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ABSTRACT
Payment channels (PC) are a promising solution to the scalability

issue of cryptocurrencies, allowing users to perform the bulk of

the transactions off-chain without needing to post everything on

the blockchain. Many PC proposals however, suffer from a severe

limitation: Both parties need to constantly monitor the blockchain

to ensure that the other party did not post an outdated transaction.

If this event happens, the honest party needs to react promptly

and engage in a punishment procedure. This means that prolonged

absence periods (e.g., a power outage) may be exploited bymalicious

users. As a mitigation, the community has introduced watchtowers,
a third-party monitoring the blockchain on behalf of off-line users.

Unfortunately, watchtowers are either trusted, which is critical

from a security perspective, or they have to lock a certain amount

of coins, called collateral, for each monitored PC in order to be held

accountable, which is financially infeasible for a large network.

We present Sleepy Channels, the first bi-directional PC protocol

without watchtowers (or any other third party) that supports an

unbounded number of payments and does not require parties to be

persistently online. The key idea is to confine the period in which

PC updates can be validated on-chain to a short, pre-determined

time window, which is when the PC parties have to be online. This

behavior is incentivized by letting the parties lock a collateral in

the PC, which can be adjusted depending on their mutual trust and

which they get back much sooner if they are online during this

time window. Our protocol is compatible with any blockchain that

is capable of verifying digital signatures (e.g., Bitcoin), as shown

by our proof of concept. Moreover, our experimental results show

that Sleepy Channels impose a communication and computation
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overhead similar to state-of-the-art PC protocols while removing

watchtower’s collateral and fees for the monitoring service.
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1 INTRODUCTION
Bitcoin has put forward an innovative payment paradigm both

from the technical and the economical point of view. A permis-

sionless and decentralized consensus protocol is leveraged to agree

on the validity of the transactions that are afterwards added to

an immutable ledger. This approach, however, severely restricts

the transaction throughput of decentralized cryptocurrencies. For

instance, Bitcoin supports about 10 transactions per second and

requires confirmation times of up to 1 hour.

Payment channels (PC) [40] have emerged as one of the most

promising scalability solutions. A PC enables an arbitrary number

of payments between users while only two transactions are re-

quired on-chain. The most prominent example, currently deployed

in Bitcoin, is the Lightning Network (LN) [6], which at the time

of writing hosts bitcoins worth more than 130𝑀 USD, in a total of

more than 19k nodes and more than 81k channels.

In a bit more detail, a PC between Alice and Bob is created with

a single on-chain transaction open-channel, where users lock some

of the coins into a shared output controlled by both users (e.g.,

requiring a 2-of-2 multisignature), effectively depositing their coins

and creating the channel. Both users additionally make sure that

they can get their coins back at a mutually agreed expiration time.

https://creativecommons.org/licenses/by/4.0/
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After the channel has been successfully opened, they can pay each

other arbitrarily many times by exchanging authenticated off-chain

messages representing updates of their share of coins in the shared

output. The PC can be finally closed by including a close-channel
transaction on-chain that effectively submits the last authenticated

distribution of coins to the blockchain (or after the PC has expired).

Issue with bidirectional channels. While the initial versions of

payment channels were unidirectional (i.e., only payments from Al-

ice to Bob were allowed), several designs for bi-directional payment

channels have been proposed so far. The technical crux of these

protocols is to ensure that no coins are stolen between the mutually

untrusted Alice and Bob. To illustrate the problem, imagine that the

current balance of the channel bal is {Alice:10, Bob:5 }. Alice pays 3
coins to Bob, moving the channel balance to bal’ as {Alice:7, Bob:8}.
At this point, Alice benefits from bal while Bob would benefit if

bal’ is the one established on-chain.

The different designs of bi-directional payment channels avail-

able so far provide alternative solutions for this crucial dispute

problem (see Table 1). One approach consists on leveraging the ex-

istence of Trusted Execution Environment (TEE) at both Alice and

Bob [33]. This approach, however, adds a trust assumption that goes

against the decentralization philosophy of cryptocurrencies and it

is unclear whether it holds in practice [23, 48]. Another approach

consists on relying on a third-party committee [14, 22] to agree

on the last balance accepted by Alice and Bob. Again, this adds

an additional assumption on the committee and current proposals

work only over smart contracts as those available in Ethereum.

The most promising approach in terms of reduced trust assump-

tions and backwards compatibility with Bitcoin, which is the one

implemented in the LN, is based on the encoding of a punishment

mechanism that allows Alice (or Bob) rescue all the coins in a chan-

nel if Bob (or Alice) attempts to establish a stale or outdated balance

on-chain. Following with the running example, after the balance

bal′ is established, Alice and Bob exchange with each other a re-

vocation key associated to bal that effectively allows one of the

parties to get all the coins from bal if it is published on-chain by

the other party.

In detail, imagine that after bal′ has been agreed and bal has been
revoked, Alice (the case with Bob is symmetric) attempts to close the

channel with balance bal. As soon as bal is added on-chain, a small

punishment time 𝛿 is established within which Bob can transfer all

coins in bal to himself with the corresponding revocation key. After

𝛿 has expired, bal is established as final. This mechanism with time

𝛿 is called relative timelock1 in the blockchain folklore (i.e., relative

to the time bal is published).
The reader might ask at this point: And what happens if Bob

does not monitor the blockchain on time (e.g., Bob crashes or he

is offline) to punish the publishing of bal? In that case, Alice effec-

tively manages to publish an old state that would be more beneficial

for her. Therefore, the above mechanism makes an important re-

quirement for the channel users: Both Alice and Bob have to be

online persistently to ensure that if one of them cheats, the other

can punish within 𝛿 . However, if Alice and Bob are regular users, it

is highly likely that they go offline sporadically if not for prolonged

periods of time. Moreover, existing currencies like Monero do not

1
This can be realized via checkSequenceVerify (CSV) script available in Bitcoin.

possess the capability for relative timelock in their script, and there-

fore the approach falls short of backwards compatibility with some

prominent currencies.

The role of watchtowers. In order to avoid this problem, hon-

est users (Bob in our running example) can rely on a third party,

calledWatchtower, that does the punishing job on his behalf. Sev-

eral watchtower constructions have been proposed so far [11, 15,

16, 32, 37, 38], but they all share the same fundamental limitation:

watchtowers are either trusted, which is critical from a security

perspective, or they have to lock a certain amount of coins, called

collateral, for each monitored channel in order to be held account-

able, which is financially infeasible for a large network.

Given this state of affairs, in this work we investigate the follow-

ing question: Is it possible to design a secure, and practical payment
channel protocol that does not require channel parties to be persistently
online, nor additional parties (not even watchtowers) or additional
trust assumptions, and is backwards compatible (no complex scripts)
with current UTXO-based cryptocurrencies?

1.1 Our Contribution
In this work, we answer this question in the affirmative. We design

Sleepy Channels, a new bi-directional payment channel protocol

(Section 5) that does not require either of the channel parties to be

persistently online, and therefore does not require the services of a

watchtower. Our protocol allows users to schedule ahead of time

when they have to come online to validate possible channel updates.

This requirement is present even in the watchtower proposals [11,

15, 16, 32, 37, 38], where the users are required to come online

before a specific time to ensure the watchtower has acted correctly.

Moreover, our protocol does not make use of any complex script

and is therefore backwards compatible with existing UTXO-based

cryptocurrencies, many of which can avail bi-directional payment

channels without additional trust assumptions for the very first

time.

At the core of our Sleepy Channels protocol, we have a novel

collateral technique that plays a dual role: (1) Enables the punish-

ment of a misbehaving channel user within a predetermined time,

irrespective of when the cheating exactly takes place. In technical

terms, we no longer require relative timelocks (CSV). (2) Incentivises
a channel user to cooperate in closing the channel if the other chan-

nel user wishes to do so. Our collateral technique requires both

users to lock some amount of collateral each (same or different

amounts for the two users), whose exact value is determined by

the level of trust between the users: High trust level means a low

collateral, while a low trust level means a high collateral.

Our protocol only involves signature generation on mutually

agreed transactions, along with the use of verifiable timed signa-
tures [44, 46] for achieving backward compatibility with existing

currencies, especially privacy-preserving currencies like Monero

for the first time. With the aid of techniques from [44, 46], the trans-

actions in our protocol look exactly the same as any other regular

transaction in the currency, thereby ensuring high fungibility. If the
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Table 1: Comparison among payment channel approaches.We do not consider [14, 22] as they rely on third-party committees with additional trust assumptions.
Online assumption refers to the honest user be online for revocation of an old state on-chain. Unrestricted lifetime means the protocol does not require users
to close the channel before a pre-specified time. Unbounded payments refers to channel users making any number of payments while the channel is open. In
terms of scripts, DS refers to digital signatures, SIGHASH_NOINPUT refers to a specific signature scheme [24], Seq. number refers to attaching a state number to
a transaction and verifying if it is greater or smaller than the current height of the blockchain. In case of Duplex [25], 𝑑 is the number of payments made in the
channel. LRS refers to Linkable Ring Signature scheme used in Monero [46], and DLSAG refers to the transaction scheme proposed in [39].

Bi-directional

Pre-schedule

online

Unrestricted

lifetime

Unbounded

payments

Script requirements
1

Spillman [43] ✗ ✓ ✗ ✓ DS

CLTV [47] ✗ ✓ ✗ ✓ DS + CLTV

Duplex [25] ✓ ✓2 ✗ ✗ DS + CLTV

Eltoo [24] ✓ ✗ ✓ ✓ DS + CSV + SIGHASH_NOINPUT + Seq number

Lightning [6] ✓ ✗ ✓ ✓ DS + CSV

Generalized [13] ✓ ✗ ✓ ✓ DS
3
+ CSV

Paymo [46] ✗ ✓ ✗ ✓ Monero’s LRS + CLTV

DLSAG [39] ✗ ✓ ✗ ✓ DLSAG + CLTV

Teechan [33] ✓ ✓ ✓ ✓ DS + TEE

This work ✓ ✓ ✗ ✓ DS + CLTV

This work+[44] ✓ ✓ ✗ ✓ DS

1
: Requiring less script capabilities from the blockchain results in better compatibility with currencies, and better on-chain privacy (fungibility).

2
: This requires that the transactions of the first level of the tree use CLTV instead of CSV.

3
: The digital signature scheme used must have adaptor signature [13] capability.

currency already supports checkLockTimeVerify (CLTV) script
2
,

then our protocol only requires signature generation.

We formally prove the security of our Sleepy Channels proto-

col in the Universal Composability (UC) [20] framework. For this,

we design an ideal functionality (in Section 4) that captures a bi-

directional payment channel with the same security and efficiency

guarantees as the functionality from [13], except that we achieve

delayed finality with punish. This notion guarantees that until some

time T, an honest party can receive coins according to either the

latest payment state or all the coins from the channel (if the other

misbehaves). Due to space constraints, the formal protocol descrip-

tion and the security analysis in the UC framework can be found

in Appendix A.

We evaluate the performance of our Sleepy Channels protocol

in the presence of CLTV and our results show that the time and

communication cost are inline with the highly efficient protocols

used in Lightning Network (LN) [6]. We further conduct two simu-

lation experiments. In the first, we measure how much centralized

collateral watchtower service providers need to allocate, in order to

serve certain percentage of the LN. We analyze watchtower propos-

als that fully collateralize the channels, e.g., [16, 37, 38]. For 30% of

the LN, this amounts to around 890 BTC (or roughly 39M USD) of

collateral. For Sleepy Channels on the other hand, the collateral is

distributed, without the need of a central entity owning this amount

of money. In the second experiment, we measure the channels at

risk of having their funds stolen given a chance of failing to come

online once a day over a given time period. Using LN channels over

a one month period, for a chance of 0.1% there are 5k channels at

risk, for a chance of 1% there are 49k channels are at risk (roughly

2
The script (available in Bitcoin) sets a transaction to be valid only after some pre-

specified height (𝑡 ) of the blockchain. That is, the transaction is set to be valid only

after some point of time in the future.

60% of LN). For Sleepy Channels over the same period, there are

around 97% fewer channels at risk.

1.2 Related Work
Below, we discuss and compare other prior works that are relevant

to our work.

Comparison to other payment channel protocols. CLTV [47]

and Spillman [43] proposed uni-directional payment channels be-

tween Alice and Bob where payments could only be made to Bob

and thus the balance of Bob only increases. Therefore there was no

payment revocation as Bob always preferred the most recent pay-

ment. Moreover the channel had a fixed expiry that is set at the time

of the channel creation. Duplex channels [25] support bi-directional

channels but only support a limited number of payments as with

each successive payment, the lifetime of the channel decreases.

Moreover, the protocol requires log𝑑 number of transactions to

close the channel where 𝑑 is the number of payments made. Other

payment channel proposals typically require only one transaction

to close. Eltoo [24] also supports bi-directional payments but re-

quires special signature scheme like SIGHASH_NOINPUT, relative

timelocks (CSV) and related scripts, and therefore is not compati-

ble with several of the existing currencies, including Bitcoin itself.

Lightning channels [6] are the most popular channels currently

in use that support bi-directional payments but require relative

timelocks (CSV). Generalized channels [13] support bi-directional

payments but again require relative timelocks (CSV). More impor-

tantly they require the underlying signature scheme to support

adaptor signatures [13] capability
3
. Paymo [46] and DLSAG [39]

are proposals tailored for Monero that only support uni-directional

3
Recently it was shown that deterministic signatures do not possess adaptor signature

capabilities [29], that includes signature schemes like BLS.
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payments. Teechan [33] is a bi-directional payment channel pro-

posal but requires both users to possess TEEs. A summary of the

comparison is presented in Table 1.

Payment channels that support arbitrary conditional payments

are referred to as state channels [22, 27, 28] and require complex

scripts like smart contracts and are incompatible with UTXO-based

currencies. Bi-directional payments can also be realized making

use of the smart contract support of a third ledger (like Ethereum)

via ZK-Rollups [12]. However the solutions available are far from
ideal either due to high computational costs off the chain or high

costs on-chain in terms of gas costs or transaction fees [2]. More-

over, zk-rollups rely on a coordinator for liveness, meaning that if

the coordinator goes offline, every user must submit a punishment

transaction on-chain, which is costly, effectively closes all chan-

nels and largely increases the overhead on-chain. Finally, such a

coordinator is in the position to observe every single transaction

between any two users (thus largely limiting their privacy) and

decide whether to process such transactions or censor them instead.

Additionally, the payment channel proposals can be compared

based on the number of transactions it requires to close a channel.

For comparable security, we consider the prior payment channel

protocols to be supported by the state-of-the-art watchtower pro-

posal [38]. We have that when parties are honest and trustful of

each other, prior works require 2 transactions to close a channel

(one to close the channel and one for watchtower collateral), while

Sleepy Channels requires only 1 transaction. In case where parties

are honest and distrustful, prior works require in total 3 transactions

to close the channel same as Sleepy Channels if parties wish for a

fast closure. Notable exception is Duplex which requires log 𝑑 . In

case where parties are dishonest and in the worst case, prior works

like Duplex requires log𝑑 , Eltoo requires 5, Lightning requires 4

and generalized channels requires 5 transactions in total. Sleepy

channels on the other hand requires only 3 transactions in total.

Here total refers to the total number of transactions to misbehave,

punish and close the channel.

Advantages over Watchtowers. As discussed above, parties may

avail the services of a third party like a watchtower. Monitor [11] is

a watchtower proposal requiring no special scripts. However, an

offline watchtower is not penalised and may even get rewarded if

a revoked payment is successful on-chain. DCWC [15] is another

such proposal that fails to penalise an offline watchtower where the

honest user ends up losing coins as a revoked payment is posted

on the chain. Outpost [32] requires a OP_RETURN script and also

requires the channel user (hiring the watchtower) to pay the watch-

tower for every channel update. The OP_RETURN script (available

in Bitcoin) is used to enter arbitrary information of limited size into

a transaction. This however increases the size of the transaction

thus requiring a transaction higher fee, and also affects the fungibil-

ity of the coins involved in the transaction. PISA [37] heavily relies

on smart contract support and also requires the watchtower to lock

large collateral (equal to the channel capacity) along with the chan-

nel. Cerberus channels [16] and FPPW [38] are recent proposals

that suffer from the problem of revealing the channel balance to the

watchtower per update and therefore lack balance privacy. Similar

to PISA, they also require the watchtower to lock large collateral

along with the channel.

All of the above watchtower proposals also fundamentally lack

channel unlinkability as the watchtower can clearly track channel

related transactions on-chain. Except for PISA, all of the above

proposals still require relative timelocks (CSV), which can be re-

placed with absolute timelocks (CLTV) at the expense of restricted

lifetimes for the channels. To incentivize watchtowers, the above

protocols require the users to pay a one-time or a persistent fee to

the watchtower even if the users behaved honestly. On the other

hand, users of Sleepy Channels do not lose any coins under honest

behaviour as they are guaranteed to get back their collateral.

2 SOLUTION OVERVIEW
In this section we give a high level overview of our construction.

We start by reviewing the state-of-the-art in payment channels, i.e.,

those employed in the Lightning Network (LN) [6], illustrating its

limitations and, based on that, gradually introducing our solution.

Our solution consists of a base solution that removes the need for

users to constantly be online and an optional extension which aims

to disincentivize users blocking funds in the case that they are

online.

