted setup. GKR protocol [18] obtains a sublinear proof based on the
sum-check protocol. However, the protocol does not support constant verifica-
tion. Thus, there have been several studies [46, 40] based on the GKR protocol to
improve the efficiency. Several studies proposeed the universal setup zk-SNARKs
based on the polynomial commitment scheme. Sonic [29] and Plonk [15] accom-
plished the universal string-based zk-SNARKs that supports constant verifica-
tion using Kate polynomial commitment scheme [24] as building blocks. Fur-
thermore, Bulletproof [7] proposes an inner-product argument scheme that has
a logarithmic proof size with the untrusted setup. Bunz et al. [8] propose a poly-
nomial commitment scheme that does not require the trusted setup using the
unknown order group.

3 Preliminaries

3.1 Notation

We write y ← x for substitution x on y. We write y ← S for sampling y from S if
S is a set. We write y ← A(x) for a probabilistic algorithm on input x returning

8 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

output y. When a probabilistic algorithm A(x) has a private input r, we denote
A(x; r). We state f(λ) is negligible if f(λ) ≈ 0. We denote a concatenation as
||. Given a scheme Π, its all operations are denoted by Π.name. We denote by
aj,i the element of l ×N matrix A and we denote by ai the element of l length
vector ~a. Let R be a relation generator that given a security parameter λ in
unary returns a polynomial time decidable relation R ← R(1λ). We denote Rλ
as the set of relations that R(1λ) outputs. We call φ the instance and w the
witness for (φ,w) ∈ R. We denote all of A’s inputs and outputs for an algorithm
A by transA.

3.2 Bilinear Groups

We recall the definition of bilinear groups [25]. A Bilinear group generator BG
takes as input a security parameter and outputs a bilinear group (p,G1,G2,GT , e,G,H).
G1, G2, GT are groups of prime order p with generator G ∈ G1, H ∈ G2

and a bilinear map e : G1 × G2 → GT is a non-degenerative bilinear map (i.e
e(Ga, Hb) = e(G,H)ab and e(G,H) generates GT).

3.3 Commitment Schemes

Definition 1. A commitment scheme is a tuple of algorithms Com = (Setup,Commit,VerCommit)
as follows.

– Setup is a PPT setup algorithm that takes as input a security parameter
and outputs a commitment key ck. The commitment key ck includes the
description of input space D, commitment space C, opening space O.

– Commit is a PPT algorithm that takes as input a commitment key ck, a
value u and outputs a commitment c and an opening o.

– VerCommit is a deterministic polynomial time algorithm that takes as input
a commitment key ck, a commitment c, a value u, and an opening o, and
returns 0(reject) or 1(accept).

A commitment scheme Com satisfies the notion of correctness, binding and hid-
ing [11].

3.4 Digital signatures

Definition 2. A digital signature is a set of algorithms Sig = (Keygen,Sign,Verify)
where

– Keygen takes as input a security parameter λ and returns a key pair sk, vk
the signing key and the verification key.

– Sign takes as input a message m, the secret key sk and returns σ.
– Verify takes as input a message m, the verification key vk, the signature σ

and returns 1 if the σ is valid signature or 0, otherwise.

A digital signature scheme Sig satisfies a notion of unforgeability described below.

Privacy-preserving Identity Management System 9

Unforgeability Sig satisfies unforgeability if AdvunforgeSig,F (λ) ≈ 0 for any PPT
adversary F where the execution time is at most t and the number of sign-
ing queries is at most qsig. An adversary who wants to succeed a valid signa-
ture forgery executes chosen message attack cma until the number of signing
queries amounts to qsig. The adversary succeeds a valid forgery if the adversary

generates a signature of a new message. Formally we define AdvunforgeSig,F (λ) =

Pr[GunforgeSig,F (λ)] where the game GunforgeSig,F is defined in Algorithm 1.

Algorithm 1 Unforgeability game GunforgeSig,F (λ)

GunforgeSig,F (λ)

(sk, vk)← Keygen(λ)
repeat

forge← FSign(·)(cma, vk)
until the number of queries is qsig
(m∗, σ)← F(forge)
if Verify(m∗, vk, σ) = 1 and m∗ was not queried of Sign(·) then

return 1 else return 0
end if

3.5 Simulation-extractable zk-SNARK

We recall the definition of simulation-extractable zk-SNARK [20, 25, 27]

Definition 3. A zero-knowledge succinct non-interactive arguments of knowledge(zk-
SNARK) for R is a set of quadruple algorithms Π = (Setup,Prove,Verify,SimProve)
as follows.

– Setup is a PPT setup algorithm that takes as input a relation R ∈ Rλ and
returns a common reference string crs and a simulation trapdoor τ .

– Prove is a PPT algorithm that takes as input a common reference string crs,
an instance φ and a witness w for (φ,w) ∈ R, and returns a proof π.

– Verify is a deterministic polynomial time algorithm which takes as input a
common reference string crs, an instance φ and a proof π, and returns 0(re-
ject) or 1(accept).

– SimProve is a PPT algorithm which takes as input a common reference string
crs, a simulation trapdoor τ , and an instance φ. The algorithm returns a
simulated proof π.

zk-SNARK Π satisfies completeness, knowledge soundness, zero-knowledge,
and succinctness as described below.

10 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

Perfect completeness : Perfect completeness stipulates that a prover with a
witness who is given a true statement can convince a verifier.

For all λ ∈ N, for all R ∈ Rλ and for all (φ,w) ∈ R :

Pr[(crs, τ)← Setup(R);π ← Prove(crs, φ, w) : Verify(crs, φ, π) = 1] = 1 (1)

Computational soundness : Computational knowledge soundness states that
the prover must know a witness and the witness should be extracted efficiently
from a knowledge extractor. Proof of knowledge requests every adversarial prover
A to generate an accepting proof, there must be an extractor χA which outputs
a valid witness taking a same input of A. Formally, we define AdvsoundArg,A,χA(λ) =

Pr[GsoundArg,A,χA(λ)] where GsoundArg,A,χA is defined as follows.

Algorithm 2 Knowledge soundness game GsoundArg,A,χA

GsoundArg,A,χA(λ)

R←R(1λ)
(crs, τ)← Setup(R)
(φ, π)← A(crs)
w ← χA(transA)
A wins if Verify(crs, φ, π) = 1 and (φ,w) /∈ R and fails otherwise.

An argument system Arg is considered computationally sound if for any PPT
adversary adversaryA, there exists a PPT extractor χA where AdvsoundArg,A,χA(λ) ≈
0

Perfect zero-knowledge : Perfect zero-knowledge stipulates that a proof does
not disclose any information about the witness besides the truth of the instance.
The statement is certified by a simulator which cannot access a witness but has
some trapdoor information that allows simulating proofs. Formally, we define
AdvzkArg,A(λ) = 2 Pr[GzkArg,A(λ)] − 1 such that the game GzkArg,A is defined as
follows.

