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ABSTRACT

Continuous Group Key Agreement (CGKA) – or Group Ratchet-
ing – lies at the heart of a new generation of scalable End-to-End
secure (E2E) cryptographic multi-party applications. One of the
most important (and first deployed) CGKAs is ITK which under-
pins the IETF’s upcoming Messaging Layer Security E2E secure
group messaging standard. To scale beyond the group sizes possi-
ble with earlier E2E protocols, a central focus of CGKA protocol
design is to minimize bandwidth requirements (i.e. communication
complexity).

In this work, we advance both the theory and design of CGKA
culminating in an extremely bandwidth efficient CGKA. To that end,
we first generalize the standard CGKA communication model by
introducing server-aided CGKA (saCGKA) which generalizes CGKA
and more accurately models how most E2E protocols are deployed
in the wild. Next, we introduce the SAIK protocol; a modification of
ITK, designed for real-world use, that leverages the new capabilities
available to an saCGKA to greatly reduce its communication (and
computational) complexity in practical concrete terms.

Further, we introduce an intuitive, yet precise, security model for
saCGKA. It improves upon existing security models for CGKA in
several ways. It more directly captures the intuitive security goals
of CGKA. Yet, formally it also relaxes certain requirements allowing
us to take advantage of the saCGKA communication model. Finally,
it is significantly simpler making it more tractable to work with
and easier to build intuition for. As a result, the security proof of
SAIK is also simpler and more modular.

Finally, we provide empirical data comparing the (at times, quite
dramatically improved) complexity profile of SAIK to state-of-the
art CGKAs. For example, in a newly created group with 10K mem-
bers, to change the group state (e.g. add/remove parties) ITK re-
quires each group member download 1.38MB. However, with SAIK,
members download no more than 2.7KB.
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1 INTRODUCTION

End-to-end (E2E) secure applications have become one of the most
widely used class of cryptographic applications on the internet with
billions of daily users. Accordingly, the E2E protocols upon which
these applications are built have evolved over several distinct gen-
erations, adding functionality and new security guarantees along
the way. Modern protocols are generally expected to support fea-
tures like multi-device accounts, continuous refreshing of secrets
and asynchronous communication. Here, asynchronous refers to
the property that parties can communicate even when they are
not simultaneously online. To make this possible, the network pro-
vides an (untrusted) mailboxing service for buffering packets until
recipients come online.

The growing demand for E2E security motivates increasingly
capable E2E protocols; in particular, supporting ever larger groups.
For example, in the enterprise setting organizations regularly have
natural sub-divisions with far more members than practically sup-
ported by today’s real-world E2E protocols. Support for large groups
opens the door to entirely new applications; especially in the realm
of machine-to-machine communication such as in mesh networks
and IoT. The desire for large groups is compounded by the fact that
many applications treat each device registered to an account as
a separate party at the E2E protocol level. For example, a private
chat between Alice and Bob who each have a phone and laptop
registered to their accounts is actually a 4-party chat from the point
of view of the underlying E2E protocol.

Next Generation E2E Protocols. The main reason current pro-
tocols (at least those enjoying state-of-the-art security, e.g. post
compromise forward security) only support small groups is that
their communication cost grows linearly in the group size. This
has imposed limits on real-world group sizes (generally at or below
1000 members).

Consequently, a new generation of E2E protocols is being devel-
oped both in academia (e.g. [1, 3–5, 7, 9, 26, 31]) and industry [14].
Their primary design goal is to support extremely large groups (e.g.
10s of thousands of users) while still meeting, or exceeding, the
security and functionality of today’s state-of-the-art deployed E2E
protocols. Technically, the new protocols do this by reducing their
communication complexity to logarithmic in the group size; albeit,
only under favorable conditions in the execution. This informal
property is sometimes termed the fair-weather complexity.

To date, the most important of these new E2E protocols is the
IETF’s upcoming secure groupmessaging (SGM) standard called the
Messaging Layer Security (MLS) protocol. MLS is in the final stages
of standardization and its core components are already seeing initial
deployment [25].

Continuous Group Key Agreement. To the best of our knowledge,
all next gen. E2E protocols share the following basic design para-
digm. At their core lies a Continuous Group Key Agreement (CGKA)
protocol; a generalization to the group setting of the Continuous
Key Agreement 2-party primitive [4, 28] underlying the Double
Ratchet.

Intuitively, a CGKA protocol provides E2E secure group manage-
ment for dynamic groups, i.e., groups whose properties may change
mid-session. By properties we mean things like the set of members

currently in the group, their attributes, the group name, the set of
moderators, etc. Any change to a group’s properties initiates a fresh
epoch in the session. A CGKA protocol ensures all group members
in an epoch agree on the group’s current properties. Members will
only transition to the same next epoch if they agree on which prop-
erties were changed and by whom. Each epoch is equipped with its
own symmetric epoch key known to all epoch members but indis-
tinguishable from random to anyone else. Higher-level protocols
typically (deterministically) expand the epoch key into a complete
key schedule which in turn can be used to, say, protect application
data sent between members (e.g. messages or VoiP data).

MLS too, is (implicitly) based on a CGKA, originally dubbed
TreeKEM [17]. Since its inception, TreeKEM has undergone several
substantial revisions [11, 12] before reaching its current form [9, 13].
For clarity, we refer to its current version at the time of this writing
as Insider-Secure TreeKEM (ITK) (using the terminology of [9] where
that version was analyzed). ITK has already seen its first real world
deployment as a core component of Cisco’s Webex conferencing
protocol [25].

Why Consider CGKA?. CGKA is interesting because of the fol-
lowing two observations. First, CGKA seems to be the minimal
functionality encapsulating almost all of the cryptographic chal-
lenges inherent to building next generation E2E protocols. Second,
building typical higher-level E2E applications (e.g. SGM or confer-
ence calling) from a CGKA can be done via relatively generic, and
comparatively straightforward mechanisms. Moreover, the result-
ing application directly inherits many of its key properties from the
underlying CGKA; notably their security guarantees and their com-
munication and computational complexities. In this regard, CGKA
is to, say, SGM what a KEM is to hybrid PKE. For the case of SGM,
this intuitive paradigm and the relationship between properties of
the CGKA and resulting SGM was made formal in [6]. In particular,
that work abstracts and generalizes MLS’s construction from ITK.

1.1 Our Contributions

This work makes progress on the central challenge in CGKA proto-
col design: reducing communication complexity so as to support
larger groups (without compromising on security or functionality).

Server-Aided CGKA. We begin by revisiting one of the most basic
assumptions about CGKA in prior work; namely that participants
communicate via an insecure broadcast channel. Instead, we note
that in almost all modern deployments of E2E protocols parties
actually communicate via an untrusted mailboxing service imple-
mented using an (often highly scalable) server. In light of this, we
modify the standard communication model to make the server
explicit. We define a generalization of CGKA called server-aided
CGKA (saCGKA). In contrast to CGKA, an saCGKA protocol in-
cludes an Extract procedure run by the server to convert a “full
packet” uploaded by a sender into an individualized “sub-packet”
for a particular recipient. CGKA corresponds to the special case
where the full and individual packets are the same. Intuitively, the
server remains untrusted and security should hold nomatter what it
does. However, should it choose to follow the Extract procedure, the
saCGKA protocol additionally ensures correctness and availability.
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Security for CGKA. Wedefine a new security notion for (sa)CGKA
capturing the same intuitive guarantees as those shown for ITK [9]
for example. Like other notions based on the history graph para-
digm of [6], our notion is parameterized by safety predicates that
together decide the security of a given epoch key in a given execu-
tion.

However, at a technical level our notion departs significantly
from past ones. Essentially, it relaxes the requirement that group
members in an epoch agree on and authenticate the history of net-
work traffic leading to the epoch. Instead, the new notion “only”
ensures they agree on and authenticate the semantics of the history;
i.e. the “meaning” of the traffic rather than exact packet contents.
This has several interesting consequences. First, it more directly
captures our intuitive security goals. E.g. it avoids subtle questions
about what intuition is really captured when, say, an AEAD ci-
phertext in a packet can be decrypted to different plaintexts using
different keys.1 Second, the relaxation creates wiggle room we can
use to prove security despite group members no longer having
the same view of network traffic. Finally, it allows us to relax the
security of the encryption scheme used in our construction from
CCA to replayable CCA (RCCA) [23].2

Further, the new saCGKA security notion is significantly simpler
(though just as precise) compared to past ones. Indeed, past notions
have been criticised for being all but inaccessible to non-domain
experts due to their complexity. In an effort to improve this, our new
notion omits/simplifies various security features of a CGKA as long
as A) they can be formalized using known techniques and B) they
can be easily achieved by known, practical and straightforward
extensions of a generic CGKA protocol (including SAIK) satisfying
our notion. Thus we obtain a definition focused on the basic prop-
erties of an (sa)CGKA with the idea that a protocol satisfying our
notion can easily be extended to a “full-fledged” (sa)CGKA using
standard techniques.

The SAIK Protocol. Next, we introduce a new saCGKA protocol
called Server-Aided ITK (SAIK), designed for real-world use. For
example, it relies exclusively on standard cryptographic primitives
and can be implemented using the API of various off-the-shelf
cryptographic libraries. To obtain SAIK, we start with ITK and
make the following modifications.

Multi-message multi-recipient PKE.. First, we replace ITK’s use
of standard (CCA secure) PKE by multi-message multi-recipient
PKE (mmPKE) [36]. mmPKE has the functionality of a parallel
composition of standard PKE schemes (both in terms of ciphertext
sizes and computation cost of encryption). Constructing mmPKE
directly can result in a significantly more efficient scheme.

We introduce a new security notion for mmPKE, more aligned
with the needs of (the security targeted by) SAIK. It both strengthens
and weakens past notions: On the one hand, proving SAIK secure
demands that we equip the mmPKE adversary of [36] with adaptive
key compromise capabilities. On the other hand, thanks to the
relaxation to semantic agreement, we “only” require RCCA security
rather than full-blown CCA used in previous’ works [7, 9].

1This can happen for widely used AEADs like AES-GCM [27].
2This makes sense as RCCA was designed to relax the “syntactic non-malleability“ of
CCA to a form of “semantic non-malleability”.

We prove that the mmPKE construction of [36] satisfies our new
notion based on a form of gap Diffie-Hellman assumption, the same
as in [36]. The reduction is tight in that the security loss is inde-
pendent of the number of parties (i.e. key pairs) in the execution
(although it does depend on the number of corrupted key pairs).
Moreover, we extend the proof to capture mmPKE constructions
based on “nominal groups” [2]. Nominal groups abstract the alge-
braic structure over bit-strings implicit to the X25519 and X448
scalar multiplication functions and corresponding twisted Edwards
curves.[35]. In practical terms, this means our proofs also apply to
instantiations of [36] based on the X25519 and X448 functions.

Authentication. Second, we modify the mechanisms used by ITK
to ensure members transitioning to a new epoch authenticate the
sender announcing a new epoch. Rather than sign the full packet
like in ITK, the sender in SAIK only signs a small tag which “binds“
all salient properties of the new epoch, i.e., its secrets, the set of
group members, the history of applied operations, etc. In fact, we
use a tag that already exists in ITK (called the “confirmation tag”).

Performance Evaluation. Finally, we compare the communication
complexity of SAIK, ITK and the CGKA of [31] called CmPKE.
We break down the communication cost into sender and receiver
bandwidth, i.e., the size of a packet uploaded, resp., downloaded
(by one receiver) from the server. This metric reflects the resources
needed from an individual client.

We note that the sender bandwidth of CmPKE grows linearly in
the group size, while for SAIK and ITK it varies depending on both
the group size and the history of preceding operations. Meanwhile,
the receiver bandwidth is independent of both the size and the
history for CmPKE, grows logarithmically in the group size for
SAIK and varies with both the size and history for ITK.

We find that compared to ITK, SAIK always requires less band-
width (regardless of history and group size). However, compared
to CmPKE, SAIK requires slightly more receiver bandwidth but
anywhere from the same to far less sender bandwidth. Concretely,
in a group with 10K parties, CmPKE’s sender bandwidth is 0.8MB
while SAIK and ITK’s bandwidths range between 3.6KB - 0.8MB and
4.4KB - 1.5MB, respectively (depending on the history). Meanwhile
for receivers CmPKE and SAIK require 0.8KB and 2KB respectively
while ITK requires between 4.4KB - 1.5MB.

In addition, we also compare the total bandwidth considered
in [31], i.e., the size of the uploaded packet and all downloaded
packets together. This metric reflects the resources required from
the server, or equivalently from all clients together. We find that
SAIK requires more total bandwidth than CmPKE but much less
than ITK.

Outline. The paper is structured as follows. Sec. 2 (and App. A)
covers preliminaries. Sec. 3 focuses on mmPKE. Sec. 4 describes the
new security model for saCGKA with details outsourced to App. D.
Sec. 5 describes the SAIK protocol with details found in App. F. Sec. 6
formally states SAIK’s security. Sec. 7 contains empirical evaluation
and comparison of SAIK to previous constructions. Finally, Sec. 8
contains extensions to stronger security guarantees. Finally, SAIK’s
security proof is formalized in App. H.



Alwen, et al.

1.2 Related Work

Next generation CGKA protocols. The study of next generation
CGKA protocols for very large groups was initiated by Cohn-
Gorden et al. in [26]. This was soon followed by the first version of
TreeKEM [37] which evolved to add stronger security [11, 37, 39]
and more flexible functionality [12] culminating in its current form
ITK [9] reflected in the current draft of the MLS RFC [13].

Reducing the communication complexity of TreeKEM and its
descendants is not a new goal. Tainted TreeKEM [3] exhibits an
alternate complexity profile optimized for a setting where the group
is managed by a small set of moderators. Recently, [1] introduced
new techniques for ‘multi-group” CGKAs (i.e. CGKAs that explicitly
accommodate multiple, possibly intersecting, groups) with better
complexity than obtained by running a “single-group” CGKA for
each group. Other work has focused on stronger security notions for
CGKA both in theory [7] and with an eye towards practice [5, 9].
Supporting more concurrency has also been a topic of focus as
witnessed by the protocols in [12, 19, 40]. Recently [30] present
CGKA with novel membership hiding properties.

Cryptographic models of CGKA security. Defining CGKA security
in a simple yet meaningful way has proven to be a serious challenge.
Many notions fall short in at least one of the two following senses.
Either they do not capture key guarantees desired (and designed
for) by practitioners (such as providing guarantees to newly joined
members) or they place unrealistic constraints on the adversary.
Above all, they do not consider fully active adversaries. For in-
stance, in [3], the adversary is not allowed to modify packets while
in [5, 6], new packets can be injected but only when authenticity
can be guaranteed despite past corruptions (thus limiting what is
captured about how session’s regain security after corruptions).
Meanwhile, the work of [20] permits a large class of active attacks
but only in the context of the key derivation process of ITK. So
while their adversaries can arbitrarily modify secrets in an honest
party’s key derivation procedure, they can not deliver arbitrary
packets to honest parties. This is a significant limitation, e.g., it
does not capture adversaries that deliver packets with ciphertexts
for which they do not know the plaintexts.

Indeed, a good indication that such simplifications can be prob-
lematic can be found in [9]. They present an attack on TreeKEM
(that can easily be easily adapted to the CGKAs in the above works
except for [20]) which uses honest group members as decryption
oracles to clearly violate the intuitive security expected of a CGKA.
Yet, each of the above works (except for [20]) proves security of
their CGKA using only IND-CPA secure encryption.

In contrast to the above works, [7] aimed to capture the full
capabilities a realistic adversary might have. Thus, they model a
fully active adversary that can leak parties local states at will and
even set their random coins. In [9] this setting is extended to capture
insider security. That is adversaries which can additionally corrupt
the PKI. This captures the standard design criterion for deployed
E2E applications that key servers are not considered trusted third
parties. Unfortunately, this level of real-world accuracy has resulted
in a (probably somewhat inherently) complicated model.

Symbolic models of CGKA security. Complementing the above
line of work, several versions of TreeKEM have been analyzed using

a symbolic approach and automated provers [18]. Their models
consider fully active attackers and capture relatively wide ranging
security properties which the authors are able to convincingly
tackle by using automated proofs.

The CGKA of [31]. The work [31] presents a variant of CGKA,
called here filtered CGKA (fCGKA), along with a protocol called
CmPKE. In fCGKA, like in saCGKA, receivers download personal-
ized sub-packets. However, fCGKA achieves this differently — an
uploaded fCGKA packet has a particular form, namely, a header
delivered to all receivers, followed by a number of ciphertexts, one
for each receiver. Note that fCGKA is a special case of saCGKA
where the Extract procedure outputs the header and the receiver’s
ciphertext.

The fCGKA security notion in [31] is essentially the model of [9].
The only difference is that [9] requires agreement on the history
of the network packets leading to a given epoch. To adapt this to
the fCGKA syntax, [31] requires instead agreement on the history
of packet headers. Compared to our saCGKA notion, this is still
syntactic agreement and e.g., requires CCA security. See Sec. 4.5.

Regarding the communication cost,CmPKE is designed to reduce
the total bandwidth, i.e., for an operation, it minimizes the size of the
sent packet and all downloaded packets together. In contrast, SAIK
is designed to reduce themaximum bandwidth, i.e., it minimizes the
size of each sent or downloaded packet. Accordingly, CmPKE has
smaller total bandwidth than SAIK. In fact, the maximum size of a
downloaded packet is also smaller for CmPKE. However, the size
of a sent packet is usually much bigger for CmPKE. In summary,
SAIK is designed to support clients with poor bandwidth, i.e., it
minimizes the size of a single uploaded or downloaded packet. Thus,
while the server load is a bit higher, the network requirements for
clients are usually much lower.

mmPKE.. mmPKEwas introduced by Kurosawa [34] though their
security model was flawed as pointed out and fixed by Bellare et.al
[15, 16]. Yet, those works too lacked generality as they demanded
malicious receivers know a secret key for their public key. This
restriction was lifted by Poettering et.al. in [36] who show that well-
known PKE schemes such as ElGamal[29] are secure even when
reusing coins across ciphertexts. Indeed, reusing coins this way can
also reduce the computational complexity of encapsulation and the
size of ciphertexts for KEMs as shown in the Multi-Recipient KEM
(mKEM) of [24, 33, 38] for example. All previous security notions
(for mmPKE and mKEM) allow an adversary to provide malicious
keys (with or without knowing corresponding secret keys), but
only [31] allows for adaptive corruption of honest keys, which is
necessary for ITK’s security against adaptive adversaries.

2 NOTATION

For 𝑛 ∈ Z, we define [𝑛] := {1, 2, . . . , 𝑛}. We write 𝑥 $← 𝑋 for
sampling an element 𝑥 uniformly at random from a (finite) set 𝑋
as well as for the output of a randomized algorithm, i.e. 𝑥 $← 𝐴(𝑦)
denotes the output of the probabilistic algorithm𝐴 on input𝑦 using
fresh random coins. For a deterministic algorithm 𝐴, we write
𝑥 = 𝐴(𝑦). Adding an element 𝑦 to a set 𝑌 is denoted by 𝑌 +← 𝑦 and
appending an entry 𝑧 to a list 𝐿 is written as 𝑍 ++← 𝑧. Appending a
whole list 𝐿2 to a list 𝐿1 is denoted by 𝐿1 ++ 𝐿2. For a vector ®𝑥 , we
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denote its length as | ®𝑥 | and ®𝑥 [𝑖] denotes the 𝑖-th element of ®𝑥 for
𝑖 ∈ [| ®𝑥 |]. Note that we use vectors as in programming, i.e. we don’t
require any algebraic structure on them. For clarity, we use len to
denote the length of collections.

3 MULTI-MESSAGE MULTI-RECIPIENT PKE

We first recall the syntax of mmPKE from [16]. At a high level,
mmPKE is standard encryption that supports batching a number of
encryption operations together, in order to improve efficiency.3

Definition 3.1 (mmPKE). AMulti-Message Multi-Receiver Public
Key Encryption (mmPKE) scheme mmPKE = (KG, Enc,Dec, Ext)
consists of the following four algorithms:
KG $→ (ek, dk): Generates a new key pair.
Enc( ®ek, ®𝑚) $→ 𝐶: On input of a vector of public keys ®ek and a

vector of messages ®𝑚 of the same length, outputs a multi-
recipient ciphertext 𝐶 encrypting each message in ®𝑚 to the
corresponding key in ®ek.

Ext(𝐶, 𝑖) → 𝑐𝑖 : A deterministic function. On input of a multi-
recipient ciphertext 𝐶 and a position index 𝑖 , outputs an
individual ciphertext 𝑐𝑖 for the 𝑖-th recipient.

Dec(dk, 𝑐) →𝑚 ∨⊥: On input of an individual ciphertext 𝑐 and a
secret key dk, outputs either the decrypted message𝑚 or,
in case decryption fails, ⊥.

3.1 Security with Adaptive Corruptions

Our security notion for mmPKE, called mmIND-RCCA, requires
indistinguishability in the presence of active adversaries who can
adaptively corrupt secret keys of recipients. The notion builds upon
the (strengthened) IND-CCA security of mmPKE from [36], but
there are two important differences: First, [36] does not consider
corruptions. Second, instead of CCA, we define the slightly weaker
notion of Replayable CCA (RCCA). Roughly, RCCA [23] is the same
as CCA except modifying a ciphertext so that it encrypts the exact
same message is not considered an attack. RCCA security is implied
by CCA security.

We note that an almost identical security definition was pre-
sented in parallel by Hashimoto et.al.[31]. However, they only con-
sider multi-recipient PKE (mPKE), where all recipients receive the
same message.

mmIND-RCCA is similar to RCCA security of regular encryption
in the multi-user setting. The main difference is that the challenge
ciphertext is computed by encrypting one of two vectors of mes-
sages ®𝑚∗0 and ®𝑚

∗
1 under a vector of public keys ®ek

∗
. The vector ®ek∗

is chosen by the adversary and can contain keys generated by the
challenger as well as arbitrary keys. The adversary also gets access
to standard decrypt and corrupt oracles for each recipient. To dis-
able trivial wins, we require that ®𝑚∗0 and ®𝑚

∗
1 have equal lengths and

that if the 𝑖-th key in ®ek∗ is corrupted, then the 𝑖-th components of
®𝑚∗0 and ®𝑚

∗
1 are identical. Moreover, we require that the for each 𝑖 ,

the lengths of the 𝑖-th components of ®𝑚∗0 and ®𝑚
∗
1 are the same.

The last requirement means that a secure mmPKE scheme may
leak the lengths of components of encrypted vectors. We note that

3The majority of works on mmPKE uses a different syntax, where there is no Ext and
instead Enc outputs a vector of individual ciphertexts. Since Ext is deterministic, the
syntaxes are equivalent.

SAIK is also secure when instantiated with an mmPKE scheme that
leaks more (see App. G), e.g. whether two messages in a vector are
the same. The formal definitions are in App. A.3.

3.2 Construction

The mmPKE of [36] is straightforward. It requires a data encap-
sulation scheme DEM, a hash 𝐻 and a groupG of prime order 𝑝
generated by 𝑔.4 Recall that ElGamal encryption of𝑚 to public key
𝑔𝑥 requires sampling coins 𝑟 to obtain ciphertext (𝑔𝑟 ,DEM(𝑘𝑚,𝑚))
where𝑘𝑚 = 𝐻 (𝑔𝑟𝑥 , 𝑔𝑥 ). ThemmPKE variant reuses coins 𝑟 from the
first ElGamal ciphertext to encrypt all subsequent plaintexts. Thus,
the final ciphertext has the form (𝑔𝑟 ,DEM(𝑘1,𝑚1),DEM(𝑘2,𝑚2),
. . .) where 𝑘𝑖 = 𝐻 (𝑔𝑟𝑥𝑖 , 𝑔𝑥𝑖 ) for all 𝑖 . We call the construction
DH-mmPKE[G, 𝑔, 𝑝,DEM, 𝐻 ]; a formal description is in App. B.

Optimizing for Short Messages. Normally, when messages𝑚 can
have arbitrary size, a sensible mmPKE would use a KEM\DEM style
construction to avoid having to re-encrypt 𝑚 multiple times. In
other words, for each𝑚 in the encrypted vector, we choose a fresh
key 𝑘 ′𝑚 for an AEAD and encrypt𝑚 with 𝑘 ′𝑚 . Then use the mmPKE
of [36] to encrypt 𝑘 ′𝑚 to each public key receiving 𝑚. However,
since the secrets encrypted in SAIK have the same length as AEAD
keys, in our case it is more efficient to encrypt the secrets directly.

Tight security bound. In App. B, we prove the following upper
bound on the advantage of any adversary against themmPKE from
[36]. Our bound is tighter than the bound that follows from the
straightforward adaptation of the bound from [36] (i.e. using the
hybrid argument and guessing the uncorrupted key). In particular,
that bound would depend (linearly) on the total number of public
keys, which may get very large. In contrast, our bound depends
only on the number of corrupted keys and the length of encrypted
vectors.

Theorem 3.2. LetG be a group of prime order 𝑝 with generator
𝑔, let DEM be a data encapsulation mechanism and let mmPKE =

DH-mmPKE[G, 𝑔, 𝑝,DEM, 𝐻 ]. For any adversary A and any 𝑁 ∈
N, there exist adversaries B1 and B2 with runtime roughly the same
as A ’s s.t.

AdvmmIND-RCCA
mmPKE,𝑁 (A) ≤ AdvIND-RCCADEM (B2)

+ 2𝑛 · (𝑒2𝑞𝑐AdvDSSDH(G,𝑔,𝑝) (B1) +
𝑞𝑑1

𝑝
+ 𝑞ℎ
𝑝
),

where 𝐻 is a random oracle, 𝑒 is the Euler number, 𝑛 is the length of
the challenge vector, and 𝑞𝑑1 , 𝑞𝑐 and 𝑞ℎ are the number of queries to
the decrypt and corrupt oracles and the random oracle, resp.