Lightning channels. Two parties 𝐴 and 𝐵 lock up some money

in a joint address (or channel) Ch𝐴𝐵 , as described in Figure 1. They

can perform payments to each other by exchanging payment trans-

actions txPay, which commit to an updated balance of both users,

𝑣𝐴 for 𝐴 and 𝑣𝐵 for 𝐵 in this case. Party 𝐴 gets a signed transaction

tx𝐴Pay, while party 𝐵 gets a signed transaction tx𝐵Pay, both of which

reflect the above payment state. In order for this mechanism to

be secure, the parties need to revoke the previous state whenever

an update is performed. This is done by exchanging a punishment

transaction that gives the balance of the cheating user to the honest

user, should the former try to post an old (revoked) state. To give

precedence to the punishment transaction, if party 𝐴 posts tx𝐴Pay,
it is forced to wait for a relative timelock of Δ (in practice, one day)

until it can spend the balance 𝑣𝐴 , in order to give time to the other

party 𝐵 to punish. Notice that party 𝐵 can spend its balance 𝑣𝐵
immediately after tx𝐴Pay is posted. On the other hand, we have the

analogous case for party 𝐵 with the transaction tx𝐵Pay.
With this mechanism in place, a party that wants to prevent

being cheated on needs to be online constantly throughout the

lifetime of the channel and to monitor the blockchain for old states.

If it does, it has Δ time units immediately after the posting of txPay
to perform the punishment. One workaround for this problem is to

employ a trusted third party, aWatchtower, which takes over the

responsibility of monitoring the ledger, thereby allowing a party

to safely go offline. As pointed out previously, this approach has

fundamental drawbacks such as the need for the Watchtower to

lock up coins for each channel that it watches over, besides the fees

requested by the Watchtower for its service.

Attempt to remove relative timelock. To drop the requirement

for users to constantly be online, an attempt is to replace the relative

timelock of Δ time units in Figure 1 with an absolute timelock until

time T. This is done by specifying T as a block height using the

CLTV script. In other words, the party 𝐴 that posts a state tx𝐴Pay
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tx𝐹

𝑓

tx𝐴Pay

𝑣𝐵

𝑣𝐴

𝐵

𝐴

Output𝐴

+Δ

𝐵
Upon revocation

... analogous for 𝐵

Ch𝐴𝐵

Figure 1: The transaction flow of LN channel between 𝐴 and 𝐵.
Rounded boxes represent transactions, rectangles within represent
outputs of the transaction: here 𝑣𝐴 + 𝑣𝐵 = 𝑓 . Incoming arrows rep-
resent transaction inputs, while outgoing arrows represent how an
output can be spent. Double lines from transaction outputs indicate
the output is a shared address. A single line from the transaction
output indicates that the output is a single party address. We write
the timelock (Δ) associated with a transaction over the correspond-
ing arrow.

has to wait until time T (irrespective of when tx𝐴Pay is posted on the

chain) before it can retrieve the funds 𝑣𝐴 . This allows 𝐵 to safely

go offline during the channel lifetime and only come back shortly

before T to check if an old state was posted by 𝐴. We note that

this is completely symmetric: 𝐴 can safely go offline until shortly

before T and then check whether or not 𝐵 has posted an old state

tx𝐵Pay. However, this naive attempt punishes honest parties that

wish to close their channels. That is, in the case where an honest

party, w.l.o.g. say 𝐴, posts the latest state, it still needs to wait until

time T before having access to its funds 𝑣𝐴 . This which could be

undesirable as T could span several weeks.

Counter-partyConfirmation.While it is true that𝐵 (the counter-

party) can safely go offline until shortly before T, this is of course
optional and one could think of cases where 𝐵 is not offline. In

the case that 𝐵 is online, 𝐵 can go ahead and confirm that 𝐴 did

not misbehave, i.e., 𝐴 posted the latest state. So if 𝐵 is online and

decides to retrieve its funds 𝑣𝐵 (thereby implicitly confirming the

state dictated by tx𝐴Pay),𝐴’s funds should be automatically unlocked

as well.

We can implement this improvement as shown in Figure 2 where

the counter-party 𝐵 can confirm a payment transaction thus en-

abling party 𝐴 to immediately retrieve its funds 𝑣𝐴 and not wait

until T. To do this, after 𝐴 posts the state tx𝐴Pay, 𝐵 has the option

(in the case 𝐵 is online) to post the transaction tx𝐴,𝐵Fpay (along with

a signature on it) which lets 𝐴 unlock its funds immediately by

means of posting the transaction tx𝐴∗Fpay (along with a signature

on it). Another way to think of this is that by unlocking 𝐵’s funds

using tx𝐴,𝐵Fpay, 𝐵 gives a confirmation that tx𝐴Pay is indeed the latest

state. On a technical level, the parties 𝐴 and 𝐵 would create a fast

unlock transaction tx𝐴∗Fpay that can be spent if 𝐵 puts its transaction

tx𝐴,𝐵Fpay, using an output thereof as input. With this improvement,

𝐴’s money 𝑣𝐴 either stays locked until T if 𝐵 is offline or𝐴’s money

becomes unlocked as soon as 𝐵 spends its output 𝑣𝐵 , in case 𝐵 is

online before T.

tx𝐹

𝑓

tx𝐴Pay

𝑣𝐴

𝑣𝐵

tx𝐴,𝐵Fpay

𝜖

𝑣𝐵 − 𝜖 𝐵

ExitCh𝐴

tx𝐴∗Fpay
𝑣𝐴 + 𝜖 𝐴

𝐴

SleepyCh𝐴

≥ 𝑇

𝐵
Upon revocation

Fast finish

... analogous for 𝐵

Ch𝐴𝐵

Figure 2: Transaction flow of our base solution. Here double lines
from transaction outputs indicate that the output is a 2-party shared
address between𝐴 and 𝐵. A single line from the transaction output
indicates that the output is a single party address. We have 𝑣𝐴 +𝑣𝐵 =

𝑓 and 𝜖 is some negligible amount of coins.

2.1 Extension: Incentivizing a fast unlock
In the above solution, note that the balance 𝑣𝐵 that 𝐵 committed

to in the latest state can be very small or even 0, such that the

incentive for 𝐵 to give this fast confirmation is small or nonexistent.

This leaves 𝐴 to wait for a potentially long time (until T) and opens
the door to Denial-of-Service (DoS) attacks from 𝐵.

To avoid a situation where 𝐵 is online, but has no or little incen-

tive to unlock its funds and thereby let𝐴 unlock its channel balance

early, we add the following extension (as described in Figure 3). To

add an incentive for 𝐵 to unlock early, we let 𝐵 add a collateral of

amount 𝑐 . For simplicity, let 𝑐 be equal to the channel capacity 𝑓 .

𝐵’s collateral is locked in such a way that it remains locked until

𝐵 gives a fast confirmation for unlocking 𝐴’s coins. Note that 𝐴’s

coins are now guaranteed to be smaller (or equal in the worst case)

to the amount of coins 𝐵 has locked. This means that a malicious

𝐵 that is online and attempts to perform a DoS attack on 𝐴, ends

up locking at least as many coins from itself until T. Also note that

for the case where 𝐴 posts an old state, 𝐵 can first punish and then

immediately unlock his coins plus collateral. Analogously, 𝐴 puts

the same amount 𝑐 as a collateral for the symmetric case. Later

in Section 5.2, we discuss scenarios where the two parties may lock

different amounts of collateral each.

Making the collateral dynamic.We further refine this solution

by changing 𝑐 from the total capacity of the channel 𝑓 to a parameter

chosen by both parties of the channel. Depending on the level of

trust between the two parties, the value of 𝑐 can be anything from

0 up to 𝑓 . We note that setting 𝑐 = 0 yields the base solution. Once

the two parties agreed on a value for 𝑐 , during the funding of the

channel, they can fund the channel with the total channel capacity

𝑓 plus the additional collateral 2𝑐 (𝑐 from each party). Note that

the payments are still made with the channel capacity of 𝑓 and

the collateral coins 2𝑐 are only used as incentive for fast closing of

channels. And after the closing, both party 𝐴 and 𝐵 get back their

original collateral amounts of 𝑐 coins each.

There is still one problem left though. Again, if the balance of

𝐵 is 0 and 𝐴’s balance is the capacity of the channel 𝑓 , then 𝐵

can lock up 𝑐 coins and will lock up 𝑐 + 𝑓 coins of 𝐴 before the
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tx𝐹

𝑓 + 2𝑐

tx𝐴Pay

𝑐

𝑣𝐴

𝑣𝐵 + 𝑐

𝐴

tx𝐴,𝐵Fpay

𝜖

𝑣𝐵 + 𝑐 − 𝜖 𝐵

ExitCh𝐴

tx𝐴∗Fpay
𝑣𝐴 + 𝜖 𝐴

𝐴

SleepyCh𝐴

≥ 𝑇

𝐵
Upon revocation

Fast finish

... analogous for 𝐵

Ch𝐴𝐵

Figure 3: Transaction flow of the extension to our protocol. Again,
𝑣𝐴 + 𝑣𝐵 = 𝑓 and 𝜖 is some negligible amount of coins. The collateral
𝑐 can be chosen as a value 0 ≤ 𝑐 ≤ 𝑓 . For 𝑐 = 0, we get Figure 2.

fast confirmation. In a final improvement, we resolve this issue

by refining the transaction tx𝐴Pay so that 𝐴 gets back its part of

the collateral immediately. This is safe since the collateral serves

merely the purpose of incentivizing the counter-party (in this case

𝐵), to acknowledge that the transaction indeed corresponds to the

latest channel state. Note that the posting party 𝐴 only unlocks

its collateral right away and not its channel balance set by tx𝐴Pay.

Indeed, in the extreme case, if 𝐴 posts tx𝐴Pay on the chain, 𝐴 can

redeem its collateral 𝑐 immediately while 𝐵 locks up 𝑐 coins and 𝐴

locks up only 𝑓 coins. If 𝑐 = 𝑓 , notice that 𝐵 has locked the same

amount of coins as 𝐴, which discourages 𝐵 from launching a DoS

attack on 𝐴.

Overcoming the drawbacks. With the presented constructions

(Figure 2 and Figure 3), we indeed manage to achieve bidirectional

channels with unbounded payments without the need for users to

constantly be online and monitor the blockchain. We offer our base

solution and our extension, that puts an additional incentive on

the other user to confirm states early in the case they happen to be

online. However, in both solutions they can safely go offline and

can come back only shortly before the pre-defined lifetime T of the

channel. Further, our construction requires only digital signatures

and absolute timelocks in the form of CLTV.

We wish to emphasise that a similar requirement of 𝐴 (or 𝐵)

going online shortly before T is present even in the watchtower

proposals [11, 15, 16, 32, 37, 38]. In that case, the hiring (channel)

user Bob, is required to come online at a specific point in time T
to check if the watchtower performed according to the protocol

specification. That is, check if the watchtower indeed punished a

misbehaving 𝐴 correctly.

Timelock Independence andCompatibility. The absolute time-

lock in the form of CLTV makes the protocol not compatible with

currencies like Monero where the CLTV script is not supported.

However, the requirement of CLTV script in Sleepy Channels can

be removed by making use of timed payments through verifiable
timed signatures (VTS) [44]. This makes Sleepy Channels applicable

in a wider range of currencies as it only requires a digital signature

script for cryptographic authentication from the underlying cur-

rency. For the case of Monero, making use of a variation of VTS

from [46] for linkable ring signatures (instead of a standard digital

signature), we can realize timed payments and thus a bi-directional

payment channel in the form of Sleepy Channels for the first time.

We discuss more details of the same in Section 5.

3 PRELIMINARIES
We denote by 𝜆 ∈ N the security parameter and by 𝑥 ← 𝒜(in; 𝑟 )
the output of the algorithm 𝒜 on input in using 𝑟 ← {0, 1}∗ as its
randomness. We often omit this randomness and only mention it

explicitly when required. We consider probabilistic polynomial time
(PPT) machines as efficient algorithms.

Universal Composability. We model security in the universal
composability framework with global setup [21], which lets us

model concurrent executions. We consider a set of parties 𝒫 =

{𝑃1, . . . , 𝑃𝑛} that is running the protocol. Further, we assume static
corruptions, where the adversary 𝒜 announces at the beginning

which parties it corrupts. We denote the environment by ℰ , which
captures anything that happens “outside the protocol execution”.

We model a synchronous communication by using a global clock

ℱ𝑐𝑙𝑜𝑐𝑘 capturing execution rounds. We assume authenticated com-

munication with guaranteed delivery between users, as in ℱ𝐺𝐷𝐶 .

For a real protocol Π and an adversary𝒜we write EXECΠ,𝒜,ℰ to

denote the ensemble corresponding to the protocol execution. For

an ideal functionality ℱ and an adversary 𝒮 we write EXECℱ,𝒮,ℰ
to denote the distribution ensemble of the ideal world execution.

Definition 1 (Universal Composability). A protocol 𝜏 UC-
realizes an ideal functionality ℱ if for any PPT adversary 𝒜 there
exists a simulator 𝒮 such that for any environment ℰ the ensembles
EXEC𝜏,𝒜,ℰ and EXECℱ,𝒮,ℰ are computationally indistinguishable.

Digital Signatures. A digital signature scheme DS, lets a user au-
thenticate a message by signing it with respect to a public key.

Formally, we have a key generation algorithm KGen(1𝜆) that takes
the security parameter 1

𝜆
and outputs the public/secret key pair

(pk, sk), a signing algorithm Sign(sk,𝑚) that inputs sk and a mes-

sage 𝑚 ∈ {0, 1}∗ and outputs a signature 𝜎 , and a verification

algorithm Vf(pk,𝑚, 𝜎) that outputs 1 if 𝜎 is a valid signature on

𝑚 under the public key pk, and outputs 0 otherwise. We require

the standard notion unforgeability for the signature scheme [31]. A

stronger notion of strong unforgeability for the signature scheme

was shown to be equivalent to the UC formulation of security [17].

2-Party Computation. The aim of a secure 2-party computation

(2PC) protocol is for the two participating users 𝑃0 and 𝑃1 to se-

curely compute some function 𝑓 over their private inputs 𝑥0 and

𝑥1, respectively. Apart from output correctness, we require privacy,
i.e., the only information learned by the parties in the computation

is the one determined by the function output. Note that we require

the standard security with aborts, where the adversary can decide

whether the honest party will receive the output of the computation

or not. In other words, we do not assume any form of fairness or

guaranteed output delivery. For a comprehensive treatment of the

formal UC definition we refer the reader to [20]. In this work, we

make use of 2-party signing key generation (ΓJKGen) and 2-party

signature generation (ΓSign) protocols [18, 30, 34].
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Blockchain and Transaction Scheme.We assume the existence

of an ideal ledger (blockchain) functionality B [13, 35, 36] that

maintains the list of coins currently associated with each address

(denoted by addr) and that we model as a trusted append-only

bulletin board. The corresponding ideal functionality ℱB main-

tains the ledger B locally and updates it according to the trans-

actions between users. Transactions are generated by the trans-

action function tx: A transaction tx𝐴 that is generated as tx𝐴 :=

tx ( [addr1, . . . , addr𝑛], [addr′
1
, . . . , addr′𝑚], [𝑣1, . . . , 𝑣𝑚]), such that

it transfers all the coins (say 𝑣 coins) from the source addresses

[addr1, . . . , addr𝑛] to the destination addresses [addr′
1
, . . . , addr′𝑚]

such that 𝑣1 coins are sent to addr′
1
, 𝑣2 coins are sent to addr′

2
and

so on, where 𝑣1 + 𝑣2 + · · · 𝑣𝑚 = 𝑣 . Addresses are typically public

keys of digital signature schemes and the transaction is authen-

ticated with a valid signature with respect to each of the source

addresses [addr1, . . . , addr𝑛] (as the public keys). We consider Un-
spent Transaction Output (UTXO) model where an address is tied

to the transaction that creates it and is spendable (used as input to

a transaction) exactly once, like in Bitcoin, Monero, etc.

4 IDEAL FUNCTIONALITY BI-DIRECTIONAL
CHANNELS

We define an ideal functionality ℱ that closely follows the bi-

directional payment functionality defined in [13]. In fact, our func-

tionalities captures the same security and efficiency notions, except

that we achieve delayed finality with punish, which means that the

channel owner has the guarantee that until time T, the time until

which the latest state is locked, either that state or one that gives

all the money to the honest party can be enforced on the ledger.

Whenever one party tries to close the channel with the latest state,

the other party can safely be offline until before T, but if it stays
online is incentivized to confirm it before T, thereby unlocking not

only the state but also their collateral 𝑐 . We present the ideal func-

tionality for our solution with extension and note that setting 𝑐 = 0

yields the functionality for the base solution without collateral.

SpecificNotation.We abbreviate𝛾 as an attribute tuple containing

the following information 𝛾 := (𝛾 .id, 𝛾 .users, 𝛾 .cash, 𝛾 .st, 𝛾 .T, 𝛾 .𝑐),
where 𝛾 .id ∈ {0, 1}∗ is the channel identifier, 𝛾 .users defines the
two users of the channel, 𝛾 .cash ∈ R≥0 the total capacity, 𝛾 .st the
list of outputs (addresses and values) in, 𝛾 .T ∈ R≥0 defines the

lifetime of the channel, and 𝛾 .𝑐 ∈ R≥0 the collateral of the channel.
We denote by 𝑚

𝜏
↩−→ 𝑃 the output of message 𝑚 to party 𝑃 in

round 𝜏 . Similarly,𝑚
𝜏←−↪ 𝑃 denotes the input of message𝑚 in round

𝜏 . A message𝑚 generally consists of (MESSAGE-ID, parameters). For
better readability, we omit session identifiers in messages. In our

communication model, messages sent between parties are received

in the next round, i.e., if 𝐴 sends a message to 𝐵 in round 𝜏 , 𝐵 will

receive it in round 𝜏 + 1. Messages sent to the environment, the

simulator 𝒮 or to ℱ are received in the same round.