The argument system is considered perfect zero-knowledge if AdvzkArg,A(λ) =
0 for all PPT adversaries A.

Simulation-Extractability : Simulation-Extractability stipulates that any ad-
versary A who can access a simulated proof for a false instance cannot forge the
proof to another proof for a false instance. Formally, we define Advproof−extArg,A,χA (λ) =

Pr[Gproof−extArg,A,χA (λ)] where the game Gproof−extArg,A,χA is defined as follows.
zk-SNARK is considered simulation extractable if there exists an extractor

χA, for any PPT adversary A, where Advproof−extArg,χA,A (λ) ≈ 0.

Privacy-preserving Identity Management System 11

Algorithm 3 Zero-knowledge game GzkArg,A
GzkArg,A(λ)

R←R(1λ)
(crs, τ)← Setup(R)
b← {0, 1}
if b = 0 then

P bcrs,τ (φi, wi) returns πi where πi ← Prove(crs, φ, w) and (φi, wi) ∈ R
else

P bcrs,τ (φi, wi) returns πi where πi ← SimProve(crs, φ, τ) and (φi, wi) ∈ R
end if
b′ ← AP

b
crs,τ (φi,wi)

A wins if b = b′ and fails otherwise.

Algorithm 4 Simulation extractable knowledge soundness game Gproof−extArg,A,χA

GsoundArg,A,χA(λ)

R←R(1λ) , Q← 0
(crs, τ)← Setup(R)
repeat

πi ← SimProve(crs, τ, φi)
Q← Q ∪ {φi, πi}

until (φ, π)← ASimProvecrs,τ (crs)
w ← χA(transA)
A wins if Verify(crs, φ, π) = 1, (φ,w) /∈ R and (φ, π) /∈ Q and fails otherwise.

12 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

3.6 Commit and Prove zk-SNARK

We recall the definition of Commit and Prove zk-SNARKs [11].

Definition 4. Let Rλ be a set of relations R over Dx ×Du ×Dw such that Du
splits over l arbitrary domains (D1 × · · · × Dl) for some arity parameter l ≥ 1.
Let Com = (Setup,Commit,VerCommit) be a commitment scheme(definition 1)
whose input space D is such that Di ⊂ D for all i ∈ [l]. A commit and prove
zk-SNARK for Com and Rλ is zk-SNARK for a set of relations {RCP

λ } such that:

– all RCP ∈ RCP is represented by a pair (ck,R) where ck ∈ Com.Setup and
R ∈ Rλ.

– RCP is over pairs (φCP, wCP) where the statement is φCP = (φ,~c) ∈ Dφ × Cl,
the witness is wCP = (~u, ~o, w) ∈ D1 × · · · × Dl ×Ol ×Dw, and the relation
RCP holds iff∧

VerCommit(ck, cj , uj , oj) = 1 ∧R(φ, ~u,w) = 1

Definition 5. A CP-SNARKs is a triple of algorithms CP = (Setup,Prove,Verify)
as follows.

– Setup takes as input a pair RCP = (R, ck) and outputs the common reference
string crs.

– Prove takes as input a common reference string crs, an instance φCP = (~c, φ)
and witness wCP = ((~u, ~o), w) and outputs a proof πCP.

– Verify takes a common reference string crs, an instance φCP, and a proof πCP
and outputs 0(reject) or 1(accept).

The CP-SNARKs satisfies perfect completeness, computational knowledge-soundness,
and perfect zero-knowledge [11].

4 Zero-knowledge verifiable credential data model

4.1 Verifiable credential data model

W3C establishes a verifiable credential data model that is an open standard for
digital credential [12]. The verifiable credential data model stipulates a specific
way of utilizing a verifiable credential and a verifiable presentation that is com-
posed of the verifiable credential. Using the verifiable presentation and DIDs
structure, the credential data of an individual can be verified via the verifiable
data registry. We first recall the components of the verifiable credential data
model and describe how the verifiable credential data model works [12].

Entities : The verifiable credential data model supposes quadruple of entities
Issuer, Holder, Subject and Verifier who join the protocol as follows.

– Issuer is a role that performs by asserting claims about one or more sub-
jects, creating a verifiable credential from these claims, and transmitting the
verifiable credential to a holder.

Privacy-preserving Identity Management System 13

Fig. 2: Verifiable credential data model

– Holder is a role an entity might perform by possessing one or more verifiable
credentials and generating verifiable presentations from them

– Subject is an entity about which claims are made. The entity can include
human being, animals, and things.

– Verifier is a role an entity performs by receiving one or more verifiable cre-
dentials(optionally inside a verifiable presentation) for processing.

In many cases, Holder of the verifiable credential is Subject. However, the
permission of Subject to generate the verifiable presentation can be delegated to
different Holder. For instance, a parent might hold the verifiable credentials of a
child, or a pet owner might hold the verifiable credentials of their pet.

Verifiable credential : A credential is a set of claims made by an issuer about
the subject. A verifiable credential is a kind of credential with authorship that
can be cryptographically verified, making the credential tamper-evident. An is-
suer issues the verifiable credential, and the issuer is assumed to be trusted in
the model.

Verifiable presentation : A verifiable presentation is data derived from one or
more verifiable credentials, issued by one or more issuers, that is shared with a
specific verifier. The verifiable presentation is also a tamper-evident presentation
encoded in such a way that the authorship of the data can be trusted after a
process of cryptographic verification. The verifiable presentation is generated by
a holder.

Verifiable data registry : A verifiable data registry is role a system might
perform by mediating the creation and verification of identifiers, keys and other

14 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

relevant data, such as verifiable credential schemas, revocation registries, issuer
public keys that might be required to use verifiable credentials. Examples of
the verifiable data registries are decentralized ledger, a trusted database, and
decentralized database.

Figure 2 represents how the verifiable credential data model works. When
Issuer issues a verifiable credential of Subject, Holder composes verifiable creden-
tials into one verifiable presentation(the verifiable credential can be submitted as
itself) and sends the verifiable presentation to Verifier. Verifier check the correct-
ness of the verifiable presentation referring to data such as DIDs that is stored
in the verifiable data registry.

4.2 Zero-knowledge verifiable credential data model

We now describe how the privacy preserving verifiable credential data model
works. In the privacy-preserving model, the process is split into three phases that
are zero-knowledge claim phase zkCL, zero-knowledge verifiable credential phase
zkVC and zero-knowledge verifiable presentation phase zkVP. In zkCL phase,
Holder generates a committed claim of the Subject and Issuer verifies the correct-
ness of the claim. In zkVC, Issuer generates privacy preserved verifiable credential
based on the given committed claims. The verifiable credential in the existing
model should be kept only in the Holder’s wallet, however, the privacy-preserving
verifiable credential can be included in the DIDs. zkVP treats all the process of
verifiable presentation. Holder presents the zero-knowledge verifiable presenta-
tion to Verifier and Verifier checks whether the presentation data is correct or
not referring to DIDs. All the phases consist of Setup, Gen, Verify respectively.
Specifically, the phases are as follows.