Remark 1. Some practical applications of Diffie-Hellman, most no-
tably Curve25519 and Curve448 [35], implement a Diffie-Hellman
operation that is not exponentiation in a prime-order group. Such
operations can be formalized as so-called nominal groups [2]. In
App. C, we generalize and prove Theorem 3.2 for nominal groups.
In particular, this means that DH-mmPKE is secure if instantiated
with Curve25519 and Curve448.

4In SAIK we can instantiate DEM with an off-the-shelf AEAD such as AES-GCM and
𝐻 with HKDF.
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4 SERVER-AIDED CGKA

In this section, we first explain the saCGKA syntax, i.e., the interface
exposed by saCGKA protocols to higher-level applications. Then,
we give intuitive security properties saCGKA protocols should
provide and an overview of our saCGKA security model. For details,
see App. D. Finally, we highlight the additional flexibility provided
by semantic agreement of saCGKA and list simplifications it makes
compared with previous works on active CGKA security [7, 9, 31].

4.1 Syntax

A saCGKA protocol allows a dynamic group of parties to agree on
a continuous sequence of symmetric group keys. An execution of a
saCGKA protocol proceeds in epochs. During each epoch, a fixed
set of current group members shares a single group key. A group
member can modify the group state, that is, create a new epoch,
by sending a single message to the mailboxing service. Afterwards,
each group member can download a possibly personalized message
and, if they accept it, transition to the new epoch. Three types of
group modifications are supported: adding a member, removing a
member and updating, i.e., refreshing the group key.

4.2 Intuitive Security Properties

saCGKA protocols are designed for the setting with active adver-
saries who fully control the mailboxing service and repeatedly
expose secret states of parties. Note that, unless some additional un-
corruptible resources such as a trusted signing device are assumed,
the above adversary subsumes the typical notion of malicious in-
siders (or actively corrupted parties in MPC).

To talk about security of saCGKA, we use the language of history
graphs introduced in [6]. A history graph is a symbolic represen-
tation of group’s evolution. Nodes represent epochs and directed
edges represent group modifications. For example, when Alice in
epoch 𝐸 wants to add Bob, she creates an epoch 𝐸 ′ with an edge
from 𝐸 to 𝐸 ′. The graph also stores information about parties’ cur-
rent epochs, the adversary’s actions, etc.

In a perfect execution, the history graph would be a chain. How-
ever, even for benign reasons, this may not be the case. For example,
if two parties simultaneously create epochs, then a fork in the graph
is created. Moreover, an active adversary can deliver different mes-
sages to different parties, causing them to follow different branches.
Further, it can trick parties into joining fake groups it created by
injecting invitation messages. Epochs in fake groups form what
we call detached trees. So, in full generality, the graph is a directed
forest. Using history graphs we can list intuitive security properties
of saCGKA.
Consistency Any two parties in the same epoch 𝐸 agree on the

group state, i.e., the set of current members, the group key,
the last group modification and the previous epoch. One
consequence of consistency is agreement on the history:
the parties reached 𝐸 by executing the same sequence of
group modifications since the latter one joined.

Confidentiality An epoch is confidential if the adversary has no
information about its group key. Corruptions may destroy

confidentiality in certain epochs. saCGKA security is pa-
rameterized by a confidentiality predicate which identifies
confidential epochs in an execution.

Authenticity Authenticity for a party𝐴 in an epoch 𝐸 is preserved
if the following holds: If a party in 𝐸 transitions to a child
epoch 𝐸 ′ and identifies 𝐴 as the sender creating 𝐸 ′, then 𝐴
indeed created 𝐸 ′. An active adversary may destroy authen-
ticity in certain cases. saCGKA security is parameterized
by an authenticity predicate which decides if authenticity
of a party 𝐴 in epoch 𝐸 is preserved.

The confidentiality and authenticity predicates generalize forward-
secrecy and post-compromise security.

4.3 Authenticated Key Service (AKS)

Most CGKA protocols, including ITK and SAIK, rely on a type of
PKI called here the Authenticated Key Service (AKS). The AKS au-
thentically distributes so-called one-time key packages (also called
key bundles or pre-keys) used to add new members to the group
without interacting with them. For simplicity, we use an idealized
AKS which guarantees that a fresh, authentic, honestly generated
key package of any user is always available.

4.4 Formal Model Intuition

We define security of saCGKA protocols in the UC framework.
That is, a saCGKA protocol is secure if no environment A can
distinguish between the real world where it interacts with parties
executing the protocol and the ideal world where it interacts with
the ideal saCGKA functionality and a simulator. Readers familiar
with game-based security should think of A as the adversary (see
also [8] for some additional discussion).

The real world. In the real-world experiment, the following ac-
tions are available to A : First, it can instruct parties to perform
different group operations, creating new epochs. When this hap-
pens, the party runs the protocol, updates its state and hands to
A the message meant to be sent to the mailboxing service. The
mailboxing service is fully controlled by A . This means that the
next action it can perform is to deliver arbitrary messages to parties.
A party receiving such a message updates its state (or creates it in
case of new members) and hands to A the semantic of the group
operation it applied. Moreover, A can fetch from parties group
keys computed according to their current states and corrupt them
by exposing their current states.5

The ideal world. In the ideal-world experiment A can perform
the same actions, but instead of the protocol, parties use the ideal
CGKA functionality, Fcgka. Internally, Fcgka maintains and dynam-
ically extends a history graph. WhenA instructs a party to perform
a group operation, the party inputs Send to Fcgka. The function-
ality creates a new epoch in its history graph and hands to A an
idealized message. The message is chosen by an arbitrary simulator,
which means that it is arbitrary. When A delivers a message, the
party inputs Receive to Fcgka. On such an input Fcgka first asks the
simulator to identify the epoch into which the receiver transitions.
5To make this section accessible to readers not familiar with UC, we avoid technical
details, which sometimes results in inaccuracies. E.g., parties are corrupted by the
(dummy) adversary, not A . We hope this doesn’t distract readers familiar with UC.
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The simulator can either indicate an existing epoch or instruct
Fcgka to create a new one. The latter ability should only be used if
A injects a message and, accordingly, epochs created this way are
marked as injected. Afterwards, Fcgka hands toA the semantics of
the message, computed based on the graph. A corruption in the real
world corresponds in the ideal world to Fcgka executing the pro-
cedure Expose and the simulator computing the corrupted party’s
state. When A fetches the group key, the party inputs GetKey to
Fcgka, which outputs a key from the party’s epoch. The way keys
are chosen is discussed next.

Security guarantees in the ideal world. To formalize confiden-
tiality, Fcgka is parameterized by a predicate confidential, which
determines the epochs in the history graph in which confidentiality
of the group key is guaranteed. For such a confidential epoch, Fcgka
chooses a random and independent group key. Otherwise, the sim-
ulator chooses an arbitrary key. To formalize authenticity, Fcgka is
parameterized by authentic, which determines if authenticity is
guaranteed for an epoch and a party. As soon as an injected epoch
with authentic parent appears in the history graph, Fcgka halts,
making the worlds easily distinguishable. Finally, Fcgka guarantees
consistency by computing the outputs, such as the set of group
members outputted by a joining party, based on the history graph.
This means that the outputs in the real world must be consistent
with the graph (and hence also with each other) as well, else, the
worlds would be distinguishable.

Observe that the simulator’s power to choose epochs into which
parties transition and create injected epochs is restricted by the
above security guarantees. For example, an injected epoch can only
be created if the environment exposed enough states to destroy
authenticity. For consistency, Fcgka also requires that a party can
only transition to a child of its current epoch. Another example is
that if a party in the real world outputs a key from a safe epoch,
then the simulator cannot make it transition to an unsafe epoch.

Personalizing messages. saCGKA protocols may require that the
mailboxing service personalizes messages before delivering them.
In our model, such processing is done by A . It can deliver an
honestly processed message, or an arbitrary injected message. The
simulator decides if a message is honestly processed, i.e., leads to a
non-injected epoch, or is injected, i.e., leads to an injected epoch.
Note that this notion has an RCCA flavor. For example, delivering an
otherwise honestly generated message but with some semantically
insignificant bits modified can lead the receiver to an honest epoch.

Adaptive corruptions. Our model allows A to adaptively decide
which parties to corrupt, as long as this does not allow it to trivially
distinguish the worlds. Specifically, A can trivially distinguish if
a corruption allows it to compute the real group key in an epoch
where Fcgka already outputted to A a random key. Our statement
quantifies over A ’s that do not trivially win.

We note that, in general, there can exist protocols that achieve
the following stronger guarantee: Upon a trivial-win corruption,
Fcgka gives to the simulator the random key it chose and the sim-
ulator comes up with a fake state that matches it. However, this
requires techniques which typically are expensive and/or require
additional assumptions, such as a random oracle programmable
by the simulator or a common-reference string. We note that the

disadvantage of the simpler weaker is restricted composition in the
sense that any composed protocol can only be secure against the
class of environments restricted in the same way.

Relation to game-based security. It may be helpful to think about
distinguishing between the real and ideal world as a typical security
game for saCGKA. The adversary in the game corresponds to the
environment A . The adversary’s challenge queries correspond to
A ’s GetKey inputs on behalf of parties in confidential epochs and
its reveal-session key queries correspond to A ’s GetKey inputs in
non-confidential epochs. To disable trivial wins, we require that
if the adversary queries a challenge for some epoch, then it can-
not corrupt in a way that makes it non-confidential. Apart from
the keys in challenge epochs being real or random, the real and
ideal world are identical unless one of the following two bad events
occurs: First, the adversary breaks consistency, that is, it causes
the protocol to output in the real world something different than
Fcgka in the ideal world. Second, the adversary breaks authenticity,
that is, it makes the protocol accept a message that violates the
authenticity requirement in the ideal world, making Fcgka halt for-
ever. Therefore, distinguishing between the worlds implies breaking
consistency, authenticity or confidentiality.

Advantages of simulators. Using a simulator simplifies the notion,
because the ideal world does not need to encode parts of the protocol
that are not relevant for security. For example, in our model the
epochs intowhich parties transition are arbitrary, as long as security
holds. This means that in the ideal world we do not need a protocol
function that outputs some unique epoch identifiers. Our ideal
world is agnostic to the protocol, which is conceptually simple.

4.5 Semantic Agreement

An important difference between our model and those of [7, 9, 31]
is that in [7, 9, 31] epochs are (uniquely) identified by messages
creating them. This is problematic for saCGKA, because different
receivers transition to a given epoch using different messages. Cru-
cially, this means an injected message cannot be used to identify the
injected epoch into which its receiver transitions. We deal with this
in a clean way by allowing the simulator to identify epochs. That is,
epoch identifiers are arbitrary as long as consistency, authenticity
and confidentiality hold.

The work [31], which proposes a new CGKA where, similar to
SAIK, receivers get personalized packets, encountered the same
problem with the existing models [7, 9]. In their new model, filtered
CGKA (fCGKA), an epoch is identified by the sequence of packet
headers leading to it. The header is a part of the uploaded packet that
is downloaded by all receivers. A protocol can be secure according
to the fCGKA model only if the header it defines has the properties
of a cryptographic commitment to the semantics of the packet.

saCGKA generalizes fCGKA (and [7, 9]) and provides additional
flexibility. For instance, it enables CGKAs which, like SAIK, assume
PKE with the weaker RCCA security, while fCGKA still requires the
stronger notion of CCA. We believe that in the future more CGKA
protocols will take advantage of saCGKA’s flexibility. For example,
one may consider using a different packet-authenticator for each
receiver with the goal of providing some level of unlinkability – an
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adversary seeing only packets downloaded by participants cannot
tell if they are in the same epoch (or group) or not.

4.6 Simplifications

In order to make the security notion tractable, we made the follow-
ing simplifications compared to the models of [7, 9, 31].

Immediate transition In our model, a party performing a group
operation immediately transitions to the created epoch. In
reality, a party would only send the message creating the
epoch and wait for an ACK from the mailboxing service
before transitioning. If it receives a different message before
the ACK, it transitions to that epoch instead. This mitigates
the problem that if many parties send at once then they
end up in parallel epochs and cannot communicate.
A protocol Prot implementing immediate transition can be
transformed in a black-boxmanner into a protocol Prot’ that
waits for ACK as follows: To perform a group operation,
Prot’ creates a copy of the current state of Prot and runs Prot
to obtain the provisional updated state and themessage. The
message is sent and all provisional states are kept in a list.
If some message is ACK’ed, the corresponding provisional
state becomes the current one, and if another message is
received, it is processed using the current state. In any case,
all provisional states are cleared upon transition.

Simplified PKI The models of [9, 31] consider a realistic imple-
mentation of the AKS where parties generate key packages
themselves and upload them to an untrusted server, au-
thenticated with long-term so-called identity keys. These
long-term keys are authenticated via a PKI which allows
the adversary to leak registered keys and even to register
their own arbitrary keys on behalf of any participant. The
works [9, 31] define fine-grained security in this setting,
i.e., their security predicates take into account which PKI
keys delivered to parties were corrupted.
In contrast, our model avoids the complexity of keeping
track of the PKI keys in Fcgka, at the cost of more coarse-
grained guarantees. For example, it no longer captures the
(subtle) security guarantees provided by (the tree-signing
of) ITK to parties invited to fake groups created by the ad-
versary (tree signing trivially works for SAIK). We stress
that our model does capture most active attacks, e.g. inject-
ing valid-looking packets that add parties with arbitrary
injected key packages.

Deleting group keys To build a secure messaging protocol on
top (sa)CGKA, it is important that (sa)CGKA removes from
its state all information about the group key 𝐾 immedi-
ately after outputting it. The reason is that the messaging
protocol will symetrically ratchet 𝐾 forward for FS. If the
initial 𝐾 was kept in the (sa)CGKA state upon corruption,
the adversary could recompute all symmetric ratchets in
the current epoch, breaking FS. Our Fcgka does not enforce
that 𝐾 is deleted, in order to avoid additional bookkeeping.
All natural protocols, including SAIK, can trivially delete 𝐾 ,
as it is stored as a separate variable that is computationally
independent of the rest of the state.

No randomness corruptions Our model does not capture the
adversary exposing or modifying randomness used by the
protocol. Capturing such attacks for (sa)CGKA causes a
significant headache when defining the formal security no-
tion. For instance, the model needs to special-case scenarios
where the adversary leaks the state of a party 𝐴, uses it
with randomness 𝑟 to compute and inject a message to a
party 𝐵, and then makes 𝐴 use 𝑟 to re-compute the injected
message.
One can easily adapt the special-casing of [7, 9, 31] to our
model. We chose not to do this for simplicity and because
well-designed protocols, including ITK and SAIK, naturally
have protections against bad randomness.(Looking ahead,
these protocols mix a fresh “commit” secret for the new
epoch with the “init” secret from the old epoch, which
mitigates sampling the fresh secret with bad randomness.)
Therefore, capturing the additional attack vector typically
does not fundamentally improve the analysis.

Simplified syntax To improve efficiency, ITK and CmPKE of [31]
use the so-called propose-commit syntax, originally pro-
posed by MLS. This means that parties first send messages
that propose adding or removing other members, or updat-
ing their own keys. This does not affect the group state
immediately. Rather, a party can collect a list of proposals
and send a commit message which applies the proposed
changes and creates a new epoch. The advantage of this is
avoiding the expensive operation of epoch creation after
every group modification (modifications typically come in
batches; for instance, lots of members are added immedi-
ately after group creation).
Unfortunately, using this syntax requires lots of additional
bookkeeping from Fcgka, such as keeping track of two
types of history-graph nodes, one for proposals and one for
commits (see [9, 31]). Most protocols based on ITK, such as
SAIK, can be easily adapted to the propose-commit syntax
and benefit from the efficiency gain. The change is minimal
and security proofs are clearly not affected.

No correctness guarantees Our model does not capture correct-
ness, i.e., the simulator can always make a party reject a
message. Therefore, a protocol that does nothing is secure
according to the notion. This greatly simplifies the defini-
tion and the fact that a protocol is correct typically easily
follows by inspection (which is often the core argument in
the proof of correctness). This means that the protocol used
by the mailboxing service to extract personalized packets
is not part of the security notion – a fully untrusted service
may anyway deliver arbitrary packets. We note that the
above protocol is still a part of saCGKA.

5 THE SAIK PROTOCOL

SAIK inherits most of its mechanisms from ITK, the CGKA of MLS.
We briefly recall ITK in Sec. 5.1. Readers familiar with ITK can jump
directly to Sec. 5.2 which gives intuition how SAIK improves on
ITK. The detailed description of SAIK can be found in App. F.
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5.1 Intuition for the ITK Protocol

Ratchet trees. The operation of ITK relies on a data structure
called ratchet trees. A ratchet tree 𝜏 is a tree where leaves are as-
signed to group members, each storing its owner’s identity and
signature key pair. Moreover, most non-root nodes in 𝜏 , store en-
cryption key pairs. Nodes without a key pair are called blank.

ITK maintains the following tree invariant: Each member knows
the secret keys of the nodes on the path from their leaf to the root, and
only those, as well as all public keys in 𝜏 . This allows to efficiently
encrypt messages to subgroups: If a node 𝑣 is not blank, then a
message 𝑚 can be encrypted to all members in the subtree of a
node 𝑣 by encrypting it under 𝑣 ’s public key. If 𝑣 is blank, then
the same can be achieved by encrypting𝑚 under each key in 𝑣 ’s
resolution, i.e., the minimal set of non-blank nodes covering all
leaves in 𝑣 ’s subtree (Note that leaves are never blank, so there is
always a resolution covering all leaves).

Ratchet tree evolution. Each group modification corresponds to
a modification of the ratchet tree 𝜏 . Most importantly, an update
performed by a member id corresponds to refreshing all key pairs
with secret keys known to id, i.e., those in the nodes on the path
from id’s leaf to the root. id generates the new key pairs and, to
maintain the tree invariant, communicates the secret keys to some
group members. This is done efficiently as follows.

(1) Let 𝑣1, . . . , 𝑣𝑛 denote the nodes on the path from id’s leaf
𝑣1 to the root 𝑣𝑛 . id generates a sequence of path secrets
𝑠2, . . . , 𝑠𝑛 : 𝑠2 is a random bitstring, 𝑠𝑖+1 = Hash(𝑠𝑖 , ‘path’).

(2) id generates a fresh key pair for 𝑣1. For each 𝑖 ∈ [2, 𝑛 − 1],
the new key pair of 𝑣𝑖 is computed by running the key gen-
eration with randomness Hash(𝑠𝑖 , ‘rand’). The last secret
𝑠𝑛 will be used in the key schedule, described soon.

(3) id encrypts each 𝑠𝑖+1 to the sibling of 𝑣𝑖 . This allows parties
in the subtree of 𝑣𝑖 (and only those) to derive 𝑠𝑖+1, . . . , 𝑠𝑛 .

Each add and remove is immediately followed by an implicit
update. Removing a member id𝑡 corresponds to removing all keys
known to it, i.e., blanking all nodes on the path from its leaf to the
root. Adding a member id𝑡 corresponds to inserting a new leaf into
𝜏 . The leaf’s public signature and encryption keys are fetched from
the AKS. Further, the new leaf becomes an unmerged leaf of all
nodes on the path from it to the root. A leaf 𝑙 being unmerged at a
node 𝑣 indicates that the 𝑙 ’s owner doesn’t know the secret key in
𝑣 , so messages should be encrypted directly to 𝑙 . When 𝑣 ’s key is
refreshed during an update, its set of unmerged leaves is cleared.

Key schedule. Apart from the ratchet tree, all group members
store a number of shared symmetric keys, unique to the current
epoch. These are: application secret — the group key exported to the
E2E application,membership key used to authenticate sent messages
and the init key — mixed in the next epoch’s secrets for FS.

The secrets are derived when an epoch is created, i.e. after the
implicit update following each modification. The update generates
the last path secret 𝑠𝑛 , which we now call the commit secret. Then,
the following secrets are derived. First, the commit sercert and
the old epoch’s init secrets are hashed together to obtain the joiner
secret. Then, the epoch secret is obtained by hashing the joiner secret
with the new epoch’s context, which we explain next. (The context
is not mixed directly with init and commit secrets, because the

joiner secret is needed by new members; see below.) Finally, the
new epoch’s application, membership and init secrets are obtained
by hashing the epoch secret with different labels.

The context includes all relevant information about the epoch,
e.g. (the hash of) the ratchet tree (which includes the member set).
The purpose of mixing it into the key schedule is ensuring that
parties in different epochs derive independent epoch secrets.

Joining. When an id𝑡 joins a group, the party inviting them
encrypts to them two secrets under a key fetched from the AKS.
First, this is id𝑡 ’s path secret from the implicit update following the
add. Second, this is the new joiner secret, from which id𝑡 derives
other epoch secrets. Importantly, the newmember hashes the joiner
secret with the context, which means that it agrees on the epoch’s
state with all current members transitioning to it.

5.2 Intuition for the SAIK Protocol

mmPKE.. In ITK, a member performing an update generates a se-
quence of path secrets 𝑠1, . . . , 𝑠𝑛 and encrypts each 𝑠𝑖 to each public
key from a set of recipient public keys 𝑆𝑖 using regular encryption.
In contrast, SAIK redraws its internal abstraction boundaries view-
ing the sequence of encryptions as a single call to mmPKE. This
allows it to use the DDH-based mmPKE construction of [36]. Com-
pared to ITK, this cuts the computational complexity of encrypting
®𝑚 and the ciphertext size in half (asymptotically as 𝑛 grows).

Authentication. The goal of authentication is to make sure that a
member accepts a message from id only if id knows 1) the signing
key for the verification key stored in id’s leaf in the current ratchet
tree and 2) the current key schedule. In ITK, where every member
gets the same message, this is achieved by simply signing it and
MACing with the current membership key. In SAIK, to optimize
bandwidth, the mailboxing service forwards to each receiver only
the data it needs. E.g., it does not forward ciphretexts for other
members. Therefore, we have to achieve authentication differently.

One trivial solution would be that the sender uploads multiple
signatures, one for each receiver. However, this clearly does not
scale. Can we do something better? A crucial observation is that the
goal of saCGKA is to authenticate created epochs and not message
bitstrings. That is, we want to guarantee that if Alice thinks that a
message 𝑐 transitions her to an epoch 𝐸 created by Bob, then Bob
indeed created 𝐸. It is not an attack if the adversary can make Alice
accept a message that is not extracted with the honest procedure
(e.g., it has reordered fields), as long as it transitions her to 𝐸.

Therefore, instead of signing the whole message, in SAIK we can
sign and MAC only a single short tag that identifies the new epoch
and is known to all members. In particular, this value is derived in
the key schedule for the new epoch, alongside the other secrets, by
hashing the epoch secret with an appropriate label. This way of
efficient authentication is enabled by our new security notion.

Extraction procedure for the server. The task of the mailboxing
server is to extract a personalized packet for a group member Alice
from a packet 𝐶 uploaded by another member Bob. In SAIK, 𝐶
consists roughly of a single mmPKE ciphertext, a signature, the
new public keys on the path from the sender to the root node and
some metadata such as the sender’s identity, the group modification
being applied etc. The signature and metadata are simply forwarded
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to Alice. For the mmPKE ciphertext, the server runs the mmPKE Ext
procedure with Alice’s recipient index 𝑖 and also sends all public
keys up to the lowest common ancestor (lca) of Alice and Bob in the
ratchet tree. See Fig. 1 for an illustration. Observe that 𝑖 and the lca
are determined by the current epoch’s ratchet tree and the positions
of Alice and Bob in it. Therefore, the server can obtain 𝑖 and the lca
in two ways: First, it can store all ratchet trees it needs (identified by
the transcript hash leading to the epoch for which a tree is stored)
and them itself. Second, it can ask Alice for 𝑖 and the lca given
that the sender is Bob. We note that the latter solution requires an
additional round of interaction which may be problematic for some
applications.

𝑖𝑑𝑅 act 𝑠𝑖𝑔 𝑐𝑡0 𝑐𝑡1, . . . , 𝑐𝑡4, . . . ek1, ek2, ek3, ek4, . . . , ekroot

ek4

ek3

𝑐𝑡2 ek2

ek1 𝑐𝑡1

⊥

𝑐𝑡3 𝑐𝑡4

ek𝑁−1 ek𝑖𝑑𝑅

. .
. . . .

ekroot

⇓
𝑖𝑑𝑅, 𝑎𝑐𝑡, 𝑠𝑖𝑔, 𝑐𝑡0, 𝑐𝑡4, ek1, ek2, ek3

Figure 1: Server extraction algorithm. Lowest common an-

cestor (LCA) pof 𝑖𝑑𝑅 and 𝑖𝑑𝑆 is ek4, so all blue public keys

are included in 𝑖𝑑𝑅 ’s packet. Since the sibling of ek3 is empty,

there corresponding path secret of ek4 is encrypted to its

resolution, resulting in the two ciphertext.

Comparison with techniques of [31]. The work [31] introduces a
technique for efficient packet authentication which is quite similar
to the technique used by SAIK. In particular, their CGKA uses a
committing mPKE, cmPKE. A cmPKE differs from mPKE in that
encryption outputs a tag 𝑇 which is a cryptographic commitment
to the plaintext and is delivered to each receiver. Since in [31] every
recipient of a commit gets the same message, authenticating 𝑇
is sufficient for CGKA authentication. We highlight a couple of
differences between that technique and ours: First, it is not clear
how to use cmPKE in a tree-based CGKA, where a commit executes
multiple instances of CmPKE, and hence we end up with multiple
tags 𝑇 , each delivered to a different subset of the group. Second,
using the hash of the encrypted message as 𝑇 does not result in an
IND-CCA secure CmPKE, since a hash allows to easily tell which of
two messages is encrypted. Therefore, the construction of [31] uses
key-committing encryption to both hide and bind the message.

To summarize, CmPKE introduced by [31] is very useful for the
CGKA type they consider and may well find more use-cases beyond
CGKA. On the other hand, SAIK’s solution fits all types o CGKA,
does not require additional properties to prove CGKA security and
is more direct. Albeit, it is very CGKA-specific.