Description. As we do not consider privacy notions, we say that

ℱ implicitly forwards all messages to the simulator 𝒮 . Note that
ℱ cannot create signatures or prepare transaction ids. It expects

𝒮 to perform these tasks, e.g., expecting a transaction of a certain

structure to appear on the ledger, and outputting ERROR, if this
does not happen. Similarly, whenever the functionality expects 𝒮

to provide or set a value, but 𝒮 does not do it, the functionality

implicitly outputs ERROR, where all guarantees are potentially lost.

Hence, we are interested only in protocols that realize ℱ , but never

output ERROR.
ℱ interacts with a ledger B(Δ, Σ,𝒱) parameterized over a given

upper bound Δ, after which valid transactions are appended to

the ledger, a signature scheme Σ and a set 𝒱 , defining valid spend-

ing conditions, including signature verification under Σ and abso-

lute timelocks. ℱ can see the transactions on the ledger and infer

ownership of coins. Following [13], we keep the functionality ℱ
description generic, by parameterizing it over 𝑇𝑝 and 𝑘 , both of

which are independent of Δ. 𝑇𝑝 is an upper bound on the number

of consecutive off-chain communication rounds between two users,

while 𝑘 defines the number of states that a channel has. We present

a protocol later, where 𝑘 = 2. Both 𝑇𝑝 and Δ are defined as upper

bounds. If the actual values are less, 𝒮 implicitly informsℱ of these

values.

The ideal functionality keeps a map Γ, which maps the id of an

existing channel to the channel tuple 𝛾 representing the latest state

and the address of the funding transaction, Ch𝐴𝐵 . Note that during
an update, there may be two states that are active {𝛾,𝛾 ′}. We give

a formal description of ℱB(Δ,Σ,𝒱) (which we abbreviate as ℱ ) in

Figure 4. Following, we explain our functionality in prose and argue

inline, why certain security and efficiency goals hold.

Create.When both parties of channel 𝛾 send a message (CREATE, 𝛾,
tid𝑃 ) to ℱ within 𝑇𝑝 rounds, ℱ expects a funding transaction to

appear on B within Δ rounds, spending both inputs tid𝐴 and tid𝐵
and holding 𝛾 .cash+2𝛾 .𝑐 coins. The channel funding address Ch𝐴𝐵
is stored in Γ and CREATED is sent to both parties.

Update. One party 𝑃 initiates the update with (UPDATE, id,−→𝜃 , 𝑡stp),
where id refers to the channel identifier,

−→
𝜃 represents the new state

(e.g., coin distribution or other applications that work under delayed
finality with punish) and 𝑡stp denotes the time needed to setup

anything that is built on top of the channel. First, the parties agree

on the new state. For this, 𝒮 informsℱ of a vector of 𝑘 transactions.

Both parties can abort here by 𝑃 not sending SETUP–OK and 𝑄 not

sending UPDATE–OK. When 𝑃 receives UPDATE–OK, they move on to

the revocation. ℱ expects a message REVOKE from both parties, and

in the success case, UPDATED is output to both parties. In case of an

error, the ForceClose subprocedure is executed, which expects the

funding transaction of the channel to be spent within Δ rounds.

Close. Either party can initiate a channel’s closure by sending

(CLOSE, id) to ℱ . If the other party sends the same message within

𝑇𝑝 rounds, ℱ expects a transaction representing the latest state

of the channel to appear on the ledger within Δ rounds. Should

only one party request the closure or in case one party is corrupted,

ℱ expects either a transaction representing the latest state of the

channel or an older state, followed by a punishment (see Punish).

If the funding transaction remains unspent, outputs ERROR.

Punish. To give honest parties the guarantee that either the most

recent state of the channel which is locked until at most time T can

be enforced on B, or the honest party can get all coins (minus the

other party’s collateral), we need the punish phase. This check is

executed in each round. We can model this in the UC framework,

by expecting ℰ to pass the execution token in every round. If ℰ fails
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to do that, ℱ outputs an error the next time it has the execution

token. Whenever the funding transaction of any open channel 𝛾 in

Γ is spent, ℱ expects either a transaction that spends the coins in

accordance to the latest state of𝛾 , or a transaction giving𝛾 .cash+𝛾 .𝑐
coins to the honest party. Else, ERROR is output. In the case that

a transaction in accordance to the latest state of 𝛾 appears on the

ledger, either the funds of the party that has posted the transaction

are locked until T (after which a transaction claiming them appears)

or the other party unlocks them beforehand by unlocking their own

funds and collateral. In the latter case, the other party loses the

negligible amount 𝜖 (which we say is a system parameter in R≥0
for a ledger B) to the first party.

5 SLEEPY CHANNELS: OUR BI-DIRECTIONAL
PAYMENT CHANNEL PROTOCOL

In this section we describe our Sleepy Channel protocol for realizing

bi-directional payment channels for a currency whose transaction

scheme makes use of the signature scheme ΠDS for authentica-

tion. For simplicity we assume the transaction scheme lets verify

transaction timeouts
4
, meaning that a transaction is considered

valid only if it is posted after a specified timeout T has passed. We

discuss in Section 5.2 how we can remove this assumption from the

transaction scheme. We additionally make use of 2-party protocols

whose functionality we describe below.

2-Party Key Generation. Parties 𝐴 and 𝐵 can jointly generate

keys for a signature scheme ΠDS. We denote this interactive pro-

tocol by ΓJKGen. It takes as input the public parameters pp from

both parties and outputs the joint public key pk to both parties and

outputs the secret key share sk𝐴 to 𝐴 and sk𝐵 to 𝐵.

2-Party Signing. Parties 𝐴 and 𝐵 having a shared key can jointly

sign messages with respect to the signature scheme ΠDS. We denote

this interactive protocol by ΓSign. It takes as input the message𝑚

and the shared public key pk from both parties and secret key shares

sk𝐴 and sk𝐵 from 𝐴 and 𝐵, respectively. The protocol outputs the

signature 𝜎 (to one of the parties), such that ΠDS .Vf (pk,𝑚, 𝜎) = 1.

We can instantiate both 2-party protocols (ΓJKGen or ΓSign) with
efficient interactive protocols for specific signatures schemes of

interest. If the currencies use ECDSA signatures, Schnorr signatures

or BLS signatures [1, 19] for transaction authentication, we can

instantiate ΓJKGen and ΓSign with protocols from [34], [30], or [18],

respectively. Monero uses a linkable ring signature scheme [39, 46]

for authentication and the corresponding tailored 2-party protocols

for key generation and signing are described in [46].

5.1 Our Protocol
We consider parties 𝐴 and 𝐵 already have an open channel Ch𝐴𝐵
which is a shared public key pk𝐴𝐵 (between 𝐴 and 𝐵) and the

corresponding secret key sk𝐴𝐵 is shared among the parties. Parties

can make multiple payments using the channel (in either direction)

and confirm the final payment state on the chain. However, after

each payment, the payment state of the channel is updated and

accordingly old states are revoked. The formal description of the

protocol can be found in Figure 5.

4
Realizable through the locktime script that is available in Bitcoin.

5.1.1 High Level Overview. We present below the intuition for

our protocol in prose and refer to Figure 3 in Section 2 for the

transaction flow of the construction.

Payment. For each payment from the channel Ch𝐴𝐵 , parties gen-
erate two versions of transactions, tx𝐴Pay and tx𝐵Pay, one version

under the control of party 𝐴 and the other in the control of party

𝐵. By “under control”, we mean that in party 𝐴’s version, 𝐴 has

the necessary signatures to post the payment transaction tx𝐴Pay.
Analogously, 𝐵 has the necessary signature to post the payment

transaction tx𝐵Pay. Both of these transactions spend from Ch𝐴𝐵 . In
contrast to prior bi-directional protocols, both versions have an

important asymmetry in the coin distribution among the parties.

In more detail, the channel Ch𝐴𝐵 holds in total 𝑓 + 2𝑐 coins

where 𝑓 is the payment capacity among the parties, while 2𝑐 is the

collateral amount locked by both parties 𝐴 and 𝐵 with 𝑐 coins from

each. The value of 𝑐 is agreed upon by the parties locally before

they open the channel and are returned to the respective parties at

the close of the channel. Consider a payment where 𝐴’s balance is

𝑣𝐴 and 𝐵’s is 𝑣𝐵 such that 𝑣𝐴 + 𝑣𝐵 = 𝑓 . The payment transaction

tx𝐴Pay splits the funds of Ch𝐴𝐵 in the following way: (1) 𝑐 coins to

an address fully controlled by 𝐴, (2) 𝑣𝐴 coins to a shared address

between 𝐴 and 𝐵 referred to as the sleepy channel SleepyCh𝐴 , and
(3) 𝑣𝐵 + 𝑐 coins to a shared address between 𝐴 and 𝐵 referred to as

the exit channel ExitCh𝐴 .
Notice that 𝐴 can immediately get 𝑐 coins from output (1). To

spend from output (2) (the sleepy channel SleepyCh𝐴) which is a

shared address, parties sign 2 different transactions.

(1) Transaction tx𝐴,𝐴Fpay, that transfers 𝑣𝐴 to an address of 𝐴, but is

valid only after a timeout T.
(2) Transaction tx𝐴∗Fpay, that spends from SleepyCh𝐴 and an aux-

iliary address aux𝐴 (contains 𝜖 coins as output in tx𝐴,𝐵Fpay, see

below) that is also a shared address between𝐴 and 𝐵. The trans-

action transfers 𝑣𝐴 coins from SleepyCh𝐴 and 𝜖 (a negligible

amount) from aux𝐴 , to an address of 𝐴.

The signatures on both of the above transactions are possessed by

𝐴 and not 𝐵.

To spend from output (3) (the exit channel ExitCh𝐴) which is

a shared address, parties sign a transaction tx𝐴,𝐵Fpay that transfers

𝜖 coins to the auxiliary address aux𝐴 and 𝑣𝐵 + 𝑐 − 𝜖 coins to an

address of 𝐵. Notice that 𝐵’s balance 𝑣𝐵 and its collateral 𝑐 (minus

a negligible amount 𝜖) are transferred together to 𝐵’s address. In

contrast to output (2), the signature on tx𝐴,𝐵Fpay is only available with

𝐵 and not𝐴. The version for 𝐵 following tx𝐵Pay is analogous to what
we saw above except the roles are reversed.

Close. To close the channel with this payment state, we have two

scenarios where either both parties are responsive, or one of them

is unresponsive. For simplicity we consider 𝐴 as the party closing

the channel and 𝐵 is either responsive or not. If 𝐵 is responsive,

party𝐴 posts tx𝐴Pay with the corresponding signature that it has, on

the blockchain. Since 𝐵 is responsive, it posts the transaction tx𝐴,𝐵Fpay
spending from ExitCh𝐴 with the corresponding signature that it

has, on the blockchain. Note that 𝐵 now retrieves its balance 𝑣𝐵
and collateral 𝑐 , while one of the outputs of the transaction is aux𝐴 .
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Ideal Functionality ℱ (𝑇𝑝 , 𝑘)

Create: Upon (CREATE, 𝛾, tid𝐴)
𝜏0←−↪ 𝐴, distinguish:

Both agreed: If already received (CREATE, 𝛾, tid𝐵 )
𝜏←−↪ 𝐵, where 𝜏0 − 𝜏 ≤ 𝑇𝑝 : If tx𝐹 := tx ( [tid𝐴, tid𝐵 ],Ch𝐴𝐵, 𝛾 .cash + 2𝛾 .𝑐) for some address Ch𝐴𝐵

appears on B in round 𝜏1 ≤ 𝜏 + Δ +𝑇𝑝 , set Γ (𝛾 .id) := ( {𝛾 },Ch𝐴𝐵 ) and (CREATED, 𝛾 .id)
𝜏1
↩−→ 𝛾 .users. Else stop.

Wait for 𝐵: Else wait if (CREATE, id)
𝜏≤𝜏0+𝑇𝑝
←−−−−−−−↪ 𝐵 (then, “Both agreed” option is executed). If such message is not received, stop.

Update: Upon (UPDATE, id,−→𝜃 , 𝑡stp)
𝜏0←−↪ 𝐴, parse ( {𝛾 },Ch𝐴𝐵 ) := Γ (id) , set 𝛾 ′ := 𝛾 , 𝛾 ′.st :=

−→
𝜃 :

(1) In round 𝜏1 ≤ 𝜏0 +𝑇𝑝 , let 𝒮 define

−→
tid s.t. |−→tid | = 𝑘 . Then (UPDATE–REQ, id,−→𝜃 , 𝑡stp,

−→
tid)

𝜏1
↩−→ 𝐵 and (SETUP, id,−→tid)

𝜏1
↩−→ 𝐴.

(2) If (SETUP–OK, id)
𝜏2≤𝜏1+𝑡stp
←−−−−−−−−↪ 𝐴, then (SETUP–OK, id)

𝜏3≤𝜏2+𝑇𝑝
↩−−−−−−−−→ 𝐵. Else stop.

(3) If (UPDATE–OK, id)
𝜏3←−↪ 𝐵, then (if 𝐵 honest or instructed by 𝒮) send (UPDATE–OK, id)

𝜏4≤𝜏3+𝑇𝑝
↩−−−−−−−−→ 𝐴. Else distinguish:

• If 𝐵 honest or if instructed by 𝒮 , stop (reject). Else set Γ (id) := ( {𝛾,𝛾 ′ },Ch𝐴𝐵 ) , run ForceClose(id) and stop.

(4) If (REVOKE, id)
𝜏4←−↪ 𝐴, send (REVOKE–REQ, id)

𝜏5≤𝜏4+𝑇𝑝
↩−−−−−−−−→ 𝐵. Else set Γ (id) := ( {𝛾,𝛾 ′ },Ch𝐴𝐵 ) , run ForceClose(id) and stop.

(5) If (REVOKE, id)
𝜏5←−↪ 𝐵, Γ (id) := ( {𝛾 ′ },Ch𝐴𝐵 ) , send (UPDATED, id,

−→
𝜃 )

𝜏6≤𝜏5+𝑇𝑝
↩−−−−−−−−→ 𝛾 .users and stop (accept). Else set Γ (id) := ( {𝛾,𝛾 ′ },Ch𝐴𝐵 ) , run

ForceClose(id) and stop.

Close: Upon (CLOSE, id)
𝜏0←−↪ 𝐴, distinguish

Both agreed: If already received (CLOSE, id) 𝜏←−↪ 𝐵, where 𝜏0 − 𝜏 ≤ 𝑇𝑝 , let ( {𝛾 },Ch𝐴𝐵 ) := Γ (id) and distinguish:

• If tx𝑐 := tx (Ch𝐴𝐵, [𝑜𝑢𝑡𝐴, 𝑜𝑢𝑡𝐵 ], [𝛾 .𝑐 + 𝛾 .st.bal(𝐴), 𝛾 .𝑐 + 𝛾 .st.bal(𝐵) ]) appears on B in round 𝜏1 ≤ 𝜏0 + Δ, set Γ (id) := ⊥, send (CLOSED, id)
𝜏1
↩−→

𝛾 .users and stop.

• Else, if at least one of the parties is not honest, run ForceClose(id) . Else, output (ERROR)
𝜏0+Δ
↩−−−→ 𝛾 .users and stop.

Wait for 𝐵: Else wait if (CLOSE, id)
𝜏≤𝜏0+𝑇𝑝
←−−−−−−−↪ 𝐵 (in that case “Both agreed” option is executed). If such message is not received, run ForceClose(id) in

round 𝜏0 +𝑇𝑝 .
Punish: (executed at the end of every round 𝜏0) For each (𝑋,Ch𝐴𝐵 ) ∈ Γ check if B contains a transaction tx𝐴Pay,𝑖 := tx (Ch𝐴𝐵, 𝑜𝐶 , 𝑣𝐶 ) for some addresses

𝑜𝐶 and some values 𝑣𝐶 , s.t.

∑
𝑣∈𝑣𝐶 = 𝛾 .cash and one address 𝑜 ∈ 𝑜𝐶 belongs to 𝐴 with the corresponding value 𝑣 ∈ 𝑣𝐶 = 𝛾 .𝑐 for some 𝐴 ∈ 𝛾 .users and

𝐵 ∈ 𝛾 .users \ {𝐴}. If yes, then define 𝐿 := {𝛾 .st | 𝛾 ∈ 𝑋 } and distinguish:

Punish: If 𝐵 is honest and tx𝐴Pay,𝑖 does not correspond to the most recent state in 𝑋 , tx𝐵Pnsh,𝑖 := tx (𝑜 ∈ 𝑜𝐶 , 𝑜𝑃 , 𝛾 .st.bal(𝐴)) , where 𝑜𝑃 is an address

controlled by 𝐵, appears on B in round 𝜏1 ≤ 𝜏0 + Δ. Afterwards, in round 𝜏2 ≤ 𝜏1 + Δ a transaction tx𝐴,𝐵
Fpay,𝑖 := (𝑜 ∈ 𝑜𝐶 , 𝑜𝑆 , 𝑣𝑆 ) , for some addresses

𝑜𝑆 and corresponding values 𝑣𝑆 where one address 𝑜 ∈ 𝑜𝑆 belongs to 𝐵 and the corresponding value of 𝑜 is 𝛾 .st.bal(𝐵) + 𝛾 .𝑐 − 𝜖 , appears on B, set
Γ (id) = ⊥, send (PUNISHED, id)

𝜏2
↩−→ 𝐵 and stop.