Definition 6. A zero-knowledge claim phase zkCL is a set of algorithms (Setup,Gen,Verify)
as follows.

– Setup takes as input a security parameter λ, a maximum number of attributes
in one claim N and outputs a public parameter pp.

– Gen takes as input a public parameter pp, an attribute set ~uj and outputs a
verifiable claim claim.

– Verify takes as input a public parameter pp and verifiable claim claim and
outputs 0(reject) or 1(accept).

Definition 7. A zero-knowledge verifiable credential phase zkVC is a set of al-
gorithms (Setup,Gen,Verify) as follows.

– Setup takes as input a security parameter λ and outputs an issuer signing
key-verification key pair (skj , vkj).

– Gen takes as input a verifiable claim claim and issuer signing key skj and
outputs the zero-knowledge verifiable credential credj and it is uploaded to
the verifiable data registry.

– Verify takes as input a signature verification key vkj and the verifiable cre-
dential credj and outputs 0(reject) or 1(accept).

Privacy-preserving Identity Management System 15

Definition 8. A zero-knowledge verifiable presentation phase zkVP is a set of
algorithms (Setup,Gen,Verify) as follows.

– Setup takes as input a security parameter λ and a public parameter pp, a
relation for the presentation R∗k and outputs corresponding common reference
string crsk.

– Gen takes as input a common reference string crsk, zero-knowledge credential
set ~cred, a presentation function input in and an attribute value matrix u,
a secret value set of Holder ~o and outputs a privacy-preserving verifiable
presentation pres.

– Verify takes as input a common reference string crsk, a zero-knowledge verifi-
able presentation pres, the verifiable credential set ~cred, the issuer verification
key set ~vk and outputs 0(reject) or 1(accept).

We assume that zkVP.Setup is performed by a certificated authority. All
claim data originated from Holder, and Issuer is given power only to check the
correctness of the claim and register the committed claim as a form of verifi-
able credential. In our protocol, though Issuer has permission to identify actual
claim data, an authority of claim to use is limited to only Holder. We call our
privacy-preserving verifiable credential data model(zkCL, zkVC, zkVP) a privacy-
preserving identity management systems PIMS.

Security model We define a security model of the privacy preserving self-
sovereign identity management scheme. The security model follows the simu-
lation based definition [16]. We assume an ideal world execution where all the
cryptographic constructions are substituted to a trusted party TP, and an ad-
versary cannot forge a function output and distinguish messages of two commit-
ments. We suppose the probability of an adversary compromising a real world
execution is at most equal to the probability of an adversary compromising an
ideal world execution at best. We define the ideal world execution and the real
world execution formally as follows.

Definition 9. Ideal world execution IdealTP,S,Σ: The ideal world attacker S
selects several subset of the P1, . . . , Pn parties to corrupt and informs the TP.
The attacker controls parties to behave arbitrarily, the honest ones follow a set of
strategies Σ. All parties interact via messages among each subjects implementing
the ideal world execution described in Algorithm 9,10,11.

Definition 10. Real world execution RealPIMS,A,Σ : The real world attacker
A controls a subset of the parties P1, . . . , Pn interacting with the our privacy-
preserving verifiable credential data model. The honest parties execute the com-
mands output by the strategy Σ using the PIMS while the attacker can control
parties to behave arbitrarily. We assume that all parties can interact with a ver-
ifiable data registry.

Definition 11. We say that real functionality PIMS securely emulates the ideal
world execution IdealTP,S,Σ provided by TP if for all probabilistic polynomial-
time real world adversaries A and all honest party strategies Σ, there exists a
simulator S such that for any PPT distinguisher D:

16 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

Pr[D(IdealTP,S,Σ(λ)) = 1]− Pr[D(RealPIMS,A,Σ(λ))] ≈ 0

Theorem 1. PIMS satisfies with Definition 11 given the existence of CP-SNARK,
Pedersen commitment scheme, the digital signature scheme, and the verifiable
data registry.

5 Construction

5.1 Main idea

In this section, we describe a generalized PIMS construction. In other verifiable
credential data models [12], the user generates the verifiable presentation via
composing the given verifiable credentials from the issuer, whereas, our con-
struction allows that Holder has the flexibility to create verifiable presentations
other than the way of assembling issued verifiable credentials. Through utilizing
zk-SNARKs as building blocks of the construction, Holder enables applying com-
plex computation to generating the verifiable presentation other than proving
knowledge of the verifiable credential. Our protocol performs zkCL, zkVC and
zkVP phases as follows. Firstly, Holder commits a claim of Subject then sends
the commitment of the claim and its claim value to Issuer. Note that a secret
value(opening value of the commitment) of Subject is kept only in Holder to
prevent Issuer generating a verifiable presentation without Subject’s permission.
When Issuer is given the claim value and its commitment, Issuer validates the
authenticity of the claim and signs the commitment if the claim is valid. The
commitment and its signature of Issuer get to be a verifiable credential. The ver-
ifiable credential are included in DID documents in the verifiable data registry.
After the verifiable credential is uploaded, Holder generates a zero-knowledge
verifiable presentation using the Commit and Prove zk-SNARKs(CP-SNARKs).
Specifically, Holder runs a given function from Verifier and computes an output
from the verified claim data. For instance, if the Verifier requests Holder to prove
that an income level of Subject is in the specific range, Holder runs the function
for income range taking as input the claim data and outputs whether the income
level is in the range or not. The function output is used for the verifiable presen-
tation value and the CP-SNARKs that proves the function execution’s validity
is used for its proof.

The CP-SNARKs proves that a commitment is constructed well and the
user-generated credential data originate from the knowledge of the commitment
without revealing the knowledge. Naively, the CP-SNARKs can be constructed
simply if all commitment checks and the presentation generation processes are
included in the proof relation of CP-SNARKs. However, if hash algorithms(e.g.
SHA-256, MD5) that are composed of heavy computation are included in the
proof relation of CP-SNARKs, it can cause inefficiency in proof time, setup time,
and crs size. Thus, we optimize the proof relation via the way the commitment’s
correctness is checked outside the proof relation, and only the equivalence of the
value implied in commitment is verified in the proof relation [11]. Specifically, if

Privacy-preserving Identity Management System 17

the commitment is constructed using the exponentiation(e.g. Pedersen commit-
ment), the commitment can be used as an I/O of the proof relation efficiently.
The CP-SNARKs can be constructed using the combination of Π algorithms
and CPlink algorithm that proves commitment validity outside the proof rela-
tion. Via the CPlink algorithm, we remove the commitment check relation from
the commit-and-prove relation RCP. The proof relation is composed of the cre-
dential function and a commitment equivalency check that identifies whether
the commitment used in the credential function is the same as the one used in
CPlink or not. We describe CP.link construction in Algorithm 5 and zkCL, zkVC
and zkVP constructions in Algorithm 6, 7 and 8 respectively.