6 SECURITY OF SAIK
To define the security we prove for SAIK we fix the two safety
predicates confidential and authentic used by Fcgka. We next
give the intuition; see Fig. 20 in App. H for the pseudocode. We
define two versions of the predicates: a stronger and a weaker one.
For better exposition, the stronger version is not achieved by SAIK
as presented in this work. But at the cost of added complexity SAIK
can easily be extended to achieve it, as described Sec. 8.1.

We begin with the simpler stronger version. First of all, both
predicates give no guarantees for epochs in detached trees until
they are attached and so we ignore them in this section. Then, the
definition is built around the notion of secrets which make up the
protocol state. There are two types of secrets: group secrets, stored
in the state of all parties, and individual secrets, stored in the states
of some parties. Each corruption exposes a number of secrets and
each epoch change replaces a number of secrets by (possibly) se-
cure ones. The helper predicate *grp-secs-secure(𝐸) decides if
the group secrets in 𝐸 are secure, i.e., not exposed, and the predi-
cate *ind-secs-secure(𝐸, id) decides if id’s individual secrets in 𝐸
are secure. Then confidential(𝐸) equals to *grp-secs-secure(𝐸),
since the epoch key is itself a group secret. Further, authentic(𝐸, id)
is true if either *grp-secs-secure(𝐸) or *ind-secs-secure(𝐸, id)
is true, because both group and id’s secrets are necessary to imper-
sonate id in 𝐸.

It remains to determine when group and individual secrets are
exposed. For group secrets, *grp-secs-secure(𝐸) is defined re-
cursively. The base case states that the group secrets in first epoch
(when the group was created) are secure if and only if no party is
corrupted while in that epoch. Intuitively, we assume the group
was created by an honest party using good randomness. Moreover,
capturing perfect forward secrecy, corruptions in the descendant
epochs do not affect the confidentiality of earlier group secrets.

The induction step states that the group secrets in a non-root
epoch 𝐸 are secure if no party is corrupted in 𝐸, the epoch is not
created by an injected packet from the adversary and either the
group secrets in 𝐸’s parent 𝐸𝑝 are secure or all individual secrets
in 𝐸 are secure. Intuitively, this formalizes the requirement that
the adversary can learn the group secrets in only three ways: A)
by corrupting a party currently in epoch 𝐸. B) by injecting the
secrets (though most injections are disallowed by the authenticity
predicate). C) by computing them the same way an honest receiver
transitioning to 𝐸 would. The latter requires knowing the group
secrets of 𝐸𝑝 and the individual secrets of at least one receiver. Note
that the possible receivers are those parties that are group members
in 𝐸 and that are not 𝐸’s creator (who transitions on sending). Note
also that the fact that even knowing an epoch creator’s individual
secrets in 𝐸𝑝 we can treat them as secure in 𝐸 which captures so
called post compromise security (aka. healing or backwards security).
Indeed, in SAIK, part of creating a new epoch requires refreshing
all ones individual secrets.

Finally, individual secrets of id in 𝐸 are exposed whenever there
is some other epoch 𝐸 ′ where id’s secrets are the same as in 𝐸 and
where id was corrupted or its secrets were injected on its behalf.
The secrets of id are the same in two epochs if no epoch between
them replaces the secrets, i.e., is created by id, removes it or adds it.
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Weaker guarantees. In the weaker version of the security predi-
cates, individual secrets of id in 𝐸 are not secure in an additional
scenario, formalized by *exposed-ind-secs-weak. In this scenario,
an id𝑠 first honestly adds id and the adversaryA injects a message
adding id to some other epoch. Finally, id joins A’s epoch and is
corrupted before sending any message. We explain why SAIK is
insecure in this case and how it can be modified to be secure in
Sec. 8.1.

Security. For themmPKE scheme we assume a security property
called mmOW-RCCA, defined in App. G. The notion is strictly
weaker than mmIND-CCA; in App. G we prove the implication.
Formally, the AKS is modeled as the functionality Faks defined in
App. E. SAIKworks in the Faks-hybrids model, i.e., Faks is available
in the real world and emulated by the simulator in the ideal world.
The formal proof of Theorem 6.1 can be found in App. H.

Theorem 6.1. Let Fcgka be the CGKA functionality with predi-
cates confidential and authentic defined in Fig. 20. Let SAIK be
instantiated with an mmPKE mmPKE, a signature scheme Sig and
MAC, and with the HKDF functions modelled as a random oracle
Hash. Let A be any environment. Denote the output of A from the
real execution with SAIK and the hybrid functionality Faks from
Fig. 15 as realSAIK,Faks (A) and the output of A from the ideal ex-
ecution with Fcgka and a simulator S as idealFcgka,S (A). There
exists a simulator S and adversaries B1 to B4 such that

Pr[idealFcgka,S (A) = 1] − Pr
[
realSAIK,Faks (A) = 1

]
≤

AdvCRHash (B1)

+ 𝑞2𝑒 (𝑞𝑒 + 1) log(𝑞𝑛) · AdvmmOW-RCCA
mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B2)

+ 2𝑞𝑒 · AdvEUF-CMA
Sig (B3)

+ 𝑞𝑒 · AdvEUF-CMA
MAC (B4) + 3𝑞ℎ𝑞2𝑒 (𝑞𝑒 + 1)/2𝜅 ,

where 𝑞𝑒 , 𝑞𝑛 and 𝑞ℎ denote bounds on the number of epochs, the group
size and the number of A’s queries to the random oracle modeling
the Hash, respectively.

7 EVALUATION

We compare the communication complexity or, informally, the
“bandwidth” of SAIK, ITK and CmPKE from [31]. For the sake of
this comparison (and to simplify the description), one can think of
CmPKE as a protocol similar to SAIK but where the ratchet tree is
an𝑁 -ary tree of height 1, where𝑁 is the number of group members.
This means that CmPKE only needs single-message multi-recipient
PKE, mPKE (which is a special case of mmPKE). To make a fair
comparison, we instantiate CmPKEwith the same DH-basedmPKE
as SAIK instead of the less efficient but post-quantum securemPKE
given in [31].

Methodology. We compare the communication complexity of a
single group modification with respect to three metrics:

• sender bandwidth – the size of the packet uploaded to the
server,

• maximum receiver bandwidth – the maximum size of a (per-
sonalized) packet downloaded by a single receiver, and

• total bandwidth – the sum of the sizes of the uploaded
packet and all downloaded packets.

ekroot

ek0

ek00

ek′1 ek′2

ek01

ek′3 ek′4

ek1

ek10

ek′5 ek′6

ek11

ek′7 ek′8

Figure 2: A ratchet tree for SAIK or ITK without blanks or

unmerged leaves.

ekroot

⊥

⊥

ek1 ek2

⊥
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⊥
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Figure 3: A ratchet tree for SAIK or ITK with all nodes blank.
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Figure 4: A tree with some blank and non-blank nodes. Here,

sender bandwidth depends on the position in the tree. For

example, a packet by the leftmost leaf would contain 5 ci-

phertexts, while the rightmost leaf would require 6.

The sender and maximum-receiver bandwidths give an idea about
the resources a single client needs to invest to perform the group
modification. In contrast, the total bandwidth gives the idea about
the resources used by the server (or, equivalently, all clients to-
gether). However, it makes no assertions about the distribution of
this bandwidth, i.e. some clients might use a significantly larger
portion of the total bandwidth than others. (We note that the total
bandwidth was the (only) metric used in [31].)

There is one caveat when calculating the bandwidth require-
ments for SAIK (and ITK) due to the underlying tree structure:
The bandwidth can vary quite significantly depending on the “tree
topology”, which is in turn determined by the execution history.
Roughly, the reason is that add and remove operations may destroy
the good properties of the tree (by “blanking” nodes), increasing the
number of public keys to which some message must be encrypted.
In the best case, called the tree-best-case, there are only log(𝑁 )
public keys (this happens when the ratchet has no blank nodes or
unmerged leaves, as depicted in Fig. 2). However, in the worst case,
called the tree-worst-case, there can be 𝑁 public keys (this happens
e.g. when all non-leaf nodes are blank; see Fig. 3). In general, the
number of public keys can be anything in between; see Fig. 4.

Therefore, we compare each bandwidth in the tree-best-case and
the tree-worst-case. Note that any other case results in a bandwidth
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between these cases. We remark that comparing the average over
all histories of group operations would not be meaningful, since the
probability of a given execution depends on user and administrator
behavior, general application policies and runtime conditions, etc. It
is an important topic of future research to better understand which
kinds of policies governing when and which parties initiate CGKA
operations lead to more bandwidth efficient executions for realistic
deployments. However, it is outside the scope of this work. We note
that SAIK is very flexible as to kinds of policies that are possible
and the types of data that can be leveraged to guide executions
towards efficient behavior. Thus, we conjecture that in practice a
well designed implementation (of both server and client) will be able
to ensure that under relatively mild real-time conditions the vast
majority of executions will spend the overwhelming majority of
their time tending towards the tree-best-case scenario in bandwidth.

Results. We estimated the bandwidth for all protocols using the
formulas in Figs. 5 and 7 with bit lengths indicated in Fig. 8. This is
further visualized in Fig. 6 for growing group sizes 𝑁 . We highlight
some interesting observations.

In terms of the sender bandwidth, SAIK is always at least as good
as the other protocols. For example, in a group of 10K parties, SAIK
sender’s require between 83% and 55% of the bandwidth of ITK
(due to the smaller mmPKE ciphertexts compared to PKE). SAIK’s
tree-worst-case sender bandwidth is the same as CmPKE but its
tree-best-case bandwidth can be as small as 0.52% by using only 4KB
in stead of CmPKE’s 783KB. (Recall that, unlike in CmPKE, in SAIK
sender bandwidth varies depending on the history of preceding
operations.)

In terms of the maximum receiver bandwidth, ITK is much worse
than SAIK and CmPKE. For example, SAIK receivers (at most) need
between 62% (tree-best-case execution) to about .2% (tree-worst-
case execution) of ITK’s. On the other hand, CmPKE is the best for
receivers. SAIK requires up to 126% of CmPKE’s bandwidth, i.e. an
increase from ∼ 2.4KB to ∼ 3.02KB for 10K parties.

Finally, the total bandwidth is by far the smallest for CmPKE and
by far the largest for ITK. For instance, for 10K parties, SAIK requires
∼ 1.3 times more total bandwidth, while ITK requires anywhere
from ∼ 2 times (tree-best-case) to ∼ 50 times (tree-worse-case)
more.

In summary, the results show that SAIK achieves the lowest
bandwidth required from a single client (i.e.O(log(𝑁 )) for SAIK vs.
O(𝑁 ) for CmPKE), while CmPKE has the lowest total bandwidth
(i.e. O(𝑁 log(𝑁 )) for SAIK vs. O(𝑁 ) for CmPKE). (Hence, both
protocols meet their design goals.) For instance, for 10K parties,
CmPKE requires a client to upload 783KB of data, while in scenarios
close to the tree-best-case (which we believe to occur most of the
time), the sender or receiver bandwidth of SAIK is roughly 4KB. On
the other hand, the total bandwidth is roughly 25MB for CmPKE
and 30MB for SAIK.

Server computation. Lastly, we consider the server-side compu-
tation for SAIK and CmPKE. In CmPKE, the server only picks the
𝑖-th mPKE ciphertext for the 𝑖-th user and forwards all common
data. For SAIK, we can consider two possibilities: Either the server
keeps track of the shape of the ratchet tree (which it can do based
on the header data sent in all packages) and computes the lowest
common ancestor of sender and receiver in the tree, computes its

resolution and then forwards the corresponding ciphertext and
public keys. This takes at most logarithmic time in the size of the
group (however, no expensive public-key operations are required).
Alternatively, the user can compute its indices in the tree and send
them to the server, reducing the server computation to effectively
the same as in CmPKE at the cost of an additional round of com-
munication.

8 EXTENSIONS

In this section we describe extensions of SAIK which we did not
include for simplicity.

8.1 Better Security Predicates

We sketch the reason why SAIK does not achieve the better security
predicates and how it can be modified to achieve them.

Roughly, SAIK achieves the worse security predicates because
of the following attack: Say id𝑠 , the only corrupted party, creates a
new epoch 𝐸 adding a new member id. According to SAIK, in this
case id𝑠 fetches from the Authenticated Key Service, AKS, (a type
of PKI setup) a public key ek for mmPKE and a verification key
spk for Sig, both registered earlier by id. In epochs after 𝐸, parties
use ek to encrypt messages to id (even before id actually joins) and
spk to verify messages from id. Now the adversary A can create a
fake epoch 𝐸 ′ adding id with the same ek and spk. Then, id joins 𝐸 ′
and is corrupted, leaking dk and ssk. This allowsA to compute the
group key in 𝐸 and inject messages to parties in 𝐸. However, the
expectation is that this is not possible, since no party is corrupted
in 𝐸 (and id𝑠 healed). The better security predicates (formally, the
predicates in Fig. 20 in App. H) achieve just this: security in an
honest epoch 𝐸 does not depend on whether some member joins a
fake group in 𝐸 ′.

The following modification to SAIK achieves better security: We
note that in SAIK, id registers in the AKS an additional public key
ek′which is used to send secrets needed for joining. The correspond-
ing dk′ is deleted immediately after joining. In the modified SAIK,
when id𝑠 adds id, it generates for id new key pairs (ek𝑠 , dk𝑠 ) and
(spk𝑠 , ssk𝑠 ). It sends dk𝑠 and ssk𝑠 to id, encrypted under ek′. Now
messages to id are encrypted such that both dk and dk𝑠 are needed
to decrypt them. In particular, to encrypt 𝑚, a sender chooses a
random 𝑟 and encrypts 𝑟 under ek and𝑚 ⊕ 𝑟 under ek𝑠 . Similarly,
messages from id have two signatures, one verified under spk, and
one under spk𝑠 . As soon as id creates an epoch, it generates a new
single mmPKE key pair and a single HRS key pair.

The attack is prevented, because even after corrupting id in 𝐸 ′,
A does not know dk′ needed to decrypt dk𝑠 and ssk𝑠 . Therefore,
confidentiality and authenticity in 𝐸 is not affected.

8.2 Primitives with Imperfect Correctness

While the proofs of SAIK security assume primitives with perfect
correctness, they can be easily modified to work with imperfect
correctness. While most classically secure primitives have perfect
correctness, many post-quantum constructions (e.g. from lattices)
only have statistical correctness. So this extension can be seen as
a preparation for when SAIK has to be adapted to post-quantum
security.
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ITK SAIK CmPKE

Sender tree-best-case log(𝑁 ) · (Pk + Ctx) log(𝑁 ) · Pk +mCtx(log(𝑁 )) Pk +mCtx(𝑁 )
tree-worst-case log(𝑁 ) · Pk + 𝑁 · Ctx log(𝑁 ) · Pk +mCtx(𝑁 ) Pk +mCtx(𝑁 )

Maximum tree-best-case log(𝑁 ) · (Pk + Ctx) log(𝑁 ) · Pk + Ctx Pk + Ctx
receiver tree-worst-case log(𝑁 ) · Pk + 𝑁 · Ctx log(𝑁 ) · Pk + Ctx Pk + Ctx

Total tree-best-case 𝑁 log(𝑁 ) · (Pk + Ctx) 𝑁 log(𝑁 ) · Pk + 𝑁 · Ctx +mCtx(log(𝑁 )) 𝑁 · (Pk + Ctx) +mCtx(𝑁 )
tree-worst-case 𝑁 (log(𝑁 ) · Pk + 𝑁 · Ctx) 𝑁 log(𝑁 ) · Pk + 𝑁 · Ctx +mCtx(𝑁 ) 𝑁 · (Pk + Ctx) +mCtx(𝑁 )

Figure 5: Sender, receiver and total bandwidth for a group of size 𝑁 expressed as the number of ciphertexts and public keys

included in the packet (apart from this, packets include only a constant-size header). Pk denotes the size of a public key (the

same for PKE and mmPKE).mCtx(𝑋 ) denotes the size of an mmPKEmulti-recipient ciphertext with overall number of receivers

𝑋 . Note that for the DH-based construction 𝑋 fully determines the size (i.e., it is not affected by who gets which message). Ctx
denotes the size of a PKE ciphertext, equal to the size of an individual ciphertext in the DH-based construction.

Figure 6: Bandwidth comparison of SAIK, ITK and CmPKE
(instantiated with 256-bit security). Lower lines denote the

tree-best-case execution history, while upper lines denote the

tree-worst-case. All other possible cases are marked as the

regions between the lines. Plot (a) shows the sender band-

width on a log scale and plot (b) shows average individual

receiver bandwidth on a linear scale. Plot (c) shows the total

bandwidth, i.e. the sum of sender bandwidth and 𝑛 times the

receiver bandwidth. Note that in the first plot, the lines for

tree-worst-case SAIK and all-case CmPKE coincide.

ITK SAIK CmPKE

Sender best case 3 log(𝑁 ) 2 log(𝑁 ) 𝑁

worst case 2𝑁 𝑁 𝑁

(Maximum)
receiver

best case 3 log(𝑁 ) log(𝑁 ) 3
worst case 2𝑁 log(𝑁 ) 3

Total best case 3𝑁 log(𝑁 ) 𝑁 log(𝑁 ) 4𝑁
worst case 2𝑁 2 𝑁 log(𝑁 ) 4𝑁

Figure 7: Sender, receiver and total bandwidth for a group

of size 𝑁 expressed as the (approximate) number of group

elements. Best/Worst case refers to the state of the tree, while

we always consider the average receiver bandwidth over all

receivers.

Bitsize
Group element 512
Hash 512
Signature 1024
Header 17784
Pk 512
Ctx 1152
mCtx(𝑁 ) 512 + 𝑁 · 640

Figure 8: Bitsizes used to generate Fig. 6. The header consists

of the sender’s id, the epoch id and some authenticated data

required by the protocol. The individual ciphertexts consist

of a group element and an AEAD encryption, while themPKE
ciphertext all share the same group element. The header con-

tains signatures, tags, epoch and sender identifier as well as a

key package. The latter makes up the bulk of the header, as it

contains credentials, more public keys and some application

data. Our estimation is based on MLS.
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This is achieved by adding one game hop where we abort in the
new game if a correctness error occurs. This loses an additive term
in the security bound that depends on the correctness parameter
and the number of possible occurrences. Additionally, the usage of
primitives with imperfect correctness generally yields imperfect
correctness guarantees for the application as well (potentially with
multiplicative correctness error when using multiple primitives).
For completeness, we give definitions of imperfect correctness of
the primitives used directly by SAIK in this section.

Definition 8.1. We call an mmPKE scheme 𝛿-correct, if for all
𝑛 ∈ N, (ek𝑖 , dk𝑖 ) ∈ KG for 𝑖 ∈ [𝑛], (𝑚1, . . . ,𝑚𝑛) ∈ M𝑛 and
∀𝑗 ∈ [𝑛]

Pr
[

𝑐 𝑗 ← Ext( 𝑗,𝐶)
𝑚 𝑗 ≠ Dec(dk𝑗 , 𝑐 𝑗 )

����𝐶 $← Enc
(
(ek1, . . . , ek𝑛),
(𝑚1, . . . ,𝑚𝑛)

)]
≤ 𝛿
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Game mmIND-RCCA

Exp
mmIND-RCCA
mmPKE,𝑁 ,𝑏

(A = (A1,A2))

for 𝑖 ∈ [𝑁 ] do (ek𝑖 , dk𝑖 ) ← KG()
Corr← ∅
( ®ek∗, ®𝑚∗0, ®𝑚∗1, st) ← A

Dec1,Cor
1 ( (ek𝑖 )𝑖∈[𝑁 ] )

req | ®𝑚∗0 | = | ®𝑚∗1 | = | ®ek
∗ |

𝑐∗ $← Enc( ®ek∗, ®𝑚∗
𝑏
)

𝑏′ ← ADec2,Cor
2 (𝑐∗, st)

req leak( ®𝑚0) = leak( ®𝑚1)
req ∀𝑗 : ®ek∗ [ 𝑗 ] ∈ {ek𝑖 : 𝑖 ∈ [𝑁 ] } \ Corr ∨𝑚∗0 [ 𝑗 ] =𝑚∗1 [ 𝑗 ]
return 𝑏′

Oracle Dec1 (𝑖, 𝑐)

req 𝑖 ∈ [𝑁 ]
return Dec( ®dk[𝑖 ], 𝑐)

Oracle Cor(𝑖)

req 𝑖 ∈ [𝑁 ]
Corr +← 𝑖

return dk𝑖

Oracle Dec2 (𝑖, 𝑐)

req 𝑖 ∈ [𝑁 ]
𝑚 ← Dec( ®dk[𝑖 ], 𝑐)
if ∃ 𝑗 : ®ek∗ [ 𝑗 ] = ek𝑖

∧ 𝑚 ∈ { ®𝑚∗0 [ 𝑗 ], ®𝑚∗1 [ 𝑗 ] } then
return ‘test’

else return 𝑚

Figure 9: mmIND-RCCA security game for mmPKE with leak-

age function leak( ®𝑚) = (len( ®𝑚[1]), . . . , len( ®𝑚[𝑛])).

Supplementary Material
A ADDITIONAL PRELIMINARIES

A.1 Universal Composability

We formalize security in the universal composability (UC) frame-
work [22]. We moreover use the modification of responsive environ-
ments introduced by Camenisch et al. [21] to avoid artifacts arising
from seemingly local operations (such as sampling randomness or
producing a ciphertext) to involve the adversary.

The UC framework requires a real-world execution of the proto-
col to be indistinguishable from an ideal world, to an an interactive
environment. The real-world experiment consists of the groupmem-
bers executing the protocol (and interacting with the PKI setup).
In the ideal world, on the other hand, the protocol gets replaced
by dummy instances that just forward all inputs and outputs to an
ideal functionality characterizing the appropriate guarantees.

The functionality interacts with a so-called simulator, that trans-
lates the real-world adversary’s actions into corresponding ones
in the ideal world. Since the ideal functionality is secure by defini-
tion, this implies that the real-world execution cannot exhibit any
attacks either.

The Corruption Model. We use the — standard for CGKA/SGM
but non-standard for UC — corruption model of continuous state
leakage (transient passive corruptions) [7].6 In a nutshell, this cor-
ruption model allows the adversary to repeatedly corrupt parties
by sending corruption messages of the form (Expose, id), which
causes the party id to send its current state to the adversary (once).

Restricted Environments. In order to avoid the so-called commit-
ment problem, caused by adaptive corruptions in simulation-based
frameworks, we restrict the environment not to corrupt parties at
certain times. (This roughly corresponds to ruling out “trivial at-
tacks” in game-based definitions. In simulation-based frameworks,
such attacks are no longer trivial, but security against them requires
strong cryptographic tools and is not achieved by most protocols.)
To this end, we use the technique used in [7] (based on prior work
by Backes et al. [10] and Jost et al. [32]) and consider a weakened
variant of UC security that only quantifies over a restricted set
of so-called admissible environments that do not exhibit the com-
mitment problem. Whether an environment is admissible or not
is defined as part of the ideal functionality F: The functionality
can specify certain boolean conditions, and an environment is then
called admissible (for F), if it has negligible probability of violating
any such condition when interacting with F.

A.2 Assumptions

The security of our mmPKE construction, same as that of [36], is
based on a variant of the Computational Diffie-Hellman(CDH) as-
sumption called the Double-Sided Strong Diffie-Hellman Assumption
(or just Static Diffie-Hellman Assumption in [36]). We recall it in
Definition A.1. Intuitively, it states that CDH is hard given access
to a DDH-oracle for both CDH inputs.

6Passive corruptions together with full network control allow to emulate active
corruptions.

Definition A.1 (Double-Sided Strong Diffie-Hellman Assumption).
Let G = (G, 𝑝, 𝑔) be a cyclic group of prime order 𝑝 with generator
𝑔. We define the advantage of an algorithmA in solving the Double-
Sided Strong Diffie-Hellman problem(DSSDH) with respect to G as

AdvDSSDHG (A) = Pr

[
𝑍 = 𝑔𝑥𝑦

����� 𝑥,𝑦
$← Z2

𝑝

𝑍
$← AO (G, 𝑝, 𝑔, 𝑔𝑥 , 𝑔𝑦),

]
with O = {O𝑥 (·, ·),O𝑦 (·, ·)}, where O𝑥 ,O𝑦 are oracles which on
input𝑈 ,𝑉 output 1, iff𝑈 𝑥 = 𝑉 or𝑈 𝑦 = 𝑉 respectively. The proba-
bility is taken over the random coins of the group generator, the
choice of 𝑥 and 𝑦 and the adversary’s random coins.

A.3 Multi-Recipient Multi-Message

PKE(mmPKE) Definitions

The notion of mmIND-RCCA security for mmPKE is described by
the experiment in Fig. 9.

We define the security of an mmPKE in a left-right style in the
following Definition A.2.

Definition A.2 (mmIND-RCCA). Let𝑁 ∈ N. For a schememmPKE,
we define the advantage of an adversaryA against Indistinguishabil-
ity Against Replayable Chosen Ciphertext Attacks (mmIND-RCCA)
security of mmPKE as

AdvmmIND-RCCA
mmPKE,𝑁 (A) = Pr

[
ExpmmIND-RCCA

mmPKE,𝑁 ,0 (A) = 1
]

− Pr
[
ExpmmIND-RCCA

mmPKE,𝑁 ,1 (A) = 1
]
,

where ExpmmIND-RCCA
mmPKE,𝑁 ,𝑏 is described in Fig. 9.
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Algorithm DH-mmPKE[G, 𝑔, 𝑝,DEM,Hash]

KG

𝑥
$← Z𝑝

return (dk = 𝑔𝑥 , ek = 𝑥)

Dec(dk𝑖 , 𝑐 = (𝑐0, 𝑐𝑖 ))

𝑘 = Hash(𝑐dk𝑖0 , ek𝑖 , 𝑖)
return DEM.D−1 (𝑘, 𝑐𝑖 )

Enc( ®ek, ®𝑚)

𝑟
$← Z𝑝

for 𝑖 ∈ [ | ®𝑚 | ] do
𝑘 ← Hash(ek𝑟𝑖 , ek𝑖 , 𝑖)
𝑐𝑖 = DEM.D(𝑘,𝑚𝑖 )

return (𝑐0 = 𝑔𝑟 , 𝑐1, . . . , 𝑐𝑛)
Ext(𝑖,𝐶 = (𝑐0, . . . , 𝑐𝑛))

return (𝑐0, 𝑐𝑖 )

Figure 11: ThemmPKE scheme based onDiffie-Hellman from

[36]. The scheme requires a groupG of prime order 𝑝 gener-

ated by 𝑔, a data encapsulation mechanism DEM and a hash

function Hash.