Close: Either Γ (id) = ⊥ before round 𝜏0 + Δ (channel was peacefully closed) or after round 𝜏1 ≤ 𝜏0 + Δ a transaction tx𝐴,𝐵
Fpay,𝑖 := (𝑜 ∈ 𝑜𝐶 , 𝑜𝑆 , 𝑣𝑆 ) , for

some addresses 𝑜𝑆 and corresponding values 𝑣𝑆 where one address 𝑜 ∈ 𝑜𝑆 belongs to 𝐵 and the corresponding value of 𝑜 is 𝛾 .st.bal(𝐵) +𝛾 .𝑐 − 𝜖 , appears
on B before a transaction tx𝐴∗Fpay,𝑖 := ( [𝑜 ∈ 𝑜𝐶 , 𝑜

′ ∈ 𝑜𝑆 ], 𝑜𝐹 , 𝛾 .st.bal(𝐴) + 𝜖) where address 𝑜𝐹 of 𝐴 appears on B. Set Γ (id) := ⊥ and send (CLOSED, id)
𝜏2≤𝜏1+Δ
↩−−−−−−−→ 𝛾 .users. Else, transaction tx𝐴,𝐴

Fpay,𝑖 := tx (𝑜 ∈ 𝑜𝐶 , 𝑜𝐸 , 𝛾 .st.bal(𝐴)) where address 𝑜𝐸 of 𝐴 appears on B in round 𝜏3 ≤ 𝛾 .T + Δ. Set Γ (id) := ⊥ and

(CLOSED, id)
𝜏3
↩−→ 𝛾 .users and stop.

Error: Otherwise (ERROR)
𝜏0+Δ
↩−−−→ 𝛾 .users.

Subprocedure ForceClose(id) : Let 𝜏0 be the current round and (𝛾, tx) := Γ (id) . If within Δ rounds tx is still an unspent transaction on B, then (ERROR)
𝜏0+Δ
↩−−−→ 𝛾 .users and stop. Else, latest in round 𝛾 .T + Δ,𝑚 ∈ {CLOSED, PUNISHED, ERROR} is output via Punish.

Figure 4: Ideal Functionality

Now party𝐴 can finish the payment fast, by posting the transaction

tx𝐴∗Fpay that spends from SleepyCh𝐴 and aux𝐴 simultaneously, thus

retrieving its balance 𝑣𝐴 (plus some 𝜖). Recall that 𝐴 can already

retrieve its collateral 𝑐 by itself.

In the latter case where 𝐵 is unresponsive, party𝐴 posts tx𝐴Pay on
the blockchain as above. Now,𝐴 waits until the timeout T and posts

the transaction tx𝐴,𝐴Fpay that retrieves 𝑣𝐴 coins from SleepyCh𝐴 to

itself. Party 𝐵 can retrieve 𝑣𝐵 + 𝑐 − 𝜖 coins from ExitCh𝐴 anytime

it wishes.

Payment Revocation and Punishment.When the parties want

to revoke the payment, they together generate a punishment trans-

action tx𝐴Pnsh that spends from SleepyCh𝐴 to an address of 𝐵. The

parties generate a signature on this transaction such that 𝐵 holds

the signature. Similar punishment transaction and signature are

generated in 𝐵’s version where𝐴 holds the signature for the transac-

tion. In total, the parties have three different transactions spending

from the sleepy channel SleepyCh𝐴 .
If party 𝐴 misbehaves, and posts tx𝐴Pay after it has been revoked,

party 𝐵 has until timeout T to punish this behaviour by posting

tx𝐴Pnsh and the corresponding signature. This results in 𝐵 getting

the 𝑣𝐴 coins. Party 𝐵 then posts the transaction tx𝐴,𝐵Fpay spending

from ExitCh𝐴 retrieving 𝑣𝐵 +𝑐−𝜖 . In effect,𝐴 only gets its collateral

back, while 𝐵 is able to retrieve the entire payment capacity 𝑓 and

its own collateral 𝑐 .
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Parties 𝐴 and 𝐵 have a payment channel Ch𝐴𝐵 with capacity 𝑓 + 2𝑐 and secret key share for the channel are sk𝐴Ch,𝐴𝐵
and sk𝐵Ch,𝐴𝐵

for party 𝐴 and 𝐵,

respectively. Here 𝑓 denotes the payment capacity of the channel and 𝑐 is the collateral that a party allocates for the channel. Parties additionally have a

refund transaction txrfnd := tx (Ch𝐴𝐵, [pk𝐴, pk𝐵 ], [𝑣𝐴 + 𝑐, 𝑣𝐵 + 𝑐 ]) and the corresponding signature 𝜎rfnd with respect to Ch𝐴𝐵 , where 𝑣𝐴 + 𝑣𝐵 = 𝑓 and

pk𝐴 and pk𝐵 are some public keys of 𝐴 and 𝐵, respectively.

Address Generation
(1) Parties generate the following key pairs using ΠDS .KGen(1𝜆)
• Party 𝐴 generates

(
pkCPay,𝐴, skCPay,𝐴

)
, (pkpun,𝐴, skpun,𝐴) , (pkfp,𝐴, skfp,𝐴) and (pkffp,𝐴, skffp,𝐴)

• Party 𝐵 generates

(
pkCPay,𝐵, skCPay,𝐵

)
, (pkpun,𝐵, skpun,𝐵 ) , (pkfp,𝐵, skfp,𝐵 ) and (pkffp,𝐵, skffp,𝐵 )

(2) Parties run ΓJKGen to generate shared addresses: SleepyCh𝐴, SleepyCh𝐵, ExitCh𝐴, ExitCh𝐵, aux𝐴, aux𝐵 .

𝑖-th Payment
For the 𝑖-th payment where 𝑣𝐴,𝑖 and 𝑣𝐵,𝑖 are the balance of 𝐴 and 𝐵, respectively with 𝑓 = 𝑣𝐴,𝑖 + 𝑣𝐵,𝑖 , the parties do the following:

Payment Transactions: Generate payment transactions tx𝐴Pay,𝑖 := tx
(
Ch𝐴𝐵, [pkCPay,𝐴, SleepyCh𝐴, ExitCh𝐴 ], [𝑐, 𝑣𝐴,𝑖 , 𝑣𝐵,𝑖 + 𝑐 ]

)
and

tx𝐵Pay,𝑖 := tx
(
Ch𝐴𝐵, [pkCPay,𝐵, SleepyCh𝐵, ExitCh𝐵 ], [𝑐, 𝑣𝐵,𝑖 , 𝑣𝐴,𝑖 + 𝑐 ]

)
Punishment Transactions: Generate tx𝐴Pnsh,𝑖 := tx

(
SleepyCh𝐴, pkpun,𝐵, 𝑣𝐴,𝑖

)
and tx𝐵Pnsh,𝑖 := tx

(
SleepyCh𝐵, pkpun,𝐴, 𝑣𝐵,𝑖

)
Finish-Payment Transactions:

(1) Generate tx𝐴,𝐴
Fpay,𝑖 := tx

(
SleepyCh𝐴, pkfp,𝐴, 𝑣𝐴,𝑖

)
and tx𝐵,𝐵Fpay,𝑖 := tx

(
SleepyCh𝐵, pkfp,𝐵, 𝑣𝐵,𝑖

)
both timelocked until time T.

(2) Generate another set of faster finish-pay transactions tx𝐴,𝐵
Fpay,𝑖 := tx

(
ExitCh𝐴, [pkffp,𝐵, aux𝐴 ], [𝑣𝐵,𝑖 + 𝑐 − 𝜖, 𝜖 ]

)
and

tx𝐵,𝐴Fpay,𝑖 := tx
(
ExitCh𝐵, [pkffp,𝐴, aux𝐵 ], [𝑣𝐴,𝑖 + 𝑐 − 𝜖, 𝜖 ]

)
.

(3) Generate a set of enabler transactions tx𝐴∗Fpay,𝑖 := tx
(
[SleepyCh𝐴, aux𝐴 ], pkfp,𝐴, 𝑣𝐴,𝑖 + 𝜖

)
and tx𝐵∗Fpay,𝑖 := tx

(
[SleepyCh𝐵, aux𝐵 ], pkfp,𝐵, 𝑣𝐵,𝑖 + 𝜖

)
that enable a faster finish-payment.

Signature Generation: Parties generate signatures on transactions by running the interactive protocol ΓSign in each step. In case one of the party aborts at

any step, the other party closes the channel with the (𝑖 − 1)-th payment state.

(1) Party 𝐴 receives signature 𝜎
𝐴,𝐴
Fpay,𝑖 on transaction tx𝐴,𝐴

Fpay,𝑖 under the shared key SleepyCh𝐴 . Party 𝐵 receives signature 𝜎
𝐵,𝐵
Fpay,𝑖 on transaction tx𝐵,𝐵Fpay,𝑖

under the shared key SleepyCh𝐵 .

(2) Party 𝐴 receives signatures

(
𝜎SleepyCh,𝐴, 𝜎aux,𝐴

)
on the transaction tx𝐴∗Fpay,𝑖 with respect to the shared keys SleepyCh𝐴 and aux𝐴 , respectively. Party

𝐵 receives signatures

(
𝜎SleepyCh,𝐵, 𝜎aux,𝐵

)
on the transaction tx𝐵∗Fpay,𝑖 with respect to the shared keys SleepyCh𝐵 and aux𝐵 , respectively.

(3) Party 𝐴 receives signature 𝜎
𝐵,𝐴
Fpay,𝑖 on the transaction tx𝐵,𝐴Fpay,𝑖 under the shared key ExitCh𝐵 . Party 𝐵 receives signature 𝜎

𝐴,𝐵
Fpay,𝑖 on the transaction

tx𝐴,𝐵
Fpay,𝑖 under the shared key ExitCh𝐴 .

(4) Party 𝐴 receives signature 𝜎𝐴
Pay,𝑖 on the transaction tx𝐴Pay,𝑖 under the shared key Ch𝐴𝐵 . Party 𝐵 receives signature 𝜎𝐵

Pay,𝑖 on the transaction tx𝐵Pay,𝑖
under the shared key Ch𝐴𝐵 .

Revocation
To revoke the 𝑖-th payment, parties jointly generate signatures by running the interactive protocol ΓSign: Generate signature 𝜎

𝐴
Pnsh,𝑖 on the punishment

transaction tx𝐴Pnsh,𝑖 (party 𝐴 receives 𝜎𝐴
Pnsh,𝑖 as output and gives it to 𝐵) and signature 𝜎𝐵

Pnsh,𝑖 on the punishment transaction tx𝐵Pnsh,𝑖 (party 𝐵 receives

𝜎𝐵
Pnsh,𝑖 as output and gives it to 𝐴). If during the revocation either party aborts, the non-aborting party immediately closes the channel with the most

recent unrevoked payment.

Channel Closing
Either party can close the channel Ch𝐴𝐵 with the 𝑗-th unrevoked payment. To do this:

(1) Party 𝐴 posts

(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
on B. This is followed by one of the two cases:

(a) Fast finish: Party 𝐵 posts

(
tx𝐴,𝐵

Fpay,𝑖 , 𝜎
𝐴,𝐵
Fpay,𝑖

)
on B, and party 𝐴 posts

(
tx𝐴∗Fpay,𝑖 , 𝜎

𝐴∗
Fpay,𝑖

)
on B for fast finish

(b) Lazy finish: If not, 𝐴 can post

(
tx𝐴,𝐴

Fpay,𝑖 , 𝜎
𝐴,𝐴
Fpay,𝑖

)
on B after timeout T

(2) Analogously, party 𝐵 can post

(
tx𝐵Pay, 𝑗 , 𝜎

𝐵
Pay, 𝑗

)
on B. This is followed by one of the two cases:

(a) Fast finish: Party 𝐴 posts

(
tx𝐵,𝐴Fpay,𝑖 , 𝜎

𝐵,𝐴
Fpay,𝑖

)
on B, and party 𝐵 posts

(
tx𝐵∗Fpay,𝑖 , 𝜎

𝐵∗
Fpay,𝑖

)
on B for fast finish

(b) Lazy finish: If not, 𝐵 can post

(
tx𝐵,𝐵Fpay,𝑖 , 𝜎

𝐵,𝐵
Fpay,𝑖

)
on B after timeout T

Punishing Revoked payments
If 𝐴 posts the 𝑗-th revoked payment tx𝐴Pay, 𝑗 on B, 𝐵 can post the punishment transaction

(
tx𝐴Pnsh,𝑖 , 𝜎

𝐴
Pnsh,𝑖

)
on B before the absolute timeout T. If 𝐵 posts

the 𝑗-th revoked payment tx𝐵Pay, 𝑗 on B, 𝐴 can post

(
tx𝐵Pnsh,𝑖 , 𝜎

𝐵
Pnsh,𝑖

)
on B before the absolute timeout T.

Figure 5: Sleepy Channel protocol - Payment setup, payments, closing and punishment



Sleepy Channels: Bi-directional Payment Channels without Watchtowers CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

5.1.2 Security. In this section we state our main theorem and we

informally outline the main steps our our analysis. In Appendix A

we give a formal description of our Sleepy Channels protocol Π
in the UC framework. It differs from the protocol Π′′ in Section 5

in that the cryptographic protocols for 2-party key generation

and 2-party signing are substituted by the corresponding ideal

functionalities. This is captured by the following Lemma.

Lemma 1. Let ΓJKGen be a UC-secure 2-party key-generation pro-
tocol and let ΓSign be a UC-secure 2-party signing protocol. Then the
protocols Π and Π′′ are computationally indistinguishable from the
point of view of the environment ℰ .

In Appendix A.1 we describe a simulator 𝒮 that interacts with

the ideal functionality ℱ (defined in Section 4), whereas the en-

vironment interacts with 𝜙ℱ (the ideal protocol for ℱ ). Then in

Appendix A.2 we show that any attack that can be carried out

against Π can also be carried out against 𝜙ℱ . This allows us to state

the following theorem.

Theorem 5.1. The protocol Π UC-realizes the the ideal function-
ality ℱ .

5.2 Discussion
In this section we discuss key aspects about our collateral require-

ment and describe extensions of our protocol that makes it applica-

ble in a wider class of settings.

Collateral as incentive. Observe that the collateral of the party
initiating the closing is retrieved by that party during closing, ir-

respective of a cheating event. This is because the purpose of the

collateral in the Sleepy Channels protocol is to incentivize fast clo-

sure of the channel by the other party if one of the parties wishes

to close the channel and the other party happens to be online. No-

tice that if party 𝐴 wishes to close the channel with an unrevoked

payment, it posts the corresponding payment transaction tx𝐴Pay
on the chain. Now, 𝐴 immediately retrieves its collateral 𝑐 , while

𝐴’s channel balance 𝑣𝐴 , and 𝐵’s channel balance and collateral, i.e.,

𝑣𝐵 + 𝑐 are still lying unspent in the outputs of tx𝐴Pay. If value of 𝑐 is
high enough, party 𝐵 is discouraged from launching a DoS attack

on 𝐴: where party 𝐵 does not retrieve the coins from ExitCh𝐴 and

lets party 𝐴 wait until the timeout T to get 𝑣𝐴 back. To see this, if

party 𝐵 attempts to launch the DoS attack on 𝐴, party 𝐵 itself locks

𝑣𝐵 +𝑐 −𝜖 coins in ExitCh𝐴 until T. On the other hand, if 𝐵 retrieves

its coins from ExitCh𝐴 immediately, party 𝐴 also can retrieve its

coins from SleepyCh𝐴 immediately with the aid of aux𝐴 .
The value of 𝑐 is determined by the level of trust between 𝐴 and

𝐵. If both parties completely trust each other, the collateral 𝑐 is set

to 0. In the worst case where they do not trust each other at all, the

collateral is set to be equal to the payment capacity, i.e., 𝑐 = 𝑓 and

have 𝑣𝐴 ≤ 𝑣𝐵 + 𝑐 − 𝜖 when 𝜖 ≈ 0. This means that during the DoS

attack, party 𝐵 locks at least the same amount of coins in ExitCh𝐴
as party 𝐴 does in SleepyCh𝐴 . Therefore, by not letting𝐴 spend its

coins until timeout T, party 𝐵 also can not spend at least the same

amount of coins until timeout T.
Asymmetric collateral. Consider the case where 𝐴 has signifi-

cantly more money than party 𝐵 (e.g., 𝐴 is a merchant and 𝐵 is

one of 𝐴’s customers). In this case, party 𝐴 may be able to easily

afford to lock a collateral value 𝑐 (same as 𝐵) to prevent party 𝐵

from getting its coins back before time T. To account for this ap-

parent disparity in the financial strength between parties 𝐴 and

𝐵, we can instantiate our Sleepy Channels with both parties lock-

ing different amounts of collateral. In our example, party 𝐴 and

party 𝐵 open their channel in such a manner that 𝐴 locks collateral

amount 𝑐𝐴 that is higher than the collateral amount 𝑐𝐵 locked by

party 𝐵. 𝑐𝐴 could theoretically even be larger than the full channel

capacity. This strongly discourages party 𝐴 (i.e., more than when

using smaller or equal collateral to that of 𝐵) to deny party 𝐵 a

fast channel closure. We note that our Sleepy Channels protocol is

flexible in how the parties set each other’s collateral before opening

their channel.