5.2 CPlink construction

We adopt CPlink construction of Dario.et.al [14]. Intuitively, a commitment has
a form of exponentiation of the group element and the proof has the same ex-
ponentiation as the commitment. Verifier checks if the proof has the same ex-
ponentiation as the exponentiation of the commitment using a bilinear pairing
function. CPlink is composed of tuple of algorithms Setup,Prove,Verify.

Setup takes a public parameter pp and a common reference string crs∗k. crs∗k
is a common reference string for relation R∗k as input. We only use elements F
that is for I/O components from crs∗k(N is the maximum number of attributes
in one claim value, M is the maximum number of credentials). The elements is
used as a linkage of the proof of CPlink and the proof of the credential generation.
The setup algorithm picks random values u,v,w from Zp and sets U = gu2 ,V =
gv2 , and W = gw2 . Then the algorithm samples M ∗ N random values rj,i and
computes tj,i = guj,ir

v
j,if

w
j,i where gj,i is an element of commitment key ck and

j ∈ [1,M], i ∈ [0, N]. Setup sets crslinkk to (ck,R,T, U, V,W) and returns crslinkk .
In Prove, the commitment crslinkk , cx that is a set of knowledge of the com-

mitment on the group elements fj,i, the knowledge matrix u, the commitment
opening set ~o = (o1, ..., ol) are given as input where l is the number of credentials
that will be used in the presentation and the size of u is l ∗ N . The algorithm
computes proofs Tx and Rx that imply the knowledge of the commitments. The
proofs are the result of the exponentiation of knowledge on a different base.
Prove sets Tx,Rx to πlink and returns the proof.

Verify takes as input a common reference string crslinkk , a linkage value cx, a
commitment set ~c, and the proof πlink. The algorithm checks the equivalency of
the exponent of commitments and the exponent of the proofs using the bilinear
pairing function.

5.3 Pedersen vector commitment based PIMS construction

Algorithm 6,7 and 8 describe our zkCL,zkVC and zkVP constructions respectively.
Pedersen vector commitment scheme is used for the verifiable credential and CP-
SNARKs is used for the verifiable presentation generation. In this construction,
CP-SNARKs is split into CPlink and a zk-SNARK scheme Π. A relation R∗k
checks only the validity of the presentation function execution result and does

18 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

Algorithm 5 CPlink construction

Setup(pp, crs∗k)

ck = (G =

 g1,0 · · · g1,N...
. . .

...
gM,0 · · · gM,N


gm,n∈G1

, g2∈G2
)

u, v, w
$← Zp∗

U = g2
u, V = g2

v,W = g2
w

parse F =

 f1,0 · · · f1,N...
. . .

...
fM,0 · · · fM,N


fm,n∈G1

from crs∗k

for j < M + 1 do
for i < N + 1 do

rj,i
$← G1

tj,i = guj,ir
v
j,if

w
j,i

end for
end for

R =

 r1,0 · · · r1,N...
. . .

...
rM,0 · · · rM,N


T =

 t1,0 · · · t1,N...
. . .

...
tM,0 · · · tM,N


crslinkk = (ck,R,T, U, V,W)
return crslinki

Prove(crslinki , cx,u, ~o)

parse u =

u1,1 · · · u1,N

...
. . .

...
ul,1 · · · ul,N


l∈[1,M]

, ~o = (o1, ...ol)l∈[1,M]

for j < l + 1 do
txj = t

oj
j,0

∏N
i=1 t

uj,i
j,i

rxj = r
oj
j,0

∏N
i=1 r

uj,i
j,i

end for
Tx =

∏l
j=1 txj

Rx =
∏l
j=1 rxj

πlink = (Tx, Rx)
return πlink

Verify(crslinki ,~c, cx, πlink)

πlink = (Tx, Rx)
if e(Tx, g2) = e(

∏l
j=1 cj , U)e(Rx, V)e(cx,W) then return 1

else return 0
end if

Privacy-preserving Identity Management System 19

Algorithm 6 zkCL construction

Setup(λ,N,M)

pp = {G =

 g1,0 · · · g1,N...
. . .

...
gM,0 · · · gM,N

 , g2, h1, ..., hM}gj,i∈G1,(g2,hj)∈G2

return pp

Gen(pp, ~uj)

oj
$← Zp

cj ← g
oj
j,0

∏N
i=1 g

uj,i
j,i

πj ← h
oj
j

claim = (~uj , cj , πj)
return claim

Verify(pp, claim)

parse ~uj = (uj,1, ..., uj,N)
authenticate the validity of ~uj
if e(cj , hj) = e(gj,0, πj)e(

∏N
i=1 g

uj,i
j,i , hj) then return 1

else
return 0

end if

Algorithm 7 zkVC construction

Setup(λ)

(skj , vkj)← Sig.Keygen(λ)
return skj , vkj

Gen(pp, claim, skj)

if 1← zkCL.Verify(pp, claim) then σj ← Sig.Sign(skj , cj)
else

abort
end if
credj = (cj , σj)
return credj

Verify(vkj , credj)

b← Sig.Verify(vkj , cj , σj)
return b

20 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

Algorithm 8 zkVP construction

Setup(λ, pp,R∗k)

R∗k = {(φ,w)|φ = (~c,u, ~o, in, out), out = fk(in,u)}
(crs∗k, τ

∗
k)← Π.Setup(R∗k)

crslinkk ← CPlink.Setup(pp, crs∗k)
crsk = (crs∗k, crslinkk)
return crsk

Gen(crsk, ~cred, in,u, ~o)

parse ~cred = ((c1, · · · , cl), (σ1, · · · , σl)), ~o = (o1, · · · , ol)l∈[1,M]

u =

u1,1 · · · u1,N

...
. . .

...
ul,1 · · · ul,N


l∈[1,M]

out← fk(in,u)
φ = (~c,u, ~o, in, out)
for j < l + 1 do

cxj = f
oj
j,0

∏N
i=1 f

uj,i
j,i

end for
cx =

∏l
j=1 cxj

π∗ ← Π.Prove(crs∗k, φ;w)
πlink ← CPlink.Prove(crslinkk , cx,u, ~o)
π = (π∗, πlink)

pres = (~cred, in, out, π)
return pres

Verify(crsk, pres, ~cred, ~vk)

parse present = (~cred∗, in, out, π)

if check ~cred∗ 6= ~cred then return 0
end if
for j < l + 1 do

bj ← zkVC.Verify(vkj , credj)
end for
if all the bj 6= 1 then abort
else

b← Π.Verify(crsk, cx, in, out, π
∗)