A.4 Data Encapsulation Meachanism(DEM)

A DEM is the symmetric equivalent of a PKE scheme. We recall it
in Definition A.3.

Definition A.3 (DEM). A data encapsulation mechanism (DEM)
DEM is described by a (efficiently samplable) keyspace K and the
two algorithms D,D−1:
D(𝑘,𝑚) $→ 𝑐: The encryption algorithm takes a key 𝑘 ∈ K and a

message𝑚. It returns a ciphertext 𝑐 .
D−1 (𝑘, 𝑐) $→𝑚′ ∨ ⊥: The decryption algorithm takes a key 𝑘 ∈ K

and a ciphertext 𝑐 and outputs either a decrypted message
or ⊥.

A DEM DEM is 𝛿-correct, if for all messages𝑚 and all keys 𝑘 ∈ K
Pr[D−1 (𝑘,D(𝑘,𝑚)) =𝑚] ≥ 𝛿

Analogue to mmPKE, we consider IND-RCCA security for DEMs.
It is described in Definition A.4.

Definition A.4. The advantage of an adversary A against the
IND-RCCA security of a DEM DEM is defined as

AdvIND-RCCADEM (A) = Pr[ExpIND-RCCADEM,0 (A) = 1]

− Pr[ExpIND-RCCADEM,1 (A) = 1],

where ExpIND-RCCADEM,𝑏 (A) is defined in Fig. 10.

Game IND-RCCA for DEM

Exp
IND-RCCA
DEM,𝑏

(A)

𝑘
$← K

(𝑆𝑡,𝑚∗0,𝑚∗1)
$← ADec,Enc

𝑐∗ $← D(𝑘,𝑚𝑏 )
return ADec,Enc (𝑆𝑡, 𝑐∗)

Oracle Dec(𝑐)

𝑚′ $← D−1 (𝑘, 𝑐)
if 𝑚′ ∈ {𝑚∗0,𝑚∗1 } then

return test
else

return 𝑚′

Oracle Enc(𝑚)

return D(𝑘,𝑚)

Figure 10: IND-RCCA security for DEMs.

A.5 Message Authentication Codes (MAC)

Message authentication codes are defined in Definition A.5.

Definition A.5. Amessage authentication codeMAC = (MAC.tag,
MAC.vrf) consist of a keyspace K and the following two algo-
rithms:
MAC.tag(𝑘,𝑚) $→ tag: The tagging algorithm takes a key 𝑘 and a

message𝑚 and outputs a tag 𝑡 .
MAC.vrf (𝑘,𝑚, tag) $→ {0, 1}: The verification algorithm takes a

key 𝑘 , a message𝑚 and a tag tag and outputs 0 or 1.
A mac MAC is correct, if for all 𝑘 ∈ K and messages𝑚

Pr[MAC.vrf (𝑘,𝑚,MAC.tag(𝑘,𝑚)) = 1] = 1

The security notion for MACs we consider is Unforgeability
against chosen message attacks(EUF-CMA).

Definition A.6. A mac MAC is EUF-CMA secure, if for all PPT
adversaries A the advantage

AdvEUF-CMA
MAC (A) =

Pr
[

𝑚 ∉ 𝑄∧
MAC.vrf (𝑘,𝑚∗, tag∗) = 1

���� 𝑘
$← K

(𝑚∗, 𝑡∗) $← ATag,Ver

]
is negligible, where the Tag oracle computes a tag under key 𝑘 on
a given message𝑚 and adds it to 𝑄 and Ver takes a message and
a tag and outputs the result of theMAC.vrf algorithm on the two
inputs with 𝑘 .

B SECURITY OF THE MMPKE SCHEME

Theorem 3.2. LetG be a group of prime order 𝑝 with generator
𝑔, let DEM be a data encapsulation mechanism and let mmPKE =

DH-mmPKE[G, 𝑔, 𝑝,DEM, 𝐻 ]. For any adversary A and any 𝑁 ∈
N, there exist adversaries B1 and B2 with runtime roughly the same
as A ’s s.t.

AdvmmIND-RCCA
mmPKE,𝑁 (A) ≤ AdvIND-RCCADEM (B2)

+ 2𝑛 · (𝑒2𝑞𝑐AdvDSSDH(G,𝑔,𝑝) (B1) +
𝑞𝑑1

𝑝
+ 𝑞ℎ
𝑝
),

where 𝐻 is a random oracle, 𝑒 is the Euler number, 𝑛 is the length of
the challenge vector, and 𝑞𝑑1 , 𝑞𝑐 and 𝑞ℎ are the number of queries to
the decrypt and corrupt oracles and the random oracle, resp.

Proof. We define 𝑛 hybrids 𝐺0 through 𝐺𝑛 , where 𝐺0 is iden-
tical to ExpmmIND-RCCA

mmPKE,𝑁 ,0 , 𝐺𝑛 is identical to ExpmmIND-RCCA
mmPKE,𝑁 ,1 and in

𝐺𝑖 , the first 𝑖 challenge ciphertexts contain encryptions of ®𝑚1 and
the others from ®𝑚0. Additionally, for 𝑖 ∈ [𝑛], we define the four
hybrids 𝐺𝑖,0 to 𝐺𝑖,3. 𝐺𝑖,0 and 𝐺𝑖,3 are identical to 𝐺𝑖 and 𝐺𝑖+1 re-
spectively. In 𝐺𝑖,1, we set the 𝑖-th DEM key to a random key and
in 𝐺𝑖,2 we swap the plaintext in the 𝑖-th challenge ciphertext from
®𝑚0 [𝑖] to ®𝑚1 [𝑖]. We will split the proofs into the following lemmas.
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Game 𝐺𝑖,1

Game 𝐺𝑖,1

for 𝑖 ∈ [𝑁 ] do (ek𝑖 , dk𝑖 ) ← KG
Corr← ∅,HL← ∅
( ®ek∗, ®𝑚∗0, ®𝑚∗1, st) ← A

Dec1,Cor,H
1 (𝑔, ek1, . . . , ek𝑁 )

Parse ®ek∗ as êk𝑖1 , . . . , êk𝑖𝑙 , ek
∗
𝑙+1, . . . , ek

∗
𝑛 for 𝑙 ∈ [𝑛]

s.t. ∀𝑗 ∈ [𝑙 ] : ®𝑚0 [𝑖 𝑗 ] ≠ ®𝑚1 [𝑖 𝑗 ] ∧ êk𝑖 𝑗 ∈ ®ek
req | ®𝑚∗0 | = | ®𝑚∗1 | = | ®ek

∗ | = 𝑛
𝑟

$← Z𝑝 , 𝑐
∗
0 ← 𝑔𝑟

for 1 ≤ 𝑗 ≤ 𝑛 do ] 𝐾𝑗 ← 𝐻 (ek𝑟𝑗 , ek𝑗 , 𝑗)
𝐾∗ $← K
𝐾𝑖 ← 𝐾∗

for 1 ≤ 𝑗 ≤ 𝑖 do 𝑐∗
𝑗
= D(𝐾𝑗 , ®𝑚∗1 [ 𝑗 ])

for 𝑖 ≤ 𝑗 ≤ 𝑛 do 𝑐∗
𝑗
= D(𝐾𝑗 , ®𝑚∗0 [ 𝑗 ])

𝑐∗ ← (𝑐∗0, . . . , 𝑐∗𝑛)
𝑏 ← ADec2,Cor,H (𝑐∗, st)
req ∀𝑗 ∈ [𝑛] : ®ek∗ [ 𝑗 ] ∉ {ek : 𝑖 ∈ [𝑁 ] \ Corr} =⇒
𝑚∗0 [ 𝑗 ] =𝑚∗1 [ 𝑗 ]
return 𝑏

Oracle Dec1 (𝑖, (𝑐0, 𝑐𝑖 ))

req 𝑖 ∈ [𝑁 ]
𝐾 ← 𝐻 (𝑐dk𝑖0 , ek𝑖 , 𝑖)
return D−1 (𝐾,𝑐𝑖 )

Oracle Dec2 ( 𝑗, 𝑐 = (𝑐0, (𝑐𝑘 , 𝑘)))

req 𝑗 ∈ [𝑁 ]
𝐾 ← 𝐻 (𝑐 ®dk[ 𝑗 ]0 , ®ek[ 𝑗 ], 𝑘)
if 𝑐0 = 𝑐

∗
0 ∧ ®ek

∗ [𝑘 ] = ®ek[ 𝑗 ] ∧ 𝑖 ≤ 𝑙 then
𝐾 ← 𝐾∗

𝑗

𝑚 ← D−1 (𝐾,𝑐𝑘 )
if ∃𝑘 : ®ek∗ [ 𝑗 ] = ek𝑘 ∧𝑚 ∈ { ®𝑚∗0 [ 𝑗 ], ®𝑚∗1 [ 𝑗 ] }
then

return test
else

return 𝑚

Oracle Cor(𝑖)

req 𝑖 ∈ [𝑁 ]
Corr +← 𝑖

return dk𝑖

Oracle H(𝑍,𝑊 , 𝑖)

if HL[𝑍,𝑊 , 𝑖 ] = ⊥ then

HL[𝑍,𝑊 , 𝑖 ] $← K
return HL[𝑍,𝑊 , 𝑖 ]

Figure 12: Description of the hybrid 𝐺𝑖,1

Lemma B.1. Let 𝑛 ∈ N. For all 1 ≤ 𝑖 ≤ 𝑛, there exists an adversary
B1 against the DSSDH assumption s.t. for all adversaries A

|Pr[𝐺𝑖,0 (A) ⇒ 1] − Pr[𝐺𝑖,1 (A) = 1] | ≤

𝑒2𝑞𝐶 · AdvDSSDHG (B1) +
𝑞𝐷1

𝑝
+ 𝑞𝐻
𝑝
,

where 𝑞𝐻 , 𝑞𝐶 and 𝑞𝐷1 denote the number of hash queries, corruption
queries and decryption queries in phase 1 respectively made by A .

Remark 2. Since the changes from𝐺𝑖,2 to𝐺𝑖,3 are the same as from
𝐺𝑖,0 to 𝐺𝑖,1, Lemma B.1 applies there as well.

Lemma B.2. Let 𝑛 ∈ N. Then for all 1 ≤ 𝑖 ≤ 𝑛, there exists an
adversary B2 against the IND-RCCA security of DEM s.t. for all
adversaries A

|Pr[𝐺A
𝑖,1 ⇒ 1] − Pr[𝐺A

𝑖,2 ⇒ 1] | ≤ AdvIND-RCCADEM (B2)

Combining the two lemmas and the remark yields Corollary B.3.
The theorem follows by a standard hybrid argument over 𝐺𝑖 .

Corollary B.3. Let 𝑛 ∈ N. Then for all 1 ≤ 𝑖 ≤ 𝑛, there exist ad-
versaries B1, B2 against the DSSDH assumption and the IND-RCCA
security of DEM respectively s.t. for all adversaries A

|Pr
[
𝐺
A
𝑖
⇒ 1

]
− Pr

[
𝐺
A
𝑖+1 ⇒ 1

]
| ≤ AdvIND-RCCADEM (B2)

+ 2(𝑒2𝑞𝐶 · AdvDSSDHG (B1) +
𝑞𝐷1
𝑝 +

𝑞𝐻
𝑝 )

with 𝑞𝐷1 , 𝑞𝐶 and 𝑞𝐻 from Lemma B.1.

So all that is left is proving the lemmas. We will start by proving
Lemma B.1. Consider the formal definition of 𝐺𝑖,1 in Fig. 12.

Next, we describe adversary B1 against the DSSDH assumption
in Fig. 13 First, we argue that B1 simulates the game 𝐺𝑖,1 perfectly,
unless one of the events Bad1 or Bad2 occurs. We will bound the

probabilities of these events happening. The games differ only in the
secret key of the 𝑖-th message, therefore 𝐺𝑖,0 and 𝐺𝑖,1 are identical
to A , unless it queries the hash oracle on (𝑍,𝑈 , 𝑖) as in line 1 of H.
If the corresponding public key was a key in which the challenge
was embedded, i.e. Bad3 is false, B1 breaks the DSSDH assumption.

Bad1 and Bad2 prevent that A already knows the challenge
randomness before its challenge query. If it doesn’t know this value,
all answers of B1 to both oracles are distributed as in the real
games𝐺𝑖,0 and𝐺𝑖,1. Specifically, the oracles are kept consistent and
the hash oracle is programmed such that the keys chosen for the
adversaries challenge are included at the right points.

Bad3 occurs if A tries to corrupt a public key for which B1
doesn’t know the corresponding secret key or A chooses a key
without the challenge embedded for the 𝑖-th message. If the first
part doesn’t happen, the corruption oracle is simulated perfectly.
The adversary doesn’t notice the second part in this case, but if it
occurs, B1 isn’t successful, so it is still a bad case for the simulation.

Now we bound the probability of these events occurring. Since
𝑌 is completely hidden from A , it can only find it by guessing.
Therefore, for an adversary A making at most 𝑞𝐻 (resp. 𝑞𝐷1 ) hash
(resp. decryption) queries,

Pr[Bad1 = True] ≤ 𝑞𝐻
𝑝

Pr[Bad2 = True] ≤
𝑞𝐷1

𝑝

For Bad3, consider the probability with which 𝑏 [ 𝑗] = 1. This is
independent for each public key ek𝑗 , so the probability that Bad3
does not occur is the case that for 𝑞𝐶 public keys ek𝑖1 , . . . , ek𝑖𝑞𝐶
𝑏 [𝑖 𝑗 ] = 0 and for one public key the bit is 1, so

Pr[Bad3 = False] = (1 − 1
𝑞𝐶
)𝑞𝐶 · 1

𝑞𝐶

(1)
≤ 1
𝑒2𝑞𝐶
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Algorithm Adversary B1 on DSSDH

Adversary B1 (G, 𝑝, 𝑔,𝑈 ,𝑉 )
Corr← ∅,HL← ∅,DL← ∅
for 𝑗 ∈ [𝑁 ] do

Pick 𝑏 [ 𝑗 ] ← {0, 1} with Pr[𝑏 [ 𝑗 ] = 1] = 1
𝑞𝐶

𝛼 𝑗
$← Z𝑝 \ {0}

if 𝑏 [𝑖 ] = 1 then ek𝑗 ← 𝑉𝛼 𝑗 // Embed the challenge

else ek𝑗 ← 𝑔𝛼 𝑗 // Allow corruption
Phase← 1
( ®𝑚∗0, ®𝑚∗1, ®ek

∗
, 𝑠𝑡 ) $← AH,D1,Cor (ek1, . . . , ek𝑁 )

req | ®𝑚0 | = | ®𝑚1 | = | ®ek
∗ | = 𝑛

Parse ®ek∗ as êk𝑖1 , . . . , êk𝑖𝑙 , ek
∗
𝑙+1, . . . , ek

∗
𝑛 for 𝑙 ∈ [𝑛]

s.t. ∀𝑗 ∈ [𝑙 ] : ®𝑚0 [𝑖 𝑗 ] ≠ ®𝑚1 [𝑖 𝑗 ] ∧ êk𝑖 𝑗 ∈ ®ek
if 𝑏 [𝑖𝑖 ] = 0 then

Bad3 ← 𝑇𝑟𝑢𝑒

abort
𝑐∗0 ← 𝑈

for 𝑗 ∈ [𝑛] do
𝐾𝑗

$← K
𝑐∗
𝑗
← D(𝐾𝑗 , ®𝑚𝑏 [ 𝑗 ])

if ∃𝑘 ∈ [𝑁 ] : ek𝑘 = ®ek∗ [ 𝑗 ] ∧ 𝑘 < 𝑖 ∧ 𝑏 [𝑘 ] = 1 then

DL[ 𝑗,𝑈 , (𝑐 𝑗 , 𝑗) ] = 𝐾𝑗

if 𝑗 > 𝑖 ∧ 𝑏 [ 𝑗 ] = 0 then

HL[𝑈𝛼 𝑗 , ek∗ [ 𝑗 ], 𝑗 ] ← 𝐾𝑗

Phase← 2
𝑏′ $← AH,D2,Cor (𝑐∗0, . . . , 𝑐∗𝑛, 𝑠𝑡 )
return ⊥

Oracle Cor( 𝑗)
Corr +← 𝑗

if 𝑏 [ 𝑗 ] = 1 then

Bad3 ← 𝑇𝑟𝑢𝑒

abort
return 𝛼 𝑗

Oracle 𝐻 (𝑍,𝑊 , 𝑗)

if ∃𝑘 ∈ [𝑁 ] :𝑊 = ek𝑘 ∧ ek𝑘 = ek∗ [𝑖 ] ∧ 𝑏 [𝑘 ] = 1 ∧O𝑣 (𝑈𝛼𝑘 , 𝑍 ) = 1

then return 𝑍
1
𝛼𝑘

if Phase = 1 ∧O𝑢 (𝑊,𝑍 ) = 1 then

Bad2 ← 1
abort

if Phase = 2 ∧ 𝑗 ∈ [𝑛] ∧𝑊 = ek∗ [ 𝑗 ] ∧O𝑢 (𝑊,𝑍 ) = 1 ∧ 𝑗 > 𝑖 then
return 𝐾𝑗

if ∃ 𝑗 ∈ [𝑁 ], 𝑐 ∈ G, 𝑡 ∈ K :𝑊 = ek𝑗 ∧ DL[𝑖, (𝑐, (∗, 𝑗)) ] = 𝑡 ∧
O𝑣 (𝑐𝛼 𝑗 , 𝑍 ) = 1 then

return 𝑡

if HL[𝑍,𝑊 , 𝑗 ] = ⊥ then

HL[𝑍,𝑊 , 𝑗 ] $← K
return HL[𝑍,𝑊 , 𝑗 ]

Oracle 𝐷Phase (𝑖, (𝑐0, (𝑐, 𝑗)))

req 𝑖 ∈ [𝑁 ]
if Phase = 1 ∧ 𝑐0 = 𝑈 then

Bad1 ← 1
abort

if ∃𝑍 ∈ G, 𝑡 ∈ K : HL[𝑍, ek𝑗 , 𝑗 ] = 𝑡 ∧ (𝑏 [ 𝑗 ] = 0 =⇒ 𝑍 = ek
𝛼 𝑗

𝑗
∧

𝑏 [ 𝑗 ] = 1 =⇒ O𝑣 (𝑐𝛼 𝑗 , 𝑍 ) = 1) then
𝑚 ← D−1 (𝑡, 𝑐)
if ∃𝑘 ∈ [𝑁 ] : ®ek∗ [ 𝑗 ] = ek𝑘 ∧𝑚 ∈ { ®𝑚∗0 [ 𝑗 ], ®𝑚∗1 [ 𝑗 ] } then

return test
else

return 𝑚

if DL[𝑖, (𝑐0 (𝑐, 𝑗)) ] = ⊥ then

DL[𝑖, (𝑐0, (𝑐, 𝑗)) ] $← K
𝑚 ← D−1 (DL[𝑖, (𝑐0, 𝑗) ], 𝑐)
if ∃𝑘 ∈ [𝑁 ] : ®ek∗ [ 𝑗 ] = ek𝑘 ∧𝑚 ∈ { ®𝑚∗0 [ 𝑗 ], ®𝑚∗1 [ 𝑗 ] } then

return test
else

return 𝑚

Figure 13: Description of adversary B1 from Theorem 3.2.

For (1), we use that ln(1 + 𝑥) ≥ 𝑥
𝑥+1 for all 𝑥 ≥ −1 and rewrite

(1 − 1
𝑞𝐶
)𝑞𝐶 = 𝑒

ln( (1− 1
𝑞𝐶
)𝑞𝐶 )

= 𝑒
𝑞𝐶 ·ln(1− 1

𝑞𝐶
) ≥ 𝑒−1/(1−

1
𝑞𝐶
) ≥ 𝑒−2

for 𝑞𝐶 > 1. Combining the probabilities yields the lemma.
The proof of Lemma B.2 is a straight forward application of

the IND-RCCA security of the DEM. Since the key at position
𝑖 is random, an IND-RCCA adversary can simulate encryptions
for this position with its encryption oracle and embeds its own
challenge at the 𝑖-th challenge ciphertext for the adversary A . If
A can distinguish between 𝐺𝑖,1 and 𝐺𝑖,2 then B2 distinguishes its
challenges as well. □

C NOMINAL GROUPS

We recall the definition and parameters for nominal groups from [2].

Definition C.1 (Nominal Group). A nominal group N = (G, 𝑔, 𝑝,
E𝐻 , E𝑈 , exp) consists of a finite set of elements G, a base element

𝑔 ∈ G, a prime 𝑝 , a finite set of “good” exponents E𝐻 ⊂ Z, a set of
exponents E𝑈 ⊂ Z \ 𝑝Z and an efficiently computable exponen-
tiation function exp : G × Z→ G. We write 𝑋 𝑦 as shorthand for
exp(𝑋,𝑦) and call elements of G “group elements”. N has to fulfil
the following properties:

(1) G is efficiently recognizable.
(2) (𝑋 𝑦)𝑧 = 𝑋 𝑦𝑧 for all 𝑋 ∈ G, 𝑦, 𝑧 ∈ Z
(3) the function 𝜙 defined by 𝜙 (𝑥) = 𝑔𝑥 is a bijection from E𝑈

to {𝑔𝑥 |𝑥 ∈ [𝑝 − 1]}.
A nominal group N is called rerandomisable, when additionally

(4) 𝑔𝑥+𝑝𝑦 = 𝑔𝑥 for all 𝑥,𝑦 ∈ Z
(5) for all 𝑦 ∈ E𝑈 , the function 𝜙𝑦 defined by 𝜙𝑦 (𝑥) = 𝑔𝑥𝑦 is a

bijection from E𝑈 to {𝑔𝑥 |𝑥 ∈ [𝑝 − 1]}.
Property 3 (and 5) ensure that discrete logarithms are unique in

N in E𝑈 . Additionally, we define the two statistical parameters

ΔN := Δ[𝐺𝐻 ,𝐺𝑈 ],



Alwen, et al.

Name P-256 P-384 P-512 Curve25519 Curve448

Security Level 128 192 256 128 224
𝑃N 2−255 2−383 2−520 2−250 2−444
ΔN 0 0 0 2−125 2−220

Size in bits 256 384 512 256 512

Table 1: Statistical parameters of NIST curves and nominal group curves.

with𝐺𝐻 is the uniform distribution over E𝐻 and𝐺𝑈 is the uniform
distribution over E𝑈 and

𝑃N = max
𝑌 ∈G

Pr
𝑥

$←E𝐻
[𝑌 = 𝑔𝑥 ] .

Any cyclic group, such as NIST curves, can be seen as a reran-
domizable nominal group with the special properties that ΔN = 0
and 𝑃N = 𝑝−1. Other popular examples of rerandomizable nominal
groups are Curve25519 and Curve448. Table 1 lists the parameters
for these nominal groups.

For a more detailed explanation of these values, see [2]. Nominal
groups and prime-order groups behave indistinguishably except
when group elements are sampled with exponents outside of E𝐻
or a collision occurs which wouldn’t have been a collision in a
prime-order group. Since these two events are statistical in nature
and occur with low probability, this only adds a negligible additive
security loss compared to Theorem 3.2.

The DSSDH assumption is almost identical over nominal groups
except for the choice of exponents.

Definition C.2 (Double-Sided Strong Diffie-Hellman Assumption).
Let N = (G, 𝑔, 𝑝, E𝐻 , E𝑈 , exp) be a nominal group. We define the
advantage of an algorithm A in solving the Double-Sided Strong
Diffie-Hellman problem(DSSDH) with respect to N as

AdvDSSDHN (A) =
[
𝑍 = 𝑔𝑥𝑦

���� 𝑥,𝑦
$← E2

𝑈

𝑍
$← AO (N , 𝑝, 𝑔, 𝑔𝑥 , 𝑔𝑦),

]
with O = {O𝑥 (·, ·),O𝑦 (·, ·)}, where O𝑥 ,O𝑦 are oracles which on
input𝑈 ,𝑉 output 1, iff𝑈 𝑥 = 𝑉 or𝑈 𝑦 = 𝑉 respectively. The proba-
bility is taken over the random coins of the group generator, the
choice of 𝑥 and 𝑦 and the adversaries random coins.

Remark 3. Since 𝑥,𝑦 are sampled from E𝑈 , the second property of
nominal groups guarantees that the oracles O𝑥 and O𝑦 are well-
defined.

TheoremC.3. LetN = (G, 𝑔, 𝑝, E𝐻 , E𝑈 , exp) be a nominal group.
If the DSSDH assumption holds relative to N and if DEM is an
IND-RCCA secure DEM, thenmmPKE from Fig. 11 ismmIND-RCCA
secure with adaptive corruptions in the random oracle model and leak-
age function leak revealing the length of each plaintext. Specifically,
there are adversariesB1,B2 against DSSDH and IND-RCCA ofDEM
respectively, s.t. for all adversaries A against the mmIND-RCCA

AdvmmIND-RCCA
mmPKE (A) ≤

2𝑒2𝑞𝐶 · 𝑛 · (AdvDSSDHN (B1) +
𝑞𝐷1

𝑝
+ 𝑞𝐻
𝑝
)

+ 𝑛 · AdvIND-RCCADEM (B2)
+ 2(𝑛 + 1)2 · ΔN , +O(𝑞𝐷 , 𝑞𝐻 ) · 𝑃N ,

where the runtime of B1 and B2 is roughly the same as A and
𝑞𝐷1 , 𝑞𝐻 and 𝑞𝐶 denote the number of queries to the decryption oracle
𝐷 in phase 1, the random oracle 𝐻 and the corruption oracle Cor
respectively.