Punishment cost. Note that if party 𝐴 misbehaves and posts a

revoked payment on the chain, party 𝐵 has until time T to punish

this behaviour on the chain. It is possible that the punishment trans-

action posted by 𝐵 costs more in terms of transaction fee than what

it stands to gain after the punishment if for example, the revoked

payment is a very small coin transfer. To account for that, 𝐴 (i.e.,

the party creating and funding the channel) can unconditionally

include a certain amount for 𝐵 to cover such transaction fees, as

it is currently implemented in the Lightning Network [26]. We

emphasize that this is an issue that is present throughout off-chain

solutions [6, 13, 24, 25] including ZK-rollups [12].

TimeLock script independence. The curious reader may won-

der whether our protocol achieves the sought-after goal of (bi-

directional) payment channels needing only the signature verifica-

tion script from the underlying blockchain. Although we remove

the dependency on relative timelock scripts, our protocol still relies

on absolute timelock scripts (see point 1 in finish-payment transac-

tions Figure 5) to guarantee the closure of the channel after some

(fixed) time T. Thus a natural question is whether one can con-

struct bidirectional payment channels without relying on time-lock

scripts at all. It turns out that, if one is willing to rely on time-lock

puzzles [41], we can avoid the dependence from timelock scripts en-

tirely. As it was shown in prior works [44, 46], absolute time-locks
5

can be simulated using verifiable timed signatures (VTS): VTS allow

one to encapsulate a signature on a message for a pre-determined

amount of time T. At the same time, the party who is solving the

puzzle, is guaranteed that the signature recovered after time T is a

valid one. Parties are required to perform persistent background

computation for the lifetime of the channel. However, for curren-

cies like Monero where we do not have any timelock script, we

do not know of any other viable mechanism other than the one

using VTS from [46]. A recent work [45] has enabled parties to

securely outsource this computation to a decentralized network

thereby removing any sort of computational load on the parties.

Extending lifetime and capacity of the channel. In contrast to

Lightning Network channels, the channel Ch𝐴𝐵 between 𝐴 and 𝐵

is time bounded because of the bound required in Sleepy Channels.

More precisely, parties have to close the channel Ch𝐴𝐵 before the

timeout T that are set on the finish-payment transactions tx𝐴,𝐴Fpay,𝑖

5
Crucially, this transformation does not work for the relative time-lock logic, since

there the time depends on some event which is triggered by the attacker and thus one

cannot set the time parameter of the VTS ahead of time.
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and tx𝐵,𝐵Fpay,𝑖 that spend from SleepyCh𝐴 and SleepyCh𝐵 , respec-
tively. However, if both parties cooperate, they can easily extend

their channel duration by transferring the coins from the current

channel Ch𝐴𝐵 to a new channel Ch′
𝐴𝐵

(shared between𝐴 and 𝐵) in

accordance with the latest channel balance that the parties had in

Ch𝐴𝐵 . In other words, parties can post a single transaction on the

blockchain anytime before T to transfer the coins from Ch𝐴𝐵 to

Ch′
𝐴𝐵

. The channel balance of the parties in Ch′
𝐴𝐵

is set according

to the most recent payment state between them in the channel

Ch𝐴𝐵 . Similar procedure is adopted in the Splicing protocol [42]

of Lightning Network where users can periodically increase or

decrease their channel capacity on-chain without violating any

payments already made. Our Sleepy Channel protocol apart from

extending the channel lifetime, can also update the channel capacity

with this approach.

6 PERFORMANCE EVALUATION
We evaluated a proof of concept to show (i) correctness of our

scheme, (ii) compatibility with Bitcoin, and (iii) on- and off-chain

transaction overhead. The source code is available at [4].

Implementation subtleties.There are several approaches on how
Sleepy Channels can be implemented, given the scripting function-

ality of, say, Bitcoin. For instance, timelocks can be enforced either

at a single transaction output or for the whole transaction, 2-party

signing can be replaced with a multisig script (for a blow up in

the transaction size) and revocation can be done via exchanging

a hash secret, a private key or a signed punishment transaction

upon revoking an old state. In this section, we follow our protocol

as in Figure 5 and use transaction level timelocks, 2-party signing

and exchange signed punishment transactions for revocation.

Deploying the transactions. Now we describe the transactions

used in Sleepy Channels and we refer the reader to Table 2 in

Appendix B for the details on transaction sizes and their cost in

terms of on-chain fees. We also give a pointer to the corresponding

transactions deployed in the Bitcoin testnet, thereby demonstrating

the backwards compatibility of Sleepy Channels.

The first step in Sleepy Channels is building a funding transaction

tx𝐹 [3]. Built on top of the funding, we look at 𝐴’s commitment (or

state) transaction tx𝐴Pay,𝑖 [9] and note that the transactions for 𝐵

are symmetric. When 𝐴 puts the current state on the ledger, there

are two ways how 𝐴 can claim its money. On the one hand, if 𝐵

unlocks its own funds by putting tx𝐴,𝐵Fpay,𝑖 [10], then 𝐴 can claim

its funds with tx𝐴∗Fpay,𝑖 right away [8]. On the other hand, after the

lifetime expires, 𝐴 can unilaterally claim its funds with tx𝐴,𝐴Fpay,𝑖 . If

𝐴 puts an old state, then 𝐵 can punish 𝐴 via tx𝐴Pnsh,𝑖 . Finally, two
users can close their channel honestly with a transaction, where

both funds are unlocked right away.

We find that for opening a channel in Sleepy Channels, the two

parties together need to put 338 bytes on-chain and exchange 2026

bytes (8 transactions off-chain). For each subsequent updates, the

two parties need to exchange 2408 bytes (10 transactions off-chain).

The closing and punishment happen on-chain. For the closing there

are three options. Either they close honestly (225 bytes, 1 tx), or

one party closes unilaterally and unlocks its funds after the time-

lock expires (449 bytes, 2 tx), or one party closes unilaterally and

the other one unlocks the funds right away (823 bytes, 3 tx). The

punishment case requires 450 bytes and 2 transactions.

Comparison to LN. As for our construction, the LN channel func-

tionality can be implemented with subtle differences, resulting in

different outcomes. The funding transaction of LN is identical to

ours, except that it locks no additional collateral. The commitment

transactions differ, as they have one fewer output, and therefore

only 226 bytes. Moreover, in LN there are no fast finish transac-

tions. This totals to 338 bytes on-chain and exchanging 832 bytes

(4 transactions) for opening a LN channel. For updating, the users

exchange 1214 bytes (6 transactions). Note that the honest, the

unilateral close and the punishment in sleepy channels is identical

to LN, both in terms of transaction structure and in size.

Overhead. The Sleepy Channels protocol does not require costly

cryptography. It requires computing and verifying signatures lo-

cally, 2-party signing and a maximum off-chain communication in

the order of 10
3
bytes for each operation. The computational time

can be expected to be negligible on even commodity hardware; the

communication is limited only by network latency.

6.1 Simulation
We perform some additional experiments with respect to a recent

snapshot of LN (January 2022). In this snapshot, there are 81k

channels, 19k channel nodes and a total capacity of 2990 BTC. As

the balance distribution of each channel is unknown, we assume

that it is split evenly between the two users. The source code of our

simulation experiments including the snapshot is available at [5].

We repeat the experiments 100 times for each and plot the average

and standard deviation.

Watchtower collateral. We investigate the collateral a watch-

tower service needs to provide, in order to cover their customers

should they go offline. We analyze watchtower constructions which

fully collateralize the channels, e.g., [16, 37, 38]. For this, we ran-

domly sample a percentage of nodes that wish to employ a watch-

tower and based on their balances in their channels, we plot the

amount of collateral in Figure 6. This amount rises linearly with

the amount of users that wish to employ a watchtower. If 30% of

all users do so, (i) the watchtower service needs to lock up approx-

imately 890 BTC and (ii) users needs to pay fees for that, even if

there are no disputes. Currently, this total capacity that has to be

available to the watchtower service as collateral amounts to roughly

39M USD.

Risk of failing to go online.We simulate the risk of users having

to periodically monitor the blockchain in LN. In LN, the time frame

for punishment is one day (144 blocks). I.e., in this time users need

to come online at least once and check whether or not the other

party tried to cheat. In our setting, we investigate a time period of

30 days with users trying to come online each day.

In our simulation, we assume that there is a certain chance

that users fail to come online and monitor the blockchain in a

given time frame, e.g., due to power outages, DoS attacks, etc. We

further assume that neighboring nodes will notice this; a realistic

assumption due to the ping and pong messages [7] of the LN. We

assume that neighboring nodes want to maximize their profits

and will exploit such a case by putting an old state and thereby,

potentially stealing funds of the offline user.
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Figure 6: Results of the first simulation.

0.002 0.004 0.006 0.008 0.01
5

50

500

5,000

50,000

Chance of failing to come online at least once per day

C
h
a
n
n
e
l
s
a
t
r
i
s
k

Figure 7:Results of the second simulation. (Blue = LN, Red = Sleepy
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The Sleepy Channels protocol would not fully prevent this be-

havior, but reduce it significantly. That is, for a given period of time,

in this simulation 30 days, the users need to come online only once,

e.g., before the channel expires. They can of course fail to come

online there with the same probability, but this event occurs only

once instead of 30 times. Obviously, the longer this time span is,

the greater the chances for LN nodes is to miss at least one of these

intervals, while for Sleepy Channels it remains the same. For 30

days, only about 3% of the channels are at risk for Sleepy Channels

compared to LN, for any given chance of missing the online check.

In Figure 7 we plot the number of channels that are at risk for a

given chance that a user will fail to come online in each interval,

once for each the LN and Sleepy Channels. The y axis is shown in

logarithmic scale. Over a one month period, there are 5k channels

(0.1% chance) and 49k (1% chance) channels are at risk (roughly 60%

of the LN) for LN channels. For Sleepy Channels, these numbers

are 170 channels (0.1% chance) and 1.9k channels (1% chance).

7 CONCLUSION
Payment channels are one of the most promising payment solutions

for blockchain-based cryptocurrencies. Despite their large adoption,

many such proposals suffer from limitations, such as requiring the

parties to be constantly online and monitor the network, or out-

sourcing this task to third parties (e.g., watchtowers). In this work,

we propose a new payment channel architecture (Sleepy Channels)

that supports bi-directional payments and does not require the par-

ties to be persistently online. The protocol is backward compatible

with many existing currencies (e.g., Bitcoin, Monero. . . ) and relies

on lightweight cryptographic machinery. Our performance eval-

uation shows that the protocol is efficient enough to be adopted

in a large payment ecosystems (such as the Lightning Network).

An interesting open question is whether our techniques are also

applicable to account-based currencies, rather than UTXO-based

currencies.
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A UC PROTOCOL
Using the notation introduced in Section 4, we here give a formal

version of the protocol that is augmented in a way to model it in

the UC framework. More specifically, we model the environment

to capture anything that happens outside of the protocol execu-

tion as well as communication model. Additionally, we replace (i)

the 2-party key generation protocol ΓJKGen for a signature scheme

ΠDS with an idealized version ℱJKGen and (ii) the 2-party signing

protocol ΓSign for a signature scheme with an idealized version

ℱSign. Finally, we add the possibility to honestly close payment

channels in a way that requires only one on-chain transaction, i.e.,

by creating a transaction spending from the funding transaction

and giving each user their respective balance right away.

In order to improve the readability of the protocol, we exclude

checks that an honest user would naturally perform, such as that

parameters given from the environment are well-formed, there is
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closed exist, the new state is valid or that a channel to be updated

or closed is not currently being updated or closed. This can be

formally handled by using a protocol wrapper, that performs these

checks on the messages from the environment and drops invalid

ones. We refer to [13], where such a wrapper for payment channels

is formally defined and use the same in this work. Similarly, for the

ideal functionality we use such a wrapper as well.

Sleepy channel protocol Π

Create

Party 𝐴 upon (CREATE, id, 𝛾, tid𝐴)
𝑡0←−↪ ℰ :

(1) Generate

(
pkCPay,𝐴, skCPay,𝐴

)
, (pkpun,𝐴, skpun,𝐴) , (pkfp,𝐴, skfp,𝐴)

and (pkffp,𝐴, skffp,𝐴) . Let pkeyAset be the set of public keys of these
key pairs.

(2) Extract 𝑣𝐴,0 and 𝑣𝐵,0 from 𝛾 .st, and 𝑐 := 𝛾 .𝑐

(3) Send (createInfo, id, tid𝐴, pkeyAset )
𝑡0
↩−→ 𝐵.

(4) If (createInfo, id, tid𝐵, pkeyBset )
𝑡0+1←−−−↪ 𝐵, continue. Else, go idle.

(5) Using pkeyAset and pkeyBset , 𝐴 together with 𝐵 runs ℱJKGen to gen-

erate the following set of shared addresses: addrset := {Ch𝐴𝐵,

SleepyCh𝐴, SleepyCh𝐵, ExitCh𝐴, ExitCh𝐵, aux𝐴, aux𝐵 }which takes
𝑡𝑔 rounds. In case of failure, abort.

(6) Generate tx 𝑓 := tx ( [tid𝐴, tid𝐵 ], [Ch𝐴𝐵 ], [2 · 𝑐 + 𝑣𝐴,0 + 𝑣𝐵,0 ])
(7) Let txset

0
← GenerateTxs(addrset , pkeyAset , pkeyBset , 𝑐, 𝑣𝐴𝑖

, 𝑣𝐵𝑖
)

(8) Let sigset𝐴
0
← SignTxs𝐴 (txset0, addrset , pkeyAset ∪ pkeyBset )

(9) 𝐴 generates a signature 𝜎tid𝐴 for the output tid𝐴 and sends

(createFund, id, 𝜎tid𝐴 )
𝑡0+1+𝑡𝑔+𝑡𝑠
↩−−−−−−−−−→ 𝐴.

(10) If (createFund, id, 𝜎tid𝐵 )
𝑡0+2+𝑡𝑔+𝑡𝑠
←−−−−−−−−−↪ 𝐵, post (tx𝐹 ,

{
𝜎tid𝐴 , 𝜎tid𝐵

}
)

to B.

(11) If tx𝐹 is accepted by B in round 𝑡1 ≤ 𝑡0 + 2 + 𝑡𝑔 + 𝑡𝑠 + Δ, store
Γ𝐴 (id) := (tx𝐹 , txset0, sigset𝐴0 , addrset , pkeyAset , pkeyBset ) and
(CREATED, id)

𝑡1
↩−→ ℰ .

Update

Party 𝐴 upon (UPDATE, id,−→𝜃 , 𝑡stp)
𝑡0←−↪ ℰ

(1) (updateReq, id,−→𝜃 , 𝑡stp)
𝑡0
↩−→ 𝐵

Party 𝐵 upon (updateReq, id,−→𝜃 , 𝑡stp)
𝜏0←−↪ 𝐴

(1) Retrieve (tx𝐹 , txset𝑖−1, sigset𝐵𝑖−1, addrset , pkeyAset , pkeyBset ) = Γ𝐵 (id)
(2) Extract 𝑣𝐴,𝑖 and 𝑣𝐵,𝑖 from

−→
𝜃 , and 𝑐 from tx𝐹

(3) Let txset𝑖 ← GenerateTxs(addrset , pkeyAset , pkeyBset , 𝑐, 𝑣𝐴𝑖
, 𝑣𝐵𝑖
)

(4) Let

−→
tid := (tx𝐴Pay,𝑖 .id, tx

𝐵
Pay,𝑖 .id) be a tuple of the transaction ids of

transaction tx𝐴Pay,𝑖 and tx𝐵Pay,𝑖 .

(5) (UPDATE–REQ, id,−→𝜃 , 𝑡stp,
−→
tid)

𝜏0
↩−→ ℰ

(6) (updateInfo, id)
𝜏0
↩−→ 𝐴

Party 𝐴 upon (updateInfo, id)
𝑡0+2←−−−↪ 𝐵

(1) Retrieve (tx𝐹 , txset𝑖−1, sigset𝐴𝑖−1, addrset , pkeyAset , pkeyBset ) = Γ𝐴 (id)
(2) Extract 𝑣𝐴,𝑖 and 𝑣𝐵,𝑖 from

−→
𝜃 , and 𝑐 from tx𝐹

(3) Let txset𝑖 ← GenerateTxs(addrset , pkeyAset , pkeyBset , 𝑐, 𝑣𝐴𝑖
, 𝑣𝐵𝑖
)

(4) Let

−→
tid := (tx𝐴Pay,𝑖 .id, tx

𝐵
Pay,𝑖 .id) be a tuple of the transaction ids of

transaction tx𝐴Pay,𝑖 and tx𝐵Pay,𝑖 .

(5) (SETUP, id,−→tid)
𝑡0+2
↩−−−→ ℰ

(6) If (SETUP–OK, id)
𝑡1≤𝑡0+2+𝑡stp
←−−−−−−−−−−↪ ℰ , send (updateCom, id)

𝑡1
↩−→ 𝐵

(7) Wait one round.

(8) SignTxs𝐴 (txset𝑖 , addrset , pkeyAset ∪ pkeyBset )

Party 𝐵 upon (updateCom, id)
𝜏1≤𝜏0+2+𝑡stp
←−−−−−−−−−−↪ 𝐴

(9) (SETUP–OK, id)
𝜏1
↩−→ ℰ

(10) If not (UPDATE–OK, id)
𝜏1←−↪ ℰ , go idle.