∧
CPlink.Verify(crslinkk ,~c, cx, πlink)

end if
return b

Privacy-preserving Identity Management System 21

not check the commitment correctness. Specifically, we denote the presentation
function as fk. An algorithm set zkCL = (Setup,Gen,Verify) deals with a claim
generation and its verification. In zkCL.Setup, M ∗ N group elements of G1

and M + 1 group elements of G2 are set to public parameters and gj,i∈G1 is
used for the commitment key. M denotes a maximum number of credentials
and N denotes a maximum number of attributes in one claim. Then, Holder
generates his/her privacy-preserving claim by committing the attribute value
~uj on the commitment key. Specifically, Holder runs zkCL.Gen to generate a
claim. zkCL.Gen takes as input a public parameter pp and a set of attributes
~uj where j is an index of the issuer. It picks random scalar value oj ∈ Zp and

generates a commitment of the attributes by computing cj = g
oj
j,0

∏N
i=1 g

uj,i
j,i . oj

is set to the secret value of Holder and the value is utilized for the commitment
opening. Then Holder generates a proof πj = hoj that proves a correctness of the
commitment without providing a commitment opening value oj . The proof can
be verified in a pairing function. ~uj , cj , πj is set to the zero-knowledge claim value
claim. zkCL.Verify verifies the claim taking input as pp and claim. The algorithm
first authenticates the attribute value set. If all the attribute values are valid,
it checks whether e(gj,0, πj) = e(gj,0, πj)e(

∏N
i=1 g

uj,i
j,i , hj) or not. zkCL.Verify is

performed by only Issuer since only the issuer should have permission to identify
the attribute data.

An algorithm set zkVC = (Setup,Gen,Verify) handles a verifiable credential
generation and its verification. In zkVC.Setup, Issuer generates his/her signing
key-verification key by running Sig.Keygen(λ). zkVC.Setup returns the key pair as
an output. zkVC.Gen is also performed by Issuer. The algorithm takes as input a
public parameter pp, given claim data claim = (~uj , cj , πj) and runs zkCL.Verify.
If the verification is successful, Issuer generates a signature on cj . cj and its
signature σj are set to a zero-knowledge verifiable credential value credj . The
algorithm outputs credj . credj is uploaded to the verifiable data registry so that
Verifier can use the credential data to verify the given presentation value.

An algorithm set zkVP = (Setup,Gen,Verify) deals with a verifiable presen-
tation generation and its verification. The verifiable presentation is generated
by Holder using CP-SNARK scheme. A common reference string is required
to use the CP-SNARKs as building blocks of the verifiable presentation gen-
eration. The common reference string should be generated from the trusted
authority to use pairing based zk-SNARK [35, 19, 20, 25]. It is possible for the
untrusted third party to generate a common reference string if the universal ref-
erence string based zk-SNARK [7, 15, 29] is used. However, we assume, for the
generality, that the setup process is generated by a trusted party. zkVP.Setup
generates a common reference string for Rk∗ and a common reference string
for CPlink algorithm respectively. R∗k describes a relation where the presentation
data out = fk(in,u). Note that the attribute value matrix u is l ∗ N size of
matrix where l is the number of credentials used in the presentation generation.
We assume that Holder restructures an attribute matrix u that will be used in
a presentation generation from the whole attribute matrix corresponding to the
commitments. Also, for simplicity, we assume that the commitment index j cor-

22 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

responds to the index j of the matrix u. The algorithm first generates a crs∗k by
running Π.Setup and then generates crslinkk by running CPlink.Setup that takes
as input a commitment key ck = ((G, g2) and the common reference string crs∗k.
Though CPlink.Setup needs only the key of I/O in crs∗k, for simplicity, we remark
that CPlink.Setup takes as input crs∗k. The algorithm runs CPlink.Setup and re-
turns crsk = (crs∗k, crslink). zkVP.Gen takes as input a common reference string

crsk, zero-knowledege credential set ~cred = (cred1, ..., credl)l∈[1,M], a presenta-
tion function input in and attribute value matrix u, a secret value set of Holder
~o = (o1, ..., ol)l∈[1,M]. The algorithm computes a presentation data out by run-
ning a presentation function fk. Holder parses fj,i that is the commitment key
for I/O value from crs∗k and generates an intermediate value for CPlink cxj . To

generate the intermediate value, Holder computes all cxj = f
oj
j,0

∏N
i=1 f

uj,i
j,i . The

intermediate values have the same exponent as the exponent of the commitment
cj . Holder takes π∗ by running Π.Prove that proves validity of the presenta-
tion generation. Then Holder takes πlink by running CPlink.Prove that proves the
commitment correctness. The algorithm returns the zero-knowledge verifiable
presentation pres = (cred, in, out, π = (π∗, πlink)). zkVP.Verify takes as input a
common reference string crsk, the zero-knowledge verifiable presentation pres,
the zero-knowledge verifiable credential set from the verifiable data registry ~cred
and the signature verification key set ~vk. Verifier verifies all the signatures on
commitment cj and verifies π∗ and πlink only if the all the signatures are verified.

6 Security proof

Algorithm 9 Ideal claim phase idCL

Setup(N,M)

TP creates an empty PrivateTable

Gen(~uj)

Holder sends ~uj = (uj,1, ..., uj,N) to TP
if ~uj ∈ PrivateTable then

Obtain (~uj , oj , cj) from PrivateTable
else

TP generates a unique random value cj , a unique random secret value oj and
inserts (~uj , oj , cj) in PrivateTable
end if
TP sends cj , oj to Holder
Holder outputs claim = (cj , ~uj)

Verify(claim)

Issuer validates the authenticity of ~uj
Issuer sends claim to TP
if (cj , ~uj , oj) ∈ PrivateTable then return 1
else return 0
end if

Privacy-preserving Identity Management System 23

Algorithm 10 Ideal verifiable credential phase idVC

Setup(M)

TP creates an empty PublicTable

Gen(claim)

if 1← idCL.Verify(claim) then
Issuer sends cj to TP
TP inserts (cj , idj) to PublicTable
Issuer sets (cj , idj) to credj
TP publishes PublicTable

else
abort

end if

Verify(credj)

if credj ∈ PublicTable then return 1
else

return 0
end if

Proof outline : In this section, We prove Theorem 1. We assume that the
simulator S in ideal execution cannot forge a function output which is notified
by the trusted party TP and cannot distinguish the user information u value
when a unique random value cb is given. Additionally, we show an the adversary
A in real execution can forge the presentation data at most as much the ability
as simulator S and all distributions in real execution are computationally equal
to the ideal execution. It means that it is impossible for adversary A to forge the
zero-knowledge verifiable presentation and distinguish the zero-knowledge verifi-
able credential in real execution if an attack in the ideal execution is impossible.
To show the equality of the distributions, we first construct the simulator S us-
ing the adversary A as a building block and demonstrate that the output of S is
equal to those of A. The simulation for the output of real execution is performed
by assuming that distributions of the ideal execution are computationally equal
to the distribution of the real execution rather than receiving embedded values
from the assumption. In this approach, we define our system in terms of the
ideal execution implemented by a trusted party TP, which plays the role of our
cryptographic protocol in the real system. In the ideal execution, a collection
of parties interacts with the TP according to a specific interface. In the real
execution, the parties interact with each other using our protocol.