Proof. Mainly, the proof of Theorem 3.2 still applies. That is
because all operations performed by the adversary are well-defined
over nominal groups. The main difference occurs when rerandomis-
ing the keys in each hybrid. Here, not every exponent yields a valid
group element, i.e. a valid key. Formally, we would add an addi-
tional hybrid for each chosen key, sampling its exponent from E𝑈
instead of E𝐻 , which adds an additive term in ΔN to the advantage
function. It is imperative that N is rerandomisable as otherwise
embedding the (randomised) challenge would be problematic.

Secondly, whenever group elements are submitted to one of the
oracles, there is a (tiny) probability of collisions of group elements.
As it is comparable to the chances of guessing discrete logarithms
in prime order groups, which is mostly ignored in proofs, we omit a
complete analysis as it wouldn’t contribute any meaningful insights.

In conclusion, after sampling all keys from E𝑈 and accounting
for possible collisions in the gap oracles, the proof for nominal
groups works as shown in Theorem 3.2. □

D DETAILS OF THE (SA)CGKA SECURITY

MODEL

In this section, we formally define Fcgka. The code of Fcgka is in
Fig. 14.

Notation. We use the keyword assert cond to restrict the sim-
ulator’s actions. Formally, if the condition cond is false, then the
functionality permanently halts, making the real and ideal worlds
easily distinguishable. Further, we use only allowed if cond to
restrict the environment. That is, our statements quantify only over
environments who, when interacting with Fcgka and any simula-
tor, never make cond false7. We write receive from the simulator to
denote that the functionality sends a dummy value to it, waits until
it sends a value back and asserts via assert that the received value
is of the correct format. Lastly, all functions prefixed with a * are
helper functions and not exposed outside the protocol.

State. Fcgka maintains a history graph represented as an array
HG, where HG[epid] denotes the epoch identified by an integer
epid. We use the standard object-oriented notation for epochs. In
particular, each epoch 𝐸 has a number of attributes listed in Table 2
(𝐸.inj, 𝐸.exp and 𝐸.chall are related to corruptions). Apart fromHG,
Fcgka stores an array CurEp, where CurEp[id] denotes the current
epoch of the party id.
7A relaxed restriction would require that A makes cond false with a small probability
𝜖 . In our case A knows if it violates cond, so fixing 𝜖 = 0 is without loss of generality.
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Functionality Fcgka

Parameters: confidential(epid) , authentic(epid, id) , idcreator

Initialization // Executed on first input.
CurEp[∗],HG[∗] ← ⊥
epCtr← 0
𝐸 ← *new-ep; 𝐸.sndr← idcreator; 𝐸.mem← {idcreator }
HG[0] ← 𝐸

CurEp[idcreator ] ← 0

Input (Send, act), act ∈ {‘up’, ‘add’-id𝑡 , ‘rem’-id𝑡 } from id
// Send inputs to sim. and allow it to reject them.
Send (Send, id, act) to the sim. and receive ack.
req ack
// Compute the new epoch 𝐸 created by the action.
𝐸 ← *new-ep; 𝐸.par← CurEp[id]; 𝐸.sndr← id
𝐸.act← act; 𝐸.mem← *mem(CurEp[id], act)
epCtr++; HG[epCtr] ← 𝐸

// Enforce security after possible changes to HG.
assert *HG-is-consistent ∧ *auth-is-preserved
// Immediately transition id into the created epoch.
CurEp[id] ← epCtr
// Output the idealized message chosen by adv.
Receive from the simulator 𝐶 .
return 𝐶

Input GetKey from id
Send (Key, id) to the simulator and receive 𝐼 .
epid← CurEp[id]
req epid ≠ ⊥
if HG[epid] .key = ⊥ then

// Set the key according to confidential.
if confidential(epid) then

HG[epid] .key $← {0, 1}𝜅
HG[epid] .chall← true

else

HG[epid] .key← 𝐼

return HG[epid] .key

Corruption (Expose, id)
if CurEp[id] ≠ ⊥ then // Record exposure.

HG[CurEp[id] ] .exp +← id

// Disallow adaptive corruptions to avoid commitment problem.
only allowed if �epid : HG[epid] .chall ∧ ¬confidential(epid)

Input (Receive, 𝑐) from id
// Send inputs to sim. and allow it to reject them.
Send (Receive, id, 𝑐) to the simulator and receive ack.
req ack
// Ask sim. to interpret the packet.
Receive from the simulator (sndr′, act′) .
if act′ = ‘rem’-id then

// Check that sndr′ removed id or auth. not guaranteed.
honestRem← ∃epid :

(
HG[epid] .par = CurEp[id]

∧ HG[epid] .sndr = sndr′ ∧ HG[epid] .act = ‘rem’-id
)

assert honestRem ∨ ¬authentic(HG[CurEp[id] ], sndr′)
CurEp[id] ← ⊥
return (sndr′, act′)

// Ask sim, to identify the epoch epid where id transitions. If epid = ⊥, a
new injected epoch is created.
Receive from the simulator epid.
if epid = ⊥ then

𝐸 ← *new-ep
𝐸.sndr← sndr′; 𝐸.act← act′; 𝐸.inj← true
if CurEp[id] ≠ ⊥ then

// If id is a member, compute 𝐸.par and 𝐸.mem using its epoch.
𝐸.par← CurEp[id]
𝐸.mem← *mem(CurEp[id], act′)

else

// If id joined, 𝐸 is a detached root with arbitrary member set.
Receive 𝐸.mem from the simulator; set 𝐸.par← ⊥.

epCtr++; HG[epCtr] ← 𝑉

epid← epCtr
assert HG[epid] ≠ ⊥
// If a current group member transitions to a detached root, attach it.
if CurEp[id] ≠ ⊥ ∧ HG[epid] .par = ⊥ then HG[epid] .par← CurEp[id]
assert CurEp[id] = ⊥ ∨ HG[epid] .par = CurEp[id]
assert CurEp[id] ≠ ⊥ ∨ HG[epid] .act = ‘add’-id

// Enforce security after possible changes to HG.
assert *HG-is-consistent ∧ *auth-is-preserved
// Transition id and compute its output.
CurEp[id] ← epid
if HG[epid] .act = ‘add’-id then return (HG[epid] .sndr,HG[epid] .mem)
else return (HG[epid] .sndr,HG[epid] .act)

Helper *new-ep

return new epoch with sndr = ⊥, par = ⊥, act = ⊥, mem = ∅,
inj = false, key = ⊥, exp = ∅, chall = false.

Helper *mem(epid, act)
𝐺 ← HG[epid] .mem
if act = ‘add’-id𝑡 then

𝐺 +← id𝑡
else if act = ‘rem’-id𝑡 then

𝐺 -← id𝑡
if act ≠ ‘up’ ∧𝐺 = HG[epid] .mem then

return ⊥
return 𝐺

Helper *HG-is-consistent
// True if HG is a forest and membership is consistent.
return true iff

a) ∀id s.t. CurEp[id] ≠ ⊥ : id ∈ HG[CurEp[id] ] .mem
b) HG has no cycles
c) ∀epid ∈ [epCtr] : HG[epid] .mem ≠ ⊥
d) ∀epid ∈ [epCtr] s.t. HG[epid] .par ≠ ⊥ :

HG[epid] .mem = *mem(HG[epid] .par,HG[epid] .act)

Helper *auth-is-preserved
// True if there is no authentic epoch created by injected packet.
Observe that the root epid = 0 cannot be injected by definition.
return �epid : 1 ≤ epid ≤ epCtr ∧ HG[epid] .inj

∧ authentic(HG[epid] .par,HG[epid] .sndr)

Figure 14: The ideal CGKA functionality.
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Functionality Faks

Parameter: key-package generation algorithm *AKS-kgen.

Initialization

SK[·, · ] ← ⊥
Input GetSK(𝑃𝐾) from id
𝑆𝐾 ← SK[id, 𝑃𝐾 ]
SK[id, 𝑃𝐾 ] ← ⊥
return 𝑆𝐾

Input (GetPK, id′) from id
(𝑃𝐾, 𝑆𝐾) ← *AKS-kgen()
SK[id′, 𝑃𝐾 ] ← 𝑆𝐾

Send (id′, 𝑃𝐾) to adv.
return 𝑃𝐾

Figure 15: The Authenticated Key service Functionality.

𝐸.par The integer identifier of the parent epoch.
𝐸.sndr The party who created the epoch by performing a group

operation.
𝐸.act The group modification performed when 𝐸 was created:

either ‘up’ for update, or ‘add’-id𝑡 for adding id𝑡 , or
‘rem’-id𝑡 for removing id𝑡 .

𝐸.mem The set of group members.
𝐸.key The shared group key.
𝐸.inj A boolean flag indicating if the epoch is injected.
𝐸.exp The set of group members exposed (i.e., corrupted) in this

epoch.
𝐸.chall A flag indicating if a random group key has been out-

putted.

Table 2: Attributes on an epoch in Fcgka.

.

Inputs from parties. The first two inputs, Send and Receive, are
handled quite similarly. First, all inputted values are sent to the
simulator (there are no private inputs). Second, the simulator sends
a flag ack which decides if sending/receiving succeeds (or fails with
output⊥). Third, Fcgka updates the history graph and enforces that
this does not destroy authenticity and consistency by checking that
*auth-is-preserved and *HG-is-consistent are true. Finally,
Fcgka transitions the sender/receiver to the new epoch (or removes
its pointer in case it is removed) and computes the output using
the new graph.

One aspect that needs more explanation is updating the graph
when a party id receives 𝑐 . In this case, the simulator interprets 𝑐 for
Fcgka (which abstracts away ciphertexts) by providing the sender
sndr′ and the action act′. If act′ removes id, then the only possible
authenticity check is that either sndr′ removed id in its current
epoch or the epoch is not authentic for sndr′. If id is not removed,
the simulator identifies the epoch epid into which id transitions or
joins. The epoch can be⊥, in which case Fcgka creates a new epoch
𝐸 with the infected flag inj set. If id is a current group member,
then 𝐸 is a child of its current epoch. Otherwise, if id joins, then
𝐸 is a detached root. Afterwards, Fcgka checks if epid identifies a
detached root into which a current group member id transitions. If
this is the case, the root is attached as a child of id’s current epoch.
For instance, this implies that any other party transitioning to epid
must do so from id’s current epoch and the epoch semantic must
be consistent between it, id and the party who joined into epid.

The last input to Fcgka is GetKey, which simply outputs the
group key from the party’s current epoch. The key is set to a random
or arbitrary value the first time it is retrieved by some party.

Corruptions. When a party is corrupted, Fcgka simply adds it to
the exposed set exp of its current epoch. The set is later used by
the security predicates. Then Fcgka disallows corruptions in case
extending the exp set switched confidential of some epoch 𝐸 with
𝐸.chall set from true to false.

E THE AUTHENTICATED KEY SERVICE

FUNCTIONALITY (AKS)

The AKS is modeled as the functionality Faks in Fig. 15. Formally,
SAIK works in the Faks-hybrids model, i.e., Faks is available in the
real world and emulated by the simulator in the ideal world.
Faks works as follows. When a party id wants to fetch a key

package of another party id′, Faks generates a new key package
for id′ using SAIK’s key-package generation algorithm (formally,
the algorithm is a parameter of Faks). It sends (the public part of)
the package to id and to the adversary. (Note that since Faks exists
in the real world, the adversary should be thought of as the UC
environment.) The secrets for the key package can be fetched by id𝑡
later, when it decides to join the group. Once fetched, secrets are
deleted, which means that Faks cannot be used as secure storage.

F DETAILS OF SAIK
In this section we give the details of the SAIK protocol. The pseu-
docode can be found in Figs. 16 and 17.

F.1 Ratchet Trees

A ratchet tree is a left-balanced 𝑞-ary tree (a formal definition can
be found in App. H.5). This generalizes ITK’ binary trees. Using
𝑞 ≠ 2 can be beneficial in certain situations. A ratchet tree, as well
as its nodes, have a number of labels listed in Table 3. We also define
a number of helper methods in Table 6.

Importantly, the direct path of a leaf 𝑢 consists of (the ordered
list of) all nodes on the path from 𝑢 to the root, without 𝑢. The
resolution of a node 𝑣 is the minimal set of descendant non-blank
nodes that covers the whole sub-tree rooted at 𝑣 .

F.2 SAIK State and Algorithms

The state of SAIK consists of a number of variables, outlined in
Table 4. The table also includes short descriptions of the roles of the
secrets in the key schedule, which is extended by the intermediary
secrets described in Table 5. The protocol will ensure that states of
any two parties in the same epoch differ at most in labels of nodes
of 𝛾 .𝜏 that describe secret keys and the label 𝛾 .leaf. This means
that they agree on the secrets 𝛾 .appSec and 𝛾 .initSec, as well as on
the public context, computed by the helper method grpCtxt() in
Table 4.

SAIK’s algorithms are defined in Figs. 16 and 17. Apart from
initialization, there are three main algorithms (the rest of the code
are subroutines) exposed to a user (or a higher-level application).
They are identified by keywords Send, Receive and Key, respec-
tively. First, Send is used to create a new epoch. When the user
inputs Send followed by the intended group modification (update,
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𝜏 .root The root.
𝑣 .isroot True iff 𝑣 = 𝜏 .root.
𝑣 .isleaf True iff 𝑣 has no children.
𝑣 .parent The parent node of 𝑣 (or ⊥ if 𝑣 .isroot).
𝑣 .children If ¬𝑣 .isleaf: ordered list of 𝑣 ’s children.
𝑣 .nodeIdx The node index of 𝑣 .
𝑣 .depth The length of the path from 𝑣 to 𝜏 .root.
𝑣 .ek An mmPKE encryption key.
𝑣 .dk The corresponding decryption key.
𝑣 .vk If 𝑣 .isleaf: a signature verification key.
𝑣 .sk If 𝑣 .isleaf: the corresponding signing key.
𝑣 .unmLvs The set of indices of the leaves below 𝑣 whose owner

id does not know 𝑣 .sk.
𝑣 .id If 𝑣 .isleaf: the id associated with that leaf.

Table 3: Labels of a ratchet-tree 𝜏 and its nodes.

𝛾 .grpId The identifier of the group.
𝛾 .𝜏 The ratchet tree.
𝛾 .leaf The party’s leaf in 𝜏 .
𝛾 .treeHash A hash of the public part of 𝜏 .
𝛾 .lastAct The last modification of the group state and the

user who initiated it.
𝛾 .appSec The current epoch’s CGKA key. Exposed to the

application layer.
𝛾 .initSec The next epoch’s init secret.
𝛾 .membKey The next epoch’s membership secret for authenti-

cating messages.
𝛾 .grpCtxt() Returns (𝛾 .grpId, 𝛾 .treeHash, 𝛾 .lastAct).
𝛾 .confTag The confirmation tag, which is signed to ensure

authenticity.
Table 4: The protocol state of a party id and the helpermethod

for computing the context.

pathSec The path secrets 𝑠2, . . . , 𝑠𝑛 used to derive the key-
pairs in each node. Sent via themmPKE encryption
to keep tree invariant intact.

commitSec The path secret in the root node. Used as seed for
the key schedule together with initSec from the
previous epoch

joinerSec Secret sent to new group members. Together with
the group context, enables computation of the
epSec.

epSec Base secret used to derive all other secrets, i.e.
appSec, membKey,initSec, confTag

Table 5: Intermediate values computed by the protocol that

are not part of the state.

𝜏 .clone() Returns a copy of 𝜏 .
𝜏 .public() Returns a copy of 𝜏 with all labels 𝑣 .sk and

𝑣 .sk set to ⊥.
𝜏 .roster() Returns id’s of all parties in 𝜏 .
𝜏 .leaves() Returns the list of all leaves in the tree, sorted

from left to right.
𝜏 .leafof (id) Returns the leaf 𝑣 with 𝑣 .id = id.
𝜏 .getLeaf () Returns leftmost 𝑣 s.t. ¬𝑣 .inuse(). If no such

𝑣 exists, adds a new leaf using addLeaf (𝜏)
and returns it.

𝜏 .blankPath(𝑣) For all 𝑢 ∈ 𝜏 .directPath(𝑣) calls 𝑢.blank().
𝜏 .inSubtree(𝑢, 𝑣) Returns true if 𝑢 is in 𝑣 ’s subtree.
𝑣 .inuse() Returns false iff all labels are ⊥.
𝑣 .blank() Sets all labels of 𝑣 to ⊥.

𝜏 .lca(𝑢, 𝑣) Returns the lowest common ancestor of the
two leafs.

𝜏 .directPath(𝑣) Returns the path from 𝑣 ’s parent to the root.
𝜏 .mergeLvs(𝑣) Sets 𝑢.unmLvs ← ∅ for all 𝑢 ∈

𝜏 .directPath(𝑣)
𝜏 .unmerge(𝑣) Sets 𝑢.unmLvs +← 𝑣 for all 𝑢 returned by

𝜏 .directPath(𝑣)
𝑣 .resolution() If 𝑣 .inuse, return (𝑣) ++ 𝑣 .unmLvs.

Else if 𝑣 .isleaf, return (). Else, return
𝑣 .children[1] .resolution() ++ · · · ++
𝑣 .children[𝑛] .resolution()

𝑣 .resolvent(𝑢) Returns the ancestor of𝑢 in 𝑣 .resolution()\(𝑣)
(or ⊥ if 𝑢 is not a descendant of 𝑣).

Table 6: Helper methods for a ratchet tree 𝜏 and its nodes.

add or remove), the protocol applies the modification and returns
a message, which the user can upload to the mailboxing service.
Second, Receive is used to process messages downloaded from the
service. Third, with Key user gets the current group key.

The formal syntax of saCGKA protocols is defined as part of our
security definition in App. D. In particular, an saCGKA protocol
must expose the same interface as the ideal CGKA functionality.

F.3 Extraction Procedure for the Server

Finally, we describe a procedure *extract(𝐶, id) → 𝑐 used by the
mailboxing service to take an uploaded message𝐶 and compute the
message 𝑐 delivered to user id. Formally, this procedure is not part
of our syntax or security definitions, since for simplicity our model
does not consider correctness (see Sec. 4.6) and an untrusted service
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SAIK: Algorithms

Initialization

if id = idcreator then
𝛾 ← *new-state()
𝛾 .grpId, 𝛾 .initSec, 𝛾 .membKey, 𝛾 .appSec $← {0, 1}𝜅
𝛾 .𝜏 ← *new-LBT()
𝛾 .leaf ← 𝛾 .𝜏 .leaves[0]
(𝛾 .leaf.vk, 𝛾 .leaf.sk) ← Sig.KG()

Input (Send, act), act ∈ {‘up’, ‘rem’-id𝑡 , ‘add’-id𝑡 } from id
req 𝛾 ≠ ⊥
// In case of add, fetch id𝑡 ’s keys from AKS (AKS runs *AKS-kgen).
if act = ‘add’-id𝑡 then

(ek𝑡 , vk𝑡 , ek′𝑡 ) ← query (GetPk, id𝑡 ) to Fks
act← ‘add’-id𝑡 -(ek𝑡 , vk𝑡 , ek′𝑡 )

// Create the state and secrets for the new epoch.
try (𝛾 ′, pathSecs, joinerSec) ← *create-epoch(act)
// Encrypt the path secrets using the new epoch’s ratchet tree. For
adds, also encrypt the joiner secret.
if act ∈ {‘up’, ‘rem’-id𝑡 } then

Ctxt← *encrypt(𝛾 ′, pathSecs,⊥,⊥,⊥)
else if act = ‘add’-id𝑡 -(ek𝑡 , vk𝑡 , ek′𝑡 ) then

Ctxt← *encrypt(𝛾 ′, pathSecs, id𝑡 , ek′𝑡 , joinerSec)
ssk← 𝛾 .𝜏 .leafof (id) .ssk
sig← Sig.sign(ssk, 𝛾 ′.confTag)
if act = ‘rem’-id𝑡 then

// Authenticate removal message for id𝑡
sig𝑡 ← Sig.sign(ssk, (id, ‘rem’-id𝑡 ))
tag𝑡 ← MAC.tag(𝛾 .membKey, (id, ‘rem’-id𝑡 , 𝛾 .confTag))
return (id, act,Ctxt, updEKs, sig, sig𝑡 , tag𝑡 )

𝛾 ← 𝛾 ′

if act = ‘add’-id𝑡 -(ek𝑡 , vk𝑡 , ek′𝑡 ) then
// Send additional data for id𝑡 .
welcomeData← (𝛾 .grpId, 𝛾 .𝜏 .public(), ek′𝑡 )
return (id, act,Ctxt, updEKs, sig,welcomeData)

return (id, act,Ctxt, updEKs, sig)

Input Key from id
req 𝛾 ≠ ⊥
𝑘 ← 𝛾 .appSec
𝛾 .appSec← ⊥
return 𝑘

Input (Receive, (id𝑠 , ‘removed’, sig𝑡 , tag𝑡 )) from id
// Receiver is removed.

vk← 𝛾 .𝜏 .leafof (id𝑠 ) .vk
req Sig.vrf (vk, (id𝑠 , ‘rem’-id), sig𝑡 )
req MAC.vrf (𝛾 .membKey, (id𝑠 , ‘rem’-id, 𝛾 .confTag), tag𝑡 )
𝛾 ← ⊥
return (id𝑠 , ‘rem’-id)

Input (Receive, (id𝑠 , act, ctxt, updEKs′, sig)) from id
// Receiver is a member.

try 𝛾 ′ ← *apply-act(𝛾 .clone(), id𝑠 , act)
try (𝛾, confTag) ← *transition(𝛾 ′, ctxt, updEKs′, id𝑠 , act)
vk← 𝛾 .𝜏 .leafof (id𝑠 ) .vk
req Sig.vrf (vk, confTag, sig)
if act = ‘add’-id𝑡 -(ek𝑡 , vk𝑡 ) then return (id𝑠 , ‘add’-id𝑡 )
else return (id𝑠 , act)

Input (Receive, (id𝑠 , act, ctxt1, ctxt2,welcomeData))) from id
// Receiver joins.

req 𝛾 = ⊥
parse (grpId, 𝜏, ek′) ← welcomeData
𝛾 ← *new-state
(𝛾 .grpId, 𝛾 .𝜏,𝛾 .lastAct) ← (grpId, 𝜏, (id𝑠 , ‘add’-id))
𝑣 ← 𝛾 .𝜏 .leafof (id)
try (dk, sk, dk′) ← query GetSk( (𝑣.ek, 𝑣.vk, ek′)) to Fks
(𝑣.dk, 𝑣.sk) ← (dk, sk)
𝛾 ← *set-tree-hash(𝛾 )
try (𝛾, confTag) ← *get-secrets(𝛾, dk′, ctxt1, ctxt2, id𝑠 )
return (𝛾 .𝜏 .roster(), id𝑠 )

SAIK: Helpers for encryption and key generation for Faks

helper *encrypt(𝛾 ′, pathSecs, id𝑡 , ek′𝑡 , joinerSec)
𝐿 ← *rcvrs-of-path-secs(𝛾 ′.𝜏, id)
®𝑚, ®ek← ()
for 𝑗 = 1 to len(𝐿) do
(𝑖, 𝑣) ← 𝐿 [ 𝑗 ]
®𝑚 ++← pathSecs[𝑖 ]
if id𝑡 ≠ ⊥ ∧ 𝑣 = 𝛾 ′.𝜏 .leafof (id𝑡 ) then ®ek ++← ek′𝑡
else

®ek ++← ®𝑣.ek
if id𝑡 ≠ ⊥ then

®𝑚 ++← joinerSec
®ek ++← ek′𝑡

return mmPKE.Enc( ®ek, ®𝑚)

helper *decrypt-path-secret(𝛾 ′, id𝑠 , ctxt)
𝑣 ← lca(𝛾 ′.𝜏 .leafof (id𝑠 ), 𝛾 ′.leaf) .resolvent(𝛾 ′.leaf)
return mmPKE.Dec(𝑣.dk, ctxt)

helper *AKS-kgen()
(ek, dk) ← mmPKE.KG()
(vk, sk) ← Sig.KG()
(ek′, dk′) ← mmPKE.KG()
return ( (ek, vk, ek′), (dk, sk, dk′))

Figure 16: The algorithms of SAIK.
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SAIK: Creating epochs

helper *create-epoch(𝛾, id, act)
𝛾 ′ ← 𝛾 .clone()
// Apply the action to the tree. Fails if the action is not allowed.
try 𝛾 ′ ← *apply-act(𝛾 ′, id, act)
// Re-key the direct path.
directPath← 𝛾 ′.𝜏 .directPath(𝛾 ′.leaf)
pathSecs[∗] ← ⊥
pathSecs[1] $← {0, 1}𝜅
for 𝑖 = 1 to len(directPath) − 1 do

𝑣 ← directPath[𝑖 ]
𝑟 ← HKDF.Exp(pathSecs[𝑖 ], ‘node’)
(𝑣.ek, 𝑣.dk) ← mmPKE.KG(𝑟 )
pathSecs[𝑖 + 1] ← HKDF.Exp(pathSec[𝑖 ], ‘path’)