(11) SignTxs𝐴 (txset𝑖 , addrset , pkeyAset ∪ pkeyBset )
Party 𝐴 in round 𝑡1 + 1 + 𝑡𝑠

(12) If sigset𝐴𝑖 is returned from SignTxs𝐴 , (UPDATE–OK, id)
𝑡1+1+𝑡𝑠
↩−−−−−−→ ℰ .

Else, execute ForceClose(id) and go idle.

(13) If not (REVOKE, id)
𝑡1+1+𝑡𝑠←−−−−−−↪ ℰ , go idle.

(14) 𝐴 together with 𝐵 runs the interactive protocol ℱSign to generate

the following signature. 𝜎𝐴
Pnsh,𝑖 on the punishment transaction

tx𝐴Pnsh,𝑖 .Party𝐴 receives 𝜎𝐴
Pnsh,𝑖 as output after 𝑡𝑟 . In case of failure,

execute ForceClose(id) .
(15) (revoke, id, 𝜎𝐴

Pnsh,𝑖 )
𝑡1+1+𝑡𝑠+𝑡𝑟
↩−−−−−−−−−→ 𝐵

Party 𝐵 in round 𝜏1 + 𝑡𝑠
(16) If sigset𝐵𝑖 is not returned from SignTxs𝐴 , execute ForceClose(id)

and go idle.

(17) Participate in the signing of tx𝐴Pnsh,𝑖 .

(18) Upon (revoke, id, 𝜎𝐴
Pnsh,𝑖 )

𝜏1+1+𝑡𝑠+𝑡𝑟←−−−−−−−−−↪ 𝐴, continue. Else, execute

ForceClose(id) and go idle.

(19) (REVOKE–REQ, id)
𝜏1+1+𝑡𝑠+𝑡𝑟
↩−−−−−−−−−→ ℰ

(20) If not (REVOKE, id)
𝜏1+1+𝑡𝑠+𝑡𝑟←−−−−−−−−−↪ ℰ , go idle.

(21) 𝐵 together with 𝐴 runs the interactive protocol ℱSign to generate

the following signature. 𝜎𝐵
Pnsh,𝑖 on the punishment transaction

tx𝐵Pnsh,𝑖 . Party 𝐵 receives 𝜎𝐵
Pnsh,𝑖 as output after 𝑡𝑟 . In case of failure,

execute ForceClose(id) .
(22) (revoke, id, 𝜎𝐵

Pnsh,𝑖 )
𝜏1+1+𝑡𝑠+2𝑡𝑟
↩−−−−−−−−−−→ 𝐴

(23) Θ𝐵 (id) := Θ𝐵 ∪
{
(txset𝑖−1, sigset𝐵𝑖−1, 𝜎𝐵

Pnsh,𝑖−1)
}

(24) Γ𝐵 (id) := (tx𝐹 , txset𝑖 , sigset𝐵𝑖 , addrset , pkeyAset , pkeyBset )

(25) (UPDATED, id)
𝜏1+2+𝑡𝑠+2𝑡𝑟
↩−−−−−−−−−−→ ℰ

Party 𝐴 in round 𝑡1 + 2 + 𝑡𝑠 + 𝑡𝑟
(26) Participate in the signing of tx𝐵Pnsh,𝑖 .

(27) If (revoke, id, 𝜎𝐵
Pnsh,𝑖 )

𝑡1+3+𝑡𝑠+2𝑡𝑟←−−−−−−−−−↪ 𝐵 and the signature is valid, go

to next step. Else, execute ForceClose(id) .
(28) Θ𝐴 (id) := Θ𝐴 ∪

{
(txset𝑖−1, sigset𝐴𝑖−1, 𝜎𝐵

Pnsh,𝑖−1)
}

(29) Γ𝐴 (id) := (tx𝐹 , txset𝑖 , sigset𝐴𝑖 , addrset , pkeyAset , pkeyBset )

(30) (UPDATED, id)
𝑡1+3+𝑡𝑠+2𝑡𝑟
↩−−−−−−−−−→ ℰ

Close

Party 𝐴 upon (CLOSE, id)
𝑡0←−↪ ℰ

(1) Extract (tx𝐹 , txset𝑖 , sigset𝐴𝑖 , addrset , pkeyAset , pkeyBset ) from Γ𝐴 (id) .
(2) Extract 𝑣𝐴,𝑖 and 𝑣𝐵,𝑖 from tx𝐴Pay, 𝑗 ∈ txset𝑖 , and 𝑐 from tx𝐹
(3) Create transaction tx𝑐 := tx (Ch𝐴𝐵,

{
pk𝐴, pk𝐵

}
,
{
𝑣𝐴,𝑖 + 𝑐, 𝑣𝐵,𝑖 + 𝑐

}
) ,

where pk𝐴 is an address controlled by 𝐴 and pk𝐵 an address con-

trolled by 𝐵.

(4) 𝐴 together with 𝐵 runs the interactive protocol ℱSign to generate

the following signature, 𝜎tx𝑐 on the transaction tx𝑐 . This takes 𝑡𝑟
rounds.
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(5) In case the signature generation was successful, post (tx𝑐 , 𝜎tx𝑐 ) on
B. Else, execute ForceClose(id) .

(6) If tx𝑐 appears on B in round 𝑡1 ≤ 𝑡0 + 𝑡𝑟 + Δ, set Θ𝐴 (id) := ⊥,
Γ𝐴 (id) := ⊥ and send (CLOSED, id)

𝑡2
↩−→ ℰ .

Punish

Party 𝐴 upon PUNISH
𝑡0←−↪ ℰ :

For each id ∈ {0, 1}∗ s.t. Θ𝑃 (id) ≠ ⊥:
(1) Iterate over all elements (txset𝑖 , sigset𝐴𝑖 , 𝜎𝐵

Pnsh,𝑖 ) in Θ𝑃 (id)

(2) If the revoked payment tx𝐵Pay,𝑖 ∈ txset𝑖 is onB, post
(
tx𝐵Pnsh,𝑖 , 𝜎

𝐵
Pnsh,𝑖

)
on B before the absolute timeout T.

(3) Let tx𝐵Pnsh,𝑖 be accepted by B in round 𝑡1 ≤ 𝑡0 + Δ. Post
(tx𝐵,𝐴Fpay,𝑖 , 𝜎tx𝐵,𝐴Fpay,𝑖

∈ sigset𝐴𝑖 )

(4) After tx𝐵,𝐴Fpay,𝑖 is accepted byB in round 𝑡2 ≤ 𝑡1+Δ, setΘ𝐴 (id) := ⊥,

Γ𝐴 (id) := ⊥ and output (PUNISHED, id)
𝑡1
↩−→ ℰ .

Subprotocols

ForceClose(id) :
Let 𝑡0 be the current round

(1) Extract (tx𝐹 , txset0, sigset𝐴0 , addrset , pkeyAset , pkeyBset ) from Γ𝐴 (id) and
extract tx𝐴Pay, 𝑗 from txset and 𝜎𝐴

Pay, 𝑗 and sigset .

(2) Party 𝐴 posts

(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
on B

(3) Let 𝑡1 ≤ 𝑡0 + Δ be the round in which tx𝐴Pay, 𝑗 is accepted by B.

(4) If tx𝐴,𝐵
Fpay,𝑖 appears on B at or after round 𝑡2 ≤ 𝑡1 + Δ and before T,

post

(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
and send (CLOSED, id)

𝑡3≤𝑡2+Δ
↩−−−−−−→ ℰ . Otherwise,

post

(
tx𝐴,𝐴

Fpay,𝑖 , 𝜎
𝐴,𝐴
Fpay,𝑖

)
after T and send (CLOSED, id)

𝑡4≤T+Δ
↩−−−−−−→ ℰ .

(5) Set Γ𝑃 (id) := ⊥, Θ𝑃 (id) := ⊥.

GenerateTxs(addrset , pkeyAset , pkeyBset , 𝑐, 𝑣𝐴𝑖
, 𝑣𝐵𝑖
) :

(1) Using the addresses in addrset and the public keys in pkeyAset and
pkeyBset , do the following.

(2) Generate tx𝐴Pay,𝑖 := tx (Ch𝐴𝐵, [pkCPay,𝐴, SleepyCh𝐴, ExitCh𝐵 ],
[𝑐, 𝑣𝐴,𝑖 , 𝑣𝐵,𝑖 + 𝑐 ])

(3) Generate tx𝐵Pay,𝑖 := tx (Ch𝐴𝐵, [pkCPay,𝐵, SleepyCh𝐵, ExitCh𝐴 ]
[𝑐, 𝑣𝐵,𝑖 , 𝑣𝐴,𝑖 + 𝑐 ])

(4) Generate punishment transactions tx𝐴Pnsh,𝑖 := tx (SleepyCh𝐴,
pkpun,𝐵, 𝑣𝐴,𝑖 ) and tx𝐵Pnsh,𝑖 := tx (SleepyCh𝐵, pkpun,𝐴, 𝑣𝐵,𝑖 )

(5) Generate finish-pay transactions tx𝐴,𝐴
Fpay,𝑖 := tx (SleepyCh𝐴, pkfp,𝐴,

𝑣𝐴,𝑖 ) and tx𝐵,𝐵Fpay,𝑖 := tx (SleepyCh𝐵, pkfp,𝐵, 𝑣𝐵,𝑖 ) both timelocked

until time T.
(6) Generate a set of faster finish-pay transactions tx𝐴,𝐵

Fpay,𝑖 :=

tx (ExitCh𝐴, [pkffp,𝐵, aux𝐴 ], [𝑣𝐵,𝑖 + 𝑐 − 𝜖, 𝜖 ]) and tx𝐵,𝐴Fpay,𝑖 :=

tx (ExitCh𝐵, [pkffp,𝐴, aux𝐵 ], [𝑣𝐴,𝑖 + 𝑐 − 𝜖, 𝜖 ]) .
(7) Generate a set of enabler transactions tx𝐴∗Fpay,𝑖 :=

tx ( [SleepyCh𝐴, aux𝐴 ], pkfp,𝐴, 𝑣𝐴,𝑖 + 𝜖) and tx𝐵∗Fpay,𝑖 :=
tx ( [SleepyCh𝐵, aux𝐵 ], pkfp,𝐵, 𝑣𝐵,𝑖 + 𝜖) that enable a faster finish-
payment.

(8) Return txset := {tx𝐴Pay,𝑖 , tx
𝐵
Pay,𝑖 , tx

𝐴
Pay,𝑖 , tx

𝐴
Pnsh,𝑖 , tx

𝐵
Pnsh,𝑖 , tx

𝐴,𝐴
Fpay,𝑖 ,

tx𝐵,𝐵Fpay,𝑖 , tx
𝐴,𝐵
Fpay,𝑖 , tx

𝐵,𝐴
Fpay,𝑖 , tx

𝐴∗
Fpay,𝑖 , tx

𝐵∗
Fpay,𝑖 }

SignTxs𝐴 (txset , addrset , pkeyAset ∪ pkeyBset ) :
Party 𝐴 (specified by the superscript of the function) is the one that

receives the signatures first.

Upon agreement, i.e., 𝐴 and 𝐵 start executing this subprotocol in the

same round with the same parameters, the following is executed. Ex-

tracting the transactions, addresses and public keys from the param-

eters, Party 𝐴 together with B runs ℱSign to sign the transactions as

follows.

(1) Party 𝐴 receives signature 𝜎
𝐴,𝐴
Fpay,𝑖 on transaction tx𝐴,𝐴

Fpay,𝑖 under

the shared key SleepyCh𝐴 .
(2) Party 𝐵 receives signature 𝜎

𝐵,𝐵
Fpay,𝑖 on transaction tx𝐵,𝐵Fpay,𝑖 under

the shared key SleepyCh𝐵 .

(3) Party 𝐴 receives signatures

(
𝜎SleepyCh,𝐴, 𝜎aux,𝐴

)
on the trans-

action tx𝐴∗Fpay,𝑖 with respect to the shared keys SleepyCh𝐴 and

aux𝐴 , respectively.

(4) Party 𝐵 receives signatures

(
𝜎SleepyCh,𝐵, 𝜎aux,𝐵

)
on the trans-

action tx𝐵∗Fpay,𝑖 with respect to the shared keys SleepyCh𝐵 and

aux𝐵 , respectively.
(5) Party 𝐴 receives signature 𝜎

𝐴,𝐵
Fpay,𝑖 on the transaction tx𝐴,𝐵

Fpay,𝑖
under the shared key ExitCh𝐵 .

(6) Party 𝐵 receives signature 𝜎
𝐵,𝐴
Fpay,𝑖 on the transaction tx𝐵,𝐴Fpay,𝑖

under the shared key ExitCh𝐴 .
(7) Party 𝐴 receives signature 𝜎𝐴

Pay,𝑖 on the transaction tx𝐴Pay,𝑖 un-
der the shared key Ch𝐴𝐵 .

(8) Party 𝐵 receives signature 𝜎𝐵
Pay,𝑖 on the transaction tx𝐵Pay,𝑖 un-

der the shared key Ch𝐴𝐵 .

This takes 𝑡𝑠 rounds and in case of failure (i.e., a signatures is not

received or not valid for the specified transaction and output), ex-

ecute the steps in Close. In case of success, returns to 𝐴 sigset𝐴𝑖 :={
𝜎
𝐴,𝐴
Fpay,𝑖 ,

(
𝜎SleepyCh,𝐴, 𝜎aux,𝐴

)
, 𝜎

𝐵,𝐴
Fpay,𝑖 , 𝜎

𝐴
Pay,𝑖

}
and to 𝐵 sigset𝐵𝑖 :={

𝜎
𝐵,𝐵
Fpay,𝑖 ,

(
𝜎SleepyCh,𝐵, 𝜎aux,𝐵

)
, 𝜎

𝐴,𝐵
Fpay,𝑖 , 𝜎

𝐵
Pay,𝑖

}
Indistinguishability: What is left at this point is to show that

the UC version of the protocol is computationally indistinguishable

from the one described in Section 5. More specifically, in the UC

version of the protocol we substituted (i) the 2-party key genera-

tion protocol ΓJKGen for a signature scheme ΠDS with an idealized

version ℱJKGen and (ii) the 2-party signing protocol ΓSign for a sig-

nature scheme ΠDS with an idealized version ℱSign. For the UC

formulations we refer the reader to [17, 20]. Let Π′′ be the protocol
we presented in Section 5.

Π′: We define Π′ as Π′′ except that the (UC-secure) 2-party key

generation protocol ΓJKGen for a signature scheme ΠDS is replaced

by an idealized version ℱJKGen. Such ideal functionality samples a

key pair honestly and simulates the shares of the corrupted party.

Π′′ ≈ Π′: Towards a contradiction, we assume that there exists

an adversary 𝒜 that can computationally distinguish between Π′

and Π′′. We can construct a reduction algorithm ℛ that uses 𝒜
as a subprocedure. Since the two protocols only differ in ΓJKGen
being replaced by ℱJKGen, ℛ using 𝒜 can be used to distinguish a

keyshare of ΓJKGen from the data received in ℱJKGen, which in turn

would break the security of our 2-party key generation protocol

with non-negligible probability.

Π: We define Π as Π′ except that the (UC-secure) 2-party sign-

ing protocol ΓSign for a signature scheme ΠDS is replaced with an

idealized versionℱSign, which signs messages locally and simulates
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the interaction of corrupted parties. Note that this corresponds to

the UC version of the protocol.

Π′ ≈ Π: Towards a contradiction, we assume that there exists

an adversary 𝒜 that can computationally distinguish between Π
and Π′. Since the two protocols only differ in ΓSign being replaced

by ℱSign, this means that 𝒜 is able to distinguish a real interaction

from a simulated one with non-negligible probability. This is a

contradiction against the UC-security of ΓSign.

A.1 UC Simulator
In this section we give the pseudocode of a simulator for the formal

Sleepy Channel protocol Π of Appendix A in the ideal world. Our

simulator interacts withℱ and B. The subprotocol SignTxs𝑃 refers

to the one given in the formal protocol description. Normally, the

challenge of providing a UC-simulation proof is that the simulator

is not given the secret inputs of parties sent by the environment.

Instead, the functionality usually specifies exactly what is leaked

to the simulator, and the simulator has to generate a simulated

transcript merely from this leaked information. The simulated tran-

script has to be indistinguishable from the transcript that is the

result of the real world protocol execution.

Note that in our model, all messages to the functionality are

implicitly forwarded to the simulator, i.e., there are no secret in-

puts. Hence, we can omit the simulation of the case where both

protocol participants are honest; the simulator in this case would

merely need to recreate the side-effect of the protocol code, which

can be easily achieved with access to all the messages sent to the

functionality. Indeed, the main challenge in our setting is to handle

any behavior of malicious parties.

Simulator for Create

Case 𝐴 is honest and 𝐵 is corrupted

Upon 𝐴 sending (CREATE, 𝛾, tid𝐴)
𝜏0
↩−→ ℱ , if 𝐵 does not send

(CREATE, 𝛾, tid𝐵 )
𝜏
↩−→ ℱ where |𝜏0 − 𝜏 | ≤ 𝑇1, then distinguish the

following cases:

(1) If 𝐵 sends (createInfo, id, tid𝐵, pkeyBset )
𝜏0
↩−→ 𝐴, then send

(CREATE, 𝛾, tid𝐵 )
𝜏0
↩−→ ℱ on behalf of 𝐵.

(2) Otherwise stop.