We first describe the ideal execution idCL, idVC, idVP in Algorithm 9,10 and
11. The ideal execution consists of a set of algorithms IdealTP,S,Σ = (idCL, idVC, idVP).
We assume that only the trusted authority TP has permission to write a value on
the append-only tables PublicTable,PrivateTable. PublicTable is open to all the
entities that join the protocol. On the other hand, PrivateTable is kept only to
the TP. idCL deals with the claim generation phase and idVC handles the verifi-
able credential generation phase and idVP deals with the verifiable presentation
generation phase. Each algorithm consists of (Setup,Gen,Verify) as equivalent to

24 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

Algorithm 11 Ideal verifiable presentation phase idVP

Setup(·)
TP generates a presentation function fk
TP notifies fk to all parties

Gen(fk, ~cred, in,u, ~o)

~cred = (cred1, . . . , credl)l∈[1,M], u =

u1,1 · · · u1,N

...
. . .

...
ul,1 · · · ul,N


l∈[1,M]

, ~o = (o1, . . . , ol)l∈[1,M]

Holder runs fk(in,u) and gets a presentation out
Holder sends (fk,u,~o,in, out) to TP
for j < l + 1 do

if (~uj , oj , cj) 6∈ PrivateTable then abort
end if

end for
TP runs fk(in,u)
if fk(in, ~u) 6= out then abort
end if
Holder sets a presentation pres = (~cred, fk, in, out)
return pres

Verify(pres, ~cred)

parse pres = (cred∗, fk, in, out)

if ~cred
∗
6= ~cred then abort

else
Verifier sends pres to TP
TP checks fk(in,u) = out
if fk(in,u) = out then return 1
else return 0
end if

end if

Privacy-preserving Identity Management System 25

those of the real execution. idCL.Setup is operated by TP and TP creates empty
private table PrivateTable taking input as the maximum number of attributes
in one claim N and the maximum number of credential M . When the trusted
party completes the setup, Holder runs idCL.Gen to generate a claim from the
attributes. Firstly, Holder sends a set of attributes ~uj = (uj,1, · · · , uj,N) to the
trusted party TP. If the attributes are registered in PrivateTable, then TP obtains
~uj , its opening value oj and corresponding unique random value cj from the ta-
ble. Otherwise, TP generates unique random values cj and oj and stores them
in PrivateTable with the attribute set ~uj . TP sends the unique random values to
Holder and Holder sets (cj , ~uj) to a claim value. When the claim value claim is
sent to the Issuer for validation, Issuer verifies the claim by running idCL.Verify
taking input claim. Issuer authenticates the attributes ~uj , and sends the claim to
TP. TP checks if the set (cj , ~uj , oj) is in PrivateTable. If the set is in the table,
TP returns 1 or 0 otherwise.

idVC describes an ideal execution of the verifiable credential phase. In idVC.Setup,
TP creates an empty public table PublicTable. idVC.Gen generates a verifiable
credential taking input claim. It is performed by Issuer. The entity verifies the
given claim value by running idCL.Verify and sends cj to TP if idCL.Verify out-
puts 1. TP then puts cj with the issuer’s id idj in PublicTable. When the values
are inserted in PublicTable, then Issuer sets the values as a verifiable credential
credj and PublicTable is published. Verifier checks the validity of credj by running
idVC.Verify. In this algorithm, Verifier checks whether credj is in PublicTable or
not. If credj is in the table, the algorithm returns 1 or 0 otherwise.

idVP handles an ideal execution of the verifiable presentation phase. In idVP.Setup,
TP generates a presentation function fk and notifies fk to all parties. While the
trusted entity generates a public parameter for CP-SNARK in the real execu-
tion, the trusted entity generates only the presentation function fk. idVP.Gen
takes as input a function fk, credential set ~cred, a function input in, an at-
tribute matrix u and a set of the secret values of Holder ~o. As same as the real
execution case, we assume for simplicity that the indexes of u corresponds to
those of the commitments. Holder generates a verifiable presentation output out
then sends out with the function fk, the attribute matrix u, the secre value set
~o and the auxiliary input in to TP. TP checks if the attributes and the secret
values are recorded in the PrivateTable and checks fk(in,u) only if the attributes
are recorded in advance. If the computation of fk(in,u) is valid, Holder sets the

verifiable presentation pres = (~cred, fk, in, out). Verifier verifies the presentation

by running idVP.Verify. Verifier checks the equality of the given ~cred
∗

and ~cred
that is recorded in PublicTable. Verifier queries the correctness of out to TP only if
the credential equality test is passed. TP returns 1 if the computation is correct,
or 0 otherwise.

We now construct a simulator S using the adversary of real execution A as
a building block. First, S runs idCL.Setup and idVP.Setup and acquires pp, crsk
with a trapdoor τ∗k . It runs an adversary A and the proof πreal are given to S.
In the process of running A, the simulator S can provide simulated proofs πsim
by running Π.SimProve that uses the trapdoor. When the proof is given, S runs

26 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

a knowledge extractor χA and extracts u, ~o from the proof πreal. The simulator
ensures that all ~uj , oj , cj are in PrivateTable and the corresponding credential set
~cred is in PublicTable. Then the simulator generates the presentation output out.
S finally outputs ~cred,fk,in,out. We now show that the distribution of the sim-
ulator is computationally indistinguishable from the distribution of real world
experiments via a series of hybrid games.

1. G0 : This is a real execution experiment

2. G1 : In this game, we replace the proof πreal by honest parties with simulated
proof πsim. By Lemma 1 we show that if the proof system is computationally
knowledge-sound, then G1 ≈ G0.

3. G2 : In this game, we run the knowledge extractor when encountered by
the function output of any corrupted parties, and abort if the knowledge extrac-
tor fails. By Lemma 2 we show that if the proof extractor fails with negligible
probability, then G2 ≈ G1.

4. G3 : In this game, we replace all commitments with a unique random value.
By Lemma 3 we show that if the commitment scheme is secure, then G3 ≈ G2.

5. G4 : In this game, we replace all signatures with the identifiers of the is-
suer given by TP. By Lemma 4 we show that if the signature scheme satisfies
unforgeability, then G4 ≈ G3 Note that G4 represents the ideal world execution.
By summation over the previous hybrid games we show that G4 ≈ G0. We con-
clude our proof sketch by presenting the supporting lemmas.

Lemma 1. For all PPT adversaries A, if simulation sound CP-SNARK ex-
ists, then the advantage of distinguishing G0 and G1 is AG1 −AG0 ≤ ε where ε
is the simulation failure rate.

Proof. The simulator operates in the same manner, but we simulate proofs for
honest parties. By definition, π is CP-SNARK that has a efficient simulator. In
section 3, we show that the simulator will fail with at most negligible probability.
Therefore ε is negligible.