𝛾 ′.𝜏 .mergeLvs(𝛾 ′.leaf)
// Re-key the leaf.
(𝛾 ′.leaf.ek, 𝛾 ′.leaf.dk) ← mmPKE.KG()
(𝛾 ′.leaf.vk, 𝛾 ′.leaf.sk) ← Sig.KG()
// Set all context variables and then derive epoch secrets.
𝛾 ′.lastAct← (id, act)
𝛾 ′ ← *set-tree-hash(𝛾 ′)
commitSec← pathSecs[len(pathSecs) ]
(𝛾 ′, joinerSec) ← *derive-keys(𝛾 ′, commitSec)
return (𝛾 ′, pathSecs, joinerSec)

helper *apply-act(𝛾 ′, id𝑠 , act)
req id𝑠 ∈ 𝛾 ′.𝜏 .roster()
if act = ‘rem’-id𝑡 then

req id𝑠 ≠ id𝑡 ∧ id𝑡 ∈ 𝛾 ′.𝜏 .roster()
𝛾 ′.𝜏 .blankPath(𝛾 ′.𝜏 .leafof (id𝑡 ))
𝛾 ′.𝜏 .leafof (id𝑡 ) .blank()

else if act = ‘add’-id𝑡 -(ek𝑡 , vk𝑡 ) then
req id𝑡 ∉ 𝛾 ′.𝜏 .roster()
𝑣 ← 𝛾 ′.𝜏 .getLeaf ()
(𝑣.id, 𝑣.ek, 𝑣.vk) ← (id𝑡 , ek𝑡 , vk𝑡 )
𝛾 .𝜏 .unmerge(𝑣)

helper *transition(𝛾 ′, ctxt, updEKs′, id𝑠 , act)
// Set keys on the re-keyed path.
𝑣𝑠 ← 𝛾 ′.𝜏 .leafof (id𝑠 )
directPath← 𝛾 ′.𝜏 .directPath(𝑣𝑠 )
(𝑣𝑠 .ek, 𝑣𝑠 .vk) ← updEKs′ [1]
𝑖 ← 1
while directPath[𝑖 ] ∉ {𝛾 ′.𝜏 .lca(𝛾 ′.leaf, 𝑣𝑠 ), 𝛾 ′.𝜏 .root} do

// If message contains too few ek’s, reject it.
req 𝑖 + 1 ≤ len(updEKs′)
directPath[𝑖 ] .ek← updEKs′ [𝑖 + 1]
𝑖++

// Decrypt the path secret using the updated tree.
try pathSec← *decrypt-path-secret(𝛾 ′, id𝑠 , ctxt)
while 𝑖 < len(directPath) do

𝑣 ← directPath[𝑖 ]
𝑟 ← HKDF.Exp(pathSecs[𝑖 ], ‘node’)
(𝑣.ek, 𝑣.dk) ← mmPKE.KG(𝑟 )
pathSec← HKDF.Exp(pathSec, ‘path’)
𝑖++

commitSec← pathSec
𝛾 ′.𝜏 .mergeLvs(𝑣𝑠 )
// Set all context variables and then derive epoch secrets.
𝛾 ′.lastAct← (id𝑠 , act)
𝛾 ′ ← *set-tree-hash(𝛾 ′)
(𝛾 ′, joinerSec) ← *derive-keys(𝛾 ′, commitSec)
return 𝛾 ′

helper *get-secrets(𝛾 ′, dk′, ctxt1, ctxt2, id𝑠 )
try pathSec← mmPKE.Dec(dk, ctxt1)
try joinerSec← mmPKE.Dec(dk, ctxt2)
𝑣 ← 𝛾 ′.𝜏 .lca(𝛾 ′.leaf, 𝛾 ′.𝜏 .leafof (id𝑠 ))
while 𝑣 ≠ 𝛾 ′.𝜏 .root do

𝑟 ← HKDF.Exp(pathSec, ‘node’)
(ek, 𝑣.dk) ← mmPKE.KG(𝑟 )
req 𝑣.ek = ek
pathSec← HKDF.Exp(pathSec, ‘path’)
𝑣 ← 𝑣.parent

𝛾 ′ ← *derive-epoch-keys(𝛾 ′, joinerSec)
return 𝛾 ′

SAIK: Key schedule

helper *derive-keys(𝛾,𝛾 ′, commitSec)
joinerSec← HKDF.Ext(𝛾 .initSec, commitSec)
𝛾 ′ ← *derive-epoch-keys(𝛾 ′, joinerSec)
return 𝛾 ′, joinerSec

helper *derive-epoch-keys(𝛾 ′, joinerSec)
epSec← HKDF.Ext(joinerSec, 𝛾 ′.grpCtxt())
𝛾 ′.appSec← HKDF.Exp(epSec, ‘app’)
𝛾 ′.membKey← HKDF.Exp(epSec, ‘membership’)
𝛾 ′.initSec← HKDF.Exp(epSec, ‘init’)
𝛾 ′.confTag← HKDF.Exp(epSec, ‘confirmation’)
return 𝛾 ′

SAIK: Tree hash

helper *set-tree-hash(𝛾 ′)
𝛾 ′.treeHash← *tree-hash(𝛾 ′.𝜏 .root)
return 𝛾 ′

helper *tree-hash(𝑣)
if 𝑣.isleaf then

return Hash(𝑣.nodeIdx, 𝑣.ek, 𝑣.vk)
else

ℓ ← len(𝑣.children)
for 𝑖 ∈ [ℓ ] do ℎ𝑖 ← *tree-hash(𝑣.children[𝑖 ])
ℎ ← (ℎ1, . . . , ℎℓ )
return Hash(𝑣.nodeIdx, 𝑣.ek, 𝑣.unmLvs, ℎ)

Figure 17: Additional helper methods for SAIK.
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can anyway deliver arbitrary messages. It is formally defined in
Fig. 18.

SAIK: Extraction

helper *extract(id, act,Ctxt, updEKs, sig, id𝑠 )
𝑖, 𝑗 ← *getExtractionIndices(𝛾, id)
ctxt← Ext(𝐶, 𝑖)
updEKs′ ← updEKs[1 : 𝑗 ]
return id, act, ctxt, updEKs′, sig

helper *getExtractionIndices(𝛾, id, id𝑠 )
𝑣lca = 𝛾 .𝜏 .lca(id, id𝑠 )
𝑣𝑠 = 𝛾 .𝜏 .leafofid𝑠
directPath← 𝛾 .𝜏 .directPath(𝑣𝑠 )
// Compute number of public keys “under” lca.
𝑗 ← 𝛾 .𝜏 .leafof (id𝑠 ) .depth − 𝑣.depth
// Count number of encryptions before id’s encryption.
𝑘 = 0
for 2 ≤ 𝑙 ≤ 𝑗 do

𝑘+ = len(𝛾 .𝜏 .resolution(directPath[𝑙 ] .children \ directPath[𝑙 −
1]))

𝑆 = 𝛾 .𝜏 .resolution(𝑣lca .children \ directPath[ 𝑗 − 1])
𝑖 = 1
while 𝑆 [𝑖 ] ∩ 𝛾 .𝜏 .directPath(𝑣𝑅 ) = ∅ do

𝑖++
𝑖 ← 𝑖 + 𝑘
return 𝑖, 𝑗

Figure 18: Helper functions for extraction.

Recall that 𝐶 contains the executed group operation act and the
sender id𝑠 , a multi-recipient ciphertext𝐶𝑡𝑥𝑡 and a vector of updated
public keys updEKs. Roughly, *extract only needs to compute id’s
individual mmPKE ciphertext mmPKE.Ext(𝐶𝑡𝑥𝑡, 𝑖) and the prefix
of the first 𝑗 elements of updEKs. This requires that it knows the
indices 𝑖 and 𝑗 for id. We notice that they can be easily computed
using the public part of the ratchet tree, act and id𝑠 . Therefore, the
indices can be obtained in two ways. First, the service can send act
and id𝑠 to id, who replies with 𝑖 and 𝑗 . This requires interaction, but
both id and the service are online at the time. Second, the service
can store the current ratchet trees and compute 𝑖 and 𝑗 itself. The
disadvantage of this is that it requires keeping a large state — in
case members are out of sync (e.g. a user is 10 epochs behind), the
service needs to store one tree for each epoch which has an active
member in it. Once 𝑖 and 𝑗 are known, *extract works as follows.

If act = ‘up’, set 𝑐𝑡𝑥𝑡 = mmPKE.Ext(𝐶𝑡𝑥𝑡, 𝑖) and updEKs′ =
(updEKs[1], . . . , updEKs[ 𝑗]). Output 𝑐 = (id𝑠 , act, ctxt, updEKs′,
sig), where sig is a field of 𝐶 . If act = ‘rem’-id, then output 𝑐 =

(id𝑠 , ‘removed’, sig𝑡 , tag𝑡 ) where sig𝑡 and tag𝑡 are taken from 𝐶 .
Finally, if act = ‘add’-id, 𝐶 contains welcomeData, which in turn
contains a ratchet tree. Based on this, compute id’s index 𝑖 in 𝐶𝑡𝑥𝑡 ,
the number𝑛 of recipients of𝐶𝑡𝑥𝑡 , and 𝑐𝑡𝑥𝑡1 =mmPKE.Ext(𝐶𝑡𝑥𝑡, 𝑖)
and 𝑐𝑡𝑥𝑡2 = mmPKE.Ext(𝐶𝑡𝑥𝑡, 𝑛 + 1). Output 𝑐 = (id𝑠 , act, ctxt1,
ctxt2,welcomeData).

F.4 Propose-Commit Syntax

As discussed in Sec. 4.6, in order to tame the complexity of (sa)CGKA,
we use a simplified syntax instead of the more general (and more ef-
ficient) propose-commit syntax. In this section we explain in detail
how to transform SAIK to the propose-commit syntax.

In the propose-commit syntax, an (sa)CGKA protocol takes the
following inputs from a party id:
Add proposal: id proposes to add id𝑡 . The protocol outputs a

proposal packet 𝑝 .
Remove proposal: id proposes to remove id𝑡 . The protocol out-

puts a proposal packet 𝑝 .
Update proposal: id proposes to update their key material. The

protocol outputs a proposal packet 𝑝 .
Commit: id inputs a list of proposal packets (𝑝1, . . . , 𝑝𝑛) (after

receiving them from other parties). The protocol outputs a
commit packet 𝑐 .

Process: id inputs a commit packet 𝑐 and a list (𝑝1, . . . , 𝑝𝑛) of
proposals it commits (after receiving all these packets from
other parties). The protocol outputs the semantics of applied
group operations.

Key: id fetches the current group key.
Observe that if an application always commits a single proposal

immediately after creating it, the propose-commit syntax collapses
to our (sa)CGKA syntax.

Proposals in SAIK.. SAIK deals with proposals in the same way
as ITK. First, it computes the proposal content act which identifies
the proposed modification:
Add proposal: To add id𝑡 , query (GetPk, id𝑡 ) to Fks, receive (ek𝑡 ,

vk𝑡 , ek′𝑡 ) and set act = ‘add’-id𝑡 -(ek𝑡 , vk𝑡 , ek′𝑡 ).
Remove proposal: To remove id𝑡 , set act = ‘rem’-id𝑡 .
Update proposal: Sample new key pairs (vk, sk) ← Sig.KG()

and (ek, dk) ← mmPKE.KG() and store dk and sk for later.
Set act = ‘upd’-(ek, vk).

The proposal packet is act signed with the sender’s current key
𝛾 .leaf (id) .sk and MACed with the current membKey.

Commit in SAIK.. A commit in SAIK is almost identical to its
Send input. It proceeds in two steps.

(1) Applying proposed group modifications to the ratchet tree:
Currently, SAIK applies only a single modification in the
*create-epoch helper. The propose-commit SAIK extends
this step and applies all proposed actions one by one. This is
done by calling the helper *apply-act(𝛾 ′, id𝑠 , act) for each
act (after verifying the signature and the MAC). Further,
we extend the *apply-act helper to deal with update pro-
posals – such actions simply replace proposer’s leaf public
keys with the ones in act. In addition, if the update proposal
is applied by its sender, they replace their leaf’s secret keys
by dk and sk stored when generating the update.

(2) Rekeying the sender’s path: The remaining part of Send
remains mostly unchanged. The only difference is related
to the possibility of there being many add proposals:
• In line 9 of Send (excluding comments), the joinerSec

is currently encrypted to one new member. In the
propose-commit SAIK, it is instead encrypted to 𝑁
new members, who are the last 𝑁 recipients of the
mmPKE ciphertext.
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• In line 18 of Send, SAIK currently computes the wel-
come data needed by new members. In the propose-
commit SAIK, this includes the public keys (ek′1, . . . ,
ek′
𝑁
), of all 𝑁 new members, instead of only one.

Processing a commit in SAIK. The receive procedure of SAIK is
modified analogous to its send procedure. In case the receiver is
a member and is not removed, it applies all proposed actions and
then processes the committer’s path exactly like the current SAIK.

Finally, to join, a new member finds their public key in the list
(ek′1, . . . , ek

′
𝑁
) contained in the welcome data. Let 𝑖 denote the

index of that key. They decrypt the joinerSec as the (𝑁 − 𝑖)-th to
last recipient of the mmPKE ciphertext. Then they proceed as in
the current SAIK.

G ONE-WAYNESS SECURITY OF MMPKE

In this section, we define One-Wayness under Relaxed Chosen
Ciphertext Attacks security of mmPKE, mmOW-RCCA. Moreover,
we prove thatmmOW-RCCA security is implied bymmIND-RCCA
security for schemes with large message spaces.

Motivation. We note that one-wayness security for mmPKE
is less straightforward to define than for standard PKE schemes.
Roughly, for standard PKE, one-wayness requires that given an
encryption of a random message chosen by the challenger, no ad-
versary can find the encrypted message. For mmPKE, the input
to encryption is not a single message but a vector of messages.
Moreover, even if the adversary corrupts recipients of some mes-
sages in the vector, it still should not be able to find the remaining
messages. Therefore, it is now less clear how the challenge message
vector should be chosen. The definition presented in this section is
precisely what is needed for the security proof of ITK. We do not
claim that it is the “right” notion, as it may not be suited to other
applications.

The game. The mmOW-RCCA game is defined in Fig. 19, the
challenge ciphertext is computed as follows: The adversary sends a
public-key vector, as well as a message vector ®𝑚 and a set of indices
𝑆 within this vector. The challenger then inserts the same random
message 𝑚∗ into all positions in ®𝑚 indicated by 𝑆 (the previous
values of ®𝑚 at these positions are ignored). It encrypts the result
and sends the ciphertext to the adversary, whose goal is to find𝑚∗.

Remarks. First, we note that the mmOW-RCCA game has no
notion of leakage. Instead, the leakage is implicit in how the vector
encrypted by the challenger is chosen — the “leakage” is everything
the adversary knows about that vector, such as whether two slots
contain the same message or not.

Second, the game allows the adversary to verify if some message
𝑚′ is the correct solution𝑚∗. This can be done by sending𝑚′ to
the decrypt oracle and checking if it returns ‘test’. This additional
ability makes the notion stronger (i.e., more difficult to achieve).
We show that mmIND-RCCA security is sufficient to achieve it.

Definition G.1 (mmOW-RCCA). For an mmPKE with message
spaceM, the advantage of an adversaryA againstOne-Wayness un-
der Replayable Chosen Ciphertext Attacks (mmOW-RCCA) security
of mmPKE is defined as

AdvmmOW-RCCA
mmPKE,𝑁 (A) = Pr

[
ExpmmOW-RCCA

mmPKE,𝑁 (A) ⇒ 1
]
,

where ExpmmOW-RCCA
mmPKE,𝑁 (A) is defined in Fig. 19.

Relation to mmIND-CCA. We prove that mmOW-RCCA secu-
rity is implied by mmIND-RCCA for schemes with large message
spaces.

Theorem G.2. Let mmPKE be an mmPKE scheme with message
spaceM. For any adversaryA , there exists an adversary B such that

AdvmmOW-RCCA
mmPKE,𝑁 (A) ≤ AdvmmIND-RCCA

mmPKE,𝑁 (B) + 2
M .

Proof. The proof closely follows the typical proofs showing
that IND security implies OW security for standard encryption.

Given an adversary A against mmOW-RCCA security, the re-
duction B attacking mmIND-RCCA simply runs A on the public
keys it receives in the mmIND-RCCA experiment and forwards all
A ’s oracle queries to its mmIND-RCCA oracles. When A outputs
the triple ( ®ek, ®𝑚, 𝑆), B computes the challenge ciphertext as follows.
First, it initializes ®𝑚∗0, ®𝑚

∗
1 ← ®𝑚. Then, it picks two randommessages

𝑚∗0 and𝑚
∗
1 and for each 𝑗 ∈ 𝑆 sets ®𝑚∗0 [ 𝑗] ←𝑚∗0 and ®𝑚

∗
1 [ 𝑗] ←𝑚∗1.

It sends ®ek together with ®𝑚∗0 and ®𝑚
∗
1 to the mmIND-RCCA exper-

iment, receives the challenge ciphertext 𝑐∗ and sends it to A . At
the end of the experiment, A outputs a guess𝑚′. If𝑚′ =𝑚∗1, then
B outputs 1. Else, it outputs 0.

First, it is easy to see that ifA does not violate any req statements
in the emulation, then B does not violate any req statements in
themmIND-RCCA game. In particular, ®𝑚∗0 and ®𝑚

∗
1 clearly have the

same leakage. It is also easy to see that if A does not trivially win
by corruptions then B does not either.

Second, observe that if B’s challenger uses the bit 𝑏 = 1, then
B emulates A’s experiment perfectly, unless A inputs to Dec2
something that decrypts to 𝑚∗0. The reason is that in this case
B replies with ‘test’ (forwarded from its oracle), while A should
receive𝑚∗0. Since𝑚

∗
0 is random and independent of A ’s view, this

happens with probability at most 1/M. Thus, it is easy to see that

Pr
[
ExpmmIND-RCCA

mmPKE,𝑁 ,𝑛,1 (B) ⇒ 1
]
≤ AdvmmIND-RCCA

mmPKE,𝑁 ,𝑛 (A) + 1
M .

If B is in the experiment with the bit 𝑏 = 0, then𝑚∗1 is indepen-
dent of A’s view, so the probability that it outputs𝑚′ = 𝑚∗1 and
hence also that B outputs 1 is at most 1

M . □

H SECURITY OF SAIK
The security predicates for SAIK are defined in Fig. 20. See Sec. 6
for the intuition. The stronger version of the predicates that is not
achieved by SAIK skips the code in boxes, while the weaker version
includes the whole code. In Sec. 8.1 we sketch how to modify SAIK
to achieve the stronger version.

For the mmPKE scheme we assume a security property called
mmOW-RCCA, defined in App. G. The notion is strictly weaker
than mmIND-CCA; in App. G we prove the implication.

Theorem H.1. Let Fcgka be the CGKA functionality with predi-
cates confidential and authentic defined in Fig. 20. Let SAIK be in-
stantiated with schemes mmPKE, Sig andMAC, and with the HKDF
functions modelled as a random oracle Hash. Let A be any environ-
ment. Denote the output of A from the real execution with SAIK and
the hybrid functionality Faks from Fig. 15 as realSAIK,Faks (A) and
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Game mmOW-RCCA

ExpmmIND-RCCA
mmPKE,𝑁 (A)

(A1,A2) ← A
for 𝑖 ∈ [𝑁 ] do (ek𝑖 , dk𝑖 ) ← mmPKE.KG()
Corr← ∅
( ®ek, ®𝑚,𝑆, st) ← ADec1,Cor

1 (ek1, . . . , ek𝑁 )
req | ®𝑚 | = | ®ek | ∧ 𝑆 ⊆ [ | ®𝑚 | ]
𝐸𝐾∗ ← { ®ek[ 𝑗 ] : 𝑗 ∈ 𝑆 }
𝑚∗ $← M
for 𝑗 ∈ 𝑆 do ®𝑚 [ 𝑗 ] ←𝑚∗

𝑚′ ← ADec2,Cor (mmPKE.Enc( ®ek, ®𝑚), st)
req 𝐸𝐾∗ ⊆ {ek𝑖 : 𝑖 ∈ [𝑁 ] \ Corr}
return 𝑚∗ =𝑚′

Oracle Dec1 (𝑖, 𝑐)

req 𝑖 ∈ [𝑁 ]
return Dec( ®dk𝑖 , 𝑐)

Oracle Cor(𝑖)

req 𝑖 ∈ [𝑁 ]
Corr +← 𝑖

return dk𝑖

Oracle Dec2 (𝑖, 𝑐)

req 𝑖 ∈ [𝑁 ]
𝑚 ← mmPKE.Dec( ®dk𝑖 , 𝑐)
if ek𝑖 ∈ 𝐸𝐾∗ ∧𝑚 =𝑚∗ then

return ‘test’
else return 𝑚

Figure 19: Experiment defining mmOW-RCCA security of mmPKE schemes.

Security predicates for SAIK

confidential(epid) ⇐⇒ ¬*in-det-tree(epid) ∧ *grp-secs-secure(epid)
authentic(epid, id) ⇐⇒ ¬*in-det-tree(epid) ∧

(
epid = 0 ∨ *grp-secs-secure(epid) ∨ *ind-secs-secure(epid, id)

)
*in-det-tree(epid) ⇐⇒ ¬*ancestor(0, epid)
*grp-secs-secure(epid = 0) ⇐⇒ HG[epid] .exp = ∅
*grp-secs-secure(epid > 0) ⇐⇒ HG[epid] .exp = ∅ ∧ ¬HG[epid] .inj ∧

(
*grp-secs-secure(HG[epid] .par) ∨ *all-ind-secs-secure(epid)

)
*all-ind-secs-secure(epid) ⇐⇒ ∀id ∈ HG[epid] .mem \ {HG[epid] .sndr} : *ind-secs-secure(HG[epid] .par, id)

*ind-secs-secure(epid, id) ⇐⇒
(
�epid′ : *share-ind-secs(epid, epid′, id) ∧ *ind-secs-bad(epid′, id)

)
∧ ¬*exposed-ind-secs-weak(epid, id)

*share-ind-secs(epid, epid′, id) ⇐⇒ epid and epid′ are the same or connected via undirected path of epochs epid′′

such that HG[epid′′] .sndr ≠ id ∧ HG[epid] .act ∉ {‘rem’-id, ‘add’-id}
*ind-secs-bad(epid, id) ⇐⇒ id ∈ HG[epid] .exp ∨ (HG[epid] .sndr = id ∧ HG[epid] .inj) ∨ (HG[epid] .act = ‘add’-id ∧ HG[epid] .inj)

*exposed-ind-secs-weak(epid, id) ⇐⇒ ∃epid1, epid2, epid3 : all of the following conditions are satisfied:
(1) epid1 ≠ epid2 ∧ *ancestor(epid1, epid) ∧ *ancestor(epid2, epid3)
(2) HG[epid1 ] .act = HG[epid2 ] .act = ‘add’-id
(3) *share-ind-secs(epid1, epid, id) ∧ *share-ind-secs(epid2, epid3, id)
(4) HG[epid2 ] .inj ∧ id ∈ HG[epid3 ] .exp

Figure 20: Security predicates instantiating Fcgka constructed by SAIK.

the output ofA from the ideal execution with Fcgka and a simulator
S as idealFcgka,S (A). There exists a simulator S and adversaries
B1 to B4 such that

Pr[idealFcgka,S (A) = 1] − Pr
[
realSAIK,Faks (A) = 1

]
≤

AdvCRHash (B1)

+ 𝑞2𝑒 (𝑞𝑒 + 1) log(𝑞𝑛) · AdvmmOW-RCCA
mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B2)

+ 2𝑞𝑒 · AdvEUF-CMA
Sig (B3)

+ 𝑞𝑒 · AdvEUF-CMA
MAC (B4) + 3𝑞ℎ𝑞2𝑒 (𝑞𝑒 + 1)/2𝜅 ,

where 𝑞𝑒 , 𝑞𝑛 and 𝑞ℎ denote bounds on the number of epochs, the group
size and the number of A’s queries to the random oracle modelling
the Hash, respectively.

H.1 Proof Outline

Int the remaining subsections we prove Theorem H.1.
The proof proceeds in a sequence of hybrids, transitioning from

the real to the ideal world. Hybrid 1 differs from the real world
only syntactically. That is, the environment A interacts with a
dummy CGKA functionality F 1

cgka which allows the simulator to
set all outputs. This means that F 1

cgka gives no security guarantees.
The next three hybrids introduce the guarantees of consistency,
confidentiality and authenticity, one by one. More precisely, in
hybrid 2,A interacts with F 2

cgka which is the same as Fcgka, except
it uses confidential and authentic set to false. In particular, this
means that F 2

cgka builds a history graph, enforces its consistency
and uses it to compute outputs. In hybrid 3,A interacts with F 3

cgka
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which uses the original confidential predicate, and in hybrid 4
it interacts with F 4

cgka which also uses the original authentic
predicate. Notice that F 4

cgka is Fcgka.
In the next subsections, we define the hybrids and show that each

pair of consecutive hybrids is indistinguishable for A . Intuitively,
each such statement means that SAIK provides the introduced se-
curity guarantee.
Hybrid 1. This is the experiment idealF1cgka,S1 where the dummy

functionality F 1
cgka sends all inputs to the simulator S1

and allows it to set all outputs. S1 executes SAIK.

H.2 SAIK Guarantees Consistency

The following hybrid introduces consistency.
Hybrid 2: idealF2cgka,S2 . The functionality F

2
cgka is the same as

Fcgka except it uses confidential = authentic = false.
The simulator S2 is described later in this section.

In the reminder of this section, we construct the simulator S2
and show that hybrids 1 and 2 are indistinguishable.

Theorem H.2. For any environment A , there exists an adversary
B such that

Pr
[
idealF2cgka,S2 (A) ⇒ 1

]
− Pr

[
idealF1cgka,S1 (A) ⇒ 1

] ≤ AdvCRHash (B) + 𝑞𝑒/2
𝜅 ,

where Hash models the HKDF.Exp and HKDF.Ext functions and 𝑞𝑒
denotes an upper bound on the number of epochs.