Do the following:

(1) Set id := 𝛾 .id, generate
(
pkCPay,𝐴, skCPay,𝐴

)
, (pkpun,𝐴, skpun,𝐴) ,

(pkfp,𝐴, skfp,𝐴) and (pkffp,𝐴, skffp,𝐴) . Let pkeyAset be the set of public

keys of these key pairs. Send (createInfo, id, tid𝐴, pkeyAset )
𝜏0
↩−→ 𝐵.

(2) If you receive (createInfo, id, tid𝐵, pkeyBset )
𝜏0+1←−−−↪ 𝐵, do the follow-

ing. Else go idle.

(3) Using pkeyAset and pkey
B
set , the simulator on behalf of𝐴 togetherwith

𝐵 runs ℱJKGen to generate the following set of shared addresses:

addrset := {Ch𝐴𝐵, SleepyCh𝐴, SleepyCh𝐵, ExitCh𝐴, ExitCh𝐵, aux𝐴,
aux𝐵 } which takes 𝑡𝑔 rounds. In case of failure, abort.

(4) Generate tx 𝑓 := tx ( [tid𝐴, tid𝐵 ], [Ch𝐴𝐵 ], [2 · 𝑐 + 𝑣𝐴,0 + 𝑣𝐵,0 ])
(5) Let txset

0
← GenerateTxs(addrset , pkeyAset , pkeyBset , 𝑐, 𝑣𝐴𝑖

, 𝑣𝐵𝑖
)

(6) Let sigset𝐴
0
← SignTxs𝐴 (txset0, addrset , pkeyAset ∪ pkeyBset )

(7) Generates a signature on behalf of𝐴, 𝜎tid𝐴 , for the output tid𝐴 and

send (createFund, id, 𝜎tid𝐴 )
𝑡0+1+𝑡𝑔+𝑡𝑠
↩−−−−−−−−−→ 𝐴.

(8) If you (createFund, id, 𝜎tid𝐵 )
𝜏0+2+𝑡𝑔+𝑡𝑠
←−−−−−−−−−↪ 𝐵, post (tx𝐹 ,

{
𝜎tid𝐴 , 𝜎tid𝐵

}
)

to B.

(9) If tx𝐹 is accepted by B in round 𝜏1 ≤ 𝜏0 + 2 + 𝑡𝑔 + 𝑡𝑠 + Δ, store
Γ𝐴 (id) := (tx𝐹 , txset0, sigset𝐴0 , addrset , pkeyAset , pkeyBset ) .

Simulator for Update

Case 𝐴 is honest and 𝐵 is corrupted

Upon 𝐴 sending (UPDATE, id,−→𝜃 , 𝑡stp)
𝜏0
↩−→ ℱ , proceed as follows:

(1) (updateReq, id,−→𝜃 , 𝑡stp)
𝑡0
↩−→ 𝐵

(2) Upon (updateInfo, id)
𝑡0+2←−−−↪ 𝐵, do the following

(3) Retrieve (tx𝐹 , txset𝑖−1, sigset𝐴𝑖−1, addrset , pkeyAset , pkeyBset ) = Γ𝐴 (id)
(4) Extract 𝑣𝐴,𝑖 and 𝑣𝐵,𝑖 from

−→
𝜃 , and 𝑐 from tx𝐹

(5) Let txset𝑖 ← GenerateTxs(addrset , pkeyAset , pkeyBset , 𝑐, 𝑣𝐴𝑖
, 𝑣𝐵𝑖
)

(6) Let

−→
tid := (tx𝐴Pay,𝑖 .id, tx

𝐵
Pay,𝑖 .id) be a tuple of the transaction ids of

transaction tx𝐴Pay,𝑖 and tx𝐵Pay,𝑖 . Inform ℱ of

−→
tid in round 𝑡0 + 2.

(7) If 𝐴 sends (SETUP–OK, id)
𝑡1≤𝑡0+2+𝑡stp
↩−−−−−−−−−−→ ℱ , send (updateCom, id)

𝑡1
↩−→ 𝐵

(8) Wait one round.

(9) If in round 𝑡1+1,𝐵 starts executing SignTxs𝐴 (txset𝑖 , addrset , pkeyAset∪
pkeyBset ) , send (UPDATE–OK, id)

𝑡1+1
↩−−−→ ℱ on behalf of 𝐵

(10) SignTxs𝐴 (txset𝑖 , addrset , pkeyAset ∪ pkeyBset )
(11) If sigset𝐴𝑖 is returned from SignTxs𝐴 , instructℱ to (UPDATE–OK, id)

𝑡1+1+𝑡𝑠
↩−−−−−−→ ℰ via 𝐴. Else, execute ForceClose𝐴 (id) and go idle.

(12) If 𝐴 does not send (REVOKE, id)
𝑡1+1+𝑡𝑠
↩−−−−−−→ ℱ , go idle.

(13) The simulator on behalf of 𝐴 together with 𝐵 runs the interactive

protocol ℱSign to generate the following signature. 𝜎𝐴
Pnsh,𝑖 on the

punishment transaction tx𝐴Pnsh,𝑖 . Party 𝐴 receives 𝜎𝐴
Pnsh,𝑖 as output.

This takes 𝑡𝑟 rounds. In case of failure, execute ForceClose𝐴 (id) .
(14) (revoke, id, 𝜎𝐴

Pnsh,𝑖 )
𝑡1+1+𝑡𝑠+𝑡𝑟
↩−−−−−−−−−→ 𝐵

(15) If 𝐵 starts ℱSign to sign tx𝐵Pnsh,𝑖 in round 𝑡1 + 2 + 𝑡𝑠 + 𝑡𝑟 , send

(REVOKE, id)
𝑡1+2+𝑡𝑠+𝑡𝑟
↩−−−−−−−−−→ ℱ on behalf of 𝐵 and participate in the

signing on behalf of 𝐴.

(16) If (revoke, id, 𝜎𝐵
Pnsh,𝑖 )

𝑡1+3+𝑡𝑠+2𝑡𝑟←−−−−−−−−−↪ 𝐵 and the signature is valid, go

to next step. Else, execute ForceClose𝐴 (id) .
(17) Θ𝐴 (id) := Θ𝐴 ∪

{
(txset𝑖−1, sigset𝐴𝑖−1, 𝜎𝐵

Pnsh,𝑖−1)
}

(18) Γ𝐴 (id) := (tx𝐹 , txset𝑖 , sigset𝐴𝑖 , addrset , pkeyAset , pkeyBset )
Case 𝐵 is honest and 𝐴 is corrupted

Upon 𝐴 sending (updateReq, id,−→𝜃 , 𝑡stp)
𝑡0
↩−→ 𝐵, send

(UPDATE, id,−→𝜃 , 𝑡stp)
𝑡0
↩−→ ℱ on behalf of 𝐴, if 𝐴 has not already sent

this message. Proceed as follows:

(1) Upon (updateReq, id,−→𝜃 , 𝑡stp)
𝜏0←−↪ 𝐴, do the following

(2) Retrieve (tx𝐹 , txset𝑖−1, sigset𝐵𝑖−1, addrset , pkeyAset , pkeyBset ) = Γ𝐵 (id)
(3) Extract 𝑣𝐴,𝑖 and 𝑣𝐵,𝑖 from

−→
𝜃 , and 𝑐 from tx𝐹

(4) Let txset𝑖 ← GenerateTxs(addrset , pkeyAset , pkeyBset , 𝑐, 𝑣𝐴𝑖
, 𝑣𝐵𝑖
)

(5) Let

−→
tid := (tx𝐴Pay,𝑖 .id, tx

𝐵
Pay,𝑖 .id) be a tuple of the transaction ids of

transaction tx𝐴Pay,𝑖 and tx𝐵Pay,𝑖 . Inform ℱ of

−→
tid.

(6) (updateInfo, id)
𝜏0
↩−→ 𝐴

(7) Upon𝐴 sending (updateCom, id)
𝜏0+1+𝑡stp
↩−−−−−−−→ 𝐵, send (SETUP–OK, id)

𝜏1
↩−→ ℱ on behalf of 𝐴.

(8) Receive (updateCom, id)
𝜏1≤𝜏0+2+𝑡stp
←−−−−−−−−−−↪ 𝐴

(9) If𝐵 sends (UPDATE–OK, id)
𝜏1
↩−→ ℱ , SignTxs𝐴 (txset𝑖 , addrset , pkeyAset∪

pkeyBset )



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro Moreno-Sanchez, and Matteo Maffei

(10) If sigset𝐵𝑖 is not returned from SignTxs𝐴 in round 𝜏1 + 𝑡𝑠 , execute
ForceClose𝐵 (id) and go idle.

(11) If 𝐴 starts the ℱSign in round 𝜏1 + 𝑡𝑠 to generate 𝜎𝐴
Pnsh,𝑖 , send

(REVOKE, id)
𝜏1+𝑡𝑠
↩−−−−→ ℱ on behalf of 𝐴. Participate in the signing on

behalf of 𝐵.

(12) Upon (revoke, id, 𝜎𝐴
Pnsh,𝑖 )

𝜏1+1+𝑡𝑠+𝑡𝑟←−−−−−−−−−↪ 𝐴, continue. Else, execute

ForceClose𝐵 (id) and go idle.

(13) If 𝐵 does not send (REVOKE, id)
𝜏1+1+𝑡𝑠+𝑡𝑟
↩−−−−−−−−−→ ℱ , go idle.

(14) 𝒮 on behalf of 𝐵 together with𝐴 runs the interactive protocolℱSign

to generate the following signature. 𝜎𝐵
Pnsh,𝑖 on the punishment

transaction tx𝐵Pnsh,𝑖 . Party 𝐵 receives 𝜎𝐵
Pnsh,𝑖 as output after 𝑡𝑟 . In

case of failure, execute ForceClose𝐵 (id) .
(15) (revoke, id, 𝜎𝐵

Pnsh,𝑖 )
𝜏1+1+𝑡𝑠+2𝑡𝑟
↩−−−−−−−−−−→ 𝐴

(16) Θ𝐵 (id) := Θ𝐵 ∪
{
(txset𝑖−1, sigset𝐵𝑖−1, 𝜎𝐵

Pnsh,𝑖−1)
}

(17) Γ𝐵 (id) := (tx𝐹 , txset𝑖 , sigset𝐵𝑖 , addrset , pkeyAset , pkeyBset )

Simulator for Close

Case 𝐴 is honest and 𝐵 is corrupted

Upon 𝐴 sending (CLOSE, id)
𝑡0
↩−→ ℱ , do the following.

(1) Extract (tx𝐹 , txset𝑖 , sigset𝐴𝑖 , addrset , pkeyAset , pkeyBset ) from Γ𝐴 (id) .
(2) Extract 𝑣𝐴,𝑖 and 𝑣𝐵,𝑖 from tx𝐴Pay, 𝑗 ∈ txset𝑖 , and 𝑐 from tx𝐹
(3) Create transaction tx𝑐 := tx (Ch𝐴𝐵,

{
pk𝐴, pk𝐵

}
,
{
𝑣𝐴,𝑖 + 𝑐, 𝑣𝐵,𝑖 + 𝑐

}
) ,

where pk𝐴 is an address controlled by 𝐴 and pk𝐵 an address con-

trolled by 𝐵.

(4) The simulator on behalf of 𝐴 together with 𝐵 runs the interactive

protocol ℱSign to generate the following signature, 𝜎tx𝑐 on the

transaction tx𝑐 . This takes 𝑡𝑟 rounds.

(5) In case the signature generation was successful, post (tx𝑐 , 𝜎tx𝑐 )
on B and send (CLOSE, id)

𝑡0+𝑡𝑟
↩−−−−→ ℱ on behalf of 𝐵. Else, execute

ForceClose𝐴 (id) .
(6) If tx𝑐 appears on B in round 𝑡1 ≤ 𝑡0 + 𝑡𝑟 + Δ, set Θ𝐴 (id) := ⊥,

Γ𝐴 (id) := ⊥.

Simulator for Punish

Case 𝐴 is honest and 𝐵 is corrupted

Upon 𝐴 sending PUNISH
𝜏0
↩−→ ℱ , for each id ∈ {0, 1}∗ such that

Θ𝐴 (id) ≠ ⊥ do the following:

(1) Parse {(txset𝑖 , sigset𝐴𝑖 , 𝜎𝐵
Pnsh,𝑖 ) }𝑖∈𝑚 := Θ𝐴 (id) and extract 𝛾 from

Γ𝐴 (id) . If for some 𝑖 ∈𝑚, there exist a transaction tx𝐵Pay,𝑖 ∈ txset𝑖
on B do the following.

(2) Post

(
tx𝐵Pnsh,𝑖 , 𝜎

𝐵
Pnsh,𝑖

)
on B before the absolute timeout T.

(3) Let tx𝐵Pnsh,𝑖 be accepted by B in round 𝑡1 ≤ 𝑡0 + Δ. Post
(tx𝐵,𝐴Fpay,𝑖 , 𝜎tx𝐵,𝐴Fpay,𝑖

∈ sigset𝐴𝑖 )

(4) After tx𝐵,𝐴Fpay,𝑖 is accepted byB in round 𝑡2 ≤ 𝑡1+Δ, setΘ𝐴 (id) := ⊥,
Γ𝐴 (id) := ⊥.

Simulator for ForceClose𝑃 (id)

Let 𝜏0 be the current round

(1) Extract (tx𝐹 , txset0, sigset𝐴0 , addrset , pkeyAset , pkeyBset ) from Γ𝐴 (id) and
extract tx𝐴Pay, 𝑗 from txset and 𝜎𝐴

Pay, 𝑗 and sigset .

(2) Post

(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
on B

(3) Let 𝑡2 ≤ 𝑡1 + Δ be the round in which tx𝐴Pay, 𝑗 is accepted by B.

(4) If tx𝐴,𝐵
Fpay,𝑖 appears on B at or after round 𝑡3 ≤ 𝑡2 + Δ and before T,

post

(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
. Otherwise, post

(
tx𝐴,𝐴

Fpay,𝑖 , 𝜎
𝐴,𝐴
Fpay,𝑖

)
after T. Set

Γ𝑃 (id) := ⊥, Θ𝑃 (id) := ⊥.

A.2 Simulation proof
To proof that the protocol is a (G)UC-realization of the function-

ality ℱ , we show that the execution ensembles EXECΠ,𝒜,ℰ and

EXECℱ,𝒮,ℰ are computationally indistinguishable. I.e., for the sim-

ulator 𝒮 presented in Appendix A.1, for every environment the

interaction with 𝒮 andℱ is computationally indistinguishable from

the interaction with𝒜 and Π. We show this for the different phases

Create, Update, Close, Punish as well as the subprotocol ForceClose.

For readability we define𝑚[𝜏] to capture the fact that a message

𝑚 is observed by the environment in round 𝜏 . Note that messages

sent to parties in the protocol that are under adversarial control

observe the message after one round. Additionally, we interact with

other functionalities, e.g., for signing and the ledger. To capture any

side effect observable by the environment including messages sent

parties who are potentially controlled by the adversary or changing

public variables such as the ledger, we do the following. We denote

obsSet(action, 𝜏) as the set of all observable side effects triggered
by action action in round 𝜏 . Finally, we refer to a message by the

message identifier, e.g., CREATE or createInfo. We note that other

message parameters are omitted. Instead, we refer to relevant parts

in the ideal world and the real world, where one can verify that

indeed the same objects are created, checks are performed, etc.

We require a SUF-CMA secure signature scheme Σ and a ledger

B(Δ, Σ,𝒱) where 𝒱 allows for transaction authorization under Σ
and absolute time-locks.

6
The former property is needed to ensure

that the environment and malicious party cannot generate signa-

tures on behalf of honest parties with non-negligible probability.

Instead, only the simulator can generate signatures on behalf of

honest parties. Further, we require a ledger that supports transac-

tion authorization under Σ and absolute time-locks for encoding

our construction.

Lemma 2. The Create phase of Π UC-realizes the Create phase of
ℱ .

Proof. We consider the case where 𝐴 is honest and 𝐵 is cor-

rupted. Note that the reverse case is symmetric.