Lemma 2. For all PPT adversaries A, if knowledge extractable CP-SNARK
exists, then the advantage of distinguishing G1 and G2 is AG2 −AG1 ≤ ε where
ε is the extraction failure rate.

Proof. The simulator operates in the same manner, but we extract when given the
output of corrupted parties. By definition, π for function output is CP-SNARK
which has a knowledge extractor. Intuitively, we can see that the extractor will
fail with at most negligible probability. Therefore, our proof π has a knowledge
extractor that succeed with probability 1− ε.

Privacy-preserving Identity Management System 27

Lemma 3. For all PPT adversaries A, the advantage of distinguishing G2 and
G3 is AG3 −AG2 ≤ ε where ε is negligible.

Proof. The simulator continues to operate in the same manner as originally
described, but we now replace the commitment with randomly chosen value. By
construction Com is a statistically hiding commitment scheme and therefore the
probability that an adversary can detect this substitution is negligible.

Lemma 4. For all PPT adversaries A, the advantage of distinguishing G3 and
G4 is AG4 −AG3 ≤ ε where ε is negligible.

Proof. The simulator continues to operate in the same manner as the real execu-
tion, but we now replace the signature with the issuer identifier value given from
TP. By construction Sig satisfies the unforgeability and therefore the probability
that an adversary can forge the signature is negligible.

6.1 Resistance for replay attacks

For the resistance of the replay attack, the verifier can choose one of the two
approaches. One is an approach to enforce the user to create a serial number of
verifiable presentations such as Zcash [39]. The serial number can be generated
by committing the user secret value and the fresh random value. Specifically,
Com(oj ||rj) can be a serial number of the verifiable presentation where oj is the
user secret value and rj is the unique random value. If the proof of the ver-
ifiable presentation can guarantee the correctness of the commitment and the
serial number is included in the verifiable presentation, the verifier can check
the re-use of the verifiable presentation. However, though the cost of the com-
mitment check can be alleviated in the case of using CP-SNARKs, it causes an
additional commitment check process anyway. The other approach is that the
verifier enforces the user to use simulation-extractable zk-SNARKs to create the
verifiable presentation. Since the proof should not be forged even if an adver-
sary can access simulated proofs freely in simulation-extractable zk-SNARKs,
the proof has a randomized form. Thus, the verifier can check a one-time-use
of the verifiable presentation by requesting the user to register his zk-SNARKs
proof to the verifiable data registry or constructing a database that manages the
verifiable presentation of the user.

7 Experiment

In this section, we show the performance of PIMS construction by diversify-
ing the proof circuit size and the input size. The proof circuit is composed

28 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

Table 2: Experiment environment
OS Ubuntu 16.04 LTS 64bit

CPU Intel(R) Core(TM) i5-4670 CPU @
3.40GHz Quad Core

Memory DDR4 24GB

Table 3: Test information summary
Case 1 Case 2 Case 3

Number of if-statement 1 100 100

Number of inputs 1 (32 bit int) 100 (32 bit int) 100 (256 bit string)

of ”if-statements”. Specifically, each proof circuit is composed of a single ”if-
statement” with equality check and 100 ”if-statements” with ”greater than or
equal to statements”. We performed the experiment on an Ubuntu 16.04 LTS
64bit environment with an Intel(R) Core(TM) i5-4670 CPU @ 3.40 GHz Quad
Core CPU environment, DDR4 24 GB memory. Note that PIMS consists of zk-
SNARK Π for credential proof and the commitment proving algorithm CPlink.
We adopt Groth16 construction [19] as zk-SNARK Π. Additionally, we utilize
jsnark [26] which uses libsnark [5] as its submodule to generate SNARK circuits.

Table 4: Performance experiment results on different circuit size and inputs
Case 1 Case 2 Case 3

zkVP.Setup
Π.Setup 0.0129s 0.0501s 5.8479s

CPlink.Setup 0.0031s 0.0528s 12.8704s
Total 0.0165s 0.1163s 22.0819s

zkVP.Gen
Π.Prove 0.0038s 0.0181s 1.9121s

CPlink.Prove 0.0001s 0.0005s 0.0016s
Total 0.0038s 0.0186s 2.0402s

zkVP.Verify
Π.Verify 0.0011s 0.0011s 0.0014s

CPlink.Verify 0.0016s 0.0016s 0.0016s
Total 0.0027s 0.0027s 0.0030s

Table 3 summarizes the test case to diversify the circuit size and the input
size. The proof circuit in case 1 is composed of only a single if-statement and a
single 32-bit integer input. In case 2 and case 3, both the proof circuits consist
of 100 if-statements and 100 inputs, but the input type is different. The input
type of the former is an integer, whereas, the input type of the latter is a string.

Table 4 shows the performance results for each case. If the circuit is composed
of only a single if-statement, the performance of the credential setup, prove, and
verification is quite high. Specifically, the proving time of case 1 takes only 3.8
ms. In case 2, the proof generation time increased by 6 times compared to case 1.

Privacy-preserving Identity Management System 29

Table 5: Size experiment results on different circuit size and inputs
Case 1 Case 2 Case 3

crs∗ 6.95KB 56.59KB 14.35MB
crslink 0.89KB 14KB 3.4MB
Total 7.84KB 70.59KB 17.75MB

π∗ 0.12KB 0.12KB 0.12KB
πlink 64B 64B 64B
Total π 0.18KB 0.18KB 0.18KB

Though case 3 has the same number of if-statements and the number of inputs as
case 2, the performances are low compared to the case 2 since the input type is
a 256-bit string. However, the verification time is almost equivalent in all cases.

Table 5 shows the sizes of the common reference strings and the proofs. The
common reference string size increases by the proof circuit size. However, the
size of the proof in all cases is equivalent regardless of the proof circuit size.
Specifically, the proof size remains as constant (0.18 KB) in all cases.

8 Conclusion

In this paper, we propose a privacy-preserving self-sovereign identity model us-
ing zk-SNARKs as building blocks. Our privacy-preserving self-sovereign identity
model supports data minimization for any arbitrary relations while remaining
the control, persistence of the identity model. Furthermore, the ZKP is optimized
in our model utilizing Commit-and-Prove scheme. Via the experiments, we can
ascertain the practicality of our proposal. The security of the self-sovereign iden-
tity model is formally proven in the random oracle model. In the future, we will
extend our self-sovereign identity model to cover the data minimization in terms
of Non-Fungible Token and further improve the performance of the zk-SNARKs
computation.