The simulator. We first describe S2. In general, it runs SAIK just
like S1, only its interaction with the functionality is different. Most
importantly, F 2

cgka requires that S2 identifies epochs into which
parties transition. Doing this correctly is crucial for proving that
SAIK guarantees consistency, because F 2

cgka enforces it by com-
puting outputs and asserting conditions relative to parties’ current
epochs. (It must also be done so that we can later prove that SAIK
guarantees confidentiality and authenticity.)
S2 identifies epochs by their epoch secrets epSec, computed by

SAIK on Receive and Send. Recall that a party id transitioning from
an epoch 𝐸 [1] to 𝐸2 computes 𝐸2’s epSec by hashing 𝐸 [1]’s init
secret, the new commit secret (combined into the joiner) generated
by 𝐸2’s creator and 𝐸2’s context. We will show that these values
contain enough information for epSec to uniquely identify 𝐸2. Re-
call also that the group and init key of 𝐸2 are derived from epSec.
The simulator is described in more detail in Fig. 21.

Proof. We next prove Theorem H.2. Observe that hybrids 1 and
2 are identical unless one of the following two events occurs in
hybrid 2:
BreaksCons : Either the output of a party on Receive or Key com-

puted according toF 2
cgka andS2 is different than the output

S1 would compute according to SAIK in hybrid 1, or an
assert condition is false.

EpidColl : An honestly created epoch has the same epSec as an
existing epoch.

Observe that since an honest sender mixes a fresh commitSec into
the derivation of epSec, the probability of EpidColl is at most 𝑞𝑒/2𝜅
(where 𝜅 is the length of all secrets). It remains to show that if A

triggers BreaksCons, then a reduction B can extract from a hash
collision. (Theorem H.2 follows by the standard difference lemma.)

LetA be any environment and assume that at the end of hybrid
2 with A there are no hash between values hashed by S2 while
running SAIK on behalf of honest parties. We show that in this case
BreaksCons cannot occur. This proves the claim, because if there
was a hash collision between values hashed by honest parties, then
B could extract them by emulating S1.

Observe that if two parties transition to the same epoch epid,
then by definition of S2 they compute the same epSec. Recall that
they compute epSec← Hash(joinerSec, grpCtxt) (Fig. 17), where
grpCtxt = (grpId, treeHash, id𝑠 -act) (Table 4). Since there are no
hash collisions, this means that the parties also agree on:

a) The creator HG𝑠 of epid, the action act it performed and
the public part of the ratchet tree, included in treeHash.
This implies agreement on the roster, which is encoded in
the tree leaves.

b) The group key in epid, derived as Hash(epSec, ‘app’).
Moreover, let epSec′ denote the epoch secret of epid’s parent.

We have joinerSec = Hash(initSec′, commitSec), where initSec′ =
Hash(epSec′, ‘init’) and commitSec is freshly chosen for epid by
its creator. Therefore, parties in epid also agree on:

c) The parent epoch epid′ identified by epSec′.
Observe that the check Hash(initSec′, commitSec) = joinerSec is
verified by current members transitioning to epid but not by joiners.
However, joiners implicitly agree with current members on the
parent epid′. That is, if an id𝑟 joins into epid, then epid has parent
epid′ (unknown to id𝑟 ) or no parent at all (for detached roots).

We next show that agreement on a), b) and c) implies that
BreaksCons does not occur. First, a) and b) imply that all parties
joining an epoch epid output the same value, all parties transition-
ing there output the same, and afterwards all output the same key.
Second, c) implies that HG is a forest, i.e., epoch has one parent.

Third, we have to argue that parties’ outputs are the same as
computed by F 2

cgka. This is obvious for the key (always chosen
by S2 to match), sender and action. For the member set, we will
show that the ratchet tree of parties in an epoch epid is consistent
with HG[epid] .mem computed by F 2

cgka. We use induction on
the distance of epid to the root. If epid is the main root, then the
statement is true by definition and if it is a detached roots, then
S2 chooses mem to match the ratchet tree. For any non-root epid,
some party idmust have transitioned there from its parent epid′ (on
Receive or Send). By induction hypothesis, the ratchet tree in epid′

is consistent with HG[epid] .mem. By agreement on act in a), id
modifies the tree the same way as F 2

cgka modifies HG[epid] .mem,
which proves the statement.

H.3 SAIK Guarantees Confidentiality

The third hybrid introduces confidentiality, which is formalized by
restoring the original confidentiality predicate of Fcgka.
Hybrid 3: idealF3cgka,S3 . The functionaliy F

3
cgka uses the original

confidential predicate from Fcgka. The simulator S3 is
the same as S2.

In the remainder of this section, we show that if mmPKE is
mmOW-RCCA secure, then SAIK guarantees confidentiality, that
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Simulator S2

S2 keeps a list EpSecs, where EpSecs[epid] stores the epoch secret identifying epoch epid. It runs SAIK and interacts with F2cgka as follows:
• If SAIK outputs ⊥ on Send or Receive, S2 sends ack set to false.
• On each Send, S2 computes the new epoch’s epSec and appends it to EpSecs. It sends to Fcgka the message 𝐶 computed using SAIK.
• On each Receive, S2 first sends to Fcgka the values sndr′, act′ from the message. If the receiver is not removed, S2 sends epid into which

id transitions chosen as follows:
– If there is a epid s.t. EpSecs[epid] = epSec, then S2 sends this (unique) epid to F2cgka.
– Else, S2 appends epid to EpSecs and sends epid = ⊥ to F2cgka.

Finally, if a detached root is created and F2cgka asks for the member set mem′, S2 computes it from the new member’s ratchet tree.

Figure 21: The simulator for the proof of the security of SAIK.

is, that hybrids 2 and 3 are indistinguishable. Formally, we prove
the following theorem.

Theorem H.3. For any environment A , there exists an adversary
B such that

Pr
[
idealF3cgka,S3 (A) ⇒ 1

]
− Pr

[
idealF2cgka,S2 (A) ⇒ 1

]
≤ 4𝑞2𝑒𝑞ℎ/2𝜅 + 𝑞2𝑒 log(𝑞𝑛) · AdvmmOW-RCCA

mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B),

where the HKDF functions are modeled as a random oracle and
where 𝑞𝑛 , 𝑞ℎ and 𝑞𝑒 are upper bounds on, respectively, the group
size, the number of A ’s hash queries and the number of epochs.

Game-based perspective. For better intuition, observe that hy-
brids 2 and 3 are almost identical. In both experiments, the en-
vironment interacts with the CGKA functionality and the same
simulator. The only difference is that group keys in confidential
epochs are real in hybrid 2 (technically, computed by the simulator
according to SAIK) and random and independent in hybrid 3 (tech-
nically, sampled by F 3

cgka). This means that distinguishing between
hybrids 2 and 3 can be seen as a typical confidentiality game for
CGKA schemes. The adversary in the game corresponds to the
environment A . The adversary’s challenge queries correspond to
A ’s GetKey inputs on behalf of parties in confidential epochs and
its reveal-session key queries correspond to A ’s GetKey inputs in
non-confidential epochs. To disable trivial wins, confidential epochs
where a random key has been outputted are marked by setting a
flag chall. A and the adversary in the game are not allowed to
corrupt if this makes such an epoch non-confidential.

Key Graphs. A key graph visualizes different secrets created in
an execution of SAIK and hash relations between them. Each node
in the graph corresponds to a secret, e.g. the group key in epoch
5, and has assigned its value. The directed edges are interpreted
as follows: the value of a node is the hash of the values of all its
in-neighbors with an appropriate label. If a node has many out-
neighbors, then the value of each out-neighbor is computed by
hashing with a different label (i.e., the values of out-neighbors
are domain-separated). Values of source nodes are either chosen at
random by the protocol or injected by the adversary. The key-graph
nodes are partitioned by epochs: Secrets of an epoch epid are those
created when epid is created. We distinguish two types of secrets:
group secrets which include the init, joiner and epoch secrets as

well as the group key, and individual secrets, which include path
secrets, the last being the commit secret. An example key graph is
given below. We removed membership secrets for simplicity. Note
that the epochs 6 and 7 are created in parallel, that is, we have a
group fork.

joiner epoch

group key

init

commit

path

path epoch 5

joiner epoch

group key

init

commit

path epoch 7

joiner epoch

group key

init

commit

path epoch 6

Note that in case of injections the values of nodes may not be
unique. However, the values of epoch secrets uniquely identify
epochs. Note also that the values of group secrets of epid appear
only in the states of parties in epid. On the other hand, mmPKE
keys derived from path secrets of epid appear in ratchet trees stored
by parties in multiple epochs.

Bad events. LetA be any environment. The goal is to show thatA
cannot distinguish the real group keys of confidential epochs it sees
in hybrid 2 from random and independent keys in hybrid 3. Since
epochs in detached trees are not confidential, in the remainder of
the proof we only consider epochs in the main history-graph tree.

Observe that there are only two dependencies between the real
group key appSec of an epoch epid and the rest of the experiment:
appSec is stored by parties in epid and it is the hash of epid’s unique
epoch secret epSec. If epid is confidential, then no party in epid, i.e.,
no party storing appSec is corrupted. Therefore, unless A inputs
epSec to the RO, the real group key is independent of the rest of
the experiment. In other words, unless A inputs epSec to the RO,
the real group key outputted in hybrid 2 is distributed identically
as the random key in hybrid 3.

Therefore, A’s distinguishing advantage is upper-bounded by
the probability that the following event SecsHashedepid occurs for
at least one epoch epid. For convenience, the event is more general
and also considers init and joiner secrets.
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Event SecsHashedepid : At the end of the experiment, epid is con-
fidential and epid’s init, epoch or joiner secret is contained
in a value inputted by A to RO.

Formally, it is left to prove the following lemma.

Lemma H.4. There exists a reduction B such that

Pr[∃epid : SecsHashedepid] ≤ 4𝑞2𝑒𝑞ℎ/2𝜅

+ 𝑞2𝑒 log(𝑞𝑛) · AdvmmIND-RCCA
mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B).

Bounding probability of bad events.An epoch epid is confiden-
tial if *grp-secs-secure(epid) is true (all predicates are defined
in Fig. 20). The latter predicate is recursive, starting at the root
epoch with epid = 0. Accordingly, we will prove a recursive upper
bound on the probability of SecsHashedepid. Formally, Lemma H.4
is implied by the following lemma.

Lemma H.5. There exists a reduction B and (arbitrary) events
BreaksRCCAepid

8 for epid ∈ N such that
a) Pr[∃epid : SecsHashed0] ≤ 4𝑞ℎ/2𝜅 .
b) For each epid > 0 with parent epid𝑝 , we have

Pr[SecsHashedepid] ≤ 4𝑞ℎ/2𝜅 + Pr[SecsHashedepid𝑝 ]
+ Pr[BreaksRCCAepid] .

c) Pr[∃epid : BreaksRCCAepid]
≤ 𝑞𝑒 log(𝑞𝑛) · AdvmmIND-RCCA

mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B).

Lemma H.5 implies Lemma H.4, because by Lemma H.5

Pr[SecsHashedepid] ≤
epid−1∑︁
𝑖=0
(4𝑞ℎ/2𝜅 + Pr[BreaksRCCA𝑖 ])

≤ 4𝑞𝑒𝑞ℎ/2𝜅 + Pr[∃epid : BreaksRCCAepid]

≤ 4𝑞𝑒𝑞ℎ/2𝜅 + 𝑞𝑒 log(𝑞𝑛) · AdvmmIND-RCCA
mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B),

where the first step follows from a) and b) in Lemma H.5. We arrive
at Lemma H.4, since by union bound Pr[∃epid : SecsHashedepid] ≤
𝑞𝑒 ·maxepid Pr[SecsHashedepid].
Proof of Lemma H.5 a). The root epoch does not have joiner and
epoch secrets. The init secret of epoch 0 is chosen at random by
the group creator idcreator. Moreover, it is independent of the rest
of the experiment apart from being stored by idcreator in epoch 0.
The reason is that any other values are derived by first hashing it,
and outputs of the RO are independent of the inputs. If epoch 0 is
confidential, then idcreator is not corrupted in epoch 0, so A has
no information about the init secret. Therefore, the best strategy
for A to trigger SecsHashed0 is by guessing the init secret, which
succeeds with probability at most 𝑞ℎ/2𝜅 < 4𝑞ℎ/2𝜅 .
Proof of Lemma H.5 b). Take any non-root epoch epid > 0 with
parent epid𝑝 . Let initSec, epSec, joinerSec and commitSec denote
epid’s init, epoch, joiner and commit secrets. Let initSec𝑝 denote
epid𝑝 ’s init secret.

Observe that the only dependencies between initSec, epSec,
joinerSec and the rest of the experiment are as follows: 1) initSec
is stored by parties in epid, 2) joinerSec is the output of the RO on
8The lemma implies Lemma H.4 no matter what BreaksRCCAepid is. The name will
become clear later in the proof.

input commitSec together with initSec𝑝 , 3) joinerSec is encrypted
to new members. (Note that any other values are derived by first
hashing it, and outputs of the RO are independent of the inputs.)

Assume for a moment that epid is confidential. Then, no party
in epid is corrupted, so dependency 1) does not exist. Recall that
confidentiality requires either *grp-secs-secure(epid𝑝 ) is true
or *all-ind-secs-secure(epid) is true. Observe that dependency
2) does not exist either unless one of the following events occurs:
Event InitHashedepid𝑝 : At the end of the experiment, the value of

*grp-secs-secure(epid𝑝 ) is true and initSec𝑝 (of epid𝑝 )
is contained in some value inputted by A to the RO.

Event CommHashedepid : At the end of the experiment, the predi-
cate *all-ind-secs-secure( epid) is true and commitSec
(of epid) is contained in some value inputted by A to RO.

This means that unless InitHashedepid𝑝 or CommHashedepid oc-
curs, A has no information about initSec and epSec. Therefore,
the best strategy for A to trigger SecsHashedepid is to either guess
initSec or epSec at random, or trigger one of the above events, or
input the joiner secret based only on dependency 3). We capture
the last event by
Event joinerSecepid : At the end of the experiment, none of the

values inputted byA to the RO includes initSec𝑝 (of epid𝑝 )
and commitSec (of epid) together, but some value contains
joinerSec (of epid).

Therefore, we have

Pr
[
SecsHashedepid

]
≤ 2𝑞ℎ/2𝜅 + Pr[InitHashedepid𝑝 ]

+ Pr
[
CommHashedepid

]
.

By definition, Pr[InitHashedepid𝑝 ] ≤ Pr[SecsHashedepid𝑝 ]. More-
over, we define
Event BreaksRCCAepid : Either CommHashedepid or JoinHashedepid

occurs.9

This proves the claim.

Proof of Lemma H.5 c). We construct two reductions B1 and
B2 whose advantages bound the probability of the event ∃epid :
JoinHashedepid and of ∃epid : CommHashedepid, respectively.

Lemma H.6. There exists a reduction B1 such that

Pr(∃epid : JoinHashedepid) ≤ 𝑞𝑒 · AdvmmIND-RCCA
mmPKE,1,𝑞𝑛 (B1).

Proof. Take any epoch epid with parent epid𝑝 (the root does
not have a joiner secret). Observe that the joiner secret of epid
is never stored in the state of SAIK. Moreover, the only message
that may include it is the message creating epid which potentially
encrypts it to a new member. This means that if A does not input
to the RO the init secret of epid𝑝 together with the commit secret
of epid, then the only part of its view that may depend on the
joiner of epid is the ciphertext in the message creating epid. In
particular, if epid is honestly created and adds a party id𝑟 , then the
ciphertext encrypts the joiner under id𝑟 ’s key from the AKS (i.e.,
our PKI). Since the AKS is uncorruptible and id𝑟 deletes the secret
key immediately after using it, this means that inputting the joiner
to the RO implies breaking security of mmPKE.
9Intuitively, the only dependency between the commit and joiner secrets comes from
encryptions, so inputting the secrets to the RO requires breaking IND-RCCA.
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More formally, consider the following reduction B1 playing the
mmOW-RCCA gamewith 1 user.B1 guesses an epoch epid∗ ∈ [𝑞𝑒 ]
and runs A , emulating the CGKA functionality and the simulator
as in hybrid 2. If epid∗ is injected or not created on an add, B1’s
emulation is identical to hybrid 2. Otherwise, B1’s emulation will
be identical to hybrid 2 but where the joiner secret joinerSec∗ of
epid∗ is replaced themmOW-RCCA challenge message𝑚∗. B1 will
use a special symbos ‘test’ to denote this unknown value of𝑚∗ in
the emulation.

In particular, when an id𝑠 creates epid∗ while adding an id𝑟 ,
B1 embeds the single public key ek∗ from its game as the key
generated for id𝑟 by the AKS (recall that the AKS generates the
key pair (ek∗, dk∗) at the moment id𝑠 requests it to create the
epoch). Further, B1 computes SAIK’s state for epid∗ according to
the protocol. It then replaces the (fresh) joiner secret generated by
SAIK by ‘test’ in all places, including the programmed RO inputs
and outputs. Finally, B1 sends to the challenger the message vector
®𝑚 encrypted by id𝑠 and the last index in this vector, denoting the
(only) position of the joiner secret. The challenger sends back a
ciphertext 𝐶∗, which B1 uses in the message sent by id𝑠 .

If id𝑟 uses dk∗, B1 uses the Dec oracle. Note that Dec may output
‘test’, which is used consistently with the symbol for the unknown
joiner𝑚∗. If A inputs to tje RO the init secret initSec∗ of epid∗’s
parent together with the commit commitSec∗ of epid∗, B1 halts
and gives up. At the end of the experiment, B1 searches all A’s
queries to the RO for an𝑚∗ that allows it to win.

We first claim that, until B1 gives up or the experiment ends, its
emulation is perfect. In particular, since A does not input initSec∗
with commitSec∗ to the RO, which means that, apart from 𝐶∗, its
experiment is independent of joinerSec∗. This means that B1 simu-
lates it perfectly by using ‘test’ instead of joinerSec∗. Second, we
claim that if JoinHashedepid∗ occurs, then B1 wins. Indeed, the event
guarantees thatA inputs𝑚∗ to the RO and B1 does not give upA
does not input initSec∗ with commitSec∗ to the RO.

Therefore, we have

AdvmmIND-RCCA
mmPKE,1,𝑞𝑛 (B1) ≥ Pr(JoinHashedepid∗ )

≥1/𝑞𝑒 Pr(∃epid : JoinHashedepid) .
□

Lemma H.7. There exists a reduction B2 such that

Pr(∃epid :CommHashedepid) ≤ 𝑞𝑒 · AdvmmIND-RCCA
mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B2) .

Proof. We start by describing the reduction B. Recall that SAIK
generates mmPKE key pairs and ciphertexts when epochs are cre-
ated: When a party id𝑠 creates an epoch, it generates a hash chain
of secrets, consisting of log(𝑞𝑛) path secrets and the commit se-
cret. Each path secret is then hashed to obtain randomness used to
generate a single key pair. Moreover, if a new member is added, its
newmmPKE key pair is generated by the AKS. Then, id𝑠 sends out
all new public keys and a single ciphertext encrypting secrets to
different recipients.

The reduction B runs A , emulating the functionality and the
simulator executing SAIK as in hybrid 2 with the following differ-
ences. First B embeds public keys from the mmOW-RCCA game
as public keys sent when epochs are created. It generates all secrets
itself independently of the key pairs. Further, it picks a random

epoch epid∗ and a random index 𝑖∗ ∈ [log(𝑞𝑛)]. When epid∗ is
created, B asks the challenger for an encryption 𝐶∗ of the secrets
B generated, but with the 𝑖∗-th secret replaced by the challenge
message 𝑠∗ B is supposed to compute. 𝐶∗ is then embedded in
the sent message. For the the unknown value of the 𝑖∗-th secret,
Bepid uses a special symbol ‘test’ (it is used for bookkeeping, e.g. to
consistently program the RO).10

When a party is corrupted, B corrupts all receivers whose secret
keys are in the party’s state. When A sends a new value to the
RO, B checks if it contains its solution 𝑠∗ and, if so, sends it to the
challenger and halts. Otherwise, B programs the RO consistently
with already generated values. Importantly, if the output is key-
generation randomness for an mmOW-RCCA receiver, B corrupts
this receiver to obtain it. (Here we use programmability to deal
with adaptive corruptions.)

When a party id𝑟 receives a message, B runs id𝑟 ’s protocol with
the help of the Dec oracle. Note that Dec may output ‘test’, which
B uses for the unknown value of the 𝑖∗-th secret.

Precise description of B. At the beginning, B guesses an epoch
epid∗ ∈ [𝑞𝑒 ] and an index 𝑖∗ ∈ [log(𝑎𝑛)]. Then, it runs A , emulat-
ing for it the functionality and the simulator by running their code
with the following differences.

Recall that the simulator stores a single ratchet tree per epoch.
B modifies these trees by assigning to each node two additional
labels: one storing a receiver in the mmOW-RCCA game and one
storing a secret. The root’s secret stores the epoch’s commit secret.
The secret of any other internal node stores the path secret from
which its key pair was derived. The leaf’s secrets are not used.
Alternatively, a secret can be set to ⊥ in case of injections or ‘test’
to denote the unknownmmOW-RCCA challenge 𝑠∗. A joiner secret
can also take value ‘test’. Secret keys in the ratchet tree will not be
used.

To emulate the RO, B keeps a table of programmed input-output
pairs. Some inputs and outputs may contain a special symbol ‘test’.
The symbol is not in the RO input domain, so it cannot be inputted
byA (but it will be used by B when the protocol evaluates hashes).
Whenever A sends a new input, B first checks if it contains its
solution and halts if this is the case. Else, it checks if the output
should be equal to key-generation randomness derived from a path
secret in some ratchet tree node. If so,B corrupts the node’s receiver
to obtain the RO output. Else, it programs a fresh value.

Further, B makes the following changes to how the functionality
and simulator process different inputs of A .

• id𝑠 sends. B generates the new epoch and the message
handed to A as follows:
(1) Generate the new epoch’s path secrets, as well as all

secrets in the key schedule at random. If the created
epoch is epid∗, replace the 𝑖∗-th secret (a path, commit
or joiner secret) by ‘test’. Program the RO according
to how the secrets are derived.

(2) Generate the new epoch’s ratchet tree: Copy the ratchet
tree from id𝑠 ’s epoch, apply the action and (re-)assign
node labels as follows: For each node on id𝑠 ’s path

10One may expect that if CommHashedepid occurs, then the challenge can be em-
bedded in the commit secret inputted by A to the RO. Intuitively, this cannot work,
because confidentiality of the commit secret clearly relies on the confidentiality of
path secrets before it and of path secrets from which encryption keys were derived.
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and, in case of an add, the node of the new member,
set the mmOW-RCCA receiver to the next receiver
not appearing in any ratchet tree, and set the public
key to the public key of its receivers. The path secret
of id𝑠 leaf is ⊥ (since its key pair is generated using
fresh randomness) and the path secret of each node
above it is set to the secret chosen in Step 1.

(3) Generate the ciphertext included in the sent packet:
If the created epoch is not epid∗, then simply encrypt
the secrets. Else, compute the public key vector ®ek
and message vector ®𝑚 with the secrets as in the proto-
col. Let 𝑆 be the set of all 𝑖 such that ®𝑚[𝑖] = ‘test’. B
sends ®ek, ®𝑚 and 𝑆 to the challenger to obtain the sent
ciphertext.

(4) Use the above values to complete emulating the func-
tionality and the simulator as in their code.

• id𝑟 receives a message removing it. If the message re-
moves id𝑟 , then it carries no secrets, so B simply runs id𝑟 ’s
protocol.

• A current member id𝑟 receives a message not removing
it. B first decrypts the path secret 𝑠 from the packet. Say
id𝑟 uses the keys in a ratchet-tree node 𝑣 to decrypt. If 𝑣 has
anmmOW-RCCA receiver assigned, B sets 𝑠 to the output
of the decryption oracle. Else, if 𝑣 has no receiver but it has
a path secret, B derives 𝑣 ’s key pair by hashing the secret,
programming the RO if necessary, and decrypts 𝑠 . Else, it
rejects the packet on behalf of the simulator.
After decrypting, B checks if 𝑠 is the solution 𝑠∗ and halts
if this is the case. If not, it proceeds as follows.
B computes the epoch secret epSec that identifies the epoch
into which id𝑟 transitions. The value of epSec is derived
from 𝑠 the same way as in the protocol, where hashes are
evaluated using the RO table and the RO is programmed to
a fresh value if necessary. Note that some evaluations may
involve the symbol ‘test’.
If id transitions to an injected epoch, B creates or updates
the epoch as follows:
(1) If the epoch does not exist, create its ratchet tree by ap-

plying the action specified in the packet to the ratchet
tree from id’s current epoch and set public keys, se-
crets and
mmOW-RCCA receivers of all nodes on the re-keyed
path to⊥. Set the init, epoch and joiner secrets to those
derived from epSec.

(2) Let𝑢 be the least common ancestor of the sender’s and
id’s leaves in the ratchet tree. Use the decrypted secret
𝑠 to derive and assign the path secrets and public keys
for 𝑢 and each node above it by evaluating the RO,
programming if necessary. (In case the tree already
existed, this potentially adds missing secrets to it.)

(3) Assign to each node below 𝑢 the public key from the
packet.

Finally, B verifies if id𝑟 accepts the packet, as in the sim-
ulator. If it does, then B transitions id𝑟 . Else, it undoes all
changes.

• A new member id𝑟 receives a message. In this case id𝑟
receives two ciphertexts, one with its path secret and one

with the joiner secret. B decrypts these secrets as in case a
current member receives a message. If one of them is the
solution 𝑠∗, B sends it to the challenger and halts.
Then, B computes the epoch secret of the epoch into which
id𝑟 transitions by hashing the decrypted joiner secret. If
this epoch is injected, B creates or updates it the same way
as when current member receives. Note that if the epoch
does not exist, B uses the public part of the ratchet tree
from id𝑟 ’s packet.

• Expose. When id is exposed, B computes itsmmPKE secret
keys by hashing the path secrets from the ratchet tree in
id’s current epoch.B corrupts themmOW-RCCA receivers
if necessary.