Real World: After receiving CREATE in round 𝑡0, 𝐴 sends mes-

sage createInfo to 𝐵 in 𝑡0. If 𝐴 receives also createInfo in 𝑡0 + 1,
𝐴 will perform first the action 𝑎0 := “run address generation” in

round 𝑡0 + 1 and on success, create the transactions for the chan-

nel followed by 𝑎1 := “create signatures” in round 𝑡0 + 1 + 𝑡𝑔 . If
this is successful, 𝐴 generates the signature for the funding tx 𝑡𝑥𝐹
and sends the signature via createFund to 𝐵 in 𝑡0 + 1 + 𝑡𝑔 + 𝑡𝑠 . If 𝐴
receives also createFund from 𝐵 in round 𝑡0 + 2 + 𝑡𝑔 + 𝑡𝑠 , it will per-
form action 𝑎2 := “Post funding tx on B”. If it is accepted in round

𝑡1 ≤ 𝑡0+2+𝑡𝑔+𝑡𝑠 +Δ, finally𝐴will output CREATED. Thus, the execu-

tion ensemble is EXECcreate

Π,𝒜,ℰ := {createFund[𝑡0 + 1], obsSet(𝑎0, 𝑡0 +
1), obsSet(𝑎1, 𝑡0 + 1+ 𝑡𝑔), createFund[𝑡0 + 2+ 𝑡𝑔 + 𝑡𝑠 ], obsSet(𝑎2, 𝑡0 +
2 + 𝑡𝑔 + 𝑡𝑠 ), CREATED[𝑡1]}.
6
The necessity for time-locks can be dropped when using verifiable timed signatures

(VTS) as discussed in Section 5.2, although we do not provide a formal analysis for

such variant here.
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Ideal World: After 𝐴 sending CREATE in round 𝑡0 to ℱ , the

simulator sends createInfo to 𝐵. If 𝐵 sends createInfo to 𝐴, the

simulator informs ℱ and performs 𝑎0 in round 𝑡0 + 1. Upon success,

𝒮 creates the transactions for the channel and performs 𝑎1 in round

𝑡0 + 1 + 𝑡𝑔 . If this was successful, the simulator on behalf of 𝐴

generates the signature of 𝑡𝑥𝐹 and sends createFund to 𝐵 in 𝑡0 + 1+
𝑡𝑔 + 𝑡𝑠 . If 𝐵 sends also createFund to𝐴, received in 𝑡0 + 2+ 𝑡𝑔 + 𝑡𝑠 +Δ,
perform 𝑎2 in 𝑡0 + 2 + 𝑡𝑔 + 𝑡𝑠 + Δ. If the funding tx is accepted in

round 𝑡1 ≤ 𝑡0 + 2 + 𝑡𝑔 + 𝑡𝑠 + Δ, ℱ (which expects it after being

informed by 𝒮) outputs CREATED in round 𝑡1 ≤ 𝑡0 + 2 + 𝑡𝑔 + 𝑡𝑠 + Δ.
Thus, the execution ensemble is EXECcreate

ℱ,𝒮,ℰ := {createFund[𝑡0 +
1], obsSet(𝑎0, 𝑡0 + 1), obsSet(𝑎1, 𝑡0 + 1 + 𝑡𝑔), createFund[𝑡0 + 2 + 𝑡𝑔 +
𝑡𝑠 ], obsSet(𝑎2, 𝑡0 + 2 + 𝑡𝑔 + 𝑡𝑠 ), CREATED[𝑡1]} □

Lemma 3. The ForceClose subprotocol of Π UC-realizes the Force-
Close subprocedure of ℱ .

Proof. We consider the case where 𝐴 is honest and 𝐵 is cor-

rupted. Note that the reverse case is symmetric.

Real World: Taking the latest state, a performs action 𝑎0 :=

“post

(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
on B” in round 𝑡0. After the transaction ap-

pears on B in round 𝑡1 ≤ 𝑡0 + Δ, do the following depending

on 𝐵. Either (i) the transaction tx𝐴,𝐵Fpay,𝑖 appears on B in round

𝑡2 ≤ 𝑡1 + Δ and before T. In this case, 𝐴 posts

(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
,

which we denote as action 𝑎1, followed by sending CLOSED in round

𝑡𝑚 := 𝑡3𝑙𝑒𝑞𝑡2 + Δ. Otherwise, (ii) 𝐴 posts

(
tx𝐴,𝐴Fpay,𝑖 , 𝜎

𝐴,𝐴
Fpay,𝑖

)
after T,

which we denote as action 𝑎2, followed by sending CLOSED in round

𝑡𝑚 := 𝑡4 ≤ T +Δ. Thus, the execution ensemble is EXECforceclose

Π,𝒜,ℰ :=

{obsSet(𝑎0, 𝑡0), 𝑜 ∈ {obsSet(𝑎1, 𝑡2), obsSet(𝑎2,T)}, CLOSED[𝑡𝑚]}.
Ideal World: Taking the latest state, the simulator will mirror

the behavior of the real world. In round 𝑡0, it will performs action 𝑎0.

After the transaction appears on B in round 𝑡1 ≤ 𝑡0 + Δ, do the fol-

lowing depending on 𝐵. Either (i) the transaction tx𝐴,𝐵Fpay,𝑖 appears on

B in round 𝑡2 ≤ 𝑡1 +Δ and before T. In this case, the simulator posts(
tx𝐴Pay, 𝑗 , 𝜎

𝐴
Pay, 𝑗

)
, which we denote as action 𝑎1. Otherwise, (ii) the

simulator posts

(
tx𝐴,𝐴Fpay,𝑖 , 𝜎

𝐴,𝐴
Fpay,𝑖

)
after T, which we denote as action

𝑎2.Meanwhile, the functionalityℱ expects that either of these trans-

actions appears on B. If this happens, either in round 𝑡𝑚 := 𝑡3 ≤
𝑡2+Δ in case (i) or in round 𝑡𝑚 := 𝑡4 ≤ T+Δ, it outputs CLOSED. Thus,
the execution ensemble is EXECforceclose

ℱ,𝒮,ℰ := {obsSet(𝑎0, 𝑡0), 𝑜 ∈
{obsSet(𝑎1, 𝑡2), obsSet(𝑎2,T)}, CLOSED[𝑡𝑚]}. □

Lemma 4. The Update phase of Π UC-realizes the Update phase of
ℱ .

Proof. We start by considering the case where 𝐴 is honest and

𝐵 is corrupted.

RealWorld: 𝐴 upon UPDATE in round 𝑡0 does the following. The
update phase consists of the following steps: Informing 𝐵, generat-

ing the transactions for the new state, signing these transactions,

signing the revocation for 𝐵 and signing the revocation for 𝐴. We

capture the steps visible to the ℰ below, together with their depen-

dencies. The execution ensemble EXECupdate

Π,𝒜,ℰ follows as a list for

better readability.

• updateReq to 𝐵 in round 𝑡0
• SETUP to ℰ in 𝑡0 + 2 (if received updateInfo from 𝐵)

• updateCom to 𝐵 in round 𝑡1 ≤ 𝑡0 + 2 + 𝑡stp(if received

SETUP–OK from ℰ)
• SignTxs in 𝑡1 + 1
• UPDATE–OK to ℰ in round 𝑡1 + 1 + 𝑡𝑠 (if signing successful)
• sign revocation of 𝐵 with 𝐵 in round 𝑡1 + 1 + 𝑡𝑠 (if REVOKE
from ℰ)
• revoke to 𝐵 in round 𝑡1 + 1 + 𝑡𝑠 + 𝑡𝑟 (if signing successful)
• sign revocation of 𝐴 with 𝐵 in round 𝑡1 + 2 + 𝑡𝑠 + 𝑡𝑟
• UPDATED to ℰ in round 𝑡1 + 3 + 𝑡𝑠 + 2𝑡𝑟 (if signature for

revocation received from 𝐵)

Ideal World: Upon 𝐴 sending UPDATE in round 𝑡0 to ℱ , 𝒮 sim-

ulates the protocol view to ℰ . The same steps of the update phase

have to be conducted: Informing 𝐵, generating the transactions for

the new state, signing these transactions, signing the revocation

for 𝐵 and signing the revocation for 𝐴. We capture the steps visible

to the ℰ below, together with their dependencies and if they are

executed by 𝒮 or ℱ . The execution ensemble EXECupdate

ℱ,𝒮,ℰ follows

as a list for better readability.

• updateReq to 𝐵 in round 𝑡0 (𝒮)
• SETUP to ℰ in 𝑡0 + 2 (if received updateInfo from 𝐵) (ℱ )

• updateCom to 𝐵 in round 𝑡1 ≤ 𝑡0 + 2 + 𝑡stp (if received

SETUP–OK from ℰ) (𝒮)
• SignTxs in 𝑡1 + 1 (𝒮)
• UPDATE–OK to ℰ in round 𝑡1 + 1 + 𝑡𝑠 (if signing successful)

(ℱ after instructed by 𝒮)
• sign revocation of 𝐵 with 𝐵 in round 𝑡1 + 1 + 𝑡𝑠 (if REVOKE
from ℰ) (𝒮)
• revoke to 𝐵 in round 𝑡1 + 1 + 𝑡𝑠 + 𝑡𝑟 (if signing successful) (𝒮
• sign revocation of 𝐴 with 𝐵 in round 𝑡1 + 2 + 𝑡𝑠 + 𝑡𝑟 (𝒮)
• UPDATED to ℰ in round 𝑡1 + 3 + 𝑡𝑠 + 2𝑡𝑟 (if signature for

revocation received from 𝐵) (ℱ )

Now we consider the case where 𝐵 is honest and 𝐴 is corrupted.

Real World: 𝐴 upon UPDATE in round 𝑡0 does the following.

The update phase consists of the following steps: Generating the

transactions for the new state, signing these transactions, signing

the revocation for𝐴 and signing the revoaction for 𝐵. Similar to the

previous case, we capture the steps visible to the ℰ below, together

with their dependencies. The execution ensemble EXECupdate

Π,𝒜,ℰ fol-

lows as a list for better readability.

• UPDATE–REQ to ℰ in round 𝜏0 (if received updateReq from𝐴)

• updateInfo to 𝐴 in round 𝜏0
• SETUP–OK to ℰ in round 𝜏1 ≤ 𝜏0 + 2 + 𝑡stp (if received

updateCom from 𝐴)

• SignTxs in 𝜏1
• sign revocation of 𝐵 with 𝐴 in round 𝜏1 + 𝑡𝑠 (if previous

signing was successful)

• REVOKE–REQ to ℰ in round 𝜏1 + 1 + 𝑡𝑠 (after receiving revoke
from 𝐴 in that round)

• sign revocation of 𝐴 with 𝐴 in round 𝜏1 + 1 + 𝑡𝑠 + 𝑡𝑟
• revoke to 𝐴 in round 𝜏1 + 1 + 𝑡𝑠 + 2𝑡𝑟 (in case revocation was

signed successfully)

• UPDATED to ℰ in round 𝜏1 + 2 + 𝑡𝑠 + 2𝑡𝑟
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Table 2: Overhead for operations, given a current fee of 102 satoshi per byte and a price of 57, 202 USD per BTC.

txs off-chain bytes txs on-chain bytes USD

create 2 · (tx𝐴Pay,𝑖 + tx
𝐴,𝐵
Fpay,𝑖 + tx

𝐴∗
Fpay,𝑖 + tx

𝐴,𝐴
Fpay,𝑖 ) 2026 tx𝐹 338 2.13

update 2 · (tx𝐴Pay,𝑖 + tx
𝐴,𝐵
Fpay,𝑖 + tx

𝐴∗
Fpay,𝑖 + tx

𝐴,𝐴
Fpay,𝑖 + tx

𝐴
Pnsh,𝑖 ) 2408 - - -

close (optimistic) - - tx𝐴Pay,𝑖 225 1.42

close (slow) - - tx𝐴Pay,𝑖 + tx
𝐴,𝐴
Fpay,𝑖 449 2.83

close (fast) - - tx𝐴Pay,𝑖 + tx
𝐴,𝐵
Fpay,𝑖 + tx

𝐴∗
Fpay,𝑖 823 5.18

punish - - tx𝐴Pay,𝑖 + tx
𝐴
Pnsh,𝑖 450 2.83

Ideal World: Upon 𝐴 sending UPDATE in round 𝑡0 to ℱ , 𝒮 sim-

ulates the protocol view to ℰ . The same steps of the update phase

have to be conducted: Generating the transactions for the new state,

signing these transactions, signing the revocation for 𝐵 and signing

the revocation for 𝐴. We capture the steps visible to the ℰ below,

together with their dependencies and if they are executed by 𝒮 or

ℱ . The execution ensemble EXECupdate

ℱ,𝒮,ℰ follows as a list for better

readability.

• UPDATE–REQ to ℰ in round 𝜏0 (if received updateReq from𝐴)

(ℱ )

• updateInfo to 𝐴 in round 𝜏0 (𝒮)
• SETUP–OK to ℰ in round 𝜏1 ≤ 𝜏0 + 2 + 𝑡stp (if received

updateCom from 𝐴) (ℱ )

• SignTxs in 𝜏1 (𝒮)
• sign revocation of 𝐵 with 𝐴 in round 𝜏1 + 𝑡𝑠 (if previous

signing was successful) (𝒮)
• REVOKE–REQ to ℰ in round 𝜏1 + 1 + 𝑡𝑠 (after receiving revoke
from 𝐴 in that round) (ℱ )

• sign revocation of 𝐴 with 𝐴 in round 𝜏1 + 1 + 𝑡𝑠 + 𝑡𝑟 (𝒮)
• revoke to 𝐴 in round 𝜏1 + 1 + 𝑡𝑠 + 2𝑡𝑟 (in case revocation was

signed successfully) (𝒮)
• UPDATED to ℰ in round 𝜏1 + 2 + 𝑡𝑠 + 2𝑡𝑟 (ℱ )

□

Lemma 5. The Close phase of Π UC-realizes the Close phase of ℱ .

Proof. We consider the case where 𝐴 is honest and 𝐵 is cor-

rupted. Note that the reverse case is symmetric.

Real World: After receiving CLOSE in round 𝑡0, 𝐴 creates a

closing transaction tx𝑐 from the latest state of the channel. 𝐴 then

performs action 𝑎0 := create signature for tx𝑐 with 𝐵. In case of

success, 𝐴 performs 𝑎1 := post tx𝑐 on B in round 𝑡0 + 𝑡𝑟 . If it
appears in round 𝑡1 ≤ 𝑡0 + 𝑡𝑟 + Δ, send CLOSED. If the signa-

ture generation was unsuccessful in round 𝑡2 ≥ 𝑡0, 𝐴 runs 𝑎2 :=

ForceClose. Thus, the execution ensemble is either EXECclose

Π,𝒜,ℰ :=

{obsSet(𝑎0, 𝑡0), obsSet(𝑎1, 𝑡0 + 𝑡𝑟 ), CLOSED[𝑡1]} or EXECclose

Π,𝒜,ℰ :=

{obsSet(𝑎0, 𝑡0), obsSet(𝑎2, 𝑡2)}.
Ideal World: In this case, after𝐴 receving CLOSE in round 𝑡0, 𝒮

handles creating the transaction and performing 𝑎0 in round 𝑡0 and

𝑎1 in 𝑡0+𝑡𝑟 , whileℱ sends CLOSED if the closing transaction appears
on B in round 𝑡1 ≤ 𝑡0+𝑡𝑟 +Δ. If the signature generation was unsuc-
cessful in round 𝑡2 ≥ 𝑡0, the simulator will perform 𝑎2 and instruct

ℱ to do the same (by not sending CLOSE on behalf of𝐵). Thus, the ex-

ecution ensemble is EXECclose

ℱ,𝒮,ℰ := {obsSet(𝑎0, 𝑡0), obsSet(𝑎1, 𝑡0 +
𝑡𝑟 ), CLOSED[𝑡1]} or EXECclose

ℱ,𝒮,ℰ := {obsSet(𝑎0, 𝑡0), obsSet(𝑎2, 𝑡2)}.
□

Lemma 6. The Punish phase of Π UC-realizes the Punish phase of
ℱ .

Proof. We consider the case where 𝐴 is honest and 𝐵 is cor-

rupted. Note that the reverse case is symmetric.

Real World: After 𝐴 receives PUNISH from ℰ in round 𝑡0,
7 𝐴

checks if there is a transaction on the ledger that belongs to an old

state of one of its channels. If yes, using the corresponding revoca-

tion secret, 𝐴 performs action 𝑎0 := post punishment transaction

in round 𝑡0. After it is accepted in round 𝑡1 ≤ 𝑡0+Δ,𝐴 performs𝑎1 :=

post collateral unlock transaction. If that is accepted in round 𝑡2 ≤
𝑡1 +Δ, 𝐴 outputs message PUNISHED. Thus, the execution ensemble

is EXECpunish

Π,𝒜,ℰ := {obsSet(𝑎0, 𝑡0), obsSet(𝑎1, 𝑡1), PUNISHED[𝑡2]}.

Ideal World: The ideal functionality checks at the end of ev-

ery round 𝑡0 (this is achieved by marking itself stale if not in-

voked by ℰ , see Section 4) if a transaction spending the fund-

ing transaction that is not the most recent state is on the ledger.

If it is, and the other party is honest, it expects a punishment

transaction to appear in round 𝑡1 ≤ 𝑡0 + Δ. Additionally, it ex-
pects that the collateral unlock transaction of that party appears

in round 𝑡2 ≤ 𝑡1 + Δ. If both appear, ℱ outputs PUNISHED in

round 𝑡2. Meanwhile, the simulator will take care of posting both

the punishment 𝑎0 and the collateral unlock transaction 𝑎1 in

rounds 𝑡0 and 𝑡1, respectively. Thus, the execution ensemble is

EXECpunish

ℱ,𝒮,ℰ := {obsSet(𝑎0, 𝑡0), obsSet(𝑎1, 𝑡1), PUNISHED[𝑡2]}.
□

Theorem A.1. The protocol Π UC-realizes the the ideal function-
ality ℱ .

Proof. The proof of the theorem follows by a standard hybrid

argument and an application of Lemmas 2 to 6. □

7
Note that we require the environment to send this message, as we defined that all

security guarantees ofℱ are lost in the case of message ERROR. However, this is exactly
what happens if the environment does not give the execution token to ℱ via PUNISH,
see Section 4
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B DEPLOYMENT COST
To further evaluate our Sleepy Channels protocol, we want to mea-

sure the cost in terms of on-chain fees when using the protocol.

Taking the numbers from Section 6, we do the following. To post

a Bitcoin transaction to the blockchain, one has to give a certain

amount of fees to the miner. This fee is dependent on the size of

the transaction. At the time of writing, the fee of including a trans-

action to the next block is 11 satoshis per byte and the price of 1

Bitcoin in USD is 57202,30. Together with the fact that there are 10
8

satoshis in one Bitcoin, we can compute the fees in USD for each of

the Sleepy Channels operations. We show our results in Table 2.
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