References

1. Abraham, A., Theuermann, K., Kirchengast, E.: Qualified eid derivation into a
distributed ledger based idm system. In: 2018 17th IEEE International Confer-
ence On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). pp. 1406–1412. IEEE (2018)

2. Allen, C.: The path to self-sovereign identity. Life With Alacrity (2016)
3. Alsayed Kassem, J., Sayeed, S., Marco-Gisbert, H., Pervez, Z., Dahal, K.: Dns-

idm: A blockchain identity management system to secure personal data sharing in
a network. Applied Sciences 9(15), 2953 (2019)

4. Baylina, J.: iden3/snarkjs. https://github.com/iden3/snarkjs (2020)
5. Ben-Saason, E., Chiesa, A., Genkin, D., Kfir, S., Tromer, E., Virza, M.: libsnark:

C++ library for zksnark proofs (2014)

30 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

6. Bowe, S., Gabizon, A.: Making groth’s zk-snark simulation extractable in the ran-
dom oracle model. IACR Cryptol. ePrint Arch. 2018, 187 (2018)

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP). pp. 315–334. IEEE (2018)

8. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 677–706. Springer (2020)

9. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
International Conference on Security in Communication Networks. pp. 268–289.
Springer (2002)

10. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Annual international cryptology conference. pp. 56–72.
Springer (2004)

11. Campanelli, M., Fiore, D., Querol, A.: Legosnark: Modular design and composi-
tion of succinct zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 2075–2092 (2019)

12. Consortium, W.W.W., et al.: Verifiable credentials data model 1.0: Expressing
verifiable information on the web. https://www. w3. org/TR/vc-data-model/?#
core-data-model (2019)

13. Ferdous, M.S., Chowdhury, F., Alassafi, M.O.: In search of self-sovereign identity
leveraging blockchain technology. IEEE Access 7, 103059–103079 (2019)

14. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: Adaptive verifiable computations on outsourced data. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1304–1316 (2016)

15. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol.
ePrint Arch. 2019, 953 (2019)

16. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anony-
mous payments. In: International Conference on Financial Cryptography and Data
Security. pp. 81–98. Springer (2016)

17. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 626–645. Springer (2013)

18. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. Journal of the ACM (JACM) 62(4), 1–64 (2015)

19. Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual in-
ternational conference on the theory and applications of cryptographic techniques.
pp. 305–326. Springer (2016)

20. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks. In: Annual International Cryptology Conference.
pp. 581–612. Springer (2017)

21. Grüner, A., Mühle, A., Meinel, C.: On the relevance of blockchain in identity
management. arXiv preprint arXiv:1807.08136 (2018)

22. Hamer, T., Taylor, K., Ng, K.S., Tiu, A.: Private digital identity on blockchain. In:
Samavi, R., Consens, M.P., Khatchadourian, S., Nguyen, V., Sheth, A.P., Giménez-
Garćıa, J.M., Thakkar, H. (eds.) Proceedings of the Blockchain enabled Seman-
tic Web Workshop (BlockSW) and Contextualized Knowledge Graphs (CKG)
Workshop co-located with the 18th International Semantic Web Conference,

Privacy-preserving Identity Management System 31

BlockSW/CKG@ISWC 2019, Auckland, New Zealand, October 27, 2019. CEUR
Workshop Proceedings, vol. 2599. CEUR-WS.org (2019), http://ceur-ws.org/Vol-
2599/paper5.pdf

23. Johansson, T., Nguyen, P.Q.: Advances in Cryptology–EUROCRYPT 2013: 32nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013, Proceedings, vol. 7881. Springer
(2013)

24. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: International conference on the theory and appli-
cation of cryptology and information security. pp. 177–194. Springer (2010)

25. Kim, J., Lee, J., Oh, H.: Simulation-extractable zk-snark with a single verification.
IEEE Access 8, 156569–156581 (2020)

26. Kosba, A., Papamanthou, C., Shi, E.: xjsnark: a framework for efficient verifiable
computation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 944–
961. IEEE (2018)

27. Lee, J., Kim, J., Oh, H.: Forward-secure multi-user aggregate signatures based on
zk-snarks. IEEE Access 9, 97705–97717 (2021)

28. Lipmaa, H.: Simulation-extractable snarks revisited. Tech. rep., Cryptology ePrint
Archive, Report 2019/612, 2019. http://eprint. iacr. org . . . (2019)

29. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2111–2128 (2019)

30. Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C.: A survey on essential com-
ponents of a self-sovereign identity. Computer Science Review 30, 80–86 (2018)

31. Naik, N., Jenkins, P.: uport open-source identity management system: An assess-
ment of self-sovereign identity and user-centric data platform built on blockchain.
In: 2020 IEEE International Symposium on Systems Engineering (ISSE). pp. 1–7.
IEEE (2020)

32. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Busi-
ness Review p. 21260 (2008)

33. Othman, A., Callahan, J.: The horcrux protocol: a method for decentralized
biometric-based self-sovereign identity. In: 2018 international joint conference on
neural networks (IJCNN). pp. 1–7. IEEE (2018)

34. Otte, P., de Vos, M., Pouwelse, J.: Trustchain: A sybil-resistant scalable blockchain.
Future Generation Computer Systems 107, 770–780 (2020)

35. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE (2013)

36. Peng, K., Bao, F.: An efficient range proof scheme. In: 2010 IEEE Second Inter-
national Conference on Social Computing. pp. 826–833. IEEE (2010)

37. Popov, S.: The tangle. White paper 1(3) (2018)
38. Reed, D., Sporny, M., Longley, D., Allen, C., Grant, R., Sabadello, M., Holt, J.:

Decentralized identifiers (dids) v1. 0: Core architecture, data model, and represen-
tations. W3C Working Draft 8 (2020)

39. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE (2014)

40. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
In: Annual International Cryptology Conference. pp. 704–737. Springer (2020)

32 Jeonghyuk Lee, Jaekyung Choi, Jihye Kim, and Hyunok Oh

41. Soltani, R., Nguyen, U.T., An, A.: A new approach to client onboarding using self-
sovereign identity and distributed ledger. In: 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData). pp. 1129–1136. IEEE (2018)

42. Stokkink, Q., Epema, D., Pouwelse, J.: A truly self-sovereign identity system. arXiv
preprint arXiv:2007.00415 (2020)

43. Stokkink, Q., Pouwelse, J.: Deployment of a blockchain-based self-sovereign iden-
tity. In: 2018 IEEE international conference on Internet of Things (iThings) and
IEEE green computing and communications (GreenCom) and IEEE cyber, physical
and social computing (CPSCom) and IEEE smart data (SmartData). pp. 1336–
1342. IEEE (2018)

44. Windley, P.: How sovrin works. Sovrin Foundation pp. 1–10 (2016)
45. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper 151, 1–32 (2014)
46. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-

knowledge proofs with optimal prover computation. In: Annual International Cryp-
tology Conference. pp. 733–764. Springer (2019)

47. Yang, X., Li, W.: A zero-knowledge-proof-based digital identity management
scheme in blockchain. Computers & Security 99, 102050 (2020)

48. Zhu, X., Badr, Y.: Identity management systems for the internet of things: a survey
towards blockchain solutions. Sensors 18(12), 4215 (2018)