The reduction wins. Assume CommHashedepid occurs. We show
that there exist epid∗ and 𝑖∗ such that B wins. We start with a
simple observation.

Lemma H.8. If *all-ind-secs-secure(epid) is true, then for
each 𝑣 in 𝜏 , 𝑣 .ek is generated during an honest send.

Proof. Take any 𝑣 in 𝜏 . Let epid0 be the epoch which introduces
𝑣 .ek and let id𝑠 be its (alleged) creator. Assume towards a contra-
diction that epid0 is injected. If epid0 = epid, then we immediately
get a contradiction with CommHashedepid. Else, this means that
*ind-secs-bad(epid0, id𝑠 ) is true. Moreover, no epoch between
epid0 and epid, including epid, is created by id𝑠 or removes it, since
this would replace 𝑣 ’s keys. Therefore, *ind-secs-secure(epid, id𝑠 )
is false and *all-ind-secs-secure(epid) is false, which contra-
dicts with CommHashedepid being true. □

Let 𝜏 be the ratchet tree in epid. By Lemma H.8, we can assign to
each internal node 𝑣 in 𝜏 a secret: each non-root node is assigned the
path secret 𝑠 encrypted by B when 𝑣 ’s public key was introduced
and the root is assigned the commit secret of epid. CommHashedepid
guarantees that A inputs to the RO the secret of at least one node,
namely the root. Let 𝑣∗ be a node in 𝜏 with the maximal distance
from the root whose secret 𝑠∗ is inputted byA to the RO. Let epid∗
be the epoch before epid which creates 𝑣∗’s secret 𝑠∗. We claim that
B wins with the guess epid∗ and 𝑖∗ set to 𝑣∗’s index.

Indeed, epid∗ is honestly created (by Lemma H.8), so B can
embed the challenge. It is left to show that each public key used
to encrypt 𝑠∗ belongs to an uncorrupted mmOW-RCCA receiver.
For this, observe that each such key belongs to a node 𝑣 in 𝑣∗’s
sub-tree in the ratchet tree 𝜏∗ of epid∗. Moreover, 𝑣 ’s key does not
change between epid∗ and epid, since this would replace 𝑣∗’s keys
as well. By Lemma H.8, this means that 𝑣 ’s key belongs to some
mmOW-RCCA receiver.

It remains to show that this receiver is not corrupted. This can
happen in two cases: 1) if A inputs to the RO the path secret from
which 𝑣 ’s key pair was derived or 2) A corrupts a party holding
𝑣 ’s secret key. Case 1) cannot occur for the following reason: 𝑣 ’s
key pair can only be derived from the secret of an internal node
𝑢 below 𝑣 in 𝜏∗. Note that 𝑢 is also below 𝑣∗ in 𝜏∗. Therefore, 𝑢’s
secret (and keys) do not change between epid∗ and epid, since this
would replace 𝑣∗’s keys as well. Since 𝑣∗ has the maximal distance
among nodes with secrets inputted to the RO,A does not input 𝑢’s
secret. Finally, we show that case 2) cannot occur as well.
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Lemma H.9. If *all-ind-secs-secure(epid) is true, then for
each 𝑣 in 𝜏 , no party holding 𝑣 .dk is corrupted.

Proof. Take any 𝑣 in 𝜏 . Let epid0 be the epoch which introduces
𝑣 .ek and let epid[1], . . . , epidℓ be the epochs after epid0 that can be
reached from it without 𝑣 ’s keys being replaced. Note that these
epochs form a tree rooted at epid0.

We first observe that 𝑣 ’s subtree is the same in the ratchet trees
of all epochs epid0, . . . , epidℓ , because any modification replaces
𝑣 ’s keys. Moreover, epid is one of these epochs, so this subtree is
the same as in 𝜏 . Let id[1], . . . , id𝑛 be the parties in 𝑣 ’s subtree in 𝜏 .

Second, we observe that if *all-ind-secs-secure(epid) is true,
then no id𝑖 is corrupted in any epoch epid𝑗 . The reason is that
for any id𝑖 , each epid𝑗 is connected to epid, and epid is one of
epid0, . . . , epidℓ , by a sequence of epochs not created by id𝑖 and
not removing or adding it. This is because any such operation
would replace 𝑣 ’s keys. Therefore, if id𝑖 was corrupted in some
epid𝑗 , then the predicate *ind-secs-secure(epid, id𝑖 ) would be
false and the predicate *all-ind-secs-secure(epid) would be
false, which contradicts CommitHashedepid.

Finally, it is left to show that 𝑣 .dk is held only by id[1], . . . , id𝑛
in epochs epid0, . . . , epidℓ . It is easy to see that this is implied by
the following statement:
Statement : Assume an id⊥ in an epoch epid⊥ stores a secret key

for a ratchet tree node 𝑣⊥ such that 𝑣⊥ .dk = 𝑣 .ek for some
𝑣 in 𝜏 . Then, there is party id𝑖 and a path between epid and
epid⊥ that does not heal id𝑖 , i.e., no epoch on the path is
created by id𝑖 , removes it or adds it.

We next prove the above statement by induction on the height of
𝑣⊥. For the base case where 𝑣⊥ is a leaf, observe that 𝑣⊥’s keys are
not generated from a seed and that 𝑣⊥ .dk is only stored by 𝑣⊥’s
owner after it generates it while creating an epoch. So, 𝑣⊥ .dk = 𝑣 .dk
can only happen if 𝑣⊥ .dk is generated by an id𝑖 when it creates an
epoch epid0 before epid. Therefore, epid0 is a common ancestor of
epid⊥ and epid and can be reached from both epochs by a path that
does not heal id𝑖 .

Now assume 𝑣⊥ is an internal node and the statement holds for
any node with smaller height. Let epid⊥0 be the epoch before epid⊥

that introduces 𝑣⊥ .dk into the state of id⊥. Further, let epid0 be the
epoch that introduces 𝑣 .dk into 𝜏 .

We have two cases: First, if epid⊥0 is not injected, then we must
have epid⊥0 = epid0. The reason is that the only non-injected epoch
introducing 𝑣 .ek is epid0. Moreover, all parties transitioning to
epid⊥0 = epid0 agree on the public ratchet tree, so 𝑣⊥ = 𝑣 and the
subtree of 𝑣⊥ = 𝑣 is the same in epid and epid⊥. Therefore, the
statement is obvious in this case.

Second, assume epid⊥0 is injected. Let 𝑢⊥ be the node in the
ratchet tree of epid⊥0 used by id⊥ to decrypt 𝑣⊥’s path secret 𝑠 . For
this proof sketch, we assume that there exists a node 𝑢 such that
𝑢.ek corresponds to 𝑢⊥ .dk and 𝑢.ek was used to encrypt 𝑠 when
epid0 was created.11 This means that 𝑢 is in the subtree of 𝑣 in
11This is only false if A manages to re-encrypt a securely encrypted 𝑠 under a different
key. Being able to do so implies breaking security ofmmPKE. Formally, the reduction
Bepid in the full proof searches for the solution 𝑠∗ in both A ’s RO queries and injected
messages that it decrypts using the Dec oracle or some other known keys. Accordingly,
𝑣∗ is taken to be the lowest whose secret is not inputted to the RO or re-encrypted
and injected.

epid0 and, since this tree is the same as in 𝜏 , also in the subtree of 𝑣
in epid. Further, 𝑢⊥ is in the subtree of 𝑣⊥ in epid⊥0 and, since this
tree is the same as in 𝑣⊥’s subtree in epid⊥, also in the subtree of
𝑣⊥ in epid⊥. Moreover, 𝑢⊥ is strictly below 𝑣⊥ and 𝑢⊥ .dk = 𝑢.dk,
so by induction hypothesis, there is anid𝑖 and a path between epid
and epid⊥ that does not heal id𝑖 . □

□

H.4 SAIK Guarantees Authenticity

The fourth and final Hybrid introduces authenticity, which is formal-
ized by restoring the authentic predicate. It is the ideal experiment
with Fcgka.
Hybrid 4: idealF4cgka,S4 .The functionalityF

4
cgka uses the original

authentic predicate from Fcgka. The simulator S4 is the
same as S4.

In the remainder of this section, we show that if Sig andMAC
are unforgeable and ifmmPKE ismmOW-RCCA secure, then SAIK
guarantees authenticity, that is, hybrids 3 and 4 are indistinguish-
able. We note that security of mmPKE is needed e.g. to guarantee
secrecy ofMAC keys.

Game-based perspective. We observe that hybrids 3 and 4 are
identical unless a bad event Forges occurs. Roughly, Forges happens
if A breaks authenticity, that is, if it successfully impersonates an
id𝑠 towards id𝑟 in an epoch epid such that authentic is true for
id𝑠 in epid. Therefore,A ’s advantage in distinguishing the hybrids
is upper bounded by the probability of Forges. This means that
distinguishing hybrids 3 and 4 can be seen as a typical authenticity
game, where the adversary wins by forging messages accepted by
the protocol, as expressed by Forges.

Bad events. Let A be any environment. The hybrids are identical
unless the following event Forges occurs: There exists an epoch epid
with two members id𝑠 and id𝑟 s.t. the following condition holds:
Condition Forges(epid, id𝑠 , id𝑟 ): authentic(epid, id𝑠 ) is true and

A makes id𝑟 accept a message that either (A) makes id𝑟
transition to a new epoch epid′ with HG[epid′] .inj true
(epid′ is injected) and HG[epid] .sndr = id𝑠 or (B) removes
id𝑟 and id𝑠 did not remove id𝑟 .

Note that (A) implies that asserting *auth-is-preserved in Fcgka
fails, and (B) implies that the assertion on input Receive that re-
moves the receiver fails. These are the only places where Fcgka
uses authentic.

Since epochs in detached trees are not authentic, in the remain-
der of the proof we only consider epochs in the main history-graph
tree. For such an epoch epid, authentic(epid, id𝑠 ) is true if either
the group secrets in epid or the individual secrets of id𝑠 are se-
cure. Accordingly, we define two sub-events of Forges depending
on which secrets are secure:
Event ForgesSym: There exists an epoch epid with two mem-

bers id𝑠 and id𝑟 such that *grp-secs-secure(epid) and
Forges(epid, id𝑠 , id𝑟 ) are true.

Event ForgesAsym: There exists an epoch epid with two mem-
bers id𝑠 and id𝑟 such that *ind-secs-secure(epid, id𝑠 )
and Forges(epid, id𝑠 , id𝑟 ) are true.
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It remains to bound the probability of each ForgesAsym and ForgesSym.

Asymmetric forgery.We next prove the following lemma

Lemma H.10. There exists a reduction B1 such that

Pr[ForgesAsym] ≤ 2𝑞𝑒 · AdvEUF-CMA
Sig (B1) .

B1 emulates hybrid 3 forA and embeds the challenge key vk∗ as
one of the verification keys honestly generated during the execution.
Keys are honestly generated when group members create epochs
during send: each send introduces one new key pair for the sender
and, in case of an add, one for the added member (in this case, it is
generated by the AKS at the moment of send). Therefore, there are
at most 2𝑞𝑒 key pairs. B1 chooses the index of the key to replace
by vk∗ at random. It uses the Sign oracle to sign honestly sent
messages that verify with vk∗. If a party holding the corresponding
ssk∗ is corrupted, it gives up.

We first show that if ForgesAsym occurs, then the receiver id𝑟
(see the definition of ForgesAsym) verifies the injected message with
an honestly generated key vk𝑟 . This means that B1 has a chance of
embedding vk∗ as vk𝑟 .

Claim 1. If ForgesAsym occurs then the key vk𝑟 used by id𝑟 to verify
the injected message is honestly generated.

Proof. Assume ForgesAsym occurs. Notice that vk𝑟 is introduced
into id𝑟 ’s state when it accepts a message from id𝑠 that transitions
it into an ancestor epid0 of epid𝑠 . Observe first that epid0 is not
injected. The reason is that no epoch between epid0 and epid𝑠 is
created by id𝑠 or removes it, since this would remove vk𝑟 from id𝑟 ’s
state. So, if epid0 was injected, *ind-secs-bad(epid0, id𝑠 ) would
be true and *ind-secs-secure(epid𝑠 , id𝑠 ) would be false, which
contradicts ForgesAsym.

This means that id𝑠 created epid0 during a send operation and
at that point generated an honest verification key vk𝑠 for itself. We
know (from the proof that SAIK guarantees consistency) that parties
in the same epoch agree on the ratchet tree, which contains all
verification keys. Therefore, vk𝑟 = vk𝑠 , so vk𝑟 is honestly generated.

□

We next show that no party holding the secret key sk𝑟 cor-
responding to vk𝑟 used by id𝑟 is corrupted. This means that if
ForgesAsym occurs and B1 guesses correctly and embeds vk∗ as vk𝑟 ,
then B1 does not give up when sk∗ is corrupted.

Claim 2. If ForgesAsym occurs then no party holding sk𝑟 correspond-
ing to vk𝑟 used by id𝑟 to verify the injected message is corrupted.

Proof. Assume towards a contradiction that ForgesAsym occurs
and a party holding sk𝑟 is corrupted in some epoch epid⊥. Let epid⊥0
be the epoch before epid⊥ which introduces sk𝑟 into its state.

Observe that (honest) parties only store the signing keys that
they generate themselves while creating epochs or that the AKS
generates for them when they are added. Moreover, such honestly
generated keys are not re-computed and the AKS generates a fresh
key pair each time a party is added. This means that the corrupted
party is id𝑠 . Moreover, if epid⊥0 is not injected, then it is the epoch
epid0 which introduces vk𝑟 into the state of id𝑟 . On the other hand
if epid⊥0 is injected, then it must add id𝑠 (and not be created by it).

Observe further that epid⊥0 and epid⊥ are connected by a path
of epochs not created by id𝑠 and not removing it, as this would

remove sk𝑟 . The epochs epid0 and epid𝑠 are connected by a path
with the same property. Therefore, if epid⊥0 is not injected, then
epid𝑠 can be reached, through epid⊥0 = epid0, from epid⊥ where
id𝑠 is corrupted via a path with above property. This makes the prdi-
cate *ind-secs-secure(epid𝑠 , id𝑠 ) false, contradicting ForgesAsym.
Moreover, it is easy to see that if epid⊥0 is injected, then the pred-
icate *exposed-ind-secs-weak(epid𝑠 , id𝑠 ) would be true, which
again makes *ind-secs-secure(epid𝑠 , id𝑠 ) false. □

By the two claims, with probability at least Pr[ForgesAsym]/(2𝑞𝑒 ),
both ForgesAsym occurs and id𝑟 uses vk𝑟 = vk∗ (since there are at
most 2𝑞𝑒 honestly generated keys). It is left to show that if this
happens, then B1 wins.

Claim 3. If ForgesAsym occurs and vk𝑟 = vk∗, then B1 wins.

Proof. Assume ForgesAsym occurs and vk = vk∗. There are two
cases: (A) id𝑟 transitions into an injected epoch epid′, (B) id𝑟 is
removed.

In case (A), id𝑟 checks that Sig.vrf (vk∗, confTag′, sig) is true.
Notice that confTag′ uniquely identifies epid′, because it is derived
by hashing epSec which identifies epid by definition (see the proof
of SAIK consistency). Since the epoch is injected and not created
by an honest party, no honest party signed confTag′. In particular
B1 never had to send confTag′ to the sign oracle. Therefore, B1
wins with the forgery (confTag′, sig).

For case (B), id𝑟 checks that Sig.vrf (vk∗, (id𝑠 , ‘rem’-id𝑟 , confTag),
sig) is true, where confTag uniquely identifies epid. ForgesAsym
guarantees that id𝑠 did not remove id𝑟 in epid, so it did not sign such
a triple. Therefore,B1 winswith ((id𝑠 , ‘rem’-id𝑟 , confTag), sig). □

Symmetric forgery. We next bound the probability of symmetric
forgery.

Lemma H.11. There exist reductions B2 and B3 such that

Pr[ForgesSym] ≤ 𝑞𝑒 · AdvEUF-CMA
MAC (B2)

+ 𝑞3𝑒 log(𝑞𝑛) · AdvmmOW-RCCA
mmPKE,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B3) + 3𝑞

2
𝑒𝑞ℎ/2𝜅 .

At a high level, recall that ForgesSym occurs for epoch epidwhen
the adversary A injects to some id𝑟 in epid a message that either
(A) makes id𝑟 transition to a new injected epoch or (B) removes
id𝑟 although it was not honestly removed. Triggering (A) requires
from A computing the confirmation tag which is the hash output
on epid’s initSec and the injected epoch’s context. Triggering (B)
requires forging a MAC under epid’s secret membKey.

To bound the probability of each (A) and (B), we first replace
epid’s initSec andmembKey by random values, independent of the
rest of the experiment. To make this possible, the adversary first
commits to the epoch epid. This results in a security loss of 𝑞𝑒 (for
guessing the epoch). Now assuming mmPKE is secure, the change
cannot be noticed as long as *grp-secs-secure in epid (part of
the confidential predicate) is true. Since ForgesSym requires this
to be true at the moment it occurs (and the predicate is monotone),
the change does not affect the probability that ForgesSym occurs
(for the first time).

Once initSec is random, in the ROM, the probability of (A) is
negligible. Once membKey is random, the probability of (B) is neg-
ligible, assuming that MAC is unforgeable.

Formally, we first define the new hybrid.
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Hybrid 3
∗
: The same as hybrid 3, except at the beginning A

announces an epoch epid andmembKey and initSec in epid
are random and independent.

Further, the following event is analogous to ForgesSym but in
hybrid 3∗.
Event ForgesSym ∗ : In hybrid 3∗, there exist two members id𝑠 and

id𝑟 in epid announced by A s.t. *grp-secs-secure(epid)
and Forges(epid, id𝑠 , id𝑟 ) are true.

Next, we show that changing to hybrid 3∗ does not affect the
probability of the bad event much.

Claim 4. There exists a reduction B3 such that

Pr(ForgesSym∗)−Pr(ForgesSym)

≤ 𝑞3𝑒 log(𝑞𝑛) · AdvmmOW-RCCA
mmPKE,𝑞𝑒 ,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B3) + 3𝑞

3
𝑒𝑞𝑛/2𝜅 .

Proof. First, observe that if A triggers ForgesSym in hybrid 3
with probability at least 𝜖 , then A ′ who guesses epid at random
triggers ForgesSym ∗ but in hybrid 3 (i.e.,membKey and initSec are
not random) with probability at least 𝜖/𝑞𝑒 .

Second, observe thatmembKey and initSec are derived the same
way as the group key — each key is the result of hashing the epoch
secret with a different label. Therefore, the proof analogous to
the proof of Theorem H.3 shows that the difference between the
probability of ForgesSym ∗ in hybrid 3 and ForgesSym ∗ in hybrid 3∗
is bounded by𝑞2𝑒 log(𝑞𝑛)·AdvmmOW-RCCA

mmPKE,𝑞𝑒 ,𝑞𝑒 log(𝑞𝑛),𝑞𝑛 (B3)+3𝑞
2
𝑒𝑞𝑛/2𝜅 .

□

Finally, it is left to bound the probability of ForgesSym ∗ . To this
end, we define two sub-events:
Event ForgesSym∗ (𝐴) : In hybrid 3∗, there exist two members

id𝑠 and id𝑟 in epid announced by A such that the predi-
cate *grp-secs-secure(epid) is true and (A) id𝑟 accepts
a message that makes it transition to an epoch epid′ with
HG[epid′] .inj true.

Event ForgesSym ∗ (B) : In hybrid 3∗, there exist two members
id𝑠 and id𝑟 in epid announced by A such that the predi-
cate *grp-secs-secure(epid) is true and (B) id𝑟 accepts a
message that removes it but id𝑠 did not remove id𝑟 in epid.

We next bound the probability of each sub-event.

Claim 5. In the ROM, we have

Pr(ForgesSym∗(A)) ≤ 𝑞𝑑/2𝜅 ,
where 𝑞𝑑 is the number of delivered messages.

Proof. Recall that epid′ is identified by its unique epoch secret
epSec′, computed as the hash of initSec of epid and the context
of epid′. Since in hybrid 3∗ initSec is random and independent of
the experiment, so is epSec′. Further, recall that id𝑟 accepts the
message only if the attached confirmation tag confTag′ is equal
to the hash of epSec′ with appropriate label. This matches with
probability at most 1/2𝜅 . The claim follows by the union bound on
the number of injection attempts. □

Claim 6. There exists a reduction B2 such that

Pr(ForgesSym∗(B)) ≤ AdvEUF-CMA
MAC (B2).

Proof. B2 emulates hybrid 3∗ forA , except instead of the MAC
key *mem in epid announced by A , B2 uses its EUF-CMA Sign
and Verify oracles. Since membKey is random and independent in
hybrid 3∗, B2 simulates the experiment perfectly.

It is left to show that if ForgesSym ∗ (B) occurs, then B2 wins.
Assume the event occurs. B2 outputs the forgery consisting of the
tag tag𝑡 from the injected packet removing id𝑟 and the message
(id𝑠 , ‘rem’-id𝑟 , confTag) where confTag is the confirmation tag in
epid. Since id𝑟 accepted the message, MAC verification passes.

Finally, we claim that B2 did not query this message to the Sign
oracle. Observe that this only happens if an honest party in sends
out a MAC over (id𝑠 , ‘rem’-id𝑟 , confTag). Since only id𝑠 MAC’s its
identity and only parties in epidMAC confTag, this only happens
if id𝑠 removes id𝑟 in epid. This is a contradiction with ForgesSym
(B). □

H.5 Left-Balanced Trees

In this section, we formally define 𝑞-ary trees used by SAIK to
implement ratchet trees.

Definition H.12 (LBT). For 𝑞, 𝑛 ∈ N with 𝑞 > 1, the 𝑛th left-
balanced 𝑞-ary tree (LBT), denoted LBT𝑞,𝑛 , is defined as follows.
LBT𝑞,1 is the tree consisting of one node. For 𝑛 > 1, if𝑚 = max{𝑞𝑝 :
𝑝 ∈ N ∧ 𝑞𝑝 < 𝑛} and 𝑘 = ⌊𝑛/𝑚⌋, then LBT𝑞,𝑛 is the tree whose
root has the first 𝑘 children equal to LBT𝑞,𝑚 and, if 𝑛 −𝑚𝑘 > 0, the
(𝑚 + 1)-st child equal to LBT𝑞,𝑛−𝑚𝑘 .

Definition H.13 (Full LBT). For 𝑞, 𝑛 ∈ N, LBT𝑞,𝑛 is full if 𝑛 is a
power of 𝑞.

Operation of SAIK requires a procedure addLeaf (𝜏, 𝑣) which in-
serts a leaf 𝑣 into a ratchet tree 𝜏 while preserving certain properties
of 𝜏 . In particular, addLeaf should preserve node indices 𝑣 .nodeIdx.
They are computed as follows: all nodes are numbered left to right
— i.e., according to an in-order depth-first traversal of the tree —
starting with 0. See Fig. 22 for an example.
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Figure 22: The trees LBT3,7 (left) and LBT3,8 (right) with node

indices.

Definition H.14 (addLeaf). The algorithm addLeaf (𝜏, 𝑣) takes as
input a 𝑞-ary tree 𝜏 with root 𝑟 and 𝑛 nodes, and a fresh leaf 𝑣 and
returns a new tree 𝜏 ′ with 𝑣 inserted and 𝑣 .nodeIdx = 𝑛 + 1.

a) If 𝜏 is full, then create a new root 𝑟 ′ for 𝜏 ′. Attach 𝑟 as the
first child of 𝑟 ′ and 𝑣 as the second child.

b) Else if 𝑟 .children contains only nodes with full subtrees, let
𝜏 ′ = 𝜏 except 𝑣 is attached as the next child of 𝑟 .

c) Else, let 𝑢 be the first in 𝑟 .children s.t. its subtree 𝜏𝑢 is not
full. Let 𝜏 ′ = 𝜏 except 𝜏𝑢 is replaced by addLeaf (𝜏𝑢 , 𝑣).

The following lemma formalizes the correctness of addLeaf. We
prove it in App. H.5.

Theorem H.15. 𝜏 = LBT𝑞,𝑛 =⇒ addLeaf (𝜏, 𝑣) = LBT𝑞,𝑛+1.
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Proof. The proof is by strong induction on 𝑛. If 𝑛 < 𝑞, then
the statement easily follows by inspection (only cases a) and b) of
addLeaf apply). Fix 𝑛 ≥ 𝑞 and assume the statement holds for all
𝑘 < 𝑛. Let 𝑟 be the root of 𝜏 and let max-pow(𝑛) = max{𝑞𝑝 + 1 :
𝑝 ∈ N ∧ 𝑞𝑝 < 𝑛}.

If 𝜏 is full, thenmax-pow(𝑛 + 1) = 𝑛. Furthermore, the root of 𝜏 ′
has only two children: 𝜏 = LBT𝑞,𝑛 = LBT𝑞,max-pow(𝑛+1) and LBT𝑞,1,
so 𝜏 ′ = LBT𝑞,𝑛+1 per definition.

Else, max-pow(𝑛) = max-pow(𝑛 + 1) (this holds since 𝑛 ≥ 𝑞).
Moreover, it is easy to see that only the last node in 𝑟 .children can

be non-full. This means that the root 𝑟 ′ of 𝜏 ′ has the following
children (in order):

• All children of the root 𝑟 of 𝜏 which have full subtrees.
These subtrees are equal to LBT𝑞,max-pow(𝑛) which is the
same as LBT𝑞,max-pow(𝑛+1) .

• If 𝑟 has no non-full subtrees, then the last child of 𝑟 ′ is 𝑣
with subtree LBT𝑞,1.
• Else if the last child 𝑢 of 𝑟 is non-full and equals to LBT𝑞,𝑥

for 𝑥 < max-pow(𝑛), then the last child of 𝑟 ′ is LBT𝑞,𝑥+1
by induction hypothesis.

Clearly, 𝜏 ′ = LBT𝑞,𝑛+1 in all cases. □
